src/share/vm/gc_interface/collectedHeap.cpp

Fri, 07 Sep 2012 12:04:16 -0400

author
coleenp
date
Fri, 07 Sep 2012 12:04:16 -0400
changeset 4047
aed758eda82a
parent 4037
da91efe96a93
child 4299
f34d701e952e
permissions
-rw-r--r--

7195833: NPG: Rename instanceClassLoaderKlass, instanceRefKlass and instanceMirrorKlass
Summary: Simple renaming to be consistent with instanceKlass->InstanceKlass renaming
Reviewed-by: stefank, jmasa

duke@435 1 /*
never@3499 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.hpp"
stefank@2314 29 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 30 #include "oops/oop.inline.hpp"
never@3205 31 #include "oops/instanceMirrorKlass.hpp"
stefank@2314 32 #include "runtime/init.hpp"
stefank@2314 33 #include "services/heapDumper.hpp"
stefank@2314 34 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 35 # include "thread_linux.inline.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 38 # include "thread_solaris.inline.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 41 # include "thread_windows.inline.hpp"
stefank@2314 42 #endif
never@3156 43 #ifdef TARGET_OS_FAMILY_bsd
never@3156 44 # include "thread_bsd.inline.hpp"
never@3156 45 #endif
duke@435 46
duke@435 47
duke@435 48 #ifdef ASSERT
duke@435 49 int CollectedHeap::_fire_out_of_memory_count = 0;
duke@435 50 #endif
duke@435 51
jcoomes@916 52 size_t CollectedHeap::_filler_array_max_size = 0;
jcoomes@916 53
never@3499 54 template <>
never@3499 55 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
never@3499 56 st->print_cr("GC heap %s", m.is_before ? "before" : "after");
never@3499 57 st->print_raw(m);
never@3499 58 }
never@3499 59
never@3499 60 void GCHeapLog::log_heap(bool before) {
never@3499 61 if (!should_log()) {
never@3499 62 return;
never@3499 63 }
never@3499 64
never@3571 65 double timestamp = fetch_timestamp();
never@3499 66 MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
never@3499 67 int index = compute_log_index();
never@3499 68 _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
never@3499 69 _records[index].timestamp = timestamp;
never@3499 70 _records[index].data.is_before = before;
never@3499 71 stringStream st(_records[index].data.buffer(), _records[index].data.size());
never@3499 72 if (before) {
never@3571 73 Universe::print_heap_before_gc(&st, true);
never@3499 74 } else {
never@3571 75 Universe::print_heap_after_gc(&st, true);
never@3499 76 }
never@3499 77 }
never@3499 78
duke@435 79 // Memory state functions.
duke@435 80
jmasa@2188 81
jmasa@2188 82 CollectedHeap::CollectedHeap() : _n_par_threads(0)
jmasa@2188 83
jcoomes@916 84 {
jcoomes@916 85 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
jcoomes@916 86 const size_t elements_per_word = HeapWordSize / sizeof(jint);
jcoomes@916 87 _filler_array_max_size = align_object_size(filler_array_hdr_size() +
brutisso@3668 88 max_len / elements_per_word);
jcoomes@916 89
jcoomes@916 90 _barrier_set = NULL;
jcoomes@916 91 _is_gc_active = false;
jcoomes@916 92 _total_collections = _total_full_collections = 0;
jcoomes@916 93 _gc_cause = _gc_lastcause = GCCause::_no_gc;
duke@435 94 NOT_PRODUCT(_promotion_failure_alot_count = 0;)
duke@435 95 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
duke@435 96
duke@435 97 if (UsePerfData) {
duke@435 98 EXCEPTION_MARK;
duke@435 99
duke@435 100 // create the gc cause jvmstat counters
duke@435 101 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
duke@435 102 80, GCCause::to_string(_gc_cause), CHECK);
duke@435 103
duke@435 104 _perf_gc_lastcause =
duke@435 105 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
duke@435 106 80, GCCause::to_string(_gc_lastcause), CHECK);
duke@435 107 }
ysr@1601 108 _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
never@3499 109 // Create the ring log
never@3499 110 if (LogEvents) {
never@3499 111 _gc_heap_log = new GCHeapLog();
never@3499 112 } else {
never@3499 113 _gc_heap_log = NULL;
never@3499 114 }
duke@435 115 }
duke@435 116
coleenp@4037 117 // This interface assumes that it's being called by the
coleenp@4037 118 // vm thread. It collects the heap assuming that the
coleenp@4037 119 // heap lock is already held and that we are executing in
coleenp@4037 120 // the context of the vm thread.
