src/share/vm/opto/runtime.cpp

Tue, 10 Mar 2020 10:46:35 +0100

author
mdoerr
date
Tue, 10 Mar 2020 10:46:35 +0100
changeset 9912
97d09139b360
parent 9788
44ef77ad417c
child 9806
758c07667682
permissions
-rw-r--r--

8146612: C2: Precedence edges specification violated
Reviewed-by: kvn

duke@435 1 /*
ogatak@9713 2 * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/pcDesc.hpp"
stefank@2314 32 #include "code/scopeDesc.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "compiler/compilerOracle.hpp"
stefank@2314 36 #include "compiler/oopMap.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 39 #include "gc_interface/collectedHeap.hpp"
stefank@2314 40 #include "interpreter/bytecode.hpp"
stefank@2314 41 #include "interpreter/interpreter.hpp"
stefank@2314 42 #include "interpreter/linkResolver.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/oopFactory.hpp"
stefank@2314 46 #include "oops/objArrayKlass.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "opto/addnode.hpp"
stefank@2314 49 #include "opto/callnode.hpp"
stefank@2314 50 #include "opto/cfgnode.hpp"
stefank@2314 51 #include "opto/connode.hpp"
stefank@2314 52 #include "opto/graphKit.hpp"
stefank@2314 53 #include "opto/machnode.hpp"
stefank@2314 54 #include "opto/matcher.hpp"
stefank@2314 55 #include "opto/memnode.hpp"
stefank@2314 56 #include "opto/mulnode.hpp"
stefank@2314 57 #include "opto/runtime.hpp"
stefank@2314 58 #include "opto/subnode.hpp"
stefank@2314 59 #include "runtime/fprofiler.hpp"
stefank@2314 60 #include "runtime/handles.inline.hpp"
stefank@2314 61 #include "runtime/interfaceSupport.hpp"
stefank@2314 62 #include "runtime/javaCalls.hpp"
stefank@2314 63 #include "runtime/sharedRuntime.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/threadCritical.hpp"
stefank@2314 66 #include "runtime/vframe.hpp"
stefank@2314 67 #include "runtime/vframeArray.hpp"
stefank@2314 68 #include "runtime/vframe_hp.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #include "utilities/preserveException.hpp"
dlong@7598 71 #if defined AD_MD_HPP
dlong@7598 72 # include AD_MD_HPP
dlong@7598 73 #elif defined TARGET_ARCH_MODEL_x86_32
stefank@2314 74 # include "adfiles/ad_x86_32.hpp"
dlong@7598 75 #elif defined TARGET_ARCH_MODEL_x86_64
stefank@2314 76 # include "adfiles/ad_x86_64.hpp"
dlong@7598 77 #elif defined TARGET_ARCH_MODEL_sparc
stefank@2314 78 # include "adfiles/ad_sparc.hpp"
dlong@7598 79 #elif defined TARGET_ARCH_MODEL_zero
stefank@2314 80 # include "adfiles/ad_zero.hpp"
dlong@7598 81 #elif defined TARGET_ARCH_MODEL_ppc_64
goetz@6441 82 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 83 #endif
duke@435 84
duke@435 85
duke@435 86 // For debugging purposes:
duke@435 87 // To force FullGCALot inside a runtime function, add the following two lines
duke@435 88 //
duke@435 89 // Universe::release_fullgc_alot_dummy();
duke@435 90 // MarkSweep::invoke(0, "Debugging");
duke@435 91 //
duke@435 92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
duke@435 93
duke@435 94
ascarpino@9788 95 // GHASH block processing
ascarpino@9788 96 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
ascarpino@9788 97 int argcnt = 4;
duke@435 98
ascarpino@9788 99 const Type** fields = TypeTuple::fields(argcnt);
ascarpino@9788 100 int argp = TypeFunc::Parms;
ascarpino@9788 101 fields[argp++] = TypePtr::NOTNULL; // state
ascarpino@9788 102 fields[argp++] = TypePtr::NOTNULL; // subkeyH
ascarpino@9788 103 fields[argp++] = TypePtr::NOTNULL; // data
ascarpino@9788 104 fields[argp++] = TypeInt::INT; // blocks
ascarpino@9788 105 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
ascarpino@9788 106 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
ascarpino@9788 107
ascarpino@9788 108 // result type needed
ascarpino@9788 109 fields = TypeTuple::fields(1);
ascarpino@9788 110 fields[TypeFunc::Parms+0] = NULL; // void
ascarpino@9788 111 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
ascarpino@9788 112 return TypeFunc::make(domain, range);
ascarpino@9788 113 }
duke@435 114
duke@435 115 // Compiled code entry points
duke@435 116 address OptoRuntime::_new_instance_Java = NULL;
duke@435 117 address OptoRuntime::_new_array_Java = NULL;
kvn@3157 118 address OptoRuntime::_new_array_nozero_Java = NULL;
duke@435 119 address OptoRuntime::_multianewarray2_Java = NULL;
duke@435 120 address OptoRuntime::_multianewarray3_Java = NULL;
duke@435 121 address OptoRuntime::_multianewarray4_Java = NULL;
duke@435 122 address OptoRuntime::_multianewarray5_Java = NULL;
iveresov@3002 123 address OptoRuntime::_multianewarrayN_Java = NULL;
ysr@777 124 address OptoRuntime::_g1_wb_pre_Java = NULL;
ysr@777 125 address OptoRuntime::_g1_wb_post_Java = NULL;
duke@435 126 address OptoRuntime::_vtable_must_compile_Java = NULL;
duke@435 127 address OptoRuntime::_complete_monitor_locking_Java = NULL;
duke@435 128 address OptoRuntime::_rethrow_Java = NULL;
duke@435 129
duke@435 130 address OptoRuntime::_slow_arraycopy_Java = NULL;
duke@435 131 address OptoRuntime::_register_finalizer_Java = NULL;
duke@435 132
duke@435 133 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 134 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
duke@435 135 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
duke@435 136 # endif
duke@435 137
never@2950 138 ExceptionBlob* OptoRuntime::_exception_blob;
duke@435 139
duke@435 140 // This should be called in an assertion at the start of OptoRuntime routines
duke@435 141 // which are entered from compiled code (all of them)
roland@5106 142 #ifdef ASSERT
duke@435 143 static bool check_compiled_frame(JavaThread* thread) {
duke@435 144 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
duke@435 145 RegisterMap map(thread, false);
duke@435 146 frame caller = thread->last_frame().sender(&map);
duke@435 147 assert(caller.is_compiled_frame(), "not being called from compiled like code");
duke@435 148 return true;
duke@435 149 }
roland@5106 150 #endif // ASSERT
duke@435 151
duke@435 152
duke@435 153 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
anoll@5919 154 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
anoll@5919 155 if (var == NULL) { return false; }
duke@435 156
anoll@5919 157 bool OptoRuntime::generate(ciEnv* env) {
duke@435 158
duke@435 159 generate_exception_blob();
duke@435 160
duke@435 161 // Note: tls: Means fetching the return oop out of the thread-local storage
duke@435 162 //
duke@435 163 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
duke@435 164 // -------------------------------------------------------------------------------------------------------------------------------
duke@435 165 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
duke@435 166 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
kvn@3157 167 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
duke@435 168 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
duke@435 169 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
duke@435 170 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
duke@435 171 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
iveresov@3002 172 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
ysr@777 173 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
ysr@777 174 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
anoll@5919 175 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
duke@435 176 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
duke@435 177
duke@435 178 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
duke@435 179 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
duke@435 180
duke@435 181 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 182 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
duke@435 183 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
duke@435 184 # endif
anoll@5919 185 return true;
duke@435 186 }
duke@435 187
duke@435 188 #undef gen
duke@435 189
duke@435 190
duke@435 191 // Helper method to do generation of RunTimeStub's
duke@435 192 address OptoRuntime::generate_stub( ciEnv* env,
duke@435 193 TypeFunc_generator gen, address C_function,
duke@435 194 const char *name, int is_fancy_jump,
duke@435 195 bool pass_tls,
duke@435 196 bool save_argument_registers,
duke@435 197 bool return_pc ) {
duke@435 198 ResourceMark rm;
duke@435 199 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
duke@435 200 return C.stub_entry_point();
duke@435 201 }
duke@435 202
duke@435 203 const char* OptoRuntime::stub_name(address entry) {
duke@435 204 #ifndef PRODUCT
duke@435 205 CodeBlob* cb = CodeCache::find_blob(entry);
duke@435 206 RuntimeStub* rs =(RuntimeStub *)cb;
duke@435 207 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
duke@435 208 return rs->name();
duke@435 209 #else
duke@435 210 // Fast implementation for product mode (maybe it should be inlined too)
duke@435 211 return "runtime stub";
duke@435 212 #endif
duke@435 213 }
duke@435 214
duke@435 215
duke@435 216 //=============================================================================
duke@435 217 // Opto compiler runtime routines
duke@435 218 //=============================================================================
duke@435 219
duke@435 220
duke@435 221 //=============================allocation======================================
duke@435 222 // We failed the fast-path allocation. Now we need to do a scavenge or GC
duke@435 223 // and try allocation again.
duke@435 224
ysr@1601 225 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
duke@435 226 // After any safepoint, just before going back to compiled code,
ysr@1462 227 // we inform the GC that we will be doing initializing writes to
ysr@1462 228 // this object in the future without emitting card-marks, so
ysr@1462 229 // GC may take any compensating steps.
ysr@1462 230 // NOTE: Keep this code consistent with GraphKit::store_barrier.
duke@435 231
duke@435 232 oop new_obj = thread->vm_result();
duke@435 233 if (new_obj == NULL) return;
duke@435 234
duke@435 235 assert(Universe::heap()->can_elide_tlab_store_barriers(),
duke@435 236 "compiler must check this first");
ysr@1462 237 // GC may decide to give back a safer copy of new_obj.
ysr@1601 238 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
duke@435 239 thread->set_vm_result(new_obj);
duke@435 240 }
duke@435 241
duke@435 242 // object allocation
coleenp@4037 243 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
duke@435 244 JRT_BLOCK;
duke@435 245 #ifndef PRODUCT
duke@435 246 SharedRuntime::_new_instance_ctr++; // new instance requires GC
duke@435 247 #endif
duke@435 248 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 249
duke@435 250 // These checks are cheap to make and support reflective allocation.
hseigel@4278 251 int lh = klass->layout_helper();
vlivanov@8419 252 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
vlivanov@8419 253 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
vlivanov@8419 254 klass->check_valid_for_instantiation(false, THREAD);
duke@435 255 if (!HAS_PENDING_EXCEPTION) {
vlivanov@8419 256 InstanceKlass::cast(klass)->initialize(THREAD);
duke@435 257 }
duke@435 258 }
duke@435 259
vlivanov@8419 260 if (!HAS_PENDING_EXCEPTION) {
duke@435 261 // Scavenge and allocate an instance.
vlivanov@8419 262 Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
coleenp@4037 263 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
duke@435 264 thread->set_vm_result(result);
duke@435 265
duke@435 266 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 267 // is that we return an oop, but we can block on exit from this routine and
duke@435 268 // a GC can trash the oop in C's return register. The generated stub will
duke@435 269 // fetch the oop from TLS after any possible GC.
duke@435 270 }
duke@435 271
duke@435 272 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 273 JRT_BLOCK_END;
duke@435 274
duke@435 275 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 276 // inform GC that we won't do card marks for initializing writes.
ysr@1601 277 new_store_pre_barrier(thread);
duke@435 278 }
duke@435 279 JRT_END
duke@435 280
duke@435 281
duke@435 282 // array allocation
coleenp@4037 283 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
duke@435 284 JRT_BLOCK;
duke@435 285 #ifndef PRODUCT
duke@435 286 SharedRuntime::_new_array_ctr++; // new array requires GC
duke@435 287 #endif
duke@435 288 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 289
duke@435 290 // Scavenge and allocate an instance.
duke@435 291 oop result;
duke@435 292
hseigel@4278 293 if (array_type->oop_is_typeArray()) {
duke@435 294 // The oopFactory likes to work with the element type.
duke@435 295 // (We could bypass the oopFactory, since it doesn't add much value.)
coleenp@4142 296 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
duke@435 297 result = oopFactory::new_typeArray(elem_type, len, THREAD);
duke@435 298 } else {
duke@435 299 // Although the oopFactory likes to work with the elem_type,
duke@435 300 // the compiler prefers the array_type, since it must already have
duke@435 301 // that latter value in hand for the fast path.
vlivanov@8419 302 Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
coleenp@4142 303 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
duke@435 304 result = oopFactory::new_objArray(elem_type, len, THREAD);
duke@435 305 }
duke@435 306
duke@435 307 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 308 // is that we return an oop, but we can block on exit from this routine and
duke@435 309 // a GC can trash the oop in C's return register. The generated stub will
duke@435 310 // fetch the oop from TLS after any possible GC.
duke@435 311 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 312 thread->set_vm_result(result);
duke@435 313 JRT_BLOCK_END;
duke@435 314
duke@435 315 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 316 // inform GC that we won't do card marks for initializing writes.
ysr@1601 317 new_store_pre_barrier(thread);
duke@435 318 }
duke@435 319 JRT_END
duke@435 320
kvn@3157 321 // array allocation without zeroing
coleenp@4037 322 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
kvn@3157 323 JRT_BLOCK;
kvn@3157 324 #ifndef PRODUCT
kvn@3157 325 SharedRuntime::_new_array_ctr++; // new array requires GC
kvn@3157 326 #endif
kvn@3157 327 assert(check_compiled_frame(thread), "incorrect caller");
kvn@3157 328
kvn@3157 329 // Scavenge and allocate an instance.
kvn@3157 330 oop result;
kvn@3157 331
hseigel@4278 332 assert(array_type->oop_is_typeArray(), "should be called only for type array");
kvn@3157 333 // The oopFactory likes to work with the element type.
coleenp@4142 334 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3157 335 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
kvn@3157 336
kvn@3157 337 // Pass oops back through thread local storage. Our apparent type to Java
kvn@3157 338 // is that we return an oop, but we can block on exit from this routine and
kvn@3157 339 // a GC can trash the oop in C's return register. The generated stub will
kvn@3157 340 // fetch the oop from TLS after any possible GC.
kvn@3157 341 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
kvn@3157 342 thread->set_vm_result(result);
kvn@3157 343 JRT_BLOCK_END;
kvn@3157 344
kvn@3157 345 if (GraphKit::use_ReduceInitialCardMarks()) {
kvn@3157 346 // inform GC that we won't do card marks for initializing writes.
kvn@3157 347 new_store_pre_barrier(thread);
kvn@3157 348 }
kvn@3259 349
kvn@3259 350 oop result = thread->vm_result();
kvn@3259 351 if ((len > 0) && (result != NULL) &&
kvn@3259 352 is_deoptimized_caller_frame(thread)) {
kvn@3259 353 // Zero array here if the caller is deoptimized.
kvn@3259 354 int size = ((typeArrayOop)result)->object_size();
coleenp@4142 355 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3259 356 const size_t hs = arrayOopDesc::header_size(elem_type);
kvn@3259 357 // Align to next 8 bytes to avoid trashing arrays's length.
kvn@3259 358 const size_t aligned_hs = align_object_offset(hs);
kvn@3259 359 HeapWord* obj = (HeapWord*)result;
kvn@3259 360 if (aligned_hs > hs) {
kvn@3259 361 Copy::zero_to_words(obj+hs, aligned_hs-hs);
kvn@3259 362 }
kvn@3259 363 // Optimized zeroing.
kvn@3259 364 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
kvn@3259 365 }
kvn@3259 366
kvn@3157 367 JRT_END
kvn@3157 368
duke@435 369 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
duke@435 370
duke@435 371 // multianewarray for 2 dimensions
coleenp@4037 372 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
duke@435 373 #ifndef PRODUCT
duke@435 374 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
duke@435 375 #endif
duke@435 376 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 377 assert(elem_type->is_klass(), "not a class");
duke@435 378 jint dims[2];
duke@435 379 dims[0] = len1;
duke@435 380 dims[1] = len2;
vlivanov@8419 381 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
coleenp@4142 382 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
duke@435 383 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 384 thread->set_vm_result(obj);
duke@435 385 JRT_END
duke@435 386
duke@435 387 // multianewarray for 3 dimensions
coleenp@4037 388 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
duke@435 389 #ifndef PRODUCT
duke@435 390 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
duke@435 391 #endif
duke@435 392 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 393 assert(elem_type->is_klass(), "not a class");
duke@435 394 jint dims[3];
duke@435 395 dims[0] = len1;
duke@435 396 dims[1] = len2;
duke@435 397 dims[2] = len3;
vlivanov@8419 398 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
coleenp@4142 399 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
duke@435 400 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 401 thread->set_vm_result(obj);
duke@435 402 JRT_END
duke@435 403
duke@435 404 // multianewarray for 4 dimensions
coleenp@4037 405 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
duke@435 406 #ifndef PRODUCT
duke@435 407 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
duke@435 408 #endif
duke@435 409 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 410 assert(elem_type->is_klass(), "not a class");
duke@435 411 jint dims[4];
duke@435 412 dims[0] = len1;
duke@435 413 dims[1] = len2;
duke@435 414 dims[2] = len3;
duke@435 415 dims[3] = len4;
vlivanov@8419 416 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
coleenp@4142 417 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
duke@435 418 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 419 thread->set_vm_result(obj);
duke@435 420 JRT_END
duke@435 421
duke@435 422 // multianewarray for 5 dimensions
coleenp@4037 423 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
duke@435 424 #ifndef PRODUCT
duke@435 425 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
duke@435 426 #endif
duke@435 427 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 428 assert(elem_type->is_klass(), "not a class");
duke@435 429 jint dims[5];
duke@435 430 dims[0] = len1;
duke@435 431 dims[1] = len2;
duke@435 432 dims[2] = len3;
duke@435 433 dims[3] = len4;
duke@435 434 dims[4] = len5;
vlivanov@8419 435 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
coleenp@4142 436 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
duke@435 437 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 438 thread->set_vm_result(obj);
duke@435 439 JRT_END
duke@435 440
coleenp@4037 441 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
iveresov@3002 442 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 443 assert(elem_type->is_klass(), "not a class");
iveresov@3002 444 assert(oop(dims)->is_typeArray(), "not an array");
iveresov@3002 445
iveresov@3002 446 ResourceMark rm;
iveresov@3002 447 jint len = dims->length();
iveresov@3002 448 assert(len > 0, "Dimensions array should contain data");
iveresov@3002 449 jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
iveresov@3002 450 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
iveresov@3002 451 Copy::conjoint_jints_atomic(j_dims, c_dims, len);
iveresov@3002 452
vlivanov@8419 453 Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
coleenp@4142 454 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
iveresov@3002 455 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
iveresov@3002 456 thread->set_vm_result(obj);
iveresov@3002 457 JRT_END
iveresov@3002 458
iveresov@3002 459
duke@435 460 const TypeFunc *OptoRuntime::new_instance_Type() {
duke@435 461 // create input type (domain)
duke@435 462 const Type **fields = TypeTuple::fields(1);
duke@435 463 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 464 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 465
duke@435 466 // create result type (range)
duke@435 467 fields = TypeTuple::fields(1);
duke@435 468 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 469
duke@435 470 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 471
duke@435 472 return TypeFunc::make(domain, range);
duke@435 473 }
duke@435 474
duke@435 475
duke@435 476 const TypeFunc *OptoRuntime::athrow_Type() {
duke@435 477 // create input type (domain)
duke@435 478 const Type **fields = TypeTuple::fields(1);
duke@435 479 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 480 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 481
duke@435 482 // create result type (range)
duke@435 483 fields = TypeTuple::fields(0);
duke@435 484
duke@435 485 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 486
duke@435 487 return TypeFunc::make(domain, range);
duke@435 488 }
duke@435 489
duke@435 490
duke@435 491 const TypeFunc *OptoRuntime::new_array_Type() {
duke@435 492 // create input type (domain)
duke@435 493 const Type **fields = TypeTuple::fields(2);
duke@435 494 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 495 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
duke@435 496 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 497
duke@435 498 // create result type (range)
duke@435 499 fields = TypeTuple::fields(1);
duke@435 500 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 501
duke@435 502 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 503
duke@435 504 return TypeFunc::make(domain, range);
duke@435 505 }
duke@435 506
duke@435 507 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
duke@435 508 // create input type (domain)
duke@435 509 const int nargs = ndim + 1;
duke@435 510 const Type **fields = TypeTuple::fields(nargs);
duke@435 511 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 512 for( int i = 1; i < nargs; i++ )
duke@435 513 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
duke@435 514 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
duke@435 515
duke@435 516 // create result type (range)
duke@435 517 fields = TypeTuple::fields(1);
duke@435 518 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 519 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 520
duke@435 521 return TypeFunc::make(domain, range);
duke@435 522 }
duke@435 523
duke@435 524 const TypeFunc *OptoRuntime::multianewarray2_Type() {
duke@435 525 return multianewarray_Type(2);
duke@435 526 }
duke@435 527
duke@435 528 const TypeFunc *OptoRuntime::multianewarray3_Type() {
duke@435 529 return multianewarray_Type(3);
duke@435 530 }
duke@435 531
duke@435 532 const TypeFunc *OptoRuntime::multianewarray4_Type() {
duke@435 533 return multianewarray_Type(4);
duke@435 534 }
duke@435 535
duke@435 536 const TypeFunc *OptoRuntime::multianewarray5_Type() {
duke@435 537 return multianewarray_Type(5);
duke@435 538 }
duke@435 539
iveresov@3002 540 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
iveresov@3002 541 // create input type (domain)
iveresov@3002 542 const Type **fields = TypeTuple::fields(2);
iveresov@3002 543 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
iveresov@3002 544 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
iveresov@3002 545 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
iveresov@3002 546
iveresov@3002 547 // create result type (range)
iveresov@3002 548 fields = TypeTuple::fields(1);
iveresov@3002 549 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
iveresov@3002 550 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
iveresov@3002 551
iveresov@3002 552 return TypeFunc::make(domain, range);
iveresov@3002 553 }
iveresov@3002 554
ysr@777 555 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
ysr@777 556 const Type **fields = TypeTuple::fields(2);
ysr@777 557 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
ysr@777 558 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 559 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 560
ysr@777 561 // create result type (range)
ysr@777 562 fields = TypeTuple::fields(0);
ysr@777 563 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
ysr@777 564
ysr@777 565 return TypeFunc::make(domain, range);
ysr@777 566 }
ysr@777 567
ysr@777 568 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
ysr@777 569
ysr@777 570 const Type **fields = TypeTuple::fields(2);
ysr@777 571 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
ysr@777 572 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 573 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 574
ysr@777 575 // create result type (range)
ysr@777 576 fields = TypeTuple::fields(0);
ysr@777 577 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
ysr@777 578
ysr@777 579 return TypeFunc::make(domain, range);
ysr@777 580 }
ysr@777 581
duke@435 582 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
duke@435 583 // create input type (domain)
duke@435 584 const Type **fields = TypeTuple::fields(1);
coleenp@2497 585 // Symbol* name of class to be loaded
duke@435 586 fields[TypeFunc::Parms+0] = TypeInt::INT;
duke@435 587 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 588
duke@435 589 // create result type (range)
duke@435 590 fields = TypeTuple::fields(0);
duke@435 591 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 592
duke@435 593 return TypeFunc::make(domain, range);
duke@435 594 }
duke@435 595
duke@435 596 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 597 // Type used for stub generation for zap_dead_locals.
duke@435 598 // No inputs or outputs
duke@435 599 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
duke@435 600 // create input type (domain)
duke@435 601 const Type **fields = TypeTuple::fields(0);
duke@435 602 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 603
duke@435 604 // create result type (range)
duke@435 605 fields = TypeTuple::fields(0);
duke@435 606 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 607
duke@435 608 return TypeFunc::make(domain,range);
duke@435 609 }
duke@435 610 # endif
duke@435 611
duke@435 612
duke@435 613 //-----------------------------------------------------------------------------
duke@435 614 // Monitor Handling
duke@435 615 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
duke@435 616 // create input type (domain)
duke@435 617 const Type **fields = TypeTuple::fields(2);
duke@435 618 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 619 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 620 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 621
duke@435 622 // create result type (range)
duke@435 623 fields = TypeTuple::fields(0);
duke@435 624
duke@435 625 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 626
duke@435 627 return TypeFunc::make(domain,range);
duke@435 628 }
duke@435 629
duke@435 630
duke@435 631 //-----------------------------------------------------------------------------
duke@435 632 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
duke@435 633 // create input type (domain)
duke@435 634 const Type **fields = TypeTuple::fields(2);
duke@435 635 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 636 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 637 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 638
duke@435 639 // create result type (range)
duke@435 640 fields = TypeTuple::fields(0);
duke@435 641
duke@435 642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 643
duke@435 644 return TypeFunc::make(domain,range);
duke@435 645 }
duke@435 646
duke@435 647 const TypeFunc* OptoRuntime::flush_windows_Type() {
duke@435 648 // create input type (domain)
duke@435 649 const Type** fields = TypeTuple::fields(1);
duke@435 650 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 651 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 652
duke@435 653 // create result type
duke@435 654 fields = TypeTuple::fields(1);
duke@435 655 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 656 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 657
duke@435 658 return TypeFunc::make(domain, range);
duke@435 659 }
duke@435 660
duke@435 661 const TypeFunc* OptoRuntime::l2f_Type() {
duke@435 662 // create input type (domain)
duke@435 663 const Type **fields = TypeTuple::fields(2);
duke@435 664 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 665 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 666 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 667
duke@435 668 // create result type (range)
duke@435 669 fields = TypeTuple::fields(1);
duke@435 670 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 671 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 672
duke@435 673 return TypeFunc::make(domain, range);
duke@435 674 }
duke@435 675
duke@435 676 const TypeFunc* OptoRuntime::modf_Type() {
duke@435 677 const Type **fields = TypeTuple::fields(2);
duke@435 678 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 679 fields[TypeFunc::Parms+1] = Type::FLOAT;
duke@435 680 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 681
duke@435 682 // create result type (range)
duke@435 683 fields = TypeTuple::fields(1);
duke@435 684 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 685
duke@435 686 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 687
duke@435 688 return TypeFunc::make(domain, range);
duke@435 689 }
duke@435 690
duke@435 691 const TypeFunc *OptoRuntime::Math_D_D_Type() {
duke@435 692 // create input type (domain)
duke@435 693 const Type **fields = TypeTuple::fields(2);
coleenp@2497 694 // Symbol* name of class to be loaded
duke@435 695 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 696 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 697 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 698
duke@435 699 // create result type (range)
duke@435 700 fields = TypeTuple::fields(2);
duke@435 701 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 702 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 703 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 704
duke@435 705 return TypeFunc::make(domain, range);
duke@435 706 }
duke@435 707
duke@435 708 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
duke@435 709 const Type **fields = TypeTuple::fields(4);
duke@435 710 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 711 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 712 fields[TypeFunc::Parms+2] = Type::DOUBLE;
duke@435 713 fields[TypeFunc::Parms+3] = Type::HALF;
duke@435 714 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
duke@435 715
duke@435 716 // create result type (range)
duke@435 717 fields = TypeTuple::fields(2);
duke@435 718 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 719 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 720 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 721
duke@435 722 return TypeFunc::make(domain, range);
duke@435 723 }
duke@435 724
rbackman@3709 725 //-------------- currentTimeMillis, currentTimeNanos, etc
duke@435 726
rbackman@3709 727 const TypeFunc* OptoRuntime::void_long_Type() {
duke@435 728 // create input type (domain)
duke@435 729 const Type **fields = TypeTuple::fields(0);
duke@435 730 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 731
duke@435 732 // create result type (range)
duke@435 733 fields = TypeTuple::fields(2);
duke@435 734 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 735 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 736 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 737
duke@435 738 return TypeFunc::make(domain, range);
duke@435 739 }
duke@435 740
duke@435 741 // arraycopy stub variations:
duke@435 742 enum ArrayCopyType {
duke@435 743 ac_fast, // void(ptr, ptr, size_t)
duke@435 744 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
duke@435 745 ac_slow, // void(ptr, int, ptr, int, int)
duke@435 746 ac_generic // int(ptr, int, ptr, int, int)
duke@435 747 };
duke@435 748
duke@435 749 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
duke@435 750 // create input type (domain)
duke@435 751 int num_args = (act == ac_fast ? 3 : 5);
duke@435 752 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
duke@435 753 int argcnt = num_args;
duke@435 754 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
duke@435 755 const Type** fields = TypeTuple::fields(argcnt);
duke@435 756 int argp = TypeFunc::Parms;
duke@435 757 fields[argp++] = TypePtr::NOTNULL; // src
duke@435 758 if (num_size_args == 0) {
duke@435 759 fields[argp++] = TypeInt::INT; // src_pos
duke@435 760 }
duke@435 761 fields[argp++] = TypePtr::NOTNULL; // dest
duke@435 762 if (num_size_args == 0) {
duke@435 763 fields[argp++] = TypeInt::INT; // dest_pos
duke@435 764 fields[argp++] = TypeInt::INT; // length
duke@435 765 }
duke@435 766 while (num_size_args-- > 0) {
duke@435 767 fields[argp++] = TypeX_X; // size in whatevers (size_t)
duke@435 768 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
duke@435 769 }
duke@435 770 if (act == ac_checkcast) {
duke@435 771 fields[argp++] = TypePtr::NOTNULL; // super_klass
duke@435 772 }
duke@435 773 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
duke@435 774 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
duke@435 775
duke@435 776 // create result type if needed
duke@435 777 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
duke@435 778 fields = TypeTuple::fields(1);
duke@435 779 if (retcnt == 0)
duke@435 780 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 781 else
duke@435 782 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
duke@435 783 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
duke@435 784 return TypeFunc::make(domain, range);
duke@435 785 }
duke@435 786
duke@435 787 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
duke@435 788 // This signature is simple: Two base pointers and a size_t.
duke@435 789 return make_arraycopy_Type(ac_fast);
duke@435 790 }
duke@435 791
duke@435 792 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
duke@435 793 // An extension of fast_arraycopy_Type which adds type checking.
duke@435 794 return make_arraycopy_Type(ac_checkcast);
duke@435 795 }
duke@435 796
duke@435 797 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
duke@435 798 // This signature is exactly the same as System.arraycopy.
duke@435 799 // There are no intptr_t (int/long) arguments.
duke@435 800 return make_arraycopy_Type(ac_slow);
duke@435 801 }
duke@435 802
duke@435 803 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
duke@435 804 // This signature is like System.arraycopy, except that it returns status.
duke@435 805 return make_arraycopy_Type(ac_generic);
duke@435 806 }
duke@435 807
duke@435 808
never@2118 809 const TypeFunc* OptoRuntime::array_fill_Type() {
goetz@6468 810 const Type** fields;
goetz@6468 811 int argp = TypeFunc::Parms;
goetz@6468 812 if (CCallingConventionRequiresIntsAsLongs) {
never@2199 813 // create input type (domain): pointer, int, size_t
goetz@6468 814 fields = TypeTuple::fields(3 LP64_ONLY( + 2));
goetz@6468 815 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 816 fields[argp++] = TypeLong::LONG;
goetz@6468 817 fields[argp++] = Type::HALF;
goetz@6468 818 } else {
goetz@6468 819 // create input type (domain): pointer, int, size_t
goetz@6468 820 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
goetz@6468 821 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 822 fields[argp++] = TypeInt::INT;
goetz@6468 823 }
never@2199 824 fields[argp++] = TypeX_X; // size in whatevers (size_t)
never@2199 825 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
never@2199 826 const TypeTuple *domain = TypeTuple::make(argp, fields);
never@2118 827
never@2118 828 // create result type
never@2118 829 fields = TypeTuple::fields(1);
never@2118 830 fields[TypeFunc::Parms+0] = NULL; // void
never@2118 831 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
never@2118 832
never@2118 833 return TypeFunc::make(domain, range);
never@2118 834 }
never@2118 835
kvn@4205 836 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
kvn@4205 837 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
kvn@4205 838 // create input type (domain)
kvn@4205 839 int num_args = 3;
kvn@6312 840 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 841 num_args = 4;
kvn@6312 842 }
kvn@4205 843 int argcnt = num_args;
kvn@4205 844 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 845 int argp = TypeFunc::Parms;
kvn@4205 846 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 847 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 848 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@6312 849 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 850 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 851 }
kvn@4205 852 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 853 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 854
kvn@4205 855 // no result type needed
kvn@4205 856 fields = TypeTuple::fields(1);
kvn@4205 857 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 858 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 859 return TypeFunc::make(domain, range);
kvn@4205 860 }
kvn@4205 861
drchase@5353 862 /**
drchase@5353 863 * int updateBytesCRC32(int crc, byte* b, int len)
drchase@5353 864 */
drchase@5353 865 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
drchase@5353 866 // create input type (domain)
gromero@9496 867 int num_args = 3;
drchase@5353 868 int argcnt = num_args;
gromero@9496 869 if (CCallingConventionRequiresIntsAsLongs) {
gromero@9496 870 argcnt += 2;
gromero@9496 871 }
drchase@5353 872 const Type** fields = TypeTuple::fields(argcnt);
drchase@5353 873 int argp = TypeFunc::Parms;
gromero@9496 874 if (CCallingConventionRequiresIntsAsLongs) {
gromero@9496 875 fields[argp++] = TypeLong::LONG; // crc
gromero@9496 876 fields[argp++] = Type::HALF;
gromero@9496 877 fields[argp++] = TypePtr::NOTNULL; // src
gromero@9496 878 fields[argp++] = TypeLong::LONG; // len
gromero@9496 879 fields[argp++] = Type::HALF;
gromero@9496 880 } else {
gromero@9496 881 fields[argp++] = TypeInt::INT; // crc
gromero@9496 882 fields[argp++] = TypePtr::NOTNULL; // src
gromero@9496 883 fields[argp++] = TypeInt::INT; // len
gromero@9496 884 }
drchase@5353 885 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
drchase@5353 886 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
drchase@5353 887
drchase@5353 888 // result type needed
drchase@5353 889 fields = TypeTuple::fields(1);
drchase@5353 890 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
drchase@5353 891 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
drchase@5353 892 return TypeFunc::make(domain, range);
drchase@5353 893 }
drchase@5353 894
kvn@6653 895 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
kvn@4205 896 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
kvn@4205 897 // create input type (domain)
kvn@4205 898 int num_args = 5;
kvn@6312 899 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 900 num_args = 6;
kvn@6312 901 }
kvn@4205 902 int argcnt = num_args;
kvn@4205 903 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 904 int argp = TypeFunc::Parms;
kvn@4205 905 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 906 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 907 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 908 fields[argp++] = TypePtr::NOTNULL; // r array
kvn@4205 909 fields[argp++] = TypeInt::INT; // src len
kvn@6312 910 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 911 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 912 }
kvn@4205 913 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 914 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 915
kvn@6312 916 // returning cipher len (int)
kvn@4205 917 fields = TypeTuple::fields(1);
kvn@6312 918 fields[TypeFunc::Parms+0] = TypeInt::INT;
kvn@6312 919 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@4205 920 return TypeFunc::make(domain, range);
kvn@4205 921 }
kvn@4205 922
kvn@7027 923 /*
kvn@7027 924 * void implCompress(byte[] buf, int ofs)
kvn@7027 925 */
kvn@7027 926 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
kvn@7027 927 // create input type (domain)
kvn@7027 928 int num_args = 2;
kvn@7027 929 int argcnt = num_args;
kvn@7027 930 const Type** fields = TypeTuple::fields(argcnt);
kvn@7027 931 int argp = TypeFunc::Parms;
kvn@7027 932 fields[argp++] = TypePtr::NOTNULL; // buf
kvn@7027 933 fields[argp++] = TypePtr::NOTNULL; // state
kvn@7027 934 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7027 935 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7027 936
kvn@7027 937 // no result type needed
kvn@7027 938 fields = TypeTuple::fields(1);
kvn@7027 939 fields[TypeFunc::Parms+0] = NULL; // void
kvn@7027 940 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@7027 941 return TypeFunc::make(domain, range);
kvn@7027 942 }
kvn@7027 943
kvn@7027 944 /*
kvn@7027 945 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
kvn@7027 946 */
kvn@7027 947 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
kvn@7027 948 // create input type (domain)
kvn@7027 949 int num_args = 4;
kvn@7027 950 int argcnt = num_args;
ogatak@9713 951 if(CCallingConventionRequiresIntsAsLongs) {
ogatak@9713 952 argcnt += 2;
ogatak@9713 953 }
kvn@7027 954 const Type** fields = TypeTuple::fields(argcnt);
kvn@7027 955 int argp = TypeFunc::Parms;
ogatak@9713 956 if(CCallingConventionRequiresIntsAsLongs) {
ogatak@9713 957 fields[argp++] = TypePtr::NOTNULL; // buf
ogatak@9713 958 fields[argp++] = TypePtr::NOTNULL; // state
ogatak@9713 959 fields[argp++] = TypeLong::LONG; // ofs
ogatak@9713 960 fields[argp++] = Type::HALF;
ogatak@9713 961 fields[argp++] = TypeLong::LONG; // limit
ogatak@9713 962 fields[argp++] = Type::HALF;
ogatak@9713 963 } else {
ogatak@9713 964 fields[argp++] = TypePtr::NOTNULL; // buf
ogatak@9713 965 fields[argp++] = TypePtr::NOTNULL; // state
ogatak@9713 966 fields[argp++] = TypeInt::INT; // ofs
ogatak@9713 967 fields[argp++] = TypeInt::INT; // limit
ogatak@9713 968 }
kvn@7027 969 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7027 970 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7027 971
kvn@7027 972 // returning ofs (int)
kvn@7027 973 fields = TypeTuple::fields(1);
kvn@7027 974 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
kvn@7027 975 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@7027 976 return TypeFunc::make(domain, range);
kvn@7027 977 }
kvn@7027 978
kvn@7152 979 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
kvn@7152 980 // create input type (domain)
kvn@7152 981 int num_args = 6;
kvn@7152 982 int argcnt = num_args;
kvn@7152 983 const Type** fields = TypeTuple::fields(argcnt);
kvn@7152 984 int argp = TypeFunc::Parms;
kvn@7152 985 fields[argp++] = TypePtr::NOTNULL; // x
kvn@7152 986 fields[argp++] = TypeInt::INT; // xlen
kvn@7152 987 fields[argp++] = TypePtr::NOTNULL; // y
kvn@7152 988 fields[argp++] = TypeInt::INT; // ylen
kvn@7152 989 fields[argp++] = TypePtr::NOTNULL; // z
kvn@7152 990 fields[argp++] = TypeInt::INT; // zlen
kvn@7152 991 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7152 992 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7152 993
kvn@7152 994 // no result type needed
kvn@7152 995 fields = TypeTuple::fields(1);
kvn@7152 996 fields[TypeFunc::Parms+0] = NULL;
kvn@7152 997 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@7152 998 return TypeFunc::make(domain, range);
kvn@7152 999 }
kvn@7152 1000
igerasim@8307 1001 const TypeFunc* OptoRuntime::squareToLen_Type() {
igerasim@8307 1002 // create input type (domain)
igerasim@8307 1003 int num_args = 4;
igerasim@8307 1004 int argcnt = num_args;
igerasim@8307 1005 const Type** fields = TypeTuple::fields(argcnt);
igerasim@8307 1006 int argp = TypeFunc::Parms;
igerasim@8307 1007 fields[argp++] = TypePtr::NOTNULL; // x
igerasim@8307 1008 fields[argp++] = TypeInt::INT; // len
igerasim@8307 1009 fields[argp++] = TypePtr::NOTNULL; // z
igerasim@8307 1010 fields[argp++] = TypeInt::INT; // zlen
igerasim@8307 1011 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
igerasim@8307 1012 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
igerasim@8307 1013
igerasim@8307 1014 // no result type needed
igerasim@8307 1015 fields = TypeTuple::fields(1);
igerasim@8307 1016 fields[TypeFunc::Parms+0] = NULL;
igerasim@8307 1017 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
igerasim@8307 1018 return TypeFunc::make(domain, range);
igerasim@8307 1019 }
igerasim@8307 1020
igerasim@8307 1021 // for mulAdd calls, 2 pointers and 3 ints, returning int
igerasim@8307 1022 const TypeFunc* OptoRuntime::mulAdd_Type() {
igerasim@8307 1023 // create input type (domain)
igerasim@8307 1024 int num_args = 5;
igerasim@8307 1025 int argcnt = num_args;
igerasim@8307 1026 const Type** fields = TypeTuple::fields(argcnt);
igerasim@8307 1027 int argp = TypeFunc::Parms;
igerasim@8307 1028 fields[argp++] = TypePtr::NOTNULL; // out
igerasim@8307 1029 fields[argp++] = TypePtr::NOTNULL; // in
igerasim@8307 1030 fields[argp++] = TypeInt::INT; // offset
igerasim@8307 1031 fields[argp++] = TypeInt::INT; // len
igerasim@8307 1032 fields[argp++] = TypeInt::INT; // k
igerasim@8307 1033 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
igerasim@8307 1034 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
igerasim@8307 1035
igerasim@8307 1036 // returning carry (int)
igerasim@8307 1037 fields = TypeTuple::fields(1);
igerasim@8307 1038 fields[TypeFunc::Parms+0] = TypeInt::INT;
igerasim@8307 1039 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
igerasim@8307 1040 return TypeFunc::make(domain, range);
igerasim@8307 1041 }
igerasim@8307 1042
vkempik@8318 1043 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
vkempik@8318 1044 // create input type (domain)
vkempik@8318 1045 int num_args = 7;
vkempik@8318 1046 int argcnt = num_args;
mdoerr@8903 1047 if (CCallingConventionRequiresIntsAsLongs) {
mdoerr@8903 1048 argcnt++; // additional placeholder
mdoerr@8903 1049 }
vkempik@8318 1050 const Type** fields = TypeTuple::fields(argcnt);
vkempik@8318 1051 int argp = TypeFunc::Parms;
vkempik@8318 1052 fields[argp++] = TypePtr::NOTNULL; // a
vkempik@8318 1053 fields[argp++] = TypePtr::NOTNULL; // b
vkempik@8318 1054 fields[argp++] = TypePtr::NOTNULL; // n
mdoerr@8903 1055 if (CCallingConventionRequiresIntsAsLongs) {
mdoerr@8903 1056 fields[argp++] = TypeLong::LONG; // len
mdoerr@8903 1057 fields[argp++] = TypeLong::HALF; // placeholder
mdoerr@8903 1058 } else {
mdoerr@8903 1059 fields[argp++] = TypeInt::INT; // len
mdoerr@8903 1060 }
vkempik@8318 1061 fields[argp++] = TypeLong::LONG; // inv
vkempik@8318 1062 fields[argp++] = Type::HALF;
vkempik@8318 1063 fields[argp++] = TypePtr::NOTNULL; // result
vkempik@8318 1064 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
vkempik@8318 1065 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
vkempik@8318 1066
vkempik@8318 1067 // result type needed
vkempik@8318 1068 fields = TypeTuple::fields(1);
vkempik@8318 1069 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
vkempik@8318 1070
vkempik@8318 1071 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
vkempik@8318 1072 return TypeFunc::make(domain, range);
vkempik@8318 1073 }
vkempik@8318 1074
vkempik@8318 1075 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
vkempik@8318 1076 // create input type (domain)
vkempik@8318 1077 int num_args = 6;
vkempik@8318 1078 int argcnt = num_args;
mdoerr@8903 1079 if (CCallingConventionRequiresIntsAsLongs) {
mdoerr@8903 1080 argcnt++; // additional placeholder
mdoerr@8903 1081 }
vkempik@8318 1082 const Type** fields = TypeTuple::fields(argcnt);
vkempik@8318 1083 int argp = TypeFunc::Parms;
vkempik@8318 1084 fields[argp++] = TypePtr::NOTNULL; // a
vkempik@8318 1085 fields[argp++] = TypePtr::NOTNULL; // n
mdoerr@8903 1086 if (CCallingConventionRequiresIntsAsLongs) {
mdoerr@8903 1087 fields[argp++] = TypeLong::LONG; // len
mdoerr@8903 1088 fields[argp++] = TypeLong::HALF; // placeholder
mdoerr@8903 1089 } else {
mdoerr@8903 1090 fields[argp++] = TypeInt::INT; // len
mdoerr@8903 1091 }
vkempik@8318 1092 fields[argp++] = TypeLong::LONG; // inv
vkempik@8318 1093 fields[argp++] = Type::HALF;
vkempik@8318 1094 fields[argp++] = TypePtr::NOTNULL; // result
vkempik@8318 1095 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
vkempik@8318 1096 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
vkempik@8318 1097
vkempik@8318 1098 // result type needed
vkempik@8318 1099 fields = TypeTuple::fields(1);
vkempik@8318 1100 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
vkempik@8318 1101
vkempik@8318 1102 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
vkempik@8318 1103 return TypeFunc::make(domain, range);
vkempik@8318 1104 }
kvn@7152 1105
kvn@7152 1106
duke@435 1107 //------------- Interpreter state access for on stack replacement
duke@435 1108 const TypeFunc* OptoRuntime::osr_end_Type() {
duke@435 1109 // create input type (domain)
duke@435 1110 const Type **fields = TypeTuple::fields(1);
duke@435 1111 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
duke@435 1112 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1113
duke@435 1114 // create result type
duke@435 1115 fields = TypeTuple::fields(1);
duke@435 1116 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
duke@435 1117 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 1118 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 1119 return TypeFunc::make(domain, range);
duke@435 1120 }
duke@435 1121
duke@435 1122 //-------------- methodData update helpers
duke@435 1123
duke@435 1124 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
duke@435 1125 // create input type (domain)
duke@435 1126 const Type **fields = TypeTuple::fields(2);
duke@435 1127 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
duke@435 1128 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
duke@435 1129 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 1130
duke@435 1131 // create result type
duke@435 1132 fields = TypeTuple::fields(1);
duke@435 1133 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 1134 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 1135 return TypeFunc::make(domain,range);
duke@435 1136 }
duke@435 1137
duke@435 1138 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
duke@435 1139 if (receiver == NULL) return;
coleenp@4037 1140 Klass* receiver_klass = receiver->klass();
duke@435 1141
duke@435 1142 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
duke@435 1143 int empty_row = -1; // free row, if any is encountered
duke@435 1144
duke@435 1145 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
duke@435 1146 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
duke@435 1147 // if (vc->receiver(row) == receiver_klass)
duke@435 1148 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
duke@435 1149 intptr_t row_recv = *(mdp + receiver_off);
duke@435 1150 if (row_recv == (intptr_t) receiver_klass) {
duke@435 1151 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
duke@435 1152 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
duke@435 1153 *(mdp + count_off) += DataLayout::counter_increment;
duke@435 1154 return;
duke@435 1155 } else if (row_recv == 0) {
duke@435 1156 // else if (vc->receiver(row) == NULL)
duke@435 1157 empty_row = (int) row;
duke@435 1158 }
duke@435 1159 }
duke@435 1160
duke@435 1161 if (empty_row != -1) {
duke@435 1162 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
duke@435 1163 // vc->set_receiver(empty_row, receiver_klass);
duke@435 1164 *(mdp + receiver_off) = (intptr_t) receiver_klass;
duke@435 1165 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
duke@435 1166 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
duke@435 1167 *(mdp + count_off) = DataLayout::counter_increment;
kvn@1641 1168 } else {
kvn@1641 1169 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1170 // Increment total counter to indicate polymorphic case.
kvn@1641 1171 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
kvn@1641 1172 *count_p += DataLayout::counter_increment;
duke@435 1173 }
duke@435 1174 JRT_END
duke@435 1175
duke@435 1176 //-------------------------------------------------------------------------------------
duke@435 1177 // register policy
duke@435 1178
duke@435 1179 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
duke@435 1180 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
duke@435 1181 switch (register_save_policy[reg]) {
duke@435 1182 case 'C': return false; //SOC
duke@435 1183 case 'E': return true ; //SOE
duke@435 1184 case 'N': return false; //NS
duke@435 1185 case 'A': return false; //AS
duke@435 1186 }
duke@435 1187 ShouldNotReachHere();
duke@435 1188 return false;
duke@435 1189 }
duke@435 1190
duke@435 1191 //-----------------------------------------------------------------------
duke@435 1192 // Exceptions
duke@435 1193 //
duke@435 1194
duke@435 1195 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
duke@435 1196
duke@435 1197 // The method is an entry that is always called by a C++ method not
duke@435 1198 // directly from compiled code. Compiled code will call the C++ method following.
duke@435 1199 // We can't allow async exception to be installed during exception processing.
duke@435 1200 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
duke@435 1201
duke@435 1202 // Do not confuse exception_oop with pending_exception. The exception_oop
duke@435 1203 // is only used to pass arguments into the method. Not for general
duke@435 1204 // exception handling. DO NOT CHANGE IT to use pending_exception, since
duke@435 1205 // the runtime stubs checks this on exit.
duke@435 1206 assert(thread->exception_oop() != NULL, "exception oop is found");
duke@435 1207 address handler_address = NULL;
duke@435 1208
duke@435 1209 Handle exception(thread, thread->exception_oop());
twisti@5915 1210 address pc = thread->exception_pc();
twisti@5915 1211
twisti@5915 1212 // Clear out the exception oop and pc since looking up an
twisti@5915 1213 // exception handler can cause class loading, which might throw an
twisti@5915 1214 // exception and those fields are expected to be clear during
twisti@5915 1215 // normal bytecode execution.
twisti@5915 1216 thread->clear_exception_oop_and_pc();
duke@435 1217
duke@435 1218 if (TraceExceptions) {
twisti@5915 1219 trace_exception(exception(), pc, "");
duke@435 1220 }
twisti@5915 1221
duke@435 1222 // for AbortVMOnException flag
duke@435 1223 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 1224
twisti@5915 1225 #ifdef ASSERT
twisti@5915 1226 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
twisti@5915 1227 // should throw an exception here
twisti@5915 1228 ShouldNotReachHere();
twisti@5915 1229 }
twisti@5915 1230 #endif
duke@435 1231
duke@435 1232 // new exception handling: this method is entered only from adapters
duke@435 1233 // exceptions from compiled java methods are handled in compiled code
duke@435 1234 // using rethrow node
duke@435 1235
duke@435 1236 nm = CodeCache::find_nmethod(pc);
duke@435 1237 assert(nm != NULL, "No NMethod found");
duke@435 1238 if (nm->is_native_method()) {
twisti@5915 1239 fatal("Native method should not have path to exception handling");
duke@435 1240 } else {
duke@435 1241 // we are switching to old paradigm: search for exception handler in caller_frame
duke@435 1242 // instead in exception handler of caller_frame.sender()
duke@435 1243
dcubed@1648 1244 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 1245 // "Full-speed catching" is not necessary here,
duke@435 1246 // since we're notifying the VM on every catch.
duke@435 1247 // Force deoptimization and the rest of the lookup
duke@435 1248 // will be fine.
kvn@4364 1249 deoptimize_caller_frame(thread);
duke@435 1250 }
duke@435 1251
duke@435 1252 // Check the stack guard pages. If enabled, look for handler in this frame;
duke@435 1253 // otherwise, forcibly unwind the frame.
duke@435 1254 //
duke@435 1255 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
duke@435 1256 bool force_unwind = !thread->reguard_stack();
duke@435 1257 bool deopting = false;
duke@435 1258 if (nm->is_deopt_pc(pc)) {
duke@435 1259 deopting = true;
duke@435 1260 RegisterMap map(thread, false);
duke@435 1261 frame deoptee = thread->last_frame().sender(&map);
duke@435 1262 assert(deoptee.is_deoptimized_frame(), "must be deopted");
duke@435 1263 // Adjust the pc back to the original throwing pc
duke@435 1264 pc = deoptee.pc();
duke@435 1265 }
duke@435 1266
duke@435 1267 // If we are forcing an unwind because of stack overflow then deopt is
goetz@6441 1268 // irrelevant since we are throwing the frame away anyway.
duke@435 1269
duke@435 1270 if (deopting && !force_unwind) {
duke@435 1271 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1272 } else {
duke@435 1273
duke@435 1274 handler_address =
duke@435 1275 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
duke@435 1276
duke@435 1277 if (handler_address == NULL) {
shshahma@9305 1278 bool recursive_exception = false;
shshahma@9305 1279 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
duke@435 1280 assert (handler_address != NULL, "must have compiled handler");
kvn@3194 1281 // Update the exception cache only when the unwind was not forced
kvn@3194 1282 // and there didn't happen another exception during the computation of the
shshahma@9305 1283 // compiled exception handler. Checking for exception oop equality is not
shshahma@9305 1284 // sufficient because some exceptions are pre-allocated and reused.
shshahma@9305 1285 if (!force_unwind && !recursive_exception) {
duke@435 1286 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
duke@435 1287 }
duke@435 1288 } else {
shshahma@9305 1289 #ifdef ASSERT
shshahma@9305 1290 bool recursive_exception = false;
shshahma@9305 1291 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
shshahma@9305 1292 assert(recursive_exception || (handler_address == computed_address), err_msg("Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
shshahma@9305 1293 p2i(handler_address), p2i(computed_address)));
shshahma@9305 1294 #endif
duke@435 1295 }
duke@435 1296 }
duke@435 1297
duke@435 1298 thread->set_exception_pc(pc);
duke@435 1299 thread->set_exception_handler_pc(handler_address);
twisti@1570 1300
twisti@1730 1301 // Check if the exception PC is a MethodHandle call site.
twisti@1803 1302 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
duke@435 1303 }
duke@435 1304
duke@435 1305 // Restore correct return pc. Was saved above.
duke@435 1306 thread->set_exception_oop(exception());
duke@435 1307 return handler_address;
duke@435 1308
duke@435 1309 JRT_END
duke@435 1310
duke@435 1311 // We are entering here from exception_blob
duke@435 1312 // If there is a compiled exception handler in this method, we will continue there;
duke@435 1313 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 1314 // Note we enter without the usual JRT wrapper. We will call a helper routine that
duke@435 1315 // will do the normal VM entry. We do it this way so that we can see if the nmethod
duke@435 1316 // we looked up the handler for has been deoptimized in the meantime. If it has been
goetz@6441 1317 // we must not use the handler and instead return the deopt blob.
duke@435 1318 address OptoRuntime::handle_exception_C(JavaThread* thread) {
duke@435 1319 //
duke@435 1320 // We are in Java not VM and in debug mode we have a NoHandleMark
duke@435 1321 //
duke@435 1322 #ifndef PRODUCT
duke@435 1323 SharedRuntime::_find_handler_ctr++; // find exception handler
duke@435 1324 #endif
duke@435 1325 debug_only(NoHandleMark __hm;)
duke@435 1326 nmethod* nm = NULL;
duke@435 1327 address handler_address = NULL;
duke@435 1328 {
duke@435 1329 // Enter the VM
duke@435 1330
duke@435 1331 ResetNoHandleMark rnhm;
duke@435 1332 handler_address = handle_exception_C_helper(thread, nm);
duke@435 1333 }
duke@435 1334
duke@435 1335 // Back in java: Use no oops, DON'T safepoint
duke@435 1336
duke@435 1337 // Now check to see if the handler we are returning is in a now
duke@435 1338 // deoptimized frame
duke@435 1339
duke@435 1340 if (nm != NULL) {
duke@435 1341 RegisterMap map(thread, false);
duke@435 1342 frame caller = thread->last_frame().sender(&map);
duke@435 1343 #ifdef ASSERT
duke@435 1344 assert(caller.is_compiled_frame(), "must be");
duke@435 1345 #endif // ASSERT
duke@435 1346 if (caller.is_deoptimized_frame()) {
duke@435 1347 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1348 }
duke@435 1349 }
duke@435 1350 return handler_address;
duke@435 1351 }
duke@435 1352
duke@435 1353 //------------------------------rethrow----------------------------------------
duke@435 1354 // We get here after compiled code has executed a 'RethrowNode'. The callee
duke@435 1355 // is either throwing or rethrowing an exception. The callee-save registers
duke@435 1356 // have been restored, synchronized objects have been unlocked and the callee
duke@435 1357 // stack frame has been removed. The return address was passed in.
duke@435 1358 // Exception oop is passed as the 1st argument. This routine is then called
duke@435 1359 // from the stub. On exit, we know where to jump in the caller's code.
duke@435 1360 // After this C code exits, the stub will pop his frame and end in a jump
duke@435 1361 // (instead of a return). We enter the caller's default handler.
duke@435 1362 //
duke@435 1363 // This must be JRT_LEAF:
duke@435 1364 // - caller will not change its state as we cannot block on exit,
duke@435 1365 // therefore raw_exception_handler_for_return_address is all it takes
duke@435 1366 // to handle deoptimized blobs
duke@435 1367 //
duke@435 1368 // However, there needs to be a safepoint check in the middle! So compiled
duke@435 1369 // safepoints are completely watertight.
duke@435 1370 //
duke@435 1371 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
duke@435 1372 //
duke@435 1373 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
duke@435 1374 //
duke@435 1375 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
duke@435 1376 #ifndef PRODUCT
duke@435 1377 SharedRuntime::_rethrow_ctr++; // count rethrows
duke@435 1378 #endif
duke@435 1379 assert (exception != NULL, "should have thrown a NULLPointerException");
duke@435 1380 #ifdef ASSERT
never@1577 1381 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1382 // should throw an exception here
duke@435 1383 ShouldNotReachHere();
duke@435 1384 }
duke@435 1385 #endif
duke@435 1386
duke@435 1387 thread->set_vm_result(exception);
duke@435 1388 // Frame not compiled (handles deoptimization blob)
twisti@1730 1389 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
duke@435 1390 }
duke@435 1391
duke@435 1392
duke@435 1393 const TypeFunc *OptoRuntime::rethrow_Type() {
duke@435 1394 // create input type (domain)
duke@435 1395 const Type **fields = TypeTuple::fields(1);
duke@435 1396 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1397 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1398
duke@435 1399 // create result type (range)
duke@435 1400 fields = TypeTuple::fields(1);
duke@435 1401 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1402 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1403
duke@435 1404 return TypeFunc::make(domain, range);
duke@435 1405 }
duke@435 1406
duke@435 1407
duke@435 1408 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
kvn@4364 1409 // Deoptimize the caller before continuing, as the compiled
kvn@4364 1410 // exception handler table may not be valid.
kvn@4364 1411 if (!StressCompiledExceptionHandlers && doit) {
kvn@4364 1412 deoptimize_caller_frame(thread);
kvn@4364 1413 }
kvn@4364 1414 }
duke@435 1415
kvn@4364 1416 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
kvn@4364 1417 // Called from within the owner thread, so no need for safepoint
kvn@4364 1418 RegisterMap reg_map(thread);
kvn@4364 1419 frame stub_frame = thread->last_frame();
kvn@4364 1420 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@4364 1421 frame caller_frame = stub_frame.sender(&reg_map);
kvn@4364 1422
kvn@4364 1423 // Deoptimize the caller frame.
kvn@4364 1424 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 1425 }
duke@435 1426
duke@435 1427
kvn@3259 1428 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
kvn@3259 1429 // Called from within the owner thread, so no need for safepoint
kvn@3259 1430 RegisterMap reg_map(thread);
kvn@3259 1431 frame stub_frame = thread->last_frame();
kvn@3259 1432 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@3259 1433 frame caller_frame = stub_frame.sender(&reg_map);
kvn@3259 1434 return caller_frame.is_deoptimized_frame();
kvn@3259 1435 }
kvn@3259 1436
kvn@3259 1437
duke@435 1438 const TypeFunc *OptoRuntime::register_finalizer_Type() {
duke@435 1439 // create input type (domain)
duke@435 1440 const Type **fields = TypeTuple::fields(1);
duke@435 1441 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
duke@435 1442 // // The JavaThread* is passed to each routine as the last argument
duke@435 1443 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
duke@435 1444 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1445
duke@435 1446 // create result type (range)
duke@435 1447 fields = TypeTuple::fields(0);
duke@435 1448
duke@435 1449 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1450
duke@435 1451 return TypeFunc::make(domain,range);
duke@435 1452 }
duke@435 1453
duke@435 1454
duke@435 1455 //-----------------------------------------------------------------------------
duke@435 1456 // Dtrace support. entry and exit probes have the same signature
duke@435 1457 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
duke@435 1458 // create input type (domain)
duke@435 1459 const Type **fields = TypeTuple::fields(2);
duke@435 1460 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
roland@4051 1461 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
duke@435 1462 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1463
duke@435 1464 // create result type (range)
duke@435 1465 fields = TypeTuple::fields(0);
duke@435 1466
duke@435 1467 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1468
duke@435 1469 return TypeFunc::make(domain,range);
duke@435 1470 }
duke@435 1471
duke@435 1472 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
duke@435 1473 // create input type (domain)
duke@435 1474 const Type **fields = TypeTuple::fields(2);
duke@435 1475 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
duke@435 1476 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
duke@435 1477
duke@435 1478 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1479
duke@435 1480 // create result type (range)
duke@435 1481 fields = TypeTuple::fields(0);
duke@435 1482
duke@435 1483 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1484
duke@435 1485 return TypeFunc::make(domain,range);
duke@435 1486 }
duke@435 1487
duke@435 1488
duke@435 1489 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
duke@435 1490 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 1491 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 1492 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 1493 JRT_END
duke@435 1494
duke@435 1495 //-----------------------------------------------------------------------------
duke@435 1496
duke@435 1497 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
duke@435 1498
duke@435 1499 //
duke@435 1500 // dump the collected NamedCounters.
duke@435 1501 //
duke@435 1502 void OptoRuntime::print_named_counters() {
duke@435 1503 int total_lock_count = 0;
duke@435 1504 int eliminated_lock_count = 0;
duke@435 1505
duke@435 1506 NamedCounter* c = _named_counters;
duke@435 1507 while (c) {
duke@435 1508 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
duke@435 1509 int count = c->count();
duke@435 1510 if (count > 0) {
duke@435 1511 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
duke@435 1512 if (Verbose) {
duke@435 1513 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
duke@435 1514 }
duke@435 1515 total_lock_count += count;
duke@435 1516 if (eliminated) {
duke@435 1517 eliminated_lock_count += count;
duke@435 1518 }
duke@435 1519 }
duke@435 1520 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
duke@435 1521 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
duke@435 1522 if (blc->nonzero()) {
duke@435 1523 tty->print_cr("%s", c->name());
duke@435 1524 blc->print_on(tty);
duke@435 1525 }
kvn@6429 1526 #if INCLUDE_RTM_OPT
kvn@6429 1527 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
kvn@6429 1528 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
kvn@6429 1529 if (rlc->nonzero()) {
kvn@6429 1530 tty->print_cr("%s", c->name());
kvn@6429 1531 rlc->print_on(tty);
kvn@6429 1532 }
kvn@6429 1533 #endif
duke@435 1534 }
duke@435 1535 c = c->next();
duke@435 1536 }
duke@435 1537 if (total_lock_count > 0) {
duke@435 1538 tty->print_cr("dynamic locks: %d", total_lock_count);
duke@435 1539 if (eliminated_lock_count) {
duke@435 1540 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
duke@435 1541 (int)(eliminated_lock_count * 100.0 / total_lock_count));
duke@435 1542 }
duke@435 1543 }
duke@435 1544 }
duke@435 1545
duke@435 1546 //
duke@435 1547 // Allocate a new NamedCounter. The JVMState is used to generate the
duke@435 1548 // name which consists of method@line for the inlining tree.
duke@435 1549 //
duke@435 1550
duke@435 1551 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
duke@435 1552 int max_depth = youngest_jvms->depth();
duke@435 1553
duke@435 1554 // Visit scopes from youngest to oldest.
duke@435 1555 bool first = true;
duke@435 1556 stringStream st;
duke@435 1557 for (int depth = max_depth; depth >= 1; depth--) {
duke@435 1558 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1559 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
duke@435 1560 if (!first) {
duke@435 1561 st.print(" ");
duke@435 1562 } else {
duke@435 1563 first = false;
duke@435 1564 }
duke@435 1565 int bci = jvms->bci();
duke@435 1566 if (bci < 0) bci = 0;
duke@435 1567 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
duke@435 1568 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
duke@435 1569 }
duke@435 1570 NamedCounter* c;
duke@435 1571 if (tag == NamedCounter::BiasedLockingCounter) {
duke@435 1572 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
kvn@6429 1573 } else if (tag == NamedCounter::RTMLockingCounter) {
kvn@6429 1574 c = new RTMLockingNamedCounter(strdup(st.as_string()));
duke@435 1575 } else {
duke@435 1576 c = new NamedCounter(strdup(st.as_string()), tag);
duke@435 1577 }
duke@435 1578
duke@435 1579 // atomically add the new counter to the head of the list. We only
duke@435 1580 // add counters so this is safe.
duke@435 1581 NamedCounter* head;
duke@435 1582 do {
kvn@6429 1583 c->set_next(NULL);
duke@435 1584 head = _named_counters;
duke@435 1585 c->set_next(head);
duke@435 1586 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
duke@435 1587 return c;
duke@435 1588 }
duke@435 1589
duke@435 1590 //-----------------------------------------------------------------------------
duke@435 1591 // Non-product code
duke@435 1592 #ifndef PRODUCT
duke@435 1593
duke@435 1594 int trace_exception_counter = 0;
duke@435 1595 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
duke@435 1596 ttyLocker ttyl;
duke@435 1597 trace_exception_counter++;
duke@435 1598 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
duke@435 1599 exception_oop->print_value();
duke@435 1600 tty->print(" in ");
duke@435 1601 CodeBlob* blob = CodeCache::find_blob(exception_pc);
duke@435 1602 if (blob->is_nmethod()) {
twisti@5915 1603 nmethod* nm = blob->as_nmethod_or_null();
twisti@5915 1604 nm->method()->print_value();
duke@435 1605 } else if (blob->is_runtime_stub()) {
duke@435 1606 tty->print("<runtime-stub>");
duke@435 1607 } else {
duke@435 1608 tty->print("<unknown>");
duke@435 1609 }
drchase@6680 1610 tty->print(" at " INTPTR_FORMAT, p2i(exception_pc));
duke@435 1611 tty->print_cr("]");
duke@435 1612 }
duke@435 1613
duke@435 1614 #endif // PRODUCT
duke@435 1615
duke@435 1616
duke@435 1617 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1618 // Called from call sites in compiled code with oop maps (actually safepoints)
duke@435 1619 // Zaps dead locals in first java frame.
duke@435 1620 // Is entry because may need to lock to generate oop maps
duke@435 1621 // Currently, only used for compiler frames, but someday may be used
duke@435 1622 // for interpreter frames, too.
duke@435 1623
duke@435 1624 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
duke@435 1625
duke@435 1626 // avoid pointers to member funcs with these helpers
duke@435 1627 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
duke@435 1628 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
duke@435 1629
duke@435 1630
duke@435 1631 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
duke@435 1632 bool (*is_this_the_right_frame_to_zap)(frame*)) {
duke@435 1633 assert(JavaThread::current() == thread, "is this needed?");
duke@435 1634
duke@435 1635 if ( !ZapDeadCompiledLocals ) return;
duke@435 1636
duke@435 1637 bool skip = false;
duke@435 1638
duke@435 1639 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
duke@435 1640 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
duke@435 1641 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
duke@435 1642 warning("starting zapping after skipping");
duke@435 1643
duke@435 1644 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
duke@435 1645 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
duke@435 1646 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
duke@435 1647 warning("about to zap last zap");
duke@435 1648
duke@435 1649 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
duke@435 1650
duke@435 1651 if ( skip ) return;
duke@435 1652
duke@435 1653 // find java frame and zap it
duke@435 1654
duke@435 1655 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
duke@435 1656 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
duke@435 1657 sfs.current()->zap_dead_locals(thread, sfs.register_map());
duke@435 1658 return;
duke@435 1659 }
duke@435 1660 }
duke@435 1661 warning("no frame found to zap in zap_dead_Java_locals_C");
duke@435 1662 }
duke@435 1663
duke@435 1664 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
duke@435 1665 zap_dead_java_or_native_locals(thread, is_java_frame);
duke@435 1666 JRT_END
duke@435 1667
duke@435 1668 // The following does not work because for one thing, the
duke@435 1669 // thread state is wrong; it expects java, but it is native.
twisti@1040 1670 // Also, the invariants in a native stub are different and
duke@435 1671 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
duke@435 1672 // in there.
duke@435 1673 // So for now, we do not zap in native stubs.
duke@435 1674
duke@435 1675 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
duke@435 1676 zap_dead_java_or_native_locals(thread, is_native_frame);
duke@435 1677 JRT_END
duke@435 1678
duke@435 1679 # endif

mercurial