src/share/vm/utilities/globalDefinitions.hpp

Tue, 29 Jul 2014 13:54:16 +0200

author
thartmann
date
Tue, 29 Jul 2014 13:54:16 +0200
changeset 7001
b6a8cc1e0d92
parent 6680
78bbf4d43a14
child 7535
7ae4e26cb1e0
child 8368
32b682649973
permissions
-rw-r--r--

8040121: Load variable through a pointer of an incompatible type in src/hotspot/src/share/vm: opto/output.cpp, runtime/sharedRuntimeTrans.cpp, utilities/globalDefinitions_visCPP.hpp
Summary: Fixed parfait warnings in globalDefinitions files by using a union for casts.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    41 #ifdef TARGET_COMPILER_xlc
    42 # include "utilities/globalDefinitions_xlc.hpp"
    43 #endif
    45 #ifndef PRAGMA_DIAG_PUSH
    46 #define PRAGMA_DIAG_PUSH
    47 #endif
    48 #ifndef PRAGMA_DIAG_POP
    49 #define PRAGMA_DIAG_POP
    50 #endif
    51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
    52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
    53 #endif
    54 #ifndef PRAGMA_FORMAT_IGNORED
    55 #define PRAGMA_FORMAT_IGNORED
    56 #endif
    57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
    59 #endif
    60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
    62 #endif
    63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    65 #endif
    66 #ifndef ATTRIBUTE_PRINTF
    67 #define ATTRIBUTE_PRINTF(fmt, vargs)
    68 #endif
    71 #include "utilities/macros.hpp"
    73 // This file holds all globally used constants & types, class (forward)
    74 // declarations and a few frequently used utility functions.
    76 //----------------------------------------------------------------------------------------------------
    77 // Constants
    79 const int LogBytesPerShort   = 1;
    80 const int LogBytesPerInt     = 2;
    81 #ifdef _LP64
    82 const int LogBytesPerWord    = 3;
    83 #else
    84 const int LogBytesPerWord    = 2;
    85 #endif
    86 const int LogBytesPerLong    = 3;
    88 const int BytesPerShort      = 1 << LogBytesPerShort;
    89 const int BytesPerInt        = 1 << LogBytesPerInt;
    90 const int BytesPerWord       = 1 << LogBytesPerWord;
    91 const int BytesPerLong       = 1 << LogBytesPerLong;
    93 const int LogBitsPerByte     = 3;
    94 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    95 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    96 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    97 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    99 const int BitsPerByte        = 1 << LogBitsPerByte;
   100 const int BitsPerShort       = 1 << LogBitsPerShort;
   101 const int BitsPerInt         = 1 << LogBitsPerInt;
   102 const int BitsPerWord        = 1 << LogBitsPerWord;
   103 const int BitsPerLong        = 1 << LogBitsPerLong;
   105 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
   106 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
   108 const int WordsPerLong       = 2;       // Number of stack entries for longs
   110 const int oopSize            = sizeof(char*); // Full-width oop
   111 extern int heapOopSize;                       // Oop within a java object
   112 const int wordSize           = sizeof(char*);
   113 const int longSize           = sizeof(jlong);
   114 const int jintSize           = sizeof(jint);
   115 const int size_tSize         = sizeof(size_t);
   117 const int BytesPerOop        = BytesPerWord;  // Full-width oop
   119 extern int LogBytesPerHeapOop;                // Oop within a java object
   120 extern int LogBitsPerHeapOop;
   121 extern int BytesPerHeapOop;
   122 extern int BitsPerHeapOop;
   124 // Oop encoding heap max
   125 extern uint64_t OopEncodingHeapMax;
   127 const int BitsPerJavaInteger = 32;
   128 const int BitsPerJavaLong    = 64;
   129 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   131 // Size of a char[] needed to represent a jint as a string in decimal.
   132 const int jintAsStringSize = 12;
   134 // In fact this should be
   135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   136 // see os::set_memory_serialize_page()
   137 #ifdef _LP64
   138 const int SerializePageShiftCount = 4;
   139 #else
   140 const int SerializePageShiftCount = 3;
   141 #endif
   143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   144 // pointer into the heap.  We require that object sizes be measured in
   145 // units of heap words, so that that
   146 //   HeapWord* hw;
   147 //   hw += oop(hw)->foo();
   148 // works, where foo is a method (like size or scavenge) that returns the
   149 // object size.
   150 class HeapWord {
   151   friend class VMStructs;
   152  private:
   153   char* i;
   154 #ifndef PRODUCT
   155  public:
   156   char* value() { return i; }
   157 #endif
   158 };
   160 // Analogous opaque struct for metadata allocated from
   161 // metaspaces.
   162 class MetaWord {
   163   friend class VMStructs;
   164  private:
   165   char* i;
   166 };
   168 // HeapWordSize must be 2^LogHeapWordSize.
   169 const int HeapWordSize        = sizeof(HeapWord);
   170 #ifdef _LP64
   171 const int LogHeapWordSize     = 3;
   172 #else
   173 const int LogHeapWordSize     = 2;
   174 #endif
   175 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   178 // The larger HeapWordSize for 64bit requires larger heaps
   179 // for the same application running in 64bit.  See bug 4967770.