coleenp@4037 121 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
coleenp@4037 122 assert(Thread::current()->is_VM_thread(), "Precondition#1");
coleenp@4037 123 assert(Heap_lock->is_locked(), "Precondition#2");
coleenp@4037 124 GCCauseSetter gcs(this, cause);
coleenp@4037 125 switch (cause) {
coleenp@4037 126 case GCCause::_heap_inspection:
coleenp@4037 127 case GCCause::_heap_dump:
coleenp@4037 128 case GCCause::_metadata_GC_threshold : {
coleenp@4037 129 HandleMark hm;
coleenp@4037 130 do_full_collection(false); // don't clear all soft refs
coleenp@4037 131 break;
coleenp@4037 132 }
coleenp@4037 133 case GCCause::_last_ditch_collection: {
coleenp@4037 134 HandleMark hm;
coleenp@4037 135 do_full_collection(true); // do clear all soft refs
coleenp@4037 136 break;
coleenp@4037 137 }
coleenp@4037 138 default:
coleenp@4037 139 ShouldNotReachHere(); // Unexpected use of this function
coleenp@4037 140 }
coleenp@4037 141 }
coleenp@4037 142 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(
coleenp@4037 143 ClassLoaderData* loader_data,
coleenp@4037 144 size_t size, Metaspace::MetadataType mdtype) {
coleenp@4037 145 return collector_policy()->satisfy_failed_metadata_allocation(loader_data, size, mdtype);
coleenp@4037 146 }
coleenp@4037 147
coleenp@4037 148
ysr@1601 149 void CollectedHeap::pre_initialize() {
ysr@1601 150 // Used for ReduceInitialCardMarks (when COMPILER2 is used);
ysr@1601 151 // otherwise remains unused.
ysr@1903 152 #ifdef COMPILER2
ysr@1629 153 _defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers()
ysr@1629 154 && (DeferInitialCardMark || card_mark_must_follow_store());
ysr@1601 155 #else
ysr@1601 156 assert(_defer_initial_card_mark == false, "Who would set it?");
ysr@1601 157 #endif
ysr@1601 158 }
duke@435 159
duke@435 160 #ifndef PRODUCT
duke@435 161 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 162 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 163 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 164 assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
duke@435 165 "Found badHeapWordValue in post-allocation check");
duke@435 166 }
duke@435 167 }
duke@435 168 }
duke@435 169
ysr@2533 170 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 171 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 172 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 173 assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
duke@435 174 "Found non badHeapWordValue in pre-allocation check");
duke@435 175 }
duke@435 176 }
duke@435 177 }
duke@435 178 #endif // PRODUCT
duke@435 179
duke@435 180 #ifdef ASSERT
duke@435 181 void CollectedHeap::check_for_valid_allocation_state() {
duke@435 182 Thread *thread = Thread::current();
duke@435 183 // How to choose between a pending exception and a potential
duke@435 184 // OutOfMemoryError? Don't allow pending exceptions.
duke@435 185 // This is a VM policy failure, so how do we exhaustively test it?
duke@435 186 assert(!thread->has_pending_exception(),
duke@435 187 "shouldn't be allocating with pending exception");
duke@435 188 if (StrictSafepointChecks) {
duke@435 189 assert(thread->allow_allocation(),
duke@435 190 "Allocation done by thread for which allocation is blocked "
duke@435 191 "by No_Allocation_Verifier!");
duke@435 192 // Allocation of an oop can always invoke a safepoint,
duke@435 193 // hence, the true argument
duke@435 194 thread->check_for_valid_safepoint_state(true);
duke@435 195 }
duke@435 196 }
duke@435 197 #endif
duke@435 198
duke@435 199 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
duke@435 200
duke@435 201 // Retain tlab and allocate object in shared space if
duke@435 202 // the amount free in the tlab is too large to discard.
duke@435 203 if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
duke@435 204 thread->tlab().record_slow_allocation(size);
duke@435 205 return NULL;
duke@435 206 }
duke@435 207
duke@435 208 // Discard tlab and allocate a new one.
duke@435 209 // To minimize fragmentation, the last TLAB may be smaller than the rest.
