src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 27 Aug 2012 15:17:17 -0700

author
twisti
date
Mon, 27 Aug 2012 15:17:17 -0700
changeset 4020
a5dd6e3ef9f3
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

6677625: Move platform specific flags from globals.hpp to globals_<arch>.hpp
Reviewed-by: kvn, dholmes, coleenp
Contributed-by: Tao Mao <tao.mao@oracle.com>

duke@435 1 /*
kvn@3760 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
iveresov@2344 103 if (UseCompressedOops) {
iveresov@2344 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
iveresov@2344 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
iveresov@2344 106 }
iveresov@2344 107
duke@435 108 if (dst->is_register()) {
duke@435 109 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 110 return !PatchALot;
duke@435 111 } else if (src->is_single_stack()) {
duke@435 112 return true;
duke@435 113 }
duke@435 114 }
duke@435 115
duke@435 116 if (src->is_register()) {
duke@435 117 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 118 return !PatchALot;
duke@435 119 } else if (dst->is_single_stack()) {
duke@435 120 return true;
duke@435 121 }
duke@435 122 }
duke@435 123
duke@435 124 if (dst->is_register() &&
duke@435 125 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 126 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 127 return true;
duke@435 128 }
duke@435 129
duke@435 130 return false;
duke@435 131 }
duke@435 132
duke@435 133 default:
duke@435 134 return false;
duke@435 135 }
duke@435 136 ShouldNotReachHere();
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 141 return FrameMap::O0_oop_opr;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 146 return FrameMap::I0_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 151 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 157 // If they do not match we jump to slow case.
duke@435 158 int LIR_Assembler::check_icache() {
duke@435 159 int offset = __ offset();
duke@435 160 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 161 return offset;
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 void LIR_Assembler::osr_entry() {
duke@435 166 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 167 //
duke@435 168 // 1. Create a new compiled activation.
duke@435 169 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 170 // at the osr_bci; it is not initialized.
duke@435 171 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 172
duke@435 173 // OSR entry point
duke@435 174 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 175 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 176 ValueStack* entry_state = osr_entry->end()->state();
duke@435 177 int number_of_locks = entry_state->locks_size();
duke@435 178
duke@435 179 // Create a frame for the compiled activation.
duke@435 180 __ build_frame(initial_frame_size_in_bytes());
duke@435 181
duke@435 182 // OSR buffer is
duke@435 183 //
duke@435 184 // locals[nlocals-1..0]
duke@435 185 // monitors[number_of_locks-1..0]
duke@435 186 //
duke@435 187 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 188 // so first slot in the local array is the last local from the interpreter
duke@435 189 // and last slot is local[0] (receiver) from the interpreter
duke@435 190 //
duke@435 191 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 192 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 193 // in the interpreter frame (the method lock if a sync method)
duke@435 194
duke@435 195 // Initialize monitors in the compiled activation.
duke@435 196 // I0: pointer to osr buffer
duke@435 197 //
duke@435 198 // All other registers are dead at this point and the locals will be
duke@435 199 // copied into place by code emitted in the IR.
duke@435 200
duke@435 201 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 202 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 203 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 204 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 205 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 206 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 207 // the oop.
duke@435 208 for (int i = 0; i < number_of_locks; i++) {
roland@1495 209 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 210 #ifdef ASSERT
duke@435 211 // verify the interpreter's monitor has a non-null object
duke@435 212 {
duke@435 213 Label L;
roland@1495 214 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
kvn@3037 215 __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
duke@435 216 __ stop("locked object is NULL");
duke@435 217 __ bind(L);
duke@435 218 }
duke@435 219 #endif // ASSERT
duke@435 220 // Copy the lock field into the compiled activation.
roland@1495 221 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 222 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 223 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 224 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 225 }
duke@435 226 }
duke@435 227 }
duke@435 228
duke@435 229
duke@435 230 // Optimized Library calls
duke@435 231 // This is the fast version of java.lang.String.compare; it has not
duke@435 232 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 234 Register str0 = left->as_register();
duke@435 235 Register str1 = right->as_register();
duke@435 236
duke@435 237 Label Ldone;
duke@435 238
duke@435 239 Register result = dst->as_register();
duke@435 240 {
kvn@3760 241 // Get a pointer to the first character of string0 in tmp0
kvn@3760 242 // and get string0.length() in str0
kvn@3760 243 // Get a pointer to the first character of string1 in tmp1
kvn@3760 244 // and get string1.length() in str1
kvn@3760 245 // Also, get string0.length()-string1.length() in
kvn@3760 246 // o7 and get the condition code set
duke@435 247 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 248
duke@435 249 Register tmp0 = L0;
duke@435 250 Register tmp1 = L1;
duke@435 251 Register tmp2 = L2;
duke@435 252
duke@435 253 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
kvn@3760 254 if (java_lang_String::has_offset_field()) {
kvn@3760 255 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 256 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 257 __ load_heap_oop(str0, value_offset, tmp0);
kvn@3760 258 __ ld(str0, offset_offset, tmp2);
kvn@3760 259 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 260 __ ld(str0, count_offset, str0);
kvn@3760 261 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 262 } else {
kvn@3760 263 __ load_heap_oop(str0, value_offset, tmp1);
kvn@3760 264 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 265 __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
kvn@3760 266 }
duke@435 267
duke@435 268 // str1 may be null
duke@435 269 add_debug_info_for_null_check_here(info);
duke@435 270
kvn@3760 271 if (java_lang_String::has_offset_field()) {
kvn@3760 272 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 273 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 274 __ load_heap_oop(str1, value_offset, tmp1);
kvn@3760 275 __ add(tmp0, tmp2, tmp0);
kvn@3760 276
kvn@3760 277 __ ld(str1, offset_offset, tmp2);
kvn@3760 278 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 279 __ ld(str1, count_offset, str1);
kvn@3760 280 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 281 __ add(tmp1, tmp2, tmp1);
kvn@3760 282 } else {
kvn@3760 283 __ load_heap_oop(str1, value_offset, tmp2);
kvn@3760 284 __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 285 __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
kvn@3760 286 }
duke@435 287 __ subcc(str0, str1, O7);
duke@435 288 }
duke@435 289
duke@435 290 {
duke@435 291 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 292 Register count0 = I0;
duke@435 293 Register count1 = I1;
duke@435 294 Register limit = L3;
duke@435 295
duke@435 296 Label Lskip;
duke@435 297 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 298 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 299 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 300 __ bind(Lskip);
duke@435 301
duke@435 302 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 303 __ cmp(limit, 0);
duke@435 304 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 305 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 306 }
duke@435 307
duke@435 308 {
duke@435 309 // Neither string is empty
duke@435 310 Label Lloop;
duke@435 311
duke@435 312 Register base0 = L0;
duke@435 313 Register base1 = L1;
duke@435 314 Register chr0 = I0;
duke@435 315 Register chr1 = I1;
duke@435 316 Register limit = L3;
duke@435 317
duke@435 318 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 319 __ add(base0, limit, base0);
duke@435 320 __ add(base1, limit, base1);
kvn@3760 321 __ neg(limit); // limit = -min{string0.length(), string1.length()}
duke@435 322
duke@435 323 __ lduh(base0, limit, chr0);
duke@435 324 __ bind(Lloop);
duke@435 325 __ lduh(base1, limit, chr1);
duke@435 326 __ subcc(chr0, chr1, chr0);
duke@435 327 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 328 assert(chr0 == result, "result must be pre-placed");
duke@435 329 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 330 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 331 __ delayed()->lduh(base0, limit, chr0);
duke@435 332 }
duke@435 333
duke@435 334 // If strings are equal up to min length, return the length difference.
duke@435 335 __ mov(O7, result);
duke@435 336
duke@435 337 // Otherwise, return the difference between the first mismatched chars.
duke@435 338 __ bind(Ldone);
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 // --------------------------------------------------------------------------------------------
duke@435 343
duke@435 344 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 345 if (!GenerateSynchronizationCode) return;
duke@435 346
duke@435 347 Register obj_reg = obj_opr->as_register();
duke@435 348 Register lock_reg = lock_opr->as_register();
duke@435 349
duke@435 350 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 351 Register reg = mon_addr.base();
duke@435 352 int offset = mon_addr.disp();
duke@435 353 // compute pointer to BasicLock
duke@435 354 if (mon_addr.is_simm13()) {
duke@435 355 __ add(reg, offset, lock_reg);
duke@435 356 }
duke@435 357 else {
duke@435 358 __ set(offset, lock_reg);
duke@435 359 __ add(reg, lock_reg, lock_reg);
duke@435 360 }
duke@435 361 // unlock object
duke@435 362 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 363 // _slow_case_stubs->append(slow_case);
duke@435 364 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 365 _slow_case_stubs->append(slow_case);
duke@435 366 if (UseFastLocking) {
duke@435 367 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 368 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 369 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 370 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 371 } else {
duke@435 372 // always do slow unlocking
duke@435 373 // note: the slow unlocking code could be inlined here, however if we use
duke@435 374 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 375 // simpler and requires less duplicated code - additionally, the
duke@435 376 // slow unlocking code is the same in either case which simplifies
duke@435 377 // debugging
duke@435 378 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 379 __ delayed()->nop();
duke@435 380 }
duke@435 381 // done
duke@435 382 __ bind(*slow_case->continuation());
duke@435 383 }
duke@435 384
duke@435 385
twisti@1639 386 int LIR_Assembler::emit_exception_handler() {
duke@435 387 // if the last instruction is a call (typically to do a throw which
duke@435 388 // is coming at the end after block reordering) the return address
duke@435 389 // must still point into the code area in order to avoid assertion
duke@435 390 // failures when searching for the corresponding bci => add a nop
duke@435 391 // (was bug 5/14/1999 - gri)
duke@435 392 __ nop();
duke@435 393
duke@435 394 // generate code for exception handler
duke@435 395 ciMethod* method = compilation()->method();
duke@435 396
duke@435 397 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 398
duke@435 399 if (handler_base == NULL) {
duke@435 400 // not enough space left for the handler
duke@435 401 bailout("exception handler overflow");
twisti@1639 402 return -1;
duke@435 403 }
twisti@1639 404
duke@435 405 int offset = code_offset();
duke@435 406
twisti@2603 407 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
duke@435 408 __ delayed()->nop();
twisti@2603 409 __ should_not_reach_here();
iveresov@3435 410 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 411 __ end_a_stub();
twisti@1639 412
twisti@1639 413 return offset;
duke@435 414 }
duke@435 415
twisti@1639 416
never@1813 417 // Emit the code to remove the frame from the stack in the exception
never@1813 418 // unwind path.
never@1813 419 int LIR_Assembler::emit_unwind_handler() {
never@1813 420 #ifndef PRODUCT
never@1813 421 if (CommentedAssembly) {
never@1813 422 _masm->block_comment("Unwind handler");
never@1813 423 }
never@1813 424 #endif
never@1813 425
never@1813 426 int offset = code_offset();
never@1813 427
never@1813 428 // Fetch the exception from TLS and clear out exception related thread state
never@1813 429 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 430 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 431 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 432
never@1813 433 __ bind(_unwind_handler_entry);
never@1813 434 __ verify_not_null_oop(O0);
never@1813 435 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 436 __ mov(O0, I0); // Preserve the exception
never@1813 437 }
never@1813 438
never@1813 439 // Preform needed unlocking
never@1813 440 MonitorExitStub* stub = NULL;
never@1813 441 if (method()->is_synchronized()) {
never@1813 442 monitor_address(0, FrameMap::I1_opr);
never@1813 443 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 444 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 445 __ bind(*stub->continuation());
never@1813 446 }
never@1813 447
never@1813 448 if (compilation()->env()->dtrace_method_probes()) {
never@2185 449 __ mov(G2_thread, O0);
never@2185 450 jobject2reg(method()->constant_encoding(), O1);
never@1813 451 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 452 __ delayed()->nop();
never@1813 453 }
never@1813 454
never@1813 455 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 456 __ mov(I0, O0); // Restore the exception
never@1813 457 }
never@1813 458
never@1813 459 // dispatch to the unwind logic
never@1813 460 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 461 __ delayed()->nop();
never@1813 462
never@1813 463 // Emit the slow path assembly
never@1813 464 if (stub != NULL) {
never@1813 465 stub->emit_code(this);
never@1813 466 }
never@1813 467
never@1813 468 return offset;
never@1813 469 }
never@1813 470
never@1813 471
twisti@1639 472 int LIR_Assembler::emit_deopt_handler() {
duke@435 473 // if the last instruction is a call (typically to do a throw which
duke@435 474 // is coming at the end after block reordering) the return address
duke@435 475 // must still point into the code area in order to avoid assertion
duke@435 476 // failures when searching for the corresponding bci => add a nop
duke@435 477 // (was bug 5/14/1999 - gri)
duke@435 478 __ nop();
duke@435 479
duke@435 480 // generate code for deopt handler
duke@435 481 ciMethod* method = compilation()->method();
duke@435 482 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 483 if (handler_base == NULL) {
duke@435 484 // not enough space left for the handler
duke@435 485 bailout("deopt handler overflow");
twisti@1639 486 return -1;
duke@435 487 }
twisti@1639 488
duke@435 489 int offset = code_offset();
twisti@1162 490 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 491 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 492 __ delayed()->nop();
iveresov@3435 493 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 494 __ end_a_stub();
twisti@1639 495
twisti@1639 496 return offset;
duke@435 497 }
duke@435 498
duke@435 499
duke@435 500 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 501 if (o == NULL) {
duke@435 502 __ set(NULL_WORD, reg);
duke@435 503 } else {
duke@435 504 int oop_index = __ oop_recorder()->find_index(o);
duke@435 505 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 506 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 507 }
duke@435 508 }
duke@435 509
duke@435 510
duke@435 511 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 512 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 513 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 514 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 515
twisti@1162 516 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 517 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 518 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 519 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 520 // therefore generate the sethi/add as a placeholders
twisti@1162 521 __ patchable_set(addrlit, reg);
duke@435 522
duke@435 523 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 524 }
duke@435 525
duke@435 526
duke@435 527 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 528 Register Rdividend = op->in_opr1()->as_register();
duke@435 529 Register Rdivisor = noreg;
duke@435 530 Register Rscratch = op->in_opr3()->as_register();
duke@435 531 Register Rresult = op->result_opr()->as_register();
duke@435 532 int divisor = -1;
duke@435 533
duke@435 534 if (op->in_opr2()->is_register()) {
duke@435 535 Rdivisor = op->in_opr2()->as_register();
duke@435 536 } else {
duke@435 537 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 538 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 539 }
duke@435 540
duke@435 541 assert(Rdividend != Rscratch, "");
duke@435 542 assert(Rdivisor != Rscratch, "");
duke@435 543 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 544
duke@435 545 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 546 // convert division by a power of two into some shifts and logical operations
duke@435 547 if (op->code() == lir_idiv) {
duke@435 548 if (divisor == 2) {
duke@435 549 __ srl(Rdividend, 31, Rscratch);
duke@435 550 } else {
duke@435 551 __ sra(Rdividend, 31, Rscratch);
duke@435 552 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 553 }
duke@435 554 __ add(Rdividend, Rscratch, Rscratch);
duke@435 555 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 556 return;
duke@435 557 } else {
duke@435 558 if (divisor == 2) {
duke@435 559 __ srl(Rdividend, 31, Rscratch);
duke@435 560 } else {
duke@435 561 __ sra(Rdividend, 31, Rscratch);
duke@435 562 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 563 }
duke@435 564 __ add(Rdividend, Rscratch, Rscratch);
duke@435 565 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 566 __ sub(Rdividend, Rscratch, Rresult);
duke@435 567 return;
duke@435 568 }
duke@435 569 }
duke@435 570
duke@435 571 __ sra(Rdividend, 31, Rscratch);
duke@435 572 __ wry(Rscratch);
duke@435 573 if (!VM_Version::v9_instructions_work()) {
duke@435 574 // v9 doesn't require these nops
duke@435 575 __ nop();
duke@435 576 __ nop();
duke@435 577 __ nop();
duke@435 578 __ nop();
duke@435 579 }
duke@435 580
duke@435 581 add_debug_info_for_div0_here(op->info());
duke@435 582
duke@435 583 if (Rdivisor != noreg) {
duke@435 584 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 585 } else {
duke@435 586 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 587 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 588 }
duke@435 589
duke@435 590 Label skip;
duke@435 591 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 592 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 593 __ bind(skip);
duke@435 594
duke@435 595 if (op->code() == lir_irem) {
duke@435 596 if (Rdivisor != noreg) {
duke@435 597 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 598 } else {
duke@435 599 __ smul(Rscratch, divisor, Rscratch);
duke@435 600 }
duke@435 601 __ sub(Rdividend, Rscratch, Rresult);
duke@435 602 }
duke@435 603 }
duke@435 604
duke@435 605
duke@435 606 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 607 #ifdef ASSERT
duke@435 608 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 609 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 610 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 611 #endif
duke@435 612 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 613
duke@435 614 if (op->cond() == lir_cond_always) {
duke@435 615 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 616 } else if (op->code() == lir_cond_float_branch) {
duke@435 617 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 618 bool is_unordered = (op->ublock() == op->block());
duke@435 619 Assembler::Condition acond;
duke@435 620 switch (op->cond()) {
duke@435 621 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 622 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 623 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 624 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 625 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 626 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 627 default : ShouldNotReachHere();
duke@435 628 };
duke@435 629
duke@435 630 if (!VM_Version::v9_instructions_work()) {
duke@435 631 __ nop();
duke@435 632 }
duke@435 633 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 634 } else {
duke@435 635 assert (op->code() == lir_branch, "just checking");
duke@435 636
duke@435 637 Assembler::Condition acond;
duke@435 638 switch (op->cond()) {
duke@435 639 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 640 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 641 case lir_cond_less: acond = Assembler::less; break;
duke@435 642 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 643 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 644 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 645 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 646 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 647 default: ShouldNotReachHere();
duke@435 648 };
duke@435 649
duke@435 650 // sparc has different condition codes for testing 32-bit
duke@435 651 // vs. 64-bit values. We could always test xcc is we could
duke@435 652 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 653 // true and since sign extension isn't free, it would impose a
duke@435 654 // slight cost.