   180 // The minimum alignment to a heap word size is done.  Other
   181 // parts of the memory system may required additional alignment
   182 // and are responsible for those alignments.
   183 #ifdef _LP64
   184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   185 #else
   186 #define ScaleForWordSize(x) (x)
   187 #endif
   189 // The minimum number of native machine words necessary to contain "byte_size"
   190 // bytes.
   191 inline size_t heap_word_size(size_t byte_size) {
   192   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   193 }
   196 const size_t K                  = 1024;
   197 const size_t M                  = K*K;
   198 const size_t G                  = M*K;
   199 const size_t HWperKB            = K / sizeof(HeapWord);
   201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   202 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   204 // Constants for converting from a base unit to milli-base units.  For
   205 // example from seconds to milliseconds and microseconds
   207 const int MILLIUNITS    = 1000;         // milli units per base unit
   208 const int MICROUNITS    = 1000000;      // micro units per base unit
   209 const int NANOUNITS     = 1000000000;   // nano units per base unit
   211 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   212 const jint  NANOSECS_PER_MILLISEC = 1000000;
   214 inline const char* proper_unit_for_byte_size(size_t s) {
   215 #ifdef _LP64
   216   if (s >= 10*G) {
   217     return "G";
   218   }
   219 #endif
   220   if (s >= 10*M) {
   221     return "M";
   222   } else if (s >= 10*K) {
   223     return "K";
   224   } else {
   225     return "B";
   226   }
   227 }
   229 template <class T>
   230 inline T byte_size_in_proper_unit(T s) {
   231 #ifdef _LP64
   232   if (s >= 10*G) {
   233     return (T)(s/G);
   234   }
   235 #endif
   236   if (s >= 10*M) {
   237     return (T)(s/M);
   238   } else if (s >= 10*K) {
   239     return (T)(s/K);
   240   } else {
   241     return s;
   242   }
   243 }
   245 //----------------------------------------------------------------------------------------------------
   246 // VM type definitions
   248 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   249 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   251 typedef intptr_t  intx;
   252 typedef uintptr_t uintx;
   254 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   255 const intx  max_intx  = (uintx)min_intx - 1;
   256 const uintx max_uintx = (uintx)-1;
   258 // Table of values:
   259 //      sizeof intx         4               8
   260 // min_intx             0x80000000      0x8000000000000000
   261 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   262 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   264 typedef unsigned int uint;   NEEDS_CLEANUP
   267 //----------------------------------------------------------------------------------------------------
   268 // Java type definitions
   270 // All kinds of 'plain' byte addresses
   271 typedef   signed char s_char;
   272 typedef unsigned char u_char;
   273 typedef u_char*       address;
   274 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   275                                     // except for some implementations of a C++
   276                                     // linkage pointer to function. Should never
   277                                     // need one of those to be placed in this
   278                                     // type anyway.
   280 //  Utility functions to "portably" (?) bit twiddle pointers
   281 //  Where portable means keep ANSI C++ compilers quiet
   283 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   284 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   286 //  Utility functions to "portably" make cast to/from function pointers.
   288 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   289 inline address_word  castable_address(address x)              { return address_word(x) ; }
   290 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   292 // Pointer subtraction.
   293 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   294 // the range we might need to find differences from one end of the heap
   295 // to the other.
   296 // A typical use might be:
   297 //     if (pointer_delta(end(), top()) >= size) {
   298 //       // enough room for an object of size
   299 //       ...
   300 // and then additions like
   301 //       ... top() + size ...
   302 // are safe because we know that top() is at least size below end().
   303 inline size_t pointer_delta(const void* left,
   304                             const void* right,
   305                             size_t element_size) {
   306   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   307 }
   308 // A version specialized for HeapWord*'s.
   309 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   310   return pointer_delta(left, right, sizeof(HeapWord));
   311 }
   312 // A version specialized for MetaWord*'s.
   313 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
   314   return pointer_delta(left, right, sizeof(MetaWord));
   315 }
   317 //
   318 // ANSI C++ does not allow casting from one pointer type to a function pointer
   319 // directly without at best a warning. This macro accomplishes it silently
   320 // In every case that is present at this point the value be cast is a pointer
   321 // to a C linkage function. In somecase the type used for the cast reflects
   322 // that linkage and a picky compiler would not complain. In other cases because
   323 // there is no convenient place to place a typedef with extern C linkage (i.e
   324 // a platform dependent header file) it doesn't. At this point no compiler seems
   325 // picky enough to catch these instances (which are few). It is possible that
   326 // using templates could fix these for all cases. This use of templates is likely
   327 // so far from the middle of the road that it is likely to be problematic in
   328 // many C++ compilers.
   329 //
   330 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   331 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   333 // Unsigned byte types for os and stream.hpp
   335 // Unsigned one, two, four and eigth byte quantities used for describing
   336 // the .class file format. See JVM book chapter 4.