duke@435 210 size_t new_tlab_size = thread->tlab().compute_size(size);
duke@435 211
duke@435 212 thread->tlab().clear_before_allocation();
duke@435 213
duke@435 214 if (new_tlab_size == 0) {
duke@435 215 return NULL;
duke@435 216 }
duke@435 217
duke@435 218 // Allocate a new TLAB...
duke@435 219 HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
duke@435 220 if (obj == NULL) {
duke@435 221 return NULL;
duke@435 222 }
duke@435 223 if (ZeroTLAB) {
duke@435 224 // ..and clear it.
duke@435 225 Copy::zero_to_words(obj, new_tlab_size);
duke@435 226 } else {
kvn@3092 227 // ...and zap just allocated object.
kvn@3092 228 #ifdef ASSERT
kvn@3092 229 // Skip mangling the space corresponding to the object header to
kvn@3092 230 // ensure that the returned space is not considered parsable by
kvn@3092 231 // any concurrent GC thread.
kvn@3092 232 size_t hdr_size = oopDesc::header_size();
kvn@3092 233 Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
kvn@3092 234 #endif // ASSERT
duke@435 235 }
duke@435 236 thread->tlab().fill(obj, obj + size, new_tlab_size);
duke@435 237 return obj;
duke@435 238 }
duke@435 239
ysr@1462 240 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
ysr@1462 241 MemRegion deferred = thread->deferred_card_mark();
ysr@1462 242 if (!deferred.is_empty()) {
ysr@1601 243 assert(_defer_initial_card_mark, "Otherwise should be empty");
ysr@1462 244 {
ysr@1462 245 // Verify that the storage points to a parsable object in heap
ysr@1462 246 DEBUG_ONLY(oop old_obj = oop(deferred.start());)
ysr@1462 247 assert(is_in(old_obj), "Not in allocated heap");
ysr@1462 248 assert(!can_elide_initializing_store_barrier(old_obj),
ysr@1601 249 "Else should have been filtered in new_store_pre_barrier()");
ysr@1462 250 assert(old_obj->is_oop(true), "Not an oop");
ysr@1462 251 assert(deferred.word_size() == (size_t)(old_obj->size()),
ysr@1462 252 "Mismatch: multiple objects?");
ysr@1462 253 }
ysr@1462 254 BarrierSet* bs = barrier_set();
ysr@1462 255 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1462 256 bs->write_region(deferred);
ysr@1462 257 // "Clear" the deferred_card_mark field
ysr@1462 258 thread->set_deferred_card_mark(MemRegion());
ysr@1462 259 }
ysr@1462 260 assert(thread->deferred_card_mark().is_empty(), "invariant");
ysr@1462 261 }
ysr@1462 262
ysr@1462 263 // Helper for ReduceInitialCardMarks. For performance,
ysr@1462 264 // compiled code may elide card-marks for initializing stores
ysr@1462 265 // to a newly allocated object along the fast-path. We
ysr@1462 266 // compensate for such elided card-marks as follows:
ysr@1462 267 // (a) Generational, non-concurrent collectors, such as
ysr@1462 268 // GenCollectedHeap(ParNew,DefNew,Tenured) and
ysr@1462 269 // ParallelScavengeHeap(ParallelGC, ParallelOldGC)
ysr@1462 270 // need the card-mark if and only if the region is
ysr@1462 271 // in the old gen, and do not care if the card-mark
ysr@1462 272 // succeeds or precedes the initializing stores themselves,
ysr@1462 273 // so long as the card-mark is completed before the next
ysr@1462 274 // scavenge. For all these cases, we can do a card mark
ysr@1462 275 // at the point at which we do a slow path allocation
ysr@1601 276 // in the old gen, i.e. in this call.
ysr@1462 277 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
ysr@1462 278 // in addition that the card-mark for an old gen allocated
ysr@1462 279 // object strictly follow any associated initializing stores.
ysr@1462 280 // In these cases, the memRegion remembered below is
ysr@1462 281 // used to card-mark the entire region either just before the next
ysr@1462 282 // slow-path allocation by this thread or just before the next scavenge or
ysr@1462 283 // CMS-associated safepoint, whichever of these events happens first.
ysr@1462 284 // (The implicit assumption is that the object has been fully
ysr@1462 285 // initialized by this point, a fact that we assert when doing the
ysr@1462 286 // card-mark.)