duke@435 655 #ifdef _LP64
duke@435 656 if (op->type() == T_INT) {
duke@435 657 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 658 } else
duke@435 659 #endif
duke@435 660 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 661 }
duke@435 662 // The peephole pass fills the delay slot
duke@435 663 }
duke@435 664
duke@435 665
duke@435 666 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 667 Bytecodes::Code code = op->bytecode();
duke@435 668 LIR_Opr dst = op->result_opr();
duke@435 669
duke@435 670 switch(code) {
duke@435 671 case Bytecodes::_i2l: {
duke@435 672 Register rlo = dst->as_register_lo();
duke@435 673 Register rhi = dst->as_register_hi();
duke@435 674 Register rval = op->in_opr()->as_register();
duke@435 675 #ifdef _LP64
duke@435 676 __ sra(rval, 0, rlo);
duke@435 677 #else
duke@435 678 __ mov(rval, rlo);
duke@435 679 __ sra(rval, BitsPerInt-1, rhi);
duke@435 680 #endif
duke@435 681 break;
duke@435 682 }
duke@435 683 case Bytecodes::_i2d:
duke@435 684 case Bytecodes::_i2f: {
duke@435 685 bool is_double = (code == Bytecodes::_i2d);
duke@435 686 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 687 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 688 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 689 if (rsrc != rdst) {
duke@435 690 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 691 }
duke@435 692 __ fitof(w, rdst, rdst);
duke@435 693 break;
duke@435 694 }
duke@435 695 case Bytecodes::_f2i:{
duke@435 696 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 697 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 698 Label L;
duke@435 699 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 700 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 701 if (!VM_Version::v9_instructions_work()) {
duke@435 702 __ nop();
duke@435 703 }
duke@435 704 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 705 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 706 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 707 // move integer result from float register to int register
duke@435 708 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 709 __ bind (L);
duke@435 710 break;
duke@435 711 }
duke@435 712 case Bytecodes::_l2i: {
duke@435 713 Register rlo = op->in_opr()->as_register_lo();
duke@435 714 Register rhi = op->in_opr()->as_register_hi();
duke@435 715 Register rdst = dst->as_register();
duke@435 716 #ifdef _LP64
duke@435 717 __ sra(rlo, 0, rdst);
duke@435 718 #else
duke@435 719 __ mov(rlo, rdst);
duke@435 720 #endif
duke@435 721 break;
duke@435 722 }
duke@435 723 case Bytecodes::_d2f:
duke@435 724 case Bytecodes::_f2d: {
duke@435 725 bool is_double = (code == Bytecodes::_f2d);
duke@435 726 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 727 LIR_Opr val = op->in_opr();
duke@435 728 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 729 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 730 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 731 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 732 __ ftof(vw, dw, rval, rdst);
duke@435 733 break;
duke@435 734 }
duke@435 735 case Bytecodes::_i2s:
duke@435 736 case Bytecodes::_i2b: {
duke@435 737 Register rval = op->in_opr()->as_register();
duke@435 738 Register rdst = dst->as_register();
duke@435 739 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 740 __ sll (rval, shift, rdst);
duke@435 741 __ sra (rdst, shift, rdst);
duke@435 742 break;
duke@435 743 }
duke@435 744 case Bytecodes::_i2c: {
duke@435 745 Register rval = op->in_opr()->as_register();
duke@435 746 Register rdst = dst->as_register();
duke@435 747 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 748 __ sll (rval, shift, rdst);
duke@435 749 __ srl (rdst, shift, rdst);
duke@435 750 break;
duke@435 751 }
duke@435 752
duke@435 753 default: ShouldNotReachHere();
duke@435 754 }
duke@435 755 }
duke@435 756
duke@435 757
duke@435 758 void LIR_Assembler::align_call(LIR_Code) {
duke@435 759 // do nothing since all instructions are word aligned on sparc
duke@435 760 }
duke@435 761
duke@435 762
twisti@1730 763 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 764 __ call(op->addr(), rtype);
twisti@1919 765 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 766 // LIR_Assembler::emit_delay.
duke@435 767 }
duke@435 768
duke@435 769
twisti@1730 770 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 771 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 772 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 773 __ relocate(rspec);
twisti@1730 774 __ call(op->addr(), relocInfo::none);
twisti@1919 775 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 776 // LIR_Assembler::emit_delay.
duke@435 777 }
duke@435 778
duke@435 779
twisti@1730 780 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 781 add_debug_info_for_null_check_here(op->info());
iveresov@2344 782 __ load_klass(O0, G3_scratch);
twisti@3310 783 if (Assembler::is_simm13(op->vtable_offset())) {
twisti@1730 784 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 785 } else {
duke@435 786 // This will generate 2 instructions
twisti@1730 787 __ set(op->vtable_offset(), G5_method);
duke@435 788 // ld_ptr, set_hi, set
duke@435 789 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 790 }
twisti@1162 791 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
duke@435 792 __ callr(G3_scratch, G0);
duke@435 793 // the peephole pass fills the delay slot
duke@435 794 }
duke@435 795
iveresov@2344 796 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
duke@435 797 int store_offset;
duke@435 798 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 799 assert(!unaligned, "can't handle this");
duke@435 800 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 801 __ set(offset, O7);
iveresov@2344 802 store_offset = store(from_reg, base, O7, type, wide);
duke@435 803 } else {
iveresov@2344 804 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 805 __ verify_oop(from_reg->as_register());
iveresov@2344 806 }
duke@435 807 store_offset = code_offset();
duke@435 808 switch (type) {
duke@435 809 case T_BOOLEAN: // fall through
duke@435 810 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 811 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 812 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 813 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 814 case T_LONG :
duke@435 815 #ifdef _LP64
duke@435 816 if (unaligned || PatchALot) {
duke@435 817 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 818 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 819 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 820 } else {
duke@435 821 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 822 }
duke@435 823 #else
duke@435 824 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 825 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 826 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 827 #endif
duke@435 828 break;
iveresov@2344 829 case T_ADDRESS:
iveresov@2344 830 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 831 break;
duke@435 832 case T_ARRAY : // fall through
iveresov@2344 833 case T_OBJECT:
iveresov@2344 834 {
iveresov@2344 835 if (UseCompressedOops && !wide) {
iveresov@2344 836 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 837 store_offset = code_offset();
iveresov@2344 838 __ stw(G3_scratch, base, offset);
iveresov@2344 839 } else {
iveresov@2344 840 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 841 }
iveresov@2344 842 break;
iveresov@2344 843 }
iveresov@2344 844
duke@435 845 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 846 case T_DOUBLE:
duke@435 847 {
duke@435 848 FloatRegister reg = from_reg->as_double_reg();
duke@435 849 // split unaligned stores
duke@435 850 if (unaligned || PatchALot) {
duke@435 851 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 852 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 853 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 854 } else {
duke@435 855 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 856 }
duke@435 857 break;
duke@435 858 }
duke@435 859 default : ShouldNotReachHere();
duke@435 860 }
duke@435 861 }
duke@435 862 return store_offset;
duke@435 863 }
duke@435 864
duke@435 865
iveresov@2344 866 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
iveresov@2344 867 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 868 __ verify_oop(from_reg->as_register());
iveresov@2344 869 }
duke@435 870 int store_offset = code_offset();
duke@435 871 switch (type) {
duke@435 872 case T_BOOLEAN: // fall through
duke@435 873 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 874 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 875 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 876 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 877 case T_LONG :
duke@435 878 #ifdef _LP64
duke@435 879 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 880 #else
duke@435 881 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 882 __ std(from_reg->as_register_hi(), base, disp);
duke@435 883 #endif
duke@435 884 break;
iveresov@2344 885 case T_ADDRESS:
iveresov@2344 886 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 887 break;
duke@435 888 case T_ARRAY : // fall through
iveresov@2344 889 case T_OBJECT:
iveresov@2344 890 {
iveresov@2344 891 if (UseCompressedOops && !wide) {
iveresov@2344 892 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 893 store_offset = code_offset();
iveresov@2344 894 __ stw(G3_scratch, base, disp);
iveresov@2344 895 } else {
iveresov@2344 896 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 897 }
iveresov@2344 898 break;
iveresov@2344 899 }
duke@435 900 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 901 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 902 default : ShouldNotReachHere();
duke@435 903 }
duke@435 904 return store_offset;
duke@435 905 }
duke@435 906
duke@435 907
iveresov@2344 908 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
duke@435 909 int load_offset;
duke@435 910 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 911 assert(base != O7, "destroying register");
duke@435 912 assert(!unaligned, "can't handle this");
duke@435 913 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 914 __ set(offset, O7);
iveresov@2344 915 load_offset = load(base, O7, to_reg, type, wide);
duke@435 916 } else {
duke@435 917 load_offset = code_offset();
duke@435 918 switch(type) {
duke@435 919 case T_BOOLEAN: // fall through
duke@435 920 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 921 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 922 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 923 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 924 case T_LONG :
duke@435 925 if (!unaligned) {
duke@435 926 #ifdef _LP64
duke@435 927 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 928 #else
duke@435 929 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 930 "must be sequential");
duke@435 931 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 932 #endif
duke@435 933 } else {
duke@435 934 #ifdef _LP64
duke@435 935 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 936 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 937 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 938 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 939 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 940 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 941 #else
duke@435 942 if (base == to_reg->as_register_lo()) {
duke@435 943 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 944 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 945 } else {
duke@435 946 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 947 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 948 }
duke@435 949 #endif
duke@435 950 }
duke@435 951 break;
iveresov@2344 952 case T_ADDRESS: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 953 case T_ARRAY : // fall through
iveresov@2344 954 case T_OBJECT:
iveresov@2344 955 {
iveresov@2344 956 if (UseCompressedOops && !wide) {
iveresov@2344 957 __ lduw(base, offset, to_reg->as_register());
iveresov@2344 958 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 959 } else {
iveresov@2344 960 __ ld_ptr(base, offset, to_reg->as_register());
iveresov@2344 961 }
iveresov@2344 962 break;
iveresov@2344 963 }
duke@435 964 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 965 case T_DOUBLE:
duke@435 966 {
duke@435 967 FloatRegister reg = to_reg->as_double_reg();
duke@435 968 // split unaligned loads
duke@435 969 if (unaligned || PatchALot) {
roland@1495 970 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 971 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 972 } else {
duke@435 973 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 974 }
duke@435 975 break;
duke@435 976 }
duke@435 977 default : ShouldNotReachHere();
duke@435 978 }
iveresov@2344 979 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 980 __ verify_oop(to_reg->as_register());
iveresov@2344 981 }
duke@435 982 }
duke@435 983 return load_offset;
duke@435 984 }
duke@435 985
duke@435 986
iveresov@2344 987 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
duke@435 988 int load_offset = code_offset();
duke@435 989 switch(type) {
duke@435 990 case T_BOOLEAN: // fall through
iveresov@2344 991 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
iveresov@2344 992 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
iveresov@2344 993 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
iveresov@2344 994 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
iveresov@2344 995 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 996 case T_ARRAY : // fall through
iveresov@2344 997 case T_OBJECT:
iveresov@2344 998 {
iveresov@2344 999 if (UseCompressedOops && !wide) {
iveresov@2344 1000 __ lduw(base, disp, to_reg->as_register());
