src/os/windows/vm/os_windows.cpp

Wed, 27 Aug 2014 08:42:58 -0400

author
zgu
date
Wed, 27 Aug 2014 08:42:58 -0400
changeset 7081
aef17e6b4abf
parent 7074
833b0f92429a
child 7343
09259e52a610
permissions
-rw-r--r--

8055236: Deadlock during NMT2 shutdown on Windows
Summary: Removed MemTracker::shutdown() call to avoid deadlock
Reviewed-by: minqi, ctornqvi

duke@435 1 /*
hseigel@6755 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
coleenp@4227 25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
duke@435 26 #define _WIN32_WINNT 0x500
duke@435 27
stefank@2314 28 // no precompiled headers
stefank@2314 29 #include "classfile/classLoader.hpp"
stefank@2314 30 #include "classfile/systemDictionary.hpp"
stefank@2314 31 #include "classfile/vmSymbols.hpp"
stefank@2314 32 #include "code/icBuffer.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
twisti@4318 35 #include "compiler/disassembler.hpp"
stefank@2314 36 #include "interpreter/interpreter.hpp"
stefank@2314 37 #include "jvm_windows.h"
stefank@2314 38 #include "memory/allocation.inline.hpp"
stefank@2314 39 #include "memory/filemap.hpp"
stefank@2314 40 #include "mutex_windows.inline.hpp"
stefank@2314 41 #include "oops/oop.inline.hpp"
stefank@2314 42 #include "os_share_windows.hpp"
stefank@2314 43 #include "prims/jniFastGetField.hpp"
stefank@2314 44 #include "prims/jvm.h"
stefank@2314 45 #include "prims/jvm_misc.hpp"
stefank@2314 46 #include "runtime/arguments.hpp"
stefank@2314 47 #include "runtime/extendedPC.hpp"
stefank@2314 48 #include "runtime/globals.hpp"
stefank@2314 49 #include "runtime/interfaceSupport.hpp"
stefank@2314 50 #include "runtime/java.hpp"
stefank@2314 51 #include "runtime/javaCalls.hpp"
stefank@2314 52 #include "runtime/mutexLocker.hpp"
stefank@2314 53 #include "runtime/objectMonitor.hpp"
goetz@6911 54 #include "runtime/orderAccess.inline.hpp"
stefank@2314 55 #include "runtime/osThread.hpp"
stefank@2314 56 #include "runtime/perfMemory.hpp"
stefank@2314 57 #include "runtime/sharedRuntime.hpp"
stefank@2314 58 #include "runtime/statSampler.hpp"
stefank@2314 59 #include "runtime/stubRoutines.hpp"
stefank@4299 60 #include "runtime/thread.inline.hpp"
stefank@2314 61 #include "runtime/threadCritical.hpp"
stefank@2314 62 #include "runtime/timer.hpp"
stefank@2314 63 #include "services/attachListener.hpp"
zgu@4711 64 #include "services/memTracker.hpp"
stefank@2314 65 #include "services/runtimeService.hpp"
zgu@2364 66 #include "utilities/decoder.hpp"
stefank@2314 67 #include "utilities/defaultStream.hpp"
stefank@2314 68 #include "utilities/events.hpp"
stefank@2314 69 #include "utilities/growableArray.hpp"
stefank@2314 70 #include "utilities/vmError.hpp"
duke@435 71
duke@435 72 #ifdef _DEBUG
duke@435 73 #include <crtdbg.h>
duke@435 74 #endif
duke@435 75
duke@435 76
duke@435 77 #include <windows.h>
duke@435 78 #include <sys/types.h>
duke@435 79 #include <sys/stat.h>
duke@435 80 #include <sys/timeb.h>
duke@435 81 #include <objidl.h>
duke@435 82 #include <shlobj.h>
duke@435 83
duke@435 84 #include <malloc.h>
duke@435 85 #include <signal.h>
duke@435 86 #include <direct.h>
duke@435 87 #include <errno.h>
duke@435 88 #include <fcntl.h>
duke@435 89 #include <io.h>
duke@435 90 #include <process.h> // For _beginthreadex(), _endthreadex()
duke@435 91 #include <imagehlp.h> // For os::dll_address_to_function_name
duke@435 92 /* for enumerating dll libraries */
duke@435 93 #include <vdmdbg.h>
duke@435 94
duke@435 95 // for timer info max values which include all bits
duke@435 96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 97
duke@435 98 // For DLL loading/load error detection
duke@435 99 // Values of PE COFF
duke@435 100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
duke@435 101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
duke@435 102
duke@435 103 static HANDLE main_process;
duke@435 104 static HANDLE main_thread;
duke@435 105 static int main_thread_id;
duke@435 106
duke@435 107 static FILETIME process_creation_time;
duke@435 108 static FILETIME process_exit_time;
duke@435 109 static FILETIME process_user_time;
duke@435 110 static FILETIME process_kernel_time;
duke@435 111
duke@435 112 #ifdef _M_IA64
duke@435 113 #define __CPU__ ia64
duke@435 114 #elif _M_AMD64
duke@435 115 #define __CPU__ amd64
duke@435 116 #else
duke@435 117 #define __CPU__ i486
duke@435 118 #endif
duke@435 119
duke@435 120 // save DLL module handle, used by GetModuleFileName
duke@435 121
duke@435 122 HINSTANCE vm_lib_handle;
duke@435 123
duke@435 124 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
duke@435 125 switch (reason) {
duke@435 126 case DLL_PROCESS_ATTACH:
duke@435 127 vm_lib_handle = hinst;
duke@435 128 if(ForceTimeHighResolution)
duke@435 129 timeBeginPeriod(1L);
duke@435 130 break;
duke@435 131 case DLL_PROCESS_DETACH:
duke@435 132 if(ForceTimeHighResolution)
duke@435 133 timeEndPeriod(1L);
zgu@7074 134
duke@435 135 break;
duke@435 136 default:
duke@435 137 break;
duke@435 138 }
duke@435 139 return true;
duke@435 140 }
duke@435 141
duke@435 142 static inline double fileTimeAsDouble(FILETIME* time) {
duke@435 143 const double high = (double) ((unsigned int) ~0);
duke@435 144 const double split = 10000000.0;
duke@435 145 double result = (time->dwLowDateTime / split) +
duke@435 146 time->dwHighDateTime * (high/split);
duke@435 147 return result;
duke@435 148 }
duke@435 149
duke@435 150 // Implementation of os
duke@435 151
duke@435 152 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 153 int result = GetEnvironmentVariable(name, buffer, len);
duke@435 154 return result > 0 && result < len;
duke@435 155 }
duke@435 156
zgu@7074 157 bool os::unsetenv(const char* name) {
zgu@7074 158 assert(name != NULL, "Null pointer");
zgu@7074 159 return (SetEnvironmentVariable(name, NULL) == TRUE);
zgu@7074 160 }
duke@435 161
duke@435 162 // No setuid programs under Windows.
duke@435 163 bool os::have_special_privileges() {
duke@435 164 return false;
duke@435 165 }
duke@435 166
duke@435 167
duke@435 168 // This method is a periodic task to check for misbehaving JNI applications
duke@435 169 // under CheckJNI, we can add any periodic checks here.
duke@435 170 // For Windows at the moment does nothing
duke@435 171 void os::run_periodic_checks() {
duke@435 172 return;
duke@435 173 }
duke@435 174
duke@435 175 #ifndef _WIN64
dcubed@1649 176 // previous UnhandledExceptionFilter, if there is one
dcubed@1649 177 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
dcubed@1649 178
duke@435 179 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 180 #endif
duke@435 181 void os::init_system_properties_values() {
duke@435 182 /* sysclasspath, java_home, dll_dir */
duke@435 183 {
duke@435 184 char *home_path;
duke@435 185 char *dll_path;
duke@435 186 char *pslash;
duke@435 187 char *bin = "\\bin";
duke@435 188 char home_dir[MAX_PATH];
duke@435 189
duke@435 190 if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
duke@435 191 os::jvm_path(home_dir, sizeof(home_dir));
dcubed@4392 192 // Found the full path to jvm.dll.
duke@435 193 // Now cut the path to <java_home>/jre if we can.
duke@435 194 *(strrchr(home_dir, '\\')) = '\0'; /* get rid of \jvm.dll */
duke@435 195 pslash = strrchr(home_dir, '\\');
duke@435 196 if (pslash != NULL) {
duke@435 197 *pslash = '\0'; /* get rid of \{client|server} */
duke@435 198 pslash = strrchr(home_dir, '\\');
duke@435 199 if (pslash != NULL)
duke@435 200 *pslash = '\0'; /* get rid of \bin */
duke@435 201 }
duke@435 202 }
duke@435 203
zgu@3900 204 home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
duke@435 205 if (home_path == NULL)
duke@435 206 return;
duke@435 207 strcpy(home_path, home_dir);
duke@435 208 Arguments::set_java_home(home_path);
duke@435 209
zgu@3900 210 dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
duke@435 211 if (dll_path == NULL)
duke@435 212 return;
duke@435 213 strcpy(dll_path, home_dir);
duke@435 214 strcat(dll_path, bin);
duke@435 215 Arguments::set_dll_dir(dll_path);
duke@435 216
duke@435 217 if (!set_boot_path('\\', ';'))
duke@435 218 return;
duke@435 219 }
duke@435 220
duke@435 221 /* library_path */
duke@435 222 #define EXT_DIR "\\lib\\ext"
duke@435 223 #define BIN_DIR "\\bin"
duke@435 224 #define PACKAGE_DIR "\\Sun\\Java"
duke@435 225 {
duke@435 226 /* Win32 library search order (See the documentation for LoadLibrary):
duke@435 227 *
duke@435 228 * 1. The directory from which application is loaded.
zgu@3031 229 * 2. The system wide Java Extensions directory (Java only)
zgu@3031 230 * 3. System directory (GetSystemDirectory)
zgu@3031 231 * 4. Windows directory (GetWindowsDirectory)
zgu@3031 232 * 5. The PATH environment variable
zgu@3031 233 * 6. The current directory
duke@435 234 */
duke@435 235
duke@435 236 char *library_path;
duke@435 237 char tmp[MAX_PATH];
duke@435 238 char *path_str = ::getenv("PATH");
duke@435 239
duke@435 240 library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
zgu@3900 241 sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
duke@435 242
duke@435 243 library_path[0] = '\0';
duke@435 244
duke@435 245 GetModuleFileName(NULL, tmp, sizeof(tmp));
duke@435 246 *(strrchr(tmp, '\\')) = '\0';
duke@435 247 strcat(library_path, tmp);
duke@435 248
duke@435 249 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 250 strcat(library_path, ";");
duke@435 251 strcat(library_path, tmp);
duke@435 252 strcat(library_path, PACKAGE_DIR BIN_DIR);
duke@435 253
duke@435 254 GetSystemDirectory(tmp, sizeof(tmp));
duke@435 255 strcat(library_path, ";");
duke@435 256 strcat(library_path, tmp);
duke@435 257
duke@435 258 GetWindowsDirectory(tmp, sizeof(tmp));
duke@435 259 strcat(library_path, ";");
duke@435 260 strcat(library_path, tmp);
duke@435 261
duke@435 262 if (path_str) {
duke@435 263 strcat(library_path, ";");
duke@435 264 strcat(library_path, path_str);
duke@435 265 }
duke@435 266
zgu@3031 267 strcat(library_path, ";.");
zgu@3031 268
duke@435 269 Arguments::set_library_path(library_path);
zgu@3900 270 FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
duke@435 271 }
duke@435 272
duke@435 273 /* Default extensions directory */
duke@435 274 {
duke@435 275 char path[MAX_PATH];
duke@435 276 char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
duke@435 277 GetWindowsDirectory(path, MAX_PATH);
duke@435 278 sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
duke@435 279 path, PACKAGE_DIR, EXT_DIR);
duke@435 280 Arguments::set_ext_dirs(buf);
duke@435 281 }
duke@435 282 #undef EXT_DIR
duke@435 283 #undef BIN_DIR
duke@435 284 #undef PACKAGE_DIR
duke@435 285
duke@435 286 /* Default endorsed standards directory. */
duke@435 287 {
duke@435 288 #define ENDORSED_DIR "\\lib\\endorsed"
duke@435 289 size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
zgu@3900 290 char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
duke@435 291 sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
duke@435 292 Arguments::set_endorsed_dirs(buf);
duke@435 293 #undef ENDORSED_DIR
duke@435 294 }
duke@435 295
duke@435 296 #ifndef _WIN64
dcubed@1649 297 // set our UnhandledExceptionFilter and save any previous one
dcubed@1649 298 prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
duke@435 299 #endif
duke@435 300
duke@435 301 // Done
duke@435 302 return;
duke@435 303 }
duke@435 304
duke@435 305 void os::breakpoint() {
duke@435 306 DebugBreak();
duke@435 307 }
duke@435 308
duke@435 309 // Invoked from the BREAKPOINT Macro
duke@435 310 extern "C" void breakpoint() {
duke@435 311 os::breakpoint();
duke@435 312 }
duke@435 313
zgu@3900 314 /*
zgu@3900 315 * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
zgu@3900 316 * So far, this method is only used by Native Memory Tracking, which is
zgu@3900 317 * only supported on Windows XP or later.
zgu@3900 318 */
zgu@7074 319
zgu@7074 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
zgu@3900 321 #ifdef _NMT_NOINLINE_
zgu@7074 322 toSkip ++;
zgu@3900 323 #endif
zgu@7074 324 int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
zgu@7074 325 (PVOID*)stack, NULL);
zgu@7074 326 for (int index = captured; index < frames; index ++) {
zgu@7074 327 stack[index] = NULL;
zgu@7074 328 }
zgu@7074 329 return captured;
zgu@3900 330 }
zgu@3900 331
zgu@3900 332
duke@435 333 // os::current_stack_base()
duke@435 334 //
duke@435 335 // Returns the base of the stack, which is the stack's
duke@435 336 // starting address. This function must be called
duke@435 337 // while running on the stack of the thread being queried.
duke@435 338
duke@435 339 address os::current_stack_base() {
duke@435 340 MEMORY_BASIC_INFORMATION minfo;
duke@435 341 address stack_bottom;
duke@435 342 size_t stack_size;
duke@435 343
duke@435 344 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 345 stack_bottom = (address)minfo.AllocationBase;
duke@435 346 stack_size = minfo.RegionSize;
duke@435 347
duke@435 348 // Add up the sizes of all the regions with the same
duke@435 349 // AllocationBase.
duke@435 350 while( 1 )
duke@435 351 {
duke@435 352 VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
duke@435 353 if ( stack_bottom == (address)minfo.AllocationBase )
duke@435 354 stack_size += minfo.RegionSize;
duke@435 355 else
duke@435 356 break;
duke@435 357 }
duke@435 358
duke@435 359 #ifdef _M_IA64
duke@435 360 // IA64 has memory and register stacks
morris@4535 361 //
morris@4535 362 // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
morris@4535 363 // at thread creation (1MB backing store growing upwards, 1MB memory stack
morris@4535 364 // growing downwards, 2MB summed up)
morris@4535 365 //
morris@4535 366 // ...
morris@4535 367 // ------- top of stack (high address) -----
morris@4535 368 // |
morris@4535 369 // | 1MB
morris@4535 370 // | Backing Store (Register Stack)
morris@4535 371 // |
morris@4535 372 // | / \
morris@4535 373 // | |
morris@4535 374 // | |
morris@4535 375 // | |
morris@4535 376 // ------------------------ stack base -----
morris@4535 377 // | 1MB
morris@4535 378 // | Memory Stack
morris@4535 379 // |
morris@4535 380 // | |
morris@4535 381 // | |
morris@4535 382 // | |
morris@4535 383 // | \ /
morris@4535 384 // |
morris@4535 385 // ----- bottom of stack (low address) -----
morris@4535 386 // ...
morris@4535 387
duke@435 388 stack_size = stack_size / 2;
duke@435 389 #endif
duke@435 390 return stack_bottom + stack_size;
duke@435 391 }
duke@435 392
duke@435 393 size_t os::current_stack_size() {
duke@435 394 size_t sz;
duke@435 395 MEMORY_BASIC_INFORMATION minfo;
duke@435 396 VirtualQuery(&minfo, &minfo, sizeof(minfo));
duke@435 397 sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
duke@435 398 return sz;
duke@435 399 }
duke@435 400
ysr@983 401 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 402 const struct tm* time_struct_ptr = localtime(clock);
ysr@983 403 if (time_struct_ptr != NULL) {
ysr@983 404 *res = *time_struct_ptr;
ysr@983 405 return res;
ysr@983 406 }
ysr@983 407 return NULL;
ysr@983 408 }
duke@435 409
duke@435 410 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
duke@435 411
duke@435 412 // Thread start routine for all new Java threads
duke@435 413 static unsigned __stdcall java_start(Thread* thread) {
duke@435 414 // Try to randomize the cache line index of hot stack frames.
duke@435 415 // This helps when threads of the same stack traces evict each other's
duke@435 416 // cache lines. The threads can be either from the same JVM instance, or
duke@435 417 // from different JVM instances. The benefit is especially true for
duke@435 418 // processors with hyperthreading technology.
duke@435 419 static int counter = 0;
duke@435 420 int pid = os::current_process_id();
duke@435 421 _alloca(((pid ^ counter++) & 7) * 128);
duke@435 422
duke@435 423 OSThread* osthr = thread->osthread();
duke@435 424 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 425
duke@435 426 if (UseNUMA) {
duke@435 427 int lgrp_id = os::numa_get_group_id();
duke@435 428 if (lgrp_id != -1) {
duke@435 429 thread->set_lgrp_id(lgrp_id);
duke@435 430 }
duke@435 431 }
duke@435 432
duke@435 433
coleenp@4227 434 // Install a win32 structured exception handler around every thread created
coleenp@4227 435 // by VM, so VM can genrate error dump when an exception occurred in non-
coleenp@4227 436 // Java thread (e.g. VM thread).
coleenp@4227 437 __try {
coleenp@4227 438 thread->run();
coleenp@4227 439 } __except(topLevelExceptionFilter(
coleenp@4227 440 (_EXCEPTION_POINTERS*)_exception_info())) {
coleenp@4227 441 // Nothing to do.
duke@435 442 }
duke@435 443
duke@435 444 // One less thread is executing
duke@435 445 // When the VMThread gets here, the main thread may have already exited
duke@435 446 // which frees the CodeHeap containing the Atomic::add code
duke@435 447 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 448 Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 449 }
duke@435 450
duke@435 451 return 0;
duke@435 452 }
duke@435 453
duke@435 454 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
duke@435 455 // Allocate the OSThread object
duke@435 456 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 457 if (osthread == NULL) return NULL;
duke@435 458
duke@435 459 // Initialize support for Java interrupts
duke@435 460 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 461 if (interrupt_event == NULL) {
duke@435 462 delete osthread;
duke@435 463 return NULL;
duke@435 464 }
duke@435 465 osthread->set_interrupt_event(interrupt_event);
duke@435 466
duke@435 467 // Store info on the Win32 thread into the OSThread
duke@435 468 osthread->set_thread_handle(thread_handle);
duke@435 469 osthread->set_thread_id(thread_id);
duke@435 470
duke@435 471 if (UseNUMA) {
duke@435 472 int lgrp_id = os::numa_get_group_id();
duke@435 473 if (lgrp_id != -1) {
duke@435 474 thread->set_lgrp_id(lgrp_id);
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 479 osthread->set_state(INITIALIZED);
duke@435 480
duke@435 481 return osthread;
duke@435 482 }
duke@435 483
duke@435 484
duke@435 485 bool os::create_attached_thread(JavaThread* thread) {
duke@435 486 #ifdef ASSERT
duke@435 487 thread->verify_not_published();
duke@435 488 #endif
duke@435 489 HANDLE thread_h;
duke@435 490 if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
duke@435 491 &thread_h, THREAD_ALL_ACCESS, false, 0)) {
duke@435 492 fatal("DuplicateHandle failed\n");
duke@435 493 }
duke@435 494 OSThread* osthread = create_os_thread(thread, thread_h,
duke@435 495 (int)current_thread_id());
duke@435 496 if (osthread == NULL) {
duke@435 497 return false;
duke@435 498 }
duke@435 499
duke@435 500 // Initial thread state is RUNNABLE
duke@435 501 osthread->set_state(RUNNABLE);
duke@435 502
duke@435 503 thread->set_osthread(osthread);
duke@435 504 return true;
duke@435 505 }
duke@435 506
duke@435 507 bool os::create_main_thread(JavaThread* thread) {
duke@435 508 #ifdef ASSERT
duke@435 509 thread->verify_not_published();
duke@435 510 #endif
duke@435 511 if (_starting_thread == NULL) {
duke@435 512 _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
duke@435 513 if (_starting_thread == NULL) {
duke@435 514 return false;
duke@435 515 }
duke@435 516 }
duke@435 517
duke@435 518 // The primordial thread is runnable from the start)
duke@435 519 _starting_thread->set_state(RUNNABLE);
duke@435 520
duke@435 521 thread->set_osthread(_starting_thread);
duke@435 522 return true;
duke@435 523 }
duke@435 524
duke@435 525 // Allocate and initialize a new OSThread
duke@435 526 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 527 unsigned thread_id;
duke@435 528
duke@435 529 // Allocate the OSThread object
duke@435 530 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 531 if (osthread == NULL) {
duke@435 532 return false;
duke@435 533 }
duke@435 534
duke@435 535 // Initialize support for Java interrupts
duke@435 536 HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
duke@435 537 if (interrupt_event == NULL) {
duke@435 538 delete osthread;
duke@435 539 return NULL;
duke@435 540 }
duke@435 541 osthread->set_interrupt_event(interrupt_event);
duke@435 542 osthread->set_interrupted(false);
duke@435 543
duke@435 544 thread->set_osthread(osthread);
duke@435 545
duke@435 546 if (stack_size == 0) {
duke@435 547 switch (thr_type) {
duke@435 548 case os::java_thread:
duke@435 549 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 550 if (JavaThread::stack_size_at_create() > 0)
duke@435 551 stack_size = JavaThread::stack_size_at_create();
duke@435 552 break;
duke@435 553 case os::compiler_thread:
duke@435 554 if (CompilerThreadStackSize > 0) {
duke@435 555 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 556 break;
duke@435 557 } // else fall through:
duke@435 558 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 559 case os::vm_thread:
duke@435 560 case os::pgc_thread:
duke@435 561 case os::cgc_thread:
duke@435 562 case os::watcher_thread:
duke@435 563 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 564 break;
duke@435 565 }
duke@435 566 }
duke@435 567
duke@435 568 // Create the Win32 thread
duke@435 569 //
duke@435 570 // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
duke@435 571 // does not specify stack size. Instead, it specifies the size of
duke@435 572 // initially committed space. The stack size is determined by
duke@435 573 // PE header in the executable. If the committed "stack_size" is larger
duke@435 574 // than default value in the PE header, the stack is rounded up to the
duke@435 575 // nearest multiple of 1MB. For example if the launcher has default
duke@435 576 // stack size of 320k, specifying any size less than 320k does not
duke@435 577 // affect the actual stack size at all, it only affects the initial
duke@435 578 // commitment. On the other hand, specifying 'stack_size' larger than
duke@435 579 // default value may cause significant increase in memory usage, because
duke@435 580 // not only the stack space will be rounded up to MB, but also the
duke@435 581 // entire space is committed upfront.
duke@435 582 //
duke@435 583 // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
duke@435 584 // for CreateThread() that can treat 'stack_size' as stack size. However we
duke@435 585 // are not supposed to call CreateThread() directly according to MSDN
duke@435 586 // document because JVM uses C runtime library. The good news is that the
duke@435 587 // flag appears to work with _beginthredex() as well.
duke@435 588
duke@435 589 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
duke@435 590 #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000)
duke@435 591 #endif
duke@435 592
duke@435 593 HANDLE thread_handle =
duke@435 594 (HANDLE)_beginthreadex(NULL,
duke@435 595 (unsigned)stack_size,
duke@435 596 (unsigned (__stdcall *)(void*)) java_start,
duke@435 597 thread,
duke@435 598 CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
duke@435 599 &thread_id);
duke@435 600 if (thread_handle == NULL) {
duke@435 601 // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
duke@435 602 // without the flag.
duke@435 603 thread_handle =
duke@435 604 (HANDLE)_beginthreadex(NULL,
duke@435 605 (unsigned)stack_size,
duke@435 606 (unsigned (__stdcall *)(void*)) java_start,
duke@435 607 thread,
duke@435 608 CREATE_SUSPENDED,
duke@435 609 &thread_id);
duke@435 610 }
duke@435 611 if (thread_handle == NULL) {
duke@435 612 // Need to clean up stuff we've allocated so far
duke@435 613 CloseHandle(osthread->interrupt_event());
duke@435 614 thread->set_osthread(NULL);
duke@435 615 delete osthread;
duke@435 616 return NULL;
duke@435 617 }
duke@435 618
duke@435 619 Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
duke@435 620
duke@435 621 // Store info on the Win32 thread into the OSThread
duke@435 622 osthread->set_thread_handle(thread_handle);
duke@435 623 osthread->set_thread_id(thread_id);
duke@435 624
duke@435 625 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 626 osthread->set_state(INITIALIZED);
duke@435 627
duke@435 628 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 629 return true;
duke@435 630 }
duke@435 631
duke@435 632
duke@435 633 // Free Win32 resources related to the OSThread
duke@435 634 void os::free_thread(OSThread* osthread) {
duke@435 635 assert(osthread != NULL, "osthread not set");
duke@435 636 CloseHandle(osthread->thread_handle());
duke@435 637 CloseHandle(osthread->interrupt_event());
duke@435 638 delete osthread;
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 static int has_performance_count = 0;
duke@435 643 static jlong first_filetime;
duke@435 644 static jlong initial_performance_count;
duke@435 645 static jlong performance_frequency;
duke@435 646
duke@435 647
duke@435 648 jlong as_long(LARGE_INTEGER x) {
duke@435 649 jlong result = 0; // initialization to avoid warning
duke@435 650 set_high(&result, x.HighPart);
duke@435 651 set_low(&result, x.LowPart);
duke@435 652 return result;
duke@435 653 }
duke@435 654
duke@435 655
duke@435 656 jlong os::elapsed_counter() {
duke@435 657 LARGE_INTEGER count;
duke@435 658 if (has_performance_count) {
duke@435 659 QueryPerformanceCounter(&count);
duke@435 660 return as_long(count) - initial_performance_count;
duke@435 661 } else {
duke@435 662 FILETIME wt;
duke@435 663 GetSystemTimeAsFileTime(&wt);
duke@435 664 return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
duke@435 665 }
duke@435 666 }
duke@435 667
duke@435 668
duke@435 669 jlong os::elapsed_frequency() {
duke@435 670 if (has_performance_count) {
duke@435 671 return performance_frequency;
duke@435 672 } else {
duke@435 673 // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
duke@435 674 return 10000000;
duke@435 675 }
duke@435 676 }
duke@435 677
duke@435 678
duke@435 679 julong os::available_memory() {
duke@435 680 return win32::available_memory();
duke@435 681 }
duke@435 682
duke@435 683 julong os::win32::available_memory() {
poonam@1312 684 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 685 // value if total memory is larger than 4GB
poonam@1312 686 MEMORYSTATUSEX ms;
poonam@1312 687 ms.dwLength = sizeof(ms);
poonam@1312 688 GlobalMemoryStatusEx(&ms);
poonam@1312 689
poonam@1312 690 return (julong)ms.ullAvailPhys;
duke@435 691 }
duke@435 692
duke@435 693 julong os::physical_memory() {
duke@435 694 return win32::physical_memory();
duke@435 695 }
duke@435 696
tschatzl@4854 697 bool os::has_allocatable_memory_limit(julong* limit) {
tschatzl@4854 698 MEMORYSTATUSEX ms;
tschatzl@4854 699 ms.dwLength = sizeof(ms);
tschatzl@4854 700 GlobalMemoryStatusEx(&ms);
phh@455 701 #ifdef _LP64
tschatzl@4854 702 *limit = (julong)ms.ullAvailVirtual;
tschatzl@4854 703 return true;
phh@455 704 #else
phh@455 705 // Limit to 1400m because of the 2gb address space wall
tschatzl@4854 706 *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
tschatzl@4854 707 return true;
phh@455 708 #endif
duke@435 709 }
duke@435 710
duke@435 711 // VC6 lacks DWORD_PTR
duke@435 712 #if _MSC_VER < 1300
duke@435 713 typedef UINT_PTR DWORD_PTR;
duke@435 714 #endif
duke@435 715
duke@435 716 int os::active_processor_count() {
duke@435 717 DWORD_PTR lpProcessAffinityMask = 0;
duke@435 718 DWORD_PTR lpSystemAffinityMask = 0;
duke@435 719 int proc_count = processor_count();
duke@435 720 if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
duke@435 721 GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
duke@435 722 // Nof active processors is number of bits in process affinity mask
duke@435 723 int bitcount = 0;
duke@435 724 while (lpProcessAffinityMask != 0) {
duke@435 725 lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
duke@435 726 bitcount++;
duke@435 727 }
duke@435 728 return bitcount;
duke@435 729 } else {
duke@435 730 return proc_count;
duke@435 731 }
duke@435 732 }
duke@435 733
dcubed@3202 734 void os::set_native_thread_name(const char *name) {
dcubed@3202 735 // Not yet implemented.
dcubed@3202 736 return;
dcubed@3202 737 }
dcubed@3202 738
duke@435 739 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 740 // Not yet implemented.
duke@435 741 return false;
duke@435 742 }
duke@435 743
duke@435 744 bool os::bind_to_processor(uint processor_id) {
duke@435 745 // Not yet implemented.
