src/share/vm/gc_interface/collectedHeap.cpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 3110
d968f546734e
child 3205
e5928e7dab26
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

duke@435 1 /*
trims@2708 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.hpp"
stefank@2314 29 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 30 #include "oops/oop.inline.hpp"
stefank@2314 31 #include "runtime/init.hpp"
stefank@2314 32 #include "services/heapDumper.hpp"
stefank@2314 33 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 34 # include "thread_linux.inline.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 37 # include "thread_solaris.inline.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 40 # include "thread_windows.inline.hpp"
stefank@2314 41 #endif
never@3156 42 #ifdef TARGET_OS_FAMILY_bsd
never@3156 43 # include "thread_bsd.inline.hpp"
never@3156 44 #endif
duke@435 45
duke@435 46
duke@435 47 #ifdef ASSERT
duke@435 48 int CollectedHeap::_fire_out_of_memory_count = 0;
duke@435 49 #endif
duke@435 50
jcoomes@916 51 size_t CollectedHeap::_filler_array_max_size = 0;
jcoomes@916 52
duke@435 53 // Memory state functions.
duke@435 54
jmasa@2188 55
jmasa@2188 56 CollectedHeap::CollectedHeap() : _n_par_threads(0)
jmasa@2188 57
jcoomes@916 58 {
jcoomes@916 59 const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
jcoomes@916 60 const size_t elements_per_word = HeapWordSize / sizeof(jint);
jcoomes@916 61 _filler_array_max_size = align_object_size(filler_array_hdr_size() +
jcoomes@916 62 max_len * elements_per_word);
jcoomes@916 63
jcoomes@916 64 _barrier_set = NULL;
jcoomes@916 65 _is_gc_active = false;
jcoomes@916 66 _total_collections = _total_full_collections = 0;
jcoomes@916 67 _gc_cause = _gc_lastcause = GCCause::_no_gc;
duke@435 68 NOT_PRODUCT(_promotion_failure_alot_count = 0;)
duke@435 69 NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
duke@435 70
duke@435 71 if (UsePerfData) {
duke@435 72 EXCEPTION_MARK;
duke@435 73
duke@435 74 // create the gc cause jvmstat counters
duke@435 75 _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
duke@435 76 80, GCCause::to_string(_gc_cause), CHECK);
duke@435 77
duke@435 78 _perf_gc_lastcause =
duke@435 79 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
duke@435 80 80, GCCause::to_string(_gc_lastcause), CHECK);
duke@435 81 }
ysr@1601 82 _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
duke@435 83 }
duke@435 84
ysr@1601 85 void CollectedHeap::pre_initialize() {
ysr@1601 86 // Used for ReduceInitialCardMarks (when COMPILER2 is used);
ysr@1601 87 // otherwise remains unused.
ysr@1903 88 #ifdef COMPILER2
ysr@1629 89 _defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers()
ysr@1629 90 && (DeferInitialCardMark || card_mark_must_follow_store());
ysr@1601 91 #else
ysr@1601 92 assert(_defer_initial_card_mark == false, "Who would set it?");
ysr@1601 93 #endif
ysr@1601 94 }
duke@435 95
duke@435 96 #ifndef PRODUCT
duke@435 97 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 98 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 99 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 100 assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
duke@435 101 "Found badHeapWordValue in post-allocation check");
duke@435 102 }
duke@435 103 }
duke@435 104 }
duke@435 105
ysr@2533 106 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
duke@435 107 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 108 for (size_t slot = 0; slot < size; slot += 1) {
duke@435 109 assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
duke@435 110 "Found non badHeapWordValue in pre-allocation check");
duke@435 111 }
duke@435 112 }
duke@435 113 }
duke@435 114 #endif // PRODUCT
duke@435 115
duke@435 116 #ifdef ASSERT
duke@435 117 void CollectedHeap::check_for_valid_allocation_state() {
duke@435 118 Thread *thread = Thread::current();
duke@435 119 // How to choose between a pending exception and a potential
duke@435 120 // OutOfMemoryError? Don't allow pending exceptions.
duke@435 121 // This is a VM policy failure, so how do we exhaustively test it?
