src/share/vm/utilities/globalDefinitions.hpp

Fri, 17 May 2019 18:13:25 +0100

author
dholmes
date
Fri, 17 May 2019 18:13:25 +0100
changeset 9677
af43bab3c5d0
parent 9667
1a1aec8c87b7
child 9703
2fdf635bcf28
child 9840
9efdbe72ed1d
child 9858
b985cbb00e68
permissions
-rw-r--r--

8151322: Implement os::set_native_thread_name() on Solaris
Reviewed-by: sla, kbarrett, gziemski

duke@435 1 /*
kevinw@8368 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 27
dcubed@3202 28 #ifndef __STDC_FORMAT_MACROS
never@3156 29 #define __STDC_FORMAT_MACROS
dcubed@3202 30 #endif
never@3156 31
stefank@2314 32 #ifdef TARGET_COMPILER_gcc
stefank@2314 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_COMPILER_visCPP
stefank@2314 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 40 #endif
goetz@6461 41 #ifdef TARGET_COMPILER_xlc
goetz@6461 42 # include "utilities/globalDefinitions_xlc.hpp"
goetz@6461 43 #endif
stefank@2314 44
drchase@6680 45 #ifndef PRAGMA_DIAG_PUSH
drchase@6680 46 #define PRAGMA_DIAG_PUSH
drchase@6680 47 #endif
drchase@6680 48 #ifndef PRAGMA_DIAG_POP
drchase@6680 49 #define PRAGMA_DIAG_POP
drchase@6680 50 #endif
drchase@6680 51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 53 #endif
drchase@6680 54 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6680 55 #define PRAGMA_FORMAT_IGNORED
drchase@6680 56 #endif
drchase@6680 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 59 #endif
drchase@6680 60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 62 #endif
drchase@6680 63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 65 #endif
drchase@6680 66 #ifndef ATTRIBUTE_PRINTF
drchase@6680 67 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6680 68 #endif
drchase@6680 69
drchase@6680 70
stefank@2314 71 #include "utilities/macros.hpp"
stefank@2314 72
duke@435 73 // This file holds all globally used constants & types, class (forward)
duke@435 74 // declarations and a few frequently used utility functions.
duke@435 75
duke@435 76 //----------------------------------------------------------------------------------------------------
duke@435 77 // Constants
duke@435 78
duke@435 79 const int LogBytesPerShort = 1;
duke@435 80 const int LogBytesPerInt = 2;
duke@435 81 #ifdef _LP64
duke@435 82 const int LogBytesPerWord = 3;
duke@435 83 #else
duke@435 84 const int LogBytesPerWord = 2;
duke@435 85 #endif
duke@435 86 const int LogBytesPerLong = 3;
duke@435 87
duke@435 88 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 89 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 90 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 91 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 92
duke@435 93 const int LogBitsPerByte = 3;
duke@435 94 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 95 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 96 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 97 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 98
duke@435 99 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 100 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 101 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 102 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 103 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 104
duke@435 105 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 106 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 107
duke@435 108 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 109
coleenp@548 110 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 111 extern int heapOopSize; // Oop within a java object
duke@435 112 const int wordSize = sizeof(char*);
duke@435 113 const int longSize = sizeof(jlong);
duke@435 114 const int jintSize = sizeof(jint);
duke@435 115 const int size_tSize = sizeof(size_t);
duke@435 116
coleenp@548 117 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 118
coleenp@548 119 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 120 extern int LogBitsPerHeapOop;
coleenp@548 121 extern int BytesPerHeapOop;
coleenp@548 122 extern int BitsPerHeapOop;
duke@435 123
kvn@1926 124 // Oop encoding heap max
kvn@1926 125 extern uint64_t OopEncodingHeapMax;
kvn@1926 126
duke@435 127 const int BitsPerJavaInteger = 32;
twisti@994 128 const int BitsPerJavaLong = 64;
duke@435 129 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 130
coleenp@548 131 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 132 const int jintAsStringSize = 12;
coleenp@548 133
duke@435 134 // In fact this should be
duke@435 135 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 136 // see os::set_memory_serialize_page()
duke@435 137 #ifdef _LP64
duke@435 138 const int SerializePageShiftCount = 4;
duke@435 139 #else
duke@435 140 const int SerializePageShiftCount = 3;
duke@435 141 #endif
duke@435 142
duke@435 143 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 144 // pointer into the heap. We require that object sizes be measured in
duke@435 145 // units of heap words, so that that
duke@435 146 // HeapWord* hw;
duke@435 147 // hw += oop(hw)->foo();
duke@435 148 // works, where foo is a method (like size or scavenge) that returns the
duke@435 149 // object size.
duke@435 150 class HeapWord {
duke@435 151 friend class VMStructs;
jmasa@698 152 private:
duke@435 153 char* i;
jmasa@796 154 #ifndef PRODUCT
jmasa@698 155 public:
jmasa@698 156 char* value() { return i; }
jmasa@698 157 #endif
duke@435 158 };
duke@435 159
coleenp@4037 160 // Analogous opaque struct for metadata allocated from
coleenp@4037 161 // metaspaces.
coleenp@4037 162 class MetaWord {
coleenp@4037 163 friend class VMStructs;
coleenp@4037 164 private:
coleenp@4037 165 char* i;
coleenp@4037 166 };
coleenp@4037 167
duke@435 168 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 169 const int HeapWordSize = sizeof(HeapWord);
duke@435 170 #ifdef _LP64
coleenp@548 171 const int LogHeapWordSize = 3;
duke@435 172 #else
coleenp@548 173 const int LogHeapWordSize = 2;
duke@435 174 #endif
coleenp@548 175 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 176 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 177
duke@435 178 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 179 // for the same application running in 64bit. See bug 4967770.
duke@435 180 // The minimum alignment to a heap word size is done. Other
duke@435 181 // parts of the memory system may required additional alignment
duke@435 182 // and are responsible for those alignments.
duke@435 183 #ifdef _LP64
duke@435 184 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 185 #else
duke@435 186 #define ScaleForWordSize(x) (x)
duke@435 187 #endif
duke@435 188
duke@435 189 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 190 // bytes.
duke@435 191 inline size_t heap_word_size(size_t byte_size) {
duke@435 192 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 193 }
duke@435 194
duke@435 195
duke@435 196 const size_t K = 1024;
duke@435 197 const size_t M = K*K;
duke@435 198 const size_t G = M*K;
duke@435 199 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 200
duke@435 201 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 202 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 203
duke@435 204 // Constants for converting from a base unit to milli-base units. For
duke@435 205 // example from seconds to milliseconds and microseconds
duke@435 206
duke@435 207 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 208 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 209 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 210
johnc@3339 211 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 212 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 213
shade@9667 214 // Proper units routines try to maintain at least three significant digits.