   338 typedef jubyte  u1;
   339 typedef jushort u2;
   340 typedef juint   u4;
   341 typedef julong  u8;
   343 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   344 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   345 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   346 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   348 typedef jbyte  s1;
   349 typedef jshort s2;
   350 typedef jint   s4;
   351 typedef jlong  s8;
   353 //----------------------------------------------------------------------------------------------------
   354 // JVM spec restrictions
   356 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   358 // Default ProtectionDomainCacheSize values
   360 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
   362 //----------------------------------------------------------------------------------------------------
   363 // Default and minimum StringTableSize values
   365 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
   366 const int minimumStringTableSize = 1009;
   368 const int defaultSymbolTableSize = 20011;
   369 const int minimumSymbolTableSize = 1009;
   372 //----------------------------------------------------------------------------------------------------
   373 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   374 //
   375 // Determines whether on-the-fly class replacement and frame popping are enabled.
   377 #define HOTSWAP
   379 //----------------------------------------------------------------------------------------------------
   380 // Object alignment, in units of HeapWords.
   381 //
   382 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   383 // reference fields can be naturally aligned.
   385 extern int MinObjAlignment;
   386 extern int MinObjAlignmentInBytes;
   387 extern int MinObjAlignmentInBytesMask;
   389 extern int LogMinObjAlignment;
   390 extern int LogMinObjAlignmentInBytes;
   392 const int LogKlassAlignmentInBytes = 3;
   393 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
   394 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
   395 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
   397 // Klass encoding metaspace max size
   398 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
   400 // Machine dependent stuff
   402 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
   403 // Include Restricted Transactional Memory lock eliding optimization
   404 #define INCLUDE_RTM_OPT 1
   405 #define RTM_OPT_ONLY(code) code
   406 #else
   407 #define INCLUDE_RTM_OPT 0
   408 #define RTM_OPT_ONLY(code)
   409 #endif
   410 // States of Restricted Transactional Memory usage.
   411 enum RTMState {
   412   NoRTM      = 0x2, // Don't use RTM
   413   UseRTM     = 0x1, // Use RTM
   414   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
   415 };
   417 #ifdef TARGET_ARCH_x86
   418 # include "globalDefinitions_x86.hpp"
   419 #endif
   420 #ifdef TARGET_ARCH_sparc
   421 # include "globalDefinitions_sparc.hpp"
   422 #endif
   423 #ifdef TARGET_ARCH_zero
   424 # include "globalDefinitions_zero.hpp"
   425 #endif
   426 #ifdef TARGET_ARCH_arm
   427 # include "globalDefinitions_arm.hpp"
   428 #endif
   429 #ifdef TARGET_ARCH_ppc
   430 # include "globalDefinitions_ppc.hpp"
   431 #endif
   433 /*
   434  * If a platform does not support native stack walking
   435  * the platform specific globalDefinitions (above)
   436  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
   437  */
   438 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
   439 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
   440 #endif
   442 // To assure the IRIW property on processors that are not multiple copy
   443 // atomic, sync instructions must be issued between volatile reads to
   444 // assure their ordering, instead of after volatile stores.
   445 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
   446 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
   447 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
   448 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
   449 #else
   450 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
   451 #endif
   453 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   454 // Note: this value must be a power of 2
   456 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   458 // Signed variants of alignment helpers.  There are two versions of each, a macro
   459 // for use in places like enum definitions that require compile-time constant
   460 // expressions and a function for all other places so as to get type checking.
   462 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   464 inline bool is_size_aligned(size_t size, size_t alignment) {
   465   return align_size_up_(size, alignment) == size;
   466 }
   468 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
   469   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
   470 }
   472 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   473   return align_size_up_(size, alignment);
   474 }
   476 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   478 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   479   return align_size_down_(size, alignment);
   480 }
   482 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
   484 inline void* align_ptr_up(void* ptr, size_t alignment) {
   485   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
   486 }
   488 inline void* align_ptr_down(void* ptr, size_t alignment) {
   489   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
   490 }
   492 // Align objects by rounding up their size, in HeapWord units.
   494 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   496 inline intptr_t align_object_size(intptr_t size) {
   497   return align_size_up(size, MinObjAlignment);
   498 }
   500 inline bool is_object_aligned(intptr_t addr) {
   501   return addr == align_object_size(addr);
   502 }
   504 // Pad out certain offsets to jlong alignment, in HeapWord units.
   506 inline intptr_t align_object_offset(intptr_t offset) {
   507   return align_size_up(offset, HeapWordsPerLong);
   508 }
   510 inline void* align_pointer_up(const void* addr, size_t size) {
   511   return (void*) align_size_up_((uintptr_t)addr, size);
   512 }
   514 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
   516 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
   517   size_t aligned_size = align_size_down_(size, alignment);
   518   return aligned_size > 0 ? aligned_size : alignment;
   519 }
   521 // Clamp an address to be within a specific page
   522 // 1. If addr is on the page it is returned as is
   523 // 2. If addr is above the page_address the start of the *next* page will be returned
   524 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
   525 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
   526   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
   527     // address is in the specified page, just return it as is
   528     return addr;
   529   } else if (addr > page_address) {
   530     // address is above specified page, return start of next page
   531     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
   532   } else {
   533     // address is below specified page, return start of page
   534     return (address)align_size_down(intptr_t(page_address), page_size);
   535   }
   536 }
   539 // The expected size in bytes of a cache line, used to pad data structures.