iveresov@2344 1001 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 1002 } else {
iveresov@2344 1003 __ ld_ptr(base, disp, to_reg->as_register());
iveresov@2344 1004 }
iveresov@2344 1005 break;
iveresov@2344 1006 }
duke@435 1007 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1008 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1009 case T_LONG :
duke@435 1010 #ifdef _LP64
duke@435 1011 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1012 #else
duke@435 1013 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1014 "must be sequential");
duke@435 1015 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1016 #endif
duke@435 1017 break;
duke@435 1018 default : ShouldNotReachHere();
duke@435 1019 }
iveresov@2344 1020 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1021 __ verify_oop(to_reg->as_register());
iveresov@2344 1022 }
duke@435 1023 return load_offset;
duke@435 1024 }
duke@435 1025
duke@435 1026 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1027 LIR_Const* c = src->as_constant_ptr();
duke@435 1028 switch (c->type()) {
duke@435 1029 case T_INT:
iveresov@2344 1030 case T_FLOAT: {
iveresov@2344 1031 Register src_reg = O7;
iveresov@2344 1032 int value = c->as_jint_bits();
iveresov@2344 1033 if (value == 0) {
iveresov@2344 1034 src_reg = G0;
iveresov@2344 1035 } else {
iveresov@2344 1036 __ set(value, O7);
iveresov@2344 1037 }
iveresov@2344 1038 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1039 __ stw(src_reg, addr.base(), addr.disp());
iveresov@2344 1040 break;
iveresov@2344 1041 }
roland@1732 1042 case T_ADDRESS: {
duke@435 1043 Register src_reg = O7;
duke@435 1044 int value = c->as_jint_bits();
duke@435 1045 if (value == 0) {
duke@435 1046 src_reg = G0;
duke@435 1047 } else {
duke@435 1048 __ set(value, O7);
duke@435 1049 }
duke@435 1050 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1051 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1052 break;
duke@435 1053 }
duke@435 1054 case T_OBJECT: {
duke@435 1055 Register src_reg = O7;
duke@435 1056 jobject2reg(c->as_jobject(), src_reg);
duke@435 1057 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1058 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1059 break;
duke@435 1060 }
duke@435 1061 case T_LONG:
duke@435 1062 case T_DOUBLE: {
duke@435 1063 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1064
duke@435 1065 Register tmp = O7;
duke@435 1066 int value_lo = c->as_jint_lo_bits();
duke@435 1067 if (value_lo == 0) {
duke@435 1068 tmp = G0;
duke@435 1069 } else {
duke@435 1070 __ set(value_lo, O7);
duke@435 1071 }
duke@435 1072 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1073 int value_hi = c->as_jint_hi_bits();
duke@435 1074 if (value_hi == 0) {
duke@435 1075 tmp = G0;
duke@435 1076 } else {
duke@435 1077 __ set(value_hi, O7);
duke@435 1078 }
duke@435 1079 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1080 break;
duke@435 1081 }
duke@435 1082 default:
duke@435 1083 Unimplemented();
duke@435 1084 }
duke@435 1085 }
duke@435 1086
duke@435 1087
iveresov@2344 1088 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 1089 LIR_Const* c = src->as_constant_ptr();
duke@435 1090 LIR_Address* addr = dest->as_address_ptr();
duke@435 1091 Register base = addr->base()->as_pointer_register();
iveresov@2344 1092 int offset = -1;
iveresov@2344 1093
duke@435 1094 switch (c->type()) {
duke@435 1095 case T_INT:
roland@1732 1096 case T_FLOAT:
roland@1732 1097 case T_ADDRESS: {
duke@435 1098 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1099 int value = c->as_jint_bits();
duke@435 1100 if (value == 0) {
duke@435 1101 tmp = FrameMap::G0_opr;
duke@435 1102 } else if (Assembler::is_simm13(value)) {
duke@435 1103 __ set(value, O7);
duke@435 1104 }
duke@435 1105 if (addr->index()->is_valid()) {
duke@435 1106 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1107 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1108 } else {
duke@435 1109 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1110 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1111 }
duke@435 1112 break;
duke@435 1113 }
duke@435 1114 case T_LONG:
duke@435 1115 case T_DOUBLE: {
duke@435 1116 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1117 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1118 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1119
iveresov@2344 1120 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1121 int value_lo = c->as_jint_lo_bits();
duke@435 1122 if (value_lo == 0) {
iveresov@2344 1123 tmp = FrameMap::G0_opr;
duke@435 1124 } else {
duke@435 1125 __ set(value_lo, O7);
duke@435 1126 }
iveresov@2344 1127 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
duke@435 1128 int value_hi = c->as_jint_hi_bits();
duke@435 1129 if (value_hi == 0) {
iveresov@2344 1130 tmp = FrameMap::G0_opr;
duke@435 1131 } else {
duke@435 1132 __ set(value_hi, O7);
duke@435 1133 }
never@3248 1134 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
duke@435 1135 break;
duke@435 1136 }
duke@435 1137 case T_OBJECT: {
duke@435 1138 jobject obj = c->as_jobject();
duke@435 1139 LIR_Opr tmp;
duke@435 1140 if (obj == NULL) {
duke@435 1141 tmp = FrameMap::G0_opr;
duke@435 1142 } else {
duke@435 1143 tmp = FrameMap::O7_opr;
duke@435 1144 jobject2reg(c->as_jobject(), O7);
duke@435 1145 }
duke@435 1146 // handle either reg+reg or reg+disp address
duke@435 1147 if (addr->index()->is_valid()) {
duke@435 1148 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1149 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1150 } else {
duke@435 1151 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1152 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1153 }
duke@435 1154
duke@435 1155 break;
duke@435 1156 }
duke@435 1157 default:
duke@435 1158 Unimplemented();
duke@435 1159 }
iveresov@2344 1160 if (info != NULL) {
iveresov@2344 1161 assert(offset != -1, "offset should've been set");
iveresov@2344 1162 add_debug_info_for_null_check(offset, info);
iveresov@2344 1163 }
duke@435 1164 }
duke@435 1165
duke@435 1166
duke@435 1167 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1168 LIR_Const* c = src->as_constant_ptr();
duke@435 1169 LIR_Opr to_reg = dest;
duke@435 1170
duke@435 1171 switch (c->type()) {
duke@435 1172 case T_INT:
roland@1732 1173 case T_ADDRESS:
duke@435 1174 {
duke@435 1175 jint con = c->as_jint();
duke@435 1176 if (to_reg->is_single_cpu()) {
duke@435 1177 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1178 __ set(con, to_reg->as_register());
duke@435 1179 } else {
duke@435 1180 ShouldNotReachHere();
duke@435 1181 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1182
duke@435 1183 __ set(con, O7);
twisti@1162 1184 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1185 __ st(O7, temp_slot);
duke@435 1186 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1187 }
duke@435 1188 }
duke@435 1189 break;
duke@435 1190
duke@435 1191 case T_LONG:
duke@435 1192 {
duke@435 1193 jlong con = c->as_jlong();
duke@435 1194
duke@435 1195 if (to_reg->is_double_cpu()) {
duke@435 1196 #ifdef _LP64
duke@435 1197 __ set(con, to_reg->as_register_lo());
duke@435 1198 #else
duke@435 1199 __ set(low(con), to_reg->as_register_lo());
duke@435 1200 __ set(high(con), to_reg->as_register_hi());
duke@435 1201 #endif
duke@435 1202 #ifdef _LP64
duke@435 1203 } else if (to_reg->is_single_cpu()) {
duke@435 1204 __ set(con, to_reg->as_register());
duke@435 1205 #endif
duke@435 1206 } else {
duke@435 1207 ShouldNotReachHere();
duke@435 1208 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1209 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1210 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1211 __ set(low(con), O7);
duke@435 1212 __ st(O7, temp_slot_lo);
duke@435 1213 __ set(high(con), O7);
duke@435 1214 __ st(O7, temp_slot_hi);
duke@435 1215 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1216 }
duke@435 1217 }
duke@435 1218 break;
duke@435 1219
duke@435 1220 case T_OBJECT:
duke@435 1221 {
duke@435 1222 if (patch_code == lir_patch_none) {
duke@435 1223 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1224 } else {
duke@435 1225 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1226 }
duke@435 1227 }
duke@435 1228 break;
duke@435 1229
duke@435 1230 case T_FLOAT:
duke@435 1231 {
duke@435 1232 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1233 if (const_addr == NULL) {
duke@435 1234 bailout("const section overflow");
duke@435 1235 break;
duke@435 1236 }
duke@435 1237 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1238 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1239 if (to_reg->is_single_fpu()) {
twisti@1162 1240 __ patchable_sethi(const_addrlit, O7);
duke@435 1241 __ relocate(rspec);
twisti@1162 1242 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1243
duke@435 1244 } else {
duke@435 1245 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1246
twisti@1162 1247 __ set(const_addrlit, O7);
iveresov@2344 1248 __ ld(O7, 0, to_reg->as_register());
duke@435 1249 }
duke@435 1250 }
duke@435 1251 break;
duke@435 1252
duke@435 1253 case T_DOUBLE:
duke@435 1254 {
duke@435 1255 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1256 if (const_addr == NULL) {
duke@435 1257 bailout("const section overflow");
duke@435 1258 break;
duke@435 1259 }
duke@435 1260 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1261
duke@435 1262 if (to_reg->is_double_fpu()) {
twisti@1162 1263 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1264 __ patchable_sethi(const_addrlit, O7);
duke@435 1265 __ relocate(rspec);
twisti@1162 1266 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1267 } else {
duke@435 1268 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1269 #ifdef _LP64
duke@435 1270 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1271 #else
duke@435 1272 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1273 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1274 #endif
duke@435 1275 }
duke@435 1276
duke@435 1277 }
duke@435 1278 break;
duke@435 1279
duke@435 1280 default:
duke@435 1281 ShouldNotReachHere();
duke@435 1282 }
duke@435 1283 }
duke@435 1284
duke@435 1285 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1286 Register reg = addr->base()->as_register();
twisti@1162 1287 return Address(reg, addr->disp());
duke@435 1288 }
duke@435 1289
duke@435 1290
duke@435 1291 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1292 switch (type) {
duke@435 1293 case T_INT:
duke@435 1294 case T_FLOAT: {
duke@435 1295 Register tmp = O7;
duke@435 1296 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1297 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1298 __ lduw(from.base(), from.disp(), tmp);
duke@435 1299 __ stw(tmp, to.base(), to.disp());
duke@435 1300 break;
duke@435 1301 }
duke@435 1302 case T_OBJECT: {
duke@435 1303 Register tmp = O7;
duke@435 1304 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1305 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1306 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1307 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1308 break;
duke@435 1309 }
duke@435 1310 case T_LONG:
duke@435 1311 case T_DOUBLE: {
duke@435 1312 Register tmp = O7;
duke@435 1313 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1314 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1315 __ lduw(from.base(), from.disp(), tmp);
duke@435 1316 __ stw(tmp, to.base(), to.disp());
duke@435 1317 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1318 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1319 break;
duke@435 1320 }
duke@435 1321
duke@435 1322 default:
duke@435 1323 ShouldNotReachHere();
duke@435 1324 }
duke@435 1325 }
duke@435 1326
duke@435 1327
duke@435 1328 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1329 Address base = as_Address(addr);
twisti@1162 1330 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1331 }
duke@435 1332
duke@435 1333
duke@435 1334 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1335 Address base = as_Address(addr);
twisti@1162 1336 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1337 }
duke@435 1338
duke@435 1339
duke@435 1340 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
iveresov@2344 1341 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
duke@435 1342
duke@435 1343 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1344 LIR_Opr to_reg = dest;
duke@435 1345
duke@435 1346 Register src = addr->base()->as_pointer_register();
duke@435 1347 Register disp_reg = noreg;
duke@435 1348 int disp_value = addr->disp();
duke@435 1349 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1350
duke@435 1351 if (addr->base()->type() == T_OBJECT) {
duke@435 1352 __ verify_oop(src);
duke@435 1353 }
duke@435 1354
duke@435 1355 PatchingStub* patch = NULL;
duke@435 1356 if (needs_patching) {
duke@435 1357 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1358 assert(!to_reg->is_double_cpu() ||
duke@435 1359 patch_code == lir_patch_none ||
duke@435 1360 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1361 }
duke@435 1362
duke@435 1363 if (addr->index()->is_illegal()) {
duke@435 1364 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1365 if (needs_patching) {
twisti@1162 1366 __ patchable_set(0, O7);
duke@435 1367 } else {
duke@435 1368 __ set(disp_value, O7);
duke@435 1369 }
duke@435 1370 disp_reg = O7;
duke@435 1371 }
duke@435 1372 } else if (unaligned || PatchALot) {
duke@435 1373 __ add(src, addr->index()->as_register(), O7);
duke@435 1374 src = O7;
duke@435 1375 } else {
duke@435 1376 disp_reg = addr->index()->as_pointer_register();
duke@435 1377 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1378 }
duke@435 1379
duke@435 1380 // remember the offset of the load. The patching_epilog must be done
duke@435 1381 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1382 // entered in increasing order.