duke@435 746 return false;
duke@435 747 }
duke@435 748
duke@435 749 static void initialize_performance_counter() {
duke@435 750 LARGE_INTEGER count;
duke@435 751 if (QueryPerformanceFrequency(&count)) {
duke@435 752 has_performance_count = 1;
duke@435 753 performance_frequency = as_long(count);
duke@435 754 QueryPerformanceCounter(&count);
duke@435 755 initial_performance_count = as_long(count);
duke@435 756 } else {
duke@435 757 has_performance_count = 0;
duke@435 758 FILETIME wt;
duke@435 759 GetSystemTimeAsFileTime(&wt);
duke@435 760 first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 761 }
duke@435 762 }
duke@435 763
duke@435 764
duke@435 765 double os::elapsedTime() {
duke@435 766 return (double) elapsed_counter() / (double) elapsed_frequency();
duke@435 767 }
duke@435 768
duke@435 769
duke@435 770 // Windows format:
duke@435 771 // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
duke@435 772 // Java format:
duke@435 773 // Java standards require the number of milliseconds since 1/1/1970
duke@435 774
duke@435 775 // Constant offset - calculated using offset()
duke@435 776 static jlong _offset = 116444736000000000;
duke@435 777 // Fake time counter for reproducible results when debugging
duke@435 778 static jlong fake_time = 0;
duke@435 779
duke@435 780 #ifdef ASSERT
duke@435 781 // Just to be safe, recalculate the offset in debug mode
duke@435 782 static jlong _calculated_offset = 0;
duke@435 783 static int _has_calculated_offset = 0;
duke@435 784
duke@435 785 jlong offset() {
duke@435 786 if (_has_calculated_offset) return _calculated_offset;
duke@435 787 SYSTEMTIME java_origin;
duke@435 788 java_origin.wYear = 1970;
duke@435 789 java_origin.wMonth = 1;
duke@435 790 java_origin.wDayOfWeek = 0; // ignored
duke@435 791 java_origin.wDay = 1;
duke@435 792 java_origin.wHour = 0;
duke@435 793 java_origin.wMinute = 0;
duke@435 794 java_origin.wSecond = 0;
duke@435 795 java_origin.wMilliseconds = 0;
duke@435 796 FILETIME jot;
duke@435 797 if (!SystemTimeToFileTime(&java_origin, &jot)) {
jcoomes@1845 798 fatal(err_msg("Error = %d\nWindows error", GetLastError()));
duke@435 799 }
duke@435 800 _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
duke@435 801 _has_calculated_offset = 1;
duke@435 802 assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
duke@435 803 return _calculated_offset;
duke@435 804 }
duke@435 805 #else
duke@435 806 jlong offset() {
duke@435 807 return _offset;
duke@435 808 }
duke@435 809 #endif
duke@435 810
duke@435 811 jlong windows_to_java_time(FILETIME wt) {
duke@435 812 jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
duke@435 813 return (a - offset()) / 10000;
duke@435 814 }
duke@435 815
duke@435 816 FILETIME java_to_windows_time(jlong l) {
duke@435 817 jlong a = (l * 10000) + offset();
duke@435 818 FILETIME result;
duke@435 819 result.dwHighDateTime = high(a);
duke@435 820 result.dwLowDateTime = low(a);
duke@435 821 return result;
duke@435 822 }
duke@435 823
tschatzl@5204 824 bool os::supports_vtime() { return true; }
ysr@777 825 bool os::enable_vtime() { return false; }
ysr@777 826 bool os::vtime_enabled() { return false; }
tschatzl@5204 827
ysr@777 828 double os::elapsedVTime() {
tschatzl@5204 829 FILETIME created;
tschatzl@5204 830 FILETIME exited;
tschatzl@5204 831 FILETIME kernel;
tschatzl@5204 832 FILETIME user;
tschatzl@5204 833 if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
tschatzl@5204 834 // the resolution of windows_to_java_time() should be sufficient (ms)
tschatzl@5204 835 return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
tschatzl@5204 836 } else {
tschatzl@5204 837 return elapsedTime();
tschatzl@5204 838 }
ysr@777 839 }
ysr@777 840
duke@435 841 jlong os::javaTimeMillis() {
duke@435 842 if (UseFakeTimers) {
duke@435 843 return fake_time++;
duke@435 844 } else {
sbohne@496 845 FILETIME wt;
sbohne@496 846 GetSystemTimeAsFileTime(&wt);
sbohne@496 847 return windows_to_java_time(wt);
duke@435 848 }
duke@435 849 }
duke@435 850
duke@435 851 jlong os::javaTimeNanos() {
duke@435 852 if (!has_performance_count) {
johnc@3339 853 return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
duke@435 854 } else {
duke@435 855 LARGE_INTEGER current_count;
duke@435 856 QueryPerformanceCounter(&current_count);
duke@435 857 double current = as_long(current_count);
duke@435 858 double freq = performance_frequency;
johnc@3339 859 jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
duke@435 860 return time;
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 865 if (!has_performance_count) {
duke@435 866 // javaTimeMillis() doesn't have much percision,
duke@435 867 // but it is not going to wrap -- so all 64 bits
duke@435 868 info_ptr->max_value = ALL_64_BITS;
duke@435 869
duke@435 870 // this is a wall clock timer, so may skip
duke@435 871 info_ptr->may_skip_backward = true;
duke@435 872 info_ptr->may_skip_forward = true;
duke@435 873 } else {
duke@435 874 jlong freq = performance_frequency;
johnc@3339 875 if (freq < NANOSECS_PER_SEC) {
duke@435 876 // the performance counter is 64 bits and we will
duke@435 877 // be multiplying it -- so no wrap in 64 bits
duke@435 878 info_ptr->max_value = ALL_64_BITS;
johnc@3339 879 } else if (freq > NANOSECS_PER_SEC) {
duke@435 880 // use the max value the counter can reach to
duke@435 881 // determine the max value which could be returned
duke@435 882 julong max_counter = (julong)ALL_64_BITS;
johnc@3339 883 info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
duke@435 884 } else {
duke@435 885 // the performance counter is 64 bits and we will
duke@435 886 // be using it directly -- so no wrap in 64 bits
duke@435 887 info_ptr->max_value = ALL_64_BITS;
duke@435 888 }
duke@435 889
duke@435 890 // using a counter, so no skipping
duke@435 891 info_ptr->may_skip_backward = false;
duke@435 892 info_ptr->may_skip_forward = false;
duke@435 893 }
duke@435 894 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 895 }
duke@435 896
duke@435 897 char* os::local_time_string(char *buf, size_t buflen) {
duke@435 898 SYSTEMTIME st;
duke@435 899 GetLocalTime(&st);
duke@435 900 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 901 st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
duke@435 902 return buf;
duke@435 903 }
duke@435 904
duke@435 905 bool os::getTimesSecs(double* process_real_time,
duke@435 906 double* process_user_time,
duke@435 907 double* process_system_time) {
duke@435 908 HANDLE h_process = GetCurrentProcess();
duke@435 909 FILETIME create_time, exit_time, kernel_time, user_time;
duke@435 910 BOOL result = GetProcessTimes(h_process,
duke@435 911 &create_time,
duke@435 912 &exit_time,
duke@435 913 &kernel_time,
duke@435 914 &user_time);
duke@435 915 if (result != 0) {
duke@435 916 FILETIME wt;
duke@435 917 GetSystemTimeAsFileTime(&wt);
duke@435 918 jlong rtc_millis = windows_to_java_time(wt);
duke@435 919 jlong user_millis = windows_to_java_time(user_time);
duke@435 920 jlong system_millis = windows_to_java_time(kernel_time);
duke@435 921 *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
duke@435 922 *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
duke@435 923 *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
duke@435 924 return true;
duke@435 925 } else {
duke@435 926 return false;
duke@435 927 }
duke@435 928 }
duke@435 929
duke@435 930 void os::shutdown() {
duke@435 931
duke@435 932 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 933 perfMemory_exit();
duke@435 934
duke@435 935 // flush buffered output, finish log files
duke@435 936 ostream_abort();
duke@435 937
duke@435 938 // Check for abort hook
duke@435 939 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 940 if (abort_hook != NULL) {
duke@435 941 abort_hook();
duke@435 942 }
duke@435 943 }
duke@435 944
ctornqvi@2520 945
ctornqvi@2520 946 static BOOL (WINAPI *_MiniDumpWriteDump) ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 947 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
ctornqvi@2520 948
ctornqvi@2520 949 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
ctornqvi@2520 950 HINSTANCE dbghelp;
ctornqvi@2520 951 EXCEPTION_POINTERS ep;
ctornqvi@2520 952 MINIDUMP_EXCEPTION_INFORMATION mei;
zgu@2772 953 MINIDUMP_EXCEPTION_INFORMATION* pmei;
zgu@2772 954
ctornqvi@2520 955 HANDLE hProcess = GetCurrentProcess();
ctornqvi@2520 956 DWORD processId = GetCurrentProcessId();
ctornqvi@2520 957 HANDLE dumpFile;
ctornqvi@2520 958 MINIDUMP_TYPE dumpType;
ctornqvi@2520 959 static const char* cwd;
ctornqvi@2520 960
ctornqvi@5182 961 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
ctornqvi@5182 962 #ifndef ASSERT
ctornqvi@2520 963 // If running on a client version of Windows and user has not explicitly enabled dumping
ctornqvi@2520 964 if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
ctornqvi@2520 965 VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
ctornqvi@2520 966 return;
ctornqvi@2520 967 // If running on a server version of Windows and user has explictly disabled dumping
ctornqvi@2520 968 } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
ctornqvi@2520 969 VMError::report_coredump_status("Minidump has been disabled from the command line", false);
ctornqvi@2520 970 return;
ctornqvi@2520 971 }
ctornqvi@5182 972 #else
ctornqvi@5182 973 if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
ctornqvi@5182 974 VMError::report_coredump_status("Minidump has been disabled from the command line", false);
ctornqvi@5182 975 return;
ctornqvi@5182 976 }
ctornqvi@5182 977 #endif
ctornqvi@2520 978
zgu@3031 979 dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
ctornqvi@2520 980
ctornqvi@2520 981 if (dbghelp == NULL) {
ctornqvi@2520 982 VMError::report_coredump_status("Failed to load dbghelp.dll", false);
ctornqvi@2520 983 return;
ctornqvi@2520 984 }
ctornqvi@2520 985
ctornqvi@2520 986 _MiniDumpWriteDump = CAST_TO_FN_PTR(
ctornqvi@2520 987 BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
ctornqvi@2520 988 PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
ctornqvi@2520 989 GetProcAddress(dbghelp, "MiniDumpWriteDump"));
ctornqvi@2520 990
ctornqvi@2520 991 if (_MiniDumpWriteDump == NULL) {
ctornqvi@2520 992 VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
ctornqvi@2520 993 return;
ctornqvi@2520 994 }
ctornqvi@2520 995
ctornqvi@2521 996 dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
ctornqvi@2521 997
ctornqvi@2521 998 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
ctornqvi@2521 999 // API_VERSION_NUMBER 11 or higher contains the ones we want though
ctornqvi@2521 1000 #if API_VERSION_NUMBER >= 11
ctornqvi@2521 1001 dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
ctornqvi@2521 1002 MiniDumpWithUnloadedModules);
ctornqvi@2521 1003 #endif
ctornqvi@2520 1004
ctornqvi@2520 1005 cwd = get_current_directory(NULL, 0);
ctornqvi@2520 1006 jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
ctornqvi@2520 1007 dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
ctornqvi@2520 1008
ctornqvi@2520 1009 if (dumpFile == INVALID_HANDLE_VALUE) {
ctornqvi@2520 1010 VMError::report_coredump_status("Failed to create file for dumping", false);
ctornqvi@2520 1011 return;
ctornqvi@2520 1012 }
zgu@2772 1013 if (exceptionRecord != NULL && contextRecord != NULL) {
zgu@2772 1014 ep.ContextRecord = (PCONTEXT) contextRecord;
zgu@2772 1015 ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
zgu@2772 1016
zgu@2772 1017 mei.ThreadId = GetCurrentThreadId();
zgu@2772 1018 mei.ExceptionPointers = &ep;
zgu@2772 1019 pmei = &mei;
zgu@2772 1020 } else {
zgu@2772 1021 pmei = NULL;
zgu@2772 1022 }
zgu@2772 1023
ctornqvi@2520 1024
ctornqvi@2520 1025 // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
ctornqvi@2520 1026 // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
zgu@2772 1027 if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
zgu@2772 1028 _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
ctornqvi@5182 1029 DWORD error = GetLastError();
ctornqvi@5182 1030 LPTSTR msgbuf = NULL;
ctornqvi@5182 1031
ctornqvi@5182 1032 if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
ctornqvi@5182 1033 FORMAT_MESSAGE_FROM_SYSTEM |
ctornqvi@5182 1034 FORMAT_MESSAGE_IGNORE_INSERTS,
ctornqvi@5182 1035 NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
ctornqvi@5182 1036
ctornqvi@5182 1037 jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
ctornqvi@5182 1038 LocalFree(msgbuf);
ctornqvi@5182 1039 } else {
ctornqvi@5182 1040 // Call to FormatMessage failed, just include the result from GetLastError
ctornqvi@5182 1041 jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
ctornqvi@5182 1042 }
ctornqvi@5182 1043 VMError::report_coredump_status(buffer, false);
ctornqvi@2520 1044 } else {
ctornqvi@2520 1045 VMError::report_coredump_status(buffer, true);
ctornqvi@2520 1046 }
ctornqvi@2520 1047
ctornqvi@2520 1048 CloseHandle(dumpFile);
ctornqvi@2520 1049 }
ctornqvi@2520 1050
ctornqvi@2520 1051
ctornqvi@2520 1052
duke@435 1053 void os::abort(bool dump_core)
duke@435 1054 {
duke@435 1055 os::shutdown();
duke@435 1056 // no core dump on Windows
duke@435 1057 ::exit(1);
duke@435 1058 }
duke@435 1059
duke@435 1060 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1061 void os::die() {
duke@435 1062 _exit(-1);
duke@435 1063 }
duke@435 1064
duke@435 1065 // Directory routines copied from src/win32/native/java/io/dirent_md.c
duke@435 1066 // * dirent_md.c 1.15 00/02/02
duke@435 1067 //
duke@435 1068 // The declarations for DIR and struct dirent are in jvm_win32.h.
duke@435 1069
duke@435 1070 /* Caller must have already run dirname through JVM_NativePath, which removes
duke@435 1071 duplicate slashes and converts all instances of '/' into '\\'. */
duke@435 1072
duke@435 1073 DIR *
duke@435 1074 os::opendir(const char *dirname)
duke@435 1075 {
duke@435 1076 assert(dirname != NULL, "just checking"); // hotspot change
zgu@3900 1077 DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
duke@435 1078 DWORD fattr; // hotspot change
duke@435 1079 char alt_dirname[4] = { 0, 0, 0, 0 };
duke@435 1080
duke@435 1081 if (dirp == 0) {
duke@435 1082 errno = ENOMEM;
duke@435 1083 return 0;
duke@435 1084 }
duke@435 1085
duke@435 1086 /*
duke@435 1087 * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
duke@435 1088 * as a directory in FindFirstFile(). We detect this case here and
duke@435 1089 * prepend the current drive name.
duke@435 1090 */
duke@435 1091 if (dirname[1] == '\0' && dirname[0] == '\\') {
duke@435 1092 alt_dirname[0] = _getdrive() + 'A' - 1;
duke@435 1093 alt_dirname[1] = ':';
duke@435 1094 alt_dirname[2] = '\\';
duke@435 1095 alt_dirname[3] = '\0';
duke@435 1096 dirname = alt_dirname;
duke@435 1097 }
duke@435 1098
zgu@3900 1099 dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
duke@435 1100 if (dirp->path == 0) {
zgu@3900 1101 free(dirp, mtInternal);
duke@435 1102 errno = ENOMEM;
duke@435 1103 return 0;
duke@435 1104 }
duke@435 1105 strcpy(dirp->path, dirname);
duke@435 1106
duke@435 1107 fattr = GetFileAttributes(dirp->path);
duke@435 1108 if (fattr == 0xffffffff) {
zgu@3900 1109 free(dirp->path, mtInternal);
zgu@3900 1110 free(dirp, mtInternal);
duke@435 1111 errno = ENOENT;
duke@435 1112 return 0;
duke@435 1113 } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
zgu@3900 1114 free(dirp->path, mtInternal);
zgu@3900 1115 free(dirp, mtInternal);
duke@435 1116 errno = ENOTDIR;
duke@435 1117 return 0;
duke@435 1118 }
duke@435 1119
duke@435 1120 /* Append "*.*", or possibly "\\*.*", to path */
duke@435 1121 if (dirp->path[1] == ':'
duke@435 1122 && (dirp->path[2] == '\0'
duke@435 1123 || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
duke@435 1124 /* No '\\' needed for cases like "Z:" or "Z:\" */
duke@435 1125 strcat(dirp->path, "*.*");
duke@435 1126 } else {
duke@435 1127 strcat(dirp->path, "\\*.*");
duke@435 1128 }
duke@435 1129
duke@435 1130 dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
duke@435 1131 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1132 if (GetLastError() != ERROR_FILE_NOT_FOUND) {
zgu@3900 1133 free(dirp->path, mtInternal);
zgu@3900 1134 free(dirp, mtInternal);
duke@435 1135 errno = EACCES;
duke@435 1136 return 0;
duke@435 1137 }
duke@435 1138 }
duke@435 1139 return dirp;
duke@435 1140 }
duke@435 1141
duke@435 1142 /* parameter dbuf unused on Windows */
duke@435 1143
duke@435 1144 struct dirent *
duke@435 1145 os::readdir(DIR *dirp, dirent *dbuf)
duke@435 1146 {
duke@435 1147 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1148 if (dirp->handle == INVALID_HANDLE_VALUE) {
duke@435 1149 return 0;
duke@435 1150 }
duke@435 1151
duke@435 1152 strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
duke@435 1153
duke@435 1154 if (!FindNextFile(dirp->handle, &dirp->find_data)) {
duke@435 1155 if (GetLastError() == ERROR_INVALID_HANDLE) {
duke@435 1156 errno = EBADF;
duke@435 1157 return 0;
duke@435 1158 }
duke@435 1159 FindClose(dirp->handle);
duke@435 1160 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1161 }
duke@435 1162
duke@435 1163 return &dirp->dirent;
duke@435 1164 }
duke@435 1165
duke@435 1166 int
duke@435 1167 os::closedir(DIR *dirp)
duke@435 1168 {
duke@435 1169 assert(dirp != NULL, "just checking"); // hotspot change
duke@435 1170 if (dirp->handle != INVALID_HANDLE_VALUE) {
duke@435 1171 if (!FindClose(dirp->handle)) {
duke@435 1172 errno = EBADF;
duke@435 1173 return -1;
duke@435 1174 }
duke@435 1175 dirp->handle = INVALID_HANDLE_VALUE;
duke@435 1176 }
zgu@3900 1177 free(dirp->path, mtInternal);
zgu@3900 1178 free(dirp, mtInternal);
duke@435 1179 return 0;
duke@435 1180 }
duke@435 1181
coleenp@2450 1182 // This must be hard coded because it's the system's temporary
coleenp@2450 1183 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@1788 1184 const char* os::get_temp_directory() {
coleenp@1788 1185 static char path_buf[MAX_PATH];
coleenp@1788 1186 if (GetTempPath(MAX_PATH, path_buf)>0)
coleenp@1788 1187 return path_buf;
coleenp@1788 1188 else{
coleenp@1788 1189 path_buf[0]='\0';
coleenp@1788 1190 return path_buf;
coleenp@1788 1191 }
duke@435 1192 }
duke@435 1193
phh@1126 1194 static bool file_exists(const char* filename) {
phh@1126 1195 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1196 return false;
phh@1126 1197 }
phh@1126 1198 return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
phh@1126 1199 }
phh@1126 1200
bpittore@4261 1201 bool os::dll_build_name(char *buffer, size_t buflen,
phh@1126 1202 const char* pname, const char* fname) {
bpittore@4261 1203 bool retval = false;
phh@1126 1204 const size_t pnamelen = pname ? strlen(pname) : 0;
phh@1126 1205 const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
phh@1126 1206
bpittore@4261 1207 // Return error on buffer overflow.
phh@1126 1208 if (pnamelen + strlen(fname) + 10 > buflen) {
bpittore@4261 1209 return retval;
phh@1126 1210 }
phh@1126 1211
phh@1126 1212 if (pnamelen == 0) {
phh@1126 1213 jio_snprintf(buffer, buflen, "%s.dll", fname);
bpittore@4261 1214 retval = true;
phh@1126 1215 } else if (c == ':' || c == '\\') {
phh@1126 1216 jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
bpittore@4261 1217 retval = true;
phh@1126 1218 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1219 int n;
phh@1126 1220 char** pelements = split_path(pname, &n);
ccheung@4888 1221 if (pelements == NULL) {
dcubed@4891 1222 return false;
ccheung@4888 1223 }
phh@1126 1224 for (int i = 0 ; i < n ; i++) {
phh@1126 1225 char* path = pelements[i];
phh@1126 1226 // Really shouldn't be NULL, but check can't hurt
phh@1126 1227 size_t plen = (path == NULL) ? 0 : strlen(path);
phh@1126 1228 if (plen == 0) {
phh@1126 1229 continue; // skip the empty path values
phh@1126 1230 }
phh@1126 1231 const char lastchar = path[plen - 1];
phh@1126 1232 if (lastchar == ':' || lastchar == '\\') {
phh@1126 1233 jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
phh@1126 1234 } else {
phh@1126 1235 jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
phh@1126 1236 }
phh@1126 1237 if (file_exists(buffer)) {
bpittore@4261 1238 retval = true;
phh@1126 1239 break;
phh@1126 1240 }
kamg@677 1241 }
phh@1126 1242 // release the storage
phh@1126 1243 for (int i = 0 ; i < n ; i++) {
phh@1126 1244 if (pelements[i] != NULL) {
zgu@3900 1245 FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
phh@1126 1246 }
kamg@677 1247 }
phh@1126 1248 if (pelements != NULL) {
zgu@3900 1249 FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
phh@1126 1250 }
phh@1126 1251 } else {
phh@1126 1252 jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
bpittore@4261 1253 retval = true;
bpittore@4261 1254 }
bpittore@4261 1255 return retval;
kamg@677 1256 }
kamg@677 1257
duke@435 1258 // Needs to be in os specific directory because windows requires another
duke@435 1259 // header file <direct.h>
vlivanov@5027 1260 const char* os::get_current_directory(char *buf, size_t buflen) {
vlivanov@5027 1261 int n = static_cast<int>(buflen);
vlivanov@5027 1262 if (buflen > INT_MAX) n = INT_MAX;
vlivanov@5027 1263 return _getcwd(buf, n);
duke@435 1264 }
duke@435 1265
duke@435 1266 //-----------------------------------------------------------
duke@435 1267 // Helper functions for fatal error handler
duke@435 1268 #ifdef _WIN64
duke@435 1269 // Helper routine which returns true if address in
duke@435 1270 // within the NTDLL address space.
duke@435 1271 //
duke@435 1272 static bool _addr_in_ntdll( address addr )
duke@435 1273 {
duke@435 1274 HMODULE hmod;
duke@435 1275 MODULEINFO minfo;
duke@435 1276
duke@435 1277 hmod = GetModuleHandle("NTDLL.DLL");
duke@435 1278 if ( hmod == NULL ) return false;
zgu@3031 1279 if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
duke@435 1280 &minfo, sizeof(MODULEINFO)) )
duke@435 1281 return false;
duke@435 1282
duke@435 1283 if ( (addr >= minfo.lpBaseOfDll) &&
duke@435 1284 (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
duke@435 1285 return true;
duke@435 1286 else
duke@435 1287 return false;
duke@435 1288 }
duke@435 1289 #endif
duke@435 1290
duke@435 1291
duke@435 1292 // Enumerate all modules for a given process ID
duke@435 1293 //
duke@435 1294 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
duke@435 1295 // different API for doing this. We use PSAPI.DLL on NT based
duke@435 1296 // Windows and ToolHelp on 95/98/Me.
duke@435 1297
duke@435 1298 // Callback function that is called by enumerate_modules() on
duke@435 1299 // every DLL module.
duke@435 1300 // Input parameters:
duke@435 1301 // int pid,
duke@435 1302 // char* module_file_name,
duke@435 1303 // address module_base_addr,
duke@435 1304 // unsigned module_size,
duke@435 1305 // void* param
duke@435 1306 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
duke@435 1307
duke@435 1308 // enumerate_modules for Windows NT, using PSAPI
duke@435 1309 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
duke@435 1310 {
duke@435 1311 HANDLE hProcess ;
duke@435 1312
duke@435 1313 # define MAX_NUM_MODULES 128
duke@435 1314 HMODULE modules[MAX_NUM_MODULES];
duke@435 1315 static char filename[ MAX_PATH ];
duke@435 1316 int result = 0;
duke@435 1317
zgu@3031 1318 if (!os::PSApiDll::PSApiAvailable()) {
zgu@3031 1319 return 0;
zgu@3031 1320 }
duke@435 1321
duke@435 1322 hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
duke@435 1323 FALSE, pid ) ;
duke@435 1324 if (hProcess == NULL) return 0;
duke@435 1325
duke@435 1326 DWORD size_needed;
zgu@3031 1327 if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
duke@435 1328 sizeof(modules), &size_needed)) {
duke@435 1329 CloseHandle( hProcess );
duke@435 1330 return 0;
duke@435 1331 }
duke@435 1332
duke@435 1333 // number of modules that are currently loaded
duke@435 1334 int num_modules = size_needed / sizeof(HMODULE);
duke@435 1335
duke@435 1336 for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
duke@435 1337 // Get Full pathname:
zgu@3031 1338 if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
duke@435 1339 filename, sizeof(filename))) {
duke@435 1340 filename[0] = '\0';
duke@435 1341 }
duke@435 1342
duke@435 1343 MODULEINFO modinfo;
zgu@3031 1344 if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
duke@435 1345 &modinfo, sizeof(modinfo))) {
duke@435 1346 modinfo.lpBaseOfDll = NULL;
duke@435 1347 modinfo.SizeOfImage = 0;
duke@435 1348 }
duke@435 1349
duke@435 1350 // Invoke callback function
duke@435 1351 result = func(pid, filename, (address)modinfo.lpBaseOfDll,
duke@435 1352 modinfo.SizeOfImage, param);
duke@435 1353 if (result) break;
duke@435 1354 }
duke@435 1355
duke@435 1356 CloseHandle( hProcess ) ;
duke@435 1357 return result;
duke@435 1358 }
duke@435 1359
duke@435 1360
duke@435 1361 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
duke@435 1362 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
duke@435 1363 {
duke@435 1364 HANDLE hSnapShot ;
duke@435 1365 static MODULEENTRY32 modentry ;
duke@435 1366 int result = 0;
duke@435 1367
zgu@3031 1368 if (!os::Kernel32Dll::HelpToolsAvailable()) {
zgu@3031 1369 return 0;
zgu@3031 1370 }
duke@435 1371
duke@435 1372 // Get a handle to a Toolhelp snapshot of the system
zgu@3031 1373 hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
duke@435 1374 if( hSnapShot == INVALID_HANDLE_VALUE ) {
duke@435 1375 return FALSE ;
duke@435 1376 }
duke@435 1377
duke@435 1378 // iterate through all modules
duke@435 1379 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1380 bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
duke@435 1381
duke@435 1382 while( not_done ) {
duke@435 1383 // invoke the callback
duke@435 1384 result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
duke@435 1385 modentry.modBaseSize, param);
duke@435 1386 if (result) break;
duke@435 1387
duke@435 1388 modentry.dwSize = sizeof(MODULEENTRY32) ;
zgu@3031 1389 not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
duke@435 1390 }
duke@435 1391
duke@435 1392 CloseHandle(hSnapShot);
duke@435 1393 return result;
duke@435 1394 }
duke@435 1395
duke@435 1396 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
duke@435 1397 {
duke@435 1398 // Get current process ID if caller doesn't provide it.
duke@435 1399 if (!pid) pid = os::current_process_id();
duke@435 1400
duke@435 1401 if (os::win32::is_nt()) return _enumerate_modules_winnt (pid, func, param);
duke@435 1402 else return _enumerate_modules_windows(pid, func, param);
duke@435 1403 }
duke@435 1404
duke@435 1405 struct _modinfo {
duke@435 1406 address addr;
duke@435 1407 char* full_path; // point to a char buffer
duke@435 1408 int buflen; // size of the buffer
duke@435 1409 address base_addr;
duke@435 1410 };
duke@435 1411
duke@435 1412 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
duke@435 1413 unsigned size, void * param) {
duke@435 1414 struct _modinfo *pmod = (struct _modinfo *)param;
duke@435 1415 if (!pmod) return -1;
duke@435 1416
duke@435 1417 if (base_addr <= pmod->addr &&
duke@435 1418 base_addr+size > pmod->addr) {
duke@435 1419 // if a buffer is provided, copy path name to the buffer
duke@435 1420 if (pmod->full_path) {
duke@435 1421 jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
duke@435 1422 }
duke@435 1423 pmod->base_addr = base_addr;
duke@435 1424 return 1;
duke@435 1425 }
duke@435 1426 return 0;
duke@435 1427 }
duke@435 1428
duke@435 1429 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1430 int buflen, int* offset) {
dcubed@5365 1431 // buf is not optional, but offset is optional
dcubed@5365 1432 assert(buf != NULL, "sanity check");
dcubed@5365 1433
duke@435 1434 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
duke@435 1435 // return the full path to the DLL file, sometimes it returns path
duke@435 1436 // to the corresponding PDB file (debug info); sometimes it only
duke@435 1437 // returns partial path, which makes life painful.