shade@9667 215 // In worst case, it would print five significant digits with lower prefix.
shade@9667 216 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
shade@9667 217 // and therefore we need to be careful.
shade@9667 218
duke@435 219 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 220 #ifdef _LP64
shade@9667 221 if (s >= 100*G) {
brutisso@3766 222 return "G";
brutisso@3766 223 }
brutisso@3766 224 #endif
shade@9667 225 if (s >= 100*M) {
duke@435 226 return "M";
shade@9667 227 } else if (s >= 100*K) {
duke@435 228 return "K";
duke@435 229 } else {
duke@435 230 return "B";
duke@435 231 }
duke@435 232 }
duke@435 233
brutisso@3762 234 template <class T>
brutisso@3762 235 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 236 #ifdef _LP64
shade@9667 237 if (s >= 100*G) {
brutisso@3766 238 return (T)(s/G);
brutisso@3766 239 }
brutisso@3766 240 #endif
shade@9667 241 if (s >= 100*M) {
brutisso@3762 242 return (T)(s/M);
shade@9667 243 } else if (s >= 100*K) {
brutisso@3762 244 return (T)(s/K);
duke@435 245 } else {
duke@435 246 return s;
duke@435 247 }
duke@435 248 }
duke@435 249
duke@435 250 //----------------------------------------------------------------------------------------------------
duke@435 251 // VM type definitions
duke@435 252
duke@435 253 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 254 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 255
duke@435 256 typedef intptr_t intx;
duke@435 257 typedef uintptr_t uintx;
duke@435 258
duke@435 259 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 260 const intx max_intx = (uintx)min_intx - 1;
duke@435 261 const uintx max_uintx = (uintx)-1;
duke@435 262
duke@435 263 // Table of values:
duke@435 264 // sizeof intx 4 8
duke@435 265 // min_intx 0x80000000 0x8000000000000000
duke@435 266 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 267 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 268
duke@435 269 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 270
duke@435 271
duke@435 272 //----------------------------------------------------------------------------------------------------
duke@435 273 // Java type definitions
duke@435 274
duke@435 275 // All kinds of 'plain' byte addresses
duke@435 276 typedef signed char s_char;
duke@435 277 typedef unsigned char u_char;
duke@435 278 typedef u_char* address;
duke@435 279 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 280 // except for some implementations of a C++
duke@435 281 // linkage pointer to function. Should never
duke@435 282 // need one of those to be placed in this
duke@435 283 // type anyway.
duke@435 284
duke@435 285 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 286 // Where portable means keep ANSI C++ compilers quiet
duke@435 287
duke@435 288 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 289 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 290
duke@435 291 // Utility functions to "portably" make cast to/from function pointers.
duke@435 292
duke@435 293 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 294 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 295 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 296
duke@435 297 // Pointer subtraction.
duke@435 298 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 299 // the range we might need to find differences from one end of the heap
duke@435 300 // to the other.
duke@435 301 // A typical use might be:
duke@435 302 // if (pointer_delta(end(), top()) >= size) {
duke@435 303 // // enough room for an object of size
duke@435 304 // ...
duke@435 305 // and then additions like
duke@435 306 // ... top() + size ...
duke@435 307 // are safe because we know that top() is at least size below end().
duke@435 308 inline size_t pointer_delta(const void* left,
duke@435 309 const void* right,
duke@435 310 size_t element_size) {
duke@435 311 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 312 }
duke@435 313 // A version specialized for HeapWord*'s.
duke@435 314 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 315 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 316 }
coleenp@4037 317 // A version specialized for MetaWord*'s.
coleenp@4037 318 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 319 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 320 }
duke@435 321
duke@435 322 //
duke@435 323 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 324 // directly without at best a warning. This macro accomplishes it silently
duke@435 325 // In every case that is present at this point the value be cast is a pointer
duke@435 326 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 327 // that linkage and a picky compiler would not complain. In other cases because
duke@435 328 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 329 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 330 // picky enough to catch these instances (which are few). It is possible that
duke@435 331 // using templates could fix these for all cases. This use of templates is likely
duke@435 332 // so far from the middle of the road that it is likely to be problematic in
duke@435 333 // many C++ compilers.
duke@435 334 //
dholmes@9677 335 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
duke@435 336 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 337
duke@435 338 // Unsigned byte types for os and stream.hpp
duke@435 339
duke@435 340 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 341 // the .class file format. See JVM book chapter 4.
duke@435 342
duke@435 343 typedef jubyte u1;
duke@435 344 typedef jushort u2;
duke@435 345 typedef juint u4;
duke@435 346 typedef julong u8;
duke@435 347
duke@435 348 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 349 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 350 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 351 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 352
phh@3427 353 typedef jbyte s1;
phh@3427 354 typedef jshort s2;
phh@3427 355 typedef jint s4;
phh@3427 356 typedef jlong s8;
phh@3427 357
duke@435 358 //----------------------------------------------------------------------------------------------------
duke@435 359 // JVM spec restrictions
duke@435 360
duke@435 361 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 362
tschatzl@5862 363 // Default ProtectionDomainCacheSize values
tschatzl@5862 364
tschatzl@5862 365 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@435 366
duke@435 367 //----------------------------------------------------------------------------------------------------
hseigel@4958 368 // Default and minimum StringTableSize values
hseigel@4277 369
hseigel@4958 370 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5862 371 const int minimumStringTableSize = 1009;
hseigel@4277 372
kevinw@5850 373 const int defaultSymbolTableSize = 20011;
kevinw@5850 374 const int minimumSymbolTableSize = 1009;
kevinw@5850 375
hseigel@4277 376
hseigel@4277 377 //----------------------------------------------------------------------------------------------------
duke@435 378 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 379 //
duke@435 380 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 381
duke@435 382 #define HOTSWAP
duke@435 383
duke@435 384 //----------------------------------------------------------------------------------------------------
duke@435 385 // Object alignment, in units of HeapWords.
duke@435 386 //
duke@435 387 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 388 // reference fields can be naturally aligned.