duke@435 1383 int offset = code_offset();
duke@435 1384
duke@435 1385 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1386 if (disp_reg == noreg) {
iveresov@2344 1387 offset = load(src, disp_value, to_reg, type, wide, unaligned);
duke@435 1388 } else {
duke@435 1389 assert(!unaligned, "can't handle this");
iveresov@2344 1390 offset = load(src, disp_reg, to_reg, type, wide);
duke@435 1391 }
duke@435 1392
duke@435 1393 if (patch != NULL) {
duke@435 1394 patching_epilog(patch, patch_code, src, info);
duke@435 1395 }
duke@435 1396 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1397 }
duke@435 1398
duke@435 1399
duke@435 1400 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1401 LIR_Address* addr = src->as_address_ptr();
duke@435 1402 Address from_addr = as_Address(addr);
duke@435 1403
duke@435 1404 if (VM_Version::has_v9()) {
duke@435 1405 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409
duke@435 1410 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1411 LIR_Address* addr = src->as_address_ptr();
duke@435 1412 Address from_addr = as_Address(addr);
duke@435 1413
duke@435 1414 if (VM_Version::has_v9()) {
duke@435 1415 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1416 }
duke@435 1417 }
duke@435 1418
duke@435 1419
duke@435 1420 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1421 Address addr;
duke@435 1422 if (src->is_single_word()) {
duke@435 1423 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1424 } else if (src->is_double_word()) {
duke@435 1425 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1426 }
duke@435 1427
duke@435 1428 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1429 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
duke@435 1430 }
duke@435 1431
duke@435 1432
duke@435 1433 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1434 Address addr;
duke@435 1435 if (dest->is_single_word()) {
duke@435 1436 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1437 } else if (dest->is_double_word()) {
duke@435 1438 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1439 }
duke@435 1440 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1441 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
duke@435 1442 }
duke@435 1443
duke@435 1444
duke@435 1445 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1446 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1447 if (from_reg->is_double_fpu()) {
duke@435 1448 // double to double moves
duke@435 1449 assert(to_reg->is_double_fpu(), "should match");
duke@435 1450 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1451 } else {
duke@435 1452 // float to float moves
duke@435 1453 assert(to_reg->is_single_fpu(), "should match");
duke@435 1454 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1455 }
duke@435 1456 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1457 if (from_reg->is_double_cpu()) {
duke@435 1458 #ifdef _LP64
duke@435 1459 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1460 #else
duke@435 1461 assert(to_reg->is_double_cpu() &&
duke@435 1462 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1463 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1464 "should both be long and not overlap");
duke@435 1465 // long to long moves
duke@435 1466 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1467 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1468 #endif
duke@435 1469 #ifdef _LP64
duke@435 1470 } else if (to_reg->is_double_cpu()) {
duke@435 1471 // int to int moves
duke@435 1472 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1473 #endif
duke@435 1474 } else {
duke@435 1475 // int to int moves
duke@435 1476 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1477 }
duke@435 1478 } else {
duke@435 1479 ShouldNotReachHere();
duke@435 1480 }
duke@435 1481 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1482 __ verify_oop(to_reg->as_register());
duke@435 1483 }
duke@435 1484 }
duke@435 1485
duke@435 1486
duke@435 1487 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1488 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
iveresov@2344 1489 bool wide, bool unaligned) {
duke@435 1490 LIR_Address* addr = dest->as_address_ptr();
duke@435 1491
duke@435 1492 Register src = addr->base()->as_pointer_register();
duke@435 1493 Register disp_reg = noreg;
duke@435 1494 int disp_value = addr->disp();
duke@435 1495 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1496
duke@435 1497 if (addr->base()->is_oop_register()) {
duke@435 1498 __ verify_oop(src);
duke@435 1499 }
duke@435 1500
duke@435 1501 PatchingStub* patch = NULL;
duke@435 1502 if (needs_patching) {
duke@435 1503 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1504 assert(!from_reg->is_double_cpu() ||
duke@435 1505 patch_code == lir_patch_none ||
duke@435 1506 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1507 }
duke@435 1508
duke@435 1509 if (addr->index()->is_illegal()) {
duke@435 1510 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1511 if (needs_patching) {
twisti@1162 1512 __ patchable_set(0, O7);
duke@435 1513 } else {
duke@435 1514 __ set(disp_value, O7);
duke@435 1515 }
duke@435 1516 disp_reg = O7;
duke@435 1517 }
duke@435 1518 } else if (unaligned || PatchALot) {
duke@435 1519 __ add(src, addr->index()->as_register(), O7);
duke@435 1520 src = O7;
duke@435 1521 } else {
duke@435 1522 disp_reg = addr->index()->as_pointer_register();
duke@435 1523 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1524 }
duke@435 1525
duke@435 1526 // remember the offset of the store. The patching_epilog must be done
duke@435 1527 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1528 // entered in increasing order.
duke@435 1529 int offset;
duke@435 1530
duke@435 1531 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1532 if (disp_reg == noreg) {
iveresov@2344 1533 offset = store(from_reg, src, disp_value, type, wide, unaligned);
duke@435 1534 } else {
duke@435 1535 assert(!unaligned, "can't handle this");
iveresov@2344 1536 offset = store(from_reg, src, disp_reg, type, wide);
duke@435 1537 }
duke@435 1538
duke@435 1539 if (patch != NULL) {
duke@435 1540 patching_epilog(patch, patch_code, src, info);
duke@435 1541 }
duke@435 1542
duke@435 1543 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1544 }
duke@435 1545
duke@435 1546
duke@435 1547 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1548 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1549 #if defined(TIERED) && !defined(_LP64)
duke@435 1550 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1551 // Must move the result to G1
duke@435 1552 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1553 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1554 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1555 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1556 #ifdef ASSERT
iveresov@2138 1557 // mangle it so any problems will show up
iveresov@2138 1558 __ set(0xdeadbeef, I0);
iveresov@2138 1559 __ set(0xdeadbeef, I1);
iveresov@2138 1560 #endif
duke@435 1561 }
duke@435 1562 #endif // TIERED
duke@435 1563 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1564 __ relocate(relocInfo::poll_return_type);
duke@435 1565 __ ld_ptr(L0, 0, G0);
duke@435 1566 __ ret();
duke@435 1567 __ delayed()->restore();
duke@435 1568 }
duke@435 1569
duke@435 1570
duke@435 1571 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1572 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1573 if (info != NULL) {
duke@435 1574 add_debug_info_for_branch(info);
duke@435 1575 } else {
duke@435 1576 __ relocate(relocInfo::poll_type);
duke@435 1577 }
duke@435 1578
duke@435 1579 int offset = __ offset();
duke@435 1580 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1581
duke@435 1582 return offset;
duke@435 1583 }
duke@435 1584
duke@435 1585
duke@435 1586 void LIR_Assembler::emit_static_call_stub() {
duke@435 1587 address call_pc = __ pc();
duke@435 1588 address stub = __ start_a_stub(call_stub_size);
duke@435 1589 if (stub == NULL) {
duke@435 1590 bailout("static call stub overflow");
duke@435 1591 return;
duke@435 1592 }
duke@435 1593
duke@435 1594 int start = __ offset();
duke@435 1595 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1596
duke@435 1597 __ set_oop(NULL, G5);
duke@435 1598 // must be set to -1 at code generation time
twisti@1162 1599 AddressLiteral addrlit(-1);
twisti@1162 1600 __ jump_to(addrlit, G3);
duke@435 1601 __ delayed()->nop();
duke@435 1602
duke@435 1603 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1604 __ end_a_stub();
duke@435 1605 }
duke@435 1606
duke@435 1607
duke@435 1608 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1609 if (opr1->is_single_fpu()) {
duke@435 1610 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1611 } else if (opr1->is_double_fpu()) {
duke@435 1612 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1613 } else if (opr1->is_single_cpu()) {
duke@435 1614 if (opr2->is_constant()) {
duke@435 1615 switch (opr2->as_constant_ptr()->type()) {
duke@435 1616 case T_INT:
duke@435 1617 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1618 if (Assembler::is_simm13(con)) {
duke@435 1619 __ cmp(opr1->as_register(), con);
duke@435 1620 } else {
duke@435 1621 __ set(con, O7);
duke@435 1622 __ cmp(opr1->as_register(), O7);
duke@435 1623 }
duke@435 1624 }
duke@435 1625 break;
duke@435 1626
duke@435 1627 case T_OBJECT:
duke@435 1628 // there are only equal/notequal comparisions on objects
duke@435 1629 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1630 if (con == NULL) {
duke@435 1631 __ cmp(opr1->as_register(), 0);
duke@435 1632 } else {
duke@435 1633 jobject2reg(con, O7);
duke@435 1634 __ cmp(opr1->as_register(), O7);
duke@435 1635 }
duke@435 1636 }
duke@435 1637 break;
duke@435 1638
duke@435 1639 default:
duke@435 1640 ShouldNotReachHere();
duke@435 1641 break;
duke@435 1642 }
duke@435 1643 } else {
duke@435 1644 if (opr2->is_address()) {
duke@435 1645 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1646 BasicType type = addr->type();
duke@435 1647 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1648 else __ ld(as_Address(addr), O7);
duke@435 1649 __ cmp(opr1->as_register(), O7);
duke@435 1650 } else {
duke@435 1651 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1652 }
duke@435 1653 }
duke@435 1654 } else if (opr1->is_double_cpu()) {
duke@435 1655 Register xlo = opr1->as_register_lo();
duke@435 1656 Register xhi = opr1->as_register_hi();
duke@435 1657 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1658 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1659 #ifdef _LP64
duke@435 1660 __ orcc(xhi, G0, G0);
duke@435 1661 #else
duke@435 1662 __ orcc(xhi, xlo, G0);
duke@435 1663 #endif
duke@435 1664 } else if (opr2->is_register()) {
duke@435 1665 Register ylo = opr2->as_register_lo();
duke@435 1666 Register yhi = opr2->as_register_hi();
duke@435 1667 #ifdef _LP64
duke@435 1668 __ cmp(xlo, ylo);
duke@435 1669 #else
duke@435 1670 __ subcc(xlo, ylo, xlo);
duke@435 1671 __ subccc(xhi, yhi, xhi);
duke@435 1672 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1673 __ orcc(xhi, xlo, G0);
duke@435 1674 }
duke@435 1675 #endif
duke@435 1676 } else {
duke@435 1677 ShouldNotReachHere();
duke@435 1678 }
duke@435 1679 } else if (opr1->is_address()) {
duke@435 1680 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1681 BasicType type = addr->type();
duke@435 1682 assert (opr2->is_constant(), "Checking");
duke@435 1683 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1684 else __ ld(as_Address(addr), O7);
duke@435 1685 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1686 } else {
duke@435 1687 ShouldNotReachHere();
duke@435 1688 }
duke@435 1689 }
duke@435 1690
duke@435 1691
duke@435 1692 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1693 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1694 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1695 if (left->is_single_fpu()) {
duke@435 1696 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1697 } else if (left->is_double_fpu()) {
duke@435 1698 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1699 } else {
duke@435 1700 ShouldNotReachHere();
duke@435 1701 }
duke@435 1702 } else if (code == lir_cmp_l2i) {
iveresov@1804 1703 #ifdef _LP64
iveresov@1804 1704 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1705 #else
duke@435 1706 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1707 right->as_register_hi(), right->as_register_lo(),
duke@435 1708 dst->as_register());
iveresov@1804 1709 #endif
duke@435 1710 } else {
duke@435 1711 ShouldNotReachHere();
duke@435 1712 }
duke@435 1713 }
duke@435 1714
duke@435 1715
iveresov@2412 1716 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1717 Assembler::Condition acond;
duke@435 1718 switch (condition) {
duke@435 1719 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1720 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1721 case lir_cond_less: acond = Assembler::less; break;
duke@435 1722 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1723 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1724 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1725 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1726 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1727 default: ShouldNotReachHere();
duke@435 1728 };
duke@435 1729
duke@435 1730 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1731 Register dest = result->as_register();
duke@435 1732 // load up first part of constant before branch
duke@435 1733 // and do the rest in the delay slot.
duke@435 1734 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1735 __ sethi(opr1->as_jint(), dest);
duke@435 1736 }
duke@435 1737 } else if (opr1->is_constant()) {
duke@435 1738 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1739 } else if (opr1->is_register()) {
duke@435 1740 reg2reg(opr1, result);
duke@435 1741 } else if (opr1->is_stack()) {
duke@435 1742 stack2reg(opr1, result, result->type());
duke@435 1743 } else {
duke@435 1744 ShouldNotReachHere();
duke@435 1745 }
duke@435 1746 Label skip;
iveresov@2412 1747 #ifdef _LP64
iveresov@2412 1748 if (type == T_INT) {
iveresov@2412 1749 __ br(acond, false, Assembler::pt, skip);
iveresov@2412 1750 } else
iveresov@2412 1751 #endif
iveresov@2412 1752 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
duke@435 1753 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1754 Register dest = result->as_register();
duke@435 1755 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1756 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1757 } else {
duke@435 1758 // the sethi has been done above, so just put in the low 10 bits
duke@435 1759 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1760 }
duke@435 1761 } else {
duke@435 1762 // can't do anything useful in the delay slot
duke@435 1763 __ delayed()->nop();
duke@435 1764 }
duke@435 1765 if (opr2->is_constant()) {
duke@435 1766 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1767 } else if (opr2->is_register()) {
duke@435 1768 reg2reg(opr2, result);
duke@435 1769 } else if (opr2->is_stack()) {
duke@435 1770 stack2reg(opr2, result, result->type());
duke@435 1771 } else {
duke@435 1772 ShouldNotReachHere();
duke@435 1773 }
duke@435 1774 __ bind(skip);
duke@435 1775 }
duke@435 1776
duke@435 1777
duke@435 1778 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1779 assert(info == NULL, "unused on this code path");
duke@435 1780 assert(left->is_register(), "wrong items state");
duke@435 1781 assert(dest->is_register(), "wrong items state");
duke@435 1782
duke@435 1783 if (right->is_register()) {
duke@435 1784 if (dest->is_float_kind()) {
duke@435 1785
duke@435 1786 FloatRegister lreg, rreg, res;
duke@435 1787 FloatRegisterImpl::Width w;
duke@435 1788 if (right->is_single_fpu()) {
duke@435 1789 w = FloatRegisterImpl::S;
duke@435 1790 lreg = left->as_float_reg();
duke@435 1791 rreg = right->as_float_reg();
duke@435 1792 res = dest->as_float_reg();
duke@435 1793 } else {
duke@435 1794 w = FloatRegisterImpl::D;
duke@435 1795 lreg = left->as_double_reg();
duke@435 1796 rreg = right->as_double_reg();
duke@435 1797 res = dest->as_double_reg();
duke@435 1798 }
duke@435 1799
duke@435 1800 switch (code) {
duke@435 1801 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1802 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1803 case lir_mul: // fall through
duke@435 1804 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1805 case lir_div: // fall through
duke@435 1806 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1807 default: ShouldNotReachHere();
duke@435 1808 }
duke@435 1809
duke@435 1810 } else if (dest->is_double_cpu()) {
duke@435 1811 #ifdef _LP64
duke@435 1812 Register dst_lo = dest->as_register_lo();
duke@435 1813 Register op1_lo = left->as_pointer_register();
duke@435 1814 Register op2_lo = right->as_pointer_register();
duke@435 1815
duke@435 1816 switch (code) {
duke@435 1817 case lir_add:
duke@435 1818 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1819 break;
duke@435 1820
duke@435 1821 case lir_sub:
duke@435 1822 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1823 break;
duke@435 1824
duke@435 1825 default: ShouldNotReachHere();
duke@435 1826 }
duke@435 1827 #else
duke@435 1828 Register op1_lo = left->as_register_lo();
duke@435 1829 Register op1_hi = left->as_register_hi();
duke@435 1830 Register op2_lo = right->as_register_lo();
duke@435 1831 Register op2_hi = right->as_register_hi();
duke@435 1832 Register dst_lo = dest->as_register_lo();
duke@435 1833 Register dst_hi = dest->as_register_hi();
duke@435 1834
duke@435 1835 switch (code) {
duke@435 1836 case lir_add:
duke@435 1837 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1838 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1839 break;
duke@435 1840
duke@435 1841 case lir_sub:
duke@435 1842 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1843 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1844 break;
duke@435 1845
duke@435 1846 default: ShouldNotReachHere();
duke@435 1847 }
duke@435 1848 #endif
duke@435 1849 } else {
duke@435 1850 assert (right->is_single_cpu(), "Just Checking");
duke@435 1851
duke@435 1852 Register lreg = left->as_register();
duke@435 1853 Register res = dest->as_register();
duke@435 1854 Register rreg = right->as_register();
duke@435 1855 switch (code) {
duke@435 1856 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1857 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1858 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1859 default: ShouldNotReachHere();
duke@435 1860 }
duke@435 1861 }
duke@435 1862 } else {
duke@435 1863 assert (right->is_constant(), "must be constant");
duke@435 1864
duke@435 1865 if (dest->is_single_cpu()) {
duke@435 1866 Register lreg = left->as_register();
duke@435 1867 Register res = dest->as_register();
duke@435 1868 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1869
duke@435 1870 switch (code) {
duke@435 1871 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1872 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1873 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1874 default: ShouldNotReachHere();
duke@435 1875 }
duke@435 1876 } else {
duke@435 1877 Register lreg = left->as_pointer_register();
duke@435 1878 Register res = dest->as_register_lo();
duke@435 1879 long con = right->as_constant_ptr()->as_jlong();
duke@435 1880 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1881
duke@435 1882 switch (code) {
duke@435 1883 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1884 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1885 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1886 default: ShouldNotReachHere();
duke@435 1887 }
duke@435 1888 }
duke@435 1889 }
duke@435 1890 }
duke@435 1891
duke@435 1892
duke@435 1893 void LIR_Assembler::fpop() {
duke@435 1894 // do nothing
duke@435 1895 }
duke@435 1896
duke@435 1897
duke@435 1898 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1899 switch (code) {
duke@435 1900 case lir_sin:
duke@435 1901 case lir_tan:
duke@435 1902 case lir_cos: {
duke@435 1903 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1904 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1905 break;
duke@435 1906 }
duke@435 1907 case lir_sqrt: {
duke@435 1908 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1909 FloatRegister src_reg = value->as_double_reg();
duke@435 1910 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1911 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1912 break;
duke@435 1913 }
duke@435 1914 case lir_abs: {
duke@435 1915 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1916 FloatRegister src_reg = value->as_double_reg();
duke@435 1917 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1918 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1919 break;
duke@435 1920 }
duke@435 1921 default: {
duke@435 1922 ShouldNotReachHere();
duke@435 1923 break;
duke@435 1924 }
duke@435 1925 }
duke@435 1926 }
duke@435 1927
duke@435 1928
duke@435 1929 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1930 if (right->is_constant()) {
duke@435 1931 if (dest->is_single_cpu()) {
duke@435 1932 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1933 switch (code) {
duke@435 1934 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1935 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1936 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1937 default: ShouldNotReachHere();
duke@435 1938 }
duke@435 1939 } else {
duke@435 1940 long c = right->as_constant_ptr()->as_jlong();
duke@435 1941 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1942 int simm13 = (int)c;
duke@435 1943 switch (code) {
duke@435 1944 case lir_logic_and:
duke@435 1945 #ifndef _LP64
duke@435 1946 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1947 #endif
duke@435 1948 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1949 break;
duke@435 1950
duke@435 1951 case lir_logic_or:
duke@435 1952 #ifndef _LP64
duke@435 1953 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1954 #endif
duke@435 1955 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1956 break;
duke@435 1957
duke@435 1958 case lir_logic_xor:
duke@435 1959 #ifndef _LP64
duke@435 1960 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1961 #endif
duke@435 1962 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1963 break;
duke@435 1964
duke@435 1965 default: ShouldNotReachHere();
duke@435 1966 }
duke@435 1967 }
duke@435 1968 } else {
duke@435 1969 assert(right->is_register(), "right should be in register");
duke@435 1970
duke@435 1971 if (dest->is_single_cpu()) {
duke@435 1972 switch (code) {
duke@435 1973 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1974 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1975 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1976 default: ShouldNotReachHere();
duke@435 1977 }
duke@435 1978 } else {
duke@435 1979 #ifdef _LP64
duke@435 1980 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 1981 left->as_register_lo();
duke@435 1982 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 1983 right->as_register_lo();
duke@435 1984
duke@435 1985 switch (code) {
duke@435 1986 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 1987 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 1988 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 1989 default: ShouldNotReachHere();
duke@435 1990 }
duke@435 1991 #else
duke@435 1992 switch (code) {
duke@435 1993 case lir_logic_and:
duke@435 1994 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1995 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1996 break;
duke@435 1997
duke@435 1998 case lir_logic_or:
duke@435 1999 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2000 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2001 break;
duke@435 2002
duke@435 2003 case lir_logic_xor:
duke@435 2004 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2005 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2006 break;
duke@435 2007
duke@435 2008 default: ShouldNotReachHere();
duke@435 2009 }
duke@435 2010 #endif
duke@435 2011 }
duke@435 2012 }
duke@435 2013 }
duke@435 2014
duke@435 2015
duke@435 2016 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2017 int elem_size = type2aelembytes(t);
duke@435 2018 switch (elem_size) {
duke@435 2019 case 1 : return 0;
duke@435 2020 case 2 : return 1;
duke@435 2021 case 4 : return 2;
duke@435 2022 case 8 : return 3;
duke@435 2023 }
duke@435 2024 ShouldNotReachHere();
duke@435 2025 return -1;
duke@435 2026 }
duke@435 2027
duke@435 2028
never@1813 2029 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2030 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2031 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2032
duke@435 2033 info->add_register_oop(exceptionOop);
duke@435 2034
never@1813 2035 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2036 address pc_for_athrow = __ pc();
never@1813 2037 int pc_for_athrow_offset = __ offset();
never@1813 2038 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2039 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2040 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2041
never@1813 2042 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2043 __ delayed()->nop();
never@1813 2044 }
never@1813 2045
never@1813 2046
never@1813 2047 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2048 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2049
never@1813 2050 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2051 __ delayed()->nop();
duke@435 2052 }
duke@435 2053
duke@435 2054
duke@435 2055 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2056 Register src = op->src()->as_register();
duke@435 2057 Register dst = op->dst()->as_register();
duke@435 2058 Register src_pos = op->src_pos()->as_register();
duke@435 2059 Register dst_pos = op->dst_pos()->as_register();
duke@435 2060 Register length = op->length()->as_register();
duke@435 2061 Register tmp = op->tmp()->as_register();
duke@435 2062 Register tmp2 = O7;
duke@435 2063
duke@435 2064 int flags = op->flags();
duke@435 2065 ciArrayKlass* default_type = op->expected_type();
duke@435 2066 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2067 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2068
iveresov@2731 2069 #ifdef _LP64
iveresov@2731 2070 // higher 32bits must be null
iveresov@2731 2071 __ sra(dst_pos, 0, dst_pos);
iveresov@2731 2072 __ sra(src_pos, 0, src_pos);
iveresov@2731 2073 __ sra(length, 0, length);
iveresov@2731 2074 #endif
iveresov@2731 2075
duke@435 2076 // set up the arraycopy stub information
duke@435 2077 ArrayCopyStub* stub = op->stub();
duke@435 2078
duke@435 2079 // always do stub if no type information is available. it's ok if
duke@435 2080 // the known type isn't loaded since the code sanity checks
duke@435 2081 // in debug mode and the type isn't required when we know the exact type
duke@435 2082 // also check that the type is an array type.
roland@2728 2083 if (op->expected_type() == NULL) {
duke@435 2084 __ mov(src, O0);
duke@435 2085 __ mov(src_pos, O1);
duke@435 2086 __ mov(dst, O2);
duke@435 2087 __ mov(dst_pos, O3);
duke@435 2088 __ mov(length, O4);
roland@2728 2089 address copyfunc_addr = StubRoutines::generic_arraycopy();
roland@2728 2090
roland@2728 2091 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 2092 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
roland@2728 2093 } else {
roland@2728 2094 #ifndef PRODUCT
roland@2728 2095 if (PrintC1Statistics) {
roland@2728 2096 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
roland@2728 2097 __ inc_counter(counter, G1, G3);
roland@2728 2098 }
roland@2728 2099 #endif
roland@2728 2100 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2101 }
roland@2728 2102
roland@2728 2103 if (copyfunc_addr != NULL) {
roland@2728 2104 __ xor3(O0, -1, tmp);
roland@2728 2105 __ sub(length, tmp, length);
roland@2728 2106 __ add(src_pos, tmp, src_pos);
kvn@3037 2107 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2108 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2109 } else {
kvn@3037 2110 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2111 __ delayed()->nop();
roland@2728 2112 }
duke@435 2113 __ bind(*stub->continuation());
duke@435 2114 return;
duke@435 2115 }
duke@435 2116
duke@435 2117 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2118
duke@435 2119 // make sure src and dst are non-null and load array length
duke@435 2120 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2121 __ tst(src);
iveresov@2344 2122 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2123 __ delayed()->nop();
duke@435 2124 }
duke@435 2125
duke@435 2126 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2127 __ tst(dst);
iveresov@2344 2128 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2129 __ delayed()->nop();
duke@435 2130 }
duke@435 2131
duke@435 2132 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2133 // test src_pos register
kvn@3037 2134 __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
duke@435 2135 __ delayed()->nop();
duke@435 2136 }
duke@435 2137
duke@435 2138 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2139 // test dst_pos register
kvn@3037 2140 __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
duke@435 2141 __ delayed()->nop();
duke@435 2142 }
duke@435 2143
duke@435 2144 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2145 // make sure length isn't negative
kvn@3037 2146 __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
duke@435 2147 __ delayed()->nop();
duke@435 2148 }
duke@435 2149
duke@435 2150 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2151 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2152 __ add(length, src_pos, tmp);
duke@435 2153 __ cmp(tmp2, tmp);
duke@435 2154 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2155 __ delayed()->nop();
duke@435 2156 }
duke@435 2157
duke@435 2158 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2159 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2160 __ add(length, dst_pos, tmp);
duke@435 2161 __ cmp(tmp2, tmp);
duke@435 2162 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2163 __ delayed()->nop();
duke@435 2164 }
duke@435 2165
roland@2728 2166 int shift = shift_amount(basic_type);
roland@2728 2167
duke@435 2168 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 2169 // We don't know the array types are compatible
roland@2728 2170 if (basic_type != T_OBJECT) {
roland@2728 2171 // Simple test for basic type arrays
roland@2728 2172 if (UseCompressedOops) {
roland@2728 2173 // We don't need decode because we just need to compare
roland@2728 2174 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2175 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2176 __ cmp(tmp, tmp2);
roland@2728 2177 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2178 } else {
roland@2728 2179 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2180 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2181 __ cmp(tmp, tmp2);
roland@2728 2182 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2183 }
roland@2728 2184 __ delayed()->nop();
iveresov@2344 2185 } else {
roland@2728 2186 // For object arrays, if src is a sub class of dst then we can
roland@2728 2187 // safely do the copy.
roland@2728 2188 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 2189
roland@2728 2190 Label cont, slow;
roland@2728 2191 assert_different_registers(tmp, tmp2, G3, G1);
roland@2728 2192
roland@2728 2193 __ load_klass(src, G3);
roland@2728 2194 __ load_klass(dst, G1);
roland@2728 2195
roland@2728 2196 __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
roland@2728 2197
roland@2728 2198 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
roland@2728 2199 __ delayed()->nop();
roland@2728 2200
roland@2728 2201 __ cmp(G3, 0);
roland@2728 2202 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 2203 // src is not a sub class of dst so we have to do a
roland@2728 2204 // per-element check.
roland@2728 2205 __ br(Assembler::notEqual, false, Assembler::pt, cont);
roland@2728 2206 __ delayed()->nop();
roland@2728 2207
roland@2728 2208 __ bind(slow);
roland@2728 2209
roland@2728 2210 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 2211 if ((flags & mask) != mask) {
roland@2728 2212 // Check that at least both of them object arrays.
roland@2728 2213 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 2214
roland@2728 2215 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 2216 __ load_klass(src, tmp);
roland@2728 2217 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 2218 __ load_klass(dst, tmp);
roland@2728 2219 }
stefank@3391 2220 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 2221
roland@2728 2222 __ lduw(tmp, lh_offset, tmp2);
roland@2728 2223
roland@2728 2224 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 2225 __ set(objArray_lh, tmp);
roland@2728 2226 __ cmp(tmp, tmp2);
roland@2728 2227 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2228 __ delayed()->nop();
roland@2728 2229 }
roland@2728 2230
roland@2728 2231 Register src_ptr = O0;
roland@2728 2232 Register dst_ptr = O1;
roland@2728 2233 Register len = O2;
roland@2728 2234 Register chk_off = O3;
roland@2728 2235 Register super_k = O4;
roland@2728 2236
roland@2728 2237 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@2728 2238 if (shift == 0) {
roland@2728 2239 __ add(src_ptr, src_pos, src_ptr);
roland@2728 2240 } else {
roland@2728 2241 __ sll(src_pos, shift, tmp);
roland@2728 2242 __ add(src_ptr, tmp, src_ptr);
roland@2728 2243 }
roland@2728 2244
roland@2728 2245 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@2728 2246 if (shift == 0) {
roland@2728 2247 __ add(dst_ptr, dst_pos, dst_ptr);
roland@2728 2248 } else {
roland@2728 2249 __ sll(dst_pos, shift, tmp);
roland@2728 2250 __ add(dst_ptr, tmp, dst_ptr);
roland@2728 2251 }
roland@2728 2252 __ mov(length, len);
roland@2728 2253 __ load_klass(dst, tmp);
roland@2728 2254
stefank@3391 2255 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
roland@2728 2256 __ ld_ptr(tmp, ek_offset, super_k);
roland@2728 2257
stefank@3391 2258 int sco_offset = in_bytes(Klass::super_check_offset_offset());
roland@2728 2259 __ lduw(super_k, sco_offset, chk_off);
roland@2728 2260
roland@2728 2261 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2262
roland@2728 2263 #ifndef PRODUCT
roland@2728 2264 if (PrintC1Statistics) {
roland@2728 2265 Label failed;
kvn@3037 2266 __ br_notnull_short(O0, Assembler::pn, failed);
roland@2728 2267 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
roland@2728 2268 __ bind(failed);
roland@2728 2269 }
roland@2728 2270 #endif
roland@2728 2271
roland@2728 2272 __ br_null(O0, false, Assembler::pt, *stub->continuation());
roland@2728 2273 __ delayed()->xor3(O0, -1, tmp);
roland@2728 2274
roland@2728 2275 #ifndef PRODUCT
roland@2728 2276 if (PrintC1Statistics) {
roland@2728 2277 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
roland@2728 2278 }
roland@2728 2279 #endif
roland@2728 2280
roland@2728 2281 __ sub(length, tmp, length);
roland@2728 2282 __ add(src_pos, tmp, src_pos);
roland@2728 2283 __ br(Assembler::always, false, Assembler::pt, *stub->entry());
roland@2728 2284 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2285
roland@2728 2286 __ bind(cont);
roland@2728 2287 } else {
roland@2728 2288 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
roland@2728 2289 __ delayed()->nop();
roland@2728 2290 __ bind(cont);
roland@2728 2291 }
iveresov@2344 2292 }
duke@435 2293 }
duke@435 2294
duke@435 2295 #ifdef ASSERT
duke@435 2296 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2297 // Sanity check the known type with the incoming class. For the
duke@435 2298 // primitive case the types must match exactly with src.klass and
duke@435 2299 // dst.klass each exactly matching the default type. For the
duke@435 2300 // object array case, if no type check is needed then either the
duke@435 2301 // dst type is exactly the expected type and the src type is a
duke@435 2302 // subtype which we can't check or src is the same array as dst
duke@435 2303 // but not necessarily exactly of type default_type.
duke@435 2304 Label known_ok, halt;
jrose@1424 2305 jobject2reg(op->expected_type()->constant_encoding(), tmp);
iveresov@2344 2306 if (UseCompressedOops) {
iveresov@2344 2307 // tmp holds the default type. It currently comes uncompressed after the
iveresov@2344 2308 // load of a constant, so encode it.
iveresov@2344 2309 __ encode_heap_oop(tmp);
iveresov@2344 2310 // load the raw value of the dst klass, since we will be comparing
iveresov@2344 2311 // uncompressed values directly.
iveresov@2344 2312 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2313 if (basic_type != T_OBJECT) {
iveresov@2344 2314 __ cmp(tmp, tmp2);
iveresov@2344 2315 __ br(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2316 // load the raw value of the src klass.
iveresov@2344 2317 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2318 __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2319 } else {
iveresov@2344 2320 __ cmp(tmp, tmp2);
iveresov@2344 2321 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2322 __ delayed()->cmp(src, dst);
iveresov@2344 2323 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2324 __ delayed()->nop();
iveresov@2344 2325 }
duke@435 2326 } else {
iveresov@2344 2327 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2328 if (basic_type != T_OBJECT) {
iveresov@2344 2329 __ cmp(tmp, tmp2);
iveresov@2344 2330 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2331 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2332 __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2333 } else {
iveresov@2344 2334 __ cmp(tmp, tmp2);
iveresov@2344 2335 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2336 __ delayed()->cmp(src, dst);
iveresov@2344 2337 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2338 __ delayed()->nop();
iveresov@2344 2339 }
duke@435 2340 }
duke@435 2341 __ bind(halt);
duke@435 2342 __ stop("incorrect type information in arraycopy");
duke@435 2343 __ bind(known_ok);
duke@435 2344 }
duke@435 2345 #endif
duke@435 2346
roland@2728 2347 #ifndef PRODUCT
roland@2728 2348 if (PrintC1Statistics) {
roland@2728 2349 address counter = Runtime1::arraycopy_count_address(basic_type);
roland@2728 2350 __ inc_counter(counter, G1, G3);
roland@2728 2351 }
roland@2728 2352 #endif
duke@435 2353
duke@435 2354 Register src_ptr = O0;
duke@435 2355 Register dst_ptr = O1;
duke@435 2356 Register len = O2;
duke@435 2357
duke@435 2358 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
duke@435 2359 if (shift == 0) {
duke@435 2360 __ add(src_ptr, src_pos, src_ptr);
duke@435 2361 } else {
duke@435 2362 __ sll(src_pos, shift, tmp);
duke@435 2363 __ add(src_ptr, tmp, src_ptr);
duke@435 2364 }
duke@435 2365
duke@435 2366 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
duke@435 2367 if (shift == 0) {
duke@435 2368 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2369 } else {
duke@435 2370 __ sll(dst_pos, shift, tmp);
duke@435 2371 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2372 }
duke@435 2373
roland@2728 2374 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 2375 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 2376 const char *name;
roland@2728 2377 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 2378
roland@2728 2379 // arraycopy stubs takes a length in number of elements, so don't scale it.
roland@2728 2380 __ mov(length, len);
roland@2728 2381 __ call_VM_leaf(tmp, entry);
duke@435 2382
duke@435 2383 __ bind(*stub->continuation());
duke@435 2384 }
duke@435 2385
duke@435 2386
duke@435 2387 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2388 if (dest->is_single_cpu()) {
duke@435 2389 #ifdef _LP64
duke@435 2390 if (left->type() == T_OBJECT) {
duke@435 2391 switch (code) {
duke@435 2392 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2393 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2394 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2395 default: ShouldNotReachHere();
duke@435 2396 }
duke@435 2397 } else
duke@435 2398 #endif
duke@435 2399 switch (code) {
duke@435 2400 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2401 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2402 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2403 default: ShouldNotReachHere();
duke@435 2404 }
duke@435 2405 } else {
duke@435 2406 #ifdef _LP64
duke@435 2407 switch (code) {
duke@435 2408 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2409 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2410 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2411 default: ShouldNotReachHere();
duke@435 2412 }
duke@435 2413 #else
duke@435 2414 switch (code) {
duke@435 2415 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2416 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2417 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2418 default: ShouldNotReachHere();
duke@435 2419 }
duke@435 2420 #endif
duke@435 2421 }
duke@435 2422 }
duke@435 2423
duke@435 2424
duke@435 2425 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2426 #ifdef _LP64
duke@435 2427 if (left->type() == T_OBJECT) {
duke@435 2428 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2429 Register l = left->as_register();
duke@435 2430 Register d = dest->as_register_lo();
duke@435 2431 switch (code) {
duke@435 2432 case lir_shl: __ sllx (l, count, d); break;
duke@435 2433 case lir_shr: __ srax (l, count, d); break;
duke@435 2434 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2435 default: ShouldNotReachHere();
duke@435 2436 }
duke@435 2437 return;
duke@435 2438 }
duke@435 2439 #endif
duke@435 2440
duke@435 2441 if (dest->is_single_cpu()) {
duke@435 2442 count = count & 0x1F; // Java spec
duke@435 2443 switch (code) {
duke@435 2444 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2445 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2446 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2447 default: ShouldNotReachHere();
duke@435 2448 }
duke@435 2449 } else if (dest->is_double_cpu()) {
duke@435 2450 count = count & 63; // Java spec
duke@435 2451 switch (code) {
duke@435 2452 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2453 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2454 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2455 default: ShouldNotReachHere();
duke@435 2456 }
duke@435 2457 } else {
duke@435 2458 ShouldNotReachHere();
duke@435 2459 }
duke@435 2460 }
duke@435 2461
duke@435 2462
duke@435 2463 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2464 assert(op->tmp1()->as_register() == G1 &&
duke@435 2465 op->tmp2()->as_register() == G3 &&
duke@435 2466 op->tmp3()->as_register() == G4 &&
duke@435 2467 op->obj()->as_register() == O0 &&
duke@435 2468 op->klass()->as_register() == G5, "must be");
duke@435 2469 if (op->init_check()) {
coleenp@3368 2470 __ ldub(op->klass()->as_register(),
stefank@3391 2471 in_bytes(instanceKlass::init_state_offset()),
duke@435 2472 op->tmp1()->as_register());
duke@435 2473 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2474 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2475 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2476 __ delayed()->nop();
duke@435 2477 }
duke@435 2478 __ allocate_object(op->obj()->as_register(),
duke@435 2479 op->tmp1()->as_register(),
duke@435 2480 op->tmp2()->as_register(),
duke@435 2481 op->tmp3()->as_register(),
duke@435 2482 op->header_size(),
duke@435 2483 op->object_size(),
duke@435 2484 op->klass()->as_register(),
duke@435 2485 *op->stub()->entry());
duke@435 2486 __ bind(*op->stub()->continuation());
duke@435 2487 __ verify_oop(op->obj()->as_register());
duke@435 2488 }
duke@435 2489
duke@435 2490
duke@435 2491 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2492 assert(op->tmp1()->as_register() == G1 &&
duke@435 2493 op->tmp2()->as_register() == G3 &&
duke@435 2494 op->tmp3()->as_register() == G4 &&
duke@435 2495 op->tmp4()->as_register() == O1 &&
duke@435 2496 op->klass()->as_register() == G5, "must be");
iveresov@2432 2497
iveresov@2432 2498 LP64_ONLY( __ signx(op->len()->as_register()); )
duke@435 2499 if (UseSlowPath ||
duke@435 2500 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2501 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2502 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2503 __ delayed()->nop();
duke@435 2504 } else {
duke@435 2505 __ allocate_array(op->obj()->as_register(),
duke@435 2506 op->len()->as_register(),
duke@435 2507 op->tmp1()->as_register(),
duke@435 2508 op->tmp2()->as_register(),
duke@435 2509 op->tmp3()->as_register(),
duke@435 2510 arrayOopDesc::header_size(op->type()),
kvn@464 2511 type2aelembytes(op->type()),
duke@435 2512 op->klass()->as_register(),
duke@435 2513 *op->stub()->entry());
duke@435 2514 }
duke@435 2515 __ bind(*op->stub()->continuation());
duke@435 2516 }
duke@435 2517
duke@435 2518
iveresov@2138 2519 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2520 ciMethodData *md, ciProfileData *data,
iveresov@2138 2521 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2522 uint i;
iveresov@2138 2523 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2524 Label next_test;
iveresov@2138 2525 // See if the receiver is receiver[n].
iveresov@2138 2526 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2527 mdo_offset_bias);
iveresov@2138 2528 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2529 __ verify_oop(tmp1);
kvn@3037 2530 __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
iveresov@2138 2531 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2532 mdo_offset_bias);
iveresov@2138 2533 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2534 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2535 __ st_ptr(tmp1, data_addr);
kvn@3037 2536 __ ba(*update_done);
iveresov@2138 2537 __ delayed()->nop();
iveresov@2138 2538 __ bind(next_test);
iveresov@2138 2539 }
iveresov@2138 2540
iveresov@2138 2541 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2542 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2543 Label next_test;
iveresov@2138 2544 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2545 mdo_offset_bias);
iveresov@2344 2546 __ ld_ptr(recv_addr, tmp1);
kvn@3037 2547 __ br_notnull_short(tmp1, Assembler::pt, next_test);
iveresov@2138 2548 __ st_ptr(recv, recv_addr);
iveresov@2138 2549 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2550 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2551 mdo_offset_bias);
kvn@3037 2552 __ ba(*update_done);
iveresov@2138 2553 __ delayed()->nop();
iveresov@2138 2554 __ bind(next_test);
iveresov@2138 2555 }
iveresov@2138 2556 }
iveresov@2138 2557
iveresov@2146 2558
iveresov@2146 2559 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2560 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2349 2561 md = method->method_data_or_null();
iveresov@2349 2562 assert(md != NULL, "Sanity");
iveresov@2146 2563 data = md->bci_to_data(bci);
iveresov@2146 2564 assert(data != NULL, "need data for checkcast");
iveresov@2146 2565 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2566 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2567 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2568 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2569 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2570 }
iveresov@2146 2571 }
iveresov@2146 2572
iveresov@2146 2573 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2574 // we always need a stub for the failure case.
iveresov@2138 2575 CodeStub* stub = op->stub();
iveresov@2138 2576 Register obj = op->object()->as_register();
iveresov@2138 2577 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2578 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2579 Register dst = op->result_opr()->as_register();
iveresov@2138 2580 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2581 ciKlass* k = op->klass();
iveresov@2138 2582
iveresov@2138 2583
iveresov@2138 2584 if (obj == k_RInfo) {
iveresov@2138 2585 k_RInfo = klass_RInfo;
iveresov@2138 2586 klass_RInfo = obj;
iveresov@2138 2587 }
iveresov@2138 2588
iveresov@2138 2589 ciMethodData* md;
iveresov@2138 2590 ciProfileData* data;
iveresov@2138 2591 int mdo_offset_bias = 0;
iveresov@2138 2592 if (op->should_profile()) {
iveresov@2138 2593 ciMethod* method = op->profiled_method();
iveresov@2138 2594 assert(method != NULL, "Should have method");
iveresov@2146 2595 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2596
iveresov@2146 2597 Label not_null;
kvn@3037 2598 __ br_notnull_short(obj, Assembler::pn, not_null);
iveresov@2138 2599 Register mdo = k_RInfo;
iveresov@2138 2600 Register data_val = Rtmp1;
iveresov@2138 2601 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2602 if (mdo_offset_bias > 0) {
iveresov@2138 2603 __ set(mdo_offset_bias, data_val);
iveresov@2138 2604 __ add(mdo, data_val, mdo);
iveresov@2138 2605 }
iveresov@2138 2606 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2607 __ ldub(flags_addr, data_val);
iveresov@2138 2608 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2609 __ stb(data_val, flags_addr);
kvn@3037 2610 __ ba(*obj_is_null);
iveresov@2146 2611 __ delayed()->nop();
iveresov@2146 2612 __ bind(not_null);
iveresov@2146 2613 } else {
iveresov@2146 2614 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2615 __ delayed()->nop();
iveresov@2138 2616 }
iveresov@2146 2617
iveresov@2146 2618 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2619 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2620 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2621
iveresov@2138 2622 // patching may screw with our temporaries on sparc,
iveresov@2138 2623 // so let's do it before loading the class
iveresov@2138 2624 if (k->is_loaded()) {
iveresov@2138 2625 jobject2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2626 } else {
iveresov@2138 2627 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2628 }
iveresov@2138 2629 assert(obj != k_RInfo, "must be different");
iveresov@2138 2630
iveresov@2138 2631 // get object class
iveresov@2138 2632 // not a safepoint as obj null check happens earlier
iveresov@2344 2633 __ load_klass(obj, klass_RInfo);
iveresov@2138 2634 if (op->fast_check()) {
iveresov@2138 2635 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2636 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2637 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2638 __ delayed()->nop();
iveresov@2138 2639 } else {
iveresov@2138 2640 bool need_slow_path = true;
iveresov@2138 2641 if (k->is_loaded()) {
stefank@3391 2642 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
iveresov@2138 2643 need_slow_path = false;
iveresov@2138 2644 // perform the fast part of the checking logic
iveresov@2138 2645 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2646 (need_slow_path ? success_target : NULL),
iveresov@2138 2647 failure_target, NULL,
iveresov@2138 2648 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2649 } else {
iveresov@2138 2650 // perform the fast part of the checking logic
iveresov@2146 2651 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2652 failure_target, NULL);
iveresov@2138 2653 }
iveresov@2138 2654 if (need_slow_path) {
iveresov@2138 2655 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2656 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2657 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2658 __ delayed()->nop();
iveresov@2138 2659 __ cmp(G3, 0);
iveresov@2138 2660 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2661 __ delayed()->nop();
iveresov@2146 2662 // Fall through to success case
iveresov@2138 2663 }
iveresov@2138 2664 }
iveresov@2138 2665
iveresov@2138 2666 if (op->should_profile()) {
iveresov@2138 2667 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2668 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2669 __ bind(profile_cast_success);
iveresov@2138 2670 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2671 if (mdo_offset_bias > 0) {
iveresov@2138 2672 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2673 __ add(mdo, tmp1, mdo);
iveresov@2138 2674 }
iveresov@2344 2675 __ load_klass(obj, recv);
iveresov@2146 2676 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2677 // Jump over the failure case
kvn@3037 2678 __ ba(*success);
iveresov@2138 2679 __ delayed()->nop();
iveresov@2138 2680 // Cast failure case
iveresov@2138 2681 __ bind(profile_cast_failure);
iveresov@2138 2682 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2683 if (mdo_offset_bias > 0) {
iveresov@2138 2684 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2685 __ add(mdo, tmp1, mdo);
iveresov@2138 2686 }
iveresov@2138 2687 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2688 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2689 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2690 __ st_ptr(tmp1, data_addr);
kvn@3037 2691 __ ba(*failure);
iveresov@2138 2692 __ delayed()->nop();
iveresov@2138 2693 }
kvn@3037 2694 __ ba(*success);
iveresov@2146 2695 __ delayed()->nop();
iveresov@2138 2696 }
iveresov@2138 2697
duke@435 2698 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2699 LIR_Code code = op->code();
duke@435 2700 if (code == lir_store_check) {
duke@435 2701 Register value = op->object()->as_register();
duke@435 2702 Register array = op->array()->as_register();
duke@435 2703 Register k_RInfo = op->tmp1()->as_register();
duke@435 2704 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2705 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2706
duke@435 2707 __ verify_oop(value);
duke@435 2708 CodeStub* stub = op->stub();
iveresov@2146 2709 // check if it needs to be profiled
iveresov@2146 2710 ciMethodData* md;
iveresov@2146 2711 ciProfileData* data;
iveresov@2146 2712 int mdo_offset_bias = 0;
iveresov@2146 2713 if (op->should_profile()) {
iveresov@2146 2714 ciMethod* method = op->profiled_method();
iveresov@2146 2715 assert(method != NULL, "Should have method");
iveresov@2146 2716 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2717 }
iveresov@2146 2718 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2719 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2720 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2721
iveresov@2146 2722 if (op->should_profile()) {
iveresov@2146 2723 Label not_null;
kvn@3037 2724 __ br_notnull_short(value, Assembler::pn, not_null);
iveresov@2146 2725 Register mdo = k_RInfo;
iveresov@2146 2726 Register data_val = Rtmp1;
iveresov@2146 2727 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2728 if (mdo_offset_bias > 0) {
iveresov@2146 2729 __ set(mdo_offset_bias, data_val);
iveresov@2146 2730 __ add(mdo, data_val, mdo);
iveresov@2146 2731 }
iveresov@2146 2732 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2733 __ ldub(flags_addr, data_val);
iveresov@2146 2734 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2735 __ stb(data_val, flags_addr);
kvn@3037 2736 __ ba_short(done);
iveresov@2146 2737 __ bind(not_null);
iveresov@2146 2738 } else {
kvn@3037 2739 __ br_null_short(value, Assembler::pn, done);
iveresov@2146 2740 }
iveresov@2344 2741 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 2742 __ load_klass(array, k_RInfo);
iveresov@2344 2743 __ load_klass(value, klass_RInfo);
duke@435 2744
duke@435 2745 // get instance klass
stefank@3391 2746 __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
jrose@1079 2747 // perform the fast part of the checking logic
iveresov@2146 2748 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2749
jrose@1079 2750 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2751 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2752 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2753 __ delayed()->nop();
duke@435 2754 __ cmp(G3, 0);
iveresov@2146 2755 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2756 __ delayed()->nop();
iveresov@2146 2757 // fall through to the success case
iveresov@2146 2758
iveresov@2146 2759 if (op->should_profile()) {
iveresov@2146 2760 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2761 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2762 __ bind(profile_cast_success);
iveresov@2146 2763 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2764 if (mdo_offset_bias > 0) {
iveresov@2146 2765 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2766 __ add(mdo, tmp1, mdo);
iveresov@2146 2767 }
iveresov@2344 2768 __ load_klass(value, recv);
iveresov@2146 2769 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
kvn@3037 2770 __ ba_short(done);
iveresov@2146 2771 // Cast failure case
iveresov@2146 2772 __ bind(profile_cast_failure);
iveresov@2146 2773 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2774 if (mdo_offset_bias > 0) {
iveresov@2146 2775 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2776 __ add(mdo, tmp1, mdo);
iveresov@2146 2777 }
iveresov@2146 2778 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2779 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2780 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2781 __ st_ptr(tmp1, data_addr);
kvn@3037 2782 __ ba(*stub->entry());
iveresov@2146 2783 __ delayed()->nop();
iveresov@2146 2784 }
duke@435 2785 __ bind(done);
iveresov@2146 2786 } else if (code == lir_checkcast) {
iveresov@2146 2787 Register obj = op->object()->as_register();
iveresov@2146 2788 Register dst = op->result_opr()->as_register();
iveresov@2146 2789 Label success;
iveresov@2146 2790 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2791 __ bind(success);
iveresov@2146 2792 __ mov(obj, dst);
duke@435 2793 } else if (code == lir_instanceof) {
duke@435 2794 Register obj = op->object()->as_register();
duke@435 2795 Register dst = op->result_opr()->as_register();
iveresov@2146 2796 Label success, failure, done;
iveresov@2146 2797 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2798 __ bind(failure);
iveresov@2146 2799 __ set(0, dst);
kvn@3037 2800 __ ba_short(done);
iveresov@2146 2801 __ bind(success);
iveresov@2146 2802 __ set(1, dst);
iveresov@2146 2803 __ bind(done);
duke@435 2804 } else {
duke@435 2805 ShouldNotReachHere();
duke@435 2806 }
duke@435 2807
duke@435 2808 }
duke@435 2809
duke@435 2810
duke@435 2811 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2812 if (op->code() == lir_cas_long) {
duke@435 2813 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2814 Register addr = op->addr()->as_pointer_register();
duke@435 2815 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2816 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2817 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2818 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2819 Register t1 = op->tmp1()->as_register();
duke@435 2820 Register t2 = op->tmp2()->as_register();
duke@435 2821 #ifdef _LP64
duke@435 2822 __ mov(cmp_value_lo, t1);
duke@435 2823 __ mov(new_value_lo, t2);
iveresov@2412 2824 // perform the compare and swap operation
iveresov@2412 2825 __ casx(addr, t1, t2);
iveresov@2412 2826 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
iveresov@2412 2827 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2828 __ cmp(t1, t2);
duke@435 2829 #else
duke@435 2830 // move high and low halves of long values into single registers
duke@435 2831 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2832 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2833 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2834 __ sllx(new_value_hi, 32, t2);
duke@435 2835 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2836 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2837 // perform the compare and swap operation
duke@435 2838 __ casx(addr, t1, t2);
duke@435 2839 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2840 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2841 // Produce icc flag for 32bit.
iveresov@2412 2842 __ sub(t1, t2, t2);
iveresov@2412 2843 __ srlx(t2, 32, t1);
iveresov@2412 2844 __ orcc(t2, t1, G0);
iveresov@2412 2845 #endif
duke@435 2846 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2847 Register addr = op->addr()->as_pointer_register();
duke@435 2848 Register cmp_value = op->cmp_value()->as_register();
duke@435 2849 Register new_value = op->new_value()->as_register();
duke@435 2850 Register t1 = op->tmp1()->as_register();
duke@435 2851 Register t2 = op->tmp2()->as_register();
duke@435 2852 __ mov(cmp_value, t1);
duke@435 2853 __ mov(new_value, t2);
duke@435 2854 if (op->code() == lir_cas_obj) {
iveresov@2344 2855 if (UseCompressedOops) {
iveresov@2344 2856 __ encode_heap_oop(t1);
iveresov@2344 2857 __ encode_heap_oop(t2);
duke@435 2858 __ cas(addr, t1, t2);
iveresov@2344 2859 } else {
never@2352 2860 __ cas_ptr(addr, t1, t2);
duke@435 2861 }
iveresov@2344 2862 } else {
iveresov@2344 2863 __ cas(addr, t1, t2);
iveresov@2344 2864 }
duke@435 2865 __ cmp(t1, t2);
duke@435 2866 } else {
duke@435 2867 Unimplemented();
duke@435 2868 }
duke@435 2869 }
duke@435 2870
duke@435 2871 void LIR_Assembler::set_24bit_FPU() {
duke@435 2872 Unimplemented();
duke@435 2873 }
duke@435 2874
duke@435 2875
duke@435 2876 void LIR_Assembler::reset_FPU() {
duke@435 2877 Unimplemented();
duke@435 2878 }
duke@435 2879
duke@435 2880
duke@435 2881 void LIR_Assembler::breakpoint() {
duke@435 2882 __ breakpoint_trap();
duke@435 2883 }
duke@435 2884
duke@435 2885
duke@435 2886 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2887 Unimplemented();
duke@435 2888 }
duke@435 2889
duke@435 2890
duke@435 2891 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2892 Unimplemented();
duke@435 2893 }
duke@435 2894
duke@435 2895
duke@435 2896 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2897 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2898 Register dst = dst_opr->as_register();
duke@435 2899 Register reg = mon_addr.base();
duke@435 2900 int offset = mon_addr.disp();
duke@435 2901 // compute pointer to BasicLock
duke@435 2902 if (mon_addr.is_simm13()) {
duke@435 2903 __ add(reg, offset, dst);
duke@435 2904 } else {
duke@435 2905 __ set(offset, dst);
duke@435 2906 __ add(dst, reg, dst);
duke@435 2907 }
duke@435 2908 }
duke@435 2909
duke@435 2910
duke@435 2911 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2912 Register obj = op->obj_opr()->as_register();
duke@435 2913 Register hdr = op->hdr_opr()->as_register();
duke@435 2914 Register lock = op->lock_opr()->as_register();
duke@435 2915
duke@435 2916 // obj may not be an oop
duke@435 2917 if (op->code() == lir_lock) {
duke@435 2918 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2919 if (UseFastLocking) {
duke@435 2920 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2921 // add debug info for NullPointerException only if one is possible
duke@435 2922 if (op->info() != NULL) {
duke@435 2923 add_debug_info_for_null_check_here(op->info());
duke@435 2924 }
duke@435 2925 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2926 } else {
duke@435 2927 // always do slow locking
duke@435 2928 // note: the slow locking code could be inlined here, however if we use
duke@435 2929 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2930 // simpler and requires less duplicated code - additionally, the
duke@435 2931 // slow locking code is the same in either case which simplifies
duke@435 2932 // debugging
duke@435 2933 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2934 __ delayed()->nop();
duke@435 2935 }
duke@435 2936 } else {
duke@435 2937 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2938 if (UseFastLocking) {
duke@435 2939 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2940 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2941 } else {
duke@435 2942 // always do slow unlocking
duke@435 2943 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2944 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2945 // simpler and requires less duplicated code - additionally, the
duke@435 2946 // slow unlocking code is the same in either case which simplifies
duke@435 2947 // debugging
duke@435 2948 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2949 __ delayed()->nop();
duke@435 2950 }
duke@435 2951 }
duke@435 2952 __ bind(*op->stub()->continuation());
duke@435 2953 }
duke@435 2954
duke@435 2955
duke@435 2956 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2957 ciMethod* method = op->profiled_method();
duke@435 2958 int bci = op->profiled_bci();
twisti@3969 2959 ciMethod* callee = op->profiled_callee();
duke@435 2960
duke@435 2961 // Update counter for all call types
iveresov@2349 2962 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2963 assert(md != NULL, "Sanity");
duke@435 2964 ciProfileData* data = md->bci_to_data(bci);
duke@435 2965 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2966 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 2967 Register mdo = op->mdo()->as_register();
iveresov@2138 2968 #ifdef _LP64
iveresov@2138 2969 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 2970 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 2971 #else
duke@435 2972 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2973 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 2974 #endif
jrose@1424 2975 jobject2reg(md->constant_encoding(), mdo);
duke@435 2976 int mdo_offset_bias = 0;
duke@435 2977 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2978 data->size_in_bytes())) {
duke@435 2979 // The offset is large so bias the mdo by the base of the slot so
duke@435 2980 // that the ld can use simm13s to reference the slots of the data
duke@435 2981 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2982 __ set(mdo_offset_bias, O7);
duke@435 2983 __ add(mdo, O7, mdo);
duke@435 2984 }
duke@435 2985
twisti@1162 2986 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2987 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 2988 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 2989 // Perform additional virtual call profiling for invokevirtual and
duke@435 2990 // invokeinterface bytecodes
duke@435 2991 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 2992 !callee_is_static && // required for optimized MH invokes
iveresov@2138 2993 C1ProfileVirtualCalls) {
duke@435 2994 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2995 Register recv = op->recv()->as_register();
duke@435 2996 assert_different_registers(mdo, tmp1, recv);
duke@435 2997 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2998 ciKlass* known_klass = op->known_holder();
iveresov@2138 2999 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3000 // We know the type that will be seen at this call site; we can
duke@435 3001 // statically update the methodDataOop rather than needing to do
duke@435 3002 // dynamic tests on the receiver type
duke@435 3003
duke@435 3004 // NOTE: we should probably put a lock around this search to
duke@435 3005 // avoid collisions by concurrent compilations
duke@435 3006 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3007 uint i;
duke@435 3008 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3009 ciKlass* receiver = vc_data->receiver(i);
duke@435 3010 if (known_klass->equals(receiver)) {
twisti@1162 3011 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 3012 VirtualCallData::receiver_count_offset(i)) -
duke@435 3013 mdo_offset_bias);
iveresov@2138 3014 __ ld_ptr(data_addr, tmp1);
duke@435 3015 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3016 __ st_ptr(tmp1, data_addr);
duke@435 3017 return;
duke@435 3018 }
duke@435 3019 }
duke@435 3020
duke@435 3021 // Receiver type not found in profile data; select an empty slot
duke@435 3022
duke@435 3023 // Note that this is less efficient than it should be because it
duke@435 3024 // always does a write to the receiver part of the
duke@435 3025 // VirtualCallData rather than just the first time
duke@435 3026 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3027 ciKlass* receiver = vc_data->receiver(i);
duke@435 3028 if (receiver == NULL) {
twisti@1162 3029 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 3030 mdo_offset_bias);
jrose@1424 3031 jobject2reg(known_klass->constant_encoding(), tmp1);
duke@435 3032 __ st_ptr(tmp1, recv_addr);
twisti@1162 3033 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 3034 mdo_offset_bias);
iveresov@2138 3035 __ ld_ptr(data_addr, tmp1);
duke@435 3036 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3037 __ st_ptr(tmp1, data_addr);
duke@435 3038 return;
duke@435 3039 }
duke@435 3040 }
duke@435 3041 } else {
iveresov@2344 3042 __ load_klass(recv, recv);
duke@435 3043 Label update_done;
iveresov@2138 3044 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 3045 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3046 // Increment total counter to indicate polymorphic case.