ysr@1462 287 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
ysr@1462 288 // G1 concurrent marking is in progress an SATB (pre-write-)barrier is
ysr@1462 289 // is used to remember the pre-value of any store. Initializing
ysr@1462 290 // stores will not need this barrier, so we need not worry about
ysr@1462 291 // compensating for the missing pre-barrier here. Turning now
ysr@1462 292 // to the post-barrier, we note that G1 needs a RS update barrier
ysr@1462 293 // which simply enqueues a (sequence of) dirty cards which may
ysr@1462 294 // optionally be refined by the concurrent update threads. Note
ysr@1462 295 // that this barrier need only be applied to a non-young write,
ysr@1462 296 // but, like in CMS, because of the presence of concurrent refinement
ysr@1462 297 // (much like CMS' precleaning), must strictly follow the oop-store.
ysr@1462 298 // Thus, using the same protocol for maintaining the intended
ysr@1601 299 // invariants turns out, serendepitously, to be the same for both
ysr@1601 300 // G1 and CMS.
ysr@1462 301 //
ysr@1601 302 // For any future collector, this code should be reexamined with
ysr@1601 303 // that specific collector in mind, and the documentation above suitably
ysr@1601 304 // extended and updated.
ysr@1601 305 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
ysr@1462 306 // If a previous card-mark was deferred, flush it now.
ysr@1462 307 flush_deferred_store_barrier(thread);
ysr@1462 308 if (can_elide_initializing_store_barrier(new_obj)) {
ysr@1462 309 // The deferred_card_mark region should be empty
ysr@1462 310 // following the flush above.
ysr@1462 311 assert(thread->deferred_card_mark().is_empty(), "Error");
ysr@1462 312 } else {
ysr@1601 313 MemRegion mr((HeapWord*)new_obj, new_obj->size());
ysr@1601 314 assert(!mr.is_empty(), "Error");
ysr@1601 315 if (_defer_initial_card_mark) {
ysr@1601 316 // Defer the card mark
ysr@1601 317 thread->set_deferred_card_mark(mr);
ysr@1601 318 } else {
ysr@1601 319 // Do the card mark
ysr@1601 320 BarrierSet* bs = barrier_set();
ysr@1601 321 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1601 322 bs->write_region(mr);
ysr@1601 323 }
ysr@1462 324 }
ysr@1462 325 return new_obj;
ysr@1462 326 }
ysr@1462 327
jcoomes@916 328 size_t CollectedHeap::filler_array_hdr_size() {
kvn@1926 329 return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
jcoomes@916 330 }
jcoomes@916 331
jcoomes@916 332 size_t CollectedHeap::filler_array_min_size() {
kvn@1926 333 return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
jcoomes@916 334 }
jcoomes@916 335
jcoomes@916 336 #ifdef ASSERT
jcoomes@916 337 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
jcoomes@916 338 {
jcoomes@916 339 assert(words >= min_fill_size(), "too small to fill");
jcoomes@916 340 assert(words % MinObjAlignment == 0, "unaligned size");
jcoomes@916 341 assert(Universe::heap()->is_in_reserved(start), "not in heap");
jcoomes@916 342 assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
jcoomes@916 343 }
jcoomes@916 344
johnc@1600 345 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 346 {
johnc@1600 347 if (ZapFillerObjects && zap) {
jcoomes@916 348 Copy::fill_to_words(start + filler_array_hdr_size(),
jcoomes@916 349 words - filler_array_hdr_size(), 0XDEAFBABE);
jcoomes@916 350 }
jcoomes@916 351 }
jcoomes@916 352 #endif // ASSERT
jcoomes@916 353
jcoomes@916 354 void
johnc@1600 355 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 356 {
jcoomes@916 357 assert(words >= filler_array_min_size(), "too small for an array");
jcoomes@916 358 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 359
jcoomes@916 360 const size_t payload_size = words - filler_array_hdr_size();
jcoomes@916 361 const size_t len = payload_size * HeapWordSize / sizeof(jint);
brutisso@3668 362 assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
jcoomes@916 363
jcoomes@916 364 // Set the length first for concurrent GC.