duke@435 389
kvn@1926 390 extern int MinObjAlignment;
kvn@1926 391 extern int MinObjAlignmentInBytes;
kvn@1926 392 extern int MinObjAlignmentInBytesMask;
duke@435 393
kvn@1926 394 extern int LogMinObjAlignment;
kvn@1926 395 extern int LogMinObjAlignmentInBytes;
coleenp@548 396
roland@4159 397 const int LogKlassAlignmentInBytes = 3;
roland@4159 398 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@4159 399 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@4159 400 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@4159 401
roland@4159 402 // Klass encoding metaspace max size
roland@4159 403 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@4159 404
duke@435 405 // Machine dependent stuff
duke@435 406
kvn@6429 407 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@6429 408 // Include Restricted Transactional Memory lock eliding optimization
kvn@6429 409 #define INCLUDE_RTM_OPT 1
kvn@6429 410 #define RTM_OPT_ONLY(code) code
kvn@6429 411 #else
kvn@6429 412 #define INCLUDE_RTM_OPT 0
kvn@6429 413 #define RTM_OPT_ONLY(code)
kvn@6429 414 #endif
kvn@6429 415 // States of Restricted Transactional Memory usage.
kvn@6429 416 enum RTMState {
kvn@6429 417 NoRTM = 0x2, // Don't use RTM
kvn@6429 418 UseRTM = 0x1, // Use RTM
kvn@6429 419 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@6429 420 };
kvn@6429 421
stefank@2314 422 #ifdef TARGET_ARCH_x86
stefank@2314 423 # include "globalDefinitions_x86.hpp"
stefank@2314 424 #endif
stefank@2314 425 #ifdef TARGET_ARCH_sparc
stefank@2314 426 # include "globalDefinitions_sparc.hpp"
stefank@2314 427 #endif
stefank@2314 428 #ifdef TARGET_ARCH_zero
stefank@2314 429 # include "globalDefinitions_zero.hpp"
stefank@2314 430 #endif
bobv@2508 431 #ifdef TARGET_ARCH_arm
bobv@2508 432 # include "globalDefinitions_arm.hpp"
bobv@2508 433 #endif
bobv@2508 434 #ifdef TARGET_ARCH_ppc
bobv@2508 435 # include "globalDefinitions_ppc.hpp"
bobv@2508 436 #endif
stefank@2314 437
jprovino@5188 438 /*
jprovino@5402 439 * If a platform does not support native stack walking
jprovino@5188 440 * the platform specific globalDefinitions (above)
jprovino@5402 441 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@5188 442 */
jprovino@5402 443 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@5402 444 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@5188 445 #endif
duke@435 446
goetz@6502 447 // To assure the IRIW property on processors that are not multiple copy
goetz@6502 448 // atomic, sync instructions must be issued between volatile reads to
goetz@6502 449 // assure their ordering, instead of after volatile stores.
goetz@6502 450 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6502 451 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6502 452 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6502 453 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6502 454 #else
goetz@6502 455 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6502 456 #endif
goetz@6502 457
duke@435 458 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 459 // Note: this value must be a power of 2
duke@435 460
duke@435 461 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 462
duke@435 463 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 464 // for use in places like enum definitions that require compile-time constant
duke@435 465 // expressions and a function for all other places so as to get type checking.
duke@435 466
duke@435 467 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 468
stefank@5578 469 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5578 470 return align_size_up_(size, alignment) == size;
stefank@5578 471 }
stefank@5578 472
stefank@5578 473 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5578 474 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5578 475 }
stefank@5578 476
duke@435 477 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 478 return align_size_up_(size, alignment);
duke@435 479 }
duke@435 480
duke@435 481 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 482
duke@435 483 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 484 return align_size_down_(size, alignment);
duke@435 485 }
duke@435 486
stefank@5515 487 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5515 488
stefank@5578 489 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5578 490 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 491 }
stefank@5578 492
stefank@5578 493 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5578 494 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 495 }
stefank@5578 496
duke@435 497 // Align objects by rounding up their size, in HeapWord units.
duke@435 498
duke@435 499 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 500
duke@435 501 inline intptr_t align_object_size(intptr_t size) {
duke@435 502 return align_size_up(size, MinObjAlignment);
duke@435 503 }
duke@435 504
kvn@1926 505 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 506 return addr == align_object_size(addr);
kvn@1926 507 }
kvn@1926 508
duke@435 509 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 510
duke@435 511 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 512 return align_size_up(offset, HeapWordsPerLong);
duke@435 513 }
duke@435 514
stefank@5515 515 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5515 516 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5515 517 }
stefank@5515 518
jwilhelm@6083 519 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@6083 520
jwilhelm@6083 521 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@6083 522 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@6083 523 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@6083 524 }
jwilhelm@6083 525
mikael@4889 526 // Clamp an address to be within a specific page
mikael@4889 527 // 1. If addr is on the page it is returned as is
mikael@4889 528 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4889 529 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4889 530 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4889 531 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4889 532 // address is in the specified page, just return it as is
mikael@4889 533 return addr;
mikael@4889 534 } else if (addr > page_address) {
mikael@4889 535 // address is above specified page, return start of next page
mikael@4889 536 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4889 537 } else {
mikael@4889 538 // address is below specified page, return start of page
mikael@4889 539 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4889 540 }
mikael@4889 541 }
mikael@4889 542
mikael@4889 543
jcoomes@2020 544 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 545 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 546
duke@435 547
duke@435 548 //----------------------------------------------------------------------------------------------------
duke@435 549 // Utility macros for compilers
duke@435 550 // used to silence compiler warnings
duke@435 551
duke@435 552 #define Unused_Variable(var) var
duke@435 553
duke@435 554
duke@435 555 //----------------------------------------------------------------------------------------------------
duke@435 556 // Miscellaneous
duke@435 557
duke@435 558 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 559 // All fabs() callers should call this function instead, which will implicitly
duke@435 560 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 561 // doesn't exist in early versions of Solaris 8.
