src/share/vm/opto/memnode.cpp

Sat, 16 Mar 2013 07:39:14 -0700

author
morris
date
Sat, 16 Mar 2013 07:39:14 -0700
changeset 4760
96ef09c26978
parent 4695
ff55877839bc
child 5110
6f3fd5150b67
permissions
-rw-r--r--

8009166: [parfait] Null pointer deference in hotspot/src/share/vm/opto/type.cpp
Summary: add guarantee() to as_instance_type()
Reviewed-by: kvn, twisti

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "oops/objArrayKlass.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/connode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/machnode.hpp"
stefank@2314 36 #include "opto/matcher.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/mulnode.hpp"
stefank@2314 39 #include "opto/phaseX.hpp"
stefank@2314 40 #include "opto/regmask.hpp"
stefank@2314 41
duke@435 42 // Portions of code courtesy of Clifford Click
duke@435 43
duke@435 44 // Optimization - Graph Style
duke@435 45
kvn@509 46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 47
duke@435 48 //=============================================================================
duke@435 49 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 50
duke@435 51 const TypePtr *MemNode::adr_type() const {
duke@435 52 Node* adr = in(Address);
duke@435 53 const TypePtr* cross_check = NULL;
duke@435 54 DEBUG_ONLY(cross_check = _adr_type);
duke@435 55 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 56 }
duke@435 57
duke@435 58 #ifndef PRODUCT
duke@435 59 void MemNode::dump_spec(outputStream *st) const {
duke@435 60 if (in(Address) == NULL) return; // node is dead
duke@435 61 #ifndef ASSERT
duke@435 62 // fake the missing field
duke@435 63 const TypePtr* _adr_type = NULL;
duke@435 64 if (in(Address) != NULL)
duke@435 65 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 66 #endif
duke@435 67 dump_adr_type(this, _adr_type, st);
duke@435 68
duke@435 69 Compile* C = Compile::current();
duke@435 70 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 71 st->print(" Volatile!");
duke@435 72 }
duke@435 73
duke@435 74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 75 st->print(" @");
duke@435 76 if (adr_type == NULL) {
duke@435 77 st->print("NULL");
duke@435 78 } else {
duke@435 79 adr_type->dump_on(st);
duke@435 80 Compile* C = Compile::current();
duke@435 81 Compile::AliasType* atp = NULL;
duke@435 82 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 83 if (atp == NULL)
duke@435 84 st->print(", idx=?\?;");
duke@435 85 else if (atp->index() == Compile::AliasIdxBot)
duke@435 86 st->print(", idx=Bot;");
duke@435 87 else if (atp->index() == Compile::AliasIdxTop)
duke@435 88 st->print(", idx=Top;");
duke@435 89 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 90 st->print(", idx=Raw;");
duke@435 91 else {
duke@435 92 ciField* field = atp->field();
duke@435 93 if (field) {
duke@435 94 st->print(", name=");
duke@435 95 field->print_name_on(st);
duke@435 96 }
duke@435 97 st->print(", idx=%d;", atp->index());
duke@435 98 }
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 extern void print_alias_types();
duke@435 103
duke@435 104 #endif
duke@435 105
kvn@509 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 107 const TypeOopPtr *tinst = t_adr->isa_oopptr();
kvn@658 108 if (tinst == NULL || !tinst->is_known_instance_field())
kvn@509 109 return mchain; // don't try to optimize non-instance types
kvn@509 110 uint instance_id = tinst->instance_id();
kvn@688 111 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 112 Node *prev = NULL;
kvn@509 113 Node *result = mchain;
kvn@509 114 while (prev != result) {
kvn@509 115 prev = result;
kvn@688 116 if (result == start_mem)
twisti@1040 117 break; // hit one of our sentinels
kvn@509 118 // skip over a call which does not affect this memory slice
kvn@509 119 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 120 Node *proj_in = result->in(0);
kvn@688 121 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
twisti@1040 122 break; // hit one of our sentinels
kvn@688 123 } else if (proj_in->is_Call()) {
kvn@509 124 CallNode *call = proj_in->as_Call();
kvn@509 125 if (!call->may_modify(t_adr, phase)) {
kvn@509 126 result = call->in(TypeFunc::Memory);
kvn@509 127 }
kvn@509 128 } else if (proj_in->is_Initialize()) {
kvn@509 129 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 130 // Stop if this is the initialization for the object instance which
kvn@509 131 // which contains this memory slice, otherwise skip over it.
kvn@509 132 if (alloc != NULL && alloc->_idx != instance_id) {
kvn@509 133 result = proj_in->in(TypeFunc::Memory);
kvn@509 134 }
kvn@509 135 } else if (proj_in->is_MemBar()) {
kvn@509 136 result = proj_in->in(TypeFunc::Memory);
kvn@688 137 } else {
kvn@688 138 assert(false, "unexpected projection");
kvn@509 139 }
kvn@1535 140 } else if (result->is_ClearArray()) {
kvn@1535 141 if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
kvn@1535 142 // Can not bypass initialization of the instance
kvn@1535 143 // we are looking for.
kvn@1535 144 break;
kvn@1535 145 }
kvn@1535 146 // Otherwise skip it (the call updated 'result' value).
kvn@509 147 } else if (result->is_MergeMem()) {
kvn@509 148 result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
kvn@509 149 }
kvn@509 150 }
kvn@509 151 return result;
kvn@509 152 }
kvn@509 153
kvn@509 154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 155 const TypeOopPtr *t_oop = t_adr->isa_oopptr();
kvn@658 156 bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
kvn@509 157 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 158 Node *result = mchain;
kvn@509 159 result = optimize_simple_memory_chain(result, t_adr, phase);
kvn@509 160 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 161 PhiNode *mphi = result->as_Phi();
kvn@509 162 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 163 const TypePtr *t = mphi->adr_type();
kvn@598 164 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 165 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 166 t->is_oopptr()->cast_to_exactness(true)
kvn@682 167 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 168 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 169 // clone the Phi with our address type
kvn@509 170 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 171 } else {
kvn@509 172 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 173 }
kvn@509 174 }
kvn@509 175 return result;
kvn@509 176 }
kvn@509 177
kvn@499 178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 179 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 180 Node *mem = mmem;
kvn@499 181 #ifdef ASSERT
kvn@499 182 {
kvn@499 183 // Check that current type is consistent with the alias index used during graph construction
kvn@499 184 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 185 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 186 phase->C->must_alias(adr_check, alias_idx );
kvn@499 187 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 188 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 189 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 190 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 191 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 192 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 193 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 194 // don't assert if it is dead code.
kvn@499 195 consistent = true;
kvn@499 196 }
kvn@499 197 if( !consistent ) {
kvn@499 198 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 199 if( adr_check == NULL ) {
kvn@499 200 st->print("NULL");
kvn@499 201 } else {
kvn@499 202 adr_check->dump();
kvn@499 203 }
kvn@499 204 st->cr();
kvn@499 205 print_alias_types();
kvn@499 206 assert(consistent, "adr_check must match alias idx");
kvn@499 207 }
kvn@499 208 }
kvn@499 209 #endif
never@2170 210 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 211 // means an array I have not precisely typed yet. Do not do any
kvn@499 212 // alias stuff with it any time soon.
never@2170 213 const TypeOopPtr *toop = tp->isa_oopptr();
kvn@499 214 if( tp->base() != Type::AnyPtr &&
never@2170 215 !(toop &&
never@2170 216 toop->klass() != NULL &&
never@2170 217 toop->klass()->is_java_lang_Object() &&
never@2170 218 toop->offset() == Type::OffsetBot) ) {
kvn@499 219 // compress paths and change unreachable cycles to TOP
kvn@499 220 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 221 // Equivalent code in PhiNode::Ideal
kvn@499 222 Node* m = phase->transform(mmem);
twisti@1040 223 // If transformed to a MergeMem, get the desired slice
kvn@499 224 // Otherwise the returned node represents memory for every slice
kvn@499 225 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 226 // Update input if it is progress over what we have now
kvn@499 227 }
kvn@499 228 return mem;
kvn@499 229 }
kvn@499 230
duke@435 231 //--------------------------Ideal_common---------------------------------------
duke@435 232 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 233 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 235 // If our control input is a dead region, kill all below the region
duke@435 236 Node *ctl = in(MemNode::Control);
duke@435 237 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 238 return this;
kvn@740 239 ctl = in(MemNode::Control);
kvn@740 240 // Don't bother trying to transform a dead node
kvn@4695 241 if (ctl && ctl->is_top()) return NodeSentinel;
duke@435 242
kvn@1143 243 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1143 244 // Wait if control on the worklist.
kvn@1143 245 if (ctl && can_reshape && igvn != NULL) {
kvn@1143 246 Node* bol = NULL;
kvn@1143 247 Node* cmp = NULL;
kvn@1143 248 if (ctl->in(0)->is_If()) {
kvn@1143 249 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
kvn@1143 250 bol = ctl->in(0)->in(1);
kvn@1143 251 if (bol->is_Bool())
kvn@1143 252 cmp = ctl->in(0)->in(1)->in(1);
kvn@1143 253 }
kvn@1143 254 if (igvn->_worklist.member(ctl) ||
kvn@1143 255 (bol != NULL && igvn->_worklist.member(bol)) ||
kvn@1143 256 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
kvn@1143 257 // This control path may be dead.
kvn@1143 258 // Delay this memory node transformation until the control is processed.