duke@435 1438
dcubed@5365 1439 struct _modinfo mi;
dcubed@5365 1440 mi.addr = addr;
dcubed@5365 1441 mi.full_path = buf;
dcubed@5365 1442 mi.buflen = buflen;
dcubed@5365 1443 int pid = os::current_process_id();
dcubed@5365 1444 if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
dcubed@5365 1445 // buf already contains path name
dcubed@5365 1446 if (offset) *offset = addr - mi.base_addr;
dcubed@5365 1447 return true;
dcubed@5365 1448 }
dcubed@5365 1449
dcubed@5365 1450 buf[0] = '\0';
dcubed@5365 1451 if (offset) *offset = -1;
dcubed@5365 1452 return false;
duke@435 1453 }
duke@435 1454
duke@435 1455 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1456 int buflen, int *offset) {
dcubed@5365 1457 // buf is not optional, but offset is optional
dcubed@5365 1458 assert(buf != NULL, "sanity check");
dcubed@5365 1459
zgu@3430 1460 if (Decoder::decode(addr, buf, buflen, offset)) {
zgu@2364 1461 return true;
zgu@2364 1462 }
zgu@2364 1463 if (offset != NULL) *offset = -1;
dcubed@5365 1464 buf[0] = '\0';
duke@435 1465 return false;
duke@435 1466 }
duke@435 1467
duke@435 1468 // save the start and end address of jvm.dll into param[0] and param[1]
duke@435 1469 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
duke@435 1470 unsigned size, void * param) {
duke@435 1471 if (!param) return -1;
duke@435 1472
duke@435 1473 if (base_addr <= (address)_locate_jvm_dll &&
duke@435 1474 base_addr+size > (address)_locate_jvm_dll) {
duke@435 1475 ((address*)param)[0] = base_addr;
duke@435 1476 ((address*)param)[1] = base_addr + size;
duke@435 1477 return 1;
duke@435 1478 }
duke@435 1479 return 0;
duke@435 1480 }
duke@435 1481
duke@435 1482 address vm_lib_location[2]; // start and end address of jvm.dll
duke@435 1483
duke@435 1484 // check if addr is inside jvm.dll
duke@435 1485 bool os::address_is_in_vm(address addr) {
duke@435 1486 if (!vm_lib_location[0] || !vm_lib_location[1]) {
duke@435 1487 int pid = os::current_process_id();
duke@435 1488 if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
duke@435 1489 assert(false, "Can't find jvm module.");
duke@435 1490 return false;
duke@435 1491 }
duke@435 1492 }
duke@435 1493
duke@435 1494 return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
duke@435 1495 }
duke@435 1496
duke@435 1497 // print module info; param is outputStream*
duke@435 1498 static int _print_module(int pid, char* fname, address base,
duke@435 1499 unsigned size, void* param) {
duke@435 1500 if (!param) return -1;
duke@435 1501
duke@435 1502 outputStream* st = (outputStream*)param;
duke@435 1503
duke@435 1504 address end_addr = base + size;
duke@435 1505 st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
duke@435 1506 return 0;
duke@435 1507 }
duke@435 1508
duke@435 1509 // Loads .dll/.so and
duke@435 1510 // in case of error it checks if .dll/.so was built for the
duke@435 1511 // same architecture as Hotspot is running on
duke@435 1512 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
duke@435 1513 {
duke@435 1514 void * result = LoadLibrary(name);
duke@435 1515 if (result != NULL)
duke@435 1516 {
duke@435 1517 return result;
duke@435 1518 }
duke@435 1519
phh@3379 1520 DWORD errcode = GetLastError();
duke@435 1521 if (errcode == ERROR_MOD_NOT_FOUND) {
duke@435 1522 strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
duke@435 1523 ebuf[ebuflen-1]='\0';
duke@435 1524 return NULL;
duke@435 1525 }
duke@435 1526
duke@435 1527 // Parsing dll below
duke@435 1528 // If we can read dll-info and find that dll was built
duke@435 1529 // for an architecture other than Hotspot is running in
duke@435 1530 // - then print to buffer "DLL was built for a different architecture"
phh@3379 1531 // else call os::lasterror to obtain system error message
duke@435 1532
duke@435 1533 // Read system error message into ebuf
duke@435 1534 // It may or may not be overwritten below (in the for loop and just above)
phh@3379 1535 lasterror(ebuf, (size_t) ebuflen);
duke@435 1536 ebuf[ebuflen-1]='\0';
duke@435 1537 int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
duke@435 1538 if (file_descriptor<0)
duke@435 1539 {
duke@435 1540 return NULL;
duke@435 1541 }
duke@435 1542
duke@435 1543 uint32_t signature_offset;
duke@435 1544 uint16_t lib_arch=0;
duke@435 1545 bool failed_to_get_lib_arch=
duke@435 1546 (
duke@435 1547 //Go to position 3c in the dll
duke@435 1548 (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
duke@435 1549 ||
duke@435 1550 // Read loacation of signature
duke@435 1551 (sizeof(signature_offset)!=
duke@435 1552 (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
duke@435 1553 ||
duke@435 1554 //Go to COFF File Header in dll
duke@435 1555 //that is located after"signature" (4 bytes long)
duke@435 1556 (os::seek_to_file_offset(file_descriptor,
duke@435 1557 signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
duke@435 1558 ||
duke@435 1559 //Read field that contains code of architecture
duke@435 1560 // that dll was build for
duke@435 1561 (sizeof(lib_arch)!=
duke@435 1562 (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
duke@435 1563 );
duke@435 1564
duke@435 1565 ::close(file_descriptor);
duke@435 1566 if (failed_to_get_lib_arch)
duke@435 1567 {
phh@3379 1568 // file i/o error - report os::lasterror(...) msg
duke@435 1569 return NULL;
duke@435 1570 }
duke@435 1571
duke@435 1572 typedef struct
duke@435 1573 {
duke@435 1574 uint16_t arch_code;
duke@435 1575 char* arch_name;
duke@435 1576 } arch_t;
duke@435 1577
duke@435 1578 static const arch_t arch_array[]={
duke@435 1579 {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
duke@435 1580 {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"},
duke@435 1581 {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"}
duke@435 1582 };
duke@435 1583 #if (defined _M_IA64)
duke@435 1584 static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
duke@435 1585 #elif (defined _M_AMD64)
duke@435 1586 static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
duke@435 1587 #elif (defined _M_IX86)
duke@435 1588 static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
duke@435 1589 #else
duke@435 1590 #error Method os::dll_load requires that one of following \
duke@435 1591 is defined :_M_IA64,_M_AMD64 or _M_IX86
duke@435 1592 #endif
duke@435 1593
duke@435 1594
duke@435 1595 // Obtain a string for printf operation
duke@435 1596 // lib_arch_str shall contain string what platform this .dll was built for
duke@435 1597 // running_arch_str shall string contain what platform Hotspot was built for
duke@435 1598 char *running_arch_str=NULL,*lib_arch_str=NULL;
duke@435 1599 for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
duke@435 1600 {
duke@435 1601 if (lib_arch==arch_array[i].arch_code)
duke@435 1602 lib_arch_str=arch_array[i].arch_name;
duke@435 1603 if (running_arch==arch_array[i].arch_code)
duke@435 1604 running_arch_str=arch_array[i].arch_name;
duke@435 1605 }
duke@435 1606
duke@435 1607 assert(running_arch_str,
duke@435 1608 "Didn't find runing architecture code in arch_array");
duke@435 1609
duke@435 1610 // If the architure is right
phh@3379 1611 // but some other error took place - report os::lasterror(...) msg
duke@435 1612 if (lib_arch == running_arch)
duke@435 1613 {
duke@435 1614 return NULL;
duke@435 1615 }
duke@435 1616
duke@435 1617 if (lib_arch_str!=NULL)
duke@435 1618 {
duke@435 1619 ::_snprintf(ebuf, ebuflen-1,
duke@435 1620 "Can't load %s-bit .dll on a %s-bit platform",
duke@435 1621 lib_arch_str,running_arch_str);
duke@435 1622 }
duke@435 1623 else
duke@435 1624 {
duke@435 1625 // don't know what architecture this dll was build for
duke@435 1626 ::_snprintf(ebuf, ebuflen-1,
duke@435 1627 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
duke@435 1628 lib_arch,running_arch_str);
duke@435 1629 }
duke@435 1630
duke@435 1631 return NULL;
duke@435 1632 }
duke@435 1633
duke@435 1634
duke@435 1635 void os::print_dll_info(outputStream *st) {
duke@435 1636 int pid = os::current_process_id();
duke@435 1637 st->print_cr("Dynamic libraries:");
duke@435 1638 enumerate_modules(pid, _print_module, (void *)st);
duke@435 1639 }
duke@435 1640
nloodin@3783 1641 void os::print_os_info_brief(outputStream* st) {
nloodin@3783 1642 os::print_os_info(st);
nloodin@3783 1643 }
nloodin@3783 1644
duke@435 1645 void os::print_os_info(outputStream* st) {
xlu@708 1646 st->print("OS:");
xlu@708 1647
nloodin@3783 1648 os::win32::print_windows_version(st);
nloodin@3783 1649 }
nloodin@3783 1650
nloodin@3783 1651 void os::win32::print_windows_version(outputStream* st) {
xlu@708 1652 OSVERSIONINFOEX osvi;
mikael@5504 1653 SYSTEM_INFO si;
mikael@5504 1654
xlu@708 1655 ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
xlu@708 1656 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
xlu@708 1657
xlu@708 1658 if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
xlu@708 1659 st->print_cr("N/A");
xlu@708 1660 return;
xlu@708 1661 }
xlu@708 1662
xlu@708 1663 int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
mikael@5504 1664
mikael@5504 1665 ZeroMemory(&si, sizeof(SYSTEM_INFO));
mikael@5504 1666 if (os_vers >= 5002) {
mikael@5504 1667 // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
mikael@5504 1668 // find out whether we are running on 64 bit processor or not.
mikael@5504 1669 if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
mikael@5504 1670 os::Kernel32Dll::GetNativeSystemInfo(&si);
mikael@5504 1671 } else {
mikael@5504 1672 GetSystemInfo(&si);
mikael@5504 1673 }
mikael@5504 1674 }
mikael@5504 1675
xlu@708 1676 if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
xlu@708 1677 switch (os_vers) {
xlu@708 1678 case 3051: st->print(" Windows NT 3.51"); break;
xlu@708 1679 case 4000: st->print(" Windows NT 4.0"); break;
xlu@708 1680 case 5000: st->print(" Windows 2000"); break;
xlu@708 1681 case 5001: st->print(" Windows XP"); break;
xlu@708 1682 case 5002:
mikael@5504 1683 if (osvi.wProductType == VER_NT_WORKSTATION &&
mikael@5504 1684 si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
mikael@5504 1685 st->print(" Windows XP x64 Edition");
xlu@708 1686 } else {
mikael@5504 1687 st->print(" Windows Server 2003 family");
xlu@708 1688 }
xlu@708 1689 break;
mikael@5504 1690
mikael@5504 1691 case 6000:
mikael@5504 1692 if (osvi.wProductType == VER_NT_WORKSTATION) {
mikael@5504 1693 st->print(" Windows Vista");
mikael@5504 1694 } else {
mikael@5504 1695 st->print(" Windows Server 2008");
mikael@5504 1696 }
mikael@5504 1697 break;
mikael@5504 1698
mikael@5504 1699 case 6001:
mikael@5504 1700 if (osvi.wProductType == VER_NT_WORKSTATION) {
mikael@5504 1701 st->print(" Windows 7");
mikael@5504 1702 } else {
mikael@5504 1703 st->print(" Windows Server 2008 R2");
mikael@5504 1704 }
mikael@5504 1705 break;
mikael@5504 1706
mikael@5504 1707 case 6002:
mikael@5504 1708 if (osvi.wProductType == VER_NT_WORKSTATION) {
mikael@5504 1709 st->print(" Windows 8");
mikael@5504 1710 } else {
mikael@5504 1711 st->print(" Windows Server 2012");
mikael@5504 1712 }
mikael@5504 1713 break;
mikael@5504 1714
mikael@5504 1715 case 6003:
mikael@5504 1716 if (osvi.wProductType == VER_NT_WORKSTATION) {
mikael@5504 1717 st->print(" Windows 8.1");
mikael@5504 1718 } else {
mikael@5504 1719 st->print(" Windows Server 2012 R2");
mikael@5504 1720 }
mikael@5504 1721 break;
mikael@5504 1722
mikael@5504 1723 default: // future os
mikael@5504 1724 // Unrecognized windows, print out its major and minor versions
xlu@708 1725 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1726 }
xlu@708 1727 } else {
xlu@708 1728 switch (os_vers) {
xlu@708 1729 case 4000: st->print(" Windows 95"); break;
xlu@708 1730 case 4010: st->print(" Windows 98"); break;
xlu@708 1731 case 4090: st->print(" Windows Me"); break;
xlu@708 1732 default: // future windows, print out its major and minor versions
xlu@708 1733 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
xlu@708 1734 }
xlu@708 1735 }
mikael@5504 1736
mikael@5504 1737 if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
mikael@5504 1738 st->print(" , 64 bit");
mikael@5504 1739 }
mikael@5504 1740
xlu@708 1741 st->print(" Build %d", osvi.dwBuildNumber);
xlu@708 1742 st->print(" %s", osvi.szCSDVersion); // service pack
xlu@708 1743 st->cr();
duke@435 1744 }
duke@435 1745
jcoomes@2997 1746 void os::pd_print_cpu_info(outputStream* st) {
jcoomes@2997 1747 // Nothing to do for now.
jcoomes@2997 1748 }
jcoomes@2997 1749
duke@435 1750 void os::print_memory_info(outputStream* st) {
duke@435 1751 st->print("Memory:");
duke@435 1752 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 1753
poonam@1312 1754 // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
poonam@1312 1755 // value if total memory is larger than 4GB
poonam@1312 1756 MEMORYSTATUSEX ms;
poonam@1312 1757 ms.dwLength = sizeof(ms);
poonam@1312 1758 GlobalMemoryStatusEx(&ms);
duke@435 1759
duke@435 1760 st->print(", physical %uk", os::physical_memory() >> 10);
duke@435 1761 st->print("(%uk free)", os::available_memory() >> 10);
duke@435 1762
poonam@1312 1763 st->print(", swap %uk", ms.ullTotalPageFile >> 10);
poonam@1312 1764 st->print("(%uk free)", ms.ullAvailPageFile >> 10);
duke@435 1765 st->cr();
duke@435 1766 }
duke@435 1767
duke@435 1768 void os::print_siginfo(outputStream *st, void *siginfo) {
duke@435 1769 EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
duke@435 1770 st->print("siginfo:");
duke@435 1771 st->print(" ExceptionCode=0x%x", er->ExceptionCode);
duke@435 1772
duke@435 1773 if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 1774 er->NumberParameters >= 2) {
duke@435 1775 switch (er->ExceptionInformation[0]) {
duke@435 1776 case 0: st->print(", reading address"); break;
duke@435 1777 case 1: st->print(", writing address"); break;
duke@435 1778 default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
duke@435 1779 er->ExceptionInformation[0]);
duke@435 1780 }
duke@435 1781 st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
duke@435 1782 } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
duke@435 1783 er->NumberParameters >= 2 && UseSharedSpaces) {
duke@435 1784 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 1785 if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
duke@435 1786 st->print("\n\nError accessing class data sharing archive." \
duke@435 1787 " Mapped file inaccessible during execution, " \
duke@435 1788 " possible disk/network problem.");
duke@435 1789 }
duke@435 1790 } else {
duke@435 1791 int num = er->NumberParameters;
duke@435 1792 if (num > 0) {
duke@435 1793 st->print(", ExceptionInformation=");
duke@435 1794 for (int i = 0; i < num; i++) {
duke@435 1795 st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
duke@435 1796 }
duke@435 1797 }
duke@435 1798 }
duke@435 1799 st->cr();
duke@435 1800 }
duke@435 1801
duke@435 1802 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 1803 // do nothing
duke@435 1804 }
duke@435 1805
duke@435 1806 static char saved_jvm_path[MAX_PATH] = {0};
duke@435 1807
dcubed@4392 1808 // Find the full path to the current module, jvm.dll
duke@435 1809 void os::jvm_path(char *buf, jint buflen) {
duke@435 1810 // Error checking.
duke@435 1811 if (buflen < MAX_PATH) {
duke@435 1812 assert(false, "must use a large-enough buffer");
duke@435 1813 buf[0] = '\0';
duke@435 1814 return;
duke@435 1815 }
duke@435 1816 // Lazy resolve the path to current module.
duke@435 1817 if (saved_jvm_path[0] != 0) {
duke@435 1818 strcpy(buf, saved_jvm_path);
duke@435 1819 return;
duke@435 1820 }
duke@435 1821
sla@2327 1822 buf[0] = '\0';
sla@2584 1823 if (Arguments::created_by_gamma_launcher()) {
sla@2327 1824 // Support for the gamma launcher. Check for an
sla@2369 1825 // JAVA_HOME environment variable
sla@2327 1826 // and fix up the path so it looks like
sla@2327 1827 // libjvm.so is installed there (append a fake suffix
sla@2327 1828 // hotspot/libjvm.so).
sla@2369 1829 char* java_home_var = ::getenv("JAVA_HOME");
hseigel@6755 1830 if (java_home_var != NULL && java_home_var[0] != 0 &&
hseigel@6755 1831 strlen(java_home_var) < (size_t)buflen) {
sla@2327 1832
sla@2327 1833 strncpy(buf, java_home_var, buflen);
sla@2327 1834
sla@2327 1835 // determine if this is a legacy image or modules image
sla@2327 1836 // modules image doesn't have "jre" subdirectory
sla@2327 1837 size_t len = strlen(buf);
sla@2327 1838 char* jrebin_p = buf + len;
sla@2327 1839 jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
sla@2327 1840 if (0 != _access(buf, 0)) {
sla@2327 1841 jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
sla@2327 1842 }
sla@2327 1843 len = strlen(buf);
sla@2327 1844 jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
sla@2327 1845 }
sla@2327 1846 }
sla@2327 1847
sla@2327 1848 if(buf[0] == '\0') {
hseigel@6755 1849 GetModuleFileName(vm_lib_handle, buf, buflen);
hseigel@6755 1850 }
hseigel@6755 1851 strncpy(saved_jvm_path, buf, MAX_PATH);
duke@435 1852 }
duke@435 1853
duke@435 1854
duke@435 1855 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 1856 #ifndef _WIN64
duke@435 1857 st->print("_");
duke@435 1858 #endif
duke@435 1859 }
duke@435 1860
duke@435 1861
duke@435 1862 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 1863 #ifndef _WIN64
duke@435 1864 st->print("@%d", args_size * sizeof(int));
duke@435 1865 #endif
duke@435 1866 }
duke@435 1867
ikrylov@2322 1868 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 1869 // from src/windows/hpi/src/system_md.c
ikrylov@2322 1870
phh@3379 1871 size_t os::lasterror(char* buf, size_t len) {
phh@3379 1872 DWORD errval;
ikrylov@2322 1873
ikrylov@2322 1874 if ((errval = GetLastError()) != 0) {
phh@3379 1875 // DOS error
phh@3379 1876 size_t n = (size_t)FormatMessage(
ikrylov@2322 1877 FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
ikrylov@2322 1878 NULL,
ikrylov@2322 1879 errval,
ikrylov@2322 1880 0,
ikrylov@2322 1881 buf,
ikrylov@2322 1882 (DWORD)len,
ikrylov@2322 1883 NULL);
ikrylov@2322 1884 if (n > 3) {
phh@3379 1885 // Drop final '.', CR, LF
ikrylov@2322 1886 if (buf[n - 1] == '\n') n--;
ikrylov@2322 1887 if (buf[n - 1] == '\r') n--;
ikrylov@2322 1888 if (buf[n - 1] == '.') n--;
ikrylov@2322 1889 buf[n] = '\0';
ikrylov@2322 1890 }
ikrylov@2322 1891 return n;
ikrylov@2322 1892 }
ikrylov@2322 1893
ikrylov@2322 1894 if (errno != 0) {
phh@3379 1895 // C runtime error that has no corresponding DOS error code
phh@3379 1896 const char* s = strerror(errno);
ikrylov@2322 1897 size_t n = strlen(s);
ikrylov@2322 1898 if (n >= len) n = len - 1;
ikrylov@2322 1899 strncpy(buf, s, n);
ikrylov@2322 1900 buf[n] = '\0';
ikrylov@2322 1901 return n;
ikrylov@2322 1902 }
phh@3379 1903
ikrylov@2322 1904 return 0;
ikrylov@2322 1905 }
ikrylov@2322 1906
phh@3379 1907 int os::get_last_error() {
phh@3379 1908 DWORD error = GetLastError();
phh@3379 1909 if (error == 0)
phh@3379 1910 error = errno;
phh@3379 1911 return (int)error;
phh@3379 1912 }
phh@3379 1913
duke@435 1914 // sun.misc.Signal
duke@435 1915 // NOTE that this is a workaround for an apparent kernel bug where if
duke@435 1916 // a signal handler for SIGBREAK is installed then that signal handler
duke@435 1917 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
duke@435 1918 // See bug 4416763.
duke@435 1919 static void (*sigbreakHandler)(int) = NULL;
duke@435 1920
duke@435 1921 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 1922 os::signal_notify(sig);
duke@435 1923 // We need to reinstate the signal handler each time...
duke@435 1924 os::signal(sig, (void*)UserHandler);
duke@435 1925 }
duke@435 1926
duke@435 1927 void* os::user_handler() {
duke@435 1928 return (void*) UserHandler;
duke@435 1929 }
duke@435 1930
duke@435 1931 void* os::signal(int signal_number, void* handler) {
duke@435 1932 if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
duke@435 1933 void (*oldHandler)(int) = sigbreakHandler;
duke@435 1934 sigbreakHandler = (void (*)(int)) handler;
duke@435 1935 return (void*) oldHandler;
duke@435 1936 } else {
duke@435 1937 return (void*)::signal(signal_number, (void (*)(int))handler);
duke@435 1938 }
duke@435 1939 }
duke@435 1940
duke@435 1941 void os::signal_raise(int signal_number) {
duke@435 1942 raise(signal_number);
duke@435 1943 }
duke@435 1944
duke@435 1945 // The Win32 C runtime library maps all console control events other than ^C
duke@435 1946 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
duke@435 1947 // logoff, and shutdown events. We therefore install our own console handler
duke@435 1948 // that raises SIGTERM for the latter cases.
duke@435 1949 //
duke@435 1950 static BOOL WINAPI consoleHandler(DWORD event) {
duke@435 1951 switch(event) {
duke@435 1952 case CTRL_C_EVENT:
duke@435 1953 if (is_error_reported()) {
duke@435 1954 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 1955 // handler fails to abort. Let VM die immediately.
duke@435 1956 os::die();
duke@435 1957 }
duke@435 1958
duke@435 1959 os::signal_raise(SIGINT);
duke@435 1960 return TRUE;
duke@435 1961 break;
duke@435 1962 case CTRL_BREAK_EVENT:
duke@435 1963 if (sigbreakHandler != NULL) {
duke@435 1964 (*sigbreakHandler)(SIGBREAK);
duke@435 1965 }
duke@435 1966 return TRUE;
duke@435 1967 break;
zgu@4473 1968 case CTRL_LOGOFF_EVENT: {
zgu@4473 1969 // Don't terminate JVM if it is running in a non-interactive session,
zgu@4473 1970 // such as a service process.
zgu@4473 1971 USEROBJECTFLAGS flags;
zgu@4473 1972 HANDLE handle = GetProcessWindowStation();
zgu@4473 1973 if (handle != NULL &&
zgu@4473 1974 GetUserObjectInformation(handle, UOI_FLAGS, &flags,
zgu@4473 1975 sizeof( USEROBJECTFLAGS), NULL)) {
zgu@4473 1976 // If it is a non-interactive session, let next handler to deal
zgu@4473 1977 // with it.
zgu@4473 1978 if ((flags.dwFlags & WSF_VISIBLE) == 0) {
zgu@4473 1979 return FALSE;
zgu@4473 1980 }
zgu@4473 1981 }
zgu@4473 1982 }
duke@435 1983 case CTRL_CLOSE_EVENT:
duke@435 1984 case CTRL_SHUTDOWN_EVENT:
duke@435 1985 os::signal_raise(SIGTERM);
duke@435 1986 return TRUE;
duke@435 1987 break;
duke@435 1988 default:
duke@435 1989 break;
duke@435 1990 }
duke@435 1991 return FALSE;
duke@435 1992 }
duke@435 1993
duke@435 1994 /*
duke@435 1995 * The following code is moved from os.cpp for making this
duke@435 1996 * code platform specific, which it is by its very nature.
duke@435 1997 */
duke@435 1998
duke@435 1999 // Return maximum OS signal used + 1 for internal use only
duke@435 2000 // Used as exit signal for signal_thread
duke@435 2001 int os::sigexitnum_pd(){
duke@435 2002 return NSIG;
duke@435 2003 }
duke@435 2004
duke@435 2005 // a counter for each possible signal value, including signal_thread exit signal
duke@435 2006 static volatile jint pending_signals[NSIG+1] = { 0 };
mgronlun@4598 2007 static HANDLE sig_sem = NULL;
duke@435 2008
duke@435 2009 void os::signal_init_pd() {
duke@435 2010 // Initialize signal structures
duke@435 2011 memset((void*)pending_signals, 0, sizeof(pending_signals));
duke@435 2012
duke@435 2013 sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
duke@435 2014
duke@435 2015 // Programs embedding the VM do not want it to attempt to receive
duke@435 2016 // events like CTRL_LOGOFF_EVENT, which are used to implement the
duke@435 2017 // shutdown hooks mechanism introduced in 1.3. For example, when
duke@435 2018 // the VM is run as part of a Windows NT service (i.e., a servlet
duke@435 2019 // engine in a web server), the correct behavior is for any console
duke@435 2020 // control handler to return FALSE, not TRUE, because the OS's
duke@435 2021 // "final" handler for such events allows the process to continue if
duke@435 2022 // it is a service (while terminating it if it is not a service).
duke@435 2023 // To make this behavior uniform and the mechanism simpler, we
duke@435 2024 // completely disable the VM's usage of these console events if -Xrs
duke@435 2025 // (=ReduceSignalUsage) is specified. This means, for example, that
duke@435 2026 // the CTRL-BREAK thread dump mechanism is also disabled in this
duke@435 2027 // case. See bugs 4323062, 4345157, and related bugs.
duke@435 2028
duke@435 2029 if (!ReduceSignalUsage) {
duke@435 2030 // Add a CTRL-C handler
duke@435 2031 SetConsoleCtrlHandler(consoleHandler, TRUE);
duke@435 2032 }
duke@435 2033 }
duke@435 2034
duke@435 2035 void os::signal_notify(int signal_number) {
duke@435 2036 BOOL ret;
mgronlun@4598 2037 if (sig_sem != NULL) {
mgronlun@4598 2038 Atomic::inc(&pending_signals[signal_number]);
mgronlun@4598 2039 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
mgronlun@4598 2040 assert(ret != 0, "ReleaseSemaphore() failed");
mgronlun@4598 2041 }
duke@435 2042 }
duke@435 2043
duke@435 2044 static int check_pending_signals(bool wait_for_signal) {
duke@435 2045 DWORD ret;
duke@435 2046 while (true) {
duke@435 2047 for (int i = 0; i < NSIG + 1; i++) {
duke@435 2048 jint n = pending_signals[i];
duke@435 2049 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2050 return i;
duke@435 2051 }
duke@435 2052 }
duke@435 2053 if (!wait_for_signal) {
duke@435 2054 return -1;
duke@435 2055 }
duke@435 2056
duke@435 2057 JavaThread *thread = JavaThread::current();
duke@435 2058
duke@435 2059 ThreadBlockInVM tbivm(thread);
duke@435 2060
duke@435 2061 bool threadIsSuspended;
duke@435 2062 do {
duke@435 2063 thread->set_suspend_equivalent();
duke@435 2064 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2065 ret = ::WaitForSingleObject(sig_sem, INFINITE);
duke@435 2066 assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
duke@435 2067
duke@435 2068 // were we externally suspended while we were waiting?
duke@435 2069 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2070 if (threadIsSuspended) {
duke@435 2071 //
duke@435 2072 // The semaphore has been incremented, but while we were waiting
duke@435 2073 // another thread suspended us. We don't want to continue running
duke@435 2074 // while suspended because that would surprise the thread that
duke@435 2075 // suspended us.
duke@435 2076 //
duke@435 2077 ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
duke@435 2078 assert(ret != 0, "ReleaseSemaphore() failed");
duke@435 2079
duke@435 2080 thread->java_suspend_self();
duke@435 2081 }
duke@435 2082 } while (threadIsSuspended);
duke@435 2083 }
duke@435 2084 }
duke@435 2085
duke@435 2086 int os::signal_lookup() {
duke@435 2087 return check_pending_signals(false);
duke@435 2088 }
duke@435 2089
duke@435 2090 int os::signal_wait() {
duke@435 2091 return check_pending_signals(true);
duke@435 2092 }
duke@435 2093
duke@435 2094 // Implicit OS exception handling
duke@435 2095
duke@435 2096 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
duke@435 2097 JavaThread* thread = JavaThread::current();
duke@435 2098 // Save pc in thread
duke@435 2099 #ifdef _M_IA64
morris@4535 2100 // Do not blow up if no thread info available.
morris@4535 2101 if (thread) {
morris@4535 2102 // Saving PRECISE pc (with slot information) in thread.
morris@4535 2103 uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
morris@4535 2104 // Convert precise PC into "Unix" format
morris@4535 2105 precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
morris@4535 2106 thread->set_saved_exception_pc((address)precise_pc);
morris@4535 2107 }
duke@435 2108 // Set pc to handler
duke@435 2109 exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
morris@4535 2110 // Clear out psr.ri (= Restart Instruction) in order to continue
morris@4535 2111 // at the beginning of the target bundle.
morris@4535 2112 exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
morris@4535 2113 assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
duke@435 2114 #elif _M_AMD64
morris@4535 2115 // Do not blow up if no thread info available.
morris@4535 2116 if (thread) {
morris@4535 2117 thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
morris@4535 2118 }
duke@435 2119 // Set pc to handler
duke@435 2120 exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
duke@435 2121 #else
morris@4535 2122 // Do not blow up if no thread info available.
morris@4535 2123 if (thread) {
morris@4535 2124 thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
morris@4535 2125 }
duke@435 2126 // Set pc to handler
morris@4535 2127 exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
duke@435 2128 #endif
duke@435 2129
duke@435 2130 // Continue the execution
duke@435 2131 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2132 }
duke@435 2133
duke@435 2134
duke@435 2135 // Used for PostMortemDump
duke@435 2136 extern "C" void safepoints();
duke@435 2137 extern "C" void find(int x);
duke@435 2138 extern "C" void events();
duke@435 2139
duke@435 2140 // According to Windows API documentation, an illegal instruction sequence should generate
duke@435 2141 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
duke@435 2142 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
duke@435 2143 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
duke@435 2144
duke@435 2145 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
duke@435 2146
duke@435 2147 // From "Execution Protection in the Windows Operating System" draft 0.35
duke@435 2148 // Once a system header becomes available, the "real" define should be
duke@435 2149 // included or copied here.
duke@435 2150 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
duke@435 2151
morris@4535 2152 // Handle NAT Bit consumption on IA64.
morris@4535 2153 #ifdef _M_IA64
morris@4535 2154 #define EXCEPTION_REG_NAT_CONSUMPTION STATUS_REG_NAT_CONSUMPTION
morris@4535 2155 #endif
morris@4535 2156
morris@4535 2157 // Windows Vista/2008 heap corruption check
morris@4535 2158 #define EXCEPTION_HEAP_CORRUPTION 0xC0000374
morris@4535 2159
duke@435 2160 #define def_excpt(val) #val, val
duke@435 2161
duke@435 2162 struct siglabel {
duke@435 2163 char *name;
duke@435 2164 int number;
duke@435 2165 };
duke@435 2166
zgu@2391 2167 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
zgu@2391 2168 // C++ compiler contain this error code. Because this is a compiler-generated
zgu@2391 2169 // error, the code is not listed in the Win32 API header files.
zgu@2391 2170 // The code is actually a cryptic mnemonic device, with the initial "E"
zgu@2391 2171 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
zgu@2391 2172 // ASCII values of "msc".
zgu@2391 2173
zgu@2391 2174 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363
zgu@2391 2175
zgu@2391 2176
duke@435 2177 struct siglabel exceptlabels[] = {
duke@435 2178 def_excpt(EXCEPTION_ACCESS_VIOLATION),
duke@435 2179 def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
duke@435 2180 def_excpt(EXCEPTION_BREAKPOINT),
duke@435 2181 def_excpt(EXCEPTION_SINGLE_STEP),
duke@435 2182 def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
duke@435 2183 def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
duke@435 2184 def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
duke@435 2185 def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
duke@435 2186 def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
duke@435 2187 def_excpt(EXCEPTION_FLT_OVERFLOW),
duke@435 2188 def_excpt(EXCEPTION_FLT_STACK_CHECK),
duke@435 2189 def_excpt(EXCEPTION_FLT_UNDERFLOW),
duke@435 2190 def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
duke@435 2191 def_excpt(EXCEPTION_INT_OVERFLOW),
duke@435 2192 def_excpt(EXCEPTION_PRIV_INSTRUCTION),
duke@435 2193 def_excpt(EXCEPTION_IN_PAGE_ERROR),
duke@435 2194 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
duke@435 2195 def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
duke@435 2196 def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
duke@435 2197 def_excpt(EXCEPTION_STACK_OVERFLOW),
duke@435 2198 def_excpt(EXCEPTION_INVALID_DISPOSITION),
duke@435 2199 def_excpt(EXCEPTION_GUARD_PAGE),
duke@435 2200 def_excpt(EXCEPTION_INVALID_HANDLE),
zgu@2391 2201 def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
morris@4535 2202 def_excpt(EXCEPTION_HEAP_CORRUPTION),
morris@4535 2203 #ifdef _M_IA64
morris@4535 2204 def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
morris@4535 2205 #endif
duke@435 2206 NULL, 0
duke@435 2207 };
duke@435 2208
duke@435 2209 const char* os::exception_name(int exception_code, char *buf, size_t size) {
duke@435 2210 for (int i = 0; exceptlabels[i].name != NULL; i++) {
duke@435 2211 if (exceptlabels[i].number == exception_code) {
duke@435 2212 jio_snprintf(buf, size, "%s", exceptlabels[i].name);
duke@435 2213 return buf;
duke@435 2214 }
duke@435 2215 }
duke@435 2216
duke@435 2217 return NULL;
duke@435 2218 }
duke@435 2219
duke@435 2220 //-----------------------------------------------------------------------------
duke@435 2221 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2222 // handle exception caused by idiv; should only happen for -MinInt/-1
duke@435 2223 // (division by zero is handled explicitly)
duke@435 2224 #ifdef _M_IA64
duke@435 2225 assert(0, "Fix Handle_IDiv_Exception");
duke@435 2226 #elif _M_AMD64
duke@435 2227 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2228 address pc = (address)ctx->Rip;
duke@435 2229 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2230 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2231 assert(ctx->Rax == min_jint, "unexpected idiv exception");
duke@435 2232 // set correct result values and continue after idiv instruction
duke@435 2233 ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2234 ctx->Rax = (DWORD)min_jint; // result
duke@435 2235 ctx->Rdx = (DWORD)0; // remainder
duke@435 2236 // Continue the execution
duke@435 2237 #else
duke@435 2238 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2239 address pc = (address)ctx->Eip;
duke@435 2240 assert(pc[0] == 0xF7, "not an idiv opcode");
duke@435 2241 assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
duke@435 2242 assert(ctx->Eax == min_jint, "unexpected idiv exception");
duke@435 2243 // set correct result values and continue after idiv instruction
duke@435 2244 ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
duke@435 2245 ctx->Eax = (DWORD)min_jint; // result
duke@435 2246 ctx->Edx = (DWORD)0; // remainder
duke@435 2247 // Continue the execution
duke@435 2248 #endif
duke@435 2249 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2250 }
duke@435 2251
duke@435 2252 #ifndef _WIN64
duke@435 2253 //-----------------------------------------------------------------------------
duke@435 2254 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
dcubed@1649 2255 // handle exception caused by native method modifying control word
duke@435 2256 PCONTEXT ctx = exceptionInfo->ContextRecord;
duke@435 2257 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2258
duke@435 2259 switch (exception_code) {
duke@435 2260 case EXCEPTION_FLT_DENORMAL_OPERAND:
duke@435 2261 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
duke@435 2262 case EXCEPTION_FLT_INEXACT_RESULT:
duke@435 2263 case EXCEPTION_FLT_INVALID_OPERATION:
duke@435 2264 case EXCEPTION_FLT_OVERFLOW:
duke@435 2265 case EXCEPTION_FLT_STACK_CHECK:
duke@435 2266 case EXCEPTION_FLT_UNDERFLOW:
duke@435 2267 jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 2268 if (fp_control_word != ctx->FloatSave.ControlWord) {
duke@435 2269 // Restore FPCW and mask out FLT exceptions
duke@435 2270 ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
duke@435 2271 // Mask out pending FLT exceptions
duke@435 2272 ctx->FloatSave.StatusWord &= 0xffffff00;
duke@435 2273 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2274 }
duke@435 2275 }
dcubed@1649 2276
dcubed@1649 2277 if (prev_uef_handler != NULL) {
dcubed@1649 2278 // We didn't handle this exception so pass it to the previous
dcubed@1649 2279 // UnhandledExceptionFilter.