duke@435 562 inline double fabsd(double value) {
duke@435 563 return fabs(value);
duke@435 564 }
duke@435 565
thartmann@7001 566 //----------------------------------------------------------------------------------------------------
thartmann@7001 567 // Special casts
thartmann@7001 568 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@7001 569 typedef union {
thartmann@7001 570 jfloat f;
thartmann@7001 571 jint i;
thartmann@7001 572 } FloatIntConv;
thartmann@7001 573
thartmann@7001 574 typedef union {
thartmann@7001 575 jdouble d;
thartmann@7001 576 jlong l;
thartmann@7001 577 julong ul;
thartmann@7001 578 } DoubleLongConv;
thartmann@7001 579
thartmann@7001 580 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@7001 581 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@7001 582
thartmann@7001 583 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@7001 584 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@7001 585 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@7001 586
duke@435 587 inline jint low (jlong value) { return jint(value); }
duke@435 588 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 589
duke@435 590 // the fancy casts are a hopefully portable way
duke@435 591 // to do unsigned 32 to 64 bit type conversion
duke@435 592 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 593 *value |= (jlong)(julong)(juint)low; }
duke@435 594
duke@435 595 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 596 *value |= (jlong)high << 32; }
duke@435 597
duke@435 598 inline jlong jlong_from(jint h, jint l) {
duke@435 599 jlong result = 0; // initialization to avoid warning
duke@435 600 set_high(&result, h);
duke@435 601 set_low(&result, l);
duke@435 602 return result;
duke@435 603 }
duke@435 604
duke@435 605 union jlong_accessor {
duke@435 606 jint words[2];
duke@435 607 jlong long_value;
duke@435 608 };
duke@435 609
coleenp@548 610 void basic_types_init(); // cannot define here; uses assert
duke@435 611
duke@435 612
duke@435 613 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 614 enum BasicType {
roland@4159 615 T_BOOLEAN = 4,
roland@4159 616 T_CHAR = 5,
roland@4159 617 T_FLOAT = 6,
roland@4159 618 T_DOUBLE = 7,
roland@4159 619 T_BYTE = 8,
roland@4159 620 T_SHORT = 9,
roland@4159 621 T_INT = 10,
roland@4159 622 T_LONG = 11,
roland@4159 623 T_OBJECT = 12,
roland@4159 624 T_ARRAY = 13,
roland@4159 625 T_VOID = 14,
roland@4159 626 T_ADDRESS = 15,
roland@4159 627 T_NARROWOOP = 16,
roland@4159 628 T_METADATA = 17,
roland@4159 629 T_NARROWKLASS = 18,
roland@4159 630 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@4159 631 T_ILLEGAL = 99
duke@435 632 };
duke@435 633
kvn@464 634 inline bool is_java_primitive(BasicType t) {
kvn@464 635 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 636 }
kvn@464 637
jrose@1145 638 inline bool is_subword_type(BasicType t) {
jrose@1145 639 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 640 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 641 }
jrose@1145 642
jrose@1145 643 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 644 return (t == T_BYTE || t == T_SHORT);
jrose@1145 645 }
jrose@1145 646
duke@435 647 // Convert a char from a classfile signature to a BasicType
duke@435 648 inline BasicType char2type(char c) {
duke@435 649 switch( c ) {
duke@435 650 case 'B': return T_BYTE;
duke@435 651 case 'C': return T_CHAR;
duke@435 652 case 'D': return T_DOUBLE;
duke@435 653 case 'F': return T_FLOAT;
duke@435 654 case 'I': return T_INT;
duke@435 655 case 'J': return T_LONG;
duke@435 656 case 'S': return T_SHORT;
duke@435 657 case 'Z': return T_BOOLEAN;
duke@435 658 case 'V': return T_VOID;
duke@435 659 case 'L': return T_OBJECT;
duke@435 660 case '[': return T_ARRAY;
duke@435 661 }
duke@435 662 return T_ILLEGAL;
duke@435 663 }
duke@435 664
duke@435 665 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 666 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 667 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 668 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 669 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 670 extern BasicType name2type(const char* name);
duke@435 671
duke@435 672 // Auxilary math routines
duke@435 673 // least common multiple
duke@435 674 extern size_t lcm(size_t a, size_t b);
duke@435 675
duke@435 676
duke@435 677 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 678 enum BasicTypeSize {
roland@4159 679 T_BOOLEAN_size = 1,
roland@4159 680 T_CHAR_size = 1,
roland@4159 681 T_FLOAT_size = 1,
roland@4159 682 T_DOUBLE_size = 2,
roland@4159 683 T_BYTE_size = 1,
roland@4159 684 T_SHORT_size = 1,
roland@4159 685 T_INT_size = 1,
roland@4159 686 T_LONG_size = 2,
roland@4159 687 T_OBJECT_size = 1,
roland@4159 688 T_ARRAY_size = 1,
roland@4159 689 T_NARROWOOP_size = 1,
roland@4159 690 T_NARROWKLASS_size = 1,
roland@4159 691 T_VOID_size = 0
duke@435 692 };
duke@435 693
duke@435 694
duke@435 695 // maps a BasicType to its instance field storage type:
duke@435 696 // all sub-word integral types are widened to T_INT
duke@435 697 extern BasicType type2field[T_CONFLICT+1];
duke@435 698 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 699
duke@435 700
duke@435 701 // size in bytes
duke@435 702 enum ArrayElementSize {
roland@4159 703 T_BOOLEAN_aelem_bytes = 1,
roland@4159 704 T_CHAR_aelem_bytes = 2,
roland@4159 705 T_FLOAT_aelem_bytes = 4,
roland@4159 706 T_DOUBLE_aelem_bytes = 8,
roland@4159 707 T_BYTE_aelem_bytes = 1,
roland@4159 708 T_SHORT_aelem_bytes = 2,
roland@4159 709 T_INT_aelem_bytes = 4,
roland@4159 710 T_LONG_aelem_bytes = 8,
duke@435 711 #ifdef _LP64
roland@4159 712 T_OBJECT_aelem_bytes = 8,
roland@4159 713 T_ARRAY_aelem_bytes = 8,
duke@435 714 #else
roland@4159 715 T_OBJECT_aelem_bytes = 4,
roland@4159 716 T_ARRAY_aelem_bytes = 4,
duke@435 717 #endif
roland@4159 718 T_NARROWOOP_aelem_bytes = 4,
roland@4159 719 T_NARROWKLASS_aelem_bytes = 4,
roland@4159 720 T_VOID_aelem_bytes = 0
duke@435 721 };
duke@435 722
kvn@464 723 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 724 #ifdef ASSERT
kvn@464 725 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 726 #else
never@2118 727 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 728 #endif
duke@435 729
duke@435 730
duke@435 731 // JavaValue serves as a container for arbitrary Java values.