kvn@1143 259 phase->is_IterGVN()->_worklist.push(this);
kvn@1143 260 return NodeSentinel; // caller will return NULL
kvn@1143 261 }
kvn@1143 262 }
duke@435 263 // Ignore if memory is dead, or self-loop
duke@435 264 Node *mem = in(MemNode::Memory);
kvn@4695 265 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
kvn@4695 266 assert(mem != this, "dead loop in MemNode::Ideal");
duke@435 267
kvn@3320 268 if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
kvn@3320 269 // This memory slice may be dead.
kvn@3320 270 // Delay this mem node transformation until the memory is processed.
kvn@3320 271 phase->is_IterGVN()->_worklist.push(this);
kvn@3320 272 return NodeSentinel; // caller will return NULL
kvn@3320 273 }
kvn@3320 274
duke@435 275 Node *address = in(MemNode::Address);
kvn@4695 276 const Type *t_adr = phase->type(address);
kvn@4695 277 if (t_adr == Type::TOP) return NodeSentinel; // caller will return NULL
kvn@4695 278
kvn@4695 279 if (can_reshape && igvn != NULL &&
kvn@2181 280 (igvn->_worklist.member(address) ||
kvn@4695 281 igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
kvn@855 282 // The address's base and type may change when the address is processed.
kvn@855 283 // Delay this mem node transformation until the address is processed.
kvn@855 284 phase->is_IterGVN()->_worklist.push(this);
kvn@855 285 return NodeSentinel; // caller will return NULL
kvn@855 286 }
kvn@855 287
kvn@1497 288 // Do NOT remove or optimize the next lines: ensure a new alias index
kvn@1497 289 // is allocated for an oop pointer type before Escape Analysis.
kvn@1497 290 // Note: C++ will not remove it since the call has side effect.
kvn@4695 291 if (t_adr->isa_oopptr()) {
kvn@1497 292 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
kvn@1497 293 }
kvn@1497 294
kvn@1143 295 #ifdef ASSERT
kvn@1143 296 Node* base = NULL;
kvn@1143 297 if (address->is_AddP())
kvn@1143 298 base = address->in(AddPNode::Base);
kvn@4695 299 if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
kvn@4695 300 !t_adr->isa_rawptr()) {
kvn@4695 301 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
kvn@4695 302 Compile* C = phase->C;
kvn@4695 303 tty->cr();
kvn@4695 304 tty->print_cr("===== NULL+offs not RAW address =====");
kvn@4695 305 if (C->is_dead_node(this->_idx)) tty->print_cr("'this' is dead");
kvn@4695 306 if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
kvn@4695 307 if (C->is_dead_node(mem->_idx)) tty->print_cr("'mem' is dead");
kvn@4695 308 if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
kvn@4695 309 if (C->is_dead_node(base->_idx)) tty->print_cr("'base' is dead");
kvn@4695 310 tty->cr();
kvn@4695 311 base->dump(1);
kvn@4695 312 tty->cr();
kvn@4695 313 this->dump(2);
kvn@4695 314 tty->print("this->adr_type(): "); adr_type()->dump(); tty->cr();
kvn@4695 315 tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
kvn@4695 316 tty->print("phase->type(base): "); phase->type(address)->dump(); tty->cr();
kvn@4695 317 tty->cr();
kvn@4695 318 }
kvn@1143 319 assert(base == NULL || t_adr->isa_rawptr() ||
kvn@1143 320 !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
kvn@1143 321 #endif
kvn@1143 322
duke@435 323 // Avoid independent memory operations
duke@435 324 Node* old_mem = mem;
duke@435 325
kvn@471 326 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 327 // initializations was removed. After macro-expansion all stores catched
kvn@471 328 // by Initialize node became raw stores and there is no information
kvn@471 329 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 330 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 331 // were already unhooked by using information from detect_ptr_independence()
kvn@471 332 // and find_previous_store().
duke@435 333
duke@435 334 if (mem->is_MergeMem()) {
duke@435 335 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 336 const TypePtr *tp = t_adr->is_ptr();
kvn@499 337
kvn@499 338 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 339 }
duke@435 340
duke@435 341 if (mem != old_mem) {
duke@435 342 set_req(MemNode::Memory, mem);
roland@4657 343 if (can_reshape && old_mem->outcnt() == 0) {
roland@4657 344 igvn->_worklist.push(old_mem);
roland@4657 345 }
kvn@740 346 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 347 return this;
duke@435 348 }
duke@435 349
duke@435 350 // let the subclass continue analyzing...
duke@435 351 return NULL;
duke@435 352 }
duke@435 353
duke@435 354 // Helper function for proving some simple control dominations.
kvn@554 355 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 356 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 357 // is not a constant (dominated by the method's StartNode).
duke@435 358 // Used by MemNode::find_previous_store to prove that the
duke@435 359 // control input of a memory operation predates (dominates)
duke@435 360 // an allocation it wants to look past.
kvn@554 361 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 362 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 363 return false; // Conservative answer for dead code
kvn@554 364
kvn@628 365 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 366 dom = dom->find_exact_control(dom);
kvn@554 367 if (dom == NULL || dom->is_top())
kvn@554 368 return false; // Conservative answer for dead code
kvn@554 369
kvn@628 370 if (dom == sub) {
kvn@628 371 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 372 // 'dom' is Proj node of the 'sub'.
kvn@628 373 return false;
kvn@628 374 }
kvn@628 375
kvn@590 376 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 377 return true;
kvn@554 378
kvn@554 379 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 380 // of all its inputs dominate or equal to sub's control edge.
kvn@554 381
kvn@554 382 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 383 // Or Region for the check in LoadNode::Ideal();
kvn@598 384 // 'sub' should have sub->in(0) != NULL.
kvn@598 385 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@598 386 sub->is_Region(), "expecting only these nodes");
kvn@554 387
kvn@554 388 // Get control edge of 'sub'.
kvn@628 389 Node* orig_sub = sub;
kvn@554 390 sub = sub->find_exact_control(sub->in(0));
kvn@554 391 if (sub == NULL || sub->is_top())
kvn@554 392 return false; // Conservative answer for dead code
kvn@554 393
kvn@554 394 assert(sub->is_CFG(), "expecting control");
kvn@554 395
kvn@554 396 if (sub == dom)
kvn@554 397 return true;
kvn@554 398
kvn@554 399 if (sub->is_Start() || sub->is_Root())
kvn@554 400 return false;
kvn@554 401
kvn@554 402 {
kvn@554 403 // Check all control edges of 'dom'.
kvn@554 404
kvn@554 405 ResourceMark rm;
kvn@554 406 Arena* arena = Thread::current()->resource_area();
kvn@554 407 Node_List nlist(arena);
kvn@554 408 Unique_Node_List dom_list(arena);
kvn@554 409
kvn@554 410 dom_list.push(dom);
kvn@554 411 bool only_dominating_controls = false;
kvn@554 412
kvn@554 413 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 414 Node* n = dom_list.at(next);
kvn@628 415 if (n == orig_sub)
kvn@628 416 return false; // One of dom's inputs dominated by sub.
kvn@554 417 if (!n->is_CFG() && n->pinned()) {
kvn@554 418 // Check only own control edge for pinned non-control nodes.
kvn@554 419 n = n->find_exact_control(n->in(0));
kvn@554 420 if (n == NULL || n->is_top())
kvn@554 421 return false; // Conservative answer for dead code
kvn@554 422 assert(n->is_CFG(), "expecting control");
kvn@628 423 dom_list.push(n);
kvn@628 424 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 425 only_dominating_controls = true;
kvn@554 426 } else if (n->is_CFG()) {
kvn@554 427 if (n->dominates(sub, nlist))
kvn@554 428 only_dominating_controls = true;
kvn@554 429 else
kvn@554 430 return false;
kvn@554 431 } else {
kvn@554 432 // First, own control edge.
kvn@554 433 Node* m = n->find_exact_control(n->in(0));
kvn@590 434 if (m != NULL) {
kvn@590 435 if (m->is_top())
kvn@590 436 return false; // Conservative answer for dead code
kvn@590 437 dom_list.push(m);
kvn@590 438 }
kvn@554 439 // Now, the rest of edges.
kvn@554 440 uint cnt = n->req();
kvn@554 441 for (uint i = 1; i < cnt; i++) {
kvn@554 442 m = n->find_exact_control(n->in(i));
kvn@554 443 if (m == NULL || m->is_top())
kvn@554 444 continue;
kvn@554 445 dom_list.push(m);
duke@435 446 }
duke@435 447 }
duke@435 448 }
kvn@554 449 return only_dominating_controls;
duke@435 450 }
duke@435 451 }
duke@435 452
duke@435 453 //---------------------detect_ptr_independence---------------------------------
duke@435 454 // Used by MemNode::find_previous_store to prove that two base
duke@435 455 // pointers are never equal.
duke@435 456 // The pointers are accompanied by their associated allocations,
duke@435 457 // if any, which have been previously discovered by the caller.
duke@435 458 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 459 Node* p2, AllocateNode* a2,
duke@435 460 PhaseTransform* phase) {
duke@435 461 // Attempt to prove that these two pointers cannot be aliased.
duke@435 462 // They may both manifestly be allocations, and they should differ.
duke@435 463 // Or, if they are not both allocations, they can be distinct constants.