dcubed@1649 2280 return (prev_uef_handler)(exceptionInfo);
dcubed@1649 2281 }
dcubed@1649 2282
duke@435 2283 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2284 }
duke@435 2285 #else //_WIN64
duke@435 2286 /*
duke@435 2287 On Windows, the mxcsr control bits are non-volatile across calls
duke@435 2288 See also CR 6192333
duke@435 2289 If EXCEPTION_FLT_* happened after some native method modified
duke@435 2290 mxcsr - it is not a jvm fault.
duke@435 2291 However should we decide to restore of mxcsr after a faulty
duke@435 2292 native method we can uncomment following code
duke@435 2293 jint MxCsr = INITIAL_MXCSR;
duke@435 2294 // we can't use StubRoutines::addr_mxcsr_std()
duke@435 2295 // because in Win64 mxcsr is not saved there
duke@435 2296 if (MxCsr != ctx->MxCsr) {
duke@435 2297 ctx->MxCsr = MxCsr;
duke@435 2298 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2299 }
duke@435 2300
duke@435 2301 */
hseigel@6755 2302 #endif // _WIN64
hseigel@6755 2303
duke@435 2304
duke@435 2305 static inline void report_error(Thread* t, DWORD exception_code,
duke@435 2306 address addr, void* siginfo, void* context) {
duke@435 2307 VMError err(t, exception_code, addr, siginfo, context);
duke@435 2308 err.report_and_die();
duke@435 2309
duke@435 2310 // If UseOsErrorReporting, this will return here and save the error file
duke@435 2311 // somewhere where we can find it in the minidump.
duke@435 2312 }
duke@435 2313
duke@435 2314 //-----------------------------------------------------------------------------
duke@435 2315 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2316 if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
duke@435 2317 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2318 #ifdef _M_IA64
morris@4535 2319 // On Itanium, we need the "precise pc", which has the slot number coded
morris@4535 2320 // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
morris@4535 2321 address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
morris@4535 2322 // Convert the pc to "Unix format", which has the slot number coded
morris@4535 2323 // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
morris@4535 2324 // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
morris@4535 2325 // information is saved in the Unix format.
morris@4535 2326 address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
duke@435 2327 #elif _M_AMD64
duke@435 2328 address pc = (address) exceptionInfo->ContextRecord->Rip;
duke@435 2329 #else
duke@435 2330 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2331 #endif
duke@435 2332 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 2333
goetz@5400 2334 // Handle SafeFetch32 and SafeFetchN exceptions.
goetz@5400 2335 if (StubRoutines::is_safefetch_fault(pc)) {
goetz@5400 2336 return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
goetz@5400 2337 }
goetz@5400 2338
duke@435 2339 #ifndef _WIN64
duke@435 2340 // Execution protection violation - win32 running on AMD64 only
duke@435 2341 // Handled first to avoid misdiagnosis as a "normal" access violation;
duke@435 2342 // This is safe to do because we have a new/unique ExceptionInformation
duke@435 2343 // code for this condition.
duke@435 2344 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2345 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2346 int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
duke@435 2347 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2348
duke@435 2349 if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 2350 int page_size = os::vm_page_size();
duke@435 2351
duke@435 2352 // Make sure the pc and the faulting address are sane.
duke@435 2353 //
duke@435 2354 // If an instruction spans a page boundary, and the page containing
duke@435 2355 // the beginning of the instruction is executable but the following
duke@435 2356 // page is not, the pc and the faulting address might be slightly
duke@435 2357 // different - we still want to unguard the 2nd page in this case.
duke@435 2358 //
duke@435 2359 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 2360 bool pc_is_near_addr =
duke@435 2361 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 2362 bool instr_spans_page_boundary =
duke@435 2363 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 2364 (intptr_t) page_size) > 0);
duke@435 2365
duke@435 2366 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 2367 static volatile address last_addr =
duke@435 2368 (address) os::non_memory_address_word();
duke@435 2369
duke@435 2370 // In conservative mode, don't unguard unless the address is in the VM
duke@435 2371 if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
duke@435 2372 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 2373
coleenp@912 2374 // Set memory to RWX and retry
duke@435 2375 address page_start =
duke@435 2376 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 2377 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 2378 os::MEM_PROT_RWX);
duke@435 2379
duke@435 2380 if (PrintMiscellaneous && Verbose) {
duke@435 2381 char buf[256];
duke@435 2382 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 2383 "at " INTPTR_FORMAT
duke@435 2384 ", unguarding " INTPTR_FORMAT ": %s", addr,
duke@435 2385 page_start, (res ? "success" : strerror(errno)));
duke@435 2386 tty->print_raw_cr(buf);
duke@435 2387 }
duke@435 2388
duke@435 2389 // Set last_addr so if we fault again at the same address, we don't
duke@435 2390 // end up in an endless loop.
duke@435 2391 //
duke@435 2392 // There are two potential complications here. Two threads trapping
duke@435 2393 // at the same address at the same time could cause one of the
duke@435 2394 // threads to think it already unguarded, and abort the VM. Likely
duke@435 2395 // very rare.
duke@435 2396 //
duke@435 2397 // The other race involves two threads alternately trapping at
duke@435 2398 // different addresses and failing to unguard the page, resulting in
duke@435 2399 // an endless loop. This condition is probably even more unlikely
duke@435 2400 // than the first.
duke@435 2401 //
duke@435 2402 // Although both cases could be avoided by using locks or thread
duke@435 2403 // local last_addr, these solutions are unnecessary complication:
duke@435 2404 // this handler is a best-effort safety net, not a complete solution.
duke@435 2405 // It is disabled by default and should only be used as a workaround
duke@435 2406 // in case we missed any no-execute-unsafe VM code.
duke@435 2407
duke@435 2408 last_addr = addr;
duke@435 2409
duke@435 2410 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2411 }
duke@435 2412 }
duke@435 2413
duke@435 2414 // Last unguard failed or not unguarding
duke@435 2415 tty->print_raw_cr("Execution protection violation");
duke@435 2416 report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
duke@435 2417 exceptionInfo->ContextRecord);
duke@435 2418 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2419 }
duke@435 2420 }
duke@435 2421 #endif // _WIN64
duke@435 2422
duke@435 2423 // Check to see if we caught the safepoint code in the
duke@435 2424 // process of write protecting the memory serialization page.
duke@435 2425 // It write enables the page immediately after protecting it
duke@435 2426 // so just return.
duke@435 2427 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 2428 JavaThread* thread = (JavaThread*) t;
duke@435 2429 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2430 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2431 if ( os::is_memory_serialize_page(thread, addr) ) {
duke@435 2432 // Block current thread until the memory serialize page permission restored.
duke@435 2433 os::block_on_serialize_page_trap();
duke@435 2434 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2435 }
duke@435 2436 }
duke@435 2437
kvn@6388 2438 if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
kvn@6388 2439 VM_Version::is_cpuinfo_segv_addr(pc)) {
kvn@6388 2440 // Verify that OS save/restore AVX registers.
kvn@6388 2441 return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
kvn@6388 2442 }
kvn@6388 2443
duke@435 2444 if (t != NULL && t->is_Java_thread()) {
duke@435 2445 JavaThread* thread = (JavaThread*) t;
duke@435 2446 bool in_java = thread->thread_state() == _thread_in_Java;
duke@435 2447
duke@435 2448 // Handle potential stack overflows up front.
duke@435 2449 if (exception_code == EXCEPTION_STACK_OVERFLOW) {
duke@435 2450 if (os::uses_stack_guard_pages()) {
duke@435 2451 #ifdef _M_IA64
morris@4535 2452 // Use guard page for register stack.
duke@435 2453 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2454 address addr = (address) exceptionRecord->ExceptionInformation[1];
morris@4535 2455 // Check for a register stack overflow on Itanium
morris@4535 2456 if (thread->addr_inside_register_stack_red_zone(addr)) {
morris@4535 2457 // Fatal red zone violation happens if the Java program
morris@4535 2458 // catches a StackOverflow error and does so much processing
morris@4535 2459 // that it runs beyond the unprotected yellow guard zone. As
morris@4535 2460 // a result, we are out of here.
morris@4535 2461 fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
morris@4535 2462 } else if(thread->addr_inside_register_stack(addr)) {
morris@4535 2463 // Disable the yellow zone which sets the state that
morris@4535 2464 // we've got a stack overflow problem.
morris@4535 2465 if (thread->stack_yellow_zone_enabled()) {
morris@4535 2466 thread->disable_stack_yellow_zone();
morris@4535 2467 }
morris@4535 2468 // Give us some room to process the exception.
morris@4535 2469 thread->disable_register_stack_guard();
morris@4535 2470 // Tracing with +Verbose.
morris@4535 2471 if (Verbose) {
morris@4535 2472 tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
morris@4535 2473 tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
morris@4535 2474 tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
morris@4535 2475 tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
morris@4535 2476 thread->register_stack_base(),
morris@4535 2477 thread->register_stack_base() + thread->stack_size());
morris@4535 2478 }
morris@4535 2479
morris@4535 2480 // Reguard the permanent register stack red zone just to be sure.
morris@4535 2481 // We saw Windows silently disabling this without telling us.
morris@4535 2482 thread->enable_register_stack_red_zone();
morris@4535 2483
morris@4535 2484 return Handle_Exception(exceptionInfo,
morris@4535 2485 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2486 }
duke@435 2487 #endif
duke@435 2488 if (thread->stack_yellow_zone_enabled()) {
duke@435 2489 // Yellow zone violation. The o/s has unprotected the first yellow
duke@435 2490 // zone page for us. Note: must call disable_stack_yellow_zone to
duke@435 2491 // update the enabled status, even if the zone contains only one page.
duke@435 2492 thread->disable_stack_yellow_zone();
duke@435 2493 // If not in java code, return and hope for the best.
duke@435 2494 return in_java ? Handle_Exception(exceptionInfo,
duke@435 2495 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
duke@435 2496 : EXCEPTION_CONTINUE_EXECUTION;
duke@435 2497 } else {
duke@435 2498 // Fatal red zone violation.
duke@435 2499 thread->disable_stack_red_zone();
duke@435 2500 tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
duke@435 2501 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2502 exceptionInfo->ContextRecord);
duke@435 2503 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2504 }
duke@435 2505 } else if (in_java) {
duke@435 2506 // JVM-managed guard pages cannot be used on win95/98. The o/s provides
duke@435 2507 // a one-time-only guard page, which it has released to us. The next
duke@435 2508 // stack overflow on this thread will result in an ACCESS_VIOLATION.
duke@435 2509 return Handle_Exception(exceptionInfo,
duke@435 2510 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2511 } else {
duke@435 2512 // Can only return and hope for the best. Further stack growth will
duke@435 2513 // result in an ACCESS_VIOLATION.
duke@435 2514 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2515 }
duke@435 2516 } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2517 // Either stack overflow or null pointer exception.
duke@435 2518 if (in_java) {
duke@435 2519 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2520 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2521 address stack_end = thread->stack_base() - thread->stack_size();
duke@435 2522 if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
duke@435 2523 // Stack overflow.
duke@435 2524 assert(!os::uses_stack_guard_pages(),
duke@435 2525 "should be caught by red zone code above.");
duke@435 2526 return Handle_Exception(exceptionInfo,
duke@435 2527 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
duke@435 2528 }
duke@435 2529 //
duke@435 2530 // Check for safepoint polling and implicit null
duke@435 2531 // We only expect null pointers in the stubs (vtable)
duke@435 2532 // the rest are checked explicitly now.
duke@435 2533 //
duke@435 2534 CodeBlob* cb = CodeCache::find_blob(pc);
duke@435 2535 if (cb != NULL) {
duke@435 2536 if (os::is_poll_address(addr)) {
duke@435 2537 address stub = SharedRuntime::get_poll_stub(pc);
duke@435 2538 return Handle_Exception(exceptionInfo, stub);
duke@435 2539 }
duke@435 2540 }
duke@435 2541 {
duke@435 2542 #ifdef _WIN64
duke@435 2543 //
duke@435 2544 // If it's a legal stack address map the entire region in
duke@435 2545 //
duke@435 2546 PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
duke@435 2547 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 2548 if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
duke@435 2549 addr = (address)((uintptr_t)addr &
duke@435 2550 (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
coleenp@1091 2551 os::commit_memory((char *)addr, thread->stack_base() - addr,
dcubed@5255 2552 !ExecMem);
duke@435 2553 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 2554 }
duke@435 2555 else
duke@435 2556 #endif
duke@435 2557 {
duke@435 2558 // Null pointer exception.
duke@435 2559 #ifdef _M_IA64
morris@4535 2560 // Process implicit null checks in compiled code. Note: Implicit null checks
morris@4535 2561 // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
morris@4535 2562 if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
morris@4535 2563 CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
morris@4535 2564 // Handle implicit null check in UEP method entry
morris@4535 2565 if (cb && (cb->is_frame_complete_at(pc) ||
morris@4535 2566 (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
morris@4535 2567 if (Verbose) {
morris@4535 2568 intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
morris@4535 2569 tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
morris@4535 2570 tty->print_cr(" to addr " INTPTR_FORMAT, addr);
morris@4535 2571 tty->print_cr(" bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
morris@4535 2572 *(bundle_start + 1), *bundle_start);
duke@435 2573 }
duke@435 2574 return Handle_Exception(exceptionInfo,
morris@4535 2575 SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
duke@435 2576 }
morris@4535 2577 }
morris@4535 2578
morris@4535 2579 // Implicit null checks were processed above. Hence, we should not reach
morris@4535 2580 // here in the usual case => die!
morris@4535 2581 if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
duke@435 2582 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2583 exceptionInfo->ContextRecord);
duke@435 2584 return EXCEPTION_CONTINUE_SEARCH;
morris@4535 2585
morris@4535 2586 #else // !IA64
duke@435 2587
duke@435 2588 // Windows 98 reports faulting addresses incorrectly
duke@435 2589 if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
duke@435 2590 !os::win32::is_nt()) {
poonam@900 2591 address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
poonam@900 2592 if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
duke@435 2593 }
duke@435 2594 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2595 exceptionInfo->ContextRecord);
duke@435 2596 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2597 #endif
duke@435 2598 }
duke@435 2599 }
duke@435 2600 }
duke@435 2601
duke@435 2602 #ifdef _WIN64
duke@435 2603 // Special care for fast JNI field accessors.
duke@435 2604 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
duke@435 2605 // in and the heap gets shrunk before the field access.
duke@435 2606 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2607 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2608 if (addr != (address)-1) {
duke@435 2609 return Handle_Exception(exceptionInfo, addr);
duke@435 2610 }
duke@435 2611 }
duke@435 2612 #endif
duke@435 2613
duke@435 2614 // Stack overflow or null pointer exception in native code.
duke@435 2615 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2616 exceptionInfo->ContextRecord);
duke@435 2617 return EXCEPTION_CONTINUE_SEARCH;
morris@4535 2618 } // /EXCEPTION_ACCESS_VIOLATION
morris@4535 2619 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
morris@4535 2620 #if defined _M_IA64
morris@4535 2621 else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
morris@4535 2622 exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
morris@4535 2623 M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
morris@4535 2624
morris@4535 2625 // Compiled method patched to be non entrant? Following conditions must apply:
morris@4535 2626 // 1. must be first instruction in bundle
morris@4535 2627 // 2. must be a break instruction with appropriate code
morris@4535 2628 if((((uint64_t) pc & 0x0F) == 0) &&
morris@4535 2629 (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
morris@4535 2630 return Handle_Exception(exceptionInfo,
morris@4535 2631 (address)SharedRuntime::get_handle_wrong_method_stub());
morris@4535 2632 }
morris@4535 2633 } // /EXCEPTION_ILLEGAL_INSTRUCTION
morris@4535 2634 #endif
morris@4535 2635
duke@435 2636
duke@435 2637 if (in_java) {
duke@435 2638 switch (exception_code) {
duke@435 2639 case EXCEPTION_INT_DIVIDE_BY_ZERO:
duke@435 2640 return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
duke@435 2641
duke@435 2642 case EXCEPTION_INT_OVERFLOW:
duke@435 2643 return Handle_IDiv_Exception(exceptionInfo);
duke@435 2644
duke@435 2645 } // switch
duke@435 2646 }
duke@435 2647 #ifndef _WIN64
zgu@2391 2648 if (((thread->thread_state() == _thread_in_Java) ||
zgu@2391 2649 (thread->thread_state() == _thread_in_native)) &&
zgu@2391 2650 exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
duke@435 2651 {
duke@435 2652 LONG result=Handle_FLT_Exception(exceptionInfo);
duke@435 2653 if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
duke@435 2654 }
duke@435 2655 #endif //_WIN64
duke@435 2656 }
duke@435 2657
duke@435 2658 if (exception_code != EXCEPTION_BREAKPOINT) {
duke@435 2659 report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
duke@435 2660 exceptionInfo->ContextRecord);
duke@435 2661 }
duke@435 2662 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2663 }
duke@435 2664
duke@435 2665 #ifndef _WIN64
duke@435 2666 // Special care for fast JNI accessors.
duke@435 2667 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
duke@435 2668 // the heap gets shrunk before the field access.
duke@435 2669 // Need to install our own structured exception handler since native code may
duke@435 2670 // install its own.
duke@435 2671 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
duke@435 2672 DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
duke@435 2673 if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
duke@435 2674 address pc = (address) exceptionInfo->ContextRecord->Eip;
duke@435 2675 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 2676 if (addr != (address)-1) {
duke@435 2677 return Handle_Exception(exceptionInfo, addr);
duke@435 2678 }
duke@435 2679 }
duke@435 2680 return EXCEPTION_CONTINUE_SEARCH;
duke@435 2681 }
duke@435 2682
duke@435 2683 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
duke@435 2684 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
duke@435 2685 __try { \
duke@435 2686 return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
duke@435 2687 } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
duke@435 2688 } \
duke@435 2689 return 0; \
duke@435 2690 }
duke@435 2691
duke@435 2692 DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
duke@435 2693 DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
duke@435 2694 DEFINE_FAST_GETFIELD(jchar, char, Char)
duke@435 2695 DEFINE_FAST_GETFIELD(jshort, short, Short)
duke@435 2696 DEFINE_FAST_GETFIELD(jint, int, Int)
duke@435 2697 DEFINE_FAST_GETFIELD(jlong, long, Long)
duke@435 2698 DEFINE_FAST_GETFIELD(jfloat, float, Float)
duke@435 2699 DEFINE_FAST_GETFIELD(jdouble, double, Double)
duke@435 2700
duke@435 2701 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
duke@435 2702 switch (type) {
duke@435 2703 case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
duke@435 2704 case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
duke@435 2705 case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
duke@435 2706 case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
duke@435 2707 case T_INT: return (address)jni_fast_GetIntField_wrapper;
duke@435 2708 case T_LONG: return (address)jni_fast_GetLongField_wrapper;
duke@435 2709 case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
duke@435 2710 case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
duke@435 2711 default: ShouldNotReachHere();
duke@435 2712 }
duke@435 2713 return (address)-1;
duke@435 2714 }
duke@435 2715 #endif
duke@435 2716
dcubed@5365 2717 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
dcubed@5365 2718 // Install a win32 structured exception handler around the test
dcubed@5365 2719 // function call so the VM can generate an error dump if needed.
dcubed@5365 2720 __try {
dcubed@5365 2721 (*funcPtr)();
dcubed@5365 2722 } __except(topLevelExceptionFilter(
dcubed@5365 2723 (_EXCEPTION_POINTERS*)_exception_info())) {
dcubed@5365 2724 // Nothing to do.
dcubed@5365 2725 }
dcubed@5365 2726 }
dcubed@5365 2727
duke@435 2728 // Virtual Memory
duke@435 2729
duke@435 2730 int os::vm_page_size() { return os::win32::vm_page_size(); }
duke@435 2731 int os::vm_allocation_granularity() {
duke@435 2732 return os::win32::vm_allocation_granularity();
duke@435 2733 }
duke@435 2734
duke@435 2735 // Windows large page support is available on Windows 2003. In order to use
duke@435 2736 // large page memory, the administrator must first assign additional privilege
duke@435 2737 // to the user:
duke@435 2738 // + select Control Panel -> Administrative Tools -> Local Security Policy
duke@435 2739 // + select Local Policies -> User Rights Assignment
duke@435 2740 // + double click "Lock pages in memory", add users and/or groups
duke@435 2741 // + reboot
duke@435 2742 // Note the above steps are needed for administrator as well, as administrators
duke@435 2743 // by default do not have the privilege to lock pages in memory.
duke@435 2744 //
duke@435 2745 // Note about Windows 2003: although the API supports committing large page
duke@435 2746 // memory on a page-by-page basis and VirtualAlloc() returns success under this
duke@435 2747 // scenario, I found through experiment it only uses large page if the entire
duke@435 2748 // memory region is reserved and committed in a single VirtualAlloc() call.
duke@435 2749 // This makes Windows large page support more or less like Solaris ISM, in
duke@435 2750 // that the entire heap must be committed upfront. This probably will change
duke@435 2751 // in the future, if so the code below needs to be revisited.
duke@435 2752
duke@435 2753 #ifndef MEM_LARGE_PAGES
duke@435 2754 #define MEM_LARGE_PAGES 0x20000000
duke@435 2755 #endif
duke@435 2756
duke@435 2757 static HANDLE _hProcess;
duke@435 2758 static HANDLE _hToken;
duke@435 2759
iveresov@3085 2760 // Container for NUMA node list info
iveresov@3085 2761 class NUMANodeListHolder {
iveresov@3085 2762 private:
iveresov@3085 2763 int *_numa_used_node_list; // allocated below
iveresov@3085 2764 int _numa_used_node_count;
iveresov@3085 2765
iveresov@3085 2766 void free_node_list() {
iveresov@3085 2767 if (_numa_used_node_list != NULL) {
zgu@3900 2768 FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
iveresov@3085 2769 }
iveresov@3085 2770 }
iveresov@3085 2771
iveresov@3085 2772 public:
iveresov@3085 2773 NUMANodeListHolder() {
iveresov@3085 2774 _numa_used_node_count = 0;
iveresov@3085 2775 _numa_used_node_list = NULL;
iveresov@3085 2776 // do rest of initialization in build routine (after function pointers are set up)
iveresov@3085 2777 }
iveresov@3085 2778
iveresov@3085 2779 ~NUMANodeListHolder() {
iveresov@3085 2780 free_node_list();
iveresov@3085 2781 }
iveresov@3085 2782
iveresov@3085 2783 bool build() {
iveresov@3085 2784 DWORD_PTR proc_aff_mask;
iveresov@3085 2785 DWORD_PTR sys_aff_mask;
iveresov@3085 2786 if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
iveresov@3085 2787 ULONG highest_node_number;
iveresov@3085 2788 if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
iveresov@3085 2789 free_node_list();
zgu@3900 2790 _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
iveresov@3085 2791 for (unsigned int i = 0; i <= highest_node_number; i++) {
iveresov@3085 2792 ULONGLONG proc_mask_numa_node;
iveresov@3085 2793 if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
iveresov@3085 2794 if ((proc_aff_mask & proc_mask_numa_node)!=0) {
iveresov@3085 2795 _numa_used_node_list[_numa_used_node_count++] = i;
iveresov@3085 2796 }
iveresov@3085 2797 }
iveresov@3085 2798 return (_numa_used_node_count > 1);
iveresov@3085 2799 }
iveresov@3085 2800
iveresov@3085 2801 int get_count() {return _numa_used_node_count;}
iveresov@3085 2802 int get_node_list_entry(int n) {
iveresov@3085 2803 // for indexes out of range, returns -1
iveresov@3085 2804 return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
iveresov@3085 2805 }
iveresov@3085 2806
iveresov@3085 2807 } numa_node_list_holder;
iveresov@3085 2808
iveresov@3085 2809
iveresov@3085 2810
duke@435 2811 static size_t _large_page_size = 0;
duke@435 2812
duke@435 2813 static bool resolve_functions_for_large_page_init() {
zgu@3031 2814 return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
zgu@3031 2815 os::Advapi32Dll::AdvapiAvailable();
duke@435 2816 }
duke@435 2817
duke@435 2818 static bool request_lock_memory_privilege() {
duke@435 2819 _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
duke@435 2820 os::current_process_id());
duke@435 2821
duke@435 2822 LUID luid;
duke@435 2823 if (_hProcess != NULL &&
zgu@3031 2824 os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
zgu@3031 2825 os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
duke@435 2826
duke@435 2827 TOKEN_PRIVILEGES tp;
duke@435 2828 tp.PrivilegeCount = 1;
duke@435 2829 tp.Privileges[0].Luid = luid;
duke@435 2830 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
duke@435 2831
duke@435 2832 // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
duke@435 2833 // privilege. Check GetLastError() too. See MSDN document.
zgu@3031 2834 if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
duke@435 2835 (GetLastError() == ERROR_SUCCESS)) {
duke@435 2836 return true;
duke@435 2837 }
duke@435 2838 }
duke@435 2839
duke@435 2840 return false;
duke@435 2841 }
duke@435 2842
duke@435 2843 static void cleanup_after_large_page_init() {
duke@435 2844 if (_hProcess) CloseHandle(_hProcess);
duke@435 2845 _hProcess = NULL;
duke@435 2846 if (_hToken) CloseHandle(_hToken);
duke@435 2847 _hToken = NULL;
duke@435 2848 }
duke@435 2849
iveresov@3085 2850 static bool numa_interleaving_init() {
iveresov@3085 2851 bool success = false;
iveresov@3085 2852 bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
iveresov@3085 2853
iveresov@3118 2854 // print a warning if UseNUMAInterleaving flag is specified on command line
iveresov@3118 2855 bool warn_on_failure = use_numa_interleaving_specified;
iveresov@3085 2856 # define WARN(msg) if (warn_on_failure) { warning(msg); }
iveresov@3085 2857
iveresov@3085 2858 // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
iveresov@3085 2859 size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2860 NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
iveresov@3085 2861
iveresov@3085 2862 if (os::Kernel32Dll::NumaCallsAvailable()) {
iveresov@3085 2863 if (numa_node_list_holder.build()) {
iveresov@3085 2864 if (PrintMiscellaneous && Verbose) {
iveresov@3118 2865 tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
iveresov@3085 2866 for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
iveresov@3085 2867 tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
iveresov@3085 2868 }
iveresov@3085 2869 tty->print("\n");
iveresov@3085 2870 }
iveresov@3085 2871 success = true;
iveresov@3085 2872 } else {
iveresov@3085 2873 WARN("Process does not cover multiple NUMA nodes.");
iveresov@3085 2874 }
iveresov@3085 2875 } else {
iveresov@3085 2876 WARN("NUMA Interleaving is not supported by the operating system.");
iveresov@3085 2877 }
iveresov@3085 2878 if (!success) {
iveresov@3085 2879 if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
iveresov@3085 2880 }
iveresov@3085 2881 return success;
iveresov@3085 2882 #undef WARN
iveresov@3085 2883 }
iveresov@3085 2884
iveresov@3085 2885 // this routine is used whenever we need to reserve a contiguous VA range
iveresov@3085 2886 // but we need to make separate VirtualAlloc calls for each piece of the range
iveresov@3085 2887 // Reasons for doing this:
iveresov@3085 2888 // * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
iveresov@3085 2889 // * UseNUMAInterleaving requires a separate node for each piece
iveresov@3085 2890 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
iveresov@3085 2891 bool should_inject_error=false) {
iveresov@3085 2892 char * p_buf;
iveresov@3085 2893 // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
iveresov@3085 2894 size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
iveresov@3085 2895 size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
iveresov@3085 2896
iveresov@3085 2897 // first reserve enough address space in advance since we want to be
iveresov@3085 2898 // able to break a single contiguous virtual address range into multiple
iveresov@3085 2899 // large page commits but WS2003 does not allow reserving large page space
iveresov@3085 2900 // so we just use 4K pages for reserve, this gives us a legal contiguous
iveresov@3085 2901 // address space. then we will deallocate that reservation, and re alloc
iveresov@3085 2902 // using large pages
iveresov@3085 2903 const size_t size_of_reserve = bytes + chunk_size;
iveresov@3085 2904 if (bytes > size_of_reserve) {
iveresov@3085 2905 // Overflowed.
iveresov@3085 2906 return NULL;
iveresov@3085 2907 }
iveresov@3085 2908 p_buf = (char *) VirtualAlloc(addr,
iveresov@3085 2909 size_of_reserve, // size of Reserve
iveresov@3085 2910 MEM_RESERVE,
iveresov@3085 2911 PAGE_READWRITE);
iveresov@3085 2912 // If reservation failed, return NULL
iveresov@3085 2913 if (p_buf == NULL) return NULL;
zgu@7074 2914 MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
iveresov@3085 2915 os::release_memory(p_buf, bytes + chunk_size);
iveresov@3085 2916
iveresov@3085 2917 // we still need to round up to a page boundary (in case we are using large pages)
iveresov@3085 2918 // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
iveresov@3085 2919 // instead we handle this in the bytes_to_rq computation below
iveresov@3085 2920 p_buf = (char *) align_size_up((size_t)p_buf, page_size);
iveresov@3085 2921
iveresov@3085 2922 // now go through and allocate one chunk at a time until all bytes are
iveresov@3085 2923 // allocated
iveresov@3085 2924 size_t bytes_remaining = bytes;
iveresov@3085 2925 // An overflow of align_size_up() would have been caught above
iveresov@3085 2926 // in the calculation of size_of_reserve.
iveresov@3085 2927 char * next_alloc_addr = p_buf;
iveresov@3085 2928 HANDLE hProc = GetCurrentProcess();
iveresov@3085 2929
iveresov@3085 2930 #ifdef ASSERT
iveresov@3085 2931 // Variable for the failure injection
iveresov@3085 2932 long ran_num = os::random();
iveresov@3085 2933 size_t fail_after = ran_num % bytes;
iveresov@3085 2934 #endif
iveresov@3085 2935
iveresov@3085 2936 int count=0;
iveresov@3085 2937 while (bytes_remaining) {
iveresov@3085 2938 // select bytes_to_rq to get to the next chunk_size boundary
iveresov@3085 2939
iveresov@3085 2940 size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
iveresov@3085 2941 // Note allocate and commit
iveresov@3085 2942 char * p_new;
iveresov@3085 2943
iveresov@3085 2944 #ifdef ASSERT
iveresov@3085 2945 bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
iveresov@3085 2946 #else
iveresov@3085 2947 const bool inject_error_now = false;
iveresov@3085 2948 #endif
iveresov@3085 2949
iveresov@3085 2950 if (inject_error_now) {
iveresov@3085 2951 p_new = NULL;
iveresov@3085 2952 } else {
iveresov@3085 2953 if (!UseNUMAInterleaving) {
iveresov@3085 2954 p_new = (char *) VirtualAlloc(next_alloc_addr,
iveresov@3085 2955 bytes_to_rq,
iveresov@3085 2956 flags,
iveresov@3085 2957 prot);
iveresov@3085 2958 } else {
iveresov@3085 2959 // get the next node to use from the used_node_list
iveresov@3118 2960 assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
iveresov@3118 2961 DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
iveresov@3085 2962 p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
iveresov@3085 2963 next_alloc_addr,
iveresov@3085 2964 bytes_to_rq,
iveresov@3085 2965 flags,
iveresov@3085 2966 prot,
iveresov@3085 2967 node);
iveresov@3085 2968 }
iveresov@3085 2969 }
iveresov@3085 2970
iveresov@3085 2971 if (p_new == NULL) {
iveresov@3085 2972 // Free any allocated pages
iveresov@3085 2973 if (next_alloc_addr > p_buf) {
iveresov@3085 2974 // Some memory was committed so release it.