   540 #define DEFAULT_CACHE_LINE_SIZE 64
   543 //----------------------------------------------------------------------------------------------------
   544 // Utility macros for compilers
   545 // used to silence compiler warnings
   547 #define Unused_Variable(var) var
   550 //----------------------------------------------------------------------------------------------------
   551 // Miscellaneous
   553 // 6302670 Eliminate Hotspot __fabsf dependency
   554 // All fabs() callers should call this function instead, which will implicitly
   555 // convert the operand to double, avoiding a dependency on __fabsf which
   556 // doesn't exist in early versions of Solaris 8.
   557 inline double fabsd(double value) {
   558   return fabs(value);
   559 }
   561 //----------------------------------------------------------------------------------------------------
   562 // Special casts
   563 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
   564 typedef union {
   565   jfloat f;
   566   jint i;
   567 } FloatIntConv;
   569 typedef union {
   570   jdouble d;
   571   jlong l;
   572   julong ul;
   573 } DoubleLongConv;
   575 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
   576 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
   578 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
   579 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
   580 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
   582 inline jint low (jlong value)                    { return jint(value); }
   583 inline jint high(jlong value)                    { return jint(value >> 32); }
   585 // the fancy casts are a hopefully portable way
   586 // to do unsigned 32 to 64 bit type conversion
   587 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   588                                                    *value |= (jlong)(julong)(juint)low; }
   590 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   591                                                    *value |= (jlong)high       << 32; }
   593 inline jlong jlong_from(jint h, jint l) {
   594   jlong result = 0; // initialization to avoid warning
   595   set_high(&result, h);
   596   set_low(&result,  l);
   597   return result;
   598 }
   600 union jlong_accessor {
   601   jint  words[2];
   602   jlong long_value;
   603 };
   605 void basic_types_init(); // cannot define here; uses assert
   608 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   609 enum BasicType {
   610   T_BOOLEAN     =  4,
   611   T_CHAR        =  5,
   612   T_FLOAT       =  6,
   613   T_DOUBLE      =  7,
   614   T_BYTE        =  8,
   615   T_SHORT       =  9,
   616   T_INT         = 10,
   617   T_LONG        = 11,
   618   T_OBJECT      = 12,
   619   T_ARRAY       = 13,
   620   T_VOID        = 14,
   621   T_ADDRESS     = 15,
   622   T_NARROWOOP   = 16,
   623   T_METADATA    = 17,
   624   T_NARROWKLASS = 18,
   625   T_CONFLICT    = 19, // for stack value type with conflicting contents
   626   T_ILLEGAL     = 99
   627 };
   629 inline bool is_java_primitive(BasicType t) {
   630   return T_BOOLEAN <= t && t <= T_LONG;
   631 }
   633 inline bool is_subword_type(BasicType t) {
   634   // these guys are processed exactly like T_INT in calling sequences:
   635   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   636 }
   638 inline bool is_signed_subword_type(BasicType t) {
   639   return (t == T_BYTE || t == T_SHORT);
   640 }
   642 // Convert a char from a classfile signature to a BasicType
   643 inline BasicType char2type(char c) {
   644   switch( c ) {
   645   case 'B': return T_BYTE;
   646   case 'C': return T_CHAR;
   647   case 'D': return T_DOUBLE;
   648   case 'F': return T_FLOAT;
   649   case 'I': return T_INT;
   650   case 'J': return T_LONG;
   651   case 'S': return T_SHORT;
   652   case 'Z': return T_BOOLEAN;
   653   case 'V': return T_VOID;
   654   case 'L': return T_OBJECT;
   655   case '[': return T_ARRAY;
   656   }
   657   return T_ILLEGAL;
   658 }
   660 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   661 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   662 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   663 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   664 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   665 extern BasicType name2type(const char* name);
   667 // Auxilary math routines
   668 // least common multiple
   669 extern size_t lcm(size_t a, size_t b);
   672 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   673 enum BasicTypeSize {
   674   T_BOOLEAN_size     = 1,
   675   T_CHAR_size        = 1,
   676   T_FLOAT_size       = 1,
   677   T_DOUBLE_size      = 2,
   678   T_BYTE_size        = 1,
   679   T_SHORT_size       = 1,
   680   T_INT_size         = 1,
   681   T_LONG_size        = 2,
   682   T_OBJECT_size      = 1,
   683   T_ARRAY_size       = 1,
   684   T_NARROWOOP_size   = 1,
   685   T_NARROWKLASS_size = 1,
   686   T_VOID_size        = 0
   687 };
   690 // maps a BasicType to its instance field storage type:
   691 // all sub-word integral types are widened to T_INT
   692 extern BasicType type2field[T_CONFLICT+1];
   693 extern BasicType type2wfield[T_CONFLICT+1];
   696 // size in bytes
   697 enum ArrayElementSize {
   698   T_BOOLEAN_aelem_bytes     = 1,
   699   T_CHAR_aelem_bytes        = 2,
   700   T_FLOAT_aelem_bytes       = 4,
   701   T_DOUBLE_aelem_bytes      = 8,
   702   T_BYTE_aelem_bytes        = 1,
   703   T_SHORT_aelem_bytes       = 2,
   704   T_INT_aelem_bytes         = 4,
   705   T_LONG_aelem_bytes        = 8,
   706 #ifdef _LP64
   707   T_OBJECT_aelem_bytes      = 8,
   708   T_ARRAY_aelem_bytes       = 8,
   709 #else
   710   T_OBJECT_aelem_bytes      = 4,
   711   T_ARRAY_aelem_bytes       = 4,
   712 #endif
   713   T_NARROWOOP_aelem_bytes   = 4,
   714   T_NARROWKLASS_aelem_bytes = 4,
   715   T_VOID_aelem_bytes        = 0
   716 };
   718 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   719 #ifdef ASSERT
   720 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   721 #else
   722 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   723 #endif
   726 // JavaValue serves as a container for arbitrary Java values.