duke@435 464 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 465 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 466 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 467 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 468 return (a1 != a2);
duke@435 469 } else if (a1 != NULL) { // one allocation a1
duke@435 470 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 471 return all_controls_dominate(p2, a1);
duke@435 472 } else { //(a2 != NULL) // one allocation a2
kvn@554 473 return all_controls_dominate(p1, a2);
duke@435 474 }
duke@435 475 return false;
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 // The logic for reordering loads and stores uses four steps:
duke@435 480 // (a) Walk carefully past stores and initializations which we
duke@435 481 // can prove are independent of this load.
duke@435 482 // (b) Observe that the next memory state makes an exact match
duke@435 483 // with self (load or store), and locate the relevant store.
duke@435 484 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 485 // the optimizer would fold it up somehow.
duke@435 486 // (d) Do the rewiring, and return, depending on some other part of
duke@435 487 // the optimizer to fold up the load.
duke@435 488 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 489 // specific to loads and stores, so they are handled by the callers.
duke@435 490 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 491 //
duke@435 492 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 493 Node* ctrl = in(MemNode::Control);
duke@435 494 Node* adr = in(MemNode::Address);
duke@435 495 intptr_t offset = 0;
duke@435 496 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 497 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 498
duke@435 499 if (offset == Type::OffsetBot)
duke@435 500 return NULL; // cannot unalias unless there are precise offsets
duke@435 501
kvn@509 502 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 503
duke@435 504 intptr_t size_in_bytes = memory_size();
duke@435 505
duke@435 506 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 507
duke@435 508 int cnt = 50; // Cycle limiter
duke@435 509 for (;;) { // While we can dance past unrelated stores...
duke@435 510 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 511
duke@435 512 if (mem->is_Store()) {
duke@435 513 Node* st_adr = mem->in(MemNode::Address);
duke@435 514 intptr_t st_offset = 0;
duke@435 515 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 516 if (st_base == NULL)
duke@435 517 break; // inscrutable pointer
duke@435 518 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 519 const int MAX_STORE = BytesPerLong;
duke@435 520 if (st_offset >= offset + size_in_bytes ||
duke@435 521 st_offset <= offset - MAX_STORE ||
duke@435 522 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 523 // Success: The offsets are provably independent.
duke@435 524 // (You may ask, why not just test st_offset != offset and be done?
duke@435 525 // The answer is that stores of different sizes can co-exist
duke@435 526 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 527 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 528 mem = mem->in(MemNode::Memory);
duke@435 529 continue; // (a) advance through independent store memory
duke@435 530 }
duke@435 531 }
duke@435 532 if (st_base != base &&
duke@435 533 detect_ptr_independence(base, alloc,
duke@435 534 st_base,
duke@435 535 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 536 phase)) {
duke@435 537 // Success: The bases are provably independent.
duke@435 538 mem = mem->in(MemNode::Memory);
duke@435 539 continue; // (a) advance through independent store memory
duke@435 540 }
duke@435 541
duke@435 542 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 543 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 544 if (st_base == base && st_offset == offset) {
duke@435 545 return mem; // let caller handle steps (c), (d)
duke@435 546 }
duke@435 547
duke@435 548 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 549 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 550 AllocateNode* st_alloc = st_init->allocation();
duke@435 551 if (st_alloc == NULL)
duke@435 552 break; // something degenerated
duke@435 553 bool known_identical = false;
duke@435 554 bool known_independent = false;
duke@435 555 if (alloc == st_alloc)
duke@435 556 known_identical = true;
duke@435 557 else if (alloc != NULL)
duke@435 558 known_independent = true;
kvn@554 559 else if (all_controls_dominate(this, st_alloc))
duke@435 560 known_independent = true;
duke@435 561
duke@435 562 if (known_independent) {
duke@435 563 // The bases are provably independent: Either they are
duke@435 564 // manifestly distinct allocations, or else the control
duke@435 565 // of this load dominates the store's allocation.
duke@435 566 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 567 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 568 mem = st_alloc->in(TypeFunc::Memory);
duke@435 569 } else {
duke@435 570 mem = st_init->memory(alias_idx);
duke@435 571 }
duke@435 572 continue; // (a) advance through independent store memory
duke@435 573 }
duke@435 574
duke@435 575 // (b) at this point, if we are not looking at a store initializing
duke@435 576 // the same allocation we are loading from, we lose.
duke@435 577 if (known_identical) {
duke@435 578 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 579 return mem; // let caller handle steps (c), (d)
duke@435 580 }
duke@435 581
kvn@658 582 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 583 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 584 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 585 CallNode *call = mem->in(0)->as_Call();
kvn@509 586 if (!call->may_modify(addr_t, phase)) {
kvn@509 587 mem = call->in(TypeFunc::Memory);
kvn@509 588 continue; // (a) advance through independent call memory
kvn@509 589 }
kvn@509 590 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 591 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 592 continue; // (a) advance through independent MemBar memory
kvn@1535 593 } else if (mem->is_ClearArray()) {
kvn@1535 594 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
kvn@1535 595 // (the call updated 'mem' value)
kvn@1535 596 continue; // (a) advance through independent allocation memory
kvn@1535 597 } else {
kvn@1535 598 // Can not bypass initialization of the instance
kvn@1535 599 // we are looking for.
kvn@1535 600 return mem;
kvn@1535 601 }
kvn@509 602 } else if (mem->is_MergeMem()) {
kvn@509 603 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 604 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 605 continue; // (a) advance through independent MergeMem memory
kvn@509 606 }
duke@435 607 }
duke@435 608
duke@435 609 // Unless there is an explicit 'continue', we must bail out here,
duke@435 610 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 611 break;
duke@435 612 }
duke@435 613
duke@435 614 return NULL; // bail out
duke@435 615 }
duke@435 616
duke@435 617 //----------------------calculate_adr_type-------------------------------------
duke@435 618 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 619 // Also, asserts a cross-check of the type against the expected address type.
duke@435 620 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 621 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 622 #ifdef PRODUCT
duke@435 623 cross_check = NULL;
duke@435 624 #else
duke@435 625 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 626 #endif
duke@435 627 const TypePtr* tp = t->isa_ptr();
duke@435 628 if (tp == NULL) {
duke@435 629 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 630 return TypePtr::BOTTOM; // touches lots of memory
duke@435 631 } else {
duke@435 632 #ifdef ASSERT
duke@435 633 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 634 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 635 if (cross_check != NULL &&
duke@435 636 cross_check != TypePtr::BOTTOM &&
duke@435 637 cross_check != TypeRawPtr::BOTTOM) {
duke@435 638 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 639 Compile* C = Compile::current();
duke@435 640 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 641 "must stay in the original alias category");
duke@435 642 // The type of the address must be contained in the adr_type,
duke@435 643 // disregarding "null"-ness.
duke@435 644 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 645 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
duke@435 646 assert(cross_check->meet(tp_notnull) == cross_check,
duke@435 647 "real address must not escape from expected memory type");
duke@435 648 }
duke@435 649 #endif
duke@435 650 return tp;
duke@435 651 }
duke@435 652 }
duke@435 653
duke@435 654 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 655 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 656 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 657 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 658 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 659 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 660 // with the same data. This implies that any path into the loop already
duke@435 661 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 662 // must be covered by an equivalent cast, with an earlier control input.
duke@435 663 ResourceMark rm;
duke@435 664
duke@435 665 // The loop entry input of the phi should be the unique dominating
duke@435 666 // node for every Phi/CastPP in the loop.
duke@435 667 Unique_Node_List closure;
duke@435 668 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 669
duke@435 670 // Add the phi node and the cast to the worklist.
duke@435 671 Unique_Node_List worklist;
duke@435 672 worklist.push(adr_phi);
duke@435 673 if( cast != NULL ){
duke@435 674 if( !cast->is_ConstraintCast() ) return false;
duke@435 675 worklist.push(cast);
duke@435 676 }
duke@435 677
duke@435 678 // Begin recursive walk of phi nodes.
duke@435 679 while( worklist.size() ){
duke@435 680 // Take a node off the worklist
duke@435 681 Node *n = worklist.pop();
duke@435 682 if( !closure.member(n) ){
duke@435 683 // Add it to the closure.
duke@435 684 closure.push(n);
duke@435 685 // Make a sanity check to ensure we don't waste too much time here.
duke@435 686 if( closure.size() > 20) return false;
duke@435 687 // This node is OK if:
duke@435 688 // - it is a cast of an identical value
duke@435 689 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 690 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 691 if( n->is_ConstraintCast() ){
duke@435 692 worklist.push(n->in(1));
duke@435 693 } else if( n->is_Phi() ) {
duke@435 694 for( uint i = 1; i < n->req(); i++ ) {
duke@435 695 worklist.push(n->in(i));
duke@435 696 }
duke@435 697 } else {
duke@435 698 return false;
duke@435 699 }
duke@435 700 }
duke@435 701 }
duke@435 702
duke@435 703 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 704 return true;
duke@435 705 }
duke@435 706
duke@435 707 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 708 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 709 // going away in this pass and we need to make this memory op depend on the
duke@435 710 // gating null check.
kvn@598 711 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 712 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 713 }
duke@435 714
duke@435 715 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 716 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 717 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 718 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 719 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 720 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 721 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 722 // up on this approach. CNC 10/20/2000
kvn@598 723 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 724 // Only the control edge of the node 'n' might be updated.
kvn@598 725 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 726 Node *skipped_cast = NULL;
duke@435 727 // Need a null check? Regular static accesses do not because they are
duke@435 728 // from constant addresses. Array ops are gated by the range check (which
duke@435 729 // always includes a NULL check). Just check field ops.
kvn@598 730 if( n->in(MemNode::Control) == NULL ) {
duke@435 731 // Scan upwards for the highest location we can place this memory op.