iveresov@3085 2975 size_t bytes_to_release = bytes - bytes_remaining;
zgu@4711 2976 // NMT has yet to record any individual blocks, so it
zgu@4711 2977 // need to create a dummy 'reserve' record to match
zgu@4711 2978 // the release.
zgu@4711 2979 MemTracker::record_virtual_memory_reserve((address)p_buf,
zgu@7074 2980 bytes_to_release, CALLER_PC);
iveresov@3085 2981 os::release_memory(p_buf, bytes_to_release);
iveresov@3085 2982 }
iveresov@3085 2983 #ifdef ASSERT
iveresov@3085 2984 if (should_inject_error) {
iveresov@3085 2985 if (TracePageSizes && Verbose) {
iveresov@3085 2986 tty->print_cr("Reserving pages individually failed.");
iveresov@3085 2987 }
iveresov@3085 2988 }
iveresov@3085 2989 #endif
iveresov@3085 2990 return NULL;
iveresov@3085 2991 }
zgu@4711 2992
iveresov@3085 2993 bytes_remaining -= bytes_to_rq;
iveresov@3085 2994 next_alloc_addr += bytes_to_rq;
iveresov@3085 2995 count++;
iveresov@3085 2996 }
zgu@4711 2997 // Although the memory is allocated individually, it is returned as one.
zgu@4711 2998 // NMT records it as one block.
zgu@4711 2999 if ((flags & MEM_COMMIT) != 0) {
zgu@7074 3000 MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
zgu@5272 3001 } else {
zgu@7074 3002 MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
zgu@4711 3003 }
zgu@4711 3004
iveresov@3085 3005 // made it this far, success
iveresov@3085 3006 return p_buf;
iveresov@3085 3007 }
iveresov@3085 3008
iveresov@3085 3009
iveresov@3085 3010
iveresov@2850 3011 void os::large_page_init() {
iveresov@2850 3012 if (!UseLargePages) return;
duke@435 3013
duke@435 3014 // print a warning if any large page related flag is specified on command line
duke@435 3015 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3016 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 3017 bool success = false;
duke@435 3018
duke@435 3019 # define WARN(msg) if (warn_on_failure) { warning(msg); }
duke@435 3020 if (resolve_functions_for_large_page_init()) {
duke@435 3021 if (request_lock_memory_privilege()) {
zgu@3031 3022 size_t s = os::Kernel32Dll::GetLargePageMinimum();
duke@435 3023 if (s) {
duke@435 3024 #if defined(IA32) || defined(AMD64)
duke@435 3025 if (s > 4*M || LargePageSizeInBytes > 4*M) {
duke@435 3026 WARN("JVM cannot use large pages bigger than 4mb.");
duke@435 3027 } else {
duke@435 3028 #endif
duke@435 3029 if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
duke@435 3030 _large_page_size = LargePageSizeInBytes;
duke@435 3031 } else {
duke@435 3032 _large_page_size = s;
duke@435 3033 }
duke@435 3034 success = true;
duke@435 3035 #if defined(IA32) || defined(AMD64)
duke@435 3036 }
duke@435 3037 #endif
duke@435 3038 } else {
duke@435 3039 WARN("Large page is not supported by the processor.");
duke@435 3040 }
duke@435 3041 } else {
duke@435 3042 WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
duke@435 3043 }
duke@435 3044 } else {
duke@435 3045 WARN("Large page is not supported by the operating system.");
duke@435 3046 }
duke@435 3047 #undef WARN
duke@435 3048
duke@435 3049 const size_t default_page_size = (size_t) vm_page_size();
duke@435 3050 if (success && _large_page_size > default_page_size) {
duke@435 3051 _page_sizes[0] = _large_page_size;
duke@435 3052 _page_sizes[1] = default_page_size;
duke@435 3053 _page_sizes[2] = 0;
duke@435 3054 }
duke@435 3055
duke@435 3056 cleanup_after_large_page_init();
iveresov@2850 3057 UseLargePages = success;
duke@435 3058 }
duke@435 3059
duke@435 3060 // On win32, one cannot release just a part of reserved memory, it's an
duke@435 3061 // all or nothing deal. When we split a reservation, we must break the
duke@435 3062 // reservation into two reservations.
zgu@3900 3063 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
duke@435 3064 bool realloc) {
duke@435 3065 if (size > 0) {
duke@435 3066 release_memory(base, size);
duke@435 3067 if (realloc) {
duke@435 3068 reserve_memory(split, base);
duke@435 3069 }
duke@435 3070 if (size != split) {
duke@435 3071 reserve_memory(size - split, base + split);
duke@435 3072 }
duke@435 3073 }
duke@435 3074 }
duke@435 3075
brutisso@4369 3076 // Multiple threads can race in this code but it's not possible to unmap small sections of
brutisso@4369 3077 // virtual space to get requested alignment, like posix-like os's.
brutisso@4369 3078 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
brutisso@4369 3079 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
brutisso@4369 3080 assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
brutisso@4369 3081 "Alignment must be a multiple of allocation granularity (page size)");
brutisso@4369 3082 assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
brutisso@4369 3083
brutisso@4369 3084 size_t extra_size = size + alignment;
brutisso@4369 3085 assert(extra_size >= size, "overflow, size is too large to allow alignment");
brutisso@4369 3086
brutisso@4369 3087 char* aligned_base = NULL;
brutisso@4369 3088
brutisso@4369 3089 do {
brutisso@4369 3090 char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
brutisso@4369 3091 if (extra_base == NULL) {
brutisso@4369 3092 return NULL;
brutisso@4369 3093 }
brutisso@4369 3094 // Do manual alignment
brutisso@4369 3095 aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
brutisso@4369 3096
brutisso@4369 3097 os::release_memory(extra_base, extra_size);
brutisso@4369 3098
brutisso@4369 3099 aligned_base = os::reserve_memory(size, aligned_base);
brutisso@4369 3100
brutisso@4369 3101 } while (aligned_base == NULL);
brutisso@4369 3102
brutisso@4369 3103 return aligned_base;
brutisso@4369 3104 }
brutisso@4369 3105
zgu@3900 3106 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
duke@435 3107 assert((size_t)addr % os::vm_allocation_granularity() == 0,
duke@435 3108 "reserve alignment");
duke@435 3109 assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
iveresov@3085 3110 char* res;
iveresov@3085 3111 // note that if UseLargePages is on, all the areas that require interleaving
iveresov@3085 3112 // will go thru reserve_memory_special rather than thru here.
iveresov@3085 3113 bool use_individual = (UseNUMAInterleaving && !UseLargePages);
iveresov@3085 3114 if (!use_individual) {
iveresov@3085 3115 res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 3116 } else {
iveresov@3085 3117 elapsedTimer reserveTimer;
iveresov@3085 3118 if( Verbose && PrintMiscellaneous ) reserveTimer.start();
iveresov@3085 3119 // in numa interleaving, we have to allocate pages individually
iveresov@3085 3120 // (well really chunks of NUMAInterleaveGranularity size)
iveresov@3085 3121 res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
iveresov@3085 3122 if (res == NULL) {
iveresov@3085 3123 warning("NUMA page allocation failed");
iveresov@3085 3124 }
iveresov@3085 3125 if( Verbose && PrintMiscellaneous ) {
iveresov@3085 3126 reserveTimer.stop();
hseigel@4465 3127 tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
iveresov@3085 3128 reserveTimer.milliseconds(), reserveTimer.ticks());
iveresov@3085 3129 }
iveresov@3085 3130 }
duke@435 3131 assert(res == NULL || addr == NULL || addr == res,
duke@435 3132 "Unexpected address from reserve.");
iveresov@3085 3133
duke@435 3134 return res;
duke@435 3135 }
duke@435 3136
duke@435 3137 // Reserve memory at an arbitrary address, only if that area is
duke@435 3138 // available (and not reserved for something else).
zgu@3900 3139 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 3140 // Windows os::reserve_memory() fails of the requested address range is
duke@435 3141 // not avilable.
duke@435 3142 return reserve_memory(bytes, requested_addr);
duke@435 3143 }
duke@435 3144
duke@435 3145 size_t os::large_page_size() {
duke@435 3146 return _large_page_size;
duke@435 3147 }
duke@435 3148
duke@435 3149 bool os::can_commit_large_page_memory() {
duke@435 3150 // Windows only uses large page memory when the entire region is reserved
duke@435 3151 // and committed in a single VirtualAlloc() call. This may change in the
duke@435 3152 // future, but with Windows 2003 it's not possible to commit on demand.
duke@435 3153 return false;
duke@435 3154 }
duke@435 3155
jcoomes@514 3156 bool os::can_execute_large_page_memory() {
jcoomes@514 3157 return true;
jcoomes@514 3158 }
jcoomes@514 3159
stefank@5578 3160 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
stefank@5578 3161 assert(UseLargePages, "only for large pages");
stefank@5578 3162
stefank@5578 3163 if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
stefank@5578 3164 return NULL; // Fallback to small pages.
stefank@5578 3165 }
coleenp@912 3166
coleenp@1152 3167 const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
iveresov@3085 3168 const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
iveresov@3085 3169
iveresov@3085 3170 // with large pages, there are two cases where we need to use Individual Allocation
iveresov@3085 3171 // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
iveresov@3085 3172 // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
iveresov@3085 3173 if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
jmasa@824 3174 if (TracePageSizes && Verbose) {
jmasa@824 3175 tty->print_cr("Reserving large pages individually.");
jmasa@824 3176 }
iveresov@3085 3177 char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
iveresov@3085 3178 if (p_buf == NULL) {
iveresov@3085 3179 // give an appropriate warning message
iveresov@3085 3180 if (UseNUMAInterleaving) {
iveresov@3085 3181 warning("NUMA large page allocation failed, UseLargePages flag ignored");
iveresov@3085 3182 }
iveresov@3085 3183 if (UseLargePagesIndividualAllocation) {
iveresov@3085 3184 warning("Individually allocated large pages failed, "
iveresov@3085 3185 "use -XX:-UseLargePagesIndividualAllocation to turn off");
iveresov@3085 3186 }
jmasa@824 3187 return NULL;
jmasa@824 3188 }
jmasa@824 3189
jmasa@824 3190 return p_buf;
jmasa@824 3191
jmasa@824 3192 } else {
tschatzl@5696 3193 if (TracePageSizes && Verbose) {
tschatzl@5696 3194 tty->print_cr("Reserving large pages in a single large chunk.");
tschatzl@5696 3195 }
jmasa@824 3196 // normal policy just allocate it all at once
jmasa@824 3197 DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
tschatzl@5696 3198 char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
zgu@4711 3199 if (res != NULL) {
zgu@7074 3200 MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
zgu@4711 3201 }
zgu@4711 3202
jmasa@824 3203 return res;
jmasa@824 3204 }
duke@435 3205 }
duke@435 3206
duke@435 3207 bool os::release_memory_special(char* base, size_t bytes) {
zgu@4711 3208 assert(base != NULL, "Sanity check");
duke@435 3209 return release_memory(base, bytes);
duke@435 3210 }
duke@435 3211
duke@435 3212 void os::print_statistics() {
duke@435 3213 }
duke@435 3214
dcubed@5255 3215 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
dcubed@5255 3216 int err = os::get_last_error();
dcubed@5255 3217 char buf[256];
dcubed@5255 3218 size_t buf_len = os::lasterror(buf, sizeof(buf));
dcubed@5255 3219 warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
dcubed@5255 3220 ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
dcubed@5255 3221 exec, buf_len != 0 ? buf : "<no_error_string>", err);
dcubed@5255 3222 }
dcubed@5255 3223
zgu@3900 3224 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
duke@435 3225 if (bytes == 0) {
duke@435 3226 // Don't bother the OS with noops.
duke@435 3227 return true;
duke@435 3228 }
duke@435 3229 assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
duke@435 3230 assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
duke@435 3231 // Don't attempt to print anything if the OS call fails. We're
duke@435 3232 // probably low on resources, so the print itself may cause crashes.
iveresov@3085 3233
iveresov@3085 3234 // unless we have NUMAInterleaving enabled, the range of a commit
iveresov@3085 3235 // is always within a reserve covered by a single VirtualAlloc
iveresov@3085 3236 // in that case we can just do a single commit for the requested size
iveresov@3085 3237 if (!UseNUMAInterleaving) {
dcubed@5255 3238 if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
dcubed@5255 3239 NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
dcubed@5255 3240 return false;
dcubed@5255 3241 }
iveresov@3085 3242 if (exec) {
iveresov@3085 3243 DWORD oldprot;
iveresov@3085 3244 // Windows doc says to use VirtualProtect to get execute permissions
dcubed@5255 3245 if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
dcubed@5255 3246 NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
dcubed@5255 3247 return false;
dcubed@5255 3248 }
iveresov@3085 3249 }
iveresov@3085 3250 return true;
coleenp@1091 3251 } else {
iveresov@3085 3252
iveresov@3085 3253 // when NUMAInterleaving is enabled, the commit might cover a range that
iveresov@3085 3254 // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
iveresov@3085 3255 // VirtualQuery can help us determine that. The RegionSize that VirtualQuery
iveresov@3085 3256 // returns represents the number of bytes that can be committed in one step.
iveresov@3085 3257 size_t bytes_remaining = bytes;
iveresov@3085 3258 char * next_alloc_addr = addr;
iveresov@3085 3259 while (bytes_remaining > 0) {
iveresov@3085 3260 MEMORY_BASIC_INFORMATION alloc_info;
iveresov@3085 3261 VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
iveresov@3085 3262 size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
dcubed@5255 3263 if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
dcubed@5255 3264 PAGE_READWRITE) == NULL) {
dcubed@5255 3265 NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
dcubed@5255 3266 exec);)
iveresov@3085 3267 return false;
dcubed@5255 3268 }
iveresov@3085 3269 if (exec) {
iveresov@3085 3270 DWORD oldprot;
dcubed@5255 3271 if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
dcubed@5255 3272 PAGE_EXECUTE_READWRITE, &oldprot)) {
dcubed@5255 3273 NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
dcubed@5255 3274 exec);)
iveresov@3085 3275 return false;
dcubed@5255 3276 }
iveresov@3085 3277 }
iveresov@3085 3278 bytes_remaining -= bytes_to_rq;
iveresov@3085 3279 next_alloc_addr += bytes_to_rq;
iveresov@3085 3280 }
iveresov@3085 3281 }
iveresov@3085 3282 // if we made it this far, return true
iveresov@3085 3283 return true;
duke@435 3284 }
duke@435 3285
zgu@3900 3286 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
coleenp@1091 3287 bool exec) {
dcubed@5255 3288 // alignment_hint is ignored on this OS
dcubed@5255 3289 return pd_commit_memory(addr, size, exec);
dcubed@5255 3290 }
dcubed@5255 3291
dcubed@5255 3292 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
dcubed@5255 3293 const char* mesg) {
dcubed@5255 3294 assert(mesg != NULL, "mesg must be specified");
dcubed@5255 3295 if (!pd_commit_memory(addr, size, exec)) {
dcubed@5255 3296 warn_fail_commit_memory(addr, size, exec);
dcubed@5255 3297 vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
dcubed@5255 3298 }
dcubed@5255 3299 }
dcubed@5255 3300
dcubed@5255 3301 void os::pd_commit_memory_or_exit(char* addr, size_t size,
dcubed@5255 3302 size_t alignment_hint, bool exec,
dcubed@5255 3303 const char* mesg) {
dcubed@5255 3304 // alignment_hint is ignored on this OS
dcubed@5255 3305 pd_commit_memory_or_exit(addr, size, exec, mesg);
duke@435 3306 }
duke@435 3307
zgu@3900 3308 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
duke@435 3309 if (bytes == 0) {
duke@435 3310 // Don't bother the OS with noops.
duke@435 3311 return true;
duke@435 3312 }
duke@435 3313 assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
duke@435 3314 assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
zgu@3900 3315 return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
zgu@3900 3316 }
zgu@3900 3317
zgu@3900 3318 bool os::pd_release_memory(char* addr, size_t bytes) {
duke@435 3319 return VirtualFree(addr, 0, MEM_RELEASE) != 0;
duke@435 3320 }
duke@435 3321
zgu@3900 3322 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
dcubed@5255 3323 return os::commit_memory(addr, size, !ExecMem);
coleenp@1755 3324 }
coleenp@1755 3325
coleenp@1755 3326 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 3327 return os::uncommit_memory(addr, size);
coleenp@1755 3328 }
coleenp@1755 3329
coleenp@672 3330 // Set protections specified
coleenp@672 3331 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 3332 bool is_committed) {
coleenp@672 3333 unsigned int p = 0;
coleenp@672 3334 switch (prot) {
coleenp@672 3335 case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
coleenp@672 3336 case MEM_PROT_READ: p = PAGE_READONLY; break;
coleenp@672 3337 case MEM_PROT_RW: p = PAGE_READWRITE; break;
coleenp@672 3338 case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
coleenp@672 3339 default:
coleenp@672 3340 ShouldNotReachHere();
coleenp@672 3341 }
coleenp@672 3342
duke@435 3343 DWORD old_status;
coleenp@672 3344
coleenp@672 3345 // Strange enough, but on Win32 one can change protection only for committed
coleenp@672 3346 // memory, not a big deal anyway, as bytes less or equal than 64K
dcubed@5255 3347 if (!is_committed) {
dcubed@5255 3348 commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
dcubed@5255 3349 "cannot commit protection page");
coleenp@672 3350 }
coleenp@672 3351 // One cannot use os::guard_memory() here, as on Win32 guard page
coleenp@672 3352 // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
coleenp@672 3353 //
coleenp@672 3354 // Pages in the region become guard pages. Any attempt to access a guard page
coleenp@672 3355 // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
coleenp@672 3356 // the guard page status. Guard pages thus act as a one-time access alarm.
coleenp@672 3357 return VirtualProtect(addr, bytes, p, &old_status) != 0;
duke@435 3358 }
duke@435 3359
duke@435 3360 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 3361 DWORD old_status;
coleenp@912 3362 return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
duke@435 3363 }
duke@435 3364
duke@435 3365 bool os::unguard_memory(char* addr, size_t bytes) {
duke@435 3366 DWORD old_status;
coleenp@912 3367 return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
duke@435 3368 }
duke@435 3369
zgu@3900 3370 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
zgu@3900 3371 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
duke@435 3372 void os::numa_make_global(char *addr, size_t bytes) { }
iveresov@576 3373 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
duke@435 3374 bool os::numa_topology_changed() { return false; }
iveresov@3118 3375 size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); }
duke@435 3376 int os::numa_get_group_id() { return 0; }
duke@435 3377 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
iveresov@3118 3378 if (numa_node_list_holder.get_count() == 0 && size > 0) {
iveresov@3118 3379 // Provide an answer for UMA systems
iveresov@3118 3380 ids[0] = 0;
iveresov@3118 3381 return 1;
iveresov@3118 3382 } else {
iveresov@3118 3383 // check for size bigger than actual groups_num
iveresov@3118 3384 size = MIN2(size, numa_get_groups_num());
iveresov@3118 3385 for (int i = 0; i < (int)size; i++) {
iveresov@3118 3386 ids[i] = numa_node_list_holder.get_node_list_entry(i);
iveresov@3118 3387 }
iveresov@3118 3388 return size;
iveresov@3118 3389 }
duke@435 3390 }
duke@435 3391
duke@435 3392 bool os::get_page_info(char *start, page_info* info) {
duke@435 3393 return false;
duke@435 3394 }
duke@435 3395
duke@435 3396 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 3397 return end;
duke@435 3398 }
duke@435 3399
duke@435 3400 char* os::non_memory_address_word() {
duke@435 3401 // Must never look like an address returned by reserve_memory,
duke@435 3402 // even in its subfields (as defined by the CPU immediate fields,
duke@435 3403 // if the CPU splits constants across multiple instructions).
duke@435 3404 return (char*)-1;
duke@435 3405 }
duke@435 3406
duke@435 3407 #define MAX_ERROR_COUNT 100
duke@435 3408 #define SYS_THREAD_ERROR 0xffffffffUL
duke@435 3409
duke@435 3410 void os::pd_start_thread(Thread* thread) {
duke@435 3411 DWORD ret = ResumeThread(thread->osthread()->thread_handle());
duke@435 3412 // Returns previous suspend state:
duke@435 3413 // 0: Thread was not suspended
duke@435 3414 // 1: Thread is running now
duke@435 3415 // >1: Thread is still suspended.
duke@435 3416 assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
duke@435 3417 }
duke@435 3418
minqi@5103 3419 class HighResolutionInterval : public CHeapObj<mtThread> {
duke@435 3420 // The default timer resolution seems to be 10 milliseconds.
duke@435 3421 // (Where is this written down?)
duke@435 3422 // If someone wants to sleep for only a fraction of the default,
duke@435 3423 // then we set the timer resolution down to 1 millisecond for
duke@435 3424 // the duration of their interval.
duke@435 3425 // We carefully set the resolution back, since otherwise we
duke@435 3426 // seem to incur an overhead (3%?) that we don't need.
duke@435 3427 // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
duke@435 3428 // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
duke@435 3429 // Alternatively, we could compute the relative error (503/500 = .6%) and only use
duke@435 3430 // timeBeginPeriod() if the relative error exceeded some threshold.
duke@435 3431 // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
duke@435 3432 // to decreased efficiency related to increased timer "tick" rates. We want to minimize
duke@435 3433 // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
duke@435 3434 // resolution timers running.
duke@435 3435 private:
duke@435 3436 jlong resolution;
duke@435 3437 public:
duke@435 3438 HighResolutionInterval(jlong ms) {
duke@435 3439 resolution = ms % 10L;
duke@435 3440 if (resolution != 0) {
duke@435 3441 MMRESULT result = timeBeginPeriod(1L);
duke@435 3442 }
duke@435 3443 }
duke@435 3444 ~HighResolutionInterval() {
duke@435 3445 if (resolution != 0) {
duke@435 3446 MMRESULT result = timeEndPeriod(1L);
duke@435 3447 }
duke@435 3448 resolution = 0L;
duke@435 3449 }
duke@435 3450 };
duke@435 3451
duke@435 3452 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
duke@435 3453 jlong limit = (jlong) MAXDWORD;
duke@435 3454
duke@435 3455 while(ms > limit) {
duke@435 3456 int res;
duke@435 3457 if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
duke@435 3458 return res;
duke@435 3459 ms -= limit;
duke@435 3460 }
duke@435 3461
duke@435 3462 assert(thread == Thread::current(), "thread consistency check");
duke@435 3463 OSThread* osthread = thread->osthread();
duke@435 3464 OSThreadWaitState osts(osthread, false /* not Object.wait() */);
duke@435 3465 int result;
duke@435 3466 if (interruptable) {
duke@435 3467 assert(thread->is_Java_thread(), "must be java thread");
duke@435 3468 JavaThread *jt = (JavaThread *) thread;
duke@435 3469 ThreadBlockInVM tbivm(jt);
duke@435 3470
duke@435 3471 jt->set_suspend_equivalent();
duke@435 3472 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3473 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3474
duke@435 3475 HANDLE events[1];
duke@435 3476 events[0] = osthread->interrupt_event();
duke@435 3477 HighResolutionInterval *phri=NULL;
duke@435 3478 if(!ForceTimeHighResolution)
duke@435 3479 phri = new HighResolutionInterval( ms );
duke@435 3480 if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
duke@435 3481 result = OS_TIMEOUT;
duke@435 3482 } else {
duke@435 3483 ResetEvent(osthread->interrupt_event());
duke@435 3484 osthread->set_interrupted(false);
duke@435 3485 result = OS_INTRPT;
duke@435 3486 }
duke@435 3487 delete phri; //if it is NULL, harmless
duke@435 3488
duke@435 3489 // were we externally suspended while we were waiting?
duke@435 3490 jt->check_and_wait_while_suspended();
duke@435 3491 } else {
duke@435 3492 assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 3493 Sleep((long) ms);
duke@435 3494 result = OS_TIMEOUT;
duke@435 3495 }
duke@435 3496 return result;
duke@435 3497 }
duke@435 3498
dsimms@6348 3499 //
dsimms@6348 3500 // Short sleep, direct OS call.
dsimms@6348 3501 //
dsimms@6348 3502 // ms = 0, means allow others (if any) to run.
dsimms@6348 3503 //
dsimms@6348 3504 void os::naked_short_sleep(jlong ms) {
dsimms@6348 3505 assert(ms < 1000, "Un-interruptable sleep, short time use only");
dsimms@6348 3506 Sleep(ms);
dsimms@6348 3507 }
dsimms@6348 3508
duke@435 3509 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3510 void os::infinite_sleep() {
duke@435 3511 while (true) { // sleep forever ...
duke@435 3512 Sleep(100000); // ... 100 seconds at a time
duke@435 3513 }
duke@435 3514 }
duke@435 3515
duke@435 3516 typedef BOOL (WINAPI * STTSignature)(void) ;
duke@435 3517
duke@435 3518 os::YieldResult os::NakedYield() {
duke@435 3519 // Use either SwitchToThread() or Sleep(0)
duke@435 3520 // Consider passing back the return value from SwitchToThread().
zgu@3031 3521 if (os::Kernel32Dll::SwitchToThreadAvailable()) {
zgu@3031 3522 return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
duke@435 3523 } else {
zgu@3031 3524 Sleep(0);
duke@435 3525 }
duke@435 3526 return os::YIELD_UNKNOWN ;
duke@435 3527 }
duke@435 3528
duke@435 3529 void os::yield() { os::NakedYield(); }
duke@435 3530
duke@435 3531 void os::yield_all(int attempts) {
duke@435 3532 // Yields to all threads, including threads with lower priorities
duke@435 3533 Sleep(1);
duke@435 3534 }
duke@435 3535
duke@435 3536 // Win32 only gives you access to seven real priorities at a time,
duke@435 3537 // so we compress Java's ten down to seven. It would be better
duke@435 3538 // if we dynamically adjusted relative priorities.
duke@435 3539
phh@3481 3540 int os::java_to_os_priority[CriticalPriority + 1] = {
duke@435 3541 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3542 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3543 THREAD_PRIORITY_LOWEST, // 2
duke@435 3544 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3545 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3546 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3547 THREAD_PRIORITY_NORMAL, // 6
duke@435 3548 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3549 THREAD_PRIORITY_ABOVE_NORMAL, // 8
duke@435 3550 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
phh@3481 3551 THREAD_PRIORITY_HIGHEST, // 10 MaxPriority
phh@3481 3552 THREAD_PRIORITY_HIGHEST // 11 CriticalPriority
duke@435 3553 };
duke@435 3554
phh@3481 3555 int prio_policy1[CriticalPriority + 1] = {
duke@435 3556 THREAD_PRIORITY_IDLE, // 0 Entry should never be used
duke@435 3557 THREAD_PRIORITY_LOWEST, // 1 MinPriority
duke@435 3558 THREAD_PRIORITY_LOWEST, // 2
duke@435 3559 THREAD_PRIORITY_BELOW_NORMAL, // 3
duke@435 3560 THREAD_PRIORITY_BELOW_NORMAL, // 4
duke@435 3561 THREAD_PRIORITY_NORMAL, // 5 NormPriority
duke@435 3562 THREAD_PRIORITY_ABOVE_NORMAL, // 6
duke@435 3563 THREAD_PRIORITY_ABOVE_NORMAL, // 7
duke@435 3564 THREAD_PRIORITY_HIGHEST, // 8
duke@435 3565 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
phh@3481 3566 THREAD_PRIORITY_TIME_CRITICAL, // 10 MaxPriority
phh@3481 3567 THREAD_PRIORITY_TIME_CRITICAL // 11 CriticalPriority
duke@435 3568 };
duke@435 3569
duke@435 3570 static int prio_init() {
duke@435 3571 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3572 if (ThreadPriorityPolicy == 1) {
duke@435 3573 int i;
phh@3481 3574 for (i = 0; i < CriticalPriority + 1; i++) {
duke@435 3575 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3576 }
duke@435 3577 }
phh@3481 3578 if (UseCriticalJavaThreadPriority) {
phh@3481 3579 os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
phh@3481 3580 }
duke@435 3581 return 0;
duke@435 3582 }
duke@435 3583
duke@435 3584 OSReturn os::set_native_priority(Thread* thread, int priority) {
duke@435 3585 if (!UseThreadPriorities) return OS_OK;
duke@435 3586 bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
duke@435 3587 return ret ? OS_OK : OS_ERR;
duke@435 3588 }
duke@435 3589
duke@435 3590 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
duke@435 3591 if ( !UseThreadPriorities ) {
duke@435 3592 *priority_ptr = java_to_os_priority[NormPriority];
duke@435 3593 return OS_OK;
duke@435 3594 }
duke@435 3595 int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
duke@435 3596 if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
duke@435 3597 assert(false, "GetThreadPriority failed");
duke@435 3598 return OS_ERR;
duke@435 3599 }
duke@435 3600 *priority_ptr = os_prio;
duke@435 3601 return OS_OK;
duke@435 3602 }
duke@435 3603
duke@435 3604
duke@435 3605 // Hint to the underlying OS that a task switch would not be good.
duke@435 3606 // Void return because it's a hint and can fail.
duke@435 3607 void os::hint_no_preempt() {}
duke@435 3608
duke@435 3609 void os::interrupt(Thread* thread) {
duke@435 3610 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3611 "possibility of dangling Thread pointer");
duke@435 3612
duke@435 3613 OSThread* osthread = thread->osthread();
duke@435 3614 osthread->set_interrupted(true);
duke@435 3615 // More than one thread can get here with the same value of osthread,
duke@435 3616 // resulting in multiple notifications. We do, however, want the store
duke@435 3617 // to interrupted() to be visible to other threads before we post
duke@435 3618 // the interrupt event.
duke@435 3619 OrderAccess::release();
duke@435 3620 SetEvent(osthread->interrupt_event());
duke@435 3621 // For JSR166: unpark after setting status
duke@435 3622 if (thread->is_Java_thread())
duke@435 3623 ((JavaThread*)thread)->parker()->unpark();
duke@435 3624
duke@435 3625 ParkEvent * ev = thread->_ParkEvent ;
duke@435 3626 if (ev != NULL) ev->unpark() ;
duke@435 3627
duke@435 3628 }
duke@435 3629
duke@435 3630
duke@435 3631 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3632 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
duke@435 3633 "possibility of dangling Thread pointer");
duke@435 3634
duke@435 3635 OSThread* osthread = thread->osthread();
dholmes@2668 3636 // There is no synchronization between the setting of the interrupt
dholmes@2668 3637 // and it being cleared here. It is critical - see 6535709 - that
dholmes@2668 3638 // we only clear the interrupt state, and reset the interrupt event,
dholmes@2668 3639 // if we are going to report that we were indeed interrupted - else
dholmes@2668 3640 // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
minqi@6358 3641 // depending on the timing. By checking thread interrupt event to see
minqi@6358 3642 // if the thread gets real interrupt thus prevent spurious wakeup.
minqi@6358 3643 bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
dholmes@2668 3644 if (interrupted && clear_interrupted) {
duke@435 3645 osthread->set_interrupted(false);
duke@435 3646 ResetEvent(osthread->interrupt_event());
duke@435 3647 } // Otherwise leave the interrupted state alone
duke@435 3648
duke@435 3649 return interrupted;
duke@435 3650 }
duke@435 3651
duke@435 3652 // Get's a pc (hint) for a running thread. Currently used only for profiling.