   728 class JavaValue {
   730  public:
   731   typedef union JavaCallValue {
   732     jfloat   f;
   733     jdouble  d;
   734     jint     i;
   735     jlong    l;
   736     jobject  h;
   737   } JavaCallValue;
   739  private:
   740   BasicType _type;
   741   JavaCallValue _value;
   743  public:
   744   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   746   JavaValue(jfloat value) {
   747     _type    = T_FLOAT;
   748     _value.f = value;
   749   }
   751   JavaValue(jdouble value) {
   752     _type    = T_DOUBLE;
   753     _value.d = value;
   754   }
   756  jfloat get_jfloat() const { return _value.f; }
   757  jdouble get_jdouble() const { return _value.d; }
   758  jint get_jint() const { return _value.i; }
   759  jlong get_jlong() const { return _value.l; }
   760  jobject get_jobject() const { return _value.h; }
   761  JavaCallValue* get_value_addr() { return &_value; }
   762  BasicType get_type() const { return _type; }
   764  void set_jfloat(jfloat f) { _value.f = f;}
   765  void set_jdouble(jdouble d) { _value.d = d;}
   766  void set_jint(jint i) { _value.i = i;}
   767  void set_jlong(jlong l) { _value.l = l;}
   768  void set_jobject(jobject h) { _value.h = h;}
   769  void set_type(BasicType t) { _type = t; }
   771  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   772  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   773  jchar get_jchar() const { return (jchar) (_value.i);}
   774  jshort get_jshort() const { return (jshort) (_value.i);}
   776 };
   779 #define STACK_BIAS      0
   780 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   781 // in order to extend the reach of the stack pointer.
   782 #if defined(SPARC) && defined(_LP64)
   783 #undef STACK_BIAS
   784 #define STACK_BIAS      0x7ff
   785 #endif
   788 // TosState describes the top-of-stack state before and after the execution of
   789 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   790 // registers. The TosState corresponds to the 'machine represention' of this cached
   791 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   792 // as well as a 5th state in case the top-of-stack value is actually on the top
   793 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   794 // state when it comes to machine representation but is used separately for (oop)
   795 // type specific operations (e.g. verification code).
   797 enum TosState {         // describes the tos cache contents
   798   btos = 0,             // byte, bool tos cached
   799   ctos = 1,             // char tos cached
   800   stos = 2,             // short tos cached
   801   itos = 3,             // int tos cached
   802   ltos = 4,             // long tos cached
   803   ftos = 5,             // float tos cached
   804   dtos = 6,             // double tos cached
   805   atos = 7,             // object cached
   806   vtos = 8,             // tos not cached
   807   number_of_states,
   808   ilgl                  // illegal state: should not occur
   809 };
   812 inline TosState as_TosState(BasicType type) {
   813   switch (type) {
   814     case T_BYTE   : return btos;
   815     case T_BOOLEAN: return btos; // FIXME: Add ztos
   816     case T_CHAR   : return ctos;
   817     case T_SHORT  : return stos;
   818     case T_INT    : return itos;
   819     case T_LONG   : return ltos;
   820     case T_FLOAT  : return ftos;
   821     case T_DOUBLE : return dtos;
   822     case T_VOID   : return vtos;
   823     case T_ARRAY  : // fall through
   824     case T_OBJECT : return atos;
   825   }
   826   return ilgl;
   827 }
   829 inline BasicType as_BasicType(TosState state) {
   830   switch (state) {
   831     //case ztos: return T_BOOLEAN;//FIXME
   832     case btos : return T_BYTE;
   833     case ctos : return T_CHAR;
   834     case stos : return T_SHORT;
   835     case itos : return T_INT;
   836     case ltos : return T_LONG;
   837     case ftos : return T_FLOAT;
   838     case dtos : return T_DOUBLE;
   839     case atos : return T_OBJECT;
   840     case vtos : return T_VOID;
   841   }
   842   return T_ILLEGAL;
   843 }
   846 // Helper function to convert BasicType info into TosState
   847 // Note: Cannot define here as it uses global constant at the time being.
   848 TosState as_TosState(BasicType type);
   851 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   852 // information is needed by the safepoint code.