iveresov@2138 3047 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3048 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3049 __ st_ptr(tmp1, counter_addr);
duke@435 3050
duke@435 3051 __ bind(update_done);
duke@435 3052 }
kvn@1686 3053 } else {
kvn@1686 3054 // Static call
iveresov@2138 3055 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3056 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3057 __ st_ptr(tmp1, counter_addr);
duke@435 3058 }
duke@435 3059 }
duke@435 3060
duke@435 3061 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 3062 __ align(OptoLoopAlignment);
duke@435 3063 }
duke@435 3064
duke@435 3065
duke@435 3066 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 3067 // make sure we are expecting a delay
duke@435 3068 // this has the side effect of clearing the delay state
duke@435 3069 // so we can use _masm instead of _masm->delayed() to do the
duke@435 3070 // code generation.
duke@435 3071 __ delayed();
duke@435 3072
duke@435 3073 // make sure we only emit one instruction
duke@435 3074 int offset = code_offset();
duke@435 3075 op->delay_op()->emit_code(this);
duke@435 3076 #ifdef ASSERT
duke@435 3077 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 3078 op->delay_op()->print();
duke@435 3079 }
duke@435 3080 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 3081 "only one instruction can go in a delay slot");
duke@435 3082 #endif
duke@435 3083
duke@435 3084 // we may also be emitting the call info for the instruction
duke@435 3085 // which we are the delay slot of.
twisti@1919 3086 CodeEmitInfo* call_info = op->call_info();
duke@435 3087 if (call_info) {
duke@435 3088 add_call_info(code_offset(), call_info);
duke@435 3089 }
duke@435 3090
duke@435 3091 if (VerifyStackAtCalls) {
duke@435 3092 _masm->sub(FP, SP, O7);
duke@435 3093 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3094 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3095 }
duke@435 3096 }
duke@435 3097
duke@435 3098
duke@435 3099 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3100 assert(left->is_register(), "can only handle registers");
duke@435 3101
duke@435 3102 if (left->is_single_cpu()) {
duke@435 3103 __ neg(left->as_register(), dest->as_register());
duke@435 3104 } else if (left->is_single_fpu()) {
duke@435 3105 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3106 } else if (left->is_double_fpu()) {
duke@435 3107 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3108 } else {
duke@435 3109 assert (left->is_double_cpu(), "Must be a long");
duke@435 3110 Register Rlow = left->as_register_lo();
duke@435 3111 Register Rhi = left->as_register_hi();
duke@435 3112 #ifdef _LP64
duke@435 3113 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3114 #else
duke@435 3115 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3116 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3117 #endif
duke@435 3118 }
duke@435 3119 }
duke@435 3120
duke@435 3121
duke@435 3122 void LIR_Assembler::fxch(int i) {
duke@435 3123 Unimplemented();
duke@435 3124 }
duke@435 3125
duke@435 3126 void LIR_Assembler::fld(int i) {
duke@435 3127 Unimplemented();
duke@435 3128 }
duke@435 3129
duke@435 3130 void LIR_Assembler::ffree(int i) {
duke@435 3131 Unimplemented();
duke@435 3132 }
duke@435 3133
duke@435 3134 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3135 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3136
duke@435 3137 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3138 if (tmp->is_valid()) {
duke@435 3139 __ save_thread(tmp->as_register());
duke@435 3140 }
duke@435 3141 __ call(dest, relocInfo::runtime_call_type);
duke@435 3142 __ delayed()->nop();
duke@435 3143 if (info != NULL) {
duke@435 3144 add_call_info_here(info);
duke@435 3145 }
duke@435 3146 if (tmp->is_valid()) {
duke@435 3147 __ restore_thread(tmp->as_register());
duke@435 3148 }
duke@435 3149
duke@435 3150 #ifdef ASSERT
duke@435 3151 __ verify_thread();
duke@435 3152 #endif // ASSERT
duke@435 3153 }
duke@435 3154
duke@435 3155
duke@435 3156 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3157 #ifdef _LP64
duke@435 3158 ShouldNotReachHere();
duke@435 3159 #endif
duke@435 3160
duke@435 3161 NEEDS_CLEANUP;
duke@435 3162 if (type == T_LONG) {
duke@435 3163 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3164
duke@435 3165 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3166 Register idx = noreg; // contains either constant offset or index
duke@435 3167
duke@435 3168 int disp = mem_addr->disp();
duke@435 3169 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3170 if (!Assembler::is_simm13(disp)) {
duke@435 3171 idx = O7;
duke@435 3172 __ set(disp, idx);
duke@435 3173 }
duke@435 3174 } else {
duke@435 3175 assert(disp == 0, "not both indexed and disp");
duke@435 3176 idx = mem_addr->index()->as_register();
duke@435 3177 }
duke@435 3178
duke@435 3179 int null_check_offset = -1;
duke@435 3180
duke@435 3181 Register base = mem_addr->base()->as_register();
duke@435 3182 if (src->is_register() && dest->is_address()) {
duke@435 3183 // G4 is high half, G5 is low half
duke@435 3184 if (VM_Version::v9_instructions_work()) {
duke@435 3185 // clear the top bits of G5, and scale up G4
duke@435 3186 __ srl (src->as_register_lo(), 0, G5);
duke@435 3187 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3188 // combine the two halves into the 64 bits of G4
duke@435 3189 __ or3(G4, G5, G4);
duke@435 3190 null_check_offset = __ offset();
duke@435 3191 if (idx == noreg) {
duke@435 3192 __ stx(G4, base, disp);
duke@435 3193 } else {
duke@435 3194 __ stx(G4, base, idx);
duke@435 3195 }
duke@435 3196 } else {
duke@435 3197 __ mov (src->as_register_hi(), G4);
duke@435 3198 __ mov (src->as_register_lo(), G5);
duke@435 3199 null_check_offset = __ offset();
duke@435 3200 if (idx == noreg) {
duke@435 3201 __ std(G4, base, disp);
duke@435 3202 } else {
duke@435 3203 __ std(G4, base, idx);
duke@435 3204 }
duke@435 3205 }
duke@435 3206 } else if (src->is_address() && dest->is_register()) {
duke@435 3207 null_check_offset = __ offset();
duke@435 3208 if (VM_Version::v9_instructions_work()) {
duke@435 3209 if (idx == noreg) {
duke@435 3210 __ ldx(base, disp, G5);
duke@435 3211 } else {
duke@435 3212 __ ldx(base, idx, G5);
duke@435 3213 }
duke@435 3214 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3215 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3216 } else {
duke@435 3217 if (idx == noreg) {
duke@435 3218 __ ldd(base, disp, G4);
duke@435 3219 } else {
duke@435 3220 __ ldd(base, idx, G4);
duke@435 3221 }
duke@435 3222 // G4 is high half, G5 is low half
duke@435 3223 __ mov (G4, dest->as_register_hi());
duke@435 3224 __ mov (G5, dest->as_register_lo());
duke@435 3225 }
duke@435 3226 } else {
duke@435 3227 Unimplemented();
duke@435 3228 }
duke@435 3229 if (info != NULL) {
duke@435 3230 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3231 }
duke@435 3232
duke@435 3233 } else {
duke@435 3234 // use normal move for all other volatiles since they don't need
duke@435 3235 // special handling to remain atomic.
iveresov@2344 3236 move_op(src, dest, type, lir_patch_none, info, false, false, false);
duke@435 3237 }
duke@435 3238 }
duke@435 3239
duke@435 3240 void LIR_Assembler::membar() {
duke@435 3241 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3242 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3243 }
duke@435 3244
duke@435 3245 void LIR_Assembler::membar_acquire() {
duke@435 3246 // no-op on TSO
duke@435 3247 }
duke@435 3248
duke@435 3249 void LIR_Assembler::membar_release() {
duke@435 3250 // no-op on TSO
duke@435 3251 }
duke@435 3252
jiangli@3592 3253 void LIR_Assembler::membar_loadload() {
jiangli@3592 3254 // no-op
jiangli@3592 3255 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3256 }
jiangli@3592 3257
jiangli@3592 3258 void LIR_Assembler::membar_storestore() {
jiangli@3592 3259 // no-op
jiangli@3592 3260 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3261 }
jiangli@3592 3262
jiangli@3592 3263 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3264 // no-op
jiangli@3592 3265 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3266 }
jiangli@3592 3267
jiangli@3592 3268 void LIR_Assembler::membar_storeload() {
jiangli@3592 3269 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3270 }
jiangli@3592 3271
jiangli@3592 3272
iveresov@2138 3273 // Pack two sequential registers containing 32 bit values
duke@435 3274 // into a single 64 bit register.
iveresov@2138 3275 // src and src->successor() are packed into dst
iveresov@2138 3276 // src and dst may be the same register.
iveresov@2138 3277 // Note: src is destroyed
iveresov@2138 3278 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3279 Register rs = src->as_register();
iveresov@2138 3280 Register rd = dst->as_register_lo();
duke@435 3281 __ sllx(rs, 32, rs);
duke@435 3282 __ srl(rs->successor(), 0, rs->successor());
duke@435 3283 __ or3(rs, rs->successor(), rd);
duke@435 3284 }
duke@435 3285
iveresov@2138 3286 // Unpack a 64 bit value in a register into
duke@435 3287 // two sequential registers.
iveresov@2138 3288 // src is unpacked into dst and dst->successor()
iveresov@2138 3289 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3290 Register rs = src->as_register_lo();
iveresov@2138 3291 Register rd = dst->as_register_hi();
iveresov@2138 3292 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3293 __ srlx(rs, 32, rd);
iveresov@2138 3294 __ srl (rs, 0, rd->successor());
duke@435 3295 }
duke@435 3296
duke@435 3297
duke@435 3298 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3299 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3300 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3301
iveresov@2138 3302 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3303 }
duke@435 3304
duke@435 3305
duke@435 3306 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3307 assert(result_reg->is_register(), "check");
duke@435 3308 __ mov(G2_thread, result_reg->as_register());
duke@435 3309 }
duke@435 3310
duke@435 3311
duke@435 3312 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3313 LIR_OpList* inst = lir->instructions_list();
duke@435 3314 for (int i = 0; i < inst->length(); i++) {
duke@435 3315 LIR_Op* op = inst->at(i);
duke@435 3316 switch (op->code()) {
duke@435 3317 case lir_cond_float_branch:
duke@435 3318 case lir_branch: {
duke@435 3319 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3320 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3321 LIR_Op* delay_op = NULL;
duke@435 3322 // we'd like to be able to pull following instructions into
duke@435 3323 // this slot but we don't know enough to do it safely yet so
duke@435 3324 // only optimize block to block control flow.
duke@435 3325 if (LIRFillDelaySlots && branch->block()) {
duke@435 3326 LIR_Op* prev = inst->at(i - 1);
duke@435 3327 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3328 // swap previous instruction into delay slot
duke@435 3329 inst->at_put(i - 1, op);
duke@435 3330 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3331 #ifndef PRODUCT
duke@435 3332 if (LIRTracePeephole) {
duke@435 3333 tty->print_cr("delayed");
duke@435 3334 inst->at(i - 1)->print();
duke@435 3335 inst->at(i)->print();
twisti@1919 3336 tty->cr();
duke@435 3337 }
duke@435 3338 #endif
duke@435 3339 continue;
duke@435 3340 }
duke@435 3341 }
duke@435 3342
duke@435 3343 if (!delay_op) {
duke@435 3344 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3345 }
duke@435 3346 inst->insert_before(i + 1, delay_op);
duke@435 3347 break;
duke@435 3348 }
duke@435 3349 case lir_static_call:
duke@435 3350 case lir_virtual_call:
duke@435 3351 case lir_icvirtual_call:
twisti@1919 3352 case lir_optvirtual_call:
twisti@1919 3353 case lir_dynamic_call: {
duke@435 3354 LIR_Op* prev = inst->at(i - 1);
duke@435 3355 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3356 (op->code() != lir_virtual_call ||
duke@435 3357 !prev->result_opr()->is_single_cpu() ||
duke@435 3358 prev->result_opr()->as_register() != O0) &&
duke@435 3359 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3360 // Only moves without info can be put into the delay slot.
duke@435 3361 // Also don't allow the setup of the receiver in the delay
duke@435 3362 // slot for vtable calls.
duke@435 3363 inst->at_put(i - 1, op);
duke@435 3364 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3365 #ifndef PRODUCT
duke@435 3366 if (LIRTracePeephole) {
duke@435 3367 tty->print_cr("delayed");
duke@435 3368 inst->at(i - 1)->print();
duke@435 3369 inst->at(i)->print();
twisti@1919 3370 tty->cr();
duke@435 3371 }
duke@435 3372 #endif
iveresov@2138 3373 } else {
iveresov@2138 3374 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3375 inst->insert_before(i + 1, delay_op);
iveresov@2138 3376 i++;
duke@435 3377 }
duke@435 3378
iveresov@2138 3379 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3380 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3381 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3382 // such a mismatch between the single reg and double reg
iveresov@2138 3383 // calling convention.
iveresov@2138 3384 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3385 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3386 LIR_OpJavaCall* call;
iveresov@2138 3387 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3388 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3389 arguments[a] = callop->arguments()[a];
iveresov@2138 3390 }
iveresov@2138 3391 if (op->code() == lir_virtual_call) {
iveresov@2138 3392 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3393 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3394 } else {
iveresov@2138 3395 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3396 callop->addr(), arguments, callop->info());
iveresov@2138 3397 }
iveresov@2138 3398 inst->at_put(i - 1, call);
iveresov@2138 3399 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3400 T_LONG, lir_patch_none, NULL));
iveresov@2138 3401 }
iveresov@2138 3402 #endif
duke@435 3403 break;
duke@435 3404 }
duke@435 3405 }
duke@435 3406 }
duke@435 3407 }
duke@435 3408
duke@435 3409
duke@435 3410
duke@435 3411
duke@435 3412 #undef __

mercurial