duke@435 732
duke@435 733 class JavaValue {
duke@435 734
duke@435 735 public:
duke@435 736 typedef union JavaCallValue {
duke@435 737 jfloat f;
duke@435 738 jdouble d;
duke@435 739 jint i;
duke@435 740 jlong l;
duke@435 741 jobject h;
duke@435 742 } JavaCallValue;
duke@435 743
duke@435 744 private:
duke@435 745 BasicType _type;
duke@435 746 JavaCallValue _value;
duke@435 747
duke@435 748 public:
duke@435 749 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 750
duke@435 751 JavaValue(jfloat value) {
duke@435 752 _type = T_FLOAT;
duke@435 753 _value.f = value;
duke@435 754 }
duke@435 755
duke@435 756 JavaValue(jdouble value) {
duke@435 757 _type = T_DOUBLE;
duke@435 758 _value.d = value;
duke@435 759 }
duke@435 760
duke@435 761 jfloat get_jfloat() const { return _value.f; }
duke@435 762 jdouble get_jdouble() const { return _value.d; }
duke@435 763 jint get_jint() const { return _value.i; }
duke@435 764 jlong get_jlong() const { return _value.l; }
duke@435 765 jobject get_jobject() const { return _value.h; }
duke@435 766 JavaCallValue* get_value_addr() { return &_value; }
duke@435 767 BasicType get_type() const { return _type; }
duke@435 768
duke@435 769 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 770 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 771 void set_jint(jint i) { _value.i = i;}
duke@435 772 void set_jlong(jlong l) { _value.l = l;}
duke@435 773 void set_jobject(jobject h) { _value.h = h;}
duke@435 774 void set_type(BasicType t) { _type = t; }
duke@435 775
duke@435 776 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 777 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 778 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 779 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 780
duke@435 781 };
duke@435 782
duke@435 783
duke@435 784 #define STACK_BIAS 0
duke@435 785 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 786 // in order to extend the reach of the stack pointer.
duke@435 787 #if defined(SPARC) && defined(_LP64)
duke@435 788 #undef STACK_BIAS
duke@435 789 #define STACK_BIAS 0x7ff
duke@435 790 #endif
duke@435 791
duke@435 792
duke@435 793 // TosState describes the top-of-stack state before and after the execution of
duke@435 794 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 795 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 796 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 797 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 798 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 799 // state when it comes to machine representation but is used separately for (oop)
duke@435 800 // type specific operations (e.g. verification code).
duke@435 801
duke@435 802 enum TosState { // describes the tos cache contents
duke@435 803 btos = 0, // byte, bool tos cached
kevinw@8368 804 ztos = 1, // byte, bool tos cached
kevinw@8368 805 ctos = 2, // char tos cached
kevinw@8368 806 stos = 3, // short tos cached
kevinw@8368 807 itos = 4, // int tos cached
kevinw@8368 808 ltos = 5, // long tos cached
kevinw@8368 809 ftos = 6, // float tos cached
kevinw@8368 810 dtos = 7, // double tos cached
kevinw@8368 811 atos = 8, // object cached
kevinw@8368 812 vtos = 9, // tos not cached
duke@435 813 number_of_states,
duke@435 814 ilgl // illegal state: should not occur
duke@435 815 };
duke@435 816
duke@435 817
duke@435 818 inline TosState as_TosState(BasicType type) {
duke@435 819 switch (type) {
duke@435 820 case T_BYTE : return btos;
kevinw@8368 821 case T_BOOLEAN: return ztos;
duke@435 822 case T_CHAR : return ctos;
duke@435 823 case T_SHORT : return stos;
duke@435 824 case T_INT : return itos;
duke@435 825 case T_LONG : return ltos;
duke@435 826 case T_FLOAT : return ftos;
duke@435 827 case T_DOUBLE : return dtos;
duke@435 828 case T_VOID : return vtos;
duke@435 829 case T_ARRAY : // fall through
duke@435 830 case T_OBJECT : return atos;
duke@435 831 }
duke@435 832 return ilgl;
duke@435 833 }
duke@435 834
jrose@1161 835 inline BasicType as_BasicType(TosState state) {
jrose@1161 836 switch (state) {
jrose@1161 837 case btos : return T_BYTE;
kevinw@8368 838 case ztos : return T_BOOLEAN;
jrose@1161 839 case ctos : return T_CHAR;
jrose@1161 840 case stos : return T_SHORT;
jrose@1161 841 case itos : return T_INT;
jrose@1161 842 case ltos : return T_LONG;
jrose@1161 843 case ftos : return T_FLOAT;
jrose@1161 844 case dtos : return T_DOUBLE;
jrose@1161 845 case atos : return T_OBJECT;
jrose@1161 846 case vtos : return T_VOID;
jrose@1161 847 }
jrose@1161 848 return T_ILLEGAL;
jrose@1161 849 }
jrose@1161 850
duke@435 851
duke@435 852 // Helper function to convert BasicType info into TosState
duke@435 853 // Note: Cannot define here as it uses global constant at the time being.
duke@435 854 TosState as_TosState(BasicType type);
duke@435 855
duke@435 856
duke@435 857 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 858 // information is needed by the safepoint code.
duke@435 859 //
duke@435 860 // There are 4 essential states:
duke@435 861 //
duke@435 862 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 863 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 864 // _thread_in_vm : Executing in the vm
duke@435 865 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 866 //
duke@435 867 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 868 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 869 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 870 //
duke@435 871 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 872 //
duke@435 873 enum JavaThreadState {
duke@435 874 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 875 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 876 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 877 _thread_in_native = 4, // running in native code
duke@435 878 _thread_in_native_trans = 5, // corresponding transition state
duke@435 879 _thread_in_vm = 6, // running in VM
duke@435 880 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 881 _thread_in_Java = 8, // running in Java or in stub code
duke@435 882 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 883 _thread_blocked = 10, // blocked in vm
duke@435 884 _thread_blocked_trans = 11, // corresponding transition state
duke@435 885 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 886 };
duke@435 887
duke@435 888
duke@435 889 // Handy constants for deciding which compiler mode to use.