   853 //
   854 // There are 4 essential states:
   855 //
   856 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   857 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   858 //  _thread_in_vm       : Executing in the vm
   859 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   860 //
   861 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   862 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   863 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   864 //
   865 // Given a state, the xxx_trans state can always be found by adding 1.
   866 //
   867 enum JavaThreadState {
   868   _thread_uninitialized     =  0, // should never happen (missing initialization)
   869   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   870   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   871   _thread_in_native         =  4, // running in native code
   872   _thread_in_native_trans   =  5, // corresponding transition state
   873   _thread_in_vm             =  6, // running in VM
   874   _thread_in_vm_trans       =  7, // corresponding transition state
   875   _thread_in_Java           =  8, // running in Java or in stub code
   876   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   877   _thread_blocked           = 10, // blocked in vm
   878   _thread_blocked_trans     = 11, // corresponding transition state
   879   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   880 };
   883 // Handy constants for deciding which compiler mode to use.
   884 enum MethodCompilation {
   885   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   886   InvalidOSREntryBci = -2
   887 };
   889 // Enumeration to distinguish tiers of compilation
   890 enum CompLevel {
   891   CompLevel_any               = -1,
   892   CompLevel_all               = -1,
   893   CompLevel_none              = 0,         // Interpreter
   894   CompLevel_simple            = 1,         // C1
   895   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   896   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   897   CompLevel_full_optimization = 4,         // C2 or Shark
   899 #if defined(COMPILER2) || defined(SHARK)
   900   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   901 #elif defined(COMPILER1)
   902   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   903 #else
   904   CompLevel_highest_tier      = CompLevel_none,
   905 #endif
   907 #if defined(TIERED)
   908   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   909 #elif defined(COMPILER1)
   910   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   911 #elif defined(COMPILER2) || defined(SHARK)
   912   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   913 #else
   914   CompLevel_initial_compile   = CompLevel_none
   915 #endif
   916 };
   918 inline bool is_c1_compile(int comp_level) {
   919   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   920 }
   922 inline bool is_c2_compile(int comp_level) {
   923   return comp_level == CompLevel_full_optimization;
   924 }
   926 inline bool is_highest_tier_compile(int comp_level) {
   927   return comp_level == CompLevel_highest_tier;
   928 }
   930 inline bool is_compile(int comp_level) {
   931   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
   932 }
   934 //----------------------------------------------------------------------------------------------------
   935 // 'Forward' declarations of frequently used classes
   936 // (in order to reduce interface dependencies & reduce
   937 // number of unnecessary compilations after changes)
   939 class symbolTable;
   940 class ClassFileStream;
   942 class Event;
   944 class Thread;
   945 class  VMThread;
   946 class  JavaThread;
   947 class Threads;
   949 class VM_Operation;
   950 class VMOperationQueue;
   952 class CodeBlob;
   953 class  nmethod;
   954 class  OSRAdapter;
   955 class  I2CAdapter;
   956 class  C2IAdapter;
   957 class CompiledIC;
   958 class relocInfo;
   959 class ScopeDesc;
   960 class PcDesc;
   962 class Recompiler;
   963 class Recompilee;
   964 class RecompilationPolicy;
   965 class RFrame;
   966 class  CompiledRFrame;
   967 class  InterpretedRFrame;
   969 class frame;
   971 class vframe;
   972 class   javaVFrame;
   973 class     interpretedVFrame;
   974 class     compiledVFrame;
   975 class     deoptimizedVFrame;
   976 class   externalVFrame;
   977 class     entryVFrame;
   979 class RegisterMap;
   981 class Mutex;
   982 class Monitor;
   983 class BasicLock;
   984 class BasicObjectLock;
   986 class PeriodicTask;
   988 class JavaCallWrapper;
   990 class   oopDesc;
   991 class   metaDataOopDesc;
   993 class NativeCall;
   995 class zone;
   997 class StubQueue;
   999 class outputStream;
  1001 class ResourceArea;
  1003 class DebugInformationRecorder;
  1004 class ScopeValue;
  1005 class CompressedStream;
  1006 class   DebugInfoReadStream;
  1007 class   DebugInfoWriteStream;
  1008 class LocationValue;
  1009 class ConstantValue;
  1010 class IllegalValue;
  1012 class PrivilegedElement;
  1013 class MonitorArray;
  1015 class MonitorInfo;
  1017 class OffsetClosure;
  1018 class OopMapCache;
  1019 class InterpreterOopMap;
  1020 class OopMapCacheEntry;
  1021 class OSThread;
  1023 typedef int (*OSThreadStartFunc)(void*);
  1025 class Space;
  1027 class JavaValue;
  1028 class methodHandle;
  1029 class JavaCallArguments;
  1031 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
  1033 extern void basic_fatal(const char* msg);
  1036 //----------------------------------------------------------------------------------------------------
  1037 // Special constants for debugging
  1039 const jint     badInt           = -3;                       // generic "bad int" value
  1040 const long     badAddressVal    = -2;                       // generic "bad address" value
  1041 const long     badOopVal        = -1;                       // generic "bad oop" value
  1042 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
  1043 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
  1044 const int      badResourceValue = 0xAB;                     // value used to zap resource area
  1045 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
  1046 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
  1047 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
  1048 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
  1049 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
  1050 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
  1051 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
  1054 // (These must be implemented as #defines because C++ compilers are
  1055 // not obligated to inline non-integral constants!)