duke@435 122 assert(!thread->has_pending_exception(),
duke@435 123 "shouldn't be allocating with pending exception");
duke@435 124 if (StrictSafepointChecks) {
duke@435 125 assert(thread->allow_allocation(),
duke@435 126 "Allocation done by thread for which allocation is blocked "
duke@435 127 "by No_Allocation_Verifier!");
duke@435 128 // Allocation of an oop can always invoke a safepoint,
duke@435 129 // hence, the true argument
duke@435 130 thread->check_for_valid_safepoint_state(true);
duke@435 131 }
duke@435 132 }
duke@435 133 #endif
duke@435 134
duke@435 135 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
duke@435 136
duke@435 137 // Retain tlab and allocate object in shared space if
duke@435 138 // the amount free in the tlab is too large to discard.
duke@435 139 if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
duke@435 140 thread->tlab().record_slow_allocation(size);
duke@435 141 return NULL;
duke@435 142 }
duke@435 143
duke@435 144 // Discard tlab and allocate a new one.
duke@435 145 // To minimize fragmentation, the last TLAB may be smaller than the rest.
duke@435 146 size_t new_tlab_size = thread->tlab().compute_size(size);
duke@435 147
duke@435 148 thread->tlab().clear_before_allocation();
duke@435 149
duke@435 150 if (new_tlab_size == 0) {
duke@435 151 return NULL;
duke@435 152 }
duke@435 153
duke@435 154 // Allocate a new TLAB...
duke@435 155 HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
duke@435 156 if (obj == NULL) {
duke@435 157 return NULL;
duke@435 158 }
duke@435 159 if (ZeroTLAB) {
duke@435 160 // ..and clear it.
duke@435 161 Copy::zero_to_words(obj, new_tlab_size);
duke@435 162 } else {
kvn@3092 163 // ...and zap just allocated object.
kvn@3092 164 #ifdef ASSERT
kvn@3092 165 // Skip mangling the space corresponding to the object header to
kvn@3092 166 // ensure that the returned space is not considered parsable by
kvn@3092 167 // any concurrent GC thread.
kvn@3092 168 size_t hdr_size = oopDesc::header_size();
kvn@3092 169 Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
kvn@3092 170 #endif // ASSERT
duke@435 171 }
duke@435 172 thread->tlab().fill(obj, obj + size, new_tlab_size);
duke@435 173 return obj;
duke@435 174 }
duke@435 175
ysr@1462 176 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
ysr@1462 177 MemRegion deferred = thread->deferred_card_mark();
ysr@1462 178 if (!deferred.is_empty()) {
ysr@1601 179 assert(_defer_initial_card_mark, "Otherwise should be empty");
ysr@1462 180 {
ysr@1462 181 // Verify that the storage points to a parsable object in heap
ysr@1462 182 DEBUG_ONLY(oop old_obj = oop(deferred.start());)
ysr@1462 183 assert(is_in(old_obj), "Not in allocated heap");
ysr@1462 184 assert(!can_elide_initializing_store_barrier(old_obj),
ysr@1601 185 "Else should have been filtered in new_store_pre_barrier()");
ysr@1462 186 assert(!is_in_permanent(old_obj), "Sanity: not expected");
ysr@1462 187 assert(old_obj->is_oop(true), "Not an oop");
ysr@1462 188 assert(old_obj->is_parsable(), "Will not be concurrently parsable");
ysr@1462 189 assert(deferred.word_size() == (size_t)(old_obj->size()),
ysr@1462 190 "Mismatch: multiple objects?");
ysr@1462 191 }
ysr@1462 192 BarrierSet* bs = barrier_set();
ysr@1462 193 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1462 194 bs->write_region(deferred);
ysr@1462 195 // "Clear" the deferred_card_mark field
ysr@1462 196 thread->set_deferred_card_mark(MemRegion());
ysr@1462 197 }
ysr@1462 198 assert(thread->deferred_card_mark().is_empty(), "invariant");
ysr@1462 199 }
ysr@1462 200
ysr@1462 201 // Helper for ReduceInitialCardMarks. For performance,
ysr@1462 202 // compiled code may elide card-marks for initializing stores
ysr@1462 203 // to a newly allocated object along the fast-path. We
ysr@1462 204 // compensate for such elided card-marks as follows:
ysr@1462 205 // (a) Generational, non-concurrent collectors, such as
ysr@1462 206 // GenCollectedHeap(ParNew,DefNew,Tenured) and
ysr@1462 207 // ParallelScavengeHeap(ParallelGC, ParallelOldGC)
ysr@1462 208 // need the card-mark if and only if the region is
ysr@1462 209 // in the old gen, and do not care if the card-mark
ysr@1462 210 // succeeds or precedes the initializing stores themselves,
ysr@1462 211 // so long as the card-mark is completed before the next
ysr@1462 212 // scavenge. For all these cases, we can do a card mark
ysr@1462 213 // at the point at which we do a slow path allocation
ysr@1601 214 // in the old gen, i.e. in this call.