duke@435 890 enum MethodCompilation {
duke@435 891 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 892 InvalidOSREntryBci = -2
duke@435 893 };
duke@435 894
duke@435 895 // Enumeration to distinguish tiers of compilation
duke@435 896 enum CompLevel {
iveresov@2138 897 CompLevel_any = -1,
iveresov@2138 898 CompLevel_all = -1,
iveresov@2138 899 CompLevel_none = 0, // Interpreter
iveresov@2138 900 CompLevel_simple = 1, // C1
iveresov@2138 901 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 902 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 903 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 904
twisti@2729 905 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 906 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 907 #elif defined(COMPILER1)
iveresov@2138 908 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 909 #else
iveresov@2138 910 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 911 #endif
iveresov@2138 912
iveresov@2138 913 #if defined(TIERED)
iveresov@2138 914 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 915 #elif defined(COMPILER1)
iveresov@2138 916 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 917 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 918 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 919 #else
iveresov@2138 920 CompLevel_initial_compile = CompLevel_none
iveresov@2138 921 #endif
duke@435 922 };
duke@435 923
iveresov@2138 924 inline bool is_c1_compile(int comp_level) {
iveresov@2138 925 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 926 }
iveresov@2138 927
iveresov@2138 928 inline bool is_c2_compile(int comp_level) {
duke@435 929 return comp_level == CompLevel_full_optimization;
duke@435 930 }
iveresov@2138 931
duke@435 932 inline bool is_highest_tier_compile(int comp_level) {
duke@435 933 return comp_level == CompLevel_highest_tier;
duke@435 934 }
duke@435 935
iignatyev@4908 936 inline bool is_compile(int comp_level) {
iignatyev@4908 937 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4908 938 }
iignatyev@4908 939
duke@435 940 //----------------------------------------------------------------------------------------------------
duke@435 941 // 'Forward' declarations of frequently used classes
duke@435 942 // (in order to reduce interface dependencies & reduce
duke@435 943 // number of unnecessary compilations after changes)
duke@435 944
duke@435 945 class symbolTable;
duke@435 946 class ClassFileStream;
duke@435 947
duke@435 948 class Event;
duke@435 949
duke@435 950 class Thread;
duke@435 951 class VMThread;
duke@435 952 class JavaThread;
duke@435 953 class Threads;
duke@435 954
duke@435 955 class VM_Operation;
duke@435 956 class VMOperationQueue;
duke@435 957
duke@435 958 class CodeBlob;
duke@435 959 class nmethod;
duke@435 960 class OSRAdapter;
duke@435 961 class I2CAdapter;
duke@435 962 class C2IAdapter;
duke@435 963 class CompiledIC;
duke@435 964 class relocInfo;
duke@435 965 class ScopeDesc;
duke@435 966 class PcDesc;
duke@435 967
duke@435 968 class Recompiler;
duke@435 969 class Recompilee;
duke@435 970 class RecompilationPolicy;
duke@435 971 class RFrame;
duke@435 972 class CompiledRFrame;
duke@435 973 class InterpretedRFrame;
duke@435 974
duke@435 975 class frame;
duke@435 976
duke@435 977 class vframe;
duke@435 978 class javaVFrame;
duke@435 979 class interpretedVFrame;
duke@435 980 class compiledVFrame;
duke@435 981 class deoptimizedVFrame;
duke@435 982 class externalVFrame;
duke@435 983 class entryVFrame;
duke@435 984
duke@435 985 class RegisterMap;
duke@435 986
duke@435 987 class Mutex;
duke@435 988 class Monitor;
duke@435 989 class BasicLock;
duke@435 990 class BasicObjectLock;
duke@435 991
duke@435 992 class PeriodicTask;
duke@435 993
duke@435 994 class JavaCallWrapper;
duke@435 995
duke@435 996 class oopDesc;
coleenp@4037 997 class metaDataOopDesc;
duke@435 998
duke@435 999 class NativeCall;
duke@435 1000
duke@435 1001 class zone;
duke@435 1002
duke@435 1003 class StubQueue;
duke@435 1004
duke@435 1005 class outputStream;
duke@435 1006
duke@435 1007 class ResourceArea;
duke@435 1008
duke@435 1009 class DebugInformationRecorder;
duke@435 1010 class ScopeValue;
duke@435 1011 class CompressedStream;
duke@435 1012 class DebugInfoReadStream;
duke@435 1013 class DebugInfoWriteStream;
duke@435 1014 class LocationValue;
duke@435 1015 class ConstantValue;
duke@435 1016 class IllegalValue;
duke@435 1017
duke@435 1018 class PrivilegedElement;
duke@435 1019 class MonitorArray;
duke@435 1020
duke@435 1021 class MonitorInfo;
duke@435 1022
duke@435 1023 class OffsetClosure;
duke@435 1024 class OopMapCache;
duke@435 1025 class InterpreterOopMap;
duke@435 1026 class OopMapCacheEntry;
duke@435 1027 class OSThread;
duke@435 1028
duke@435 1029 typedef int (*OSThreadStartFunc)(void*);
duke@435 1030
duke@435 1031 class Space;
duke@435 1032
duke@435 1033 class JavaValue;
duke@435 1034 class methodHandle;
duke@435 1035 class JavaCallArguments;
duke@435 1036
duke@435 1037 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 1038
duke@435 1039 extern void basic_fatal(const char* msg);
duke@435 1040
duke@435 1041
duke@435 1042 //----------------------------------------------------------------------------------------------------
duke@435 1043 // Special constants for debugging
duke@435 1044
duke@435 1045 const jint badInt = -3; // generic "bad int" value
kevinw@9325 1046 const intptr_t badAddressVal = -2; // generic "bad address" value
kevinw@9325 1047 const intptr_t badOopVal = -1; // generic "bad oop" value
duke@435 1048 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 1049 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 1050 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 1051 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 1052 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 1053 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 1054 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 1055 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 1056 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 1057 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 1058
duke@435 1059
duke@435 1060 // (These must be implemented as #defines because C++ compilers are
duke@435 1061 // not obligated to inline non-integral constants!)
duke@435 1062 #define badAddress ((address)::badAddressVal)
hseigel@5784 1063 #define badOop (cast_to_oop(::badOopVal))
duke@435 1064 #define badHeapWord (::badHeapWordVal)
hseigel@5784 1065 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@435 1066
jcoomes@1746 1067 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 1068 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 1069
duke@435 1070 //----------------------------------------------------------------------------------------------------
duke@435 1071 // Utility functions for bitfield manipulations
duke@435 1072
duke@435 1073 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 1074 const intptr_t NoBits = 0; // no bits set in a word
duke@435 1075 const jlong NoLongBits = 0; // no bits set in a long
duke@435 1076 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 1077
duke@435 1078 // get a word with the n.th or the right-most or left-most n bits set
duke@435 1079 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 1080 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 1081 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 1082 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 1083
duke@435 1084 // bit-operations using a mask m
duke@435 1085 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 1086 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 1087 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 1088 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 1089 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 1090
duke@435 1091 // bit-operations using the n.th bit
duke@435 1092 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 1093 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 1094 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 1095
duke@435 1096 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 1097 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 1098 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 1099 }
duke@435 1100
duke@435 1101
duke@435 1102 //----------------------------------------------------------------------------------------------------
duke@435 1103 // Utility functions for integers
duke@435 1104
duke@435 1105 // Avoid use of global min/max macros which may cause unwanted double
duke@435 1106 // evaluation of arguments.
duke@435 1107 #ifdef max
duke@435 1108 #undef max
duke@435 1109 #endif
duke@435 1110
duke@435 1111 #ifdef min
duke@435 1112 #undef min
duke@435 1113 #endif
duke@435 1114
duke@435 1115 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 1116 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 1117
duke@435 1118 // It is necessary to use templates here. Having normal overloaded
duke@435 1119 // functions does not work because it is necessary to provide both 32-
duke@435 1120 // and 64-bit overloaded functions, which does not work, and having
duke@435 1121 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 1122 // will be even more error-prone than macros.