  1056 #define       badAddress        ((address)::badAddressVal)
  1057 #define       badOop            (cast_to_oop(::badOopVal))
  1058 #define       badHeapWord       (::badHeapWordVal)
  1059 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
  1061 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
  1062 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
  1064 //----------------------------------------------------------------------------------------------------
  1065 // Utility functions for bitfield manipulations
  1067 const intptr_t AllBits    = ~0; // all bits set in a word
  1068 const intptr_t NoBits     =  0; // no bits set in a word
  1069 const jlong    NoLongBits =  0; // no bits set in a long
  1070 const intptr_t OneBit     =  1; // only right_most bit set in a word
  1072 // get a word with the n.th or the right-most or left-most n bits set
  1073 // (note: #define used only so that they can be used in enum constant definitions)
  1074 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
  1075 #define right_n_bits(n)   (nth_bit(n) - 1)
  1076 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
  1078 // bit-operations using a mask m
  1079 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
  1080 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
  1081 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
  1082 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
  1083 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
  1085 // bit-operations using the n.th bit
  1086 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
  1087 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
  1088 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
  1090 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
  1091 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
  1092   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
  1096 //----------------------------------------------------------------------------------------------------
  1097 // Utility functions for integers
  1099 // Avoid use of global min/max macros which may cause unwanted double
  1100 // evaluation of arguments.
  1101 #ifdef max
  1102 #undef max
  1103 #endif
  1105 #ifdef min
  1106 #undef min
  1107 #endif
  1109 #define max(a,b) Do_not_use_max_use_MAX2_instead
  1110 #define min(a,b) Do_not_use_min_use_MIN2_instead
  1112 // It is necessary to use templates here. Having normal overloaded
  1113 // functions does not work because it is necessary to provide both 32-
  1114 // and 64-bit overloaded functions, which does not work, and having
  1115 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
  1116 // will be even more error-prone than macros.
  1117 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
  1118 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
  1119 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
  1120 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
  1121 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
  1122 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
  1124 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
  1126 // true if x is a power of 2, false otherwise
  1127 inline bool is_power_of_2(intptr_t x) {
  1128   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
  1131 // long version of is_power_of_2
  1132 inline bool is_power_of_2_long(jlong x) {
  1133   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
  1136 //* largest i such that 2^i <= x
  1137 //  A negative value of 'x' will return '31'
  1138 inline int log2_intptr(intptr_t x) {
  1139   int i = -1;
  1140   uintptr_t p =  1;
  1141   while (p != 0 && p <= (uintptr_t)x) {
  1142     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1143     i++; p *= 2;
  1145   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1146   // (if p = 0 then overflow occurred and i = 31)
  1147   return i;
  1150 //* largest i such that 2^i <= x
  1151 //  A negative value of 'x' will return '63'
  1152 inline int log2_long(jlong x) {
  1153   int i = -1;
  1154   julong p =  1;
  1155   while (p != 0 && p <= (julong)x) {
  1156     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1157     i++; p *= 2;
  1159   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1160   // (if p = 0 then overflow occurred and i = 63)
  1161   return i;
  1164 //* the argument must be exactly a power of 2
  1165 inline int exact_log2(intptr_t x) {
  1166   #ifdef ASSERT
  1167     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1168   #endif
  1169   return log2_intptr(x);
  1172 //* the argument must be exactly a power of 2
  1173 inline int exact_log2_long(jlong x) {
  1174   #ifdef ASSERT
  1175     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1176   #endif
  1177   return log2_long(x);
  1181 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1182 inline intptr_t round_to(intptr_t x, uintx s) {
  1183   #ifdef ASSERT
  1184     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1185   #endif
  1186   const uintx m = s - 1;
  1187   return mask_bits(x + m, ~m);
  1190 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1191 inline intptr_t round_down(intptr_t x, uintx s) {
  1192   #ifdef ASSERT
  1193     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1194   #endif
  1195   const uintx m = s - 1;
  1196   return mask_bits(x, ~m);
  1200 inline bool is_odd (intx x) { return x & 1;      }
  1201 inline bool is_even(intx x) { return !is_odd(x); }
  1203 // "to" should be greater than "from."
  1204 inline intx byte_size(void* from, void* to) {
  1205   return (address)to - (address)from;
  1208 //----------------------------------------------------------------------------------------------------
  1209 // Avoid non-portable casts with these routines (DEPRECATED)
  1211 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1212 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1214 // Given sequence of four bytes, build into a 32-bit word
  1215 // following the conventions used in class files.
  1216 // On the 386, this could be realized with a simple address cast.