jcoomes@916 365 ((arrayOop)start)->set_length((int)len);
brutisso@3675 366 post_allocation_setup_common(Universe::intArrayKlassObj(), start);
johnc@1600 367 DEBUG_ONLY(zap_filler_array(start, words, zap);)
jcoomes@916 368 }
jcoomes@916 369
jcoomes@916 370 void
johnc@1600 371 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
jcoomes@916 372 {
jcoomes@916 373 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 374
jcoomes@916 375 if (words >= filler_array_min_size()) {
johnc@1600 376 fill_with_array(start, words, zap);
jcoomes@916 377 } else if (words > 0) {
jcoomes@916 378 assert(words == min_fill_size(), "unaligned size");
brutisso@3675 379 post_allocation_setup_common(SystemDictionary::Object_klass(), start);
jcoomes@916 380 }
jcoomes@916 381 }
jcoomes@916 382
johnc@1600 383 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
jcoomes@916 384 {
jcoomes@916 385 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 386 HandleMark hm; // Free handles before leaving.
johnc@1600 387 fill_with_object_impl(start, words, zap);
jcoomes@916 388 }
jcoomes@916 389
johnc@1600 390 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
jcoomes@916 391 {
jcoomes@916 392 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 393 HandleMark hm; // Free handles before leaving.
jcoomes@916 394
ysr@1904 395 #ifdef _LP64
jcoomes@916 396 // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
jcoomes@916 397 // First fill with arrays, ensuring that any remaining space is big enough to
jcoomes@916 398 // fill. The remainder is filled with a single object.
jcoomes@916 399 const size_t min = min_fill_size();
jcoomes@916 400 const size_t max = filler_array_max_size();
jcoomes@916 401 while (words > max) {
jcoomes@916 402 const size_t cur = words - max >= min ? max : max - min;
johnc@1600 403 fill_with_array(start, cur, zap);
jcoomes@916 404 start += cur;
jcoomes@916 405 words -= cur;
jcoomes@916 406 }
jcoomes@916 407 #endif
jcoomes@916 408
johnc@1600 409 fill_with_object_impl(start, words, zap);
jcoomes@916 410 }
jcoomes@916 411
duke@435 412 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
duke@435 413 guarantee(false, "thread-local allocation buffers not supported");
duke@435 414 return NULL;
duke@435 415 }
duke@435 416
duke@435 417 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 418 // The second disjunct in the assertion below makes a concession
duke@435 419 // for the start-up verification done while the VM is being
duke@435 420 // created. Callers be careful that you know that mutators
duke@435 421 // aren't going to interfere -- for instance, this is permissible
duke@435 422 // if we are still single-threaded and have either not yet
duke@435 423 // started allocating (nothing much to verify) or we have
duke@435 424 // started allocating but are now a full-fledged JavaThread
duke@435 425 // (and have thus made our TLAB's) available for filling.
duke@435 426 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 427 !is_init_completed(),
duke@435 428 "Should only be called at a safepoint or at start-up"
duke@435 429 " otherwise concurrent mutator activity may make heap "
duke@435 430 " unparsable again");
ysr@1601 431 const bool use_tlab = UseTLAB;
ysr@1601 432 const bool deferred = _defer_initial_card_mark;
ysr@1601 433 // The main thread starts allocating via a TLAB even before it
ysr@1601 434 // has added itself to the threads list at vm boot-up.
ysr@1601 435 assert(!use_tlab || Threads::first() != NULL,
ysr@1601 436 "Attempt to fill tlabs before main thread has been added"
ysr@1601 437 " to threads list is doomed to failure!");
ysr@1601 438 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
ysr@1601 439 if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
ysr@1601 440 #ifdef COMPILER2
ysr@1601 441 // The deferred store barriers must all have been flushed to the
ysr@1601 442 // card-table (or other remembered set structure) before GC starts
ysr@1601 443 // processing the card-table (or other remembered set).
ysr@1601 444 if (deferred) flush_deferred_store_barrier(thread);
ysr@1601 445 #else
ysr@1601 446 assert(!deferred, "Should be false");
ysr@1601 447 assert(thread->deferred_card_mark().is_empty(), "Should be empty");
ysr@1601 448 #endif
duke@435 449 }
duke@435 450 }
duke@435 451
duke@435 452 void CollectedHeap::accumulate_statistics_all_tlabs() {
duke@435 453 if (UseTLAB) {
duke@435 454 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 455 !is_init_completed(),
duke@435 456 "should only accumulate statistics on tlabs at safepoint");
duke@435 457
duke@435 458 ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
duke@435 459 }
duke@435 460 }
duke@435 461
duke@435 462 void CollectedHeap::resize_all_tlabs() {
duke@435 463 if (UseTLAB) {
duke@435 464 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 465 !is_init_completed(),
duke@435 466 "should only resize tlabs at safepoint");
duke@435 467
duke@435 468 ThreadLocalAllocBuffer::resize_all_tlabs();
duke@435 469 }
duke@435 470 }
ysr@1050 471
ysr@1050 472 void CollectedHeap::pre_full_gc_dump() {
ysr@1050 473 if (HeapDumpBeforeFullGC) {
ysr@3067 474 TraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, gclog_or_tty);
ysr@1050 475 // We are doing a "major" collection and a heap dump before
ysr@1050 476 // major collection has been requested.