duke@435 1123 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 1124 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 1125 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 1126 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1127 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1128 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1129
duke@435 1130 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1131
duke@435 1132 // true if x is a power of 2, false otherwise
duke@435 1133 inline bool is_power_of_2(intptr_t x) {
duke@435 1134 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1135 }
duke@435 1136
duke@435 1137 // long version of is_power_of_2
duke@435 1138 inline bool is_power_of_2_long(jlong x) {
duke@435 1139 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1140 }
duke@435 1141
duke@435 1142 //* largest i such that 2^i <= x
duke@435 1143 // A negative value of 'x' will return '31'
roland@9613 1144 inline int log2_intptr(uintptr_t x) {
duke@435 1145 int i = -1;
duke@435 1146 uintptr_t p = 1;
roland@9613 1147 while (p != 0 && p <= x) {
duke@435 1148 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1149 i++; p *= 2;
duke@435 1150 }
duke@435 1151 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1152 // (if p = 0 then overflow occurred and i = 31)
duke@435 1153 return i;
duke@435 1154 }
duke@435 1155
duke@435 1156 //* largest i such that 2^i <= x
roland@9614 1157 inline int log2_long(julong x) {
duke@435 1158 int i = -1;
duke@435 1159 julong p = 1;
roland@9613 1160 while (p != 0 && p <= x) {
duke@435 1161 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1162 i++; p *= 2;
duke@435 1163 }
duke@435 1164 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1165 // (if p = 0 then overflow occurred and i = 63)
duke@435 1166 return i;
duke@435 1167 }
duke@435 1168
roland@9613 1169 inline int log2_intptr(intptr_t x) {
roland@9613 1170 return log2_intptr((uintptr_t)x);
roland@9613 1171 }
roland@9613 1172
roland@9614 1173 inline int log2_int(int x) {
roland@9613 1174 return log2_intptr((uintptr_t)x);
roland@9613 1175 }
roland@9613 1176
roland@9614 1177 inline int log2_jint(jint x) {
roland@9613 1178 return log2_intptr((uintptr_t)x);
roland@9613 1179 }
roland@9613 1180
roland@9614 1181 inline int log2_uint(uint x) {
roland@9614 1182 return log2_intptr((uintptr_t)x);
roland@9614 1183 }
roland@9614 1184
roland@9614 1185 // A negative value of 'x' will return '63'
roland@9614 1186 inline int log2_jlong(jlong x) {
roland@9614 1187 return log2_long((julong)x);
roland@9613 1188 }
roland@9613 1189
duke@435 1190 //* the argument must be exactly a power of 2
duke@435 1191 inline int exact_log2(intptr_t x) {
duke@435 1192 #ifdef ASSERT
duke@435 1193 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1194 #endif
duke@435 1195 return log2_intptr(x);
duke@435 1196 }
duke@435 1197
twisti@1003 1198 //* the argument must be exactly a power of 2
twisti@1003 1199 inline int exact_log2_long(jlong x) {
twisti@1003 1200 #ifdef ASSERT
twisti@1003 1201 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1202 #endif
twisti@1003 1203 return log2_long(x);
twisti@1003 1204 }
twisti@1003 1205
duke@435 1206
duke@435 1207 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1208 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1209 #ifdef ASSERT
duke@435 1210 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1211 #endif
duke@435 1212 const uintx m = s - 1;
duke@435 1213 return mask_bits(x + m, ~m);
duke@435 1214 }
duke@435 1215
duke@435 1216 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1217 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1218 #ifdef ASSERT
duke@435 1219 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1220 #endif
duke@435 1221 const uintx m = s - 1;
duke@435 1222 return mask_bits(x, ~m);
duke@435 1223 }
duke@435 1224
duke@435 1225
duke@435 1226 inline bool is_odd (intx x) { return x & 1; }
duke@435 1227 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1228
roland@9613 1229 // abs methods which cannot overflow and so are well-defined across
roland@9613 1230 // the entire domain of integer types.
roland@9613 1231 static inline unsigned int uabs(unsigned int n) {
roland@9613 1232 union {
roland@9613 1233 unsigned int result;
roland@9613 1234 int value;
roland@9613 1235 };
roland@9613 1236 result = n;
roland@9613 1237 if (value < 0) result = 0-result;
roland@9613 1238 return result;
roland@9613 1239 }
roland@9619 1240 static inline julong uabs(julong n) {
roland@9613 1241 union {
roland@9619 1242 julong result;
roland@9619 1243 jlong value;
roland@9613 1244 };
roland@9613 1245 result = n;
roland@9613 1246 if (value < 0) result = 0-result;
roland@9613 1247 return result;
roland@9613 1248 }
roland@9619 1249 static inline julong uabs(jlong n) { return uabs((julong)n); }
roland@9613 1250 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
roland@9613 1251
duke@435 1252 // "to" should be greater than "from."
duke@435 1253 inline intx byte_size(void* from, void* to) {
duke@435 1254 return (address)to - (address)from;
duke@435 1255 }
duke@435 1256
duke@435 1257 //----------------------------------------------------------------------------------------------------
duke@435 1258 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1259
duke@435 1260 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1261 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1262
duke@435 1263 // Given sequence of four bytes, build into a 32-bit word
duke@435 1264 // following the conventions used in class files.
duke@435 1265 // On the 386, this could be realized with a simple address cast.
duke@435 1266 //
duke@435 1267
duke@435 1268 // This routine takes eight bytes:
duke@435 1269 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1270 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1271 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1272 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1273 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1274 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1275 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1276 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1277 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1278 }
duke@435 1279
duke@435 1280 // This routine takes four bytes:
duke@435 1281 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1282 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1283 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1284 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1285 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1286 }
duke@435 1287
duke@435 1288 // And this one works if the four bytes are contiguous in memory:
duke@435 1289 inline u4 build_u4_from( u1* p ) {
duke@435 1290 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1291 }
duke@435 1292
duke@435 1293 // Ditto for two-byte ints:
duke@435 1294 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1295 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1296 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1297 }
duke@435 1298
duke@435 1299 // And this one works if the two bytes are contiguous in memory:
duke@435 1300 inline u2 build_u2_from( u1* p ) {
duke@435 1301 return build_u2_from( p[0], p[1] );
duke@435 1302 }
duke@435 1303
duke@435 1304 // Ditto for floats:
duke@435 1305 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1306 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1307 return *(jfloat*)&u;
duke@435 1308 }
duke@435 1309
duke@435 1310 inline jfloat build_float_from( u1* p ) {
duke@435 1311 u4 u = build_u4_from( p );
duke@435 1312 return *(jfloat*)&u;
duke@435 1313 }
duke@435 1314
duke@435 1315
duke@435 1316 // now (64-bit) longs
duke@435 1317
duke@435 1318 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1319 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1320 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1321 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1322 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1323 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1324 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1325 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1326 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1327 }
duke@435 1328
duke@435 1329 inline jlong build_long_from( u1* p ) {
duke@435 1330 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1331 }
duke@435 1332
duke@435 1333
duke@435 1334 // Doubles, too!
