src/share/vm/gc_interface/collectedHeap.cpp

Fri, 26 Aug 2011 08:52:22 -0700

author
kvn
date
Fri, 26 Aug 2011 08:52:22 -0700
changeset 3092
baf763f388e6
parent 2708
1d1603768966
child 3110
d968f546734e
permissions
-rw-r--r--

7059037: Use BIS for zeroing on T4
Summary: Use BIS for zeroing new allocated big (2Kb and more) objects and arrays.
Reviewed-by: never, twisti, ysr

duke@435 1 /*
trims@2708 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.hpp"
stefank@2314 29 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 30 #include "oops/oop.inline.hpp"
stefank@2314 31 #include "runtime/init.hpp"
stefank@2314 32 #include "services/heapDumper.hpp"
stefank@2314 33 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 34 # include "thread_linux.inline.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 37 # include "thread_solaris.inline.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 40 # include "thread_windows.inline.hpp"
stefank@2314 41 #endif
duke@435 42
duke@435 43
duke@435 44 #ifdef ASSERT
duke@435 45 int CollectedHeap::_fire_out_of_memory_count = 0;
duke@435 46 #endif
duke@435 47
jcoomes@916 48 size_t CollectedHeap::_filler_array_max_size = 0;
jcoomes@916 49
duke@435 50 // Memory state functions.
duke@435 51
jmasa@2188 52
jmasa@2188 53 CollectedHeap::CollectedHeap() : _n_par_threads(0)
jmasa@2188 54
jcoomes@916 55 {
jcoomes@916 56 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
jcoomes@916 57 const size_t elements_per_word = HeapWordSize / sizeof(jint);
jcoomes@916 58 _filler_array_max_size = align_object_size(filler_array_hdr_size() +
jcoomes@916 59 max_len * elements_per_word);
jcoomes@916 60
jcoomes@916 61 _barrier_set = NULL;
jcoomes@916 62 _is_gc_active = false;
jcoomes@916 63 _total_collections = _total_full_collections = 0;
jcoomes@916 64 _gc_cause = _gc_lastcause = GCCause::_no_gc;
duke@435 65 NOT_PRODUCT(_promotion_failure_alot_count = 0;)
duke@435 66 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
duke@435 67
duke@435 68 if (UsePerfData) {
duke@435 69 EXCEPTION_MARK;
duke@435 70
duke@435 71 // create the gc cause jvmstat counters
duke@435 72 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
duke@435 73 80, GCCause::to_string(_gc_cause), CHECK);
duke@435 74
duke@435 75 _perf_gc_lastcause =
duke@435 76 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
duke@435 77 80, GCCause::to_string(_gc_lastcause), CHECK);
duke@435 78 }
ysr@1601 79 _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
duke@435 80 }
duke@435 81
ysr@1601 82 void CollectedHeap::pre_initialize() {
ysr@1601 83 // Used for ReduceInitialCardMarks (when COMPILER2 is used);
ysr@1601 84 // otherwise remains unused.
ysr@1903 85 #ifdef COMPILER2
ysr@1629 86 _defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers()
ysr@1629 87 && (DeferInitialCardMark || card_mark_must_follow_store());
ysr@1601 88 #else
ysr@1601 89 assert(_defer_initial_card_mark == false, "Who would set it?");
ysr@1601 90 #endif
ysr@1601 91 }
duke@435 92
duke@435 93 #ifndef PRODUCT
duke@435 94 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 95 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 96 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 97 assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
duke@435 98 "Found badHeapWordValue in post-allocation check");
duke@435 99 }
duke@435 100 }
duke@435 101 }
duke@435 102
ysr@2533 103 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 104 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 105 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 106 assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
duke@435 107 "Found non badHeapWordValue in pre-allocation check");
duke@435 108 }
duke@435 109 }
duke@435 110 }
duke@435 111 #endif // PRODUCT
duke@435 112
duke@435 113 #ifdef ASSERT
duke@435 114 void CollectedHeap::check_for_valid_allocation_state() {
duke@435 115 Thread *thread = Thread::current();
duke@435 116 // How to choose between a pending exception and a potential
duke@435 117 // OutOfMemoryError? Don't allow pending exceptions.
duke@435 118 // This is a VM policy failure, so how do we exhaustively test it?
duke@435 119 assert(!thread->has_pending_exception(),
duke@435 120 "shouldn't be allocating with pending exception");
duke@435 121 if (StrictSafepointChecks) {
duke@435 122 assert(thread->allow_allocation(),
duke@435 123 "Allocation done by thread for which allocation is blocked "
duke@435 124 "by No_Allocation_Verifier!");
duke@435 125 // Allocation of an oop can always invoke a safepoint,
duke@435 126 // hence, the true argument
duke@435 127 thread->check_for_valid_safepoint_state(true);
duke@435 128 }
duke@435 129 }
duke@435 130 #endif
duke@435 131
duke@435 132 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
duke@435 133
duke@435 134 // Retain tlab and allocate object in shared space if
duke@435 135 // the amount free in the tlab is too large to discard.
duke@435 136 if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
duke@435 137 thread->tlab().record_slow_allocation(size);
duke@435 138 return NULL;
duke@435 139 }
duke@435 140
duke@435 141 // Discard tlab and allocate a new one.
duke@435 142 // To minimize fragmentation, the last TLAB may be smaller than the rest.
duke@435 143 size_t new_tlab_size = thread->tlab().compute_size(size);
duke@435 144
duke@435 145 thread->tlab().clear_before_allocation();
duke@435 146
duke@435 147 if (new_tlab_size == 0) {
duke@435 148 return NULL;
duke@435 149 }
duke@435 150
duke@435 151 // Allocate a new TLAB...
duke@435 152 HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
duke@435 153 if (obj == NULL) {
duke@435 154 return NULL;
duke@435 155 }
duke@435 156 if (ZeroTLAB) {
duke@435 157 // ..and clear it.
duke@435 158 Copy::zero_to_words(obj, new_tlab_size);
duke@435 159 } else {
kvn@3092 160 // ...and zap just allocated object.
kvn@3092 161 #ifdef ASSERT
kvn@3092 162 // Skip mangling the space corresponding to the object header to
kvn@3092 163 // ensure that the returned space is not considered parsable by
kvn@3092 164 // any concurrent GC thread.
kvn@3092 165 size_t hdr_size = oopDesc::header_size();
kvn@3092 166 Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
kvn@3092 167 #endif // ASSERT
duke@435 168 }
duke@435 169 thread->tlab().fill(obj, obj + size, new_tlab_size);
duke@435 170 return obj;
duke@435 171 }
duke@435 172
ysr@1462 173 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
ysr@1462 174 MemRegion deferred = thread->deferred_card_mark();
ysr@1462 175 if (!deferred.is_empty()) {
ysr@1601 176 assert(_defer_initial_card_mark, "Otherwise should be empty");
ysr@1462 177 {
ysr@1462 178 // Verify that the storage points to a parsable object in heap
ysr@1462 179 DEBUG_ONLY(oop old_obj = oop(deferred.start());)
ysr@1462 180 assert(is_in(old_obj), "Not in allocated heap");
ysr@1462 181 assert(!can_elide_initializing_store_barrier(old_obj),
ysr@1601 182 "Else should have been filtered in new_store_pre_barrier()");
ysr@1462 183 assert(!is_in_permanent(old_obj), "Sanity: not expected");
ysr@1462 184 assert(old_obj->is_oop(true), "Not an oop");
ysr@1462 185 assert(old_obj->is_parsable(), "Will not be concurrently parsable");
ysr@1462 186 assert(deferred.word_size() == (size_t)(old_obj->size()),
ysr@1462 187 "Mismatch: multiple objects?");
ysr@1462 188 }
ysr@1462 189 BarrierSet* bs = barrier_set();
ysr@1462 190 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1462 191 bs->write_region(deferred);
ysr@1462 192 // "Clear" the deferred_card_mark field
ysr@1462 193 thread->set_deferred_card_mark(MemRegion());
ysr@1462 194 }
ysr@1462 195 assert(thread->deferred_card_mark().is_empty(), "invariant");
ysr@1462 196 }
ysr@1462 197
ysr@1462 198 // Helper for ReduceInitialCardMarks. For performance,
ysr@1462 199 // compiled code may elide card-marks for initializing stores
ysr@1462 200 // to a newly allocated object along the fast-path. We
ysr@1462 201 // compensate for such elided card-marks as follows:
ysr@1462 202 // (a) Generational, non-concurrent collectors, such as
ysr@1462 203 // GenCollectedHeap(ParNew,DefNew,Tenured) and
ysr@1462 204 // ParallelScavengeHeap(ParallelGC, ParallelOldGC)
ysr@1462 205 // need the card-mark if and only if the region is
ysr@1462 206 // in the old gen, and do not care if the card-mark
ysr@1462 207 // succeeds or precedes the initializing stores themselves,
ysr@1462 208 // so long as the card-mark is completed before the next
ysr@1462 209 // scavenge. For all these cases, we can do a card mark
ysr@1462 210 // at the point at which we do a slow path allocation
ysr@1601 211 // in the old gen, i.e. in this call.