ysr@1462 215 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
ysr@1462 216 // in addition that the card-mark for an old gen allocated
ysr@1462 217 // object strictly follow any associated initializing stores.
ysr@1462 218 // In these cases, the memRegion remembered below is
ysr@1462 219 // used to card-mark the entire region either just before the next
ysr@1462 220 // slow-path allocation by this thread or just before the next scavenge or
ysr@1462 221 // CMS-associated safepoint, whichever of these events happens first.
ysr@1462 222 // (The implicit assumption is that the object has been fully
ysr@1462 223 // initialized by this point, a fact that we assert when doing the
ysr@1462 224 // card-mark.)
ysr@1462 225 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
ysr@1462 226 // G1 concurrent marking is in progress an SATB (pre-write-)barrier is
ysr@1462 227 // is used to remember the pre-value of any store. Initializing
ysr@1462 228 // stores will not need this barrier, so we need not worry about
ysr@1462 229 // compensating for the missing pre-barrier here. Turning now
ysr@1462 230 // to the post-barrier, we note that G1 needs a RS update barrier
ysr@1462 231 // which simply enqueues a (sequence of) dirty cards which may
ysr@1462 232 // optionally be refined by the concurrent update threads. Note
ysr@1462 233 // that this barrier need only be applied to a non-young write,
ysr@1462 234 // but, like in CMS, because of the presence of concurrent refinement
ysr@1462 235 // (much like CMS' precleaning), must strictly follow the oop-store.
ysr@1462 236 // Thus, using the same protocol for maintaining the intended
ysr@1601 237 // invariants turns out, serendepitously, to be the same for both
ysr@1601 238 // G1 and CMS.
ysr@1462 239 //
ysr@1601 240 // For any future collector, this code should be reexamined with
ysr@1601 241 // that specific collector in mind, and the documentation above suitably
ysr@1601 242 // extended and updated.
ysr@1601 243 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
ysr@1462 244 // If a previous card-mark was deferred, flush it now.
ysr@1462 245 flush_deferred_store_barrier(thread);
ysr@1462 246 if (can_elide_initializing_store_barrier(new_obj)) {
ysr@1462 247 // The deferred_card_mark region should be empty
ysr@1462 248 // following the flush above.
ysr@1462 249 assert(thread->deferred_card_mark().is_empty(), "Error");
ysr@1462 250 } else {
ysr@1601 251 MemRegion mr((HeapWord*)new_obj, new_obj->size());
ysr@1601 252 assert(!mr.is_empty(), "Error");
ysr@1601 253 if (_defer_initial_card_mark) {
ysr@1601 254 // Defer the card mark
ysr@1601 255 thread->set_deferred_card_mark(mr);
ysr@1601 256 } else {
ysr@1601 257 // Do the card mark
ysr@1601 258 BarrierSet* bs = barrier_set();
ysr@1601 259 assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
ysr@1601 260 bs->write_region(mr);
ysr@1601 261 }
ysr@1462 262 }
ysr@1462 263 return new_obj;
ysr@1462 264 }
ysr@1462 265
jcoomes@916 266 size_t CollectedHeap::filler_array_hdr_size() {
kvn@1926 267 return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
jcoomes@916 268 }
jcoomes@916 269
jcoomes@916 270 size_t CollectedHeap::filler_array_min_size() {
kvn@1926 271 return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
jcoomes@916 272 }
jcoomes@916 273
jcoomes@916 274 size_t CollectedHeap::filler_array_max_size() {
jcoomes@916 275 return _filler_array_max_size;
jcoomes@916 276 }
jcoomes@916 277
jcoomes@916 278 #ifdef ASSERT
jcoomes@916 279 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
jcoomes@916 280 {
jcoomes@916 281 assert(words >= min_fill_size(), "too small to fill");
jcoomes@916 282 assert(words % MinObjAlignment == 0, "unaligned size");
jcoomes@916 283 assert(Universe::heap()->is_in_reserved(start), "not in heap");
jcoomes@916 284 assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
jcoomes@916 285 }
jcoomes@916 286
johnc@1600 287 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 288 {
johnc@1600 289 if (ZapFillerObjects && zap) {
jcoomes@916 290 Copy::fill_to_words(start + filler_array_hdr_size(),
jcoomes@916 291 words - filler_array_hdr_size(), 0XDEAFBABE);
jcoomes@916 292 }
jcoomes@916 293 }
jcoomes@916 294 #endif // ASSERT
jcoomes@916 295
jcoomes@916 296 void
johnc@1600 297 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
jcoomes@916 298 {
jcoomes@916 299 assert(words >= filler_array_min_size(), "too small for an array");
jcoomes@916 300 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 301
jcoomes@916 302 const size_t payload_size = words - filler_array_hdr_size();
jcoomes@916 303 const size_t len = payload_size * HeapWordSize / sizeof(jint);
jcoomes@916 304
jcoomes@916 305 // Set the length first for concurrent GC.
jcoomes@916 306 ((arrayOop)start)->set_length((int)len);
jcoomes@929 307 post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
johnc@1600 308 DEBUG_ONLY(zap_filler_array(start, words, zap);)
jcoomes@916 309 }
jcoomes@916 310
jcoomes@916 311 void
johnc@1600 312 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
jcoomes@916 313 {
jcoomes@916 314 assert(words <= filler_array_max_size(), "too big for a single object");
jcoomes@916 315
jcoomes@916 316 if (words >= filler_array_min_size()) {
johnc@1600 317 fill_with_array(start, words, zap);
jcoomes@916 318 } else if (words > 0) {
jcoomes@916 319 assert(words == min_fill_size(), "unaligned size");
never@1577 320 post_allocation_setup_common(SystemDictionary::Object_klass(), start,
jcoomes@916 321 words);
jcoomes@916 322 }
jcoomes@916 323 }
jcoomes@916 324
johnc@1600 325 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
jcoomes@916 326 {
jcoomes@916 327 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 328 HandleMark hm; // Free handles before leaving.
johnc@1600 329 fill_with_object_impl(start, words, zap);
jcoomes@916 330 }
jcoomes@916 331
johnc@1600 332 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
jcoomes@916 333 {
jcoomes@916 334 DEBUG_ONLY(fill_args_check(start, words);)
jcoomes@916 335 HandleMark hm; // Free handles before leaving.
jcoomes@916 336
ysr@1904 337 #ifdef _LP64
jcoomes@916 338 // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
jcoomes@916 339 // First fill with arrays, ensuring that any remaining space is big enough to
jcoomes@916 340 // fill. The remainder is filled with a single object.
jcoomes@916 341 const size_t min = min_fill_size();
jcoomes@916 342 const size_t max = filler_array_max_size();
jcoomes@916 343 while (words > max) {
jcoomes@916 344 const size_t cur = words - max >= min ? max : max - min;
johnc@1600 345 fill_with_array(start, cur, zap);
jcoomes@916 346 start += cur;
jcoomes@916 347 words -= cur;
jcoomes@916 348 }
jcoomes@916 349 #endif
jcoomes@916 350
johnc@1600 351 fill_with_object_impl(start, words, zap);
jcoomes@916 352 }
jcoomes@916 353
duke@435 354 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
duke@435 355 guarantee(false, "thread-local allocation buffers not supported");
duke@435 356 return NULL;
duke@435 357 }
duke@435 358
duke@435 359 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 360 // The second disjunct in the assertion below makes a concession
duke@435 361 // for the start-up verification done while the VM is being
duke@435 362 // created. Callers be careful that you know that mutators
duke@435 363 // aren't going to interfere -- for instance, this is permissible
duke@435 364 // if we are still single-threaded and have either not yet
duke@435 365 // started allocating (nothing much to verify) or we have
duke@435 366 // started allocating but are now a full-fledged JavaThread
duke@435 367 // (and have thus made our TLAB's) available for filling.