duke@435 1335 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1336 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1337 return *(jdouble*)&u;
duke@435 1338 }
duke@435 1339
duke@435 1340 inline jdouble build_double_from( u1* p ) {
duke@435 1341 jlong u = build_long_from( p );
duke@435 1342 return *(jdouble*)&u;
duke@435 1343 }
duke@435 1344
duke@435 1345
duke@435 1346 // Portable routines to go the other way:
duke@435 1347
duke@435 1348 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1349 c1 = u1(x >> 8);
duke@435 1350 c2 = u1(x);
duke@435 1351 }
duke@435 1352
duke@435 1353 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1354 explode_short_to( x, p[0], p[1]);
duke@435 1355 }
duke@435 1356
duke@435 1357 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1358 c1 = u1(x >> 24);
duke@435 1359 c2 = u1(x >> 16);
duke@435 1360 c3 = u1(x >> 8);
duke@435 1361 c4 = u1(x);
duke@435 1362 }
duke@435 1363
duke@435 1364 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1365 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1366 }
duke@435 1367
duke@435 1368
duke@435 1369 // Pack and extract shorts to/from ints:
duke@435 1370
duke@435 1371 inline int extract_low_short_from_int(jint x) {
duke@435 1372 return x & 0xffff;
duke@435 1373 }
duke@435 1374
duke@435 1375 inline int extract_high_short_from_int(jint x) {
duke@435 1376 return (x >> 16) & 0xffff;
duke@435 1377 }
duke@435 1378
duke@435 1379 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1380 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1381 }
duke@435 1382
drchase@6680 1383 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6680 1384 inline intptr_t p2i(const void * p) {
drchase@6680 1385 return (intptr_t) p;
drchase@6680 1386 }
drchase@6680 1387
duke@435 1388 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1389 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1390 // doesn't provide appropriate definitions, they should be provided in
never@3156 1391 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1392
tonyp@2643 1393 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1394
duke@435 1395 // Format 32-bit quantities.
never@3156 1396 #define INT32_FORMAT "%" PRId32
never@3156 1397 #define UINT32_FORMAT "%" PRIu32
never@3156 1398 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1399 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1400
never@3156 1401 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1402
duke@435 1403 // Format 64-bit quantities.
never@3156 1404 #define INT64_FORMAT "%" PRId64
never@3156 1405 #define UINT64_FORMAT "%" PRIu64
drchase@6680 1406 #define UINT64_FORMAT_X "%" PRIx64
never@3156 1407 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1408 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1409
never@3156 1410 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1411
hseigel@4465 1412 // Format jlong, if necessary
hseigel@4465 1413 #ifndef JLONG_FORMAT
hseigel@4465 1414 #define JLONG_FORMAT INT64_FORMAT
hseigel@4465 1415 #endif
hseigel@4465 1416 #ifndef JULONG_FORMAT
hseigel@4465 1417 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4465 1418 #endif
hseigel@4465 1419
never@3156 1420 // Format pointers which change size between 32- and 64-bit.
duke@435 1421 #ifdef _LP64
never@3156 1422 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1423 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1424 #else // !_LP64
never@3156 1425 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1426 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1427 #endif // _LP64
duke@435 1428
drchase@6680 1429 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6680 1430
drchase@6680 1431 #define SSIZE_FORMAT "%" PRIdPTR
drchase@6680 1432 #define SIZE_FORMAT "%" PRIuPTR
drchase@6680 1433 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
drchase@6680 1434 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
drchase@6680 1435 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
drchase@6680 1436 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@3156 1437
never@3156 1438 #define INTX_FORMAT "%" PRIdPTR
never@3156 1439 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1440 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1441 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1442
duke@435 1443
duke@435 1444 // Enable zap-a-lot if in debug version.
duke@435 1445
duke@435 1446 # ifdef ASSERT
duke@435 1447 # ifdef COMPILER2
duke@435 1448 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1449 #endif /* COMPILER2 */
duke@435 1450 # endif /* ASSERT */
duke@435 1451
duke@435 1452 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1453
aph@9610 1454 //----------------------------------------------------------------------------------------------------
aph@9610 1455 // Sum and product which can never overflow: they wrap, just like the
aph@9610 1456 // Java operations. Note that we don't intend these to be used for
aph@9610 1457 // general-purpose arithmetic: their purpose is to emulate Java
aph@9610 1458 // operations.
aph@9610 1459
aph@9610 1460 // The goal of this code to avoid undefined or implementation-defined
aph@9610 1461 // behaviour. The use of an lvalue to reference cast is explicitly
aph@9610 1462 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
aph@9610 1463 // 15 in C++03]
aph@9610 1464 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
aph@9610 1465 inline TYPE NAME (TYPE in1, TYPE in2) { \
aph@9610 1466 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
aph@9610 1467 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
aph@9610 1468 return reinterpret_cast<TYPE&>(ures); \
aph@9610 1469 }
aph@9610 1470
aph@9610 1471 JAVA_INTEGER_OP(+, java_add, jint, juint)
aph@9610 1472 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
aph@9610 1473 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
aph@9610 1474 JAVA_INTEGER_OP(+, java_add, jlong, julong)
aph@9610 1475 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
aph@9610 1476 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
aph@9610 1477
aph@9610 1478 #undef JAVA_INTEGER_OP
aph@9610 1479
coleenp@4295 1480 // Dereference vptr
coleenp@4295 1481 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@4295 1482 // word. If there are exceptions, this function needs to be made compiler
coleenp@4295 1483 // specific.
coleenp@6678 1484 static inline void* dereference_vptr(const void* addr) {
coleenp@4295 1485 return *(void**)addr;
coleenp@4295 1486 }
coleenp@4295 1487
mikael@4889 1488 #ifndef PRODUCT
mikael@4889 1489
mikael@4889 1490 // For unit testing only
mikael@4889 1491 class GlobalDefinitions {
mikael@4889 1492 public:
mikael@4889 1493 static void test_globals();
shade@9667 1494 static void test_proper_unit();
mikael@4889 1495 };
mikael@4889 1496
mikael@4889 1497 #endif // PRODUCT
mikael@4889 1498
stefank@2314 1499 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial