src/cpu/sparc/vm/assembler_sparc.cpp

Mon, 27 Aug 2012 15:17:17 -0700

author
twisti
date
Mon, 27 Aug 2012 15:17:17 -0700
changeset 4020
a5dd6e3ef9f3
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

6677625: Move platform specific flags from globals.hpp to globals_<arch>.hpp
Reviewed-by: kvn, dholmes, coleenp
Contributed-by: Tao Mao <tao.mao@oracle.com>

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2399 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 29 #include "interpreter/interpreter.hpp"
stefank@2314 30 #include "memory/cardTableModRefBS.hpp"
stefank@2314 31 #include "memory/resourceArea.hpp"
stefank@2314 32 #include "prims/methodHandles.hpp"
stefank@2314 33 #include "runtime/biasedLocking.hpp"
stefank@2314 34 #include "runtime/interfaceSupport.hpp"
stefank@2314 35 #include "runtime/objectMonitor.hpp"
stefank@2314 36 #include "runtime/os.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@2314 39 #ifndef SERIALGC
stefank@2314 40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 42 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 43 #endif
duke@435 44
never@2950 45 #ifdef PRODUCT
never@2950 46 #define BLOCK_COMMENT(str) /* nothing */
twisti@3969 47 #define STOP(error) stop(error)
never@2950 48 #else
never@2950 49 #define BLOCK_COMMENT(str) block_comment(str)
twisti@3969 50 #define STOP(error) block_comment(error); stop(error)
never@2950 51 #endif
never@2950 52
twisti@1162 53 // Convert the raw encoding form into the form expected by the
twisti@1162 54 // constructor for Address.
twisti@1162 55 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 56 assert(scale == 0, "not supported");
twisti@1162 57 RelocationHolder rspec;
twisti@1162 58 if (disp_is_oop) {
twisti@1162 59 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 60 }
twisti@1162 61
twisti@1162 62 Register rindex = as_Register(index);
twisti@1162 63 if (rindex != G0) {
twisti@1162 64 Address madr(as_Register(base), rindex);
twisti@1162 65 madr._rspec = rspec;
twisti@1162 66 return madr;
twisti@1162 67 } else {
twisti@1162 68 Address madr(as_Register(base), disp);
twisti@1162 69 madr._rspec = rspec;
twisti@1162 70 return madr;
twisti@1162 71 }
twisti@1162 72 }
twisti@1162 73
twisti@1162 74 Address Argument::address_in_frame() const {
twisti@1162 75 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 76 // op codes such as ld or ldx, only access disp() to get
twisti@1162 77 // their simm13 argument.
twisti@1162 78 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 79 if (is_in())
twisti@1162 80 return Address(FP, disp); // In argument.
twisti@1162 81 else
twisti@1162 82 return Address(SP, disp); // Out argument.
duke@435 83 }
duke@435 84
duke@435 85 static const char* argumentNames[][2] = {
duke@435 86 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 87 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 88 {"A(n>9)","P(n>9)"}
duke@435 89 };
duke@435 90
duke@435 91 const char* Argument::name() const {
duke@435 92 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 93 int num = number();
duke@435 94 if (num >= nofArgs) num = nofArgs - 1;
duke@435 95 return argumentNames[num][is_in() ? 1 : 0];
duke@435 96 }
duke@435 97
duke@435 98 void Assembler::print_instruction(int inst) {
duke@435 99 const char* s;
duke@435 100 switch (inv_op(inst)) {
duke@435 101 default: s = "????"; break;
duke@435 102 case call_op: s = "call"; break;
duke@435 103 case branch_op:
duke@435 104 switch (inv_op2(inst)) {
duke@435 105 case fb_op2: s = "fb"; break;
duke@435 106 case fbp_op2: s = "fbp"; break;
duke@435 107 case br_op2: s = "br"; break;
duke@435 108 case bp_op2: s = "bp"; break;
duke@435 109 case cb_op2: s = "cb"; break;
kvn@3037 110 case bpr_op2: {
kvn@3037 111 if (is_cbcond(inst)) {
kvn@3037 112 s = is_cxb(inst) ? "cxb" : "cwb";
kvn@3037 113 } else {
kvn@3037 114 s = "bpr";
kvn@3037 115 }
kvn@3037 116 break;
kvn@3037 117 }
duke@435 118 default: s = "????"; break;
duke@435 119 }
duke@435 120 }
duke@435 121 ::tty->print("%s", s);
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 126 // and return the resulting instruction.
duke@435 127 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 128 // OK.
duke@435 129 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 130
duke@435 131 int m; // mask for displacement field
duke@435 132 int v; // new value for displacement field
duke@435 133 const int word_aligned_ones = -4;
duke@435 134 switch (inv_op(inst)) {
duke@435 135 default: ShouldNotReachHere();
duke@435 136 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 137 case branch_op:
duke@435 138 switch (inv_op2(inst)) {
duke@435 139 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 140 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 141 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 142 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 143 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
kvn@3037 144 case bpr_op2: {
kvn@3037 145 if (is_cbcond(inst)) {
kvn@3037 146 m = wdisp10(word_aligned_ones, 0);
kvn@3037 147 v = wdisp10(dest_pos, inst_pos);
kvn@3037 148 } else {
kvn@3037 149 m = wdisp16(word_aligned_ones, 0);
kvn@3037 150 v = wdisp16(dest_pos, inst_pos);
kvn@3037 151 }
kvn@3037 152 break;
kvn@3037 153 }
duke@435 154 default: ShouldNotReachHere();
duke@435 155 }
duke@435 156 }
duke@435 157 return inst & ~m | v;
duke@435 158 }
duke@435 159
duke@435 160 // Return the offset of the branch destionation of instruction inst
duke@435 161 // at offset pos.
duke@435 162 // Should have pcs, but since all is relative, it works out.
duke@435 163 int Assembler::branch_destination(int inst, int pos) {
duke@435 164 int r;
duke@435 165 switch (inv_op(inst)) {
duke@435 166 default: ShouldNotReachHere();
duke@435 167 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 168 case branch_op:
duke@435 169 switch (inv_op2(inst)) {
duke@435 170 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 171 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 172 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 173 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 174 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
kvn@3037 175 case bpr_op2: {
kvn@3037 176 if (is_cbcond(inst)) {
kvn@3037 177 r = inv_wdisp10(inst, pos);
kvn@3037 178 } else {
kvn@3037 179 r = inv_wdisp16(inst, pos);
kvn@3037 180 }
kvn@3037 181 break;
kvn@3037 182 }
duke@435 183 default: ShouldNotReachHere();
duke@435 184 }
duke@435 185 }
duke@435 186 return r;
duke@435 187 }
duke@435 188
duke@435 189 int AbstractAssembler::code_fill_byte() {
duke@435 190 return 0x00; // illegal instruction 0x00000000
duke@435 191 }
duke@435 192
ysr@777 193 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 194 switch (in) {
ysr@777 195 case rc_z: return equal;
ysr@777 196 case rc_lez: return lessEqual;
ysr@777 197 case rc_lz: return less;
ysr@777 198 case rc_nz: return notEqual;
ysr@777 199 case rc_gz: return greater;
ysr@777 200 case rc_gez: return greaterEqual;
ysr@777 201 default:
ysr@777 202 ShouldNotReachHere();
ysr@777 203 }
ysr@777 204 return equal;
ysr@777 205 }
ysr@777 206
duke@435 207 // Generate a bunch 'o stuff (including v9's
duke@435 208 #ifndef PRODUCT
duke@435 209 void Assembler::test_v9() {
duke@435 210 add( G0, G1, G2 );
duke@435 211 add( G3, 0, G4 );
duke@435 212
duke@435 213 addcc( G5, G6, G7 );
duke@435 214 addcc( I0, 1, I1 );
duke@435 215 addc( I2, I3, I4 );
duke@435 216 addc( I5, -1, I6 );
duke@435 217 addccc( I7, L0, L1 );
duke@435 218 addccc( L2, (1 << 12) - 2, L3 );
duke@435 219
duke@435 220 Label lbl1, lbl2, lbl3;
duke@435 221
duke@435 222 bind(lbl1);
duke@435 223
duke@435 224 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 225 delayed()->nop();
duke@435 226 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 227 delayed()->nop();
duke@435 228
duke@435 229 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 230 delayed()->nop();
duke@435 231 fb( f_notEqual, false, lbl2 );
duke@435 232 delayed()->nop();
duke@435 233
duke@435 234 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 235 delayed()->nop();
duke@435 236 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 237 delayed()->nop();
duke@435 238
duke@435 239 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 240 delayed()->nop();
duke@435 241 br( lessEqual, false, lbl1 );
duke@435 242 delayed()->nop();
duke@435 243 br( never, false, lbl1 );
duke@435 244 delayed()->nop();
duke@435 245
duke@435 246 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 247 delayed()->nop();
duke@435 248 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 249 delayed()->nop();
duke@435 250
duke@435 251 call( pc(), relocInfo::none);
duke@435 252 delayed()->nop();
duke@435 253 call( lbl3 );
duke@435 254 delayed()->nop();
duke@435 255
duke@435 256
duke@435 257 casa( L6, L7, O0 );
duke@435 258 casxa( O1, O2, O3, 0 );
duke@435 259
duke@435 260 udiv( O4, O5, O7 );
duke@435 261 udiv( G0, (1 << 12) - 1, G1 );
duke@435 262 sdiv( G1, G2, G3 );
duke@435 263 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 264 udivcc( G6, G7, I0 );
duke@435 265 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 266 sdivcc( I3, I4, I5 );
duke@435 267 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 268
duke@435 269 done();
duke@435 270 retry();
duke@435 271
duke@435 272 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 273 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 274
duke@435 275 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 276 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 277
duke@435 278 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 279 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 280
duke@435 281 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 282
duke@435 283 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 284 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 285
duke@435 286 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 287 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 288 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 289
duke@435 290 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 291 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 292 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 293
duke@435 294 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 295
duke@435 296 flush( L0, L1 );
duke@435 297 flush( L2, -1 );
duke@435 298
duke@435 299 flushw();
duke@435 300
duke@435 301 illtrap( (1 << 22) - 2);
duke@435 302
duke@435 303 impdep1( 17, (1 << 19) - 1 );
duke@435 304 impdep2( 3, 0 );
duke@435 305
duke@435 306 jmpl( L3, L4, L5 );
duke@435 307 delayed()->nop();
duke@435 308 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 309 delayed()->nop();
duke@435 310
duke@435 311
duke@435 312 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 313 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 314
duke@435 315
duke@435 316 ldfsr( O3, O4 );
duke@435 317 ldfsr( O5, -1 );
duke@435 318 ldxfsr( O6, O7 );
duke@435 319 ldxfsr( I0, -1 );
duke@435 320
duke@435 321 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 322 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 323
duke@435 324 ldsb( I4, I5, I6 );
duke@435 325 ldsb( I7, -1, G0 );
duke@435 326 ldsh( G1, G3, G4 );
duke@435 327 ldsh( G5, -1, G6 );
duke@435 328 ldsw( G7, L0, L1 );
duke@435 329 ldsw( L2, -1, L3 );
duke@435 330 ldub( L4, L5, L6 );
duke@435 331 ldub( L7, -1, O0 );
duke@435 332 lduh( O1, O2, O3 );
duke@435 333 lduh( O4, -1, O5 );
duke@435 334 lduw( O6, O7, G0 );
duke@435 335 lduw( G1, -1, G2 );
duke@435 336 ldx( G3, G4, G5 );
duke@435 337 ldx( G6, -1, G7 );
duke@435 338 ldd( I0, I1, I2 );
duke@435 339 ldd( I3, -1, I4 );
duke@435 340
duke@435 341 ldsba( I5, I6, 2, I7 );
duke@435 342 ldsba( L0, -1, L1 );
duke@435 343 ldsha( L2, L3, 3, L4 );
duke@435 344 ldsha( L5, -1, L6 );
duke@435 345 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 346 ldswa( O2, -1, O3 );
duke@435 347 lduba( O4, O5, 0, O6 );
duke@435 348 lduba( O7, -1, I0 );
duke@435 349 lduha( I1, I2, 1, I3 );
duke@435 350 lduha( I4, -1, I5 );
duke@435 351 lduwa( I6, I7, 2, L0 );
duke@435 352 lduwa( L1, -1, L2 );
duke@435 353 ldxa( L3, L4, 3, L5 );
duke@435 354 ldxa( L6, -1, L7 );
duke@435 355 ldda( G0, G1, 4, G2 );
duke@435 356 ldda( G3, -1, G4 );
duke@435 357
duke@435 358 ldstub( G5, G6, G7 );
duke@435 359 ldstub( O0, -1, O1 );
duke@435 360
duke@435 361 ldstuba( O2, O3, 5, O4 );
duke@435 362 ldstuba( O5, -1, O6 );
duke@435 363
duke@435 364 and3( I0, L0, O0 );
duke@435 365 and3( G7, -1, O7 );
duke@435 366 andcc( L2, I2, G2 );
duke@435 367 andcc( L4, -1, G4 );
duke@435 368 andn( I5, I6, I7 );
duke@435 369 andn( I6, -1, I7 );
duke@435 370 andncc( I5, I6, I7 );
duke@435 371 andncc( I7, -1, I6 );
duke@435 372 or3( I5, I6, I7 );
duke@435 373 or3( I7, -1, I6 );
duke@435 374 orcc( I5, I6, I7 );
duke@435 375 orcc( I7, -1, I6 );
duke@435 376 orn( I5, I6, I7 );
duke@435 377 orn( I7, -1, I6 );
duke@435 378 orncc( I5, I6, I7 );
duke@435 379 orncc( I7, -1, I6 );
duke@435 380 xor3( I5, I6, I7 );
duke@435 381 xor3( I7, -1, I6 );
duke@435 382 xorcc( I5, I6, I7 );
duke@435 383 xorcc( I7, -1, I6 );
duke@435 384 xnor( I5, I6, I7 );
duke@435 385 xnor( I7, -1, I6 );
duke@435 386 xnorcc( I5, I6, I7 );
duke@435 387 xnorcc( I7, -1, I6 );
duke@435 388
duke@435 389 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 390 membar( StoreStore );
duke@435 391 membar( LoadStore );
duke@435 392 membar( StoreLoad );
duke@435 393 membar( LoadLoad );
duke@435 394 membar( Sync );
duke@435 395 membar( MemIssue );
duke@435 396 membar( Lookaside );
duke@435 397
duke@435 398 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 399 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 400
duke@435 401 movcc( overflowClear, false, icc, I6, L4 );
duke@435 402 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 403
duke@435 404 movr( rc_nz, I5, I6, I7 );
duke@435 405 movr( rc_gz, L1, -1, L2 );
duke@435 406
duke@435 407 mulx( I5, I6, I7 );
duke@435 408 mulx( I7, -1, I6 );
duke@435 409 sdivx( I5, I6, I7 );
duke@435 410 sdivx( I7, -1, I6 );
duke@435 411 udivx( I5, I6, I7 );
duke@435 412 udivx( I7, -1, I6 );
duke@435 413
duke@435 414 umul( I5, I6, I7 );
duke@435 415 umul( I7, -1, I6 );
duke@435 416 smul( I5, I6, I7 );
duke@435 417 smul( I7, -1, I6 );
duke@435 418 umulcc( I5, I6, I7 );
duke@435 419 umulcc( I7, -1, I6 );
duke@435 420 smulcc( I5, I6, I7 );
duke@435 421 smulcc( I7, -1, I6 );
duke@435 422
duke@435 423 mulscc( I5, I6, I7 );
duke@435 424 mulscc( I7, -1, I6 );
duke@435 425
duke@435 426 nop();
duke@435 427
duke@435 428
duke@435 429 popc( G0, G1);
duke@435 430 popc( -1, G2);
duke@435 431
duke@435 432 prefetch( L1, L2, severalReads );
duke@435 433 prefetch( L3, -1, oneRead );
duke@435 434 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 435 prefetcha( G2, -1, oneWrite );
duke@435 436
duke@435 437 rett( I7, I7);
duke@435 438 delayed()->nop();
duke@435 439 rett( G0, -1, relocInfo::none);
duke@435 440 delayed()->nop();
duke@435 441
duke@435 442 save( I5, I6, I7 );
duke@435 443 save( I7, -1, I6 );
duke@435 444 restore( I5, I6, I7 );
duke@435 445 restore( I7, -1, I6 );
duke@435 446
duke@435 447 saved();
duke@435 448 restored();
duke@435 449
duke@435 450 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 451
duke@435 452 sll( I5, I6, I7 );
duke@435 453 sll( I7, 31, I6 );
duke@435 454 srl( I5, I6, I7 );
duke@435 455 srl( I7, 0, I6 );
duke@435 456 sra( I5, I6, I7 );
duke@435 457 sra( I7, 30, I6 );
duke@435 458 sllx( I5, I6, I7 );
duke@435 459 sllx( I7, 63, I6 );
duke@435 460 srlx( I5, I6, I7 );
duke@435 461 srlx( I7, 0, I6 );
duke@435 462 srax( I5, I6, I7 );
duke@435 463 srax( I7, 62, I6 );
duke@435 464
duke@435 465 sir( -1 );
duke@435 466
duke@435 467 stbar();
duke@435 468
duke@435 469 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 470 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 471
duke@435 472 stfsr( L1, L2 );
duke@435 473 stfsr( I7, -1 );
duke@435 474 stxfsr( I6, I5 );
duke@435 475 stxfsr( L4, -1 );
duke@435 476
duke@435 477 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 478 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 479
duke@435 480 stb( L5, O2, I7 );
duke@435 481 stb( I7, I6, -1 );
duke@435 482 sth( L5, O2, I7 );
duke@435 483 sth( I7, I6, -1 );
duke@435 484 stw( L5, O2, I7 );
duke@435 485 stw( I7, I6, -1 );
duke@435 486 stx( L5, O2, I7 );
duke@435 487 stx( I7, I6, -1 );
duke@435 488 std( L5, O2, I7 );
duke@435 489 std( I7, I6, -1 );
duke@435 490
duke@435 491 stba( L5, O2, I7, 8 );
duke@435 492 stba( I7, I6, -1 );
duke@435 493 stha( L5, O2, I7, 9 );
duke@435 494 stha( I7, I6, -1 );
duke@435 495 stwa( L5, O2, I7, 0 );
duke@435 496 stwa( I7, I6, -1 );
duke@435 497 stxa( L5, O2, I7, 11 );
duke@435 498 stxa( I7, I6, -1 );
duke@435 499 stda( L5, O2, I7, 12 );
duke@435 500 stda( I7, I6, -1 );
duke@435 501
duke@435 502 sub( I5, I6, I7 );
duke@435 503 sub( I7, -1, I6 );
duke@435 504 subcc( I5, I6, I7 );
duke@435 505 subcc( I7, -1, I6 );
duke@435 506 subc( I5, I6, I7 );
duke@435 507 subc( I7, -1, I6 );
duke@435 508 subccc( I5, I6, I7 );
duke@435 509 subccc( I7, -1, I6 );
duke@435 510
duke@435 511 swap( I5, I6, I7 );
duke@435 512 swap( I7, -1, I6 );
duke@435 513
duke@435 514 swapa( G0, G1, 13, G2 );
duke@435 515 swapa( I7, -1, I6 );
duke@435 516
duke@435 517 taddcc( I5, I6, I7 );
duke@435 518 taddcc( I7, -1, I6 );
duke@435 519 taddcctv( I5, I6, I7 );
duke@435 520 taddcctv( I7, -1, I6 );
duke@435 521
duke@435 522 tsubcc( I5, I6, I7 );
duke@435 523 tsubcc( I7, -1, I6 );
duke@435 524 tsubcctv( I5, I6, I7 );
duke@435 525 tsubcctv( I7, -1, I6 );
duke@435 526
duke@435 527 trap( overflowClear, xcc, G0, G1 );
duke@435 528 trap( lessEqual, icc, I7, 17 );
duke@435 529
duke@435 530 bind(lbl2);
duke@435 531 bind(lbl3);
duke@435 532
duke@435 533 code()->decode();
duke@435 534 }
duke@435 535
duke@435 536 // Generate a bunch 'o stuff unique to V8
duke@435 537 void Assembler::test_v8_onlys() {
duke@435 538 Label lbl1;
duke@435 539
duke@435 540 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 541 delayed()->nop();
duke@435 542 cb( cp_never, true, lbl1);
duke@435 543 delayed()->nop();
duke@435 544
duke@435 545 cpop1(1, 2, 3, 4);
duke@435 546 cpop2(5, 6, 7, 8);
duke@435 547
duke@435 548 ldc( I0, I1, 31);
duke@435 549 ldc( I2, -1, 0);
duke@435 550
duke@435 551 lddc( I4, I4, 30);
duke@435 552 lddc( I6, 0, 1 );
duke@435 553
duke@435 554 ldcsr( L0, L1, 0);
duke@435 555 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 556
duke@435 557 stc( 31, L4, L5);
duke@435 558 stc( 30, L6, -(1 << 12) );
duke@435 559
duke@435 560 stdc( 0, L7, G0);
duke@435 561 stdc( 1, G1, 0 );
duke@435 562
duke@435 563 stcsr( 16, G2, G3);
duke@435 564 stcsr( 17, G4, 1 );
duke@435 565
duke@435 566 stdcq( 4, G5, G6);
duke@435 567 stdcq( 5, G7, -1 );
duke@435 568
duke@435 569 bind(lbl1);
duke@435 570
duke@435 571 code()->decode();
duke@435 572 }
duke@435 573 #endif
duke@435 574
duke@435 575 // Implementation of MacroAssembler
duke@435 576
duke@435 577 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 578 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 579 // provoke OS NULL exception if reg = NULL by
duke@435 580 // accessing M[reg] w/o changing any registers
duke@435 581 ld_ptr(reg, 0, G0);
duke@435 582 }
duke@435 583 else {
duke@435 584 // nothing to do, (later) access of M[reg + offset]
duke@435 585 // will provoke OS NULL exception if reg = NULL
duke@435 586 }
duke@435 587 }
duke@435 588
duke@435 589 // Ring buffer jumps
duke@435 590
duke@435 591 #ifndef PRODUCT
duke@435 592 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 593 mov(I7, O7); // traceable register
duke@435 594 JMP(O7, 2 * BytesPerInstWord);
duke@435 595 } else {
duke@435 596 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 597 }
duke@435 598 }
duke@435 599
duke@435 600 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 601 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 602 #endif /* PRODUCT */
duke@435 603
duke@435 604
duke@435 605 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 606 assert_not_delayed();
duke@435 607 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 608 if (TraceJumps) {
duke@435 609 #ifndef PRODUCT
duke@435 610 save_frame(0);
duke@435 611 verify_thread();
duke@435 612 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 613 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 614 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 615 add(O2, O1, O1);
duke@435 616
duke@435 617 add(r1->after_save(), r2->after_save(), O2);
duke@435 618 set((intptr_t)file, O3);
duke@435 619 set(line, O4);
duke@435 620 Label L;
duke@435 621 // get nearby pc, store jmp target
duke@435 622 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 623 delayed()->st(O2, O1, 0);
duke@435 624 bind(L);
duke@435 625
duke@435 626 // store nearby pc
duke@435 627 st(O7, O1, sizeof(intptr_t));
duke@435 628 // store file
duke@435 629 st(O3, O1, 2*sizeof(intptr_t));
duke@435 630 // store line
duke@435 631 st(O4, O1, 3*sizeof(intptr_t));
duke@435 632 add(O0, 1, O0);
duke@435 633 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 634 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 635 restore();
duke@435 636 #endif /* PRODUCT */
duke@435 637 }
duke@435 638 jmpl(r1, r2, G0);
duke@435 639 }
duke@435 640 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 641 assert_not_delayed();
duke@435 642 // This can only be traceable if r1 is visible after a window save
duke@435 643 if (TraceJumps) {
duke@435 644 #ifndef PRODUCT
duke@435 645 save_frame(0);
duke@435 646 verify_thread();
duke@435 647 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 648 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 649 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 650 add(O2, O1, O1);
duke@435 651
duke@435 652 add(r1->after_save(), offset, O2);
duke@435 653 set((intptr_t)file, O3);
duke@435 654 set(line, O4);
duke@435 655 Label L;
duke@435 656 // get nearby pc, store jmp target
duke@435 657 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 658 delayed()->st(O2, O1, 0);
duke@435 659 bind(L);
duke@435 660
duke@435 661 // store nearby pc
duke@435 662 st(O7, O1, sizeof(intptr_t));
duke@435 663 // store file
duke@435 664 st(O3, O1, 2*sizeof(intptr_t));
duke@435 665 // store line
duke@435 666 st(O4, O1, 3*sizeof(intptr_t));
duke@435 667 add(O0, 1, O0);
duke@435 668 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 669 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 670 restore();
duke@435 671 #endif /* PRODUCT */
duke@435 672 }
duke@435 673 jmp(r1, offset);
duke@435 674 }
duke@435 675
duke@435 676 // This code sequence is relocatable to any address, even on LP64.
coleenp@2035 677 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 678 assert_not_delayed();
duke@435 679 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 680 // variable length instruction streams.
twisti@1162 681 patchable_sethi(addrlit, temp);
twisti@1162 682 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 683 if (TraceJumps) {
duke@435 684 #ifndef PRODUCT
duke@435 685 // Must do the add here so relocation can find the remainder of the
duke@435 686 // value to be relocated.
twisti@1162 687 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 688 save_frame(0);
duke@435 689 verify_thread();
duke@435 690 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 691 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 692 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 693 add(O2, O1, O1);
duke@435 694
duke@435 695 set((intptr_t)file, O3);
duke@435 696 set(line, O4);
duke@435 697 Label L;
duke@435 698
duke@435 699 // get nearby pc, store jmp target
duke@435 700 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 701 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 702 bind(L);
duke@435 703
duke@435 704 // store nearby pc
duke@435 705 st(O7, O1, sizeof(intptr_t));
duke@435 706 // store file
duke@435 707 st(O3, O1, 2*sizeof(intptr_t));
duke@435 708 // store line
duke@435 709 st(O4, O1, 3*sizeof(intptr_t));
duke@435 710 add(O0, 1, O0);
duke@435 711 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 712 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 713 restore();
duke@435 714 jmpl(a.base(), G0, d);
duke@435 715 #else
twisti@1162 716 jmpl(a.base(), a.disp(), d);
duke@435 717 #endif /* PRODUCT */
duke@435 718 } else {
twisti@1162 719 jmpl(a.base(), a.disp(), d);
duke@435 720 }
duke@435 721 }
duke@435 722
coleenp@2035 723 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 724 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 725 }
duke@435 726
duke@435 727
duke@435 728 // Convert to C varargs format
duke@435 729 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 730 // spill register-resident args to their memory slots
duke@435 731 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 732 // Note that the inArg might in fact be an outgoing argument,
duke@435 733 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 734 // This routine must work even though one of the saved arguments
duke@435 735 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 736 for (Argument savePtr = inArg;
duke@435 737 savePtr.is_register();
duke@435 738 savePtr = savePtr.successor()) {
duke@435 739 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 740 }
duke@435 741 // return the address of the first memory slot
twisti@1162 742 Address a = inArg.address_in_frame();
twisti@1162 743 add(a.base(), a.disp(), d);
duke@435 744 }
duke@435 745
duke@435 746 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 747 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 748 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 749 }
duke@435 750
duke@435 751 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 752 void MacroAssembler::breakpoint_trap() {
duke@435 753 trap(ST_RESERVED_FOR_USER_0);
duke@435 754 }
duke@435 755
duke@435 756 // flush windows (except current) using flushw instruction if avail.
duke@435 757 void MacroAssembler::flush_windows() {
duke@435 758 if (VM_Version::v9_instructions_work()) flushw();
duke@435 759 else flush_windows_trap();
duke@435 760 }
duke@435 761
duke@435 762 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 763 // We use the current thread pointer to calculate a thread specific
duke@435 764 // offset to write to within the page. This minimizes bus traffic
duke@435 765 // due to cache line collision.
duke@435 766 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 767 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 768 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 769 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 770 }
duke@435 771 else {
duke@435 772 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 773 and3(tmp2, tmp1, tmp2);
duke@435 774 }
twisti@1162 775 set(os::get_memory_serialize_page(), tmp1);
duke@435 776 st(G0, tmp1, tmp2);
duke@435 777 }
duke@435 778
duke@435 779
duke@435 780
duke@435 781 void MacroAssembler::enter() {
duke@435 782 Unimplemented();
duke@435 783 }
duke@435 784
duke@435 785 void MacroAssembler::leave() {
duke@435 786 Unimplemented();
duke@435 787 }
duke@435 788
duke@435 789 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 790 if(VM_Version::v9_instructions_work()) {
duke@435 791 mulx (s1, s2, d);
duke@435 792 } else {
duke@435 793 smul (s1, s2, d);
duke@435 794 }
duke@435 795 }
duke@435 796
duke@435 797 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 798 if(VM_Version::v9_instructions_work()) {
duke@435 799 mulx (s1, simm13a, d);
duke@435 800 } else {
duke@435 801 smul (s1, simm13a, d);
duke@435 802 }
duke@435 803 }
duke@435 804
duke@435 805
duke@435 806 #ifdef ASSERT
duke@435 807 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 808 const Register s1 = G3_scratch;
duke@435 809 const Register s2 = G4_scratch;
duke@435 810 Label get_psr_test;
duke@435 811 // Get the condition codes the V8 way.
duke@435 812 read_ccr_trap(s1);
duke@435 813 mov(ccr_save, s2);
duke@435 814 // This is a test of V8 which has icc but not xcc
duke@435 815 // so mask off the xcc bits
duke@435 816 and3(s2, 0xf, s2);
duke@435 817 // Compare condition codes from the V8 and V9 ways.
duke@435 818 subcc(s2, s1, G0);
duke@435 819 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 820 delayed()->breakpoint_trap();
duke@435 821 bind(get_psr_test);
duke@435 822 }
duke@435 823
duke@435 824 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 825 const Register s1 = G3_scratch;
duke@435 826 const Register s2 = G4_scratch;
duke@435 827 Label set_psr_test;
duke@435 828 // Write out the saved condition codes the V8 way
duke@435 829 write_ccr_trap(ccr_save, s1, s2);
duke@435 830 // Read back the condition codes using the V9 instruction
duke@435 831 rdccr(s1);
duke@435 832 mov(ccr_save, s2);
duke@435 833 // This is a test of V8 which has icc but not xcc
duke@435 834 // so mask off the xcc bits
duke@435 835 and3(s2, 0xf, s2);
duke@435 836 and3(s1, 0xf, s1);
duke@435 837 // Compare the V8 way with the V9 way.
duke@435 838 subcc(s2, s1, G0);
duke@435 839 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 840 delayed()->breakpoint_trap();
duke@435 841 bind(set_psr_test);
duke@435 842 }
duke@435 843 #else
duke@435 844 #define read_ccr_v8_assert(x)
duke@435 845 #define write_ccr_v8_assert(x)
duke@435 846 #endif // ASSERT
duke@435 847
duke@435 848 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 849 if (VM_Version::v9_instructions_work()) {
duke@435 850 rdccr(ccr_save);
duke@435 851 // Test code sequence used on V8. Do not move above rdccr.
duke@435 852 read_ccr_v8_assert(ccr_save);
duke@435 853 } else {
duke@435 854 read_ccr_trap(ccr_save);
duke@435 855 }
duke@435 856 }
duke@435 857
duke@435 858 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 859 if (VM_Version::v9_instructions_work()) {
duke@435 860 // Test code sequence used on V8. Do not move below wrccr.
duke@435 861 write_ccr_v8_assert(ccr_save);
duke@435 862 wrccr(ccr_save);
duke@435 863 } else {
duke@435 864 const Register temp_reg1 = G3_scratch;
duke@435 865 const Register temp_reg2 = G4_scratch;
duke@435 866 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 867 }
duke@435 868 }
duke@435 869
duke@435 870
duke@435 871 // Calls to C land
duke@435 872
duke@435 873 #ifdef ASSERT
duke@435 874 // a hook for debugging
duke@435 875 static Thread* reinitialize_thread() {
duke@435 876 return ThreadLocalStorage::thread();
duke@435 877 }
duke@435 878 #else
duke@435 879 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 880 #endif
duke@435 881
duke@435 882 #ifdef ASSERT
duke@435 883 address last_get_thread = NULL;
duke@435 884 #endif
duke@435 885
duke@435 886 // call this when G2_thread is not known to be valid
duke@435 887 void MacroAssembler::get_thread() {
duke@435 888 save_frame(0); // to avoid clobbering O0
duke@435 889 mov(G1, L0); // avoid clobbering G1
duke@435 890 mov(G5_method, L1); // avoid clobbering G5
duke@435 891 mov(G3, L2); // avoid clobbering G3 also
duke@435 892 mov(G4, L5); // avoid clobbering G4
duke@435 893 #ifdef ASSERT
twisti@1162 894 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 895 set(last_get_thread_addrlit, L3);
duke@435 896 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 897 st_ptr(L4, L3, 0);
duke@435 898 #endif
duke@435 899 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 900 delayed()->nop();
duke@435 901 mov(L0, G1);
duke@435 902 mov(L1, G5_method);
duke@435 903 mov(L2, G3);
duke@435 904 mov(L5, G4);
duke@435 905 restore(O0, 0, G2_thread);
duke@435 906 }
duke@435 907
duke@435 908 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 909 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 910 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 911 return correct_value;
duke@435 912 }
duke@435 913
duke@435 914 void MacroAssembler::verify_thread() {
duke@435 915 if (VerifyThread) {
duke@435 916 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 917 #ifdef CC_INTERP
duke@435 918 save_frame(0);
duke@435 919 #else
duke@435 920 // make sure G2_thread contains the right value
duke@435 921 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 922 mov(G1, L1); // avoid clobbering G1
duke@435 923 // G2 saved below
duke@435 924 mov(G3, L3); // avoid clobbering G3
duke@435 925 mov(G4, L4); // avoid clobbering G4
duke@435 926 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 927 #endif /* CC_INTERP */
duke@435 928 #if defined(COMPILER2) && !defined(_LP64)
duke@435 929 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 930 srlx(G1,32,L0);
duke@435 931 srlx(G4,32,L6);
duke@435 932 #endif
duke@435 933 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 934 delayed()->mov(G2_thread, O0);
duke@435 935
duke@435 936 mov(L1, G1); // Restore G1
duke@435 937 // G2 restored below
duke@435 938 mov(L3, G3); // restore G3
duke@435 939 mov(L4, G4); // restore G4
duke@435 940 mov(L5, G5_method); // restore G5_method
duke@435 941 #if defined(COMPILER2) && !defined(_LP64)
duke@435 942 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 943 sllx(L0,32,G2); // Move old high G1 bits high in G2
iveresov@2344 944 srl(G1, 0,G1); // Clear current high G1 bits
duke@435 945 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 946 sllx(L6,32,G2); // Move old high G4 bits high in G2
iveresov@2344 947 srl(G4, 0,G4); // Clear current high G4 bits
duke@435 948 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 949 #endif
duke@435 950 restore(O0, 0, G2_thread);
duke@435 951 }
duke@435 952 }
duke@435 953
duke@435 954
duke@435 955 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 956 verify_thread();
duke@435 957 if (thread_cache->is_valid()) {
duke@435 958 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 959 mov(G2_thread, thread_cache);
duke@435 960 }
duke@435 961 if (VerifyThread) {
duke@435 962 // smash G2_thread, as if the VM were about to anyway
duke@435 963 set(0x67676767, G2_thread);
duke@435 964 }
duke@435 965 }
duke@435 966
duke@435 967
duke@435 968 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 969 if (thread_cache->is_valid()) {
duke@435 970 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 971 mov(thread_cache, G2_thread);
duke@435 972 verify_thread();
duke@435 973 } else {
duke@435 974 // do it the slow way
duke@435 975 get_thread();
duke@435 976 }
duke@435 977 }
duke@435 978
duke@435 979
duke@435 980 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 981 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 982 assert_not_delayed();
twisti@1162 983 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 984 JavaFrameAnchor::flags_offset());
twisti@1162 985 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 986
duke@435 987 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 988 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 989 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 990
duke@435 991 #ifdef ASSERT
duke@435 992 // Verify that flags was zeroed on return to Java
duke@435 993 Label PcOk;
duke@435 994 save_frame(0); // to avoid clobbering O0
duke@435 995 ld_ptr(pc_addr, L0);
kvn@3037 996 br_null_short(L0, Assembler::pt, PcOk);
twisti@3969 997 STOP("last_Java_pc not zeroed before leaving Java");
duke@435 998 bind(PcOk);
duke@435 999
duke@435 1000 // Verify that flags was zeroed on return to Java
duke@435 1001 Label FlagsOk;
duke@435 1002 ld(flags, L0);
duke@435 1003 tst(L0);
duke@435 1004 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 1005 delayed() -> restore();
twisti@3969 1006 STOP("flags not zeroed before leaving Java");
duke@435 1007 bind(FlagsOk);
duke@435 1008 #endif /* ASSERT */
duke@435 1009 //
duke@435 1010 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 1011 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 1012 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 1013 // native call having a standard frame linkage where we can find the pc.
duke@435 1014
duke@435 1015 if (last_Java_pc->is_valid()) {
duke@435 1016 st_ptr(last_Java_pc, pc_addr);
duke@435 1017 }
duke@435 1018
duke@435 1019 #ifdef _LP64
duke@435 1020 #ifdef ASSERT
duke@435 1021 // Make sure that we have an odd stack
duke@435 1022 Label StackOk;
duke@435 1023 andcc(last_java_sp, 0x01, G0);
duke@435 1024 br(Assembler::notZero, false, Assembler::pt, StackOk);
kvn@3037 1025 delayed()->nop();
twisti@3969 1026 STOP("Stack Not Biased in set_last_Java_frame");
duke@435 1027 bind(StackOk);
duke@435 1028 #endif // ASSERT
duke@435 1029 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 1030 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 1031 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1032 #else
twisti@1162 1033 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1034 #endif // _LP64
duke@435 1035 }
duke@435 1036
duke@435 1037 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 1038 assert_not_delayed();
duke@435 1039
twisti@1162 1040 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 1041 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1042 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1043
duke@435 1044 #ifdef ASSERT
duke@435 1045 // check that it WAS previously set
duke@435 1046 #ifdef CC_INTERP
duke@435 1047 save_frame(0);
duke@435 1048 #else
duke@435 1049 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1050 #endif /* CC_INTERP */
duke@435 1051 ld_ptr(sp_addr, L0);
duke@435 1052 tst(L0);
duke@435 1053 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1054 restore();
duke@435 1055 #endif // ASSERT
duke@435 1056
duke@435 1057 st_ptr(G0, sp_addr);
duke@435 1058 // Always return last_Java_pc to zero
duke@435 1059 st_ptr(G0, pc_addr);
duke@435 1060 // Always null flags after return to Java
duke@435 1061 st(G0, flags);
duke@435 1062 }
duke@435 1063
duke@435 1064
duke@435 1065 void MacroAssembler::call_VM_base(
duke@435 1066 Register oop_result,
duke@435 1067 Register thread_cache,
duke@435 1068 Register last_java_sp,
duke@435 1069 address entry_point,
duke@435 1070 int number_of_arguments,
duke@435 1071 bool check_exceptions)
duke@435 1072 {
duke@435 1073 assert_not_delayed();
duke@435 1074
duke@435 1075 // determine last_java_sp register
duke@435 1076 if (!last_java_sp->is_valid()) {
duke@435 1077 last_java_sp = SP;
duke@435 1078 }
duke@435 1079 // debugging support
duke@435 1080 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1081
duke@435 1082 // 64-bit last_java_sp is biased!
duke@435 1083 set_last_Java_frame(last_java_sp, noreg);
duke@435 1084 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1085 save_thread(thread_cache);
duke@435 1086 // do the call
duke@435 1087 call(entry_point, relocInfo::runtime_call_type);
duke@435 1088 if (!VerifyThread)
duke@435 1089 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1090 else
duke@435 1091 delayed()->nop(); // (thread already passed)
duke@435 1092 restore_thread(thread_cache);
duke@435 1093 reset_last_Java_frame();
duke@435 1094
duke@435 1095 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1096 if (check_exceptions) {
duke@435 1097 check_and_forward_exception(Gtemp);
duke@435 1098 }
duke@435 1099
never@2950 1100 #ifdef ASSERT
never@2950 1101 set(badHeapWordVal, G3);
never@2950 1102 set(badHeapWordVal, G4);
never@2950 1103 set(badHeapWordVal, G5);
never@2950 1104 #endif
never@2950 1105
duke@435 1106 // get oop result if there is one and reset the value in the thread
duke@435 1107 if (oop_result->is_valid()) {
duke@435 1108 get_vm_result(oop_result);
duke@435 1109 }
duke@435 1110 }
duke@435 1111
duke@435 1112 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1113 {
duke@435 1114 Label L;
duke@435 1115
duke@435 1116 check_and_handle_popframe(scratch_reg);
duke@435 1117 check_and_handle_earlyret(scratch_reg);
duke@435 1118
twisti@1162 1119 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1120 ld_ptr(exception_addr, scratch_reg);
kvn@3037 1121 br_null_short(scratch_reg, pt, L);
duke@435 1122 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1123 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1124 delayed()->nop();
duke@435 1125 bind(L);
duke@435 1126 }
duke@435 1127
duke@435 1128
duke@435 1129 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1130 }
duke@435 1131
duke@435 1132
duke@435 1133 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1134 }
duke@435 1135
duke@435 1136
duke@435 1137 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1138 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1139 }
duke@435 1140
duke@435 1141
duke@435 1142 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1143 // O0 is reserved for the thread
duke@435 1144 mov(arg_1, O1);
duke@435 1145 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1146 }
duke@435 1147
duke@435 1148
duke@435 1149 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1150 // O0 is reserved for the thread
duke@435 1151 mov(arg_1, O1);
duke@435 1152 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1153 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1154 }
duke@435 1155
duke@435 1156
duke@435 1157 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1158 // O0 is reserved for the thread
duke@435 1159 mov(arg_1, O1);
duke@435 1160 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1161 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1162 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166
duke@435 1167 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1168 // has already been performed by a stub, and the last Java frame is
duke@435 1169 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1170 // instead of SP.
duke@435 1171
duke@435 1172
duke@435 1173 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1174 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1175 }
duke@435 1176
duke@435 1177
duke@435 1178 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1179 // O0 is reserved for the thread
duke@435 1180 mov(arg_1, O1);
duke@435 1181 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1182 }
duke@435 1183
duke@435 1184
duke@435 1185 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1186 // O0 is reserved for the thread
duke@435 1187 mov(arg_1, O1);
duke@435 1188 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1189 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1190 }
duke@435 1191
duke@435 1192
duke@435 1193 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1194 // O0 is reserved for the thread
duke@435 1195 mov(arg_1, O1);
duke@435 1196 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1197 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1198 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1199 }
duke@435 1200
duke@435 1201
duke@435 1202
duke@435 1203 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1204 assert_not_delayed();
duke@435 1205 save_thread(thread_cache);
duke@435 1206 // do the call
duke@435 1207 call(entry_point, relocInfo::runtime_call_type);
duke@435 1208 delayed()->nop();
duke@435 1209 restore_thread(thread_cache);
never@2950 1210 #ifdef ASSERT
never@2950 1211 set(badHeapWordVal, G3);
never@2950 1212 set(badHeapWordVal, G4);
never@2950 1213 set(badHeapWordVal, G5);
never@2950 1214 #endif
duke@435 1215 }
duke@435 1216
duke@435 1217
duke@435 1218 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1219 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1220 }
duke@435 1221
duke@435 1222
duke@435 1223 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1224 mov(arg_1, O0);
duke@435 1225 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1226 }
duke@435 1227
duke@435 1228
duke@435 1229 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1230 mov(arg_1, O0);
duke@435 1231 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1232 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1233 }
duke@435 1234
duke@435 1235
duke@435 1236 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1237 mov(arg_1, O0);
duke@435 1238 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1239 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1240 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1241 }
duke@435 1242
duke@435 1243
duke@435 1244 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1245 verify_thread();
twisti@1162 1246 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1247 ld_ptr( vm_result_addr, oop_result);
duke@435 1248 st_ptr(G0, vm_result_addr);
duke@435 1249 verify_oop(oop_result);
duke@435 1250 }
duke@435 1251
duke@435 1252
duke@435 1253 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1254 verify_thread();
twisti@1162 1255 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1256 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1257 st_ptr(G0, vm_result_addr_2);
duke@435 1258 verify_oop(oop_result);
duke@435 1259 }
duke@435 1260
duke@435 1261
duke@435 1262 // We require that C code which does not return a value in vm_result will
duke@435 1263 // leave it undisturbed.
duke@435 1264 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1265 verify_thread();
twisti@1162 1266 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1267 verify_oop(oop_result);
duke@435 1268
duke@435 1269 # ifdef ASSERT
duke@435 1270 // Check that we are not overwriting any other oop.
duke@435 1271 #ifdef CC_INTERP
duke@435 1272 save_frame(0);
duke@435 1273 #else
duke@435 1274 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1275 #endif /* CC_INTERP */
duke@435 1276 ld_ptr(vm_result_addr, L0);
duke@435 1277 tst(L0);
duke@435 1278 restore();
duke@435 1279 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1280 // }
duke@435 1281 # endif
duke@435 1282
duke@435 1283 st_ptr(oop_result, vm_result_addr);
duke@435 1284 }
duke@435 1285
duke@435 1286
ysr@777 1287 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1288 Register tmp, Register obj) {
duke@435 1289 #ifdef _LP64
duke@435 1290 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1291 #else
duke@435 1292 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1293 #endif
twisti@1162 1294 assert(tmp != obj, "need separate temp reg");
twisti@1162 1295 set((address) byte_map_base, tmp);
twisti@1162 1296 stb(G0, tmp, obj);
duke@435 1297 }
duke@435 1298
twisti@1162 1299
twisti@1162 1300 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1301 address save_pc;
duke@435 1302 int shiftcnt;
duke@435 1303 #ifdef _LP64
duke@435 1304 # ifdef CHECK_DELAY
twisti@1162 1305 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1306 # endif
duke@435 1307 v9_dep();
duke@435 1308 save_pc = pc();
twisti@1162 1309
twisti@1162 1310 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1311 int lsb32 = (int) (addrlit.value());
twisti@1162 1312
twisti@1162 1313 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1314 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1315 }
twisti@1162 1316 else if (msb32 == -1) {
twisti@1162 1317 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1318 xor3(d, ~low10(~0), d);
duke@435 1319 }
duke@435 1320 else {
twisti@1162 1321 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1322 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1323 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1324 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1325 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1326 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1327 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1328 shiftcnt = 0; // We already shifted
duke@435 1329 }
duke@435 1330 else
duke@435 1331 shiftcnt = 12;
twisti@1162 1332 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1333 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1334 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1335 shiftcnt = 0;
duke@435 1336 }
duke@435 1337 else
duke@435 1338 shiftcnt = 10;
twisti@1162 1339 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1340 }
duke@435 1341 else
twisti@1162 1342 sllx(d, 32, d);
duke@435 1343 }
twisti@1162 1344 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1345 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1346 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1347 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1348 nop();
duke@435 1349 }
duke@435 1350 #else
twisti@1162 1351 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1352 #endif
duke@435 1353 }
duke@435 1354
twisti@1162 1355
twisti@1162 1356 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1357 internal_sethi(addrlit, d, false);
twisti@1162 1358 }
twisti@1162 1359
twisti@1162 1360
twisti@1162 1361 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1362 internal_sethi(addrlit, d, true);
twisti@1162 1363 }
twisti@1162 1364
twisti@1162 1365
twisti@2399 1366 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
duke@435 1367 #ifdef _LP64
twisti@2399 1368 if (worst_case) return 7;
twisti@2399 1369 intptr_t iaddr = (intptr_t) a;
twisti@2399 1370 int msb32 = (int) (iaddr >> 32);
twisti@2399 1371 int lsb32 = (int) (iaddr);
twisti@2399 1372 int count;
twisti@2399 1373 if (msb32 == 0 && lsb32 >= 0)
twisti@2399 1374 count = 1;
twisti@2399 1375 else if (msb32 == -1)
twisti@2399 1376 count = 2;
duke@435 1377 else {
twisti@2399 1378 count = 2;
twisti@2399 1379 if (msb32 & 0x3ff)
twisti@2399 1380 count++;
twisti@2399 1381 if (lsb32 & 0xFFFFFC00 ) {
twisti@2399 1382 if ((lsb32 >> 20) & 0xfff) count += 2;
twisti@2399 1383 if ((lsb32 >> 10) & 0x3ff) count += 2;
duke@435 1384 }
duke@435 1385 }
twisti@2399 1386 return count;
duke@435 1387 #else
twisti@2399 1388 return 1;
duke@435 1389 #endif
duke@435 1390 }
duke@435 1391
twisti@2399 1392 int MacroAssembler::worst_case_insts_for_set() {
twisti@2399 1393 return insts_for_sethi(NULL, true) + 1;
duke@435 1394 }
duke@435 1395
twisti@1162 1396
twisti@2399 1397 // Keep in sync with MacroAssembler::insts_for_internal_set
twisti@1162 1398 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1399 intptr_t value = addrlit.value();
twisti@1162 1400
twisti@1162 1401 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1402 // can optimize
twisti@1162 1403 if (-4096 <= value && value <= 4095) {
duke@435 1404 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1405 return;
duke@435 1406 }
duke@435 1407 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1408 sethi(addrlit, d);
duke@435 1409 return;
duke@435 1410 }
duke@435 1411 }
twisti@1162 1412 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1413 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1414 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1415 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1416 }
duke@435 1417 }
duke@435 1418
twisti@2399 1419 // Keep in sync with MacroAssembler::internal_set
twisti@2399 1420 int MacroAssembler::insts_for_internal_set(intptr_t value) {
twisti@2399 1421 // can optimize
twisti@2399 1422 if (-4096 <= value && value <= 4095) {
twisti@2399 1423 return 1;
twisti@2399 1424 }
twisti@2399 1425 if (inv_hi22(hi22(value)) == value) {
twisti@2399 1426 return insts_for_sethi((address) value);
twisti@2399 1427 }
twisti@2399 1428 int count = insts_for_sethi((address) value);
twisti@2399 1429 AddressLiteral al(value);
twisti@2399 1430 if (al.low10() != 0) {
twisti@2399 1431 count++;
twisti@2399 1432 }
twisti@2399 1433 return count;
twisti@2399 1434 }
twisti@2399 1435
twisti@1162 1436 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1437 internal_set(al, d, false);
duke@435 1438 }
duke@435 1439
twisti@1162 1440 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1441 AddressLiteral al(value);
twisti@1162 1442 internal_set(al, d, false);
twisti@1162 1443 }
twisti@1162 1444
twisti@1162 1445 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1446 AddressLiteral al(addr, rspec);
twisti@1162 1447 internal_set(al, d, false);
twisti@1162 1448 }
twisti@1162 1449
twisti@1162 1450 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1451 internal_set(al, d, true);
twisti@1162 1452 }
twisti@1162 1453
twisti@1162 1454 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1455 AddressLiteral al(value);
twisti@1162 1456 internal_set(al, d, true);
twisti@1162 1457 }
duke@435 1458
duke@435 1459
duke@435 1460 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1461 assert_not_delayed();
duke@435 1462 v9_dep();
duke@435 1463
duke@435 1464 int hi = (int)(value >> 32);
duke@435 1465 int lo = (int)(value & ~0);
duke@435 1466 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1467 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1468 or3(G0, lo, d);
duke@435 1469 } else if (hi == 0) {
duke@435 1470 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1471 if (low10(lo) != 0)
duke@435 1472 or3(d, low10(lo), d);
duke@435 1473 }
duke@435 1474 else if (hi == -1) {
duke@435 1475 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1476 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1477 }
duke@435 1478 else if (lo == 0) {
duke@435 1479 if (Assembler::is_simm13(hi)) {
duke@435 1480 or3(G0, hi, d);
duke@435 1481 } else {
duke@435 1482 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1483 if (low10(hi) != 0)
duke@435 1484 or3(d, low10(hi), d);
duke@435 1485 }
duke@435 1486 sllx(d, 32, d);
duke@435 1487 }
duke@435 1488 else {
duke@435 1489 Assembler::sethi(hi, tmp);
duke@435 1490 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1491 if (low10(hi) != 0)
duke@435 1492 or3 (tmp, low10(hi), tmp);
duke@435 1493 if (low10(lo) != 0)
duke@435 1494 or3 ( d, low10(lo), d);
duke@435 1495 sllx(tmp, 32, tmp);
duke@435 1496 or3 (d, tmp, d);
duke@435 1497 }
duke@435 1498 }
duke@435 1499
twisti@2399 1500 int MacroAssembler::insts_for_set64(jlong value) {
twisti@2350 1501 v9_dep();
twisti@2350 1502
twisti@2399 1503 int hi = (int) (value >> 32);
twisti@2399 1504 int lo = (int) (value & ~0);
twisti@2350 1505 int count = 0;
twisti@2350 1506
twisti@2350 1507 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
twisti@2350 1508 if (Assembler::is_simm13(lo) && value == lo) {
twisti@2350 1509 count++;
twisti@2350 1510 } else if (hi == 0) {
twisti@2350 1511 count++;
twisti@2350 1512 if (low10(lo) != 0)
twisti@2350 1513 count++;
twisti@2350 1514 }
twisti@2350 1515 else if (hi == -1) {
twisti@2350 1516 count += 2;
twisti@2350 1517 }
twisti@2350 1518 else if (lo == 0) {
twisti@2350 1519 if (Assembler::is_simm13(hi)) {
twisti@2350 1520 count++;
twisti@2350 1521 } else {
twisti@2350 1522 count++;
twisti@2350 1523 if (low10(hi) != 0)
twisti@2350 1524 count++;
twisti@2350 1525 }
twisti@2350 1526 count++;
twisti@2350 1527 }
twisti@2350 1528 else {
twisti@2350 1529 count += 2;
twisti@2350 1530 if (low10(hi) != 0)
twisti@2350 1531 count++;
twisti@2350 1532 if (low10(lo) != 0)
twisti@2350 1533 count++;
twisti@2350 1534 count += 2;
twisti@2350 1535 }
twisti@2350 1536 return count;
twisti@2350 1537 }
twisti@2350 1538
duke@435 1539 // compute size in bytes of sparc frame, given
duke@435 1540 // number of extraWords
duke@435 1541 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1542
duke@435 1543 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1544
duke@435 1545 nWords += extraWords;
duke@435 1546
duke@435 1547 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1548
duke@435 1549 return nWords * BytesPerWord;
duke@435 1550 }
duke@435 1551
duke@435 1552
duke@435 1553 // save_frame: given number of "extra" words in frame,
duke@435 1554 // issue approp. save instruction (p 200, v8 manual)
duke@435 1555
never@2950 1556 void MacroAssembler::save_frame(int extraWords) {
duke@435 1557 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1558 if (is_simm13(delta)) {
duke@435 1559 save(SP, delta, SP);
duke@435 1560 } else {
duke@435 1561 set(delta, G3_scratch);
duke@435 1562 save(SP, G3_scratch, SP);
duke@435 1563 }
duke@435 1564 }
duke@435 1565
duke@435 1566
duke@435 1567 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1568 if (is_simm13(-size_in_bytes)) {
duke@435 1569 save(SP, -size_in_bytes, SP);
duke@435 1570 } else {
duke@435 1571 set(-size_in_bytes, G3_scratch);
duke@435 1572 save(SP, G3_scratch, SP);
duke@435 1573 }
duke@435 1574 }
duke@435 1575
duke@435 1576
duke@435 1577 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1578 Register s1, Register d1,
duke@435 1579 Register s2, Register d2) {
duke@435 1580 assert_not_delayed();
duke@435 1581
duke@435 1582 // The trick here is to use precisely the same memory word
duke@435 1583 // that trap handlers also use to save the register.
duke@435 1584 // This word cannot be used for any other purpose, but
duke@435 1585 // it works fine to save the register's value, whether or not
duke@435 1586 // an interrupt flushes register windows at any given moment!
duke@435 1587 Address s1_addr;
duke@435 1588 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1589 s1_addr = s1->address_in_saved_window();
duke@435 1590 st_ptr(s1, s1_addr);
duke@435 1591 }
duke@435 1592
duke@435 1593 Address s2_addr;
duke@435 1594 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1595 s2_addr = s2->address_in_saved_window();
duke@435 1596 st_ptr(s2, s2_addr);
duke@435 1597 }
duke@435 1598
duke@435 1599 save_frame(extraWords);
duke@435 1600
duke@435 1601 if (s1_addr.base() == SP) {
duke@435 1602 ld_ptr(s1_addr.after_save(), d1);
duke@435 1603 } else if (s1->is_valid()) {
duke@435 1604 mov(s1->after_save(), d1);
duke@435 1605 }
duke@435 1606
duke@435 1607 if (s2_addr.base() == SP) {
duke@435 1608 ld_ptr(s2_addr.after_save(), d2);
duke@435 1609 } else if (s2->is_valid()) {
duke@435 1610 mov(s2->after_save(), d2);
duke@435 1611 }
duke@435 1612 }
duke@435 1613
duke@435 1614
twisti@1162 1615 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1616 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1617 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1618 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1619 }
duke@435 1620
duke@435 1621
twisti@1162 1622 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1623 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1624 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1625 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1626 }
duke@435 1627
kvn@599 1628 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1629 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1630 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1631 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1632
kvn@599 1633 assert_not_delayed();
kvn@599 1634 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1635 relocate(rspec, 1);
kvn@599 1636 // Assembler::sethi(0x3fffff, d);
kvn@599 1637 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1638 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1639 add(d, 0x3ff, d);
kvn@599 1640
kvn@599 1641 }
kvn@599 1642
duke@435 1643
duke@435 1644 void MacroAssembler::align(int modulus) {
duke@435 1645 while (offset() % modulus != 0) nop();
duke@435 1646 }
duke@435 1647
duke@435 1648
duke@435 1649 void MacroAssembler::safepoint() {
duke@435 1650 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1651 }
duke@435 1652
duke@435 1653
duke@435 1654 void RegistersForDebugging::print(outputStream* s) {
twisti@3969 1655 FlagSetting fs(Debugging, true);
duke@435 1656 int j;
twisti@3969 1657 for (j = 0; j < 8; ++j) {
twisti@3969 1658 if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
twisti@3969 1659 else { s->print( "fp = " ); os::print_location(s, i[j]); }
twisti@3969 1660 }
duke@435 1661 s->cr();
duke@435 1662
twisti@3969 1663 for (j = 0; j < 8; ++j) {
twisti@3969 1664 s->print("l%d = ", j); os::print_location(s, l[j]);
twisti@3969 1665 }
duke@435 1666 s->cr();
duke@435 1667
twisti@3969 1668 for (j = 0; j < 8; ++j) {
twisti@3969 1669 if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
twisti@3969 1670 else { s->print( "sp = " ); os::print_location(s, o[j]); }
twisti@3969 1671 }
duke@435 1672 s->cr();
duke@435 1673
twisti@3969 1674 for (j = 0; j < 8; ++j) {
twisti@3969 1675 s->print("g%d = ", j); os::print_location(s, g[j]);
twisti@3969 1676 }
duke@435 1677 s->cr();
duke@435 1678
duke@435 1679 // print out floats with compression
duke@435 1680 for (j = 0; j < 32; ) {
duke@435 1681 jfloat val = f[j];
duke@435 1682 int last = j;
duke@435 1683 for ( ; last+1 < 32; ++last ) {
duke@435 1684 char b1[1024], b2[1024];
duke@435 1685 sprintf(b1, "%f", val);
duke@435 1686 sprintf(b2, "%f", f[last+1]);
duke@435 1687 if (strcmp(b1, b2))
duke@435 1688 break;
duke@435 1689 }
duke@435 1690 s->print("f%d", j);
duke@435 1691 if ( j != last ) s->print(" - f%d", last);
duke@435 1692 s->print(" = %f", val);
duke@435 1693 s->fill_to(25);
duke@435 1694 s->print_cr(" (0x%x)", val);
duke@435 1695 j = last + 1;
duke@435 1696 }
duke@435 1697 s->cr();
duke@435 1698
duke@435 1699 // and doubles (evens only)
duke@435 1700 for (j = 0; j < 32; ) {
duke@435 1701 jdouble val = d[j];
duke@435 1702 int last = j;
duke@435 1703 for ( ; last+1 < 32; ++last ) {
duke@435 1704 char b1[1024], b2[1024];
duke@435 1705 sprintf(b1, "%f", val);
duke@435 1706 sprintf(b2, "%f", d[last+1]);
duke@435 1707 if (strcmp(b1, b2))
duke@435 1708 break;
duke@435 1709 }
duke@435 1710 s->print("d%d", 2 * j);
duke@435 1711 if ( j != last ) s->print(" - d%d", last);
duke@435 1712 s->print(" = %f", val);
duke@435 1713 s->fill_to(30);
duke@435 1714 s->print("(0x%x)", *(int*)&val);
duke@435 1715 s->fill_to(42);
duke@435 1716 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1717 j = last + 1;
duke@435 1718 }
duke@435 1719 s->cr();
duke@435 1720 }
duke@435 1721
duke@435 1722 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1723 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1724 a->flush_windows();
duke@435 1725 int i;
duke@435 1726 for (i = 0; i < 8; ++i) {
duke@435 1727 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1728 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1729 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1730 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1731 }
duke@435 1732 for (i = 0; i < 32; ++i) {
duke@435 1733 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1734 }
duke@435 1735 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1736 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1737 }
duke@435 1738 }
duke@435 1739
duke@435 1740 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1741 for (int i = 1; i < 8; ++i) {
duke@435 1742 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1743 }
duke@435 1744 for (int j = 0; j < 32; ++j) {
duke@435 1745 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1746 }
duke@435 1747 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1748 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1749 }
duke@435 1750 }
duke@435 1751
duke@435 1752
duke@435 1753 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1754 void MacroAssembler::push_fTOS() {
duke@435 1755 // %%%%%% need to implement this
duke@435 1756 }
duke@435 1757
duke@435 1758 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1759 void MacroAssembler::pop_fTOS() {
duke@435 1760 // %%%%%% need to implement this
duke@435 1761 }
duke@435 1762
duke@435 1763 void MacroAssembler::empty_FPU_stack() {
duke@435 1764 // %%%%%% need to implement this
duke@435 1765 }
duke@435 1766
duke@435 1767 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1768 // plausibility check for oops
duke@435 1769 if (!VerifyOops) return;
duke@435 1770
duke@435 1771 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1772
never@2950 1773 BLOCK_COMMENT("verify_oop {");
ysr@777 1774 char buffer[64];
ysr@777 1775 #ifdef COMPILER1
ysr@777 1776 if (CommentedAssembly) {
ysr@777 1777 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1778 block_comment(buffer);
ysr@777 1779 }
ysr@777 1780 #endif
ysr@777 1781
ysr@777 1782 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1783 sprintf(buffer, "%d", line);
ysr@777 1784 len += strlen(buffer);
ysr@777 1785 sprintf(buffer, " at offset %d ", offset());
ysr@777 1786 len += strlen(buffer);
duke@435 1787 char * real_msg = new char[len];
ysr@777 1788 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1789
duke@435 1790 // Call indirectly to solve generation ordering problem
twisti@1162 1791 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1792
duke@435 1793 // Make some space on stack above the current register window.
duke@435 1794 // Enough to hold 8 64-bit registers.
duke@435 1795 add(SP,-8*8,SP);
duke@435 1796
duke@435 1797 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1798 // of 64-bit longs in the 32-bit build.
duke@435 1799 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1800 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1801 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1802 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1803
kvn@3098 1804 // Size of set() should stay the same
kvn@3098 1805 patchable_set((intptr_t)real_msg, O1);
duke@435 1806 // Load address to call to into O7
duke@435 1807 load_ptr_contents(a, O7);
duke@435 1808 // Register call to verify_oop_subroutine
duke@435 1809 callr(O7, G0);
duke@435 1810 delayed()->nop();
duke@435 1811 // recover frame size
duke@435 1812 add(SP, 8*8,SP);
never@2950 1813 BLOCK_COMMENT("} verify_oop");
duke@435 1814 }
duke@435 1815
duke@435 1816 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1817 // plausibility check for oops
duke@435 1818 if (!VerifyOops) return;
duke@435 1819
duke@435 1820 char buffer[64];
duke@435 1821 sprintf(buffer, "%d", line);
duke@435 1822 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1823 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1824 len += strlen(buffer);
duke@435 1825 char * real_msg = new char[len];
duke@435 1826 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1827
duke@435 1828 // Call indirectly to solve generation ordering problem
twisti@1162 1829 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1830
duke@435 1831 // Make some space on stack above the current register window.
duke@435 1832 // Enough to hold 8 64-bit registers.
duke@435 1833 add(SP,-8*8,SP);
duke@435 1834
duke@435 1835 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1836 // of 64-bit longs in the 32-bit build.
duke@435 1837 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1838 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1839 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1840 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1841
kvn@3098 1842 // Size of set() should stay the same
kvn@3098 1843 patchable_set((intptr_t)real_msg, O1);
duke@435 1844 // Load address to call to into O7
duke@435 1845 load_ptr_contents(a, O7);
duke@435 1846 // Register call to verify_oop_subroutine
duke@435 1847 callr(O7, G0);
duke@435 1848 delayed()->nop();
duke@435 1849 // recover frame size
duke@435 1850 add(SP, 8*8,SP);
duke@435 1851 }
duke@435 1852
duke@435 1853 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1854 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1855
duke@435 1856 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1857 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1858 // registers, including flags. May not use a register 'save', as this blows
duke@435 1859 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1860 // call.
duke@435 1861 void MacroAssembler::verify_oop_subroutine() {
duke@435 1862 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1863
duke@435 1864 // Leaf call; no frame.
duke@435 1865 Label succeed, fail, null_or_fail;
duke@435 1866
duke@435 1867 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1868 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1869 Register O0_obj = O0;
duke@435 1870
duke@435 1871 // Save some more registers for temps.
duke@435 1872 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1873 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1874 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1875 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1876
duke@435 1877 // Save flags
duke@435 1878 Register O5_save_flags = O5;
duke@435 1879 rdccr( O5_save_flags );
duke@435 1880
duke@435 1881 { // count number of verifies
duke@435 1882 Register O2_adr = O2;
duke@435 1883 Register O3_accum = O3;
twisti@1162 1884 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1885 }
duke@435 1886
duke@435 1887 Register O2_mask = O2;
duke@435 1888 Register O3_bits = O3;
duke@435 1889 Register O4_temp = O4;
duke@435 1890
duke@435 1891 // mark lower end of faulting range
duke@435 1892 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1893 _verify_oop_implicit_branch[0] = pc();
duke@435 1894
duke@435 1895 // We can't check the mark oop because it could be in the process of
duke@435 1896 // locking or unlocking while this is running.
duke@435 1897 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1898 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1899
duke@435 1900 // assert((obj & oop_mask) == oop_bits);
duke@435 1901 and3(O0_obj, O2_mask, O4_temp);
kvn@3037 1902 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
duke@435 1903
duke@435 1904 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1905 // the null_or_fail case is useless; must test for null separately
kvn@3037 1906 br_null_short(O0_obj, pn, succeed);
duke@435 1907 }
duke@435 1908
duke@435 1909 // Check the klassOop of this object for being in the right area of memory.
duke@435 1910 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1911 load_klass(O0_obj, O0_obj);
duke@435 1912 // assert((klass & klass_mask) == klass_bits);
duke@435 1913 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1914 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1915 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1916 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1917 and3(O0_obj, O2_mask, O4_temp);
kvn@3037 1918 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, fail);
duke@435 1919 // Check the klass's klass
coleenp@548 1920 load_klass(O0_obj, O0_obj);
duke@435 1921 and3(O0_obj, O2_mask, O4_temp);
duke@435 1922 cmp(O4_temp, O3_bits);
duke@435 1923 brx(notEqual, false, pn, fail);
duke@435 1924 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1925
duke@435 1926 // mark upper end of faulting range
duke@435 1927 _verify_oop_implicit_branch[1] = pc();
duke@435 1928
duke@435 1929 //-----------------------
duke@435 1930 // all tests pass
duke@435 1931 bind(succeed);
duke@435 1932
duke@435 1933 // Restore prior 64-bit registers
duke@435 1934 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1935 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1936 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1937 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1938 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1939 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1940
duke@435 1941 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1942 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1943
duke@435 1944 //-----------------------
duke@435 1945 bind(null_or_fail); // nulls are less common but OK
duke@435 1946 br_null(O0_obj, false, pt, succeed);
duke@435 1947 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1948
duke@435 1949 //-----------------------
duke@435 1950 // report failure:
duke@435 1951 bind(fail);
duke@435 1952 _verify_oop_implicit_branch[2] = pc();
duke@435 1953
duke@435 1954 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1955
duke@435 1956 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1957
duke@435 1958 // stop_subroutine expects message pointer in I1.
duke@435 1959 mov(I1, O1);
duke@435 1960
duke@435 1961 // Restore prior 64-bit registers
duke@435 1962 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1963 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1964 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1965 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1966 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1967 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1968
duke@435 1969 // factor long stop-sequence into subroutine to save space
duke@435 1970 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1971
duke@435 1972 // call indirectly to solve generation ordering problem
twisti@1162 1973 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1974 load_ptr_contents(al, O5);
duke@435 1975 jmpl(O5, 0, O7);
duke@435 1976 delayed()->nop();
duke@435 1977 }
duke@435 1978
duke@435 1979
duke@435 1980 void MacroAssembler::stop(const char* msg) {
duke@435 1981 // save frame first to get O7 for return address
duke@435 1982 // add one word to size in case struct is odd number of words long
duke@435 1983 // It must be doubleword-aligned for storing doubles into it.
duke@435 1984
duke@435 1985 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1986
duke@435 1987 // stop_subroutine expects message pointer in I1.
kvn@3098 1988 // Size of set() should stay the same
kvn@3098 1989 patchable_set((intptr_t)msg, O1);
duke@435 1990
duke@435 1991 // factor long stop-sequence into subroutine to save space
duke@435 1992 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1993
duke@435 1994 // call indirectly to solve generation ordering problem
twisti@1162 1995 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1996 load_ptr_contents(a, O5);
duke@435 1997 jmpl(O5, 0, O7);
duke@435 1998 delayed()->nop();
duke@435 1999
duke@435 2000 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 2001 // unnoticeable results in the output files.
duke@435 2002
duke@435 2003 // restore(); done in callee to save space!
duke@435 2004 }
duke@435 2005
duke@435 2006
duke@435 2007 void MacroAssembler::warn(const char* msg) {
duke@435 2008 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 2009 RegistersForDebugging::save_registers(this);
duke@435 2010 mov(O0, L0);
kvn@3098 2011 // Size of set() should stay the same
kvn@3098 2012 patchable_set((intptr_t)msg, O0);
duke@435 2013 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 2014 delayed()->nop();
duke@435 2015 // ret();
duke@435 2016 // delayed()->restore();
duke@435 2017 RegistersForDebugging::restore_registers(this, L0);
duke@435 2018 restore();
duke@435 2019 }
duke@435 2020
duke@435 2021
duke@435 2022 void MacroAssembler::untested(const char* what) {
duke@435 2023 // We must be able to turn interactive prompting off
duke@435 2024 // in order to run automated test scripts on the VM
duke@435 2025 // Use the flag ShowMessageBoxOnError
duke@435 2026
duke@435 2027 char* b = new char[1024];
duke@435 2028 sprintf(b, "untested: %s", what);
duke@435 2029
twisti@3969 2030 if (ShowMessageBoxOnError) { STOP(b); }
twisti@3969 2031 else { warn(b); }
duke@435 2032 }
duke@435 2033
duke@435 2034
duke@435 2035 void MacroAssembler::stop_subroutine() {
duke@435 2036 RegistersForDebugging::save_registers(this);
duke@435 2037
duke@435 2038 // for the sake of the debugger, stick a PC on the current frame
duke@435 2039 // (this assumes that the caller has performed an extra "save")
duke@435 2040 mov(I7, L7);
duke@435 2041 add(O7, -7 * BytesPerInt, I7);
duke@435 2042
duke@435 2043 save_frame(); // one more save to free up another O7 register
duke@435 2044 mov(I0, O1); // addr of reg save area
duke@435 2045
duke@435 2046 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 2047 mov(I1, O0); // get msg
duke@435 2048 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 2049 delayed()->nop();
duke@435 2050
duke@435 2051 restore();
duke@435 2052
duke@435 2053 RegistersForDebugging::restore_registers(this, O0);
duke@435 2054
duke@435 2055 save_frame(0);
duke@435 2056 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 2057 delayed()->nop();
duke@435 2058 restore();
duke@435 2059
duke@435 2060 mov(L7, I7);
duke@435 2061 retl();
duke@435 2062 delayed()->restore(); // see stop above
duke@435 2063 }
duke@435 2064
duke@435 2065
duke@435 2066 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 2067 if ( ShowMessageBoxOnError ) {
duke@435 2068 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 2069 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 2070 {
duke@435 2071 // In order to get locks work, we need to fake a in_VM state
duke@435 2072 ttyLocker ttyl;
duke@435 2073 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 2074 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 2075 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 2076 }
duke@435 2077 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 2078 regs->print(::tty);
duke@435 2079 }
duke@435 2080 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 2081 }
duke@435 2082 else
duke@435 2083 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
never@2950 2084 assert(false, err_msg("DEBUG MESSAGE: %s", msg));
duke@435 2085 }
duke@435 2086
duke@435 2087
duke@435 2088 #ifndef PRODUCT
duke@435 2089 void MacroAssembler::test() {
duke@435 2090 ResourceMark rm;
duke@435 2091
duke@435 2092 CodeBuffer cb("test", 10000, 10000);
duke@435 2093 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 2094 VM_Version::allow_all();
duke@435 2095 a->test_v9();
duke@435 2096 a->test_v8_onlys();
duke@435 2097 VM_Version::revert();
duke@435 2098
duke@435 2099 StubRoutines::Sparc::test_stop_entry()();
duke@435 2100 }
duke@435 2101 #endif
duke@435 2102
duke@435 2103
duke@435 2104 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 2105 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 2106 Label no_extras;
duke@435 2107 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 2108 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 2109 bind( no_extras );
duke@435 2110 }
duke@435 2111
duke@435 2112
duke@435 2113 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 2114 #ifdef _LP64
duke@435 2115 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2116 #else
duke@435 2117 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2118 #endif
duke@435 2119 bclr(1, Rresult);
duke@435 2120 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2121 }
duke@435 2122
duke@435 2123
duke@435 2124 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2125 calc_frame_size(Rextra_words, Rresult);
duke@435 2126 neg(Rresult);
duke@435 2127 save(SP, Rresult, SP);
duke@435 2128 }
duke@435 2129
duke@435 2130
duke@435 2131 // ---------------------------------------------------------
duke@435 2132 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2133 switch (c) {
duke@435 2134 /*case zero: */
duke@435 2135 case Assembler::equal: return Assembler::rc_z;
duke@435 2136 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2137 case Assembler::less: return Assembler::rc_lz;
duke@435 2138 /*case notZero:*/
duke@435 2139 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2140 case Assembler::greater: return Assembler::rc_gz;
duke@435 2141 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2142 }
duke@435 2143 ShouldNotReachHere();
duke@435 2144 return Assembler::rc_z;
duke@435 2145 }
duke@435 2146
kvn@3037 2147 // compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
kvn@3037 2148 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
duke@435 2149 tst(s1);
duke@435 2150 br (c, a, p, L);
duke@435 2151 }
duke@435 2152
duke@435 2153 // Compares a pointer register with zero and branches on null.
duke@435 2154 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2155 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2156 assert_not_delayed();
duke@435 2157 #ifdef _LP64
duke@435 2158 bpr( rc_z, a, p, s1, L );
duke@435 2159 #else
duke@435 2160 tst(s1);
duke@435 2161 br ( zero, a, p, L );
duke@435 2162 #endif
duke@435 2163 }
duke@435 2164
duke@435 2165 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2166 assert_not_delayed();
duke@435 2167 #ifdef _LP64
duke@435 2168 bpr( rc_nz, a, p, s1, L );
duke@435 2169 #else
duke@435 2170 tst(s1);
duke@435 2171 br ( notZero, a, p, L );
duke@435 2172 #endif
duke@435 2173 }
duke@435 2174
kvn@3037 2175 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
kvn@3037 2176
kvn@3037 2177 // Compare integer (32 bit) values (icc only).
kvn@3037 2178 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
kvn@3037 2179 Predict p, Label& L) {
kvn@3037 2180 assert_not_delayed();
kvn@3037 2181 if (use_cbcond(L)) {
kvn@3037 2182 Assembler::cbcond(c, icc, s1, s2, L);
kvn@3037 2183 } else {
kvn@3037 2184 cmp(s1, s2);
kvn@3037 2185 br(c, false, p, L);
kvn@3037 2186 delayed()->nop();
kvn@3037 2187 }
kvn@3037 2188 }
kvn@3037 2189
kvn@3037 2190 // Compare integer (32 bit) values (icc only).
kvn@3037 2191 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
kvn@3037 2192 Predict p, Label& L) {
kvn@3037 2193 assert_not_delayed();
kvn@3037 2194 if (is_simm(simm13a,5) && use_cbcond(L)) {
kvn@3037 2195 Assembler::cbcond(c, icc, s1, simm13a, L);
kvn@3037 2196 } else {
kvn@3037 2197 cmp(s1, simm13a);
kvn@3037 2198 br(c, false, p, L);
kvn@3037 2199 delayed()->nop();
kvn@3037 2200 }
kvn@3037 2201 }
kvn@3037 2202
kvn@3037 2203 // Branch that tests xcc in LP64 and icc in !LP64
kvn@3037 2204 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
kvn@3037 2205 Predict p, Label& L) {
kvn@3037 2206 assert_not_delayed();
kvn@3037 2207 if (use_cbcond(L)) {
kvn@3037 2208 Assembler::cbcond(c, ptr_cc, s1, s2, L);
kvn@3037 2209 } else {
kvn@3037 2210 cmp(s1, s2);
kvn@3037 2211 brx(c, false, p, L);
kvn@3037 2212 delayed()->nop();
kvn@3037 2213 }
kvn@3037 2214 }
kvn@3037 2215
kvn@3037 2216 // Branch that tests xcc in LP64 and icc in !LP64
kvn@3037 2217 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
kvn@3037 2218 Predict p, Label& L) {
kvn@3037 2219 assert_not_delayed();
kvn@3037 2220 if (is_simm(simm13a,5) && use_cbcond(L)) {
kvn@3037 2221 Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
kvn@3037 2222 } else {
kvn@3037 2223 cmp(s1, simm13a);
kvn@3037 2224 brx(c, false, p, L);
kvn@3037 2225 delayed()->nop();
kvn@3037 2226 }
kvn@3037 2227 }
kvn@3037 2228
kvn@3037 2229 // Short branch version for compares a pointer with zero.
kvn@3037 2230
kvn@3037 2231 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
kvn@3037 2232 assert_not_delayed();
kvn@3037 2233 if (use_cbcond(L)) {
kvn@3037 2234 Assembler::cbcond(zero, ptr_cc, s1, 0, L);
kvn@3037 2235 return;
kvn@3037 2236 }
kvn@3037 2237 br_null(s1, false, p, L);
kvn@3037 2238 delayed()->nop();
kvn@3037 2239 }
kvn@3037 2240
kvn@3037 2241 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
kvn@3037 2242 assert_not_delayed();
kvn@3037 2243 if (use_cbcond(L)) {
kvn@3037 2244 Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
kvn@3037 2245 return;
kvn@3037 2246 }
kvn@3037 2247 br_notnull(s1, false, p, L);
kvn@3037 2248 delayed()->nop();
kvn@3037 2249 }
kvn@3037 2250
kvn@3037 2251 // Unconditional short branch
kvn@3037 2252 void MacroAssembler::ba_short(Label& L) {
kvn@3037 2253 if (use_cbcond(L)) {
kvn@3037 2254 Assembler::cbcond(equal, icc, G0, G0, L);
kvn@3037 2255 return;
kvn@3037 2256 }
kvn@3037 2257 br(always, false, pt, L);
kvn@3037 2258 delayed()->nop();
kvn@3037 2259 }
duke@435 2260
duke@435 2261 // instruction sequences factored across compiler & interpreter
duke@435 2262
duke@435 2263
duke@435 2264 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2265 Register Rb_hi, Register Rb_low,
duke@435 2266 Register Rresult) {
duke@435 2267
duke@435 2268 Label check_low_parts, done;
duke@435 2269
duke@435 2270 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2271 br(equal, true, pt, check_low_parts);
duke@435 2272 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2273
duke@435 2274 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2275 // are negative or not.
duke@435 2276 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2277 // The second one is bigger (unsignedly).
duke@435 2278
duke@435 2279 // Other notes: The first move in each triplet can be unconditional
duke@435 2280 // (and therefore probably prefetchable).
duke@435 2281 // And the equals case for the high part does not need testing,
duke@435 2282 // since that triplet is reached only after finding the high halves differ.
duke@435 2283
duke@435 2284 if (VM_Version::v9_instructions_work()) {
kvn@3037 2285 mov(-1, Rresult);
kvn@3037 2286 ba(done); delayed()-> movcc(greater, false, icc, 1, Rresult);
kvn@3037 2287 } else {
duke@435 2288 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2289 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2290 }
duke@435 2291
duke@435 2292 bind( check_low_parts );
duke@435 2293
duke@435 2294 if (VM_Version::v9_instructions_work()) {
duke@435 2295 mov( -1, Rresult);
duke@435 2296 movcc(equal, false, icc, 0, Rresult);
duke@435 2297 movcc(greaterUnsigned, false, icc, 1, Rresult);
kvn@3037 2298 } else {
kvn@3037 2299 set(-1, Rresult);
duke@435 2300 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2301 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2302 }
duke@435 2303 bind( done );
duke@435 2304 }
duke@435 2305
duke@435 2306 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2307 subcc( G0, Rlow, Rlow );
duke@435 2308 subc( G0, Rhi, Rhi );
duke@435 2309 }
duke@435 2310
duke@435 2311 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2312 Register Rcount,
duke@435 2313 Register Rout_high, Register Rout_low,
duke@435 2314 Register Rtemp ) {
duke@435 2315
duke@435 2316
duke@435 2317 Register Ralt_count = Rtemp;
duke@435 2318 Register Rxfer_bits = Rtemp;
duke@435 2319
duke@435 2320 assert( Ralt_count != Rin_high
duke@435 2321 && Ralt_count != Rin_low
duke@435 2322 && Ralt_count != Rcount
duke@435 2323 && Rxfer_bits != Rin_low
duke@435 2324 && Rxfer_bits != Rin_high
duke@435 2325 && Rxfer_bits != Rcount
duke@435 2326 && Rxfer_bits != Rout_low
duke@435 2327 && Rout_low != Rin_high,
duke@435 2328 "register alias checks");
duke@435 2329
duke@435 2330 Label big_shift, done;
duke@435 2331
duke@435 2332 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2333 // Here we use the 32 bit shifts.
duke@435 2334
kvn@3037 2335 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2336 subcc(Rcount, 31, Ralt_count);
duke@435 2337 br(greater, true, pn, big_shift);
kvn@3037 2338 delayed()->dec(Ralt_count);
duke@435 2339
duke@435 2340 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2341
duke@435 2342 // We get the transfer bits by shifting right by 32-count the low
duke@435 2343 // register. This is done by shifting right by 31-count and then by one
duke@435 2344 // more to take care of the special (rare) case where count is zero
duke@435 2345 // (shifting by 32 would not work).
duke@435 2346
kvn@3037 2347 neg(Ralt_count);
duke@435 2348
duke@435 2349 // The order of the next two instructions is critical in the case where
duke@435 2350 // Rin and Rout are the same and should not be reversed.
duke@435 2351
kvn@3037 2352 srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
duke@435 2353 if (Rcount != Rout_low) {
kvn@3037 2354 sll(Rin_low, Rcount, Rout_low); // low half
duke@435 2355 }
kvn@3037 2356 sll(Rin_high, Rcount, Rout_high);
duke@435 2357 if (Rcount == Rout_low) {
kvn@3037 2358 sll(Rin_low, Rcount, Rout_low); // low half
duke@435 2359 }
kvn@3037 2360 srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
kvn@3037 2361 ba(done);
kvn@3037 2362 delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2363
duke@435 2364 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2365 bind(big_shift);
kvn@3037 2366 sll(Rin_low, Ralt_count, Rout_high );
kvn@3037 2367 clr(Rout_low);
duke@435 2368
duke@435 2369 bind(done);
duke@435 2370 }
duke@435 2371
duke@435 2372
duke@435 2373 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2374 Register Rcount,
duke@435 2375 Register Rout_high, Register Rout_low,
duke@435 2376 Register Rtemp ) {
duke@435 2377
duke@435 2378 Register Ralt_count = Rtemp;
duke@435 2379 Register Rxfer_bits = Rtemp;
duke@435 2380
duke@435 2381 assert( Ralt_count != Rin_high
duke@435 2382 && Ralt_count != Rin_low
duke@435 2383 && Ralt_count != Rcount
duke@435 2384 && Rxfer_bits != Rin_low
duke@435 2385 && Rxfer_bits != Rin_high
duke@435 2386 && Rxfer_bits != Rcount
duke@435 2387 && Rxfer_bits != Rout_high
duke@435 2388 && Rout_high != Rin_low,
duke@435 2389 "register alias checks");
duke@435 2390
duke@435 2391 Label big_shift, done;
duke@435 2392
duke@435 2393 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2394 // Here we use the 32 bit shifts.
duke@435 2395
kvn@3037 2396 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2397 subcc(Rcount, 31, Ralt_count);
duke@435 2398 br(greater, true, pn, big_shift);
duke@435 2399 delayed()->dec(Ralt_count);
duke@435 2400
duke@435 2401 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2402
duke@435 2403 // We get the transfer bits by shifting left by 32-count the high
duke@435 2404 // register. This is done by shifting left by 31-count and then by one
duke@435 2405 // more to take care of the special (rare) case where count is zero
duke@435 2406 // (shifting by 32 would not work).
duke@435 2407
kvn@3037 2408 neg(Ralt_count);
duke@435 2409 if (Rcount != Rout_low) {
kvn@3037 2410 srl(Rin_low, Rcount, Rout_low);
duke@435 2411 }
duke@435 2412
duke@435 2413 // The order of the next two instructions is critical in the case where
duke@435 2414 // Rin and Rout are the same and should not be reversed.
duke@435 2415
kvn@3037 2416 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
kvn@3037 2417 sra(Rin_high, Rcount, Rout_high ); // high half
kvn@3037 2418 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
duke@435 2419 if (Rcount == Rout_low) {
kvn@3037 2420 srl(Rin_low, Rcount, Rout_low);
duke@435 2421 }
kvn@3037 2422 ba(done);
kvn@3037 2423 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
duke@435 2424
duke@435 2425 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2426 bind(big_shift);
duke@435 2427
kvn@3037 2428 sra(Rin_high, Ralt_count, Rout_low);
kvn@3037 2429 sra(Rin_high, 31, Rout_high); // sign into hi
duke@435 2430
duke@435 2431 bind( done );
duke@435 2432 }
duke@435 2433
duke@435 2434
duke@435 2435
duke@435 2436 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2437 Register Rcount,
duke@435 2438 Register Rout_high, Register Rout_low,
duke@435 2439 Register Rtemp ) {
duke@435 2440
duke@435 2441 Register Ralt_count = Rtemp;
duke@435 2442 Register Rxfer_bits = Rtemp;
duke@435 2443
duke@435 2444 assert( Ralt_count != Rin_high
duke@435 2445 && Ralt_count != Rin_low
duke@435 2446 && Ralt_count != Rcount
duke@435 2447 && Rxfer_bits != Rin_low
duke@435 2448 && Rxfer_bits != Rin_high
duke@435 2449 && Rxfer_bits != Rcount
duke@435 2450 && Rxfer_bits != Rout_high
duke@435 2451 && Rout_high != Rin_low,
duke@435 2452 "register alias checks");
duke@435 2453
duke@435 2454 Label big_shift, done;
duke@435 2455
duke@435 2456 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2457 // Here we use the 32 bit shifts.
duke@435 2458
kvn@3037 2459 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2460 subcc(Rcount, 31, Ralt_count);
duke@435 2461 br(greater, true, pn, big_shift);
duke@435 2462 delayed()->dec(Ralt_count);
duke@435 2463
duke@435 2464 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2465
duke@435 2466 // We get the transfer bits by shifting left by 32-count the high
duke@435 2467 // register. This is done by shifting left by 31-count and then by one
duke@435 2468 // more to take care of the special (rare) case where count is zero
duke@435 2469 // (shifting by 32 would not work).
duke@435 2470
kvn@3037 2471 neg(Ralt_count);
duke@435 2472 if (Rcount != Rout_low) {
kvn@3037 2473 srl(Rin_low, Rcount, Rout_low);
duke@435 2474 }
duke@435 2475
duke@435 2476 // The order of the next two instructions is critical in the case where
duke@435 2477 // Rin and Rout are the same and should not be reversed.
duke@435 2478
kvn@3037 2479 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
kvn@3037 2480 srl(Rin_high, Rcount, Rout_high ); // high half
kvn@3037 2481 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
duke@435 2482 if (Rcount == Rout_low) {
kvn@3037 2483 srl(Rin_low, Rcount, Rout_low);
duke@435 2484 }
kvn@3037 2485 ba(done);
kvn@3037 2486 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
duke@435 2487
duke@435 2488 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2489 bind(big_shift);
duke@435 2490
kvn@3037 2491 srl(Rin_high, Ralt_count, Rout_low);
kvn@3037 2492 clr(Rout_high);
duke@435 2493
duke@435 2494 bind( done );
duke@435 2495 }
duke@435 2496
duke@435 2497 #ifdef _LP64
duke@435 2498 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2499 cmp(Ra, Rb);
kvn@3037 2500 mov(-1, Rresult);
duke@435 2501 movcc(equal, false, xcc, 0, Rresult);
duke@435 2502 movcc(greater, false, xcc, 1, Rresult);
duke@435 2503 }
duke@435 2504 #endif
duke@435 2505
duke@435 2506
twisti@2565 2507 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
twisti@1858 2508 switch (size_in_bytes) {
twisti@2565 2509 case 8: ld_long(src, dst); break;
twisti@2565 2510 case 4: ld( src, dst); break;
twisti@2565 2511 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
twisti@2565 2512 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
twisti@2565 2513 default: ShouldNotReachHere();
twisti@2565 2514 }
twisti@2565 2515 }
twisti@2565 2516
twisti@2565 2517 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
twisti@2565 2518 switch (size_in_bytes) {
twisti@2565 2519 case 8: st_long(src, dst); break;
twisti@2565 2520 case 4: st( src, dst); break;
twisti@2565 2521 case 2: sth( src, dst); break;
twisti@2565 2522 case 1: stb( src, dst); break;
twisti@2565 2523 default: ShouldNotReachHere();
twisti@1858 2524 }
twisti@1858 2525 }
twisti@1858 2526
twisti@1858 2527
duke@435 2528 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2529 FloatRegister Fa, FloatRegister Fb,
duke@435 2530 Register Rresult) {
duke@435 2531
duke@435 2532 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2533
duke@435 2534 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2535 Condition eq = f_equal;
duke@435 2536 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2537
duke@435 2538 if (VM_Version::v9_instructions_work()) {
duke@435 2539
kvn@3037 2540 mov(-1, Rresult);
kvn@3037 2541 movcc(eq, true, fcc0, 0, Rresult);
kvn@3037 2542 movcc(gt, true, fcc0, 1, Rresult);
duke@435 2543
duke@435 2544 } else {
duke@435 2545 Label done;
duke@435 2546
kvn@3037 2547 set( -1, Rresult );
duke@435 2548 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2549 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2550 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2551
duke@435 2552 bind (done);
duke@435 2553 }
duke@435 2554 }
duke@435 2555
duke@435 2556
duke@435 2557 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2558 {
duke@435 2559 if (VM_Version::v9_instructions_work()) {
duke@435 2560 Assembler::fneg(w, s, d);
duke@435 2561 } else {
duke@435 2562 if (w == FloatRegisterImpl::S) {
duke@435 2563 Assembler::fneg(w, s, d);
duke@435 2564 } else if (w == FloatRegisterImpl::D) {
duke@435 2565 // number() does a sanity check on the alignment.
duke@435 2566 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2567 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2568
duke@435 2569 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2570 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2571 } else {
duke@435 2572 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2573
duke@435 2574 // number() does a sanity check on the alignment.
duke@435 2575 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2576 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2577
duke@435 2578 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2579 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2580 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2581 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2582 }
duke@435 2583 }
duke@435 2584 }
duke@435 2585
duke@435 2586 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2587 {
duke@435 2588 if (VM_Version::v9_instructions_work()) {
duke@435 2589 Assembler::fmov(w, s, d);
duke@435 2590 } else {
duke@435 2591 if (w == FloatRegisterImpl::S) {
duke@435 2592 Assembler::fmov(w, s, d);
duke@435 2593 } else if (w == FloatRegisterImpl::D) {
duke@435 2594 // number() does a sanity check on the alignment.
duke@435 2595 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2596 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2597
duke@435 2598 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2599 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2600 } else {
duke@435 2601 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2602
duke@435 2603 // number() does a sanity check on the alignment.
duke@435 2604 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2605 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2606
duke@435 2607 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2608 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2609 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2610 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2611 }
duke@435 2612 }
duke@435 2613 }
duke@435 2614
duke@435 2615 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2616 {
duke@435 2617 if (VM_Version::v9_instructions_work()) {
duke@435 2618 Assembler::fabs(w, s, d);
duke@435 2619 } else {
duke@435 2620 if (w == FloatRegisterImpl::S) {
duke@435 2621 Assembler::fabs(w, s, d);
duke@435 2622 } else if (w == FloatRegisterImpl::D) {
duke@435 2623 // number() does a sanity check on the alignment.
duke@435 2624 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2625 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2626
duke@435 2627 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2628 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2629 } else {
duke@435 2630 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2631
duke@435 2632 // number() does a sanity check on the alignment.
duke@435 2633 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2634 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2635
duke@435 2636 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2637 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2638 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2639 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2640 }
duke@435 2641 }
duke@435 2642 }
duke@435 2643
duke@435 2644 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2645 mov(G1,L1);
duke@435 2646 mov(G2,L2);
duke@435 2647 mov(G3,L3);
duke@435 2648 mov(G4,L4);
duke@435 2649 mov(G5,L5);
duke@435 2650 mov(G6,L6);
duke@435 2651 mov(G7,L7);
duke@435 2652 }
duke@435 2653
duke@435 2654 void MacroAssembler::restore_globals_from_locals() {
duke@435 2655 mov(L1,G1);
duke@435 2656 mov(L2,G2);
duke@435 2657 mov(L3,G3);
duke@435 2658 mov(L4,G4);
duke@435 2659 mov(L5,G5);
duke@435 2660 mov(L6,G6);
duke@435 2661 mov(L7,G7);
duke@435 2662 }
duke@435 2663
duke@435 2664 // Use for 64 bit operation.
duke@435 2665 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2666 {
duke@435 2667 // store ptr_reg as the new top value
duke@435 2668 #ifdef _LP64
duke@435 2669 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2670 #else
duke@435 2671 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2672 #endif // _LP64
duke@435 2673 }
duke@435 2674
duke@435 2675 // [RGV] This routine does not handle 64 bit operations.
duke@435 2676 // use casx_under_lock() or casx directly!!!
duke@435 2677 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2678 {
duke@435 2679 // store ptr_reg as the new top value
duke@435 2680 if (VM_Version::v9_instructions_work()) {
duke@435 2681 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2682 } else {
duke@435 2683
duke@435 2684 // If the register is not an out nor global, it is not visible
duke@435 2685 // after the save. Allocate a register for it, save its
duke@435 2686 // value in the register save area (the save may not flush
duke@435 2687 // registers to the save area).
duke@435 2688
duke@435 2689 Register top_ptr_reg_after_save;
duke@435 2690 Register top_reg_after_save;
duke@435 2691 Register ptr_reg_after_save;
duke@435 2692
duke@435 2693 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2694 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2695 } else {
duke@435 2696 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2697 top_ptr_reg_after_save = L0;
duke@435 2698 st(top_ptr_reg, reg_save_addr);
duke@435 2699 }
duke@435 2700
duke@435 2701 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2702 top_reg_after_save = top_reg->after_save();
duke@435 2703 } else {
duke@435 2704 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2705 top_reg_after_save = L1;
duke@435 2706 st(top_reg, reg_save_addr);
duke@435 2707 }
duke@435 2708
duke@435 2709 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2710 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2711 } else {
duke@435 2712 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2713 ptr_reg_after_save = L2;
duke@435 2714 st(ptr_reg, reg_save_addr);
duke@435 2715 }
duke@435 2716
duke@435 2717 const Register& lock_reg = L3;
duke@435 2718 const Register& lock_ptr_reg = L4;
duke@435 2719 const Register& value_reg = L5;
duke@435 2720 const Register& yield_reg = L6;
duke@435 2721 const Register& yieldall_reg = L7;
duke@435 2722
duke@435 2723 save_frame();
duke@435 2724
duke@435 2725 if (top_ptr_reg_after_save == L0) {
duke@435 2726 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2727 }
duke@435 2728
duke@435 2729 if (top_reg_after_save == L1) {
duke@435 2730 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2731 }
duke@435 2732
duke@435 2733 if (ptr_reg_after_save == L2) {
duke@435 2734 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2735 }
duke@435 2736
duke@435 2737 Label(retry_get_lock);
duke@435 2738 Label(not_same);
duke@435 2739 Label(dont_yield);
duke@435 2740
duke@435 2741 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2742 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2743 // Initialize yield counter
duke@435 2744 mov(G0,yield_reg);
duke@435 2745 mov(G0, yieldall_reg);
duke@435 2746 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2747
duke@435 2748 bind(retry_get_lock);
kvn@3037 2749 cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
duke@435 2750
duke@435 2751 if(use_call_vm) {
duke@435 2752 Untested("Need to verify global reg consistancy");
duke@435 2753 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2754 } else {
duke@435 2755 // Save the regs and make space for a C call
duke@435 2756 save(SP, -96, SP);
duke@435 2757 save_all_globals_into_locals();
duke@435 2758 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2759 delayed()->mov(yieldall_reg, O0);
duke@435 2760 restore_globals_from_locals();
duke@435 2761 restore();
duke@435 2762 }
duke@435 2763
duke@435 2764 // reset the counter
duke@435 2765 mov(G0,yield_reg);
duke@435 2766 add(yieldall_reg, 1, yieldall_reg);
duke@435 2767
duke@435 2768 bind(dont_yield);
duke@435 2769 // try to get lock
duke@435 2770 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2771
duke@435 2772 // did we get the lock?
duke@435 2773 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2774 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2775 delayed()->add(yield_reg,1,yield_reg);
duke@435 2776
duke@435 2777 // yes, got lock. do we have the same top?
duke@435 2778 ld(top_ptr_reg_after_save, 0, value_reg);
kvn@3037 2779 cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
duke@435 2780
duke@435 2781 // yes, same top.
duke@435 2782 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2783 membar(Assembler::StoreStore);
duke@435 2784
duke@435 2785 bind(not_same);
duke@435 2786 mov(value_reg, ptr_reg_after_save);
duke@435 2787 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2788
duke@435 2789 restore();
duke@435 2790 }
duke@435 2791 }
duke@435 2792
jrose@1100 2793 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2794 Register tmp,
jrose@1100 2795 int offset) {
jrose@1057 2796 intptr_t value = *delayed_value_addr;
jrose@1057 2797 if (value != 0)
jrose@1100 2798 return RegisterOrConstant(value + offset);
jrose@1057 2799
jrose@1057 2800 // load indirectly to solve generation ordering problem
twisti@1162 2801 AddressLiteral a(delayed_value_addr);
jrose@1057 2802 load_ptr_contents(a, tmp);
jrose@1057 2803
jrose@1057 2804 #ifdef ASSERT
jrose@1057 2805 tst(tmp);
jrose@1057 2806 breakpoint_trap(zero, xcc);
jrose@1057 2807 #endif
jrose@1057 2808
jrose@1057 2809 if (offset != 0)
jrose@1057 2810 add(tmp, offset, tmp);
jrose@1057 2811
jrose@1100 2812 return RegisterOrConstant(tmp);
jrose@1057 2813 }
jrose@1057 2814
jrose@1057 2815
twisti@1858 2816 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2817 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2818 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2819 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2820 // Do nothing, just move value.
twisti@1858 2821 if (s1.is_register()) {
twisti@1858 2822 if (d.is_constant()) d = temp;
twisti@1858 2823 mov(s1.as_register(), d.as_register());
twisti@1858 2824 return d;
twisti@1858 2825 } else {
twisti@1858 2826 return s1;
twisti@1858 2827 }
twisti@1858 2828 }
twisti@1858 2829
twisti@1858 2830 if (s1.is_register()) {
twisti@1858 2831 assert_different_registers(s1.as_register(), temp);
twisti@1858 2832 if (d.is_constant()) d = temp;
twisti@1858 2833 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2834 return d;
jrose@1058 2835 } else {
twisti@1858 2836 if (s2.is_register()) {
twisti@1858 2837 assert_different_registers(s2.as_register(), temp);
twisti@1858 2838 if (d.is_constant()) d = temp;
twisti@1858 2839 set(s1.as_constant(), temp);
twisti@1858 2840 andn(temp, s2.as_register(), d.as_register());
twisti@1858 2841 return d;
twisti@1858 2842 } else {
twisti@1858 2843 intptr_t res = s1.as_constant() & ~s2.as_constant();
twisti@1858 2844 return res;
twisti@1858 2845 }
jrose@1058 2846 }
jrose@1058 2847 }
jrose@1058 2848
twisti@1858 2849 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2850 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2851 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2852 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2853 // Do nothing, just move value.
twisti@1858 2854 if (s1.is_register()) {
twisti@1858 2855 if (d.is_constant()) d = temp;
twisti@1858 2856 mov(s1.as_register(), d.as_register());
twisti@1858 2857 return d;
twisti@1858 2858 } else {
twisti@1858 2859 return s1;
twisti@1858 2860 }
twisti@1858 2861 }
twisti@1858 2862
twisti@1858 2863 if (s1.is_register()) {
twisti@1858 2864 assert_different_registers(s1.as_register(), temp);
twisti@1858 2865 if (d.is_constant()) d = temp;
twisti@1858 2866 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2867 return d;
jrose@1058 2868 } else {
twisti@1858 2869 if (s2.is_register()) {
twisti@1858 2870 assert_different_registers(s2.as_register(), temp);
twisti@1858 2871 if (d.is_constant()) d = temp;
twisti@1858 2872 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
twisti@1858 2873 return d;
twisti@1858 2874 } else {
twisti@1858 2875 intptr_t res = s1.as_constant() + s2.as_constant();
twisti@1858 2876 return res;
twisti@1858 2877 }
twisti@1858 2878 }
twisti@1858 2879 }
twisti@1858 2880
twisti@1858 2881 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2882 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2883 if (!is_simm13(s2.constant_or_zero()))
twisti@1858 2884 s2 = (s2.as_constant() & 0xFF);
twisti@1858 2885 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2886 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2887 // Do nothing, just move value.
twisti@1858 2888 if (s1.is_register()) {
twisti@1858 2889 if (d.is_constant()) d = temp;
twisti@1858 2890 mov(s1.as_register(), d.as_register());
twisti@1858 2891 return d;
twisti@1858 2892 } else {
twisti@1858 2893 return s1;
twisti@1858 2894 }
twisti@1858 2895 }
twisti@1858 2896
twisti@1858 2897 if (s1.is_register()) {
twisti@1858 2898 assert_different_registers(s1.as_register(), temp);
twisti@1858 2899 if (d.is_constant()) d = temp;
twisti@1858 2900 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2901 return d;
twisti@1858 2902 } else {
twisti@1858 2903 if (s2.is_register()) {
twisti@1858 2904 assert_different_registers(s2.as_register(), temp);
twisti@1858 2905 if (d.is_constant()) d = temp;
twisti@1858 2906 set(s1.as_constant(), temp);
twisti@1858 2907 sll_ptr(temp, s2.as_register(), d.as_register());
twisti@1858 2908 return d;
twisti@1858 2909 } else {
twisti@1858 2910 intptr_t res = s1.as_constant() << s2.as_constant();
twisti@1858 2911 return res;
twisti@1858 2912 }
jrose@1058 2913 }
jrose@1058 2914 }
jrose@1058 2915
jrose@1058 2916
jrose@1058 2917 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2918 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2919 // The receiver klass is in recv_klass.
jrose@1058 2920 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2921 // On failure, execution transfers to the given label.
jrose@1058 2922 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2923 Register intf_klass,
jrose@1100 2924 RegisterOrConstant itable_index,
jrose@1058 2925 Register method_result,
jrose@1058 2926 Register scan_temp,
jrose@1058 2927 Register sethi_temp,
jrose@1058 2928 Label& L_no_such_interface) {
jrose@1058 2929 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2930 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2931 "caller must use same register for non-constant itable index as for method");
jrose@1058 2932
jrose@1058 2933 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2934 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2935 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2936 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2937
jrose@1058 2938 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2939 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2940 // Then the next several instructions would fold away.
jrose@1058 2941
jrose@1058 2942 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2943 int itb_offset = vtable_base;
jrose@1058 2944 if (round_to_unit != 0) {
jrose@1058 2945 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2946 itb_offset += round_to_unit - wordSize;
jrose@1058 2947 }
jrose@1058 2948 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2949 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2950 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2951 if (round_to_unit != 0) {
jrose@1058 2952 // Round up to align_object_offset boundary
jrose@1058 2953 // see code for instanceKlass::start_of_itable!
jrose@1058 2954 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2955 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2956 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2957 }
jrose@1058 2958 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2959
jrose@1058 2960 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2961 RegisterOrConstant itable_offset = itable_index;
twisti@1858 2962 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
twisti@1858 2963 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
twisti@1441 2964 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
jrose@1058 2965
jrose@1058 2966 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2967 // if (scan->interface() == intf) {
jrose@1058 2968 // result = (klass + scan->offset() + itable_index);
jrose@1058 2969 // }
jrose@1058 2970 // }
jrose@1058 2971 Label search, found_method;
jrose@1058 2972
jrose@1058 2973 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2974 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2975 // in the opposite order. This would save a load.
jrose@1058 2976 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2977
jrose@1058 2978 // Check that this entry is non-null. A null entry means that
jrose@1058 2979 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2980 // same as when the caller was compiled.
jrose@1058 2981 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2982 delayed()->cmp(method_result, intf_klass);
jrose@1058 2983
jrose@1058 2984 if (peel) {
jrose@1058 2985 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2986 } else {
jrose@1058 2987 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 2988 // (invert the test to fall through to found_method...)
jrose@1058 2989 }
jrose@1058 2990 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 2991
jrose@1058 2992 if (!peel) break;
jrose@1058 2993
jrose@1058 2994 bind(search);
jrose@1058 2995 }
jrose@1058 2996
jrose@1058 2997 bind(found_method);
jrose@1058 2998
jrose@1058 2999 // Got a hit.
jrose@1058 3000 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 3001 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 3002 ito_offset -= scan_step;
jrose@1058 3003 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 3004 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 3005 }
jrose@1058 3006
jrose@1058 3007
twisti@3969 3008 // virtual method calling
twisti@3969 3009 void MacroAssembler::lookup_virtual_method(Register recv_klass,
twisti@3969 3010 RegisterOrConstant vtable_index,
twisti@3969 3011 Register method_result) {
twisti@3969 3012 assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
twisti@3969 3013 Register sethi_temp = method_result;
twisti@3969 3014 const int base = (instanceKlass::vtable_start_offset() * wordSize +
twisti@3969 3015 // method pointer offset within the vtable entry:
twisti@3969 3016 vtableEntry::method_offset_in_bytes());
twisti@3969 3017 RegisterOrConstant vtable_offset = vtable_index;
twisti@3969 3018 // Each of the following three lines potentially generates an instruction.
twisti@3969 3019 // But the total number of address formation instructions will always be
twisti@3969 3020 // at most two, and will often be zero. In any case, it will be optimal.
twisti@3969 3021 // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
twisti@3969 3022 // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
twisti@3969 3023 vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
twisti@3969 3024 vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
twisti@3969 3025 Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
twisti@3969 3026 ld_ptr(vtable_entry_addr, method_result);
twisti@3969 3027 }
twisti@3969 3028
twisti@3969 3029
jrose@1079 3030 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 3031 Register super_klass,
jrose@1079 3032 Register temp_reg,
jrose@1079 3033 Register temp2_reg,
jrose@1079 3034 Label& L_success) {
jrose@1079 3035 Register sub_2 = sub_klass;
jrose@1079 3036 Register sup_2 = super_klass;
jrose@1079 3037 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 3038 if (!sup_2->is_global()) sup_2 = L1;
twisti@3969 3039 bool did_save = false;
twisti@3969 3040 if (temp_reg == noreg || temp2_reg == noreg) {
twisti@3969 3041 temp_reg = L2;
twisti@3969 3042 temp2_reg = L3;
twisti@3969 3043 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
twisti@3969 3044 sub_klass = sub_2;
twisti@3969 3045 super_klass = sup_2;
twisti@3969 3046 did_save = true;
twisti@3969 3047 }
twisti@3969 3048 Label L_failure, L_pop_to_failure, L_pop_to_success;
twisti@3969 3049 check_klass_subtype_fast_path(sub_klass, super_klass,
twisti@3969 3050 temp_reg, temp2_reg,
twisti@3969 3051 (did_save ? &L_pop_to_success : &L_success),
twisti@3969 3052 (did_save ? &L_pop_to_failure : &L_failure), NULL);
twisti@3969 3053
twisti@3969 3054 if (!did_save)
twisti@3969 3055 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 3056 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 3057 L2, L3, L4, L5,
jrose@1079 3058 NULL, &L_pop_to_failure);
jrose@1079 3059
jrose@1079 3060 // on success:
twisti@3969 3061 bind(L_pop_to_success);
jrose@1079 3062 restore();
kvn@3037 3063 ba_short(L_success);
jrose@1079 3064
jrose@1079 3065 // on failure:
jrose@1079 3066 bind(L_pop_to_failure);
jrose@1079 3067 restore();
jrose@1079 3068 bind(L_failure);
jrose@1079 3069 }
jrose@1079 3070
jrose@1079 3071
jrose@1079 3072 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 3073 Register super_klass,
jrose@1079 3074 Register temp_reg,
jrose@1079 3075 Register temp2_reg,
jrose@1079 3076 Label* L_success,
jrose@1079 3077 Label* L_failure,
jrose@1079 3078 Label* L_slow_path,
kvn@3037 3079 RegisterOrConstant super_check_offset) {
stefank@3391 3080 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
stefank@3391 3081 int sco_offset = in_bytes(Klass::super_check_offset_offset());
jrose@1079 3082
jrose@1079 3083 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 3084 bool need_slow_path = (must_load_sco ||
jrose@1079 3085 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 3086
jrose@1079 3087 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 3088 if (super_check_offset.is_register()) {
twisti@1858 3089 assert_different_registers(sub_klass, super_klass, temp_reg,
jrose@1079 3090 super_check_offset.as_register());
jrose@1079 3091 } else if (must_load_sco) {
jrose@1079 3092 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 3093 }
jrose@1079 3094
jrose@1079 3095 Label L_fallthrough;
jrose@1079 3096 int label_nulls = 0;
jrose@1079 3097 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3098 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3099 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
kvn@3037 3100 assert(label_nulls <= 1 ||
jrose@1079 3101 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 3102 "at most one NULL in the batch, usually");
jrose@1079 3103
jrose@1079 3104 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 3105 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 3106 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 3107 // type would need its own customized SSA.
jrose@1079 3108 // We move this check to the front of the fast path because many
jrose@1079 3109 // type checks are in fact trivially successful in this manner,
jrose@1079 3110 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 3111 cmp(super_klass, sub_klass);
kvn@3037 3112 brx(Assembler::equal, false, Assembler::pn, *L_success);
kvn@3037 3113 delayed()->nop();
jrose@1079 3114
jrose@1079 3115 // Check the supertype display:
jrose@1079 3116 if (must_load_sco) {
jrose@1079 3117 // The super check offset is always positive...
jrose@1079 3118 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 3119 super_check_offset = RegisterOrConstant(temp2_reg);
twisti@1858 3120 // super_check_offset is register.
twisti@1858 3121 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
jrose@1079 3122 }
jrose@1079 3123 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 3124 cmp(super_klass, temp_reg);
jrose@1079 3125
jrose@1079 3126 // This check has worked decisively for primary supers.
jrose@1079 3127 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 3128 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 3129 // This works in the same check above because of a tricky aliasing
jrose@1079 3130 // between the super_cache and the primary super display elements.
jrose@1079 3131 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 3132 // Note that the cache is updated below if it does not help us find
jrose@1079 3133 // what we need immediately.
jrose@1079 3134 // So if it was a primary super, we can just fail immediately.
jrose@1079 3135 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 3136
kvn@3037 3137 // Hacked ba(), which may only be used just before L_fallthrough.
kvn@3037 3138 #define FINAL_JUMP(label) \
kvn@3037 3139 if (&(label) != &L_fallthrough) { \
kvn@3037 3140 ba(label); delayed()->nop(); \
kvn@3037 3141 }
kvn@3037 3142
jrose@1079 3143 if (super_check_offset.is_register()) {
kvn@3037 3144 brx(Assembler::equal, false, Assembler::pn, *L_success);
kvn@3037 3145 delayed()->cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 3146
jrose@1079 3147 if (L_failure == &L_fallthrough) {
kvn@3037 3148 brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
jrose@1079 3149 delayed()->nop();
jrose@1079 3150 } else {
kvn@3037 3151 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
kvn@3037 3152 delayed()->nop();
kvn@3037 3153 FINAL_JUMP(*L_slow_path);
jrose@1079 3154 }
jrose@1079 3155 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 3156 // Need a slow path; fast failure is impossible.
jrose@1079 3157 if (L_slow_path == &L_fallthrough) {
kvn@3037 3158 brx(Assembler::equal, false, Assembler::pt, *L_success);
kvn@3037 3159 delayed()->nop();
jrose@1079 3160 } else {
jrose@1079 3161 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 3162 delayed()->nop();
kvn@3037 3163 FINAL_JUMP(*L_success);
jrose@1079 3164 }
jrose@1079 3165 } else {
jrose@1079 3166 // No slow path; it's a fast decision.
jrose@1079 3167 if (L_failure == &L_fallthrough) {
kvn@3037 3168 brx(Assembler::equal, false, Assembler::pt, *L_success);
kvn@3037 3169 delayed()->nop();
jrose@1079 3170 } else {
kvn@3037 3171 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
kvn@3037 3172 delayed()->nop();
kvn@3037 3173 FINAL_JUMP(*L_success);
jrose@1079 3174 }
jrose@1079 3175 }
jrose@1079 3176
jrose@1079 3177 bind(L_fallthrough);
jrose@1079 3178
kvn@3037 3179 #undef FINAL_JUMP
jrose@1079 3180 }
jrose@1079 3181
jrose@1079 3182
jrose@1079 3183 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 3184 Register super_klass,
jrose@1079 3185 Register count_temp,
jrose@1079 3186 Register scan_temp,
jrose@1079 3187 Register scratch_reg,
jrose@1079 3188 Register coop_reg,
jrose@1079 3189 Label* L_success,
jrose@1079 3190 Label* L_failure) {
jrose@1079 3191 assert_different_registers(sub_klass, super_klass,
jrose@1079 3192 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 3193
jrose@1079 3194 Label L_fallthrough, L_loop;
jrose@1079 3195 int label_nulls = 0;
jrose@1079 3196 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3197 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3198 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 3199
jrose@1079 3200 // a couple of useful fields in sub_klass:
stefank@3391 3201 int ss_offset = in_bytes(Klass::secondary_supers_offset());
stefank@3391 3202 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
jrose@1079 3203
jrose@1079 3204 // Do a linear scan of the secondary super-klass chain.
jrose@1079 3205 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 3206
jrose@1079 3207 #ifndef PRODUCT
jrose@1079 3208 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 3209 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 3210 #endif
jrose@1079 3211
jrose@1079 3212 // We will consult the secondary-super array.
jrose@1079 3213 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 3214
jrose@1079 3215 // Compress superclass if necessary.
jrose@1079 3216 Register search_key = super_klass;
jrose@1079 3217 bool decode_super_klass = false;
jrose@1079 3218 if (UseCompressedOops) {
jrose@1079 3219 if (coop_reg != noreg) {
jrose@1079 3220 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 3221 search_key = coop_reg;
jrose@1079 3222 } else {
jrose@1079 3223 encode_heap_oop_not_null(super_klass);
jrose@1079 3224 decode_super_klass = true; // scarce temps!
jrose@1079 3225 }
jrose@1079 3226 // The superclass is never null; it would be a basic system error if a null
jrose@1079 3227 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 3228 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 3229 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 3230 }
jrose@1079 3231
jrose@1079 3232 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 3233 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 3234
jrose@1079 3235 // Check for empty secondary super list
jrose@1079 3236 tst(count_temp);
jrose@1079 3237
jrose@1079 3238 // Top of search loop
jrose@1079 3239 bind(L_loop);
jrose@1079 3240 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 3241 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 3242 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 3243
jrose@1079 3244 // Skip the array header in all array accesses.
jrose@1079 3245 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 3246 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 3247
jrose@1079 3248 // Load next super to check
jrose@1079 3249 if (UseCompressedOops) {
jrose@1079 3250 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 3251 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 3252 } else {
jrose@1079 3253 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 3254 }
jrose@1079 3255
jrose@1079 3256 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 3257 cmp(scratch_reg, search_key);
jrose@1079 3258
jrose@1079 3259 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 3260 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3261 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3262
jrose@1079 3263 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3264 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3265
jrose@1079 3266 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3267 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3268
jrose@1079 3269 if (L_success != &L_fallthrough) {
kvn@3037 3270 ba(*L_success);
jrose@1079 3271 delayed()->nop();
jrose@1079 3272 }
jrose@1079 3273
jrose@1079 3274 bind(L_fallthrough);
jrose@1079 3275 }
jrose@1079 3276
jrose@1079 3277
jrose@1145 3278 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
never@2950 3279 Register temp_reg,
jrose@1145 3280 int extra_slot_offset) {
jrose@1145 3281 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
twisti@1861 3282 int stackElementSize = Interpreter::stackElementSize;
twisti@1858 3283 int offset = extra_slot_offset * stackElementSize;
jrose@1145 3284 if (arg_slot.is_constant()) {
jrose@1145 3285 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3286 return offset;
jrose@1145 3287 } else {
never@2950 3288 assert(temp_reg != noreg, "must specify");
never@2950 3289 sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
jrose@1145 3290 if (offset != 0)
never@2950 3291 add(temp_reg, offset, temp_reg);
never@2950 3292 return temp_reg;
jrose@1145 3293 }
jrose@1145 3294 }
jrose@1145 3295
jrose@1145 3296
twisti@1858 3297 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
never@2950 3298 Register temp_reg,
twisti@1858 3299 int extra_slot_offset) {
never@2950 3300 return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
twisti@1858 3301 }
twisti@1858 3302
jrose@1145 3303
kvn@855 3304 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3305 Register temp_reg,
duke@435 3306 Label& done, Label* slow_case,
duke@435 3307 BiasedLockingCounters* counters) {
duke@435 3308 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3309
duke@435 3310 if (PrintBiasedLockingStatistics) {
duke@435 3311 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3312 if (counters == NULL)
duke@435 3313 counters = BiasedLocking::counters();
duke@435 3314 }
duke@435 3315
duke@435 3316 Label cas_label;
duke@435 3317
duke@435 3318 // Biased locking
duke@435 3319 // See whether the lock is currently biased toward our thread and
duke@435 3320 // whether the epoch is still valid
duke@435 3321 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3322 // pointers to allow age to be placed into low bits
duke@435 3323 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3324 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
kvn@3037 3325 cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
coleenp@548 3326
coleenp@548 3327 load_klass(obj_reg, temp_reg);
stefank@3391 3328 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
duke@435 3329 or3(G2_thread, temp_reg, temp_reg);
duke@435 3330 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3331 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3332 if (counters != NULL) {
duke@435 3333 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3334 // Reload mark_reg as we may need it later
twisti@1162 3335 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3336 }
duke@435 3337 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3338 delayed()->nop();
duke@435 3339
duke@435 3340 Label try_revoke_bias;
duke@435 3341 Label try_rebias;
twisti@1162 3342 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3343 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3344
duke@435 3345 // At this point we know that the header has the bias pattern and
duke@435 3346 // that we are not the bias owner in the current epoch. We need to
duke@435 3347 // figure out more details about the state of the header in order to
duke@435 3348 // know what operations can be legally performed on the object's
duke@435 3349 // header.
duke@435 3350
duke@435 3351 // If the low three bits in the xor result aren't clear, that means
duke@435 3352 // the prototype header is no longer biased and we have to revoke
duke@435 3353 // the bias on this object.
duke@435 3354 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3355 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3356
duke@435 3357 // Biasing is still enabled for this data type. See whether the
duke@435 3358 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3359 // bits of the mark word are equal to the epoch bits of the
duke@435 3360 // prototype header. (Note that the prototype header's epoch bits
duke@435 3361 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3362 // toward the current thread. Note that we must be absolutely sure
duke@435 3363 // that the current epoch is invalid in order to do this because
duke@435 3364 // otherwise the manipulations it performs on the mark word are
duke@435 3365 // illegal.
duke@435 3366 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3367 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3368
duke@435 3369 // The epoch of the current bias is still valid but we know nothing
duke@435 3370 // about the owner; it might be set or it might be clear. Try to
duke@435 3371 // acquire the bias of the object using an atomic operation. If this
duke@435 3372 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3373 // Note that we first construct the presumed unbiased header so we
duke@435 3374 // don't accidentally blow away another thread's valid bias.
duke@435 3375 delayed()->and3(mark_reg,
duke@435 3376 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3377 mark_reg);
duke@435 3378 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3379 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3380 // If the biasing toward our thread failed, this means that
duke@435 3381 // another thread succeeded in biasing it toward itself and we
duke@435 3382 // need to revoke that bias. The revocation will occur in the
duke@435 3383 // interpreter runtime in the slow case.
duke@435 3384 cmp(mark_reg, temp_reg);
duke@435 3385 if (counters != NULL) {
duke@435 3386 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3387 }
duke@435 3388 if (slow_case != NULL) {
duke@435 3389 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3390 delayed()->nop();
duke@435 3391 }
kvn@3037 3392 ba_short(done);
duke@435 3393
duke@435 3394 bind(try_rebias);
duke@435 3395 // At this point we know the epoch has expired, meaning that the
duke@435 3396 // current "bias owner", if any, is actually invalid. Under these
duke@435 3397 // circumstances _only_, we are allowed to use the current header's
duke@435 3398 // value as the comparison value when doing the cas to acquire the
duke@435 3399 // bias in the current epoch. In other words, we allow transfer of
duke@435 3400 // the bias from one thread to another directly in this situation.
duke@435 3401 //
duke@435 3402 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3403 // bits in this situation. Should attempt to preserve them.
coleenp@548 3404 load_klass(obj_reg, temp_reg);
stefank@3391 3405 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
duke@435 3406 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3407 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3408 // If the biasing toward our thread failed, this means that
duke@435 3409 // another thread succeeded in biasing it toward itself and we
duke@435 3410 // need to revoke that bias. The revocation will occur in the
duke@435 3411 // interpreter runtime in the slow case.
duke@435 3412 cmp(mark_reg, temp_reg);
duke@435 3413 if (counters != NULL) {
duke@435 3414 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3415 }
duke@435 3416 if (slow_case != NULL) {
duke@435 3417 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3418 delayed()->nop();
duke@435 3419 }
kvn@3037 3420 ba_short(done);
duke@435 3421
duke@435 3422 bind(try_revoke_bias);
duke@435 3423 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3424 // more, indicating that objects of this data type are not supposed
duke@435 3425 // to be biased any more. We are going to try to reset the mark of
duke@435 3426 // this object to the prototype value and fall through to the
duke@435 3427 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3428 // that another thread raced us for the privilege of revoking the
duke@435 3429 // bias of this particular object, so it's okay to continue in the
duke@435 3430 // normal locking code.
duke@435 3431 //
duke@435 3432 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3433 // bits in this situation. Should attempt to preserve them.
coleenp@548 3434 load_klass(obj_reg, temp_reg);
stefank@3391 3435 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
kvn@855 3436 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3437 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3438 // the result of the above CAS, some thread must have succeeded in
duke@435 3439 // removing the bias bit from the object's header.
duke@435 3440 if (counters != NULL) {
duke@435 3441 cmp(mark_reg, temp_reg);
duke@435 3442 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3443 }
duke@435 3444
duke@435 3445 bind(cas_label);
duke@435 3446 }
duke@435 3447
duke@435 3448 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3449 bool allow_delay_slot_filling) {
duke@435 3450 // Check for biased locking unlock case, which is a no-op
duke@435 3451 // Note: we do not have to check the thread ID for two reasons.
duke@435 3452 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3453 // a higher level. Second, if the bias was revoked while we held the
duke@435 3454 // lock, the object could not be rebiased toward another thread, so
duke@435 3455 // the bias bit would be clear.
duke@435 3456 ld_ptr(mark_addr, temp_reg);
duke@435 3457 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3458 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3459 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3460 delayed();
duke@435 3461 if (!allow_delay_slot_filling) {
duke@435 3462 nop();
duke@435 3463 }
duke@435 3464 }
duke@435 3465
duke@435 3466
duke@435 3467 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3468 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3469
duke@435 3470 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
kvn@3037 3471 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3472 }
duke@435 3473
duke@435 3474
duke@435 3475
duke@435 3476 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3477 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3478 // The code could be tightened up considerably.
duke@435 3479 //
duke@435 3480 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3481 // - Successful inflated lock: box->dhw != 0.
duke@435 3482 // Any non-zero value suffices.
duke@435 3483 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3484 // - Successful Stack-lock: box->dhw == mark.
duke@435 3485 // box->dhw must contain the displaced mark word value
duke@435 3486 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3487 // The slow-path fast_enter() and slow_enter() operators
duke@435 3488 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3489 // - Biased: box->dhw is undefined
duke@435 3490 //
duke@435 3491 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3492 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3493 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3494 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3495 // effect).
duke@435 3496
duke@435 3497
kvn@855 3498 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3499 Register Rbox, Register Rscratch,
kvn@855 3500 BiasedLockingCounters* counters,
kvn@855 3501 bool try_bias) {
twisti@1162 3502 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3503
duke@435 3504 verify_oop(Roop);
duke@435 3505 Label done ;
duke@435 3506
duke@435 3507 if (counters != NULL) {
duke@435 3508 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3509 }
duke@435 3510
duke@435 3511 if (EmitSync & 1) {
kvn@3037 3512 mov(3, Rscratch);
kvn@3037 3513 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3514 cmp(SP, G0);
duke@435 3515 return ;
duke@435 3516 }
duke@435 3517
duke@435 3518 if (EmitSync & 2) {
duke@435 3519
duke@435 3520 // Fetch object's markword
duke@435 3521 ld_ptr(mark_addr, Rmark);
duke@435 3522
kvn@855 3523 if (try_bias) {
duke@435 3524 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3525 }
duke@435 3526
duke@435 3527 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3528 mov(Rbox, Rscratch);
duke@435 3529
duke@435 3530 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3531 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3532
duke@435 3533 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3534 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3535
duke@435 3536 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3537 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3538 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3539 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3540
duke@435 3541 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3542 // hence we are done
duke@435 3543 cmp(Rmark, Rscratch);
duke@435 3544 #ifdef _LP64
duke@435 3545 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3546 #endif
duke@435 3547 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3548 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3549
duke@435 3550 // we did not find an unlocked object so see if this is a recursive case
duke@435 3551 // sub(Rscratch, SP, Rscratch);
duke@435 3552 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3553 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3554 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3555 bind (done);
duke@435 3556 return ;
duke@435 3557 }
duke@435 3558
duke@435 3559 Label Egress ;
duke@435 3560
duke@435 3561 if (EmitSync & 256) {
duke@435 3562 Label IsInflated ;
duke@435 3563
kvn@3037 3564 ld_ptr(mark_addr, Rmark); // fetch obj->mark
duke@435 3565 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3566 if (try_bias) {
duke@435 3567 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3568 // Invariant: if control reaches this point in the emitted stream
duke@435 3569 // then Rmark has not been modified.
duke@435 3570 }
duke@435 3571
duke@435 3572 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3573 // Critically, this must happen before the CAS
duke@435 3574 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
kvn@3037 3575 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3576 andcc(Rmark, 2, G0);
kvn@3037 3577 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
kvn@3037 3578 delayed()->
duke@435 3579
duke@435 3580 // Try stack-lock acquisition.
duke@435 3581 // Beware: the 1st instruction is in a delay slot
kvn@3037 3582 mov(Rbox, Rscratch);
kvn@3037 3583 or3(Rmark, markOopDesc::unlocked_value, Rmark);
kvn@3037 3584 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
kvn@3037 3585 casn(mark_addr.base(), Rmark, Rscratch);
kvn@3037 3586 cmp(Rmark, Rscratch);
kvn@3037 3587 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3588 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3589
duke@435 3590 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3591 // See the comments below about how we might remove this case.
duke@435 3592 #ifdef _LP64
kvn@3037 3593 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3594 #endif
duke@435 3595 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
kvn@3037 3596 andcc(Rscratch, 0xfffff003, Rscratch);
kvn@3037 3597 br(Assembler::always, false, Assembler::pt, done);
kvn@3037 3598 delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3599
kvn@3037 3600 bind(IsInflated);
duke@435 3601 if (EmitSync & 64) {
duke@435 3602 // If m->owner != null goto IsLocked
duke@435 3603 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3604 // The optimistic form avoids RTS->RTO cache line upgrades.
kvn@3037 3605 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3606 andcc(Rscratch, Rscratch, G0);
kvn@3037 3607 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3608 delayed()->nop();
duke@435 3609 // m->owner == null : it's unlocked.
duke@435 3610 }
duke@435 3611
duke@435 3612 // Try to CAS m->owner from null to Self
duke@435 3613 // Invariant: if we acquire the lock then _recursions should be 0.
kvn@3037 3614 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3615 mov(G2_thread, Rscratch);
kvn@3037 3616 casn(Rmark, G0, Rscratch);
kvn@3037 3617 cmp(Rscratch, G0);
duke@435 3618 // Intentional fall-through into done
duke@435 3619 } else {
duke@435 3620 // Aggressively avoid the Store-before-CAS penalty
duke@435 3621 // Defer the store into box->dhw until after the CAS
duke@435 3622 Label IsInflated, Recursive ;
duke@435 3623
duke@435 3624 // Anticipate CAS -- Avoid RTS->RTO upgrade
kvn@3037 3625 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
kvn@3037 3626
kvn@3037 3627 ld_ptr(mark_addr, Rmark); // fetch obj->mark
duke@435 3628 // Triage: biased, stack-locked, neutral, inflated
duke@435 3629
kvn@855 3630 if (try_bias) {
duke@435 3631 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3632 // Invariant: if control reaches this point in the emitted stream
duke@435 3633 // then Rmark has not been modified.
duke@435 3634 }
kvn@3037 3635 andcc(Rmark, 2, G0);
kvn@3037 3636 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
duke@435 3637 delayed()-> // Beware - dangling delay-slot
duke@435 3638
duke@435 3639 // Try stack-lock acquisition.
duke@435 3640 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3641 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3642 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3643 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3644 // This presumes TSO, of course.
duke@435 3645
kvn@3037 3646 mov(0, Rscratch);
kvn@3037 3647 or3(Rmark, markOopDesc::unlocked_value, Rmark);
kvn@3037 3648 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
kvn@3037 3649 casn(mark_addr.base(), Rmark, Rscratch);
kvn@3037 3650 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
kvn@3037 3651 cmp(Rscratch, Rmark);
kvn@3037 3652 brx(Assembler::notZero, false, Assembler::pn, Recursive);
kvn@3037 3653 delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3654 if (counters != NULL) {
duke@435 3655 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3656 }
kvn@3037 3657 ba(done);
kvn@3037 3658 delayed()->st_ptr(Rbox, mark_addr);
kvn@3037 3659
kvn@3037 3660 bind(Recursive);
duke@435 3661 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3662 // Tests show that we can remove the recursive case with no impact
duke@435 3663 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3664 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3665 // candidate.
duke@435 3666 //
duke@435 3667 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3668 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3669 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3670 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3671 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3672 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3673 // control to the "slow" operators in synchronizer.cpp.
duke@435 3674
duke@435 3675 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3676 #ifdef _LP64
kvn@3037 3677 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3678 #endif
duke@435 3679 sub(Rscratch, SP, Rscratch);
duke@435 3680 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
kvn@3037 3681 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3682 if (counters != NULL) {
duke@435 3683 // Accounting needs the Rscratch register
kvn@3037 3684 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3685 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
kvn@3037 3686 ba_short(done);
duke@435 3687 } else {
kvn@3037 3688 ba(done);
kvn@3037 3689 delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3690 }
duke@435 3691
kvn@3037 3692 bind (IsInflated);
duke@435 3693 if (EmitSync & 64) {
duke@435 3694 // If m->owner != null goto IsLocked
duke@435 3695 // Test-and-CAS vs CAS
duke@435 3696 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3697 // The optimistic form avoids RTS->RTO cache line upgrades.
kvn@3037 3698 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3699 andcc(Rscratch, Rscratch, G0);
kvn@3037 3700 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3701 delayed()->nop();
duke@435 3702 // m->owner == null : it's unlocked.
duke@435 3703 }
duke@435 3704
duke@435 3705 // Try to CAS m->owner from null to Self
duke@435 3706 // Invariant: if we acquire the lock then _recursions should be 0.
kvn@3037 3707 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3708 mov(G2_thread, Rscratch);
kvn@3037 3709 casn(Rmark, G0, Rscratch);
kvn@3037 3710 cmp(Rscratch, G0);
duke@435 3711 // ST box->displaced_header = NonZero.
duke@435 3712 // Any non-zero value suffices:
duke@435 3713 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
kvn@3037 3714 st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3715 // Intentional fall-through into done
duke@435 3716 }
duke@435 3717
kvn@3037 3718 bind (done);
duke@435 3719 }
duke@435 3720
kvn@855 3721 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3722 Register Rbox, Register Rscratch,
kvn@855 3723 bool try_bias) {
twisti@1162 3724 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3725
duke@435 3726 Label done ;
duke@435 3727
duke@435 3728 if (EmitSync & 4) {
kvn@3037 3729 cmp(SP, G0);
duke@435 3730 return ;
duke@435 3731 }
duke@435 3732
duke@435 3733 if (EmitSync & 8) {
kvn@855 3734 if (try_bias) {
duke@435 3735 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3736 }
duke@435 3737
duke@435 3738 // Test first if it is a fast recursive unlock
duke@435 3739 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
kvn@3037 3740 br_null_short(Rmark, Assembler::pt, done);
duke@435 3741
duke@435 3742 // Check if it is still a light weight lock, this is is true if we see
duke@435 3743 // the stack address of the basicLock in the markOop of the object
duke@435 3744 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3745 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3746 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
kvn@3037 3747 ba(done);
duke@435 3748 delayed()->cmp(Rbox, Rmark);
kvn@3037 3749 bind(done);
duke@435 3750 return ;
duke@435 3751 }
duke@435 3752
duke@435 3753 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3754 // is too large performance rolls abruptly off a cliff.
duke@435 3755 // This could be related to inlining policies, code cache management, or
duke@435 3756 // I$ effects.
duke@435 3757 Label LStacked ;
duke@435 3758
kvn@855 3759 if (try_bias) {
duke@435 3760 // TODO: eliminate redundant LDs of obj->mark
duke@435 3761 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3762 }
duke@435 3763
kvn@3037 3764 ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
kvn@3037 3765 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
kvn@3037 3766 andcc(Rscratch, Rscratch, G0);
kvn@3037 3767 brx(Assembler::zero, false, Assembler::pn, done);
kvn@3037 3768 delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
kvn@3037 3769 andcc(Rmark, 2, G0);
kvn@3037 3770 brx(Assembler::zero, false, Assembler::pt, LStacked);
kvn@3037 3771 delayed()->nop();
duke@435 3772
duke@435 3773 // It's inflated
duke@435 3774 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3775 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3776 // and stores within the critical section from reordering (floating)
duke@435 3777 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3778 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3779 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3780 // close the resultant (and rare) race by having contented threads in
duke@435 3781 // monitorenter periodically poll _owner.
kvn@3037 3782 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3783 ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
kvn@3037 3784 xor3(Rscratch, G2_thread, Rscratch);
kvn@3037 3785 orcc(Rbox, Rscratch, Rbox);
kvn@3037 3786 brx(Assembler::notZero, false, Assembler::pn, done);
duke@435 3787 delayed()->
kvn@3037 3788 ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
kvn@3037 3789 ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
kvn@3037 3790 orcc(Rbox, Rscratch, G0);
duke@435 3791 if (EmitSync & 65536) {
duke@435 3792 Label LSucc ;
kvn@3037 3793 brx(Assembler::notZero, false, Assembler::pn, LSucc);
kvn@3037 3794 delayed()->nop();
kvn@3037 3795 ba(done);
kvn@3037 3796 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
kvn@3037 3797
kvn@3037 3798 bind(LSucc);
kvn@3037 3799 st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
kvn@3037 3800 if (os::is_MP()) { membar (StoreLoad); }
kvn@3037 3801 ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
kvn@3037 3802 andcc(Rscratch, Rscratch, G0);
kvn@3037 3803 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@3037 3804 delayed()->andcc(G0, G0, G0);
kvn@3037 3805 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3806 mov(G2_thread, Rscratch);
kvn@3037 3807 casn(Rmark, G0, Rscratch);
duke@435 3808 // invert icc.zf and goto done
kvn@3037 3809 br_notnull(Rscratch, false, Assembler::pt, done);
kvn@3037 3810 delayed()->cmp(G0, G0);
kvn@3037 3811 ba(done);
kvn@3037 3812 delayed()->cmp(G0, 1);
duke@435 3813 } else {
kvn@3037 3814 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3815 delayed()->nop();
kvn@3037 3816 ba(done);
kvn@3037 3817 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3818 }
duke@435 3819
kvn@3037 3820 bind (LStacked);
duke@435 3821 // Consider: we could replace the expensive CAS in the exit
duke@435 3822 // path with a simple ST of the displaced mark value fetched from
duke@435 3823 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3824 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3825 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3826 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3827 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3828 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3829 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3830 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3831 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3832 // In addition the monitor scavenger, which performs deflation,
duke@435 3833 // would also need to check for orpan monitors and stranded threads.
duke@435 3834 //
duke@435 3835 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3836 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3837 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3838 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3839 // that hashCode generation is idempotent between copying GCs.
duke@435 3840 // For example we could compute the hashCode of an object O as
duke@435 3841 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3842 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3843 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3844 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3845 //
duke@435 3846 // A prototype implementation showed excellent results, although
duke@435 3847 // the scavenger and timeout code was rather involved.
duke@435 3848
kvn@3037 3849 casn(mark_addr.base(), Rbox, Rscratch);
kvn@3037 3850 cmp(Rbox, Rscratch);
duke@435 3851 // Intentional fall through into done ...
duke@435 3852
kvn@3037 3853 bind(done);
duke@435 3854 }
duke@435 3855
duke@435 3856
duke@435 3857
duke@435 3858 void MacroAssembler::print_CPU_state() {
duke@435 3859 // %%%%% need to implement this
duke@435 3860 }
duke@435 3861
duke@435 3862 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3863 // %%%%% need to implement this
duke@435 3864 }
duke@435 3865
duke@435 3866 void MacroAssembler::push_IU_state() {
duke@435 3867 // %%%%% need to implement this
duke@435 3868 }
duke@435 3869
duke@435 3870
duke@435 3871 void MacroAssembler::pop_IU_state() {
duke@435 3872 // %%%%% need to implement this
duke@435 3873 }
duke@435 3874
duke@435 3875
duke@435 3876 void MacroAssembler::push_FPU_state() {
duke@435 3877 // %%%%% need to implement this
duke@435 3878 }
duke@435 3879
duke@435 3880
duke@435 3881 void MacroAssembler::pop_FPU_state() {
duke@435 3882 // %%%%% need to implement this
duke@435 3883 }
duke@435 3884
duke@435 3885
duke@435 3886 void MacroAssembler::push_CPU_state() {
duke@435 3887 // %%%%% need to implement this
duke@435 3888 }
duke@435 3889
duke@435 3890
duke@435 3891 void MacroAssembler::pop_CPU_state() {
duke@435 3892 // %%%%% need to implement this
duke@435 3893 }
duke@435 3894
duke@435 3895
duke@435 3896
duke@435 3897 void MacroAssembler::verify_tlab() {
duke@435 3898 #ifdef ASSERT
duke@435 3899 if (UseTLAB && VerifyOops) {
duke@435 3900 Label next, next2, ok;
duke@435 3901 Register t1 = L0;
duke@435 3902 Register t2 = L1;
duke@435 3903 Register t3 = L2;
duke@435 3904
duke@435 3905 save_frame(0);
duke@435 3906 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3907 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3908 or3(t1, t2, t3);
kvn@3037 3909 cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
twisti@3969 3910 STOP("assert(top >= start)");
duke@435 3911 should_not_reach_here();
duke@435 3912
duke@435 3913 bind(next);
duke@435 3914 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3915 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3916 or3(t3, t2, t3);
kvn@3037 3917 cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
twisti@3969 3918 STOP("assert(top <= end)");
duke@435 3919 should_not_reach_here();
duke@435 3920
duke@435 3921 bind(next2);
duke@435 3922 and3(t3, MinObjAlignmentInBytesMask, t3);
kvn@3037 3923 cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
twisti@3969 3924 STOP("assert(aligned)");
duke@435 3925 should_not_reach_here();
duke@435 3926
duke@435 3927 bind(ok);
duke@435 3928 restore();
duke@435 3929 }
duke@435 3930 #endif
duke@435 3931 }
duke@435 3932
duke@435 3933
duke@435 3934 void MacroAssembler::eden_allocate(
duke@435 3935 Register obj, // result: pointer to object after successful allocation
duke@435 3936 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3937 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3938 Register t1, // temp register
duke@435 3939 Register t2, // temp register
duke@435 3940 Label& slow_case // continuation point if fast allocation fails
duke@435 3941 ){
duke@435 3942 // make sure arguments make sense
duke@435 3943 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3944 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3945 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3946
ysr@777 3947 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3948 // No allocation in the shared eden.
kvn@3037 3949 ba_short(slow_case);
ysr@777 3950 } else {
ysr@777 3951 // get eden boundaries
ysr@777 3952 // note: we need both top & top_addr!
ysr@777 3953 const Register top_addr = t1;
ysr@777 3954 const Register end = t2;
ysr@777 3955
ysr@777 3956 CollectedHeap* ch = Universe::heap();
ysr@777 3957 set((intx)ch->top_addr(), top_addr);
ysr@777 3958 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3959 ld_ptr(top_addr, delta, end);
ysr@777 3960 ld_ptr(top_addr, 0, obj);
ysr@777 3961
ysr@777 3962 // try to allocate
ysr@777 3963 Label retry;
ysr@777 3964 bind(retry);
duke@435 3965 #ifdef ASSERT
ysr@777 3966 // make sure eden top is properly aligned
ysr@777 3967 {
ysr@777 3968 Label L;
ysr@777 3969 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 3970 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3971 delayed()->nop();
twisti@3969 3972 STOP("eden top is not properly aligned");
ysr@777 3973 bind(L);
ysr@777 3974 }
ysr@777 3975 #endif // ASSERT
ysr@777 3976 const Register free = end;
ysr@777 3977 sub(end, obj, free); // compute amount of free space
ysr@777 3978 if (var_size_in_bytes->is_valid()) {
ysr@777 3979 // size is unknown at compile time
ysr@777 3980 cmp(free, var_size_in_bytes);
ysr@777 3981 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3982 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 3983 } else {
ysr@777 3984 // size is known at compile time
ysr@777 3985 cmp(free, con_size_in_bytes);
ysr@777 3986 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3987 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 3988 }
ysr@777 3989 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 3990 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 3991 // into end.
ysr@777 3992 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 3993 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 3994 cmp(obj, end);
ysr@777 3995 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 3996 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 3997
ysr@777 3998 #ifdef ASSERT
ysr@777 3999 // make sure eden top is properly aligned
ysr@777 4000 {
ysr@777 4001 Label L;
ysr@777 4002 const Register top_addr = t1;
ysr@777 4003
ysr@777 4004 set((intx)ch->top_addr(), top_addr);
ysr@777 4005 ld_ptr(top_addr, 0, top_addr);
ysr@777 4006 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 4007 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 4008 delayed()->nop();
twisti@3969 4009 STOP("eden top is not properly aligned");
ysr@777 4010 bind(L);
ysr@777 4011 }
ysr@777 4012 #endif // ASSERT
duke@435 4013 }
duke@435 4014 }
duke@435 4015
duke@435 4016
duke@435 4017 void MacroAssembler::tlab_allocate(
duke@435 4018 Register obj, // result: pointer to object after successful allocation
duke@435 4019 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 4020 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 4021 Register t1, // temp register
duke@435 4022 Label& slow_case // continuation point if fast allocation fails
duke@435 4023 ){
duke@435 4024 // make sure arguments make sense
duke@435 4025 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4026 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 4027 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 4028
duke@435 4029 const Register free = t1;
duke@435 4030
duke@435 4031 verify_tlab();
duke@435 4032
duke@435 4033 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 4034
duke@435 4035 // calculate amount of free space
duke@435 4036 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 4037 sub(free, obj, free);
duke@435 4038
duke@435 4039 Label done;
duke@435 4040 if (var_size_in_bytes == noreg) {
duke@435 4041 cmp(free, con_size_in_bytes);
duke@435 4042 } else {
duke@435 4043 cmp(free, var_size_in_bytes);
duke@435 4044 }
duke@435 4045 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 4046 // calculate the new top pointer
duke@435 4047 if (var_size_in_bytes == noreg) {
duke@435 4048 delayed()->add(obj, con_size_in_bytes, free);
duke@435 4049 } else {
duke@435 4050 delayed()->add(obj, var_size_in_bytes, free);
duke@435 4051 }
duke@435 4052
duke@435 4053 bind(done);
duke@435 4054
duke@435 4055 #ifdef ASSERT
duke@435 4056 // make sure new free pointer is properly aligned
duke@435 4057 {
duke@435 4058 Label L;
duke@435 4059 btst(MinObjAlignmentInBytesMask, free);
duke@435 4060 br(Assembler::zero, false, Assembler::pt, L);
duke@435 4061 delayed()->nop();
twisti@3969 4062 STOP("updated TLAB free is not properly aligned");
duke@435 4063 bind(L);
duke@435 4064 }
duke@435 4065 #endif // ASSERT
duke@435 4066
duke@435 4067 // update the tlab top pointer
duke@435 4068 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4069 verify_tlab();
duke@435 4070 }
duke@435 4071
duke@435 4072
duke@435 4073 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 4074 Register top = O0;
duke@435 4075 Register t1 = G1;
duke@435 4076 Register t2 = G3;
duke@435 4077 Register t3 = O1;
duke@435 4078 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 4079 Label do_refill, discard_tlab;
duke@435 4080
duke@435 4081 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4082 // No allocation in the shared eden.
kvn@3037 4083 ba_short(slow_case);
duke@435 4084 }
duke@435 4085
duke@435 4086 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 4087 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 4088 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 4089
duke@435 4090 // calculate amount of free space
duke@435 4091 sub(t1, top, t1);
duke@435 4092 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 4093
duke@435 4094 // Retain tlab and allocate object in shared space if
duke@435 4095 // the amount free in the tlab is too large to discard.
duke@435 4096 cmp(t1, t2);
duke@435 4097 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 4098
duke@435 4099 // increment waste limit to prevent getting stuck on this slow path
duke@435 4100 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 4101 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 4102 if (TLABStats) {
duke@435 4103 // increment number of slow_allocations
duke@435 4104 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 4105 add(t2, 1, t2);
duke@435 4106 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 4107 }
kvn@3037 4108 ba_short(try_eden);
duke@435 4109
duke@435 4110 bind(discard_tlab);
duke@435 4111 if (TLABStats) {
duke@435 4112 // increment number of refills
duke@435 4113 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 4114 add(t2, 1, t2);
duke@435 4115 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 4116 // accumulate wastage
duke@435 4117 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 4118 add(t2, t1, t2);
duke@435 4119 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 4120 }
duke@435 4121
duke@435 4122 // if tlab is currently allocated (top or end != null) then
duke@435 4123 // fill [top, end + alignment_reserve) with array object
kvn@3037 4124 br_null_short(top, Assembler::pn, do_refill);
duke@435 4125
duke@435 4126 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 4127 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 4128 // set klass to intArrayKlass
duke@435 4129 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 4130 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 4131 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 4132 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 4133 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 4134 ld_ptr(t2, 0, t2);
coleenp@602 4135 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4136 // klass field is not null.
coleenp@602 4137 store_klass(t2, top);
duke@435 4138 verify_oop(top);
duke@435 4139
phh@2423 4140 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
phh@2423 4141 sub(top, t1, t1); // size of tlab's allocated portion
phh@2447 4142 incr_allocated_bytes(t1, t2, t3);
phh@2423 4143
duke@435 4144 // refill the tlab with an eden allocation
duke@435 4145 bind(do_refill);
duke@435 4146 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 4147 sll_ptr(t1, LogHeapWordSize, t1);
phh@2423 4148 // allocate new tlab, address returned in top
duke@435 4149 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 4150
duke@435 4151 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 4152 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4153 #ifdef ASSERT
duke@435 4154 // check that tlab_size (t1) is still valid
duke@435 4155 {
duke@435 4156 Label ok;
duke@435 4157 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 4158 sll_ptr(t2, LogHeapWordSize, t2);
kvn@3037 4159 cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
twisti@3969 4160 STOP("assert(t1 == tlab_size)");
duke@435 4161 should_not_reach_here();
duke@435 4162
duke@435 4163 bind(ok);
duke@435 4164 }
duke@435 4165 #endif // ASSERT
duke@435 4166 add(top, t1, top); // t1 is tlab_size
duke@435 4167 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 4168 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 4169 verify_tlab();
kvn@3037 4170 ba_short(retry);
duke@435 4171 }
duke@435 4172
phh@2447 4173 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
phh@2447 4174 Register t1, Register t2) {
phh@2423 4175 // Bump total bytes allocated by this thread
phh@2423 4176 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
phh@2447 4177 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
phh@2423 4178 // v8 support has gone the way of the dodo
phh@2423 4179 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
phh@2447 4180 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
phh@2423 4181 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 4182 }
phh@2423 4183
duke@435 4184 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4185 switch (cond) {
duke@435 4186 // Note some conditions are synonyms for others
duke@435 4187 case Assembler::never: return Assembler::always;
duke@435 4188 case Assembler::zero: return Assembler::notZero;
duke@435 4189 case Assembler::lessEqual: return Assembler::greater;
duke@435 4190 case Assembler::less: return Assembler::greaterEqual;
duke@435 4191 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 4192 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 4193 case Assembler::negative: return Assembler::positive;
duke@435 4194 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 4195 case Assembler::always: return Assembler::never;
duke@435 4196 case Assembler::notZero: return Assembler::zero;
duke@435 4197 case Assembler::greater: return Assembler::lessEqual;
duke@435 4198 case Assembler::greaterEqual: return Assembler::less;
duke@435 4199 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 4200 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 4201 case Assembler::positive: return Assembler::negative;
duke@435 4202 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 4203 }
duke@435 4204
duke@435 4205 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 4206 }
duke@435 4207
duke@435 4208 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 4209 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 4210 Condition negated_cond = negate_condition(cond);
duke@435 4211 Label L;
duke@435 4212 brx(negated_cond, false, Assembler::pt, L);
duke@435 4213 delayed()->nop();
duke@435 4214 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 4215 bind(L);
duke@435 4216 }
duke@435 4217
twisti@1162 4218 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4219 AddressLiteral addrlit(counter_addr);
twisti@1162 4220 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 4221 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 4222 ld(addr, Rtmp2);
duke@435 4223 inc(Rtmp2);
twisti@1162 4224 st(Rtmp2, addr);
twisti@1162 4225 }
twisti@1162 4226
twisti@1162 4227 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4228 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4229 }
duke@435 4230
duke@435 4231 SkipIfEqual::SkipIfEqual(
duke@435 4232 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4233 Assembler::Condition condition) {
duke@435 4234 _masm = masm;
twisti@1162 4235 AddressLiteral flag(flag_addr);
twisti@1162 4236 _masm->sethi(flag, temp);
twisti@1162 4237 _masm->ldub(temp, flag.low10(), temp);
duke@435 4238 _masm->tst(temp);
duke@435 4239 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4240 _masm->delayed()->nop();
duke@435 4241 }
duke@435 4242
duke@435 4243 SkipIfEqual::~SkipIfEqual() {
duke@435 4244 _masm->bind(_label);
duke@435 4245 }
duke@435 4246
duke@435 4247
duke@435 4248 // Writes to stack successive pages until offset reached to check for
duke@435 4249 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4250 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4251 Register Rscratch) {
duke@435 4252 // Use stack pointer in temp stack pointer
duke@435 4253 mov(SP, Rtsp);
duke@435 4254
duke@435 4255 // Bang stack for total size given plus stack shadow page size.
duke@435 4256 // Bang one page at a time because a large size can overflow yellow and
duke@435 4257 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4258 // it was a stack overflow bang vs a regular segv).
duke@435 4259 int offset = os::vm_page_size();
duke@435 4260 Register Roffset = Rscratch;
duke@435 4261
duke@435 4262 Label loop;
duke@435 4263 bind(loop);
duke@435 4264 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4265 st(G0, Rtsp, Rscratch);
duke@435 4266 set(offset, Roffset);
duke@435 4267 sub(Rsize, Roffset, Rsize);
duke@435 4268 cmp(Rsize, G0);
duke@435 4269 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4270 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4271
duke@435 4272 // Bang down shadow pages too.
duke@435 4273 // The -1 because we already subtracted 1 page.
duke@435 4274 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4275 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4276 st(G0, Rtsp, Rscratch);
duke@435 4277 }
duke@435 4278 }
coleenp@548 4279
ysr@777 4280 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4281 #ifndef SERIALGC
ysr@777 4282
johnc@2781 4283 static address satb_log_enqueue_with_frame = NULL;
johnc@2781 4284 static u_char* satb_log_enqueue_with_frame_end = NULL;
johnc@2781 4285
johnc@2781 4286 static address satb_log_enqueue_frameless = NULL;
johnc@2781 4287 static u_char* satb_log_enqueue_frameless_end = NULL;
ysr@777 4288
ysr@777 4289 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4290
ysr@777 4291 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4292 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
twisti@2103 4293 CodeBuffer buf(bb);
ysr@777 4294 MacroAssembler masm(&buf);
kvn@3037 4295
kvn@3037 4296 #define __ masm.
kvn@3037 4297
kvn@3037 4298 address start = __ pc();
ysr@777 4299 Register pre_val;
ysr@777 4300
ysr@777 4301 Label refill, restart;
ysr@777 4302 if (with_frame) {
kvn@3037 4303 __ save_frame(0);
ysr@777 4304 pre_val = I0; // Was O0 before the save.
ysr@777 4305 } else {
ysr@777 4306 pre_val = O0;
ysr@777 4307 }
johnc@3088 4308
ysr@777 4309 int satb_q_index_byte_offset =
ysr@777 4310 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4311 PtrQueue::byte_offset_of_index());
johnc@3088 4312
ysr@777 4313 int satb_q_buf_byte_offset =
ysr@777 4314 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4315 PtrQueue::byte_offset_of_buf());
johnc@3088 4316
ysr@777 4317 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4318 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4319 "check sizes in assembly below");
ysr@777 4320
kvn@3037 4321 __ bind(restart);
johnc@3088 4322
johnc@3088 4323 // Load the index into the SATB buffer. PtrQueue::_index is a size_t
johnc@3088 4324 // so ld_ptr is appropriate.
kvn@3037 4325 __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
kvn@3037 4326
johnc@3088 4327 // index == 0?
johnc@3088 4328 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
johnc@3088 4329
johnc@3088 4330 __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
kvn@3037 4331 __ sub(L0, oopSize, L0);
kvn@3037 4332
kvn@3037 4333 __ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4334 if (!with_frame) {
ysr@777 4335 // Use return-from-leaf
kvn@3037 4336 __ retl();
kvn@3037 4337 __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4338 } else {
ysr@777 4339 // Not delayed.
kvn@3037 4340 __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4341 }
ysr@777 4342 if (with_frame) {
kvn@3037 4343 __ ret();
kvn@3037 4344 __ delayed()->restore();
ysr@777 4345 }
kvn@3037 4346 __ bind(refill);
ysr@777 4347
ysr@777 4348 address handle_zero =
ysr@777 4349 CAST_FROM_FN_PTR(address,
ysr@777 4350 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4351 // This should be rare enough that we can afford to save all the
ysr@777 4352 // scratch registers that the calling context might be using.
kvn@3037 4353 __ mov(G1_scratch, L0);
kvn@3037 4354 __ mov(G3_scratch, L1);
kvn@3037 4355 __ mov(G4, L2);
ysr@777 4356 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4357 // save and restore it.
kvn@3037 4358 __ mov(O0, L3);
ysr@777 4359 // Since the call will overwrite O7, we save and restore that, as well.
kvn@3037 4360 __ mov(O7, L4);
kvn@3037 4361 __ call_VM_leaf(L5, handle_zero, G2_thread);
kvn@3037 4362 __ mov(L0, G1_scratch);
kvn@3037 4363 __ mov(L1, G3_scratch);
kvn@3037 4364 __ mov(L2, G4);
kvn@3037 4365 __ mov(L3, O0);
kvn@3037 4366 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
kvn@3037 4367 __ delayed()->mov(L4, O7);
ysr@777 4368
ysr@777 4369 if (with_frame) {
ysr@777 4370 satb_log_enqueue_with_frame = start;
kvn@3037 4371 satb_log_enqueue_with_frame_end = __ pc();
ysr@777 4372 } else {
ysr@777 4373 satb_log_enqueue_frameless = start;
kvn@3037 4374 satb_log_enqueue_frameless_end = __ pc();
ysr@777 4375 }
kvn@3037 4376
kvn@3037 4377 #undef __
ysr@777 4378 }
ysr@777 4379
ysr@777 4380 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4381 if (with_frame) {
ysr@777 4382 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4383 generate_satb_log_enqueue(with_frame);
ysr@777 4384 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4385 if (G1SATBPrintStubs) {
ysr@777 4386 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4387 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4388 satb_log_enqueue_with_frame_end,
ysr@777 4389 tty);
ysr@777 4390 }
ysr@777 4391 }
ysr@777 4392 } else {
ysr@777 4393 if (satb_log_enqueue_frameless == 0) {
ysr@777 4394 generate_satb_log_enqueue(with_frame);
ysr@777 4395 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4396 if (G1SATBPrintStubs) {
ysr@777 4397 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4398 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4399 satb_log_enqueue_frameless_end,
ysr@777 4400 tty);
ysr@777 4401 }
ysr@777 4402 }
ysr@777 4403 }
ysr@777 4404 }
ysr@777 4405
johnc@2781 4406 void MacroAssembler::g1_write_barrier_pre(Register obj,
johnc@2781 4407 Register index,
johnc@2781 4408 int offset,
johnc@2781 4409 Register pre_val,
johnc@2781 4410 Register tmp,
johnc@2781 4411 bool preserve_o_regs) {
ysr@777 4412 Label filtered;
johnc@2781 4413
johnc@2781 4414 if (obj == noreg) {
johnc@2781 4415 // We are not loading the previous value so make
johnc@2781 4416 // sure that we don't trash the value in pre_val
johnc@2781 4417 // with the code below.
johnc@2781 4418 assert_different_registers(pre_val, tmp);
johnc@2781 4419 } else {
johnc@2781 4420 // We will be loading the previous value
johnc@2781 4421 // in this code so...
johnc@2781 4422 assert(offset == 0 || index == noreg, "choose one");
johnc@2781 4423 assert(pre_val == noreg, "check this code");
johnc@2781 4424 }
johnc@2781 4425
johnc@2781 4426 // Is marking active?
ysr@777 4427 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4428 ld(G2,
ysr@777 4429 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4430 PtrQueue::byte_offset_of_active()),
ysr@777 4431 tmp);
ysr@777 4432 } else {
ysr@777 4433 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4434 "Assumption");
ysr@777 4435 ldsb(G2,
ysr@777 4436 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4437 PtrQueue::byte_offset_of_active()),
ysr@777 4438 tmp);
ysr@777 4439 }
ysr@1280 4440
johnc@3088 4441 // Is marking active?
johnc@3088 4442 cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
ysr@777 4443
johnc@2781 4444 // Do we need to load the previous value?
johnc@2781 4445 if (obj != noreg) {
johnc@2781 4446 // Load the previous value...
johnc@2781 4447 if (index == noreg) {
johnc@2781 4448 if (Assembler::is_simm13(offset)) {
johnc@2781 4449 load_heap_oop(obj, offset, tmp);
johnc@2781 4450 } else {
johnc@2781 4451 set(offset, tmp);
johnc@2781 4452 load_heap_oop(obj, tmp, tmp);
johnc@2781 4453 }
ysr@777 4454 } else {
johnc@2781 4455 load_heap_oop(obj, index, tmp);
ysr@777 4456 }
johnc@2781 4457 // Previous value has been loaded into tmp
johnc@2781 4458 pre_val = tmp;
ysr@777 4459 }
ysr@777 4460
johnc@2781 4461 assert(pre_val != noreg, "must have a real register");
johnc@2781 4462
johnc@2781 4463 // Is the previous value null?
johnc@3088 4464 cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
ysr@777 4465
ysr@777 4466 // OK, it's not filtered, so we'll need to call enqueue. In the normal
johnc@2781 4467 // case, pre_val will be a scratch G-reg, but there are some cases in
johnc@2781 4468 // which it's an O-reg. In the first case, do a normal call. In the
johnc@2781 4469 // latter, do a save here and call the frameless version.
ysr@777 4470
ysr@777 4471 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4472 "Or we need to think harder.");
johnc@2781 4473
ysr@777 4474 if (pre_val->is_global() && !preserve_o_regs) {
johnc@2781 4475 generate_satb_log_enqueue_if_necessary(true); // with frame
johnc@2781 4476
ysr@777 4477 call(satb_log_enqueue_with_frame);
ysr@777 4478 delayed()->mov(pre_val, O0);
ysr@777 4479 } else {
johnc@2781 4480 generate_satb_log_enqueue_if_necessary(false); // frameless
johnc@2781 4481
ysr@777 4482 save_frame(0);
ysr@777 4483 call(satb_log_enqueue_frameless);
ysr@777 4484 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4485 restore();
ysr@777 4486 }
ysr@777 4487
ysr@777 4488 bind(filtered);
ysr@777 4489 }
ysr@777 4490
ysr@777 4491 static address dirty_card_log_enqueue = 0;
ysr@777 4492 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4493
ysr@777 4494 // This gets to assume that o0 contains the object address.
ysr@777 4495 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4496 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
twisti@2103 4497 CodeBuffer buf(bb);
ysr@777 4498 MacroAssembler masm(&buf);
kvn@3037 4499 #define __ masm.
kvn@3037 4500 address start = __ pc();
ysr@777 4501
ysr@777 4502 Label not_already_dirty, restart, refill;
ysr@777 4503
ysr@777 4504 #ifdef _LP64
kvn@3037 4505 __ srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4506 #else
kvn@3037 4507 __ srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4508 #endif
twisti@1162 4509 AddressLiteral addrlit(byte_map_base);
kvn@3037 4510 __ set(addrlit, O1); // O1 := <card table base>
kvn@3037 4511 __ ldub(O0, O1, O2); // O2 := [O0 + O1]
kvn@3037 4512
johnc@3088 4513 assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
johnc@3088 4514 __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
ysr@777 4515
ysr@777 4516 // We didn't take the branch, so we're already dirty: return.
ysr@777 4517 // Use return-from-leaf
kvn@3037 4518 __ retl();
kvn@3037 4519 __ delayed()->nop();
ysr@777 4520
ysr@777 4521 // Not dirty.
kvn@3037 4522 __ bind(not_already_dirty);
johnc@3088 4523
johnc@3088 4524 // Get O0 + O1 into a reg by itself
johnc@3088 4525 __ add(O0, O1, O3);
johnc@3088 4526
ysr@777 4527 // First, dirty it.
kvn@3037 4528 __ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
johnc@3088 4529
ysr@777 4530 int dirty_card_q_index_byte_offset =
ysr@777 4531 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4532 PtrQueue::byte_offset_of_index());
ysr@777 4533 int dirty_card_q_buf_byte_offset =
ysr@777 4534 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4535 PtrQueue::byte_offset_of_buf());
kvn@3037 4536 __ bind(restart);
johnc@3088 4537
johnc@3088 4538 // Load the index into the update buffer. PtrQueue::_index is
johnc@3088 4539 // a size_t so ld_ptr is appropriate here.
kvn@3037 4540 __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
kvn@3037 4541
johnc@3088 4542 // index == 0?
johnc@3088 4543 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
johnc@3088 4544
johnc@3088 4545 __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
kvn@3037 4546 __ sub(L0, oopSize, L0);
kvn@3037 4547
kvn@3037 4548 __ st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4549 // Use return-from-leaf
kvn@3037 4550 __ retl();
kvn@3037 4551 __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
kvn@3037 4552
kvn@3037 4553 __ bind(refill);
ysr@777 4554 address handle_zero =
ysr@777 4555 CAST_FROM_FN_PTR(address,
ysr@777 4556 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4557 // This should be rare enough that we can afford to save all the
ysr@777 4558 // scratch registers that the calling context might be using.
kvn@3037 4559 __ mov(G1_scratch, L3);
kvn@3037 4560 __ mov(G3_scratch, L5);
ysr@777 4561 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4562 // save and restore it.
kvn@3037 4563 __ mov(O3, L6);
ysr@777 4564 // Since the call will overwrite O7, we save and restore that, as well.
kvn@3037 4565 __ mov(O7, L4);
kvn@3037 4566
kvn@3037 4567 __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
kvn@3037 4568 __ mov(L3, G1_scratch);
kvn@3037 4569 __ mov(L5, G3_scratch);
kvn@3037 4570 __ mov(L6, O3);
kvn@3037 4571 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
kvn@3037 4572 __ delayed()->mov(L4, O7);
ysr@777 4573
ysr@777 4574 dirty_card_log_enqueue = start;
kvn@3037 4575 dirty_card_log_enqueue_end = __ pc();
ysr@777 4576 // XXX Should have a guarantee here about not going off the end!
ysr@777 4577 // Does it already do so? Do an experiment...
kvn@3037 4578
kvn@3037 4579 #undef __
kvn@3037 4580
ysr@777 4581 }
ysr@777 4582
ysr@777 4583 static inline void
ysr@777 4584 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4585 if (dirty_card_log_enqueue == 0) {
ysr@777 4586 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4587 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4588 if (G1SATBPrintStubs) {
ysr@777 4589 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4590 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4591 dirty_card_log_enqueue_end,
ysr@777 4592 tty);
ysr@777 4593 }
ysr@777 4594 }
ysr@777 4595 }
ysr@777 4596
ysr@777 4597
ysr@777 4598 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4599
ysr@777 4600 Label filtered;
ysr@777 4601 MacroAssembler* post_filter_masm = this;
ysr@777 4602
ysr@777 4603 if (new_val == G0) return;
ysr@777 4604
ysr@777 4605 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4606 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4607 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
johnc@3088 4608
ysr@777 4609 if (G1RSBarrierRegionFilter) {
ysr@777 4610 xor3(store_addr, new_val, tmp);
ysr@777 4611 #ifdef _LP64
ysr@777 4612 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4613 #else
ysr@777 4614 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4615 #endif
johnc@2781 4616
johnc@3088 4617 // XXX Should I predict this taken or not? Does it matter?
johnc@3088 4618 cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
ysr@777 4619 }
ysr@777 4620
iveresov@1229 4621 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4622 // a scratch reg so we can pass it as an argument.
iveresov@1229 4623 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4624 // Pick a scratch register different from "tmp".
iveresov@1229 4625 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4626 // Make sure we use up the delay slot!
iveresov@1229 4627 if (use_scr) {
iveresov@1229 4628 post_filter_masm->mov(store_addr, scr);
ysr@777 4629 } else {
iveresov@1229 4630 post_filter_masm->nop();
ysr@777 4631 }
iveresov@1229 4632 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4633 save_frame(0);
iveresov@1229 4634 call(dirty_card_log_enqueue);
iveresov@1229 4635 if (use_scr) {
iveresov@1229 4636 delayed()->mov(scr, O0);
iveresov@1229 4637 } else {
iveresov@1229 4638 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4639 }
iveresov@1229 4640 restore();
ysr@777 4641
ysr@777 4642 bind(filtered);
ysr@777 4643 }
ysr@777 4644
ysr@777 4645 #endif // SERIALGC
ysr@777 4646 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4647
ysr@777 4648 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4649 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4650 if (new_val == G0) return;
ysr@777 4651 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4652 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4653 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4654 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4655 }
ysr@777 4656
kvn@599 4657 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4658 // The number of bytes in this code is used by
coleenp@548 4659 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4660 // if this changes, change that.
coleenp@548 4661 if (UseCompressedOops) {
kvn@599 4662 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4663 decode_heap_oop_not_null(klass);
coleenp@548 4664 } else {
kvn@599 4665 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4666 }
coleenp@548 4667 }
coleenp@548 4668
kvn@599 4669 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4670 if (UseCompressedOops) {
kvn@599 4671 assert(dst_oop != klass, "not enough registers");
kvn@599 4672 encode_heap_oop_not_null(klass);
coleenp@602 4673 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4674 } else {
kvn@599 4675 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4676 }
kvn@559 4677 }
kvn@559 4678
coleenp@602 4679 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4680 if (UseCompressedOops) {
coleenp@602 4681 assert(s != d, "not enough registers");
coleenp@602 4682 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4683 }
coleenp@548 4684 }
coleenp@548 4685
twisti@1162 4686 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4687 if (UseCompressedOops) {
twisti@1162 4688 lduw(s, d);
coleenp@548 4689 decode_heap_oop(d);
coleenp@548 4690 } else {
twisti@1162 4691 ld_ptr(s, d);
coleenp@548 4692 }
coleenp@548 4693 }
coleenp@548 4694
coleenp@548 4695 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4696 if (UseCompressedOops) {
coleenp@548 4697 lduw(s1, s2, d);
coleenp@548 4698 decode_heap_oop(d, d);
coleenp@548 4699 } else {
coleenp@548 4700 ld_ptr(s1, s2, d);
coleenp@548 4701 }
coleenp@548 4702 }
coleenp@548 4703
coleenp@548 4704 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4705 if (UseCompressedOops) {
coleenp@548 4706 lduw(s1, simm13a, d);
coleenp@548 4707 decode_heap_oop(d, d);
coleenp@548 4708 } else {
coleenp@548 4709 ld_ptr(s1, simm13a, d);
coleenp@548 4710 }
coleenp@548 4711 }
coleenp@548 4712
twisti@2201 4713 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
twisti@2201 4714 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
twisti@2201 4715 else load_heap_oop(s1, s2.as_register(), d);
twisti@2201 4716 }
twisti@2201 4717
coleenp@548 4718 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4719 if (UseCompressedOops) {
coleenp@548 4720 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4721 encode_heap_oop(d);
coleenp@548 4722 st(d, s1, s2);
coleenp@548 4723 } else {
coleenp@548 4724 st_ptr(d, s1, s2);
coleenp@548 4725 }
coleenp@548 4726 }
coleenp@548 4727
coleenp@548 4728 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4729 if (UseCompressedOops) {
coleenp@548 4730 assert(s1 != d, "not enough registers");
coleenp@548 4731 encode_heap_oop(d);
coleenp@548 4732 st(d, s1, simm13a);
coleenp@548 4733 } else {
coleenp@548 4734 st_ptr(d, s1, simm13a);
coleenp@548 4735 }
coleenp@548 4736 }
coleenp@548 4737
coleenp@548 4738 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4739 if (UseCompressedOops) {
coleenp@548 4740 assert(a.base() != d, "not enough registers");
coleenp@548 4741 encode_heap_oop(d);
coleenp@548 4742 st(d, a, offset);
coleenp@548 4743 } else {
coleenp@548 4744 st_ptr(d, a, offset);
coleenp@548 4745 }
coleenp@548 4746 }
coleenp@548 4747
coleenp@548 4748
coleenp@548 4749 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4750 assert (UseCompressedOops, "must be compressed");
kvn@1077 4751 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4752 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4753 verify_oop(src);
kvn@1077 4754 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4755 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4756 return;
kvn@1077 4757 }
coleenp@548 4758 Label done;
coleenp@548 4759 if (src == dst) {
coleenp@548 4760 // optimize for frequent case src == dst
coleenp@548 4761 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4762 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4763 bind(done);
coleenp@548 4764 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4765 } else {
coleenp@548 4766 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4767 delayed() -> mov(G0, dst);
coleenp@548 4768 // could be moved before branch, and annulate delay,
coleenp@548 4769 // but may add some unneeded work decoding null
coleenp@548 4770 sub(src, G6_heapbase, dst);
coleenp@548 4771 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4772 bind(done);
coleenp@548 4773 }
coleenp@548 4774 }
coleenp@548 4775
coleenp@548 4776
coleenp@548 4777 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4778 assert (UseCompressedOops, "must be compressed");
kvn@1077 4779 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4780 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4781 verify_oop(r);
kvn@1077 4782 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4783 sub(r, G6_heapbase, r);
coleenp@548 4784 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4785 }
coleenp@548 4786
kvn@559 4787 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4788 assert (UseCompressedOops, "must be compressed");
kvn@1077 4789 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4790 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4791 verify_oop(src);
kvn@1077 4792 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4793 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4794 } else {
kvn@1077 4795 sub(src, G6_heapbase, dst);
kvn@1077 4796 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4797 }
kvn@559 4798 }
kvn@559 4799
coleenp@548 4800 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4801 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4802 assert (UseCompressedOops, "must be compressed");
kvn@1077 4803 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4804 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4805 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4806 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4807 Label done;
kvn@1077 4808 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4809 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4810 bind(done);
kvn@1077 4811 }
coleenp@613 4812 verify_oop(dst);
coleenp@548 4813 }
coleenp@548 4814
coleenp@548 4815 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4816 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4817 // pd_code_size_limit.
coleenp@613 4818 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4819 assert (UseCompressedOops, "must be compressed");
kvn@1077 4820 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4821 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4822 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4823 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4824 add(r, G6_heapbase, r);
coleenp@548 4825 }
coleenp@548 4826
kvn@559 4827 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4828 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4829 // pd_code_size_limit.
coleenp@613 4830 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4831 assert (UseCompressedOops, "must be compressed");
kvn@1077 4832 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4833 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4834 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4835 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4836 add(dst, G6_heapbase, dst);
kvn@559 4837 }
kvn@559 4838
coleenp@548 4839 void MacroAssembler::reinit_heapbase() {
coleenp@548 4840 if (UseCompressedOops) {
coleenp@548 4841 // call indirectly to solve generation ordering problem
twisti@1162 4842 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4843 load_ptr_contents(base, G6_heapbase);
coleenp@548 4844 }
coleenp@548 4845 }
kvn@1421 4846
kvn@1421 4847 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4848 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4849 Register limit, Register result,
kvn@1421 4850 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4851 Label Lvector, Lloop;
kvn@1421 4852 assert(chr1 == result, "should be the same");
kvn@1421 4853
kvn@1421 4854 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4855 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4856 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4857 delayed()->nop();
kvn@1421 4858
kvn@1421 4859 // compare the trailing char
kvn@1421 4860 sub(limit, sizeof(jchar), limit);
kvn@1421 4861 lduh(ary1, limit, chr1);
kvn@1421 4862 lduh(ary2, limit, chr2);
kvn@1421 4863 cmp(chr1, chr2);
kvn@1421 4864 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4865 delayed()->mov(G0, result); // not equal
kvn@1421 4866
kvn@1421 4867 // only one char ?
kvn@3037 4868 cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
kvn@1421 4869 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4870
kvn@1421 4871 // word by word compare, dont't need alignment check
kvn@1421 4872 bind(Lvector);
kvn@1421 4873 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4874 add(ary1, limit, ary1);
kvn@1421 4875 add(ary2, limit, ary2);
kvn@1421 4876 neg(limit, limit);
kvn@1421 4877
kvn@1421 4878 lduw(ary1, limit, chr1);
kvn@1421 4879 bind(Lloop);
kvn@1421 4880 lduw(ary2, limit, chr2);
kvn@1421 4881 cmp(chr1, chr2);
kvn@1421 4882 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4883 delayed()->mov(G0, result); // not equal
kvn@1421 4884 inccc(limit, 2*sizeof(jchar));
kvn@1421 4885 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4886 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4887 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4888
kvn@1421 4889 // Caller should set it:
kvn@1421 4890 // add(G0, 1, result); // equals
kvn@1421 4891 }
kvn@3092 4892
kvn@3092 4893 // Use BIS for zeroing (count is in bytes).
kvn@3092 4894 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
kvn@3092 4895 assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
kvn@3092 4896 Register end = count;
kvn@3092 4897 int cache_line_size = VM_Version::prefetch_data_size();
kvn@3092 4898 // Minimum count when BIS zeroing can be used since
kvn@3092 4899 // it needs membar which is expensive.
kvn@3092 4900 int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
kvn@3092 4901
kvn@3092 4902 Label small_loop;
kvn@3092 4903 // Check if count is negative (dead code) or zero.
kvn@3092 4904 // Note, count uses 64bit in 64 bit VM.
kvn@3092 4905 cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
kvn@3092 4906
kvn@3092 4907 // Use BIS zeroing only for big arrays since it requires membar.
kvn@3092 4908 if (Assembler::is_simm13(block_zero_size)) { // < 4096
kvn@3092 4909 cmp(count, block_zero_size);
kvn@3092 4910 } else {
kvn@3092 4911 set(block_zero_size, temp);
kvn@3092 4912 cmp(count, temp);
kvn@3092 4913 }
kvn@3092 4914 br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
kvn@3092 4915 delayed()->add(to, count, end);
kvn@3092 4916
kvn@3092 4917 // Note: size is >= three (32 bytes) cache lines.
kvn@3092 4918
kvn@3092 4919 // Clean the beginning of space up to next cache line.
kvn@3092 4920 for (int offs = 0; offs < cache_line_size; offs += 8) {
kvn@3092 4921 stx(G0, to, offs);
kvn@3092 4922 }
kvn@3092 4923
kvn@3092 4924 // align to next cache line
kvn@3092 4925 add(to, cache_line_size, to);
kvn@3092 4926 and3(to, -cache_line_size, to);
kvn@3092 4927
kvn@3092 4928 // Note: size left >= two (32 bytes) cache lines.
kvn@3092 4929
kvn@3092 4930 // BIS should not be used to zero tail (64 bytes)
kvn@3092 4931 // to avoid zeroing a header of the following object.
kvn@3092 4932 sub(end, (cache_line_size*2)-8, end);
kvn@3092 4933
kvn@3092 4934 Label bis_loop;
kvn@3092 4935 bind(bis_loop);
kvn@3092 4936 stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
kvn@3092 4937 add(to, cache_line_size, to);
kvn@3092 4938 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
kvn@3092 4939
kvn@3092 4940 // BIS needs membar.
kvn@3092 4941 membar(Assembler::StoreLoad);
kvn@3092 4942
kvn@3092 4943 add(end, (cache_line_size*2)-8, end); // restore end
kvn@3092 4944 cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
kvn@3092 4945
kvn@3092 4946 // Clean the tail.
kvn@3092 4947 bind(small_loop);
kvn@3092 4948 stx(G0, to, 0);
kvn@3092 4949 add(to, 8, to);
kvn@3092 4950 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
kvn@3092 4951 nop(); // Separate short branches
kvn@3092 4952 }

mercurial