duke@435 368 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 369 !is_init_completed(),
duke@435 370 "Should only be called at a safepoint or at start-up"
duke@435 371 " otherwise concurrent mutator activity may make heap "
duke@435 372 " unparsable again");
ysr@1601 373 const bool use_tlab = UseTLAB;
ysr@1601 374 const bool deferred = _defer_initial_card_mark;
ysr@1601 375 // The main thread starts allocating via a TLAB even before it
ysr@1601 376 // has added itself to the threads list at vm boot-up.
ysr@1601 377 assert(!use_tlab || Threads::first() != NULL,
ysr@1601 378 "Attempt to fill tlabs before main thread has been added"
ysr@1601 379 " to threads list is doomed to failure!");
ysr@1601 380 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
ysr@1601 381 if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
ysr@1601 382 #ifdef COMPILER2
ysr@1601 383 // The deferred store barriers must all have been flushed to the
ysr@1601 384 // card-table (or other remembered set structure) before GC starts
ysr@1601 385 // processing the card-table (or other remembered set).
ysr@1601 386 if (deferred) flush_deferred_store_barrier(thread);
ysr@1601 387 #else
ysr@1601 388 assert(!deferred, "Should be false");
ysr@1601 389 assert(thread->deferred_card_mark().is_empty(), "Should be empty");
ysr@1601 390 #endif
duke@435 391 }
duke@435 392 }
duke@435 393
duke@435 394 void CollectedHeap::accumulate_statistics_all_tlabs() {
duke@435 395 if (UseTLAB) {
duke@435 396 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 397 !is_init_completed(),
duke@435 398 "should only accumulate statistics on tlabs at safepoint");
duke@435 399
duke@435 400 ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
duke@435 401 }
duke@435 402 }
duke@435 403
duke@435 404 void CollectedHeap::resize_all_tlabs() {
duke@435 405 if (UseTLAB) {
duke@435 406 assert(SafepointSynchronize::is_at_safepoint() ||
duke@435 407 !is_init_completed(),
duke@435 408 "should only resize tlabs at safepoint");
duke@435 409
duke@435 410 ThreadLocalAllocBuffer::resize_all_tlabs();
duke@435 411 }
duke@435 412 }
ysr@1050 413
ysr@1050 414 void CollectedHeap::pre_full_gc_dump() {
ysr@1050 415 if (HeapDumpBeforeFullGC) {
ysr@3067 416 TraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, gclog_or_tty);
ysr@1050 417 // We are doing a "major" collection and a heap dump before
ysr@1050 418 // major collection has been requested.
ysr@1050 419 HeapDumper::dump_heap();
ysr@1050 420 }
ysr@1050 421 if (PrintClassHistogramBeforeFullGC) {
ysr@3067 422 TraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, gclog_or_tty);
ysr@1050 423 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 424 inspector.doit();
ysr@1050 425 }
ysr@1050 426 }
ysr@1050 427
ysr@1050 428 void CollectedHeap::post_full_gc_dump() {
ysr@1050 429 if (HeapDumpAfterFullGC) {
ysr@3067 430 TraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, gclog_or_tty);
ysr@1050 431 HeapDumper::dump_heap();
ysr@1050 432 }
ysr@1050 433 if (PrintClassHistogramAfterFullGC) {
ysr@3067 434 TraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, gclog_or_tty);
ysr@1050 435 VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
ysr@1050 436 inspector.doit();
ysr@1050 437 }
ysr@1050 438 }

mercurial