ysr@1050 477 HeapDumper::dump_heap();
ysr@1050 478 }
ysr@1050 479 if (PrintClassHistogramBeforeFullGC) {
ysr@3067 480 TraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, gclog_or_tty);
ysr@1050 481 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 482 inspector.doit();
ysr@1050 483 }
ysr@1050 484 }
ysr@1050 485
ysr@1050 486 void CollectedHeap::post_full_gc_dump() {
ysr@1050 487 if (HeapDumpAfterFullGC) {
ysr@3067 488 TraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, gclog_or_tty);
ysr@1050 489 HeapDumper::dump_heap();
ysr@1050 490 }
ysr@1050 491 if (PrintClassHistogramAfterFullGC) {
ysr@3067 492 TraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, gclog_or_tty);
ysr@1050 493 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 494 inspector.doit();
ysr@1050 495 }
ysr@1050 496 }
never@3205 497
never@3205 498 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
never@3205 499 debug_only(check_for_valid_allocation_state());
never@3205 500 assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
never@3205 501 assert(size >= 0, "int won't convert to size_t");
never@3205 502 HeapWord* obj;
never@3205 503 assert(ScavengeRootsInCode > 0, "must be");
never@3205 504 obj = common_mem_allocate_init(size, CHECK_NULL);
brutisso@3675 505 post_allocation_setup_common(klass, obj);
never@3205 506 assert(Universe::is_bootstrapping() ||
coleenp@4037 507 !((oop)obj)->is_array(), "must not be an array");
never@3205 508 NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
never@3205 509 oop mirror = (oop)obj;
never@3205 510
never@3205 511 java_lang_Class::set_oop_size(mirror, size);
never@3205 512
never@3205 513 // Setup indirections
never@3205 514 if (!real_klass.is_null()) {
never@3205 515 java_lang_Class::set_klass(mirror, real_klass());
never@3205 516 real_klass->set_java_mirror(mirror);
never@3205 517 }
never@3205 518
coleenp@4047 519 InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
never@3205 520 assert(size == mk->instance_size(real_klass), "should have been set");
never@3205 521
never@3205 522 // notify jvmti and dtrace
never@3205 523 post_allocation_notify(klass, (oop)obj);
never@3205 524
never@3205 525 return mirror;
never@3205 526 }
stefank@3335 527
stefank@3335 528 /////////////// Unit tests ///////////////
stefank@3335 529
stefank@3335 530 #ifndef PRODUCT
stefank@3335 531 void CollectedHeap::test_is_in() {
stefank@3335 532 CollectedHeap* heap = Universe::heap();
stefank@3335 533
stefank@3375 534 uintptr_t epsilon = (uintptr_t) MinObjAlignment;
stefank@3375 535 uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
stefank@3375 536 uintptr_t heap_end = (uintptr_t) heap->_reserved.end();
stefank@3375 537
stefank@3335 538 // Test that NULL is not in the heap.
stefank@3335 539 assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
stefank@3335 540
stefank@3335 541 // Test that a pointer to before the heap start is reported as outside the heap.
stefank@3375 542 assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
stefank@3375 543 void* before_heap = (void*)(heap_start - epsilon);
stefank@3335 544 assert(!heap->is_in(before_heap),
stefank@3335 545 err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
stefank@3335 546
stefank@3335 547 // Test that a pointer to after the heap end is reported as outside the heap.
stefank@3375 548 assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
stefank@3375 549 void* after_heap = (void*)(heap_end + epsilon);
stefank@3335 550 assert(!heap->is_in(after_heap),
stefank@3335 551 err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
stefank@3335 552 }
stefank@3335 553 #endif

mercurial