duke@435 3653 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 3654 CONTEXT context;
duke@435 3655 context.ContextFlags = CONTEXT_CONTROL;
duke@435 3656 HANDLE handle = thread->osthread()->thread_handle();
duke@435 3657 #ifdef _M_IA64
duke@435 3658 assert(0, "Fix get_thread_pc");
duke@435 3659 return ExtendedPC(NULL);
duke@435 3660 #else
duke@435 3661 if (GetThreadContext(handle, &context)) {
duke@435 3662 #ifdef _M_AMD64
duke@435 3663 return ExtendedPC((address) context.Rip);
duke@435 3664 #else
duke@435 3665 return ExtendedPC((address) context.Eip);
duke@435 3666 #endif
duke@435 3667 } else {
duke@435 3668 return ExtendedPC(NULL);
duke@435 3669 }
duke@435 3670 #endif
duke@435 3671 }
duke@435 3672
duke@435 3673 // GetCurrentThreadId() returns DWORD
duke@435 3674 intx os::current_thread_id() { return GetCurrentThreadId(); }
duke@435 3675
duke@435 3676 static int _initial_pid = 0;
duke@435 3677
duke@435 3678 int os::current_process_id()
duke@435 3679 {
duke@435 3680 return (_initial_pid ? _initial_pid : _getpid());
duke@435 3681 }
duke@435 3682
duke@435 3683 int os::win32::_vm_page_size = 0;
duke@435 3684 int os::win32::_vm_allocation_granularity = 0;
duke@435 3685 int os::win32::_processor_type = 0;
duke@435 3686 // Processor level is not available on non-NT systems, use vm_version instead
duke@435 3687 int os::win32::_processor_level = 0;
duke@435 3688 julong os::win32::_physical_memory = 0;
duke@435 3689 size_t os::win32::_default_stack_size = 0;
duke@435 3690
duke@435 3691 intx os::win32::_os_thread_limit = 0;
duke@435 3692 volatile intx os::win32::_os_thread_count = 0;
duke@435 3693
duke@435 3694 bool os::win32::_is_nt = false;
jmasa@824 3695 bool os::win32::_is_windows_2003 = false;
ctornqvi@2520 3696 bool os::win32::_is_windows_server = false;
duke@435 3697
duke@435 3698 void os::win32::initialize_system_info() {
duke@435 3699 SYSTEM_INFO si;
duke@435 3700 GetSystemInfo(&si);
duke@435 3701 _vm_page_size = si.dwPageSize;
duke@435 3702 _vm_allocation_granularity = si.dwAllocationGranularity;
duke@435 3703 _processor_type = si.dwProcessorType;
duke@435 3704 _processor_level = si.wProcessorLevel;
phh@1558 3705 set_processor_count(si.dwNumberOfProcessors);
coleenp@912 3706
poonam@1312 3707 MEMORYSTATUSEX ms;
poonam@1312 3708 ms.dwLength = sizeof(ms);
poonam@1312 3709
duke@435 3710 // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
duke@435 3711 // dwMemoryLoad (% of memory in use)
poonam@1312 3712 GlobalMemoryStatusEx(&ms);
poonam@1312 3713 _physical_memory = ms.ullTotalPhys;
duke@435 3714
ctornqvi@2520 3715 OSVERSIONINFOEX oi;
ctornqvi@2520 3716 oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
ctornqvi@2520 3717 GetVersionEx((OSVERSIONINFO*)&oi);
duke@435 3718 switch(oi.dwPlatformId) {
duke@435 3719 case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
jmasa@824 3720 case VER_PLATFORM_WIN32_NT:
jmasa@824 3721 _is_nt = true;
jmasa@824 3722 {
jmasa@824 3723 int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
jmasa@824 3724 if (os_vers == 5002) {
jmasa@824 3725 _is_windows_2003 = true;
jmasa@824 3726 }
ctornqvi@2520 3727 if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
ctornqvi@2520 3728 oi.wProductType == VER_NT_SERVER) {
ctornqvi@2520 3729 _is_windows_server = true;
ctornqvi@2520 3730 }
jmasa@824 3731 }
jmasa@824 3732 break;
duke@435 3733 default: fatal("Unknown platform");
duke@435 3734 }
duke@435 3735
duke@435 3736 _default_stack_size = os::current_stack_size();
duke@435 3737 assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
duke@435 3738 assert((_default_stack_size & (_vm_page_size - 1)) == 0,
duke@435 3739 "stack size not a multiple of page size");
duke@435 3740
duke@435 3741 initialize_performance_counter();
duke@435 3742
duke@435 3743 // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
duke@435 3744 // known to deadlock the system, if the VM issues to thread operations with
duke@435 3745 // a too high frequency, e.g., such as changing the priorities.
duke@435 3746 // The 6000 seems to work well - no deadlocks has been notices on the test
duke@435 3747 // programs that we have seen experience this problem.
duke@435 3748 if (!os::win32::is_nt()) {
duke@435 3749 StarvationMonitorInterval = 6000;
duke@435 3750 }
duke@435 3751 }
duke@435 3752
duke@435 3753
zgu@3031 3754 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
zgu@3031 3755 char path[MAX_PATH];
zgu@3031 3756 DWORD size;
zgu@3031 3757 DWORD pathLen = (DWORD)sizeof(path);
zgu@3031 3758 HINSTANCE result = NULL;
zgu@3031 3759
zgu@3031 3760 // only allow library name without path component
zgu@3031 3761 assert(strchr(name, '\\') == NULL, "path not allowed");
zgu@3031 3762 assert(strchr(name, ':') == NULL, "path not allowed");
zgu@3031 3763 if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
zgu@3031 3764 jio_snprintf(ebuf, ebuflen,
zgu@3031 3765 "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
zgu@3031 3766 return NULL;
zgu@3031 3767 }
zgu@3031 3768
zgu@3031 3769 // search system directory
zgu@3031 3770 if ((size = GetSystemDirectory(path, pathLen)) > 0) {
zgu@3031 3771 strcat(path, "\\");
zgu@3031 3772 strcat(path, name);
zgu@3031 3773 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3774 return result;
zgu@3031 3775 }
zgu@3031 3776 }
zgu@3031 3777
zgu@3031 3778 // try Windows directory
zgu@3031 3779 if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
zgu@3031 3780 strcat(path, "\\");
zgu@3031 3781 strcat(path, name);
zgu@3031 3782 if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
zgu@3031 3783 return result;
zgu@3031 3784 }
zgu@3031 3785 }
zgu@3031 3786
zgu@3031 3787 jio_snprintf(ebuf, ebuflen,
zgu@3031 3788 "os::win32::load_windows_dll() cannot load %s from system directories.", name);
zgu@3031 3789 return NULL;
zgu@3031 3790 }
zgu@3031 3791
duke@435 3792 void os::win32::setmode_streams() {
duke@435 3793 _setmode(_fileno(stdin), _O_BINARY);
duke@435 3794 _setmode(_fileno(stdout), _O_BINARY);
duke@435 3795 _setmode(_fileno(stderr), _O_BINARY);
duke@435 3796 }
duke@435 3797
duke@435 3798
sla@2584 3799 bool os::is_debugger_attached() {
sla@2584 3800 return IsDebuggerPresent() ? true : false;
sla@2584 3801 }
sla@2584 3802
sla@2584 3803
sla@2584 3804 void os::wait_for_keypress_at_exit(void) {
sla@2584 3805 if (PauseAtExit) {
sla@2584 3806 fprintf(stderr, "Press any key to continue...\n");
sla@2584 3807 fgetc(stdin);
sla@2584 3808 }
sla@2584 3809 }
sla@2584 3810
sla@2584 3811
duke@435 3812 int os::message_box(const char* title, const char* message) {
duke@435 3813 int result = MessageBox(NULL, message, title,
duke@435 3814 MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
duke@435 3815 return result == IDYES;
duke@435 3816 }
duke@435 3817
duke@435 3818 int os::allocate_thread_local_storage() {
duke@435 3819 return TlsAlloc();
duke@435 3820 }
duke@435 3821
duke@435 3822
duke@435 3823 void os::free_thread_local_storage(int index) {
duke@435 3824 TlsFree(index);
duke@435 3825 }
duke@435 3826
duke@435 3827
duke@435 3828 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 3829 TlsSetValue(index, value);
duke@435 3830 assert(thread_local_storage_at(index) == value, "Just checking");
duke@435 3831 }
duke@435 3832
duke@435 3833
duke@435 3834 void* os::thread_local_storage_at(int index) {
duke@435 3835 return TlsGetValue(index);
duke@435 3836 }
duke@435 3837
duke@435 3838
duke@435 3839 #ifndef PRODUCT
duke@435 3840 #ifndef _WIN64
duke@435 3841 // Helpers to check whether NX protection is enabled
duke@435 3842 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
duke@435 3843 if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
duke@435 3844 pex->ExceptionRecord->NumberParameters > 0 &&
duke@435 3845 pex->ExceptionRecord->ExceptionInformation[0] ==
duke@435 3846 EXCEPTION_INFO_EXEC_VIOLATION) {
duke@435 3847 return EXCEPTION_EXECUTE_HANDLER;
duke@435 3848 }
duke@435 3849 return EXCEPTION_CONTINUE_SEARCH;
duke@435 3850 }
duke@435 3851
duke@435 3852 void nx_check_protection() {
duke@435 3853 // If NX is enabled we'll get an exception calling into code on the stack
duke@435 3854 char code[] = { (char)0xC3 }; // ret
duke@435 3855 void *code_ptr = (void *)code;
duke@435 3856 __try {
duke@435 3857 __asm call code_ptr
duke@435 3858 } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
duke@435 3859 tty->print_raw_cr("NX protection detected.");
duke@435 3860 }
duke@435 3861 }
duke@435 3862 #endif // _WIN64
duke@435 3863 #endif // PRODUCT
duke@435 3864
duke@435 3865 // this is called _before_ the global arguments have been parsed
duke@435 3866 void os::init(void) {
duke@435 3867 _initial_pid = _getpid();
duke@435 3868
duke@435 3869 init_random(1234567);
duke@435 3870
duke@435 3871 win32::initialize_system_info();
duke@435 3872 win32::setmode_streams();
duke@435 3873 init_page_sizes((size_t) win32::vm_page_size());
duke@435 3874
duke@435 3875 // For better scalability on MP systems (must be called after initialize_system_info)
duke@435 3876 #ifndef PRODUCT
duke@435 3877 if (is_MP()) {
duke@435 3878 NoYieldsInMicrolock = true;
duke@435 3879 }
duke@435 3880 #endif
jmasa@824 3881 // This may be overridden later when argument processing is done.
jmasa@824 3882 FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
jmasa@824 3883 os::win32::is_windows_2003());
jmasa@824 3884
duke@435 3885 // Initialize main_process and main_thread
duke@435 3886 main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
jmasa@824 3887 if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
duke@435 3888 &main_thread, THREAD_ALL_ACCESS, false, 0)) {
duke@435 3889 fatal("DuplicateHandle failed\n");
duke@435 3890 }
duke@435 3891 main_thread_id = (int) GetCurrentThreadId();
duke@435 3892 }
duke@435 3893
duke@435 3894 // To install functions for atexit processing
duke@435 3895 extern "C" {
duke@435 3896 static void perfMemory_exit_helper() {
duke@435 3897 perfMemory_exit();
duke@435 3898 }
duke@435 3899 }
duke@435 3900
neliasso@4872 3901 static jint initSock();
neliasso@4872 3902
duke@435 3903 // this is called _after_ the global arguments have been parsed
duke@435 3904 jint os::init_2(void) {
duke@435 3905 // Allocate a single page and mark it as readable for safepoint polling
duke@435 3906 address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
duke@435 3907 guarantee( polling_page != NULL, "Reserve Failed for polling page");
duke@435 3908
duke@435 3909 address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
duke@435 3910 guarantee( return_page != NULL, "Commit Failed for polling page");
duke@435 3911
duke@435 3912 os::set_polling_page( polling_page );
duke@435 3913
duke@435 3914 #ifndef PRODUCT
duke@435 3915 if( Verbose && PrintMiscellaneous )
duke@435 3916 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 3917 #endif
duke@435 3918
duke@435 3919 if (!UseMembar) {
coleenp@1091 3920 address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
duke@435 3921 guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
duke@435 3922
coleenp@1091 3923 return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
duke@435 3924 guarantee( return_page != NULL, "Commit Failed for memory serialize page");
duke@435 3925
duke@435 3926 os::set_memory_serialize_page( mem_serialize_page );
duke@435 3927
duke@435 3928 #ifndef PRODUCT
duke@435 3929 if(Verbose && PrintMiscellaneous)
duke@435 3930 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 3931 #endif
iveresov@3085 3932 }
duke@435 3933
duke@435 3934 // Setup Windows Exceptions
duke@435 3935
duke@435 3936 // for debugging float code generation bugs
duke@435 3937 if (ForceFloatExceptions) {
duke@435 3938 #ifndef _WIN64
duke@435 3939 static long fp_control_word = 0;
duke@435 3940 __asm { fstcw fp_control_word }
duke@435 3941 // see Intel PPro Manual, Vol. 2, p 7-16
duke@435 3942 const long precision = 0x20;
duke@435 3943 const long underflow = 0x10;
duke@435 3944 const long overflow = 0x08;
duke@435 3945 const long zero_div = 0x04;
duke@435 3946 const long denorm = 0x02;
duke@435 3947 const long invalid = 0x01;
duke@435 3948 fp_control_word |= invalid;
duke@435 3949 __asm { fldcw fp_control_word }
duke@435 3950 #endif
duke@435 3951 }
duke@435 3952
duke@435 3953 // If stack_commit_size is 0, windows will reserve the default size,
duke@435 3954 // but only commit a small portion of it.
duke@435 3955 size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
duke@435 3956 size_t default_reserve_size = os::win32::default_stack_size();
duke@435 3957 size_t actual_reserve_size = stack_commit_size;
duke@435 3958 if (stack_commit_size < default_reserve_size) {
duke@435 3959 // If stack_commit_size == 0, we want this too
duke@435 3960 actual_reserve_size = default_reserve_size;
duke@435 3961 }
duke@435 3962
coleenp@2222 3963 // Check minimum allowable stack size for thread creation and to initialize
coleenp@2222 3964 // the java system classes, including StackOverflowError - depends on page
coleenp@2222 3965 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 3966 // Add in 2*BytesPerWord times page size to account for VM stack during
coleenp@2222 3967 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 3968 size_t min_stack_allowed =
coleenp@2222 3969 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 3970 2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
coleenp@2222 3971 if (actual_reserve_size < min_stack_allowed) {
coleenp@2222 3972 tty->print_cr("\nThe stack size specified is too small, "
coleenp@2222 3973 "Specify at least %dk",
coleenp@2222 3974 min_stack_allowed / K);
coleenp@2222 3975 return JNI_ERR;
coleenp@2222 3976 }
coleenp@2222 3977
duke@435 3978 JavaThread::set_stack_size_at_create(stack_commit_size);
duke@435 3979
duke@435 3980 // Calculate theoretical max. size of Threads to guard gainst artifical
duke@435 3981 // out-of-memory situations, where all available address-space has been
duke@435 3982 // reserved by thread stacks.
duke@435 3983 assert(actual_reserve_size != 0, "Must have a stack");
duke@435 3984
duke@435 3985 // Calculate the thread limit when we should start doing Virtual Memory
duke@435 3986 // banging. Currently when the threads will have used all but 200Mb of space.
duke@435 3987 //
duke@435 3988 // TODO: consider performing a similar calculation for commit size instead
duke@435 3989 // as reserve size, since on a 64-bit platform we'll run into that more
duke@435 3990 // often than running out of virtual memory space. We can use the
duke@435 3991 // lower value of the two calculations as the os_thread_limit.
coleenp@548 3992 size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
duke@435 3993 win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
duke@435 3994
duke@435 3995 // at exit methods are called in the reverse order of their registration.
duke@435 3996 // there is no limit to the number of functions registered. atexit does
duke@435 3997 // not set errno.
duke@435 3998
duke@435 3999 if (PerfAllowAtExitRegistration) {
duke@435 4000 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4001 // atexit functions can be delayed until process exit time, which
duke@435 4002 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4003 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4004
duke@435 4005 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4006 // the future if the appropriate cleanup code can be added to the
duke@435 4007 // VM_Exit VMOperation's doit method.
duke@435 4008 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4009 warning("os::init_2 atexit(perfMemory_exit_helper) failed");
duke@435 4010 }
duke@435 4011 }
duke@435 4012
duke@435 4013 #ifndef _WIN64
duke@435 4014 // Print something if NX is enabled (win32 on AMD64)
duke@435 4015 NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
duke@435 4016 #endif
duke@435 4017
duke@435 4018 // initialize thread priority policy
duke@435 4019 prio_init();
duke@435 4020
iveresov@3118 4021 if (UseNUMA && !ForceNUMA) {
iveresov@3118 4022 UseNUMA = false; // We don't fully support this yet
iveresov@3118 4023 }
iveresov@3118 4024
iveresov@3085 4025 if (UseNUMAInterleaving) {
iveresov@3085 4026 // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
iveresov@3085 4027 bool success = numa_interleaving_init();
iveresov@3085 4028 if (!success) UseNUMAInterleaving = false;
iveresov@897 4029 }
iveresov@897 4030
neliasso@4872 4031 if (initSock() != JNI_OK) {
neliasso@4872 4032 return JNI_ERR;
neliasso@4872 4033 }
neliasso@4872 4034
duke@435 4035 return JNI_OK;
duke@435 4036 }
duke@435 4037
bobv@2036 4038 void os::init_3(void) {
bobv@2036 4039 return;
bobv@2036 4040 }
duke@435 4041
duke@435 4042 // Mark the polling page as unreadable
duke@435 4043 void os::make_polling_page_unreadable(void) {
duke@435 4044 DWORD old_status;
duke@435 4045 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
duke@435 4046 fatal("Could not disable polling page");
duke@435 4047 };
duke@435 4048
duke@435 4049 // Mark the polling page as readable
duke@435 4050 void os::make_polling_page_readable(void) {
duke@435 4051 DWORD old_status;
duke@435 4052 if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
duke@435 4053 fatal("Could not enable polling page");
duke@435 4054 };
duke@435 4055
duke@435 4056
duke@435 4057 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4058 char pathbuf[MAX_PATH];
duke@435 4059 if (strlen(path) > MAX_PATH - 1) {
duke@435 4060 errno = ENAMETOOLONG;
duke@435 4061 return -1;
duke@435 4062 }
ikrylov@2322 4063 os::native_path(strcpy(pathbuf, path));
duke@435 4064 int ret = ::stat(pathbuf, sbuf);
duke@435 4065 if (sbuf != NULL && UseUTCFileTimestamp) {
duke@435 4066 // Fix for 6539723. st_mtime returned from stat() is dependent on
duke@435 4067 // the system timezone and so can return different values for the
duke@435 4068 // same file if/when daylight savings time changes. This adjustment
duke@435 4069 // makes sure the same timestamp is returned regardless of the TZ.
duke@435 4070 //
duke@435 4071 // See:
duke@435 4072 // http://msdn.microsoft.com/library/
duke@435 4073 // default.asp?url=/library/en-us/sysinfo/base/
duke@435 4074 // time_zone_information_str.asp
duke@435 4075 // and
duke@435 4076 // http://msdn.microsoft.com/library/default.asp?url=
duke@435 4077 // /library/en-us/sysinfo/base/settimezoneinformation.asp
duke@435 4078 //
duke@435 4079 // NOTE: there is a insidious bug here: If the timezone is changed
duke@435 4080 // after the call to stat() but before 'GetTimeZoneInformation()', then
duke@435 4081 // the adjustment we do here will be wrong and we'll return the wrong
duke@435 4082 // value (which will likely end up creating an invalid class data
duke@435 4083 // archive). Absent a better API for this, or some time zone locking
duke@435 4084 // mechanism, we'll have to live with this risk.
duke@435 4085 TIME_ZONE_INFORMATION tz;
duke@435 4086 DWORD tzid = GetTimeZoneInformation(&tz);
duke@435 4087 int daylightBias =
duke@435 4088 (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias;
duke@435 4089 sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
duke@435 4090 }
duke@435 4091 return ret;
duke@435 4092 }
duke@435 4093
duke@435 4094
duke@435 4095 #define FT2INT64(ft) \
duke@435 4096 ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
duke@435 4097
duke@435 4098
duke@435 4099 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 4100 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 4101 // of a thread.
duke@435 4102 //
duke@435 4103 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
duke@435 4104 // the fast estimate available on the platform.
duke@435 4105
duke@435 4106 // current_thread_cpu_time() is not optimized for Windows yet
duke@435 4107 jlong os::current_thread_cpu_time() {
duke@435 4108 // return user + sys since the cost is the same
duke@435 4109 return os::thread_cpu_time(Thread::current(), true /* user+sys */);
duke@435 4110 }
duke@435 4111
duke@435 4112 jlong os::thread_cpu_time(Thread* thread) {
duke@435 4113 // consistent with what current_thread_cpu_time() returns.
duke@435 4114 return os::thread_cpu_time(thread, true /* user+sys */);
duke@435 4115 }
duke@435 4116
duke@435 4117 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 4118 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 4119 }
duke@435 4120
duke@435 4121 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
duke@435 4122 // This code is copy from clasic VM -> hpi::sysThreadCPUTime
duke@435 4123 // If this function changes, os::is_thread_cpu_time_supported() should too
duke@435 4124 if (os::win32::is_nt()) {
duke@435 4125 FILETIME CreationTime;
duke@435 4126 FILETIME ExitTime;
duke@435 4127 FILETIME KernelTime;
duke@435 4128 FILETIME UserTime;
duke@435 4129
duke@435 4130 if ( GetThreadTimes(thread->osthread()->thread_handle(),
duke@435 4131 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 4132 return -1;
duke@435 4133 else
duke@435 4134 if (user_sys_cpu_time) {
duke@435 4135 return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
duke@435 4136 } else {
duke@435 4137 return FT2INT64(UserTime) * 100;
duke@435 4138 }
duke@435 4139 } else {
duke@435 4140 return (jlong) timeGetTime() * 1000000;
duke@435 4141 }
duke@435 4142 }
duke@435 4143
duke@435 4144 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4145 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 4146 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 4147 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 4148 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4149 }
duke@435 4150
duke@435 4151 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 4152 info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
duke@435 4153 info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
duke@435 4154 info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
duke@435 4155 info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
duke@435 4156 }
duke@435 4157
duke@435 4158 bool os::is_thread_cpu_time_supported() {
duke@435 4159 // see os::thread_cpu_time
duke@435 4160 if (os::win32::is_nt()) {
duke@435 4161 FILETIME CreationTime;
duke@435 4162 FILETIME ExitTime;
duke@435 4163 FILETIME KernelTime;
duke@435 4164 FILETIME UserTime;
duke@435 4165
duke@435 4166 if ( GetThreadTimes(GetCurrentThread(),
duke@435 4167 &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
duke@435 4168 return false;
duke@435 4169 else
duke@435 4170 return true;
duke@435 4171 } else {
duke@435 4172 return false;
duke@435 4173 }
duke@435 4174 }
duke@435 4175
duke@435 4176 // Windows does't provide a loadavg primitive so this is stubbed out for now.
duke@435 4177 // It does have primitives (PDH API) to get CPU usage and run queue length.
duke@435 4178 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
duke@435 4179 // If we wanted to implement loadavg on Windows, we have a few options:
duke@435 4180 //
duke@435 4181 // a) Query CPU usage and run queue length and "fake" an answer by
duke@435 4182 // returning the CPU usage if it's under 100%, and the run queue
duke@435 4183 // length otherwise. It turns out that querying is pretty slow
duke@435 4184 // on Windows, on the order of 200 microseconds on a fast machine.
duke@435 4185 // Note that on the Windows the CPU usage value is the % usage
duke@435 4186 // since the last time the API was called (and the first call
duke@435 4187 // returns 100%), so we'd have to deal with that as well.
duke@435 4188 //
duke@435 4189 // b) Sample the "fake" answer using a sampling thread and store
duke@435 4190 // the answer in a global variable. The call to loadavg would
duke@435 4191 // just return the value of the global, avoiding the slow query.
duke@435 4192 //
duke@435 4193 // c) Sample a better answer using exponential decay to smooth the
duke@435 4194 // value. This is basically the algorithm used by UNIX kernels.
duke@435 4195 //
duke@435 4196 // Note that sampling thread starvation could affect both (b) and (c).
duke@435 4197 int os::loadavg(double loadavg[], int nelem) {
duke@435 4198 return -1;
duke@435 4199 }
duke@435 4200
duke@435 4201
duke@435 4202 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
duke@435 4203 bool os::dont_yield() {
duke@435 4204 return DontYieldALot;
duke@435 4205 }
duke@435 4206
ikrylov@2322 4207 // This method is a slightly reworked copy of JDK's sysOpen
ikrylov@2322 4208 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4209
ikrylov@2322 4210 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 4211 char pathbuf[MAX_PATH];
ikrylov@2322 4212
ikrylov@2322 4213 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 4214 errno = ENAMETOOLONG;
ikrylov@2322 4215 return -1;
ikrylov@2322 4216 }
ikrylov@2322 4217 os::native_path(strcpy(pathbuf, path));
ikrylov@2322 4218 return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
ikrylov@2322 4219 }
ikrylov@2322 4220
vlivanov@5027 4221 FILE* os::open(int fd, const char* mode) {
vlivanov@5027 4222 return ::_fdopen(fd, mode);
vlivanov@5027 4223 }
vlivanov@5027 4224
duke@435 4225 // Is a (classpath) directory empty?
duke@435 4226 bool os::dir_is_empty(const char* path) {
duke@435 4227 WIN32_FIND_DATA fd;
duke@435 4228 HANDLE f = FindFirstFile(path, &fd);
duke@435 4229 if (f == INVALID_HANDLE_VALUE) {
duke@435 4230 return true;
duke@435 4231 }
duke@435 4232 FindClose(f);
duke@435 4233 return false;
duke@435 4234 }
duke@435 4235
duke@435 4236 // create binary file, rewriting existing file if required
duke@435 4237 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 4238 int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
duke@435 4239 if (!rewrite_existing) {
duke@435 4240 oflags |= _O_EXCL;
duke@435 4241 }
duke@435 4242 return ::open(path, oflags, _S_IREAD | _S_IWRITE);
duke@435 4243 }
duke@435 4244
duke@435 4245 // return current position of file pointer
duke@435 4246 jlong os::current_file_offset(int fd) {
duke@435 4247 return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
duke@435 4248 }
duke@435 4249
duke@435 4250 // move file pointer to the specified offset
duke@435 4251 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 4252 return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
duke@435 4253 }
duke@435 4254
duke@435 4255
ikrylov@2322 4256 jlong os::lseek(int fd, jlong offset, int whence) {
ikrylov@2322 4257 return (jlong) ::_lseeki64(fd, offset, whence);
ikrylov@2322 4258 }
ikrylov@2322 4259
ikrylov@2322 4260 // This method is a slightly reworked copy of JDK's sysNativePath
ikrylov@2322 4261 // from src/windows/hpi/src/path_md.c
ikrylov@2322 4262
ikrylov@2322 4263 /* Convert a pathname to native format. On win32, this involves forcing all
ikrylov@2322 4264 separators to be '\\' rather than '/' (both are legal inputs, but Win95
ikrylov@2322 4265 sometimes rejects '/') and removing redundant separators. The input path is
ikrylov@2322 4266 assumed to have been converted into the character encoding used by the local
ikrylov@2322 4267 system. Because this might be a double-byte encoding, care is taken to
ikrylov@2322 4268 treat double-byte lead characters correctly.
ikrylov@2322 4269
ikrylov@2322 4270 This procedure modifies the given path in place, as the result is never
ikrylov@2322 4271 longer than the original. There is no error return; this operation always
ikrylov@2322 4272 succeeds. */
ikrylov@2322 4273 char * os::native_path(char *path) {
ikrylov@2322 4274 char *src = path, *dst = path, *end = path;
ikrylov@2322 4275 char *colon = NULL; /* If a drive specifier is found, this will
ikrylov@2322 4276 point to the colon following the drive
ikrylov@2322 4277 letter */
ikrylov@2322 4278
ikrylov@2322 4279 /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
ikrylov@2322 4280 assert(((!::IsDBCSLeadByte('/'))
ikrylov@2322 4281 && (!::IsDBCSLeadByte('\\'))
ikrylov@2322 4282 && (!::IsDBCSLeadByte(':'))),
ikrylov@2322 4283 "Illegal lead byte");
ikrylov@2322 4284
ikrylov@2322 4285 /* Check for leading separators */
ikrylov@2322 4286 #define isfilesep(c) ((c) == '/' || (c) == '\\')
ikrylov@2322 4287 while (isfilesep(*src)) {
ikrylov@2322 4288 src++;
ikrylov@2322 4289 }
ikrylov@2322 4290
ikrylov@2322 4291 if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
ikrylov@2322 4292 /* Remove leading separators if followed by drive specifier. This
ikrylov@2322 4293 hack is necessary to support file URLs containing drive
ikrylov@2322 4294 specifiers (e.g., "file://c:/path"). As a side effect,
ikrylov@2322 4295 "/c:/path" can be used as an alternative to "c:/path". */
ikrylov@2322 4296 *dst++ = *src++;
ikrylov@2322 4297 colon = dst;
ikrylov@2322 4298 *dst++ = ':';
ikrylov@2322 4299 src++;
ikrylov@2322 4300 } else {
ikrylov@2322 4301 src = path;
ikrylov@2322 4302 if (isfilesep(src[0]) && isfilesep(src[1])) {
ikrylov@2322 4303 /* UNC pathname: Retain first separator; leave src pointed at
ikrylov@2322 4304 second separator so that further separators will be collapsed
ikrylov@2322 4305 into the second separator. The result will be a pathname
ikrylov@2322 4306 beginning with "\\\\" followed (most likely) by a host name. */
ikrylov@2322 4307 src = dst = path + 1;
ikrylov@2322 4308 path[0] = '\\'; /* Force first separator to '\\' */
ikrylov@2322 4309 }
ikrylov@2322 4310 }
ikrylov@2322 4311
ikrylov@2322 4312 end = dst;
ikrylov@2322 4313
ikrylov@2322 4314 /* Remove redundant separators from remainder of path, forcing all
ikrylov@2322 4315 separators to be '\\' rather than '/'. Also, single byte space
ikrylov@2322 4316 characters are removed from the end of the path because those
ikrylov@2322 4317 are not legal ending characters on this operating system.