ysr@1462 212 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
ysr@1462 213 // in addition that the card-mark for an old gen allocated
ysr@1462 214 // object strictly follow any associated initializing stores.
ysr@1462 215 // In these cases, the memRegion remembered below is
ysr@1462 216 // used to card-mark the entire region either just before the next
ysr@1462 217 // slow-path allocation by this thread or just before the next scavenge or
ysr@1462 218 // CMS-associated safepoint, whichever of these events happens first.
ysr@1462 219 // (The implicit assumption is that the object has been fully
ysr@1462 220 // initialized by this point, a fact that we assert when doing the
ysr@1462 221 // card-mark.)
ysr@1462 222 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
ysr@1462 223 // G1 concurrent marking is in progress an SATB (pre-write-)barrier is
ysr@1462 224 // is used to remember the pre-value of any store. Initializing
ysr@1462 225 // stores will not need this barrier, so we need not worry about
ysr@1462 226 // compensating for the missing pre-barrier here. Turning now
ysr@1462 227 // to the post-barrier, we note that G1 needs a RS update barrier
ysr@1462 228 // which simply enqueues a (sequence of) dirty cards which may
ysr@1462 229 // optionally be refined by the concurrent update threads. Note
ysr@1462 230 // that this barrier need only be applied to a non-young write,
ysr@1462 231 // but, like in CMS, because of the presence of concurrent refinement
ysr@1462 232 // (much like CMS' precleaning), must strictly follow the oop-store.
ysr@1462 233 // Thus, using the same protocol for maintaining the intended
ysr@1601 234 // invariants turns out, serendepitously, to be the same for both
ysr@1601 235 // G1 and CMS.
ysr@1462 236 //
ysr@1601 237 // For any future collector, this code should be reexamined with
ysr@1601 238 // that specific collector in mind, and the documentation above suitably
ysr@1601 239 // extended and updated.
ysr@1601 240 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
ysr@1462 241 // If a previous card-mark was deferred, flush it now.
ysr@1462 242 flush_deferred_store_barrier(thread);
ysr@1462 243 if (can_elide_initializing_store_barrier(new_obj)) {
ysr@1462 244 // The deferred_card_mark region should be empty
ysr@1462 245 // following the flush above.
ysr@1462 246 assert(thread->deferred_card_mark().is_empty(), "Error");
ysr@1462 247 } else {
ysr@1601 248 MemRegion mr((HeapWord*)new_obj, new_obj->size());
ysr@1601 249 assert(!mr.is_empty(), "Error");
ysr@1601 250 if (_defer_initial_card_mark) {
ysr@1601 251 // Defer the card mark
ysr@1601 252 thread->set_deferred_card_mark(mr);
ysr@1601 253 } else {
ysr@1601 254 // Do the card mark
ysr@1601 255 BarrierSet* bs = barrier_set();
ysr@1601 256 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1601 257 bs->write_region(mr);
ysr@1601 258 }
ysr@1462 259 }
ysr@1462 260 return new_obj;
ysr@1462 261 }
ysr@1462 262
jcoomes@916 263 size_t CollectedHeap::filler_array_hdr_size() {
kvn@1926 264 return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
jcoomes@916 265 }
jcoomes@916 266
jcoomes@916 267 size_t CollectedHeap::filler_array_min_size() {
kvn@1926 268 return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
jcoomes@916 269 }
jcoomes@916 270
jcoomes@916 271 size_t CollectedHeap::filler_array_max_size() {
jcoomes@916 272 return _filler_array_max_size;
jcoomes@916 273 }
jcoomes@916 274
jcoomes@916 275 #ifdef ASSERT
jcoomes@916 276 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
jcoomes@916 277 {
jcoomes@916 278 assert(words >= min_fill_size(), "too small to fill");
jcoomes@916 279 assert(words % MinObjAlignment == 0, "unaligned size");
jcoomes@916 280 assert(Universe::heap()->is_in_reserved(start), "not in heap");
jcoomes@916 281 assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
jcoomes@916 282 }
jcoomes@916 283
johnc@1600 284 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 285 {
johnc@1600 286 if (ZapFillerObjects && zap) {
jcoomes@916 287 Copy::fill_to_words(start + filler_array_hdr_size(),
jcoomes@916 288 words - filler_array_hdr_size(), 0XDEAFBABE);
jcoomes@916 289 }
jcoomes@916 290 }
jcoomes@916 291 #endif // ASSERT
jcoomes@916 292
jcoomes@916 293 void
johnc@1600 294 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 295 {
jcoomes@916 296 assert(words >= filler_array_min_size(), "too small for an array");
jcoomes@916 297 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 298
jcoomes@916 299 const size_t payload_size = words - filler_array_hdr_size();
jcoomes@916 300 const size_t len = payload_size * HeapWordSize / sizeof(jint);
jcoomes@916 301
jcoomes@916 302 // Set the length first for concurrent GC.
jcoomes@916 303 ((arrayOop)start)->set_length((int)len);
jcoomes@929 304 post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
johnc@1600 305 DEBUG_ONLY(zap_filler_array(start, words, zap);)
jcoomes@916 306 }
jcoomes@916 307
jcoomes@916 308 void
johnc@1600 309 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
jcoomes@916 310 {
jcoomes@916 311 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 312
jcoomes@916 313 if (words >= filler_array_min_size()) {
johnc@1600 314 fill_with_array(start, words, zap);
jcoomes@916 315 } else if (words > 0) {
jcoomes@916 316 assert(words == min_fill_size(), "unaligned size");
never@1577 317 post_allocation_setup_common(SystemDictionary::Object_klass(), start,
jcoomes@916 318 words);
jcoomes@916 319 }
jcoomes@916 320 }
jcoomes@916 321
johnc@1600 322 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
jcoomes@916 323 {
jcoomes@916 324 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 325 HandleMark hm; // Free handles before leaving.
johnc@1600 326 fill_with_object_impl(start, words, zap);
jcoomes@916 327 }
jcoomes@916 328
johnc@1600 329 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
jcoomes@916 330 {
jcoomes@916 331 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 332 HandleMark hm; // Free handles before leaving.
jcoomes@916 333
ysr@1904 334 #ifdef _LP64
jcoomes@916 335 // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
jcoomes@916 336 // First fill with arrays, ensuring that any remaining space is big enough to
jcoomes@916 337 // fill. The remainder is filled with a single object.
jcoomes@916 338 const size_t min = min_fill_size();
jcoomes@916 339 const size_t max = filler_array_max_size();
jcoomes@916 340 while (words > max) {
jcoomes@916 341 const size_t cur = words - max >= min ? max : max - min;
johnc@1600 342 fill_with_array(start, cur, zap);
jcoomes@916 343 start += cur;
jcoomes@916 344 words -= cur;
jcoomes@916 345 }
jcoomes@916 346 #endif
jcoomes@916 347
johnc@1600 348 fill_with_object_impl(start, words, zap);
jcoomes@916 349 }
jcoomes@916 350
duke@435 351 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
duke@435 352 guarantee(false, "thread-local allocation buffers not supported");
duke@435 353 return NULL;
duke@435 354 }
duke@435 355
duke@435 356 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 357 // The second disjunct in the assertion below makes a concession
duke@435 358 // for the start-up verification done while the VM is being
duke@435 359 // created. Callers be careful that you know that mutators
duke@435 360 // aren't going to interfere -- for instance, this is permissible
duke@435 361 // if we are still single-threaded and have either not yet
duke@435 362 // started allocating (nothing much to verify) or we have
duke@435 363 // started allocating but are now a full-fledged JavaThread
duke@435 364 // (and have thus made our TLAB's) available for filling.
duke@435 365 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 366 !is_init_completed(),
duke@435 367 "Should only be called at a safepoint or at start-up"
duke@435 368 " otherwise concurrent mutator activity may make heap "
duke@435 369 " unparsable again");
ysr@1601 370 const bool use_tlab = UseTLAB;
ysr@1601 371 const bool deferred = _defer_initial_card_mark;
ysr@1601 372 // The main thread starts allocating via a TLAB even before it
ysr@1601 373 // has added itself to the threads list at vm boot-up.
ysr@1601 374 assert(!use_tlab || Threads::first() != NULL,
ysr@1601 375 "Attempt to fill tlabs before main thread has been added"
ysr@1601 376 " to threads list is doomed to failure!");
ysr@1601 377 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
ysr@1601 378 if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
ysr@1601 379 #ifdef COMPILER2
ysr@1601 380 // The deferred store barriers must all have been flushed to the
ysr@1601 381 // card-table (or other remembered set structure) before GC starts
ysr@1601 382 // processing the card-table (or other remembered set).
ysr@1601 383 if (deferred) flush_deferred_store_barrier(thread);
ysr@1601 384 #else
ysr@1601 385 assert(!deferred, "Should be false");
ysr@1601 386 assert(thread->deferred_card_mark().is_empty(), "Should be empty");
ysr@1601 387 #endif
duke@435 388 }
duke@435 389 }
duke@435 390
duke@435 391 void CollectedHeap::accumulate_statistics_all_tlabs() {
duke@435 392 if (UseTLAB) {
duke@435 393 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 394 !is_init_completed(),
duke@435 395 "should only accumulate statistics on tlabs at safepoint");
duke@435 396
duke@435 397 ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
duke@435 398 }
duke@435 399 }
duke@435 400
duke@435 401 void CollectedHeap::resize_all_tlabs() {
duke@435 402 if (UseTLAB) {
duke@435 403 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 404 !is_init_completed(),
duke@435 405 "should only resize tlabs at safepoint");
duke@435 406
duke@435 407 ThreadLocalAllocBuffer::resize_all_tlabs();
duke@435 408 }
duke@435 409 }
ysr@1050 410
ysr@1050 411 void CollectedHeap::pre_full_gc_dump() {
ysr@1050 412 if (HeapDumpBeforeFullGC) {
ysr@1050 413 TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
ysr@1050 414 // We are doing a "major" collection and a heap dump before
ysr@1050 415 // major collection has been requested.
ysr@1050 416 HeapDumper::dump_heap();
ysr@1050 417 }
ysr@1050 418 if (PrintClassHistogramBeforeFullGC) {
ysr@1050 419 TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
ysr@1050 420 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 421 inspector.doit();
ysr@1050 422 }
ysr@1050 423 }
ysr@1050 424
ysr@1050 425 void CollectedHeap::post_full_gc_dump() {
ysr@1050 426 if (HeapDumpAfterFullGC) {
ysr@1050 427 TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
ysr@1050 428 HeapDumper::dump_heap();
ysr@1050 429 }
ysr@1050 430 if (PrintClassHistogramAfterFullGC) {
ysr@1050 431 TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
ysr@1050 432 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 433 inspector.doit();
ysr@1050 434 }
ysr@1050 435 }

mercurial