  1217 //
  1219 // This routine takes eight bytes:
  1220 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1221   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1222        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1223        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1224        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1225        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1226        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1227        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1228        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1231 // This routine takes four bytes:
  1232 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1233   return  (( u4(c1) << 24 )  &  0xff000000)
  1234        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1235        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1236        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1239 // And this one works if the four bytes are contiguous in memory:
  1240 inline u4 build_u4_from( u1* p ) {
  1241   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1244 // Ditto for two-byte ints:
  1245 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1246   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1247           |  (( u2(c2) <<  0 )  &  0x00ff));
  1250 // And this one works if the two bytes are contiguous in memory:
  1251 inline u2 build_u2_from( u1* p ) {
  1252   return  build_u2_from( p[0], p[1] );
  1255 // Ditto for floats:
  1256 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1257   u4 u = build_u4_from( c1, c2, c3, c4 );
  1258   return  *(jfloat*)&u;
  1261 inline jfloat build_float_from( u1* p ) {
  1262   u4 u = build_u4_from( p );
  1263   return  *(jfloat*)&u;
  1267 // now (64-bit) longs
  1269 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1270   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1271        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1272        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1273        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1274        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1275        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1276        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1277        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1280 inline jlong build_long_from( u1* p ) {
  1281   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1285 // Doubles, too!
  1286 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1287   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1288   return  *(jdouble*)&u;
  1291 inline jdouble build_double_from( u1* p ) {
  1292   jlong u = build_long_from( p );
  1293   return  *(jdouble*)&u;
  1297 // Portable routines to go the other way:
  1299 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1300   c1 = u1(x >> 8);
  1301   c2 = u1(x);
  1304 inline void explode_short_to( u2 x, u1* p ) {
  1305   explode_short_to( x, p[0], p[1]);
  1308 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1309   c1 = u1(x >> 24);
  1310   c2 = u1(x >> 16);
  1311   c3 = u1(x >>  8);
  1312   c4 = u1(x);
  1315 inline void explode_int_to( u4 x, u1* p ) {
  1316   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1320 // Pack and extract shorts to/from ints:
  1322 inline int extract_low_short_from_int(jint x) {
  1323   return x & 0xffff;
  1326 inline int extract_high_short_from_int(jint x) {
  1327   return (x >> 16) & 0xffff;
  1330 inline int build_int_from_shorts( jushort low, jushort high ) {
  1331   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1334 // Convert pointer to intptr_t, for use in printing pointers.
  1335 inline intptr_t p2i(const void * p) {
  1336   return (intptr_t) p;
  1339 // Printf-style formatters for fixed- and variable-width types as pointers and
  1340 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1341 // doesn't provide appropriate definitions, they should be provided in
  1342 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1344 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1346 // Format 32-bit quantities.
  1347 #define INT32_FORMAT           "%" PRId32
  1348 #define UINT32_FORMAT          "%" PRIu32
  1349 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1350 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1352 #define PTR32_FORMAT           "0x%08" PRIx32
  1354 // Format 64-bit quantities.
  1355 #define INT64_FORMAT           "%" PRId64
  1356 #define UINT64_FORMAT          "%" PRIu64
  1357 #define UINT64_FORMAT_X        "%" PRIx64
  1358 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1359 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1361 #define PTR64_FORMAT           "0x%016" PRIx64
  1363 // Format jlong, if necessary
  1364 #ifndef JLONG_FORMAT
  1365 #define JLONG_FORMAT           INT64_FORMAT
  1366 #endif
  1367 #ifndef JULONG_FORMAT
  1368 #define JULONG_FORMAT          UINT64_FORMAT
  1369 #endif
  1371 // Format pointers which change size between 32- and 64-bit.
  1372 #ifdef  _LP64
  1373 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1374 #define PTR_FORMAT    "0x%016" PRIxPTR
  1375 #else   // !_LP64
  1376 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1377 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1378 #endif  // _LP64
  1380 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  1382 #define SSIZE_FORMAT          "%"   PRIdPTR
  1383 #define SIZE_FORMAT           "%"   PRIuPTR
  1384 #define SIZE_FORMAT_HEX       "0x%" PRIxPTR
  1385 #define SSIZE_FORMAT_W(width) "%"   #width PRIdPTR
  1386 #define SIZE_FORMAT_W(width)  "%"   #width PRIuPTR
  1387 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
  1389 #define INTX_FORMAT           "%" PRIdPTR
  1390 #define UINTX_FORMAT          "%" PRIuPTR
  1391 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1392 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1395 // Enable zap-a-lot if in debug version.
  1397 # ifdef ASSERT
  1398 # ifdef COMPILER2
  1399 #   define ENABLE_ZAP_DEAD_LOCALS
  1400 #endif /* COMPILER2 */
  1401 # endif /* ASSERT */
  1403 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1405 // Dereference vptr
  1406 // All C++ compilers that we know of have the vtbl pointer in the first
  1407 // word.  If there are exceptions, this function needs to be made compiler
  1408 // specific.
  1409 static inline void* dereference_vptr(const void* addr) {
  1410   return *(void**)addr;
  1413 #ifndef PRODUCT
  1415 // For unit testing only
  1416 class GlobalDefinitions {
  1417 public:
  1418   static void test_globals();
  1419 };
  1421 #endif // PRODUCT
  1423 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial