src/share/vm/gc_interface/collectedHeap.cpp

Mon, 20 Sep 2010 14:38:38 -0700

author
jmasa
date
Mon, 20 Sep 2010 14:38:38 -0700
changeset 2188
8b10f48633dc
parent 1934
e9ff18c4ace7
child 2314
f95d63e2154a
permissions
-rw-r--r--

6984287: Regularize how GC parallel workers are specified.
Summary: Associate number of GC workers with the workgang as opposed to the task.
Reviewed-by: johnc, ysr

duke@435 1 /*
jmasa@2188 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_collectedHeap.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 #ifdef ASSERT
duke@435 30 int CollectedHeap::_fire_out_of_memory_count = 0;
duke@435 31 #endif
duke@435 32
jcoomes@916 33 size_t CollectedHeap::_filler_array_max_size = 0;
jcoomes@916 34
duke@435 35 // Memory state functions.
duke@435 36
jmasa@2188 37
jmasa@2188 38 CollectedHeap::CollectedHeap() : _n_par_threads(0)
jmasa@2188 39
jcoomes@916 40 {
jcoomes@916 41 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
jcoomes@916 42 const size_t elements_per_word = HeapWordSize / sizeof(jint);
jcoomes@916 43 _filler_array_max_size = align_object_size(filler_array_hdr_size() +
jcoomes@916 44 max_len * elements_per_word);
jcoomes@916 45
jcoomes@916 46 _barrier_set = NULL;
jcoomes@916 47 _is_gc_active = false;
jcoomes@916 48 _total_collections = _total_full_collections = 0;
jcoomes@916 49 _gc_cause = _gc_lastcause = GCCause::_no_gc;
duke@435 50 NOT_PRODUCT(_promotion_failure_alot_count = 0;)
duke@435 51 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
duke@435 52
duke@435 53 if (UsePerfData) {
duke@435 54 EXCEPTION_MARK;
duke@435 55
duke@435 56 // create the gc cause jvmstat counters
duke@435 57 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
duke@435 58 80, GCCause::to_string(_gc_cause), CHECK);
duke@435 59
duke@435 60 _perf_gc_lastcause =
duke@435 61 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
duke@435 62 80, GCCause::to_string(_gc_lastcause), CHECK);
duke@435 63 }
ysr@1601 64 _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
duke@435 65 }
duke@435 66
ysr@1601 67 void CollectedHeap::pre_initialize() {
ysr@1601 68 // Used for ReduceInitialCardMarks (when COMPILER2 is used);
ysr@1601 69 // otherwise remains unused.
ysr@1903 70 #ifdef COMPILER2
ysr@1629 71 _defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers()
ysr@1629 72 && (DeferInitialCardMark || card_mark_must_follow_store());
ysr@1601 73 #else
ysr@1601 74 assert(_defer_initial_card_mark == false, "Who would set it?");
ysr@1601 75 #endif
ysr@1601 76 }
duke@435 77
duke@435 78 #ifndef PRODUCT
duke@435 79 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 80 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 81 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 82 assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
duke@435 83 "Found badHeapWordValue in post-allocation check");
duke@435 84 }
duke@435 85 }
duke@435 86 }
duke@435 87
duke@435 88 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
duke@435 89 {
duke@435 90 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 91 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 92 assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
duke@435 93 "Found non badHeapWordValue in pre-allocation check");
duke@435 94 }
duke@435 95 }
duke@435 96 }
duke@435 97 #endif // PRODUCT
duke@435 98
duke@435 99 #ifdef ASSERT
duke@435 100 void CollectedHeap::check_for_valid_allocation_state() {
duke@435 101 Thread *thread = Thread::current();
duke@435 102 // How to choose between a pending exception and a potential
duke@435 103 // OutOfMemoryError? Don't allow pending exceptions.
duke@435 104 // This is a VM policy failure, so how do we exhaustively test it?
duke@435 105 assert(!thread->has_pending_exception(),
duke@435 106 "shouldn't be allocating with pending exception");
duke@435 107 if (StrictSafepointChecks) {
duke@435 108 assert(thread->allow_allocation(),
duke@435 109 "Allocation done by thread for which allocation is blocked "
duke@435 110 "by No_Allocation_Verifier!");
duke@435 111 // Allocation of an oop can always invoke a safepoint,
duke@435 112 // hence, the true argument
duke@435 113 thread->check_for_valid_safepoint_state(true);
duke@435 114 }
duke@435 115 }
duke@435 116 #endif
duke@435 117
duke@435 118 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
duke@435 119
duke@435 120 // Retain tlab and allocate object in shared space if
duke@435 121 // the amount free in the tlab is too large to discard.
duke@435 122 if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
duke@435 123 thread->tlab().record_slow_allocation(size);
duke@435 124 return NULL;
duke@435 125 }
duke@435 126
duke@435 127 // Discard tlab and allocate a new one.
duke@435 128 // To minimize fragmentation, the last TLAB may be smaller than the rest.
duke@435 129 size_t new_tlab_size = thread->tlab().compute_size(size);
duke@435 130
duke@435 131 thread->tlab().clear_before_allocation();
duke@435 132
duke@435 133 if (new_tlab_size == 0) {
duke@435 134 return NULL;
duke@435 135 }
duke@435 136
duke@435 137 // Allocate a new TLAB...
duke@435 138 HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
duke@435 139 if (obj == NULL) {
duke@435 140 return NULL;
duke@435 141 }
duke@435 142 if (ZeroTLAB) {
duke@435 143 // ..and clear it.
duke@435 144 Copy::zero_to_words(obj, new_tlab_size);
duke@435 145 } else {
duke@435 146 // ...and clear just the allocated object.
duke@435 147 Copy::zero_to_words(obj, size);
duke@435 148 }
duke@435 149 thread->tlab().fill(obj, obj + size, new_tlab_size);
duke@435 150 return obj;
duke@435 151 }
duke@435 152
ysr@1462 153 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
ysr@1462 154 MemRegion deferred = thread->deferred_card_mark();
ysr@1462 155 if (!deferred.is_empty()) {
ysr@1601 156 assert(_defer_initial_card_mark, "Otherwise should be empty");
ysr@1462 157 {
ysr@1462 158 // Verify that the storage points to a parsable object in heap
ysr@1462 159 DEBUG_ONLY(oop old_obj = oop(deferred.start());)
ysr@1462 160 assert(is_in(old_obj), "Not in allocated heap");
ysr@1462 161 assert(!can_elide_initializing_store_barrier(old_obj),
ysr@1601 162 "Else should have been filtered in new_store_pre_barrier()");
ysr@1462 163 assert(!is_in_permanent(old_obj), "Sanity: not expected");
ysr@1462 164 assert(old_obj->is_oop(true), "Not an oop");
ysr@1462 165 assert(old_obj->is_parsable(), "Will not be concurrently parsable");
ysr@1462 166 assert(deferred.word_size() == (size_t)(old_obj->size()),
ysr@1462 167 "Mismatch: multiple objects?");
ysr@1462 168 }
ysr@1462 169 BarrierSet* bs = barrier_set();
ysr@1462 170 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1462 171 bs->write_region(deferred);
ysr@1462 172 // "Clear" the deferred_card_mark field
ysr@1462 173 thread->set_deferred_card_mark(MemRegion());
ysr@1462 174 }
ysr@1462 175 assert(thread->deferred_card_mark().is_empty(), "invariant");
ysr@1462 176 }
ysr@1462 177
ysr@1462 178 // Helper for ReduceInitialCardMarks. For performance,
ysr@1462 179 // compiled code may elide card-marks for initializing stores
ysr@1462 180 // to a newly allocated object along the fast-path. We
ysr@1462 181 // compensate for such elided card-marks as follows:
ysr@1462 182 // (a) Generational, non-concurrent collectors, such as
ysr@1462 183 // GenCollectedHeap(ParNew,DefNew,Tenured) and
ysr@1462 184 // ParallelScavengeHeap(ParallelGC, ParallelOldGC)
ysr@1462 185 // need the card-mark if and only if the region is
ysr@1462 186 // in the old gen, and do not care if the card-mark
ysr@1462 187 // succeeds or precedes the initializing stores themselves,
ysr@1462 188 // so long as the card-mark is completed before the next
ysr@1462 189 // scavenge. For all these cases, we can do a card mark
ysr@1462 190 // at the point at which we do a slow path allocation
ysr@1601 191 // in the old gen, i.e. in this call.
ysr@1462 192 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
ysr@1462 193 // in addition that the card-mark for an old gen allocated
ysr@1462 194 // object strictly follow any associated initializing stores.
ysr@1462 195 // In these cases, the memRegion remembered below is
ysr@1462 196 // used to card-mark the entire region either just before the next
ysr@1462 197 // slow-path allocation by this thread or just before the next scavenge or
ysr@1462 198 // CMS-associated safepoint, whichever of these events happens first.
ysr@1462 199 // (The implicit assumption is that the object has been fully
ysr@1462 200 // initialized by this point, a fact that we assert when doing the
ysr@1462 201 // card-mark.)
ysr@1462 202 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
ysr@1462 203 // G1 concurrent marking is in progress an SATB (pre-write-)barrier is
ysr@1462 204 // is used to remember the pre-value of any store. Initializing
ysr@1462 205 // stores will not need this barrier, so we need not worry about
ysr@1462 206 // compensating for the missing pre-barrier here. Turning now
ysr@1462 207 // to the post-barrier, we note that G1 needs a RS update barrier
ysr@1462 208 // which simply enqueues a (sequence of) dirty cards which may
ysr@1462 209 // optionally be refined by the concurrent update threads. Note
ysr@1462 210 // that this barrier need only be applied to a non-young write,
ysr@1462 211 // but, like in CMS, because of the presence of concurrent refinement
ysr@1462 212 // (much like CMS' precleaning), must strictly follow the oop-store.
ysr@1462 213 // Thus, using the same protocol for maintaining the intended
ysr@1601 214 // invariants turns out, serendepitously, to be the same for both
ysr@1601 215 // G1 and CMS.
ysr@1462 216 //
ysr@1601 217 // For any future collector, this code should be reexamined with
ysr@1601 218 // that specific collector in mind, and the documentation above suitably
ysr@1601 219 // extended and updated.
ysr@1601 220 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
ysr@1462 221 // If a previous card-mark was deferred, flush it now.
ysr@1462 222 flush_deferred_store_barrier(thread);
ysr@1462 223 if (can_elide_initializing_store_barrier(new_obj)) {
ysr@1462 224 // The deferred_card_mark region should be empty
ysr@1462 225 // following the flush above.
ysr@1462 226 assert(thread->deferred_card_mark().is_empty(), "Error");
ysr@1462 227 } else {
ysr@1601 228 MemRegion mr((HeapWord*)new_obj, new_obj->size());
ysr@1601 229 assert(!mr.is_empty(), "Error");
ysr@1601 230 if (_defer_initial_card_mark) {
ysr@1601 231 // Defer the card mark
ysr@1601 232 thread->set_deferred_card_mark(mr);
ysr@1601 233 } else {
ysr@1601 234 // Do the card mark
ysr@1601 235 BarrierSet* bs = barrier_set();
ysr@1601 236 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1601 237 bs->write_region(mr);
ysr@1601 238 }
ysr@1462 239 }
ysr@1462 240 return new_obj;
ysr@1462 241 }
ysr@1462 242
jcoomes@916 243 size_t CollectedHeap::filler_array_hdr_size() {
kvn@1926 244 return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
jcoomes@916 245 }
jcoomes@916 246
jcoomes@916 247 size_t CollectedHeap::filler_array_min_size() {
kvn@1926 248 return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
jcoomes@916 249 }
jcoomes@916 250
jcoomes@916 251 size_t CollectedHeap::filler_array_max_size() {
jcoomes@916 252 return _filler_array_max_size;
jcoomes@916 253 }
jcoomes@916 254
jcoomes@916 255 #ifdef ASSERT
jcoomes@916 256 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
jcoomes@916 257 {
jcoomes@916 258 assert(words >= min_fill_size(), "too small to fill");
jcoomes@916 259 assert(words % MinObjAlignment == 0, "unaligned size");
jcoomes@916 260 assert(Universe::heap()->is_in_reserved(start), "not in heap");
jcoomes@916 261 assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
jcoomes@916 262 }
jcoomes@916 263
johnc@1600 264 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 265 {
johnc@1600 266 if (ZapFillerObjects && zap) {
jcoomes@916 267 Copy::fill_to_words(start + filler_array_hdr_size(),
jcoomes@916 268 words - filler_array_hdr_size(), 0XDEAFBABE);
jcoomes@916 269 }
jcoomes@916 270 }
jcoomes@916 271 #endif // ASSERT
jcoomes@916 272
jcoomes@916 273 void
johnc@1600 274 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 275 {
jcoomes@916 276 assert(words >= filler_array_min_size(), "too small for an array");
jcoomes@916 277 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 278
jcoomes@916 279 const size_t payload_size = words - filler_array_hdr_size();
jcoomes@916 280 const size_t len = payload_size * HeapWordSize / sizeof(jint);
jcoomes@916 281
jcoomes@916 282 // Set the length first for concurrent GC.
jcoomes@916 283 ((arrayOop)start)->set_length((int)len);
jcoomes@929 284 post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
johnc@1600 285 DEBUG_ONLY(zap_filler_array(start, words, zap);)
jcoomes@916 286 }
jcoomes@916 287
jcoomes@916 288 void
johnc@1600 289 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
jcoomes@916 290 {
jcoomes@916 291 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 292
jcoomes@916 293 if (words >= filler_array_min_size()) {
johnc@1600 294 fill_with_array(start, words, zap);
jcoomes@916 295 } else if (words > 0) {
jcoomes@916 296 assert(words == min_fill_size(), "unaligned size");
never@1577 297 post_allocation_setup_common(SystemDictionary::Object_klass(), start,
jcoomes@916 298 words);
jcoomes@916 299 }
jcoomes@916 300 }
jcoomes@916 301
johnc@1600 302 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
jcoomes@916 303 {
jcoomes@916 304 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 305 HandleMark hm; // Free handles before leaving.
johnc@1600 306 fill_with_object_impl(start, words, zap);
jcoomes@916 307 }
jcoomes@916 308
johnc@1600 309 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
jcoomes@916 310 {
jcoomes@916 311 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 312 HandleMark hm; // Free handles before leaving.
jcoomes@916 313
ysr@1904 314 #ifdef _LP64
jcoomes@916 315 // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
jcoomes@916 316 // First fill with arrays, ensuring that any remaining space is big enough to
jcoomes@916 317 // fill. The remainder is filled with a single object.
jcoomes@916 318 const size_t min = min_fill_size();
jcoomes@916 319 const size_t max = filler_array_max_size();
jcoomes@916 320 while (words > max) {
jcoomes@916 321 const size_t cur = words - max >= min ? max : max - min;
johnc@1600 322 fill_with_array(start, cur, zap);
jcoomes@916 323 start += cur;
jcoomes@916 324 words -= cur;
jcoomes@916 325 }
jcoomes@916 326 #endif
jcoomes@916 327
johnc@1600 328 fill_with_object_impl(start, words, zap);
jcoomes@916 329 }
jcoomes@916 330
duke@435 331 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
duke@435 332 guarantee(false, "thread-local allocation buffers not supported");
duke@435 333 return NULL;
duke@435 334 }
duke@435 335
duke@435 336 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 337 // The second disjunct in the assertion below makes a concession
duke@435 338 // for the start-up verification done while the VM is being
duke@435 339 // created. Callers be careful that you know that mutators
duke@435 340 // aren't going to interfere -- for instance, this is permissible
duke@435 341 // if we are still single-threaded and have either not yet
duke@435 342 // started allocating (nothing much to verify) or we have
duke@435 343 // started allocating but are now a full-fledged JavaThread
duke@435 344 // (and have thus made our TLAB's) available for filling.