ikrylov@2322 4318 */
ikrylov@2322 4319 while (*src != '\0') {
ikrylov@2322 4320 if (isfilesep(*src)) {
ikrylov@2322 4321 *dst++ = '\\'; src++;
ikrylov@2322 4322 while (isfilesep(*src)) src++;
ikrylov@2322 4323 if (*src == '\0') {
ikrylov@2322 4324 /* Check for trailing separator */
ikrylov@2322 4325 end = dst;
ikrylov@2322 4326 if (colon == dst - 2) break; /* "z:\\" */
ikrylov@2322 4327 if (dst == path + 1) break; /* "\\" */
ikrylov@2322 4328 if (dst == path + 2 && isfilesep(path[0])) {
ikrylov@2322 4329 /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
ikrylov@2322 4330 beginning of a UNC pathname. Even though it is not, by
ikrylov@2322 4331 itself, a valid UNC pathname, we leave it as is in order
ikrylov@2322 4332 to be consistent with the path canonicalizer as well
ikrylov@2322 4333 as the win32 APIs, which treat this case as an invalid
ikrylov@2322 4334 UNC pathname rather than as an alias for the root
ikrylov@2322 4335 directory of the current drive. */
ikrylov@2322 4336 break;
ikrylov@2322 4337 }
ikrylov@2322 4338 end = --dst; /* Path does not denote a root directory, so
ikrylov@2322 4339 remove trailing separator */
ikrylov@2322 4340 break;
ikrylov@2322 4341 }
ikrylov@2322 4342 end = dst;
ikrylov@2322 4343 } else {
ikrylov@2322 4344 if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
ikrylov@2322 4345 *dst++ = *src++;
ikrylov@2322 4346 if (*src) *dst++ = *src++;
ikrylov@2322 4347 end = dst;
ikrylov@2322 4348 } else { /* Copy a single-byte character */
ikrylov@2322 4349 char c = *src++;
ikrylov@2322 4350 *dst++ = c;
ikrylov@2322 4351 /* Space is not a legal ending character */
ikrylov@2322 4352 if (c != ' ') end = dst;
ikrylov@2322 4353 }
ikrylov@2322 4354 }
ikrylov@2322 4355 }
ikrylov@2322 4356
ikrylov@2322 4357 *end = '\0';
ikrylov@2322 4358
ikrylov@2322 4359 /* For "z:", add "." to work around a bug in the C runtime library */
ikrylov@2322 4360 if (colon == dst - 1) {
ikrylov@2322 4361 path[2] = '.';
ikrylov@2322 4362 path[3] = '\0';
ikrylov@2322 4363 }
ikrylov@2322 4364
ikrylov@2322 4365 return path;
ikrylov@2322 4366 }
ikrylov@2322 4367
ikrylov@2322 4368 // This code is a copy of JDK's sysSetLength
ikrylov@2322 4369 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4370
ikrylov@2322 4371 int os::ftruncate(int fd, jlong length) {
ikrylov@2322 4372 HANDLE h = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4373 long high = (long)(length >> 32);
ikrylov@2322 4374 DWORD ret;
ikrylov@2322 4375
ikrylov@2322 4376 if (h == (HANDLE)(-1)) {
ikrylov@2322 4377 return -1;
ikrylov@2322 4378 }
ikrylov@2322 4379
ikrylov@2322 4380 ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
ikrylov@2322 4381 if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
ikrylov@2322 4382 return -1;
ikrylov@2322 4383 }
ikrylov@2322 4384
ikrylov@2322 4385 if (::SetEndOfFile(h) == FALSE) {
ikrylov@2322 4386 return -1;
ikrylov@2322 4387 }
ikrylov@2322 4388
ikrylov@2322 4389 return 0;
ikrylov@2322 4390 }
ikrylov@2322 4391
ikrylov@2322 4392
ikrylov@2322 4393 // This code is a copy of JDK's sysSync
ikrylov@2322 4394 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4395 // except for the legacy workaround for a bug in Win 98
ikrylov@2322 4396
ikrylov@2322 4397 int os::fsync(int fd) {
ikrylov@2322 4398 HANDLE handle = (HANDLE)::_get_osfhandle(fd);
ikrylov@2322 4399
ikrylov@2322 4400 if ( (!::FlushFileBuffers(handle)) &&
ikrylov@2322 4401 (GetLastError() != ERROR_ACCESS_DENIED) ) {
ikrylov@2322 4402 /* from winerror.h */
ikrylov@2322 4403 return -1;
ikrylov@2322 4404 }
ikrylov@2322 4405 return 0;
ikrylov@2322 4406 }
ikrylov@2322 4407
ikrylov@2322 4408 static int nonSeekAvailable(int, long *);
ikrylov@2322 4409 static int stdinAvailable(int, long *);
ikrylov@2322 4410
ikrylov@2322 4411 #define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR)
ikrylov@2322 4412 #define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO)
ikrylov@2322 4413
ikrylov@2322 4414 // This code is a copy of JDK's sysAvailable
ikrylov@2322 4415 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4416
ikrylov@2322 4417 int os::available(int fd, jlong *bytes) {
ikrylov@2322 4418 jlong cur, end;
ikrylov@2322 4419 struct _stati64 stbuf64;
ikrylov@2322 4420
ikrylov@2322 4421 if (::_fstati64(fd, &stbuf64) >= 0) {
ikrylov@2322 4422 int mode = stbuf64.st_mode;
ikrylov@2322 4423 if (S_ISCHR(mode) || S_ISFIFO(mode)) {
ikrylov@2322 4424 int ret;
ikrylov@2322 4425 long lpbytes;
ikrylov@2322 4426 if (fd == 0) {
ikrylov@2322 4427 ret = stdinAvailable(fd, &lpbytes);
ikrylov@2322 4428 } else {
ikrylov@2322 4429 ret = nonSeekAvailable(fd, &lpbytes);
ikrylov@2322 4430 }
ikrylov@2322 4431 (*bytes) = (jlong)(lpbytes);
ikrylov@2322 4432 return ret;
ikrylov@2322 4433 }
ikrylov@2322 4434 if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 4435 return FALSE;
ikrylov@2322 4436 } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 4437 return FALSE;
ikrylov@2322 4438 } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 4439 return FALSE;
ikrylov@2322 4440 }
ikrylov@2322 4441 *bytes = end - cur;
ikrylov@2322 4442 return TRUE;
ikrylov@2322 4443 } else {
ikrylov@2322 4444 return FALSE;
ikrylov@2322 4445 }
ikrylov@2322 4446 }
ikrylov@2322 4447
ikrylov@2322 4448 // This code is a copy of JDK's nonSeekAvailable
ikrylov@2322 4449 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4450
ikrylov@2322 4451 static int nonSeekAvailable(int fd, long *pbytes) {
ikrylov@2322 4452 /* This is used for available on non-seekable devices
ikrylov@2322 4453 * (like both named and anonymous pipes, such as pipes
ikrylov@2322 4454 * connected to an exec'd process).
ikrylov@2322 4455 * Standard Input is a special case.
ikrylov@2322 4456 *
ikrylov@2322 4457 */
ikrylov@2322 4458 HANDLE han;
ikrylov@2322 4459
ikrylov@2322 4460 if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
ikrylov@2322 4461 return FALSE;
ikrylov@2322 4462 }
ikrylov@2322 4463
ikrylov@2322 4464 if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
ikrylov@2322 4465 /* PeekNamedPipe fails when at EOF. In that case we
ikrylov@2322 4466 * simply make *pbytes = 0 which is consistent with the
ikrylov@2322 4467 * behavior we get on Solaris when an fd is at EOF.
ikrylov@2322 4468 * The only alternative is to raise an Exception,
ikrylov@2322 4469 * which isn't really warranted.
ikrylov@2322 4470 */
ikrylov@2322 4471 if (::GetLastError() != ERROR_BROKEN_PIPE) {
ikrylov@2322 4472 return FALSE;
ikrylov@2322 4473 }
ikrylov@2322 4474 *pbytes = 0;
ikrylov@2322 4475 }
ikrylov@2322 4476 return TRUE;
ikrylov@2322 4477 }
ikrylov@2322 4478
ikrylov@2322 4479 #define MAX_INPUT_EVENTS 2000
ikrylov@2322 4480
ikrylov@2322 4481 // This code is a copy of JDK's stdinAvailable
ikrylov@2322 4482 // from src/windows/hpi/src/sys_api_md.c
ikrylov@2322 4483
ikrylov@2322 4484 static int stdinAvailable(int fd, long *pbytes) {
ikrylov@2322 4485 HANDLE han;
ikrylov@2322 4486 DWORD numEventsRead = 0; /* Number of events read from buffer */
ikrylov@2322 4487 DWORD numEvents = 0; /* Number of events in buffer */
ikrylov@2322 4488 DWORD i = 0; /* Loop index */
ikrylov@2322 4489 DWORD curLength = 0; /* Position marker */
ikrylov@2322 4490 DWORD actualLength = 0; /* Number of bytes readable */
ikrylov@2322 4491 BOOL error = FALSE; /* Error holder */
ikrylov@2322 4492 INPUT_RECORD *lpBuffer; /* Pointer to records of input events */
ikrylov@2322 4493
ikrylov@2322 4494 if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
ikrylov@2322 4495 return FALSE;
ikrylov@2322 4496 }
ikrylov@2322 4497
ikrylov@2322 4498 /* Construct an array of input records in the console buffer */
ikrylov@2322 4499 error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
ikrylov@2322 4500 if (error == 0) {
ikrylov@2322 4501 return nonSeekAvailable(fd, pbytes);
ikrylov@2322 4502 }
ikrylov@2322 4503
ikrylov@2322 4504 /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
ikrylov@2322 4505 if (numEvents > MAX_INPUT_EVENTS) {
ikrylov@2322 4506 numEvents = MAX_INPUT_EVENTS;
ikrylov@2322 4507 }
ikrylov@2322 4508
zgu@3900 4509 lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
ikrylov@2322 4510 if (lpBuffer == NULL) {
ikrylov@2322 4511 return FALSE;
ikrylov@2322 4512 }
ikrylov@2322 4513
ikrylov@2322 4514 error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
ikrylov@2322 4515 if (error == 0) {
zgu@3900 4516 os::free(lpBuffer, mtInternal);
ikrylov@2322 4517 return FALSE;
ikrylov@2322 4518 }
ikrylov@2322 4519
ikrylov@2322 4520 /* Examine input records for the number of bytes available */
ikrylov@2322 4521 for(i=0; i<numEvents; i++) {
ikrylov@2322 4522 if (lpBuffer[i].EventType == KEY_EVENT) {
ikrylov@2322 4523
ikrylov@2322 4524 KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
ikrylov@2322 4525 &(lpBuffer[i].Event);
ikrylov@2322 4526 if (keyRecord->bKeyDown == TRUE) {
ikrylov@2322 4527 CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
ikrylov@2322 4528 curLength++;
ikrylov@2322 4529 if (*keyPressed == '\r') {
ikrylov@2322 4530 actualLength = curLength;
ikrylov@2322 4531 }
ikrylov@2322 4532 }
ikrylov@2322 4533 }
ikrylov@2322 4534 }
ikrylov@2322 4535
ikrylov@2322 4536 if(lpBuffer != NULL) {
zgu@3900 4537 os::free(lpBuffer, mtInternal);
ikrylov@2322 4538 }
ikrylov@2322 4539
ikrylov@2322 4540 *pbytes = (long) actualLength;
ikrylov@2322 4541 return TRUE;
ikrylov@2322 4542 }
ikrylov@2322 4543
duke@435 4544 // Map a block of memory.
zgu@3900 4545 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4546 char *addr, size_t bytes, bool read_only,
duke@435 4547 bool allow_exec) {
duke@435 4548 HANDLE hFile;
duke@435 4549 char* base;
duke@435 4550
duke@435 4551 hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
duke@435 4552 OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
duke@435 4553 if (hFile == NULL) {
duke@435 4554 if (PrintMiscellaneous && Verbose) {
duke@435 4555 DWORD err = GetLastError();
hseigel@4465 4556 tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
duke@435 4557 }
duke@435 4558 return NULL;
duke@435 4559 }
duke@435 4560
duke@435 4561 if (allow_exec) {
duke@435 4562 // CreateFileMapping/MapViewOfFileEx can't map executable memory
duke@435 4563 // unless it comes from a PE image (which the shared archive is not.)
duke@435 4564 // Even VirtualProtect refuses to give execute access to mapped memory
duke@435 4565 // that was not previously executable.
duke@435 4566 //
duke@435 4567 // Instead, stick the executable region in anonymous memory. Yuck.
duke@435 4568 // Penalty is that ~4 pages will not be shareable - in the future
duke@435 4569 // we might consider DLLizing the shared archive with a proper PE
duke@435 4570 // header so that mapping executable + sharing is possible.
duke@435 4571
duke@435 4572 base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
duke@435 4573 PAGE_READWRITE);
duke@435 4574 if (base == NULL) {
duke@435 4575 if (PrintMiscellaneous && Verbose) {
duke@435 4576 DWORD err = GetLastError();
duke@435 4577 tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
duke@435 4578 }
duke@435 4579 CloseHandle(hFile);
duke@435 4580 return NULL;
duke@435 4581 }
duke@435 4582
duke@435 4583 DWORD bytes_read;
duke@435 4584 OVERLAPPED overlapped;
duke@435 4585 overlapped.Offset = (DWORD)file_offset;
duke@435 4586 overlapped.OffsetHigh = 0;
duke@435 4587 overlapped.hEvent = NULL;
duke@435 4588 // ReadFile guarantees that if the return value is true, the requested
duke@435 4589 // number of bytes were read before returning.
duke@435 4590 bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
duke@435 4591 if (!res) {
duke@435 4592 if (PrintMiscellaneous && Verbose) {
duke@435 4593 DWORD err = GetLastError();
duke@435 4594 tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
duke@435 4595 }
duke@435 4596 release_memory(base, bytes);
duke@435 4597 CloseHandle(hFile);
duke@435 4598 return NULL;
duke@435 4599 }
duke@435 4600 } else {
duke@435 4601 HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
duke@435 4602 NULL /*file_name*/);
duke@435 4603 if (hMap == NULL) {
duke@435 4604 if (PrintMiscellaneous && Verbose) {
duke@435 4605 DWORD err = GetLastError();
hseigel@4465 4606 tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
duke@435 4607 }
duke@435 4608 CloseHandle(hFile);
duke@435 4609 return NULL;
duke@435 4610 }
duke@435 4611
duke@435 4612 DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
duke@435 4613 base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
duke@435 4614 (DWORD)bytes, addr);
duke@435 4615 if (base == NULL) {
duke@435 4616 if (PrintMiscellaneous && Verbose) {
duke@435 4617 DWORD err = GetLastError();
duke@435 4618 tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
duke@435 4619 }
duke@435 4620 CloseHandle(hMap);
duke@435 4621 CloseHandle(hFile);
duke@435 4622 return NULL;
duke@435 4623 }
duke@435 4624
duke@435 4625 if (CloseHandle(hMap) == 0) {
duke@435 4626 if (PrintMiscellaneous && Verbose) {
duke@435 4627 DWORD err = GetLastError();
duke@435 4628 tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
duke@435 4629 }
duke@435 4630 CloseHandle(hFile);
duke@435 4631 return base;
duke@435 4632 }
duke@435 4633 }
duke@435 4634
duke@435 4635 if (allow_exec) {
duke@435 4636 DWORD old_protect;
duke@435 4637 DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
duke@435 4638 bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
duke@435 4639
duke@435 4640 if (!res) {
duke@435 4641 if (PrintMiscellaneous && Verbose) {
duke@435 4642 DWORD err = GetLastError();
duke@435 4643 tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
duke@435 4644 }
duke@435 4645 // Don't consider this a hard error, on IA32 even if the
duke@435 4646 // VirtualProtect fails, we should still be able to execute
duke@435 4647 CloseHandle(hFile);
duke@435 4648 return base;
duke@435 4649 }
duke@435 4650 }
duke@435 4651
duke@435 4652 if (CloseHandle(hFile) == 0) {
duke@435 4653 if (PrintMiscellaneous && Verbose) {
duke@435 4654 DWORD err = GetLastError();
duke@435 4655 tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
duke@435 4656 }
duke@435 4657 return base;
duke@435 4658 }
duke@435 4659
duke@435 4660 return base;
duke@435 4661 }
duke@435 4662
duke@435 4663
duke@435 4664 // Remap a block of memory.
zgu@3900 4665 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 4666 char *addr, size_t bytes, bool read_only,
duke@435 4667 bool allow_exec) {
duke@435 4668 // This OS does not allow existing memory maps to be remapped so we
duke@435 4669 // have to unmap the memory before we remap it.
duke@435 4670 if (!os::unmap_memory(addr, bytes)) {
duke@435 4671 return NULL;
duke@435 4672 }
duke@435 4673
duke@435 4674 // There is a very small theoretical window between the unmap_memory()
duke@435 4675 // call above and the map_memory() call below where a thread in native
duke@435 4676 // code may be able to access an address that is no longer mapped.
duke@435 4677
zgu@3900 4678 return os::map_memory(fd, file_name, file_offset, addr, bytes,
zgu@3900 4679 read_only, allow_exec);
duke@435 4680 }
duke@435 4681
duke@435 4682
duke@435 4683 // Unmap a block of memory.
duke@435 4684 // Returns true=success, otherwise false.
duke@435 4685
zgu@3900 4686 bool os::pd_unmap_memory(char* addr, size_t bytes) {
duke@435 4687 BOOL result = UnmapViewOfFile(addr);
duke@435 4688 if (result == 0) {
duke@435 4689 if (PrintMiscellaneous && Verbose) {
duke@435 4690 DWORD err = GetLastError();
duke@435 4691 tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
duke@435 4692 }
duke@435 4693 return false;
duke@435 4694 }
duke@435 4695 return true;
duke@435 4696 }
duke@435 4697
duke@435 4698 void os::pause() {
duke@435 4699 char filename[MAX_PATH];
duke@435 4700 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 4701 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 4702 } else {
duke@435 4703 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 4704 }
duke@435 4705
duke@435 4706 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 4707 if (fd != -1) {
duke@435 4708 struct stat buf;
ikrylov@2322 4709 ::close(fd);
duke@435 4710 while (::stat(filename, &buf) == 0) {
duke@435 4711 Sleep(100);
duke@435 4712 }
duke@435 4713 } else {
duke@435 4714 jio_fprintf(stderr,
duke@435 4715 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 4716 }
duke@435 4717 }
duke@435 4718
rbackman@5424 4719 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
rbackman@5424 4720 assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
rbackman@5424 4721 }
rbackman@5424 4722
rbackman@5424 4723 /*
rbackman@5424 4724 * See the caveats for this class in os_windows.hpp
rbackman@5424 4725 * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
rbackman@5424 4726 * into this method and returns false. If no OS EXCEPTION was raised, returns
rbackman@5424 4727 * true.
rbackman@5424 4728 * The callback is supposed to provide the method that should be protected.
rbackman@5424 4729 */
rbackman@5424 4730 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
rbackman@5424 4731 assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
rbackman@5424 4732 assert(!WatcherThread::watcher_thread()->has_crash_protection(),
rbackman@5424 4733 "crash_protection already set?");
rbackman@5424 4734
rbackman@5424 4735 bool success = true;
rbackman@5424 4736 __try {
rbackman@5424 4737 WatcherThread::watcher_thread()->set_crash_protection(this);
rbackman@5424 4738 cb.call();
rbackman@5424 4739 } __except(EXCEPTION_EXECUTE_HANDLER) {
rbackman@5424 4740 // only for protection, nothing to do
rbackman@5424 4741 success = false;
rbackman@5424 4742 }
rbackman@5424 4743 WatcherThread::watcher_thread()->set_crash_protection(NULL);
rbackman@5424 4744 return success;
rbackman@5424 4745 }
rbackman@5424 4746
duke@435 4747 // An Event wraps a win32 "CreateEvent" kernel handle.
duke@435 4748 //
duke@435 4749 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
duke@435 4750 //
duke@435 4751 // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
duke@435 4752 // field, and call CloseHandle() on the win32 event handle. Unpark() would
duke@435 4753 // need to be modified to tolerate finding a NULL (invalid) win32 event handle.
duke@435 4754 // In addition, an unpark() operation might fetch the handle field, but the
duke@435 4755 // event could recycle between the fetch and the SetEvent() operation.
duke@435 4756 // SetEvent() would either fail because the handle was invalid, or inadvertently work,
duke@435 4757 // as the win32 handle value had been recycled. In an ideal world calling SetEvent()
duke@435 4758 // on an stale but recycled handle would be harmless, but in practice this might
duke@435 4759 // confuse other non-Sun code, so it's not a viable approach.
duke@435 4760 //
duke@435 4761 // 2: Once a win32 event handle is associated with an Event, it remains associated
duke@435 4762 // with the Event. The event handle is never closed. This could be construed
duke@435 4763 // as handle leakage, but only up to the maximum # of threads that have been extant
duke@435 4764 // at any one time. This shouldn't be an issue, as windows platforms typically
duke@435 4765 // permit a process to have hundreds of thousands of open handles.
duke@435 4766 //
duke@435 4767 // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
duke@435 4768 // and release unused handles.
duke@435 4769 //
duke@435 4770 // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
duke@435 4771 // It's not clear, however, that we wouldn't be trading one type of leak for another.
duke@435 4772 //
duke@435 4773 // 5. Use an RCU-like mechanism (Read-Copy Update).
duke@435 4774 // Or perhaps something similar to Maged Michael's "Hazard pointers".
duke@435 4775 //
duke@435 4776 // We use (2).
duke@435 4777 //
duke@435 4778 // TODO-FIXME:
duke@435 4779 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
duke@435 4780 // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
duke@435 4781 // to recover from (or at least detect) the dreaded Windows 841176 bug.
duke@435 4782 // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
duke@435 4783 // into a single win32 CreateEvent() handle.
duke@435 4784 //
duke@435 4785 // _Event transitions in park()
duke@435 4786 // -1 => -1 : illegal
duke@435 4787 // 1 => 0 : pass - return immediately
duke@435 4788 // 0 => -1 : block
duke@435 4789 //
duke@435 4790 // _Event serves as a restricted-range semaphore :
duke@435 4791 // -1 : thread is blocked
duke@435 4792 // 0 : neutral - thread is running or ready
duke@435 4793 // 1 : signaled - thread is running or ready
duke@435 4794 //
duke@435 4795 // Another possible encoding of _Event would be
duke@435 4796 // with explicit "PARKED" and "SIGNALED" bits.
duke@435 4797
duke@435 4798 int os::PlatformEvent::park (jlong Millis) {
duke@435 4799 guarantee (_ParkHandle != NULL , "Invariant") ;
duke@435 4800 guarantee (Millis > 0 , "Invariant") ;
duke@435 4801 int v ;
duke@435 4802
duke@435 4803 // CONSIDER: defer assigning a CreateEvent() handle to the Event until
duke@435 4804 // the initial park() operation.
duke@435 4805
duke@435 4806 for (;;) {
duke@435 4807 v = _Event ;
duke@435 4808 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4809 }
duke@435 4810 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4811 if (v != 0) return OS_OK ;
duke@435 4812
duke@435 4813 // Do this the hard way by blocking ...
duke@435 4814 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4815 // spin attempts by this thread.
duke@435 4816 //
duke@435 4817 // We decompose long timeouts into series of shorter timed waits.
duke@435 4818 // Evidently large timo values passed in WaitForSingleObject() are problematic on some
duke@435 4819 // versions of Windows. See EventWait() for details. This may be superstition. Or not.
duke@435 4820 // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
duke@435 4821 // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
duke@435 4822 // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
duke@435 4823 // to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
duke@435 4824 // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
duke@435 4825 // for the already waited time. This policy does not admit any new outcomes.
duke@435 4826 // In the future, however, we might want to track the accumulated wait time and
duke@435 4827 // adjust Millis accordingly if we encounter a spurious wakeup.
duke@435 4828
duke@435 4829 const int MAXTIMEOUT = 0x10000000 ;
duke@435 4830 DWORD rv = WAIT_TIMEOUT ;
duke@435 4831 while (_Event < 0 && Millis > 0) {
duke@435 4832 DWORD prd = Millis ; // set prd = MAX (Millis, MAXTIMEOUT)
duke@435 4833 if (Millis > MAXTIMEOUT) {
duke@435 4834 prd = MAXTIMEOUT ;
duke@435 4835 }
duke@435 4836 rv = ::WaitForSingleObject (_ParkHandle, prd) ;
duke@435 4837 assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
duke@435 4838 if (rv == WAIT_TIMEOUT) {
duke@435 4839 Millis -= prd ;
duke@435 4840 }
duke@435 4841 }
duke@435 4842 v = _Event ;
duke@435 4843 _Event = 0 ;
dcubed@4471 4844 // see comment at end of os::PlatformEvent::park() below:
duke@435 4845 OrderAccess::fence() ;
duke@435 4846 // If we encounter a nearly simultanous timeout expiry and unpark()
duke@435 4847 // we return OS_OK indicating we awoke via unpark().
duke@435 4848 // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
duke@435 4849 return (v >= 0) ? OS_OK : OS_TIMEOUT ;
duke@435 4850 }
duke@435 4851
duke@435 4852 void os::PlatformEvent::park () {
duke@435 4853 guarantee (_ParkHandle != NULL, "Invariant") ;
duke@435 4854 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 4855 // may call park().
duke@435 4856 int v ;
duke@435 4857 for (;;) {
duke@435 4858 v = _Event ;
duke@435 4859 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 4860 }
duke@435 4861 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 4862 if (v != 0) return ;
duke@435 4863
duke@435 4864 // Do this the hard way by blocking ...
duke@435 4865 // TODO: consider a brief spin here, gated on the success of recent
duke@435 4866 // spin attempts by this thread.
duke@435 4867 while (_Event < 0) {
duke@435 4868 DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
duke@435 4869 assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
duke@435 4870 }
duke@435 4871
duke@435 4872 // Usually we'll find _Event == 0 at this point, but as
duke@435 4873 // an optional optimization we clear it, just in case can
duke@435 4874 // multiple unpark() operations drove _Event up to 1.
duke@435 4875 _Event = 0 ;
duke@435 4876 OrderAccess::fence() ;
duke@435 4877 guarantee (_Event >= 0, "invariant") ;
duke@435 4878 }
duke@435 4879
duke@435 4880 void os::PlatformEvent::unpark() {
duke@435 4881 guarantee (_ParkHandle != NULL, "Invariant") ;
dcubed@4471 4882
dcubed@4471 4883 // Transitions for _Event:
dcubed@4471 4884 // 0 :=> 1
dcubed@4471 4885 // 1 :=> 1
dcubed@4471 4886 // -1 :=> either 0 or 1; must signal target thread
dcubed@4471 4887 // That is, we can safely transition _Event from -1 to either
dcubed@4471 4888 // 0 or 1. Forcing 1 is slightly more efficient for back-to-back
dcubed@4471 4889 // unpark() calls.
dcubed@4471 4890 // See also: "Semaphores in Plan 9" by Mullender & Cox
dcubed@4471 4891 //
dcubed@4471 4892 // Note: Forcing a transition from "-1" to "1" on an unpark() means
dcubed@4471 4893 // that it will take two back-to-back park() calls for the owning
dcubed@4471 4894 // thread to block. This has the benefit of forcing a spurious return
dcubed@4471 4895 // from the first park() call after an unpark() call which will help
dcubed@4471 4896 // shake out uses of park() and unpark() without condition variables.
dcubed@4471 4897
dcubed@4471 4898 if (Atomic::xchg(1, &_Event) >= 0) return;
dcubed@4471 4899
dcubed@4471 4900 ::SetEvent(_ParkHandle);
duke@435 4901 }
duke@435 4902
duke@435 4903
duke@435 4904 // JSR166
duke@435 4905 // -------------------------------------------------------
duke@435 4906
duke@435 4907 /*
duke@435 4908 * The Windows implementation of Park is very straightforward: Basic
duke@435 4909 * operations on Win32 Events turn out to have the right semantics to
duke@435 4910 * use them directly. We opportunistically resuse the event inherited
duke@435 4911 * from Monitor.
duke@435 4912 */
duke@435 4913
duke@435 4914
duke@435 4915 void Parker::park(bool isAbsolute, jlong time) {
duke@435 4916 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4917 // First, demultiplex/decode time arguments
duke@435 4918 if (time < 0) { // don't wait
duke@435 4919 return;
duke@435 4920 }
acorn@2220 4921 else if (time == 0 && !isAbsolute) {
duke@435 4922 time = INFINITE;
duke@435 4923 }
duke@435 4924 else if (isAbsolute) {
duke@435 4925 time -= os::javaTimeMillis(); // convert to relative time
duke@435 4926 if (time <= 0) // already elapsed
duke@435 4927 return;
duke@435 4928 }
duke@435 4929 else { // relative
duke@435 4930 time /= 1000000; // Must coarsen from nanos to millis
duke@435 4931 if (time == 0) // Wait for the minimal time unit if zero
duke@435 4932 time = 1;
duke@435 4933 }
duke@435 4934
duke@435 4935 JavaThread* thread = (JavaThread*)(Thread::current());
duke@435 4936 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 4937 JavaThread *jt = (JavaThread *)thread;
duke@435 4938
duke@435 4939 // Don't wait if interrupted or already triggered
duke@435 4940 if (Thread::is_interrupted(thread, false) ||
duke@435 4941 WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
duke@435 4942 ResetEvent(_ParkEvent);
duke@435 4943 return;
duke@435 4944 }
duke@435 4945 else {
duke@435 4946 ThreadBlockInVM tbivm(jt);
duke@435 4947 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 4948 jt->set_suspend_equivalent();
duke@435 4949
duke@435 4950 WaitForSingleObject(_ParkEvent, time);
duke@435 4951 ResetEvent(_ParkEvent);
duke@435 4952
duke@435 4953 // If externally suspended while waiting, re-suspend
duke@435 4954 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 4955 jt->java_suspend_self();
duke@435 4956 }
duke@435 4957 }
duke@435 4958 }
duke@435 4959
duke@435 4960 void Parker::unpark() {
duke@435 4961 guarantee (_ParkEvent != NULL, "invariant") ;
duke@435 4962 SetEvent(_ParkEvent);
duke@435 4963 }
duke@435 4964
duke@435 4965 // Run the specified command in a separate process. Return its exit value,
duke@435 4966 // or -1 on failure (e.g. can't create a new process).
duke@435 4967 int os::fork_and_exec(char* cmd) {
duke@435 4968 STARTUPINFO si;
duke@435 4969 PROCESS_INFORMATION pi;
duke@435 4970
duke@435 4971 memset(&si, 0, sizeof(si));
duke@435 4972 si.cb = sizeof(si);
duke@435 4973 memset(&pi, 0, sizeof(pi));
duke@435 4974 BOOL rslt = CreateProcess(NULL, // executable name - use command line
duke@435 4975 cmd, // command line
duke@435 4976 NULL, // process security attribute
duke@435 4977 NULL, // thread security attribute
duke@435 4978 TRUE, // inherits system handles
duke@435 4979 0, // no creation flags
duke@435 4980 NULL, // use parent's environment block
duke@435 4981 NULL, // use parent's starting directory
duke@435 4982 &si, // (in) startup information
duke@435 4983 &pi); // (out) process information
duke@435 4984
duke@435 4985 if (rslt) {
duke@435 4986 // Wait until child process exits.
duke@435 4987 WaitForSingleObject(pi.hProcess, INFINITE);
duke@435 4988
duke@435 4989 DWORD exit_code;
duke@435 4990 GetExitCodeProcess(pi.hProcess, &exit_code);
duke@435 4991
duke@435 4992 // Close process and thread handles.
duke@435 4993 CloseHandle(pi.hProcess);
duke@435 4994 CloseHandle(pi.hThread);
duke@435 4995
duke@435 4996 return (int)exit_code;
duke@435 4997 } else {
duke@435 4998 return -1;
duke@435 4999 }
duke@435 5000 }
duke@435 5001
duke@435 5002 //--------------------------------------------------------------------------------------------------
duke@435 5003 // Non-product code
duke@435 5004
duke@435 5005 static int mallocDebugIntervalCounter = 0;
duke@435 5006 static int mallocDebugCounter = 0;
duke@435 5007 bool os::check_heap(bool force) {
duke@435 5008 if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
duke@435 5009 if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
duke@435 5010 // Note: HeapValidate executes two hardware breakpoints when it finds something
duke@435 5011 // wrong; at these points, eax contains the address of the offending block (I think).
duke@435 5012 // To get to the exlicit error message(s) below, just continue twice.
duke@435 5013 HANDLE heap = GetProcessHeap();
duke@435 5014 { HeapLock(heap);
duke@435 5015 PROCESS_HEAP_ENTRY phe;
duke@435 5016 phe.lpData = NULL;
duke@435 5017 while (HeapWalk(heap, &phe) != 0) {
duke@435 5018 if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
duke@435 5019 !HeapValidate(heap, 0, phe.lpData)) {
duke@435 5020 tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
duke@435 5021 tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
duke@435 5022 fatal("corrupted C heap");
duke@435 5023 }
duke@435 5024 }
phh@3379 5025 DWORD err = GetLastError();
duke@435 5026 if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
jcoomes@1845 5027 fatal(err_msg("heap walk aborted with error %d", err));
duke@435 5028 }
duke@435 5029 HeapUnlock(heap);
duke@435 5030 }
duke@435 5031 mallocDebugIntervalCounter = 0;
duke@435 5032 }
duke@435 5033 return true;
duke@435 5034 }
duke@435 5035
duke@435 5036
bobv@2036 5037 bool os::find(address addr, outputStream* st) {
duke@435 5038 // Nothing yet
duke@435 5039 return false;
duke@435 5040 }
duke@435 5041
duke@435 5042 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
duke@435 5043 DWORD exception_code = e->ExceptionRecord->ExceptionCode;
duke@435 5044
duke@435 5045 if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
duke@435 5046 JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
duke@435 5047 PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
duke@435 5048 address addr = (address) exceptionRecord->ExceptionInformation[1];
duke@435 5049
duke@435 5050 if (os::is_memory_serialize_page(thread, addr))
duke@435 5051 return EXCEPTION_CONTINUE_EXECUTION;
duke@435 5052 }
duke@435 5053
duke@435 5054 return EXCEPTION_CONTINUE_SEARCH;
duke@435 5055 }
duke@435 5056
bobv@2036 5057 // We don't build a headless jre for Windows
bobv@2036 5058 bool os::is_headless_jre() { return false; }
bobv@2036 5059
neliasso@4872 5060 static jint initSock() {
ikrylov@2322 5061 WSADATA wsadata;
ikrylov@2322 5062
zgu@3031 5063 if (!os::WinSock2Dll::WinSock2Available()) {
neliasso@4872 5064 jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
zgu@3031 5065 ::GetLastError());
neliasso@4872 5066 return JNI_ERR;
neliasso@4872 5067 }
neliasso@4872 5068
neliasso@4872 5069 if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
neliasso@4872 5070 jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
neliasso@4872 5071 ::GetLastError());
neliasso@4872 5072 return JNI_ERR;
neliasso@4872 5073 }
neliasso@4872 5074 return JNI_OK;
ikrylov@2322 5075 }
ikrylov@2322 5076
phh@3344 5077 struct hostent* os::get_host_by_name(char* name) {
zgu@3031 5078 return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
ikrylov@2322 5079 }
ikrylov@2322 5080
ikrylov@2322 5081 int os::socket_close(int fd) {
twisti@3747 5082 return ::closesocket(fd);
ikrylov@2322 5083 }
ikrylov@2322 5084
ikrylov@2322 5085 int os::socket_available(int fd, jint *pbytes) {
twisti@3747 5086 int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
twisti@3747 5087 return (ret < 0) ? 0 : 1;
ikrylov@2322 5088 }
ikrylov@2322 5089
ikrylov@2322 5090 int os::socket(int domain, int type, int protocol) {
twisti@3747 5091 return ::socket(domain, type, protocol);
ikrylov@2322 5092 }
ikrylov@2322 5093
ikrylov@2322 5094 int os::listen(int fd, int count) {
twisti@3747 5095 return ::listen(fd, count);
ikrylov@2322 5096 }
ikrylov@2322 5097
phh@3344 5098 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
twisti@3747 5099 return ::connect(fd, him, len);
ikrylov@2322 5100 }
ikrylov@2322 5101
phh@3344 5102 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
twisti@3747 5103 return ::accept(fd, him, len);
ikrylov@2322 5104 }
ikrylov@2322 5105
phh@3344 5106 int os::sendto(int fd, char* buf, size_t len, uint flags,
phh@3344 5107 struct sockaddr* to, socklen_t tolen) {
twisti@3747 5108
twisti@3747 5109 return ::sendto(fd, buf, (int)len, flags, to, tolen);
ikrylov@2322 5110 }
ikrylov@2322 5111
phh@3344 5112 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
phh@3344 5113 sockaddr* from, socklen_t* fromlen) {
twisti@3747 5114
twisti@3747 5115 return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
ikrylov@2322 5116 }
ikrylov@2322 5117
phh@3344 5118 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
twisti@3747 5119 return ::recv(fd, buf, (int)nBytes, flags);
ikrylov@2322 5120 }
ikrylov@2322 5121
phh@3344 5122 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
twisti@3747 5123 return ::send(fd, buf, (int)nBytes, flags);
ikrylov@2322 5124 }
ikrylov@2322 5125
phh@3344 5126 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
twisti@3747 5127 return ::send(fd, buf, (int)nBytes, flags);
ikrylov@2322 5128 }
ikrylov@2322 5129
ikrylov@2322 5130 int os::timeout(int fd, long timeout) {
twisti@3747 5131 fd_set tbl;
twisti@3747 5132 struct timeval t;
twisti@3747 5133
twisti@3747 5134 t.tv_sec = timeout / 1000;
twisti@3747 5135 t.tv_usec = (timeout % 1000) * 1000;
twisti@3747 5136
twisti@3747 5137 tbl.fd_count = 1;
twisti@3747 5138 tbl.fd_array[0] = fd;
twisti@3747 5139
twisti@3747 5140 return ::select(1, &tbl, 0, 0, &t);
ikrylov@2322 5141 }
ikrylov@2322 5142
ikrylov@2322 5143 int os::get_host_name(char* name, int namelen) {
twisti@3747 5144 return ::gethostname(name, namelen);
ikrylov@2322 5145 }
ikrylov@2322 5146
ikrylov@2322 5147 int os::socket_shutdown(int fd, int howto) {
twisti@3747 5148 return ::shutdown(fd, howto);
ikrylov@2322 5149 }
ikrylov@2322 5150
phh@3344 5151 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
twisti@3747 5152 return ::bind(fd, him, len);
ikrylov@2322 5153 }
ikrylov@2322 5154
phh@3344 5155 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
twisti@3747 5156 return ::getsockname(fd, him, len);
ikrylov@2322 5157 }
ikrylov@2322 5158
ikrylov@2322 5159 int os::get_sock_opt(int fd, int level, int optname,
phh@3344 5160 char* optval, socklen_t* optlen) {
twisti@3747 5161 return ::getsockopt(fd, level, optname, optval, optlen);
ikrylov@2322 5162 }
ikrylov@2322 5163
ikrylov@2322 5164 int os::set_sock_opt(int fd, int level, int optname,
phh@3344 5165 const char* optval, socklen_t optlen) {
twisti@3747 5166 return ::setsockopt(fd, level, optname, optval, optlen);
ikrylov@2322 5167 }
zgu@3031 5168
sla@5237 5169 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
sla@5237 5170 #if defined(IA32)
sla@5237 5171 # define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
sla@5237 5172 #elif defined (AMD64)
sla@5237 5173 # define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
sla@5237 5174 #endif
sla@5237 5175
sla@5237 5176 // returns true if thread could be suspended,
sla@5237 5177 // false otherwise
sla@5237 5178 static bool do_suspend(HANDLE* h) {
sla@5237 5179 if (h != NULL) {
sla@5237 5180 if (SuspendThread(*h) != ~0) {
sla@5237 5181 return true;
sla@5237 5182 }
sla@5237 5183 }
sla@5237 5184 return false;
sla@5237 5185 }
sla@5237 5186
sla@5237 5187 // resume the thread
sla@5237 5188 // calling resume on an active thread is a no-op
sla@5237 5189 static void do_resume(HANDLE* h) {
sla@5237 5190 if (h != NULL) {
sla@5237 5191 ResumeThread(*h);
sla@5237 5192 }
sla@5237 5193 }
sla@5237 5194
sla@5237 5195 // retrieve a suspend/resume context capable handle
sla@5237 5196 // from the tid. Caller validates handle return value.
sla@5237 5197 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
sla@5237 5198 if (h != NULL) {
sla@5237 5199 *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
sla@5237 5200 }
sla@5237 5201 }
sla@5237 5202
sla@5237 5203 //
sla@5237 5204 // Thread sampling implementation
sla@5237 5205 //
sla@5237 5206 void os::SuspendedThreadTask::internal_do_task() {
sla@5237 5207 CONTEXT ctxt;
sla@5237 5208 HANDLE h = NULL;
sla@5237 5209
sla@5237 5210 // get context capable handle for thread
sla@5237 5211 get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
sla@5237 5212
sla@5237 5213 // sanity
sla@5237 5214 if (h == NULL || h == INVALID_HANDLE_VALUE) {
sla@5237 5215 return;
sla@5237 5216 }
sla@5237 5217
sla@5237 5218 // suspend the thread
sla@5237 5219 if (do_suspend(&h)) {
sla@5237 5220 ctxt.ContextFlags = sampling_context_flags;
sla@5237 5221 // get thread context
sla@5237 5222 GetThreadContext(h, &ctxt);
sla@5237 5223 SuspendedThreadTaskContext context(_thread, &ctxt);
sla@5237 5224 // pass context to Thread Sampling impl
sla@5237 5225 do_task(context);
sla@5237 5226 // resume thread
sla@5237 5227 do_resume(&h);
sla@5237 5228 }
sla@5237 5229
sla@5237 5230 // close handle
sla@5237 5231 CloseHandle(h);
sla@5237 5232 }
sla@5237 5233
zgu@3031 5234
zgu@3031 5235 // Kernel32 API
zgu@3031 5236 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
iveresov@3085 5237 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
iveresov@3085 5238 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
iveresov@3085 5239 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
zgu@3900 5240 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
iveresov@3085 5241
zgu@3031 5242 GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL;
iveresov@3085 5243 VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL;
iveresov@3085 5244 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
iveresov@3085 5245 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
zgu@3900 5246 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
zgu@3900 5247
zgu@3900 5248
zgu@3031 5249 BOOL os::Kernel32Dll::initialized = FALSE;
zgu@3031 5250 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
zgu@3031 5251 assert(initialized && _GetLargePageMinimum != NULL,
zgu@3031 5252 "GetLargePageMinimumAvailable() not yet called");
zgu@3031 5253 return _GetLargePageMinimum();
zgu@3031 5254 }
zgu@3031 5255
zgu@3031 5256 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
zgu@3031 5257 if (!initialized) {
zgu@3031 5258 initialize();
zgu@3031 5259 }
zgu@3031 5260 return _GetLargePageMinimum != NULL;
zgu@3031 5261 }
zgu@3031 5262
iveresov@3085 5263 BOOL os::Kernel32Dll::NumaCallsAvailable() {
iveresov@3085 5264 if (!initialized) {
iveresov@3085 5265 initialize();
iveresov@3085 5266 }
iveresov@3085 5267 return _VirtualAllocExNuma != NULL;
iveresov@3085 5268 }
iveresov@3085 5269
iveresov@3085 5270 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
iveresov@3085 5271 assert(initialized && _VirtualAllocExNuma != NULL,
iveresov@3085 5272 "NUMACallsAvailable() not yet called");
iveresov@3085 5273
iveresov@3085 5274 return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
iveresov@3085 5275 }
iveresov@3085 5276
iveresov@3085 5277 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
iveresov@3085 5278 assert(initialized && _GetNumaHighestNodeNumber != NULL,
iveresov@3085 5279 "NUMACallsAvailable() not yet called");
iveresov@3085 5280
iveresov@3085 5281 return _GetNumaHighestNodeNumber(ptr_highest_node_number);
iveresov@3085 5282 }
iveresov@3085 5283
iveresov@3085 5284 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
iveresov@3085 5285 assert(initialized && _GetNumaNodeProcessorMask != NULL,
iveresov@3085 5286 "NUMACallsAvailable() not yet called");
iveresov@3085 5287
iveresov@3085 5288 return _GetNumaNodeProcessorMask(node, proc_mask);
iveresov@3085 5289 }
iveresov@3085 5290
zgu@3900 5291 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
zgu@3900 5292 ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
zgu@3900 5293 if (!initialized) {
zgu@3900 5294 initialize();
zgu@3900 5295 }
zgu@3900 5296
zgu@3900 5297 if (_RtlCaptureStackBackTrace != NULL) {
zgu@3900 5298 return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
zgu@3900 5299 BackTrace, BackTraceHash);
zgu@3900 5300 } else {
zgu@3900 5301 return 0;
zgu@3900 5302 }
zgu@3900 5303 }
iveresov@3085 5304
iveresov@3085 5305 void os::Kernel32Dll::initializeCommon() {
zgu@3031 5306 if (!initialized) {
zgu@3031 5307 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5308 assert(handle != NULL, "Just check");
zgu@3031 5309 _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
iveresov@3085 5310 _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
iveresov@3085 5311 _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
iveresov@3085 5312 _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
zgu@3900 5313 _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
zgu@3031 5314 initialized = TRUE;
zgu@3031 5315 }
zgu@3031 5316 }
zgu@3031 5317
zgu@3031 5318
iveresov@3085 5319
iveresov@3085 5320 #ifndef JDK6_OR_EARLIER
iveresov@3085 5321
iveresov@3085 5322 void os::Kernel32Dll::initialize() {
iveresov@3085 5323 initializeCommon();
iveresov@3085 5324 }
iveresov@3085 5325
iveresov@3085 5326
zgu@3031 5327 // Kernel32 API
zgu@3031 5328 inline BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5329 return ::SwitchToThread();
zgu@3031 5330 }
zgu@3031 5331
zgu@3031 5332 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5333 return true;
zgu@3031 5334 }
zgu@3031 5335
zgu@3031 5336 // Help tools
zgu@3031 5337 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5338 return true;
zgu@3031 5339 }
zgu@3031 5340
zgu@3031 5341 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5342 return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5343 }
zgu@3031 5344
zgu@3031 5345 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5346 return ::Module32First(hSnapshot, lpme);
zgu@3031 5347 }
zgu@3031 5348
zgu@3031 5349 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5350 return ::Module32Next(hSnapshot, lpme);
zgu@3031 5351 }
zgu@3031 5352
zgu@3031 5353
zgu@3031 5354 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5355 return true;
zgu@3031 5356 }
zgu@3031 5357
zgu@3031 5358 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5359 ::GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5360 }
zgu@3031 5361
zgu@3031 5362 // PSAPI API
zgu@3031 5363 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5364 return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5365 }
zgu@3031 5366
zgu@3031 5367 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5368 return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5369 }
zgu@3031 5370
zgu@3031 5371 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5372 return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5373 }
zgu@3031 5374
zgu@3031 5375 inline BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5376 return true;
zgu@3031 5377 }
zgu@3031 5378
zgu@3031 5379
zgu@3031 5380 // WinSock2 API
zgu@3031 5381 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5382 return ::WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5383 }
zgu@3031 5384
zgu@3031 5385 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5386 return ::gethostbyname(name);
zgu@3031 5387 }
zgu@3031 5388
zgu@3031 5389 inline BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5390 return true;
zgu@3031 5391 }
zgu@3031 5392
zgu@3031 5393 // Advapi API
zgu@3031 5394 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5395 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5396 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5397 return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5398 BufferLength, PreviousState, ReturnLength);
zgu@3031 5399 }
zgu@3031 5400
zgu@3031 5401 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5402 PHANDLE TokenHandle) {
zgu@3031 5403 return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5404 }
zgu@3031 5405
zgu@3031 5406 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5407 return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5408 }
zgu@3031 5409
zgu@3031 5410 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5411 return true;
zgu@3031 5412 }
zgu@3031 5413
bpittore@5585 5414 void* os::get_default_process_handle() {
bpittore@5585 5415 return (void*)GetModuleHandle(NULL);
bpittore@5585 5416 }
bpittore@5585 5417
bpittore@5585 5418 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
bpittore@5585 5419 // which is used to find statically linked in agents.
bpittore@5585 5420 // Additionally for windows, takes into account __stdcall names.
bpittore@5585 5421 // Parameters:
bpittore@5585 5422 // sym_name: Symbol in library we are looking for
bpittore@5585 5423 // lib_name: Name of library to look in, NULL for shared libs.
bpittore@5585 5424 // is_absolute_path == true if lib_name is absolute path to agent
bpittore@5585 5425 // such as "C:/a/b/L.dll"
bpittore@5585 5426 // == false if only the base name of the library is passed in
bpittore@5585 5427 // such as "L"
bpittore@5585 5428 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
bpittore@5585 5429 bool is_absolute_path) {
bpittore@5585 5430 char *agent_entry_name;
bpittore@5585 5431 size_t len;
bpittore@5585 5432 size_t name_len;
bpittore@5585 5433 size_t prefix_len = strlen(JNI_LIB_PREFIX);
bpittore@5585 5434 size_t suffix_len = strlen(JNI_LIB_SUFFIX);
bpittore@5585 5435 const char *start;
bpittore@5585 5436
bpittore@5585 5437 if (lib_name != NULL) {
bpittore@5585 5438 len = name_len = strlen(lib_name);
bpittore@5585 5439 if (is_absolute_path) {
bpittore@5585 5440 // Need to strip path, prefix and suffix
bpittore@5585 5441 if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
bpittore@5585 5442 lib_name = ++start;
bpittore@5585 5443 } else {
bpittore@5688 5444 // Need to check for drive prefix
bpittore@5585 5445 if ((start = strchr(lib_name, ':')) != NULL) {
bpittore@5585 5446 lib_name = ++start;
bpittore@5585 5447 }
bpittore@5585 5448 }
bpittore@5585 5449 if (len <= (prefix_len + suffix_len)) {
bpittore@5585 5450 return NULL;
bpittore@5585 5451 }
bpittore@5585 5452 lib_name += prefix_len;
bpittore@5585 5453 name_len = strlen(lib_name) - suffix_len;
bpittore@5585 5454 }
bpittore@5585 5455 }
bpittore@5585 5456 len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
bpittore@5585 5457 agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
bpittore@5585 5458 if (agent_entry_name == NULL) {
bpittore@5585 5459 return NULL;
bpittore@5585 5460 }
bpittore@5585 5461 if (lib_name != NULL) {
bpittore@5585 5462 const char *p = strrchr(sym_name, '@');
bpittore@5585 5463 if (p != NULL && p != sym_name) {
bpittore@5585 5464 // sym_name == _Agent_OnLoad@XX
bpittore@5585 5465 strncpy(agent_entry_name, sym_name, (p - sym_name));
bpittore@5585 5466 agent_entry_name[(p-sym_name)] = '\0';
bpittore@5585 5467 // agent_entry_name == _Agent_OnLoad
bpittore@5585 5468 strcat(agent_entry_name, "_");
bpittore@5585 5469 strncat(agent_entry_name, lib_name, name_len);
bpittore@5585 5470 strcat(agent_entry_name, p);
bpittore@5585 5471 // agent_entry_name == _Agent_OnLoad_lib_name@XX
bpittore@5585 5472 } else {
bpittore@5585 5473 strcpy(agent_entry_name, sym_name);
bpittore@5585 5474 strcat(agent_entry_name, "_");
bpittore@5585 5475 strncat(agent_entry_name, lib_name, name_len);
bpittore@5585 5476 }
bpittore@5585 5477 } else {
bpittore@5585 5478 strcpy(agent_entry_name, sym_name);
bpittore@5585 5479 }
bpittore@5585 5480 return agent_entry_name;
bpittore@5585 5481 }
bpittore@5585 5482
zgu@3031 5483 #else
zgu@3031 5484 // Kernel32 API
zgu@3031 5485 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
zgu@3031 5486 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
zgu@3031 5487 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5488 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
zgu@3031 5489 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
zgu@3031 5490
zgu@3031 5491 SwitchToThread_Fn os::Kernel32Dll::_SwitchToThread = NULL;
zgu@3031 5492 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
zgu@3031 5493 Module32First_Fn os::Kernel32Dll::_Module32First = NULL;
zgu@3031 5494 Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL;
zgu@3031 5495 GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL;
zgu@3031 5496
zgu@3031 5497 void os::Kernel32Dll::initialize() {
zgu@3031 5498 if (!initialized) {
zgu@3031 5499 HMODULE handle = ::GetModuleHandle("Kernel32.dll");
zgu@3031 5500 assert(handle != NULL, "Just check");
zgu@3031 5501
zgu@3031 5502 _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
zgu@3031 5503 _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
zgu@3031 5504 ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
zgu@3031 5505 _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
zgu@3031 5506 _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
zgu@3031 5507 _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
iveresov@3085 5508 initializeCommon(); // resolve the functions that always need resolving
zgu@3031 5509
zgu@3031 5510 initialized = TRUE;
zgu@3031 5511 }
zgu@3031 5512 }
zgu@3031 5513
zgu@3031 5514 BOOL os::Kernel32Dll::SwitchToThread() {
zgu@3031 5515 assert(initialized && _SwitchToThread != NULL,
zgu@3031 5516 "SwitchToThreadAvailable() not yet called");
zgu@3031 5517 return _SwitchToThread();
zgu@3031 5518 }
zgu@3031 5519
zgu@3031 5520
zgu@3031 5521 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
zgu@3031 5522 if (!initialized) {
zgu@3031 5523 initialize();
zgu@3031 5524 }
zgu@3031 5525 return _SwitchToThread != NULL;
zgu@3031 5526 }
zgu@3031 5527
zgu@3031 5528 // Help tools
zgu@3031 5529 BOOL os::Kernel32Dll::HelpToolsAvailable() {
zgu@3031 5530 if (!initialized) {
zgu@3031 5531 initialize();
zgu@3031 5532 }
zgu@3031 5533 return _CreateToolhelp32Snapshot != NULL &&
zgu@3031 5534 _Module32First != NULL &&
zgu@3031 5535 _Module32Next != NULL;
zgu@3031 5536 }
zgu@3031 5537
zgu@3031 5538 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
zgu@3031 5539 assert(initialized && _CreateToolhelp32Snapshot != NULL,
zgu@3031 5540 "HelpToolsAvailable() not yet called");
zgu@3031 5541
zgu@3031 5542 return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
zgu@3031 5543 }
zgu@3031 5544
zgu@3031 5545 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5546 assert(initialized && _Module32First != NULL,
zgu@3031 5547 "HelpToolsAvailable() not yet called");
zgu@3031 5548
zgu@3031 5549 return _Module32First(hSnapshot, lpme);
zgu@3031 5550 }
zgu@3031 5551
zgu@3031 5552 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
zgu@3031 5553 assert(initialized && _Module32Next != NULL,
zgu@3031 5554 "HelpToolsAvailable() not yet called");
zgu@3031 5555
zgu@3031 5556 return _Module32Next(hSnapshot, lpme);
zgu@3031 5557 }
zgu@3031 5558
zgu@3031 5559
zgu@3031 5560 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
zgu@3031 5561 if (!initialized) {
zgu@3031 5562 initialize();
zgu@3031 5563 }
zgu@3031 5564 return _GetNativeSystemInfo != NULL;
zgu@3031 5565 }
zgu@3031 5566
zgu@3031 5567 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
zgu@3031 5568 assert(initialized && _GetNativeSystemInfo != NULL,
zgu@3031 5569 "GetNativeSystemInfoAvailable() not yet called");
zgu@3031 5570
zgu@3031 5571 _GetNativeSystemInfo(lpSystemInfo);
zgu@3031 5572 }
zgu@3031 5573
zgu@3031 5574 // PSAPI API
zgu@3031 5575
zgu@3031 5576
zgu@3031 5577 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
zgu@3031 5578 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
zgu@3031 5579 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
zgu@3031 5580
zgu@3031 5581 EnumProcessModules_Fn os::PSApiDll::_EnumProcessModules = NULL;
zgu@3031 5582 GetModuleFileNameEx_Fn os::PSApiDll::_GetModuleFileNameEx = NULL;
zgu@3031 5583 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
zgu@3031 5584 BOOL os::PSApiDll::initialized = FALSE;
zgu@3031 5585
zgu@3031 5586 void os::PSApiDll::initialize() {
zgu@3031 5587 if (!initialized) {
zgu@3031 5588 HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
zgu@3031 5589 if (handle != NULL) {
zgu@3031 5590 _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
zgu@3031 5591 "EnumProcessModules");
zgu@3031 5592 _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
zgu@3031 5593 "GetModuleFileNameExA");
zgu@3031 5594 _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
zgu@3031 5595 "GetModuleInformation");
zgu@3031 5596 }
zgu@3031 5597 initialized = TRUE;
zgu@3031 5598 }
zgu@3031 5599 }
zgu@3031 5600
zgu@3031 5601
zgu@3031 5602
zgu@3031 5603 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
zgu@3031 5604 assert(initialized && _EnumProcessModules != NULL,
zgu@3031 5605 "PSApiAvailable() not yet called");
zgu@3031 5606 return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
zgu@3031 5607 }
zgu@3031 5608
zgu@3031 5609 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
zgu@3031 5610 assert(initialized && _GetModuleFileNameEx != NULL,
zgu@3031 5611 "PSApiAvailable() not yet called");
zgu@3031 5612 return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
zgu@3031 5613 }
zgu@3031 5614
zgu@3031 5615 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
zgu@3031 5616 assert(initialized && _GetModuleInformation != NULL,
zgu@3031 5617 "PSApiAvailable() not yet called");
zgu@3031 5618 return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
zgu@3031 5619 }
zgu@3031 5620
zgu@3031 5621 BOOL os::PSApiDll::PSApiAvailable() {
zgu@3031 5622 if (!initialized) {
zgu@3031 5623 initialize();
zgu@3031 5624 }
zgu@3031 5625 return _EnumProcessModules != NULL &&
zgu@3031 5626 _GetModuleFileNameEx != NULL &&
zgu@3031 5627 _GetModuleInformation != NULL;
zgu@3031 5628 }
zgu@3031 5629
zgu@3031 5630
zgu@3031 5631 // WinSock2 API
zgu@3031 5632 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
zgu@3031 5633 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
zgu@3031 5634
zgu@3031 5635 WSAStartup_Fn os::WinSock2Dll::_WSAStartup = NULL;
zgu@3031 5636 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
zgu@3031 5637 BOOL os::WinSock2Dll::initialized = FALSE;
zgu@3031 5638
zgu@3031 5639 void os::WinSock2Dll::initialize() {
zgu@3031 5640 if (!initialized) {
zgu@3031 5641 HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
zgu@3031 5642 if (handle != NULL) {
zgu@3031 5643 _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
zgu@3031 5644 _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
zgu@3031 5645 }
zgu@3031 5646 initialized = TRUE;
zgu@3031 5647 }
zgu@3031 5648 }
zgu@3031 5649
zgu@3031 5650
zgu@3031 5651 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
zgu@3031 5652 assert(initialized && _WSAStartup != NULL,
zgu@3031 5653 "WinSock2Available() not yet called");
zgu@3031 5654 return _WSAStartup(wVersionRequested, lpWSAData);
zgu@3031 5655 }
zgu@3031 5656
zgu@3031 5657 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
zgu@3031 5658 assert(initialized && _gethostbyname != NULL,
zgu@3031 5659 "WinSock2Available() not yet called");
zgu@3031 5660 return _gethostbyname(name);
zgu@3031 5661 }
zgu@3031 5662
zgu@3031 5663 BOOL os::WinSock2Dll::WinSock2Available() {
zgu@3031 5664 if (!initialized) {
zgu@3031 5665 initialize();
zgu@3031 5666 }
zgu@3031 5667 return _WSAStartup != NULL &&
zgu@3031 5668 _gethostbyname != NULL;
zgu@3031 5669 }
zgu@3031 5670
zgu@3031 5671 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
zgu@3031 5672 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
zgu@3031 5673 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
zgu@3031 5674
zgu@3031 5675 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
zgu@3031 5676 OpenProcessToken_Fn os::Advapi32Dll::_OpenProcessToken = NULL;
zgu@3031 5677 LookupPrivilegeValue_Fn os::Advapi32Dll::_LookupPrivilegeValue = NULL;
zgu@3031 5678 BOOL os::Advapi32Dll::initialized = FALSE;
zgu@3031 5679
zgu@3031 5680 void os::Advapi32Dll::initialize() {
zgu@3031 5681 if (!initialized) {
zgu@3031 5682 HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
zgu@3031 5683 if (handle != NULL) {
zgu@3031 5684 _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
zgu@3031 5685 "AdjustTokenPrivileges");
zgu@3031 5686 _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
zgu@3031 5687 "OpenProcessToken");
zgu@3031 5688 _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
zgu@3032 5689 "LookupPrivilegeValueA");
zgu@3031 5690 }
zgu@3031 5691 initialized = TRUE;
zgu@3031 5692 }
zgu@3031 5693 }
zgu@3031 5694
zgu@3031 5695 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
zgu@3031 5696 BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
zgu@3031 5697 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
zgu@3031 5698 assert(initialized && _AdjustTokenPrivileges != NULL,
zgu@3031 5699 "AdvapiAvailable() not yet called");
zgu@3031 5700 return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
zgu@3031 5701 BufferLength, PreviousState, ReturnLength);
zgu@3031 5702 }
zgu@3031 5703
zgu@3031 5704 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
zgu@3031 5705 PHANDLE TokenHandle) {
zgu@3031 5706 assert(initialized && _OpenProcessToken != NULL,
zgu@3031 5707 "AdvapiAvailable() not yet called");
zgu@3031 5708 return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
zgu@3031 5709 }
zgu@3031 5710
zgu@3031 5711 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
zgu@3031 5712 assert(initialized && _LookupPrivilegeValue != NULL,
zgu@3031 5713 "AdvapiAvailable() not yet called");
zgu@3031 5714 return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
zgu@3031 5715 }
zgu@3031 5716
zgu@3031 5717 BOOL os::Advapi32Dll::AdvapiAvailable() {
zgu@3031 5718 if (!initialized) {
zgu@3031 5719 initialize();
zgu@3031 5720 }
zgu@3031 5721 return _AdjustTokenPrivileges != NULL &&
zgu@3031 5722 _OpenProcessToken != NULL &&
zgu@3031 5723 _LookupPrivilegeValue != NULL;
zgu@3031 5724 }
zgu@3031 5725
zgu@3031 5726 #endif
stefank@5578 5727
stefank@5578 5728 #ifndef PRODUCT
tschatzl@5696 5729
tschatzl@5696 5730 // test the code path in reserve_memory_special() that tries to allocate memory in a single
tschatzl@5696 5731 // contiguous memory block at a particular address.
tschatzl@5696 5732 // The test first tries to find a good approximate address to allocate at by using the same
tschatzl@5696 5733 // method to allocate some memory at any address. The test then tries to allocate memory in
tschatzl@5696 5734 // the vicinity (not directly after it to avoid possible by-chance use of that location)
tschatzl@5696 5735 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
tschatzl@5696 5736 // the previously allocated memory is available for allocation. The only actual failure
tschatzl@5696 5737 // that is reported is when the test tries to allocate at a particular location but gets a
tschatzl@5696 5738 // different valid one. A NULL return value at this point is not considered an error but may
tschatzl@5696 5739 // be legitimate.
tschatzl@5696 5740 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
stefank@5578 5741 void TestReserveMemorySpecial_test() {
tschatzl@5696 5742 if (!UseLargePages) {
tschatzl@5696 5743 if (VerboseInternalVMTests) {
tschatzl@5696 5744 gclog_or_tty->print("Skipping test because large pages are disabled");
tschatzl@5696 5745 }
tschatzl@5696 5746 return;
tschatzl@5696 5747 }
tschatzl@5696 5748 // save current value of globals
tschatzl@5696 5749 bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
tschatzl@5696 5750 bool old_use_numa_interleaving = UseNUMAInterleaving;
tschatzl@5696 5751
tschatzl@5696 5752 // set globals to make sure we hit the correct code path
tschatzl@5696 5753 UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
tschatzl@5696 5754
tschatzl@5696 5755 // do an allocation at an address selected by the OS to get a good one.
tschatzl@5696 5756 const size_t large_allocation_size = os::large_page_size() * 4;
tschatzl@5696 5757 char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
tschatzl@5696 5758 if (result == NULL) {
tschatzl@5696 5759 if (VerboseInternalVMTests) {
tschatzl@5696 5760 gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
tschatzl@5696 5761 large_allocation_size);
tschatzl@5696 5762 }
tschatzl@5696 5763 } else {
tschatzl@5696 5764 os::release_memory_special(result, large_allocation_size);
tschatzl@5696 5765
tschatzl@5696 5766 // allocate another page within the recently allocated memory area which seems to be a good location. At least
tschatzl@5696 5767 // we managed to get it once.
tschatzl@5696 5768 const size_t expected_allocation_size = os::large_page_size();
tschatzl@5696 5769 char* expected_location = result + os::large_page_size();
tschatzl@5696 5770 char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
tschatzl@5696 5771 if (actual_location == NULL) {
tschatzl@5696 5772 if (VerboseInternalVMTests) {
tschatzl@5696 5773 gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
tschatzl@5696 5774 expected_location, large_allocation_size);
tschatzl@5696 5775 }
tschatzl@5696 5776 } else {
tschatzl@5696 5777 // release memory
tschatzl@5696 5778 os::release_memory_special(actual_location, expected_allocation_size);
tschatzl@5696 5779 // only now check, after releasing any memory to avoid any leaks.
tschatzl@5696 5780 assert(actual_location == expected_location,
tschatzl@5696 5781 err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
tschatzl@5696 5782 expected_location, expected_allocation_size, actual_location));
tschatzl@5696 5783 }
tschatzl@5696 5784 }
tschatzl@5696 5785
tschatzl@5696 5786 // restore globals
tschatzl@5696 5787 UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
tschatzl@5696 5788 UseNUMAInterleaving = old_use_numa_interleaving;
tschatzl@5696 5789 }
tschatzl@5696 5790 #endif // PRODUCT
tschatzl@5696 5791

mercurial