duke@435 345 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 346 !is_init_completed(),
duke@435 347 "Should only be called at a safepoint or at start-up"
duke@435 348 " otherwise concurrent mutator activity may make heap "
duke@435 349 " unparsable again");
ysr@1601 350 const bool use_tlab = UseTLAB;
ysr@1601 351 const bool deferred = _defer_initial_card_mark;
ysr@1601 352 // The main thread starts allocating via a TLAB even before it
ysr@1601 353 // has added itself to the threads list at vm boot-up.
ysr@1601 354 assert(!use_tlab || Threads::first() != NULL,
ysr@1601 355 "Attempt to fill tlabs before main thread has been added"
ysr@1601 356 " to threads list is doomed to failure!");
ysr@1601 357 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
ysr@1601 358 if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
ysr@1601 359 #ifdef COMPILER2
ysr@1601 360 // The deferred store barriers must all have been flushed to the
ysr@1601 361 // card-table (or other remembered set structure) before GC starts
ysr@1601 362 // processing the card-table (or other remembered set).
ysr@1601 363 if (deferred) flush_deferred_store_barrier(thread);
ysr@1601 364 #else
ysr@1601 365 assert(!deferred, "Should be false");
ysr@1601 366 assert(thread->deferred_card_mark().is_empty(), "Should be empty");
ysr@1601 367 #endif
duke@435 368 }
duke@435 369 }
duke@435 370
duke@435 371 void CollectedHeap::accumulate_statistics_all_tlabs() {
duke@435 372 if (UseTLAB) {
duke@435 373 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 374 !is_init_completed(),
duke@435 375 "should only accumulate statistics on tlabs at safepoint");
duke@435 376
duke@435 377 ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
duke@435 378 }
duke@435 379 }
duke@435 380
duke@435 381 void CollectedHeap::resize_all_tlabs() {
duke@435 382 if (UseTLAB) {
duke@435 383 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 384 !is_init_completed(),
duke@435 385 "should only resize tlabs at safepoint");
duke@435 386
duke@435 387 ThreadLocalAllocBuffer::resize_all_tlabs();
duke@435 388 }
duke@435 389 }
ysr@1050 390
ysr@1050 391 void CollectedHeap::pre_full_gc_dump() {
ysr@1050 392 if (HeapDumpBeforeFullGC) {
ysr@1050 393 TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
ysr@1050 394 // We are doing a "major" collection and a heap dump before
ysr@1050 395 // major collection has been requested.
ysr@1050 396 HeapDumper::dump_heap();
ysr@1050 397 }
ysr@1050 398 if (PrintClassHistogramBeforeFullGC) {
ysr@1050 399 TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
ysr@1050 400 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 401 inspector.doit();
ysr@1050 402 }
ysr@1050 403 }
ysr@1050 404
ysr@1050 405 void CollectedHeap::post_full_gc_dump() {
ysr@1050 406 if (HeapDumpAfterFullGC) {
ysr@1050 407 TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
ysr@1050 408 HeapDumper::dump_heap();
ysr@1050 409 }
ysr@1050 410 if (PrintClassHistogramAfterFullGC) {
ysr@1050 411 TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
ysr@1050 412 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 413 inspector.doit();
ysr@1050 414 }
ysr@1050 415 }

mercurial