duke@435 732 while( true ) {
duke@435 733 switch( adr->Opcode() ) {
duke@435 734
duke@435 735 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 736 adr = adr->in(AddPNode::Base);
duke@435 737 continue;
duke@435 738
coleenp@548 739 case Op_DecodeN: // No change to NULL-ness, so peek thru
roland@4159 740 case Op_DecodeNKlass:
coleenp@548 741 adr = adr->in(1);
coleenp@548 742 continue;
coleenp@548 743
kvn@3842 744 case Op_EncodeP:
roland@4159 745 case Op_EncodePKlass:
kvn@3842 746 // EncodeP node's control edge could be set by this method
kvn@3842 747 // when EncodeP node depends on CastPP node.
kvn@3842 748 //
kvn@3842 749 // Use its control edge for memory op because EncodeP may go away
kvn@3842 750 // later when it is folded with following or preceding DecodeN node.
kvn@3842 751 if (adr->in(0) == NULL) {
kvn@3842 752 // Keep looking for cast nodes.
kvn@3842 753 adr = adr->in(1);
kvn@3842 754 continue;
kvn@3842 755 }
kvn@3842 756 ccp->hash_delete(n);
kvn@3842 757 n->set_req(MemNode::Control, adr->in(0));
kvn@3842 758 ccp->hash_insert(n);
kvn@3842 759 return n;
kvn@3842 760
duke@435 761 case Op_CastPP:
duke@435 762 // If the CastPP is useless, just peek on through it.
duke@435 763 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 764 // Remember the cast that we've peeked though. If we peek
duke@435 765 // through more than one, then we end up remembering the highest
duke@435 766 // one, that is, if in a loop, the one closest to the top.
duke@435 767 skipped_cast = adr;
duke@435 768 adr = adr->in(1);
duke@435 769 continue;
duke@435 770 }
duke@435 771 // CastPP is going away in this pass! We need this memory op to be
duke@435 772 // control-dependent on the test that is guarding the CastPP.
kvn@598 773 ccp->hash_delete(n);
kvn@598 774 n->set_req(MemNode::Control, adr->in(0));
kvn@598 775 ccp->hash_insert(n);
kvn@598 776 return n;
duke@435 777
duke@435 778 case Op_Phi:
duke@435 779 // Attempt to float above a Phi to some dominating point.
duke@435 780 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 781 // If we've already peeked through a Cast (which could have set the
duke@435 782 // control), we can't float above a Phi, because the skipped Cast
duke@435 783 // may not be loop invariant.
duke@435 784 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 785 adr = adr->in(1);
duke@435 786 continue;
duke@435 787 }
duke@435 788 }
duke@435 789
duke@435 790 // Intentional fallthrough!
duke@435 791
duke@435 792 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 793 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 794 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 795 // behind the controls leading to the Phi.
duke@435 796 case Op_CheckCastPP:
duke@435 797 // These usually stick around to change address type, however a
duke@435 798 // useless one can be elided and we still need to pick up a control edge
duke@435 799 if (adr->in(0) == NULL) {
duke@435 800 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 801 // need check further up the ancestor chain for a control input to keep
duke@435 802 // the node in place. 4959717.
duke@435 803 skipped_cast = adr;
duke@435 804 adr = adr->in(1);
duke@435 805 continue;
duke@435 806 }
kvn@598 807 ccp->hash_delete(n);
kvn@598 808 n->set_req(MemNode::Control, adr->in(0));
kvn@598 809 ccp->hash_insert(n);
kvn@598 810 return n;
duke@435 811
duke@435 812 // List of "safe" opcodes; those that implicitly block the memory
duke@435 813 // op below any null check.
duke@435 814 case Op_CastX2P: // no null checks on native pointers
duke@435 815 case Op_Parm: // 'this' pointer is not null
duke@435 816 case Op_LoadP: // Loading from within a klass
coleenp@548 817 case Op_LoadN: // Loading from within a klass
duke@435 818 case Op_LoadKlass: // Loading from within a klass
kvn@599 819 case Op_LoadNKlass: // Loading from within a klass
duke@435 820 case Op_ConP: // Loading from a klass
kvn@598 821 case Op_ConN: // Loading from a klass
roland@4159 822 case Op_ConNKlass: // Loading from a klass
duke@435 823 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 824 case Op_Con: // Reading from TLS
duke@435 825 case Op_CMoveP: // CMoveP is pinned
kvn@599 826 case Op_CMoveN: // CMoveN is pinned
duke@435 827 break; // No progress
duke@435 828
duke@435 829 case Op_Proj: // Direct call to an allocation routine
duke@435 830 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 831 #ifdef ASSERT
duke@435 832 {
duke@435 833 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 834 const Node* call = adr->in(0);
kvn@598 835 if (call->is_CallJava()) {
kvn@598 836 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 837 const TypeTuple *r = call_java->tf()->range();
kvn@499 838 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 839 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 840 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 841 // We further presume that this is one of
duke@435 842 // new_instance_Java, new_array_Java, or
duke@435 843 // the like, but do not assert for this.
duke@435 844 } else if (call->is_Allocate()) {
duke@435 845 // similar case to new_instance_Java, etc.
duke@435 846 } else if (!call->is_CallLeaf()) {
duke@435 847 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 848 ShouldNotReachHere();
duke@435 849 }
duke@435 850 }
duke@435 851 #endif
duke@435 852 break;
duke@435 853 default:
duke@435 854 ShouldNotReachHere();
duke@435 855 }
duke@435 856 break;
duke@435 857 }
duke@435 858 }
duke@435 859
duke@435 860 return NULL; // No progress
duke@435 861 }
duke@435 862
duke@435 863
duke@435 864 //=============================================================================
duke@435 865 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 866 uint LoadNode::cmp( const Node &n ) const
duke@435 867 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 868 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 869 uint LoadNode::ideal_reg() const {
coleenp@4037 870 return _type->ideal_reg();
duke@435 871 }
duke@435 872
duke@435 873 #ifndef PRODUCT
duke@435 874 void LoadNode::dump_spec(outputStream *st) const {
duke@435 875 MemNode::dump_spec(st);
duke@435 876 if( !Verbose && !WizardMode ) {
duke@435 877 // standard dump does this in Verbose and WizardMode
duke@435 878 st->print(" #"); _type->dump_on(st);
duke@435 879 }
duke@435 880 }
duke@435 881 #endif
duke@435 882
kvn@1964 883 #ifdef ASSERT
kvn@1964 884 //----------------------------is_immutable_value-------------------------------
kvn@1964 885 // Helper function to allow a raw load without control edge for some cases
kvn@1964 886 bool LoadNode::is_immutable_value(Node* adr) {
kvn@1964 887 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
kvn@1964 888 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1964 889 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
kvn@1964 890 in_bytes(JavaThread::osthread_offset())));
kvn@1964 891 }
kvn@1964 892 #endif
duke@435 893
duke@435 894 //----------------------------LoadNode::make-----------------------------------
duke@435 895 // Polymorphic factory method:
coleenp@548 896 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
coleenp@548 897 Compile* C = gvn.C;
coleenp@548 898
duke@435 899 // sanity check the alias category against the created node type
duke@435 900 assert(!(adr_type->isa_oopptr() &&
duke@435 901 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 902 "use LoadKlassNode instead");
duke@435 903 assert(!(adr_type->isa_aryptr() &&
duke@435 904 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 905 "use LoadRangeNode instead");
kvn@1964 906 // Check control edge of raw loads
kvn@1964 907 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 908 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 909 rt->isa_oopptr() || is_immutable_value(adr),
kvn@1964 910 "raw memory operations should have control edge");
duke@435 911 switch (bt) {
kvn@4115 912 case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 913 case T_BYTE: return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 914 case T_INT: return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 915 case T_CHAR: return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 916 case T_SHORT: return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 917 case T_LONG: return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long() );
kvn@4115 918 case T_FLOAT: return new (C) LoadFNode (ctl, mem, adr, adr_type, rt );
kvn@4115 919 case T_DOUBLE: return new (C) LoadDNode (ctl, mem, adr, adr_type, rt );
kvn@4115 920 case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr() );
coleenp@548 921 case T_OBJECT:
coleenp@548 922 #ifdef _LP64
kvn@598 923 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 924 Node* load = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
kvn@4115 925 return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 926 } else
coleenp@548 927 #endif
kvn@598 928 {
roland@4159 929 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
kvn@4115 930 return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
kvn@598 931 }
duke@435 932 }
duke@435 933 ShouldNotReachHere();
duke@435 934 return (LoadNode*)NULL;
duke@435 935 }
duke@435 936
duke@435 937 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
duke@435 938 bool require_atomic = true;
kvn@4115 939 return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
duke@435 940 }
duke@435 941
duke@435 942
duke@435 943
duke@435 944
duke@435 945 //------------------------------hash-------------------------------------------
duke@435 946 uint LoadNode::hash() const {
duke@435 947 // unroll addition of interesting fields
duke@435 948 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 949 }
duke@435 950
duke@435 951 //---------------------------can_see_stored_value------------------------------
duke@435 952 // This routine exists to make sure this set of tests is done the same
duke@435 953 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 954 // will change the graph shape in a way which makes memory alive twice at the
duke@435 955 // same time (uses the Oracle model of aliasing), then some
duke@435 956 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 957 // of aliasing.
duke@435 958 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 959 Node* ld_adr = in(MemNode::Address);
duke@435 960
never@452 961 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
never@452 962 Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
never@452 963 if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
never@452 964 atp->field() != NULL && !atp->field()->is_volatile()) {
never@452 965 uint alias_idx = atp->index();
never@452 966 bool final = atp->field()->is_final();
never@452 967 Node* result = NULL;
never@452 968 Node* current = st;
never@452 969 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 970 // new states for the slice of this load. Stop once any other
never@452 971 // kind of node is encountered. Loads from final memory can skip
never@452 972 // through any kind of MemBar but normal loads shouldn't skip
never@452 973 // through MemBarAcquire since the could allow them to move out of
never@452 974 // a synchronized region.
never@452 975 while (current->is_Proj()) {
never@452 976 int opc = current->in(0)->Opcode();
roland@3047 977 if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
roland@3047 978 opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
roland@3047 979 opc == Op_MemBarReleaseLock) {
never@452 980 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 981 if (mem->is_MergeMem()) {
never@452 982 MergeMemNode* merge = mem->as_MergeMem();
never@452 983 Node* new_st = merge->memory_at(alias_idx);
never@452 984 if (new_st == merge->base_memory()) {
never@452 985 // Keep searching
never@452 986 current = merge->base_memory();
never@452 987 continue;
never@452 988 }
never@452 989 // Save the new memory state for the slice and fall through
never@452 990 // to exit.
never@452 991 result = new_st;
never@452 992 }
never@452 993 }
never@452 994 break;
never@452 995 }
never@452 996 if (result != NULL) {
never@452 997 st = result;
never@452 998 }
never@452 999 }
never@452 1000
never@452 1001
duke@435 1002 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 1003 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 1004 for (int trip = 0; trip <= 1; trip++) {
duke@435 1005
duke@435 1006 if (st->is_Store()) {
duke@435 1007 Node* st_adr = st->in(MemNode::Address);
duke@435 1008 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 1009 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 1010 intptr_t st_off = 0;
duke@435 1011 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 1012 if (alloc == NULL) return NULL;
duke@435 1013 intptr_t ld_off = 0;
duke@435 1014 AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
duke@435 1015 if (alloc != allo2) return NULL;
duke@435 1016 if (ld_off != st_off) return NULL;
duke@435 1017 // At this point we have proven something like this setup:
duke@435 1018 // A = Allocate(...)
duke@435 1019 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 1020 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 1021 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 1022 // In other words, we are loading from a casted version of
duke@435 1023 // the same pointer-and-offset that we stored to.
duke@435 1024 // Thus, we are able to replace L by V.
duke@435 1025 }
duke@435 1026 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 1027 if (store_Opcode() != st->Opcode())
duke@435 1028 return NULL;
duke@435 1029 return st->in(MemNode::ValueIn);
duke@435 1030 }
duke@435 1031
duke@435 1032 intptr_t offset = 0; // scratch
duke@435 1033
duke@435 1034 // A load from a freshly-created object always returns zero.
duke@435 1035 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 1036 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 1037 if (st->is_Proj() && st->in(0)->is_Allocate() &&
duke@435 1038 st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
duke@435 1039 offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
duke@435 1040 // return a zero value for the load's basic type
duke@435 1041 // (This is one of the few places where a generic PhaseTransform
duke@435 1042 // can create new nodes. Think of it as lazily manifesting
duke@435 1043 // virtually pre-existing constants.)
duke@435 1044 return phase->zerocon(memory_type());
duke@435 1045 }
duke@435 1046
duke@435 1047 // A load from an initialization barrier can match a captured store.
duke@435 1048 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 1049 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 1050 AllocateNode* alloc = init->allocation();
duke@435 1051 if (alloc != NULL &&
duke@435 1052 alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
duke@435 1053 // examine a captured store value
duke@435 1054 st = init->find_captured_store(offset, memory_size(), phase);
duke@435 1055 if (st != NULL)
duke@435 1056 continue; // take one more trip around
duke@435 1057 }
duke@435 1058 }
duke@435 1059
duke@435 1060 break;
duke@435 1061 }
duke@435 1062
duke@435 1063 return NULL;
duke@435 1064 }
duke@435 1065
kvn@499 1066 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 1067 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@499 1068 if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
kvn@499 1069 in(MemNode::Address)->is_AddP() ) {
kvn@499 1070 const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@499 1071 // Only instances.
kvn@658 1072 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@499 1073 t_oop->offset() != Type::OffsetBot &&
kvn@499 1074 t_oop->offset() != Type::OffsetTop) {
kvn@499 1075 return true;
kvn@499 1076 }
kvn@499 1077 }
kvn@499 1078 return false;
kvn@499 1079 }
kvn@499 1080
duke@435 1081 //------------------------------Identity---------------------------------------
duke@435 1082 // Loads are identity if previous store is to same address
duke@435 1083 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 1084 // If the previous store-maker is the right kind of Store, and the store is
duke@435 1085 // to the same address, then we are equal to the value stored.
duke@435 1086 Node* mem = in(MemNode::Memory);
duke@435 1087 Node* value = can_see_stored_value(mem, phase);
duke@435 1088 if( value ) {
duke@435 1089 // byte, short & char stores truncate naturally.
duke@435 1090 // A load has to load the truncated value which requires
duke@435 1091 // some sort of masking operation and that requires an
duke@435 1092 // Ideal call instead of an Identity call.
duke@435 1093 if (memory_size() < BytesPerInt) {
duke@435 1094 // If the input to the store does not fit with the load's result type,
duke@435 1095 // it must be truncated via an Ideal call.
duke@435 1096 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 1097 return this;
duke@435 1098 }
duke@435 1099 // (This works even when value is a Con, but LoadNode::Value
duke@435 1100 // usually runs first, producing the singleton type of the Con.)
duke@435 1101 return value;
duke@435 1102 }
kvn@499 1103
kvn@499 1104 // Search for an existing data phi which was generated before for the same
twisti@1040 1105 // instance's field to avoid infinite generation of phis in a loop.
kvn@499 1106 Node *region = mem->in(0);
kvn@499 1107 if (is_instance_field_load_with_local_phi(region)) {
kvn@499 1108 const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
kvn@499 1109 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 1110 int this_offset = addr_t->offset();
kvn@499 1111 int this_id = addr_t->is_oopptr()->instance_id();
kvn@499 1112 const Type* this_type = bottom_type();
kvn@499 1113 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 1114 Node* phi = region->fast_out(i);
kvn@499 1115 if (phi->is_Phi() && phi != mem &&
kvn@499 1116 phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
kvn@499 1117 return phi;
kvn@499 1118 }
kvn@499 1119 }
kvn@499 1120 }
kvn@499 1121
duke@435 1122 return this;
duke@435 1123 }
duke@435 1124
never@452 1125
never@452 1126 // Returns true if the AliasType refers to the field that holds the
never@452 1127 // cached box array. Currently only handles the IntegerCache case.
never@452 1128 static bool is_autobox_cache(Compile::AliasType* atp) {
never@452 1129 if (atp != NULL && atp->field() != NULL) {
never@452 1130 ciField* field = atp->field();
never@452 1131 ciSymbol* klass = field->holder()->name();
never@452 1132 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1133 field->holder()->uses_default_loader() &&
never@452 1134 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1135 return true;
never@452 1136 }
never@452 1137 }
never@452 1138 return false;
never@452 1139 }
never@452 1140
never@452 1141 // Fetch the base value in the autobox array
never@452 1142 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
never@452 1143 if (atp != NULL && atp->field() != NULL) {
never@452 1144 ciField* field = atp->field();
never@452 1145 ciSymbol* klass = field->holder()->name();
never@452 1146 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1147 field->holder()->uses_default_loader() &&
never@452 1148 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1149 assert(field->is_constant(), "what?");
never@452 1150 ciObjArray* array = field->constant_value().as_object()->as_obj_array();
never@452 1151 // Fetch the box object at the base of the array and get its value
never@452 1152 ciInstance* box = array->obj_at(0)->as_instance();
never@452 1153 ciInstanceKlass* ik = box->klass()->as_instance_klass();
never@452 1154 if (ik->nof_nonstatic_fields() == 1) {
never@452 1155 // This should be true nonstatic_field_at requires calling
never@452 1156 // nof_nonstatic_fields so check it anyway
never@452 1157 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
never@452 1158 cache_offset = c.as_int();
never@452 1159 }
never@452 1160 return true;
never@452 1161 }
never@452 1162 }
never@452 1163 return false;
never@452 1164 }
never@452 1165
never@452 1166 // Returns true if the AliasType refers to the value field of an
never@452 1167 // autobox object. Currently only handles Integer.
never@452 1168 static bool is_autobox_object(Compile::AliasType* atp) {
never@452 1169 if (atp != NULL && atp->field() != NULL) {
never@452 1170 ciField* field = atp->field();
never@452 1171 ciSymbol* klass = field->holder()->name();
never@452 1172 if (field->name() == ciSymbol::value_name() &&
never@452 1173 field->holder()->uses_default_loader() &&
never@452 1174 klass == ciSymbol::java_lang_Integer()) {
never@452 1175 return true;
never@452 1176 }
never@452 1177 }
never@452 1178 return false;
never@452 1179 }
never@452 1180
never@452 1181
never@452 1182 // We're loading from an object which has autobox behaviour.
never@452 1183 // If this object is result of a valueOf call we'll have a phi
never@452 1184 // merging a newly allocated object and a load from the cache.
never@452 1185 // We want to replace this load with the original incoming
never@452 1186 // argument to the valueOf call.
never@452 1187 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
never@452 1188 Node* base = in(Address)->in(AddPNode::Base);
never@452 1189 if (base->is_Phi() && base->req() == 3) {
never@452 1190 AllocateNode* allocation = NULL;
never@452 1191 int allocation_index = -1;
never@452 1192 int load_index = -1;
never@452 1193 for (uint i = 1; i < base->req(); i++) {
never@452 1194 allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
never@452 1195 if (allocation != NULL) {
never@452 1196 allocation_index = i;
never@452 1197 load_index = 3 - allocation_index;
never@452 1198 break;
never@452 1199 }
never@452 1200 }
kvn@1018 1201 bool has_load = ( allocation != NULL &&
kvn@1018 1202 (base->in(load_index)->is_Load() ||
kvn@1018 1203 base->in(load_index)->is_DecodeN() &&
kvn@1018 1204 base->in(load_index)->in(1)->is_Load()) );
kvn@1018 1205 if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
never@452 1206 // Push the loads from the phi that comes from valueOf up
never@452 1207 // through it to allow elimination of the loads and the recovery
never@452 1208 // of the original value.
never@452 1209 Node* mem_phi = in(Memory);
never@452 1210 Node* offset = in(Address)->in(AddPNode::Offset);
never@988 1211 Node* region = base->in(0);
never@452 1212
never@452 1213 Node* in1 = clone();
never@452 1214 Node* in1_addr = in1->in(Address)->clone();
never@452 1215 in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
never@452 1216 in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
never@452 1217 in1_addr->set_req(AddPNode::Offset, offset);
never@988 1218 in1->set_req(0, region->in(allocation_index));
never@452 1219 in1->set_req(Address, in1_addr);
never@452 1220 in1->set_req(Memory, mem_phi->in(allocation_index));
never@452 1221
never@452 1222 Node* in2 = clone();
never@452 1223 Node* in2_addr = in2->in(Address)->clone();
never@452 1224 in2_addr->set_req(AddPNode::Base, base->in(load_index));
never@452 1225 in2_addr->set_req(AddPNode::Address, base->in(load_index));
never@452 1226 in2_addr->set_req(AddPNode::Offset, offset);
never@988 1227 in2->set_req(0, region->in(load_index));
never@452 1228 in2->set_req(Address, in2_addr);
never@452 1229 in2->set_req(Memory, mem_phi->in(load_index));
never@452 1230
never@452 1231 in1_addr = phase->transform(in1_addr);
never@452 1232 in1 = phase->transform(in1);
never@452 1233 in2_addr = phase->transform(in2_addr);
never@452 1234 in2 = phase->transform(in2);
never@452 1235
never@988 1236 PhiNode* result = PhiNode::make_blank(region, this);
never@452 1237 result->set_req(allocation_index, in1);
never@452 1238 result->set_req(load_index, in2);
never@452 1239 return result;
never@452 1240 }
kvn@1018 1241 } else if (base->is_Load() ||
kvn@1018 1242 base->is_DecodeN() && base->in(1)->is_Load()) {
kvn@1018 1243 if (base->is_DecodeN()) {
kvn@1018 1244 // Get LoadN node which loads cached Integer object
kvn@1018 1245 base = base->in(1);
kvn@1018 1246 }
never@452 1247 // Eliminate the load of Integer.value for integers from the cache
never@452 1248 // array by deriving the value from the index into the array.
never@452 1249 // Capture the offset of the load and then reverse the computation.
never@452 1250 Node* load_base = base->in(Address)->in(AddPNode::Base);
kvn@1018 1251 if (load_base->is_DecodeN()) {
kvn@1018 1252 // Get LoadN node which loads IntegerCache.cache field
kvn@1018 1253 load_base = load_base->in(1);
kvn@1018 1254 }
never@452 1255 if (load_base != NULL) {
never@452 1256 Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
never@452 1257 intptr_t cache_offset;
never@452 1258 int shift = -1;
never@452 1259 Node* cache = NULL;
never@452 1260 if (is_autobox_cache(atp)) {
kvn@464 1261 shift = exact_log2(type2aelembytes(T_OBJECT));
never@452 1262 cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
never@452 1263 }
never@452 1264 if (cache != NULL && base->in(Address)->is_AddP()) {
never@452 1265 Node* elements[4];
never@452 1266 int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@452 1267 int cache_low;
never@452 1268 if (count > 0 && fetch_autobox_base(atp, cache_low)) {
never@452 1269 int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
never@452 1270 // Add up all the offsets making of the address of the load
never@452 1271 Node* result = elements[0];
never@452 1272 for (int i = 1; i < count; i++) {
kvn@4115 1273 result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
never@452 1274 }
never@452 1275 // Remove the constant offset from the address and then
never@452 1276 // remove the scaling of the offset to recover the original index.
kvn@4115 1277 result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset)));
never@452 1278 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
never@452 1279 // Peel the shift off directly but wrap it in a dummy node
never@452 1280 // since Ideal can't return existing nodes
kvn@4115 1281 result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
never@452 1282 } else {
kvn@4115 1283 result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
never@452 1284 }
never@452 1285 #ifdef _LP64
kvn@4115 1286 result = new (phase->C) ConvL2INode(phase->transform(result));
never@452 1287 #endif
never@452 1288 return result;
never@452 1289 }
never@452 1290 }
never@452 1291 }
never@452 1292 }
never@452 1293 return NULL;
never@452 1294 }
never@452 1295
kvn@598 1296 //------------------------------split_through_phi------------------------------
kvn@598 1297 // Split instance field load through Phi.
kvn@598 1298 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@598 1299 Node* mem = in(MemNode::Memory);
kvn@598 1300 Node* address = in(MemNode::Address);
kvn@598 1301 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@598 1302 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@598 1303
kvn@598 1304 assert(mem->is_Phi() && (t_oop != NULL) &&
kvn@658 1305 t_oop->is_known_instance_field(), "invalide conditions");
kvn@598 1306
kvn@598 1307 Node *region = mem->in(0);
kvn@598 1308 if (region == NULL) {
kvn@598 1309 return NULL; // Wait stable graph
kvn@598 1310 }
kvn@598 1311 uint cnt = mem->req();
kvn@2810 1312 for (uint i = 1; i < cnt; i++) {
kvn@2810 1313 Node* rc = region->in(i);
kvn@2810 1314 if (rc == NULL || phase->type(rc) == Type::TOP)
kvn@2810 1315 return NULL; // Wait stable graph
kvn@598 1316 Node *in = mem->in(i);
kvn@2810 1317 if (in == NULL) {
kvn@598 1318 return NULL; // Wait stable graph
kvn@598 1319 }
kvn@598 1320 }
kvn@598 1321 // Check for loop invariant.
kvn@598 1322 if (cnt == 3) {
kvn@2810 1323 for (uint i = 1; i < cnt; i++) {
kvn@598 1324 Node *in = mem->in(i);
kvn@598 1325 Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
kvn@598 1326 if (m == mem) {
kvn@598 1327 set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
kvn@598 1328 return this;
kvn@598 1329 }
kvn@598 1330 }
kvn@598 1331 }
kvn@598 1332 // Split through Phi (see original code in loopopts.cpp).
kvn@598 1333 assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
kvn@598 1334
kvn@598 1335 // Do nothing here if Identity will find a value
kvn@598 1336 // (to avoid infinite chain of value phis generation).
kvn@2810 1337 if (!phase->eqv(this, this->Identity(phase)))
kvn@598 1338 return NULL;
kvn@598 1339
kvn@598 1340 // Skip the split if the region dominates some control edge of the address.
kvn@2810 1341 if (!MemNode::all_controls_dominate(address, region))
kvn@598 1342 return NULL;
kvn@598 1343
kvn@598 1344 const Type* this_type = this->bottom_type();
kvn@598 1345 int this_index = phase->C->get_alias_index(addr_t);
kvn@598 1346 int this_offset = addr_t->offset();
kvn@598 1347 int this_iid = addr_t->is_oopptr()->instance_id();
kvn@598 1348 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@4115 1349 Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@2810 1350 for (uint i = 1; i < region->req(); i++) {
kvn@598 1351 Node *x;
kvn@598 1352 Node* the_clone = NULL;
kvn@2810 1353 if (region->in(i) == phase->C->top()) {
kvn@598 1354 x = phase->C->top(); // Dead path? Use a dead data op
kvn@598 1355 } else {
kvn@598 1356 x = this->clone(); // Else clone up the data op
kvn@598 1357 the_clone = x; // Remember for possible deletion.
kvn@598 1358 // Alter data node to use pre-phi inputs
kvn@2810 1359 if (this->in(0) == region) {
kvn@2810 1360 x->set_req(0, region->in(i));
kvn@598 1361 } else {
kvn@2810 1362 x->set_req(0, NULL);
kvn@598 1363 }
kvn@2810 1364 for (uint j = 1; j < this->req(); j++) {
kvn@598 1365 Node *in = this->in(j);
kvn@2810 1366 if (in->is_Phi() && in->in(0) == region)
kvn@2810 1367 x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
kvn@598 1368 }
kvn@598 1369 }
kvn@598 1370 // Check for a 'win' on some paths
kvn@598 1371 const Type *t = x->Value(igvn);
kvn@598 1372
kvn@598 1373 bool singleton = t->singleton();
kvn@598 1374
kvn@598 1375 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@2810 1376 if (singleton && t == Type::TOP) {
kvn@598 1377 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1378 }
kvn@598 1379
kvn@2810 1380 if (singleton) {
kvn@598 1381 x = igvn->makecon(t);
kvn@598 1382 } else {
kvn@598 1383 // We now call Identity to try to simplify the cloned node.
kvn@598 1384 // Note that some Identity methods call phase->type(this).
kvn@598 1385 // Make sure that the type array is big enough for
kvn@598 1386 // our new node, even though we may throw the node away.
kvn@598 1387 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1388 igvn->set_type(x, t);
kvn@728 1389 // If x is a TypeNode, capture any more-precise type permanently into Node
twisti@1040 1390 // otherwise it will be not updated during igvn->transform since
kvn@728 1391 // igvn->type(x) is set to x->Value() already.
kvn@728 1392 x->raise_bottom_type(t);
kvn@598 1393 Node *y = x->Identity(igvn);
kvn@2810 1394 if (y != x) {
kvn@598 1395 x = y;
kvn@598 1396 } else {
kvn@598 1397 y = igvn->hash_find(x);
kvn@2810 1398 if (y) {
kvn@598 1399 x = y;
kvn@598 1400 } else {
kvn@598 1401 // Else x is a new node we are keeping
kvn@598 1402 // We do not need register_new_node_with_optimizer
kvn@598 1403 // because set_type has already been called.
kvn@598 1404 igvn->_worklist.push(x);
kvn@598 1405 }
kvn@598 1406 }
kvn@598 1407 }
kvn@598 1408 if (x != the_clone && the_clone != NULL)
kvn@598 1409 igvn->remove_dead_node(the_clone);
kvn@598 1410 phi->set_req(i, x);
kvn@598 1411 }
kvn@2810 1412 // Record Phi
kvn@2810 1413 igvn->register_new_node_with_optimizer(phi);
kvn@2810 1414 return phi;
kvn@598 1415 }
never@452 1416
duke@435 1417 //------------------------------Ideal------------------------------------------
duke@435 1418 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1419 // zero out the control input.
duke@435 1420 // If the offset is constant and the base is an object allocation,
duke@435 1421 // try to hook me up to the exact initializing store.
duke@435 1422 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1423 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1424 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1425
duke@435 1426 Node* ctrl = in(MemNode::Control);
duke@435 1427 Node* address = in(MemNode::Address);
duke@435 1428
duke@435 1429 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1430 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1431 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1432 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1433 ctrl = ctrl->in(0);
duke@435 1434 set_req(MemNode::Control,ctrl);
duke@435 1435 }
duke@435 1436
kvn@1143 1437 intptr_t ignore = 0;
kvn@1143 1438 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@1143 1439 if (base != NULL
kvn@1143 1440 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
kvn@1143 1441 // Check for useless control edge in some common special cases
kvn@1143 1442 if (in(MemNode::Control) != NULL
duke@435 1443 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1444 && all_controls_dominate(base, phase->C->start())) {
duke@435 1445 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1446 set_req(MemNode::Control, NULL);
duke@435 1447 }
kvn@1143 1448
kvn@1143 1449 if (EliminateAutoBox && can_reshape) {
kvn@1143 1450 assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
never@452 1451 Compile::AliasType* atp = phase->C->alias_type(adr_type());
never@452 1452 if (is_autobox_object(atp)) {
never@452 1453 Node* result = eliminate_autobox(phase);
never@452 1454 if (result != NULL) return result;
never@452 1455 }
never@452 1456 }
never@452 1457 }
never@452 1458
kvn@509 1459 Node* mem = in(MemNode::Memory);
kvn@509 1460 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1461
kvn@509 1462 if (addr_t != NULL) {
kvn@509 1463 // try to optimize our memory input
kvn@509 1464 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
kvn@509 1465 if (opt_mem != mem) {
kvn@509 1466 set_req(MemNode::Memory, opt_mem);
kvn@740 1467 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1468 return this;
kvn@509 1469 }
kvn@509 1470 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@509 1471 if (can_reshape && opt_mem->is_Phi() &&
kvn@658 1472 (t_oop != NULL) && t_oop->is_known_instance_field()) {
kvn@3260 1473 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@3260 1474 if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
kvn@3260 1475 // Delay this transformation until memory Phi is processed.
kvn@3260 1476 phase->is_IterGVN()->_worklist.push(this);
kvn@3260 1477 return NULL;
kvn@3260 1478 }
kvn@598 1479 // Split instance field load through Phi.
kvn@598 1480 Node* result = split_through_phi(phase);
kvn@598 1481 if (result != NULL) return result;
kvn@509 1482 }
kvn@509 1483 }
kvn@509 1484
duke@435 1485 // Check for prior store with a different base or offset; make Load
duke@435 1486 // independent. Skip through any number of them. Bail out if the stores
duke@435 1487 // are in an endless dead cycle and report no progress. This is a key
duke@435 1488 // transform for Reflection. However, if after skipping through the Stores
duke@435 1489 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1490 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1491 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1492 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1493 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1494 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1495 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1496 // fold up, do so.
duke@435 1497 Node* prev_mem = find_previous_store(phase);
duke@435 1498 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1499 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1500 // (c) See if we can fold up on the spot, but don't fold up here.
twisti@993 1501 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
duke@435 1502 // just return a prior value, which is done by Identity calls.
duke@435 1503 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1504 // Make ready for step (d):
duke@435 1505 set_req(MemNode::Memory, prev_mem);
duke@435 1506 return this;
duke@435 1507 }
duke@435 1508 }
duke@435 1509
duke@435 1510 return NULL; // No further progress
duke@435 1511 }
duke@435 1512
duke@435 1513 // Helper to recognize certain Klass fields which are invariant across
duke@435 1514 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1515 const Type*
duke@435 1516 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1517 ciKlass* klass) const {
stefank@3391 1518 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
duke@435 1519 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1520 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1521 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1522 return TypeInt::make(klass->modifier_flags());
duke@435 1523 }
stefank@3391 1524 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
duke@435 1525 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1526 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1527 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1528 return TypeInt::make(klass->access_flags());
duke@435 1529 }
stefank@3391 1530 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
duke@435 1531 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1532 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1533 return TypeInt::make(klass->layout_helper());
duke@435 1534 }
duke@435 1535
duke@435 1536 // No match.
duke@435 1537 return NULL;
duke@435 1538 }
duke@435 1539
duke@435 1540 //------------------------------Value-----------------------------------------
duke@435 1541 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1542 // Either input is TOP ==> the result is TOP
duke@435 1543 Node* mem = in(MemNode::Memory);
duke@435 1544 const Type *t1 = phase->type(mem);
duke@435 1545 if (t1 == Type::TOP) return Type::TOP;
duke@435 1546 Node* adr = in(MemNode::Address);
duke@435 1547 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1548 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1549 int off = tp->offset();
duke@435 1550 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
twisti@3102 1551 Compile* C = phase->C;
duke@435 1552
duke@435 1553 // Try to guess loaded type from pointer type
duke@435 1554 if (tp->base() == Type::AryPtr) {
duke@435 1555 const Type *t = tp->is_aryptr()->elem();
duke@435 1556 // Don't do this for integer types. There is only potential profit if
duke@435 1557 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1558 // more restrictive than t. This only happens here if one is short and the other
duke@435 1559 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1560 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1561 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1562 //
duke@435 1563 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1564 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1565 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1566 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1567 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1568 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1569 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1570 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1571 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@3882 1572 && (_type->isa_vect() == NULL)
kvn@728 1573 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1574 // t might actually be lower than _type, if _type is a unique
duke@435 1575 // concrete subclass of abstract class t.
duke@435 1576 // Make sure the reference is not into the header, by comparing
duke@435 1577 // the offset against the offset of the start of the array's data.
duke@435 1578 // Different array types begin at slightly different offsets (12 vs. 16).
duke@435 1579 // We choose T_BYTE as an example base type that is least restrictive
duke@435 1580 // as to alignment, which will therefore produce the smallest
duke@435 1581 // possible base offset.
duke@435 1582 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1583 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
duke@435 1584 const Type* jt = t->join(_type);
duke@435 1585 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1586 if (jt->empty() && !t->empty()) {
duke@435 1587 // This can happen if a interface-typed array narrows to a class type.
duke@435 1588 jt = _type;
duke@435 1589 }
never@452 1590
kvn@1143 1591 if (EliminateAutoBox && adr->is_AddP()) {
never@452 1592 // The pointers in the autobox arrays are always non-null
kvn@1143 1593 Node* base = adr->in(AddPNode::Base);
kvn@1143 1594 if (base != NULL &&
kvn@1143 1595 !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
twisti@3102 1596 Compile::AliasType* atp = C->alias_type(base->adr_type());
never@452 1597 if (is_autobox_cache(atp)) {
never@452 1598 return jt->join(TypePtr::NOTNULL)->is_ptr();
never@452 1599 }
never@452 1600 }
never@452 1601 }
duke@435 1602 return jt;
duke@435 1603 }
duke@435 1604 }
duke@435 1605 } else if (tp->base() == Type::InstPtr) {
twisti@3102 1606 ciEnv* env = C->env();
never@1515 1607 const TypeInstPtr* tinst = tp->is_instptr();
never@1515 1608 ciKlass* klass = tinst->klass();
duke@435 1609 assert( off != Type::OffsetBot ||
duke@435 1610 // arrays can be cast to Objects
duke@435 1611 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1612 // unsafe field access may not have a constant offset
twisti@3102 1613 C->has_unsafe_access(),
duke@435 1614 "Field accesses must be precise" );
duke@435 1615 // For oop loads, we expect the _type to be precise
twisti@3102 1616 if (klass == env->String_klass() &&
never@1515 1617 adr->is_AddP() && off != Type::OffsetBot) {
kvn@2602 1618 // For constant Strings treat the final fields as compile time constants.
never@1515 1619 Node* base = adr->in(AddPNode::Base);
never@2121 1620 const TypeOopPtr* t = phase->type(base)->isa_oopptr();
never@2121 1621 if (t != NULL && t->singleton()) {
twisti@3102 1622 ciField* field = env->String_klass()->get_field_by_offset(off, false);
kvn@2602 1623 if (field != NULL && field->is_final()) {
kvn@2602 1624 ciObject* string = t->const_oop();
kvn@2602 1625 ciConstant constant = string->as_instance()->field_value(field);
kvn@2602 1626 if (constant.basic_type() == T_INT) {
kvn@2602 1627 return TypeInt::make(constant.as_int());
kvn@2602 1628 } else if (constant.basic_type() == T_ARRAY) {
kvn@2602 1629 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
jcoomes@2661 1630 return TypeNarrowOop::make_from_constant(constant.as_object(), true);
kvn@2602 1631 } else {
jcoomes@2661 1632 return TypeOopPtr::make_from_constant(constant.as_object(), true);
kvn@2602 1633 }
never@1515 1634 }
never@1515 1635 }
never@1515 1636 }
never@1515 1637 }
twisti@3102 1638 // Optimizations for constant objects
twisti@3102 1639 ciObject* const_oop = tinst->const_oop();
twisti@3102 1640 if (const_oop != NULL) {
twisti@3102 1641 // For constant CallSites treat the target field as a compile time constant.
twisti@3102 1642 if (const_oop->is_call_site()) {
twisti@3102 1643 ciCallSite* call_site = const_oop->as_call_site();
twisti@3102 1644 ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
twisti@3102 1645 if (field != NULL && field->is_call_site_target()) {
twisti@3102 1646 ciMethodHandle* target = call_site->get_target();
twisti@3102 1647 if (target != NULL) { // just in case
twisti@3102 1648 ciConstant constant(T_OBJECT, target);
twisti@3102 1649 const Type* t;
twisti@3102 1650 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
twisti@3102 1651 t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
twisti@3102 1652 } else {
twisti@3102 1653 t = TypeOopPtr::make_from_constant(constant.as_object(), true);
twisti@3102 1654 }
twisti@3102 1655 // Add a dependence for invalidation of the optimization.
twisti@3102 1656 if (!call_site->is_constant_call_site()) {
twisti@3102 1657 C->dependencies()->assert_call_site_target_value(call_site, target);
twisti@3102 1658 }
twisti@3102 1659 return t;
twisti@3102 1660 }
twisti@3102 1661 }
twisti@3102 1662 }
twisti@3102 1663 }
duke@435 1664 } else if (tp->base() == Type::KlassPtr) {
duke@435 1665 assert( off != Type::OffsetBot ||
duke@435 1666 // arrays can be cast to Objects
duke@435 1667 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1668 // also allow array-loading from the primary supertype
duke@435 1669 // array during subtype checks
duke@435 1670 Opcode() == Op_LoadKlass,
duke@435 1671 "Field accesses must be precise" );
duke@435 1672 // For klass/static loads, we expect the _type to be precise
duke@435 1673 }
duke@435 1674
duke@435 1675 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1676 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1677 ciKlass* klass = tkls->klass();
duke@435 1678 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1679 // We are loading a field from a Klass metaobject whose identity
duke@435 1680 // is known at compile time (the type is "exact" or "precise").
duke@435 1681 // Check for fields we know are maintained as constants by the VM.
stefank@3391 1682 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
duke@435 1683 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1684 // (Folds up type checking code.)
duke@435 1685 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1686 return TypeInt::make(klass->super_check_offset());
duke@435 1687 }
duke@435 1688 // Compute index into primary_supers array
coleenp@4037 1689 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1690 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1691 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1692 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1693 // (Folds up type checking code.)
duke@435 1694 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1695 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1696 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1697 }
duke@435 1698 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1699 if (aift != NULL) return aift;
coleenp@4142 1700 if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
duke@435 1701 && klass->is_array_klass()) {
coleenp@4142 1702 // The field is ArrayKlass::_component_mirror. Return its (constant) value.
duke@435 1703 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1704 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1705 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1706 }
stefank@3391 1707 if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
duke@435 1708 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1709 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1710 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1711 return TypeInstPtr::make(klass->java_mirror());
duke@435 1712 }
duke@435 1713 }
duke@435 1714
duke@435 1715 // We can still check if we are loading from the primary_supers array at a
duke@435 1716 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1717 // than or equal to its super depth are correct.
duke@435 1718 if (klass->is_loaded() ) {
coleenp@4037 1719 ciType *inner = klass;
duke@435 1720 while( inner->is_obj_array_klass() )
duke@435 1721 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1722 if( inner->is_instance_klass() &&
duke@435 1723 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1724 // Compute index into primary_supers array
coleenp@4037 1725 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1726 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1727 if( depth < ciKlass::primary_super_limit() &&
duke@435 1728 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1729 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1730 // (Folds up type checking code.)
duke@435 1731 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1732 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1733 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1734 }
duke@435 1735 }
duke@435 1736 }
duke@435 1737
duke@435 1738 // If the type is enough to determine that the thing is not an array,
duke@435 1739 // we can give the layout_helper a positive interval type.
duke@435 1740 // This will help short-circuit some reflective code.
stefank@3391 1741 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
duke@435 1742 && !klass->is_array_klass() // not directly typed as an array
duke@435 1743 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1744 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1745 ) {
duke@435 1746 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1747 // test to (klass != Serializable && klass != Cloneable).
duke@435 1748 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1749 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1750 // The key property of this type is that it folds up tests
duke@435 1751 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1752 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1753 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1754 }
duke@435 1755 }
duke@435 1756
duke@435 1757 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1758 // if the load is provably beyond the header of the object.
duke@435 1759 // (Also allow a variable load from a fresh array to produce zero.)
kvn@2810 1760 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@2810 1761 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
kvn@2810 1762 if (ReduceFieldZeroing || is_instance) {
duke@435 1763 Node* value = can_see_stored_value(mem,phase);
kvn@3442 1764 if (value != NULL && value->is_Con()) {
kvn@3442 1765 assert(value->bottom_type()->higher_equal(_type),"sanity");
duke@435 1766 return value->bottom_type();
kvn@3442 1767 }
duke@435 1768 }
duke@435 1769
kvn@2810 1770 if (is_instance) {
kvn@499 1771 // If we have an instance type and our memory input is the
kvn@499 1772 // programs's initial memory state, there is no matching store,
kvn@499 1773 // so just return a zero of the appropriate type
kvn@499 1774 Node *mem = in(MemNode::Memory);
kvn@499 1775 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1776 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1777 return Type::get_zero_type(_type->basic_type());
kvn@499 1778 }
kvn@499 1779 }
duke@435 1780 return _type;
duke@435 1781 }
duke@435 1782
duke@435 1783 //------------------------------match_edge-------------------------------------
duke@435 1784 // Do we Match on this edge index or not? Match only the address.
duke@435 1785 uint LoadNode::match_edge(uint idx) const {
duke@435 1786 return idx == MemNode::Address;
duke@435 1787 }
duke@435 1788
duke@435 1789 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1790 //
duke@435 1791 // If the previous store is to the same address as this load,
duke@435 1792 // and the value stored was larger than a byte, replace this load
duke@435 1793 // with the value stored truncated to a byte. If no truncation is
duke@435 1794 // needed, the replacement is done in LoadNode::Identity().
duke@435 1795 //
duke@435 1796 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1797 Node* mem = in(MemNode::Memory);
duke@435 1798 Node* value = can_see_stored_value(mem,phase);
duke@435 1799 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1800 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
kvn@4115 1801 return new (phase->C) RShiftINode(result, phase->intcon(24));
duke@435 1802 }
duke@435 1803 // Identity call will handle the case where truncation is not needed.
duke@435 1804 return LoadNode::Ideal(phase, can_reshape);
duke@435 1805 }
duke@435 1806
kvn@3442 1807 const Type* LoadBNode::Value(PhaseTransform *phase) const {
kvn@3442 1808 Node* mem = in(MemNode::Memory);
kvn@3442 1809 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1810 if (value != NULL && value->is_Con() &&
kvn@3448 1811 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1812 // If the input to the store does not fit with the load's result type,
kvn@3442 1813 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1814 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1815 int con = value->get_int();
kvn@3442 1816 return TypeInt::make((con << 24) >> 24);
kvn@3442 1817 }
kvn@3442 1818 return LoadNode::Value(phase);
kvn@3442 1819 }
kvn@3442 1820
twisti@1059 1821 //--------------------------LoadUBNode::Ideal-------------------------------------
twisti@1059 1822 //
twisti@1059 1823 // If the previous store is to the same address as this load,
twisti@1059 1824 // and the value stored was larger than a byte, replace this load
twisti@1059 1825 // with the value stored truncated to a byte. If no truncation is
twisti@1059 1826 // needed, the replacement is done in LoadNode::Identity().
twisti@1059 1827 //
twisti@1059 1828 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
twisti@1059 1829 Node* mem = in(MemNode::Memory);
twisti@1059 1830 Node* value = can_see_stored_value(mem, phase);
twisti@1059 1831 if (value && !phase->type(value)->higher_equal(_type))
kvn@4115 1832 return new (phase->C) AndINode(value, phase->intcon(0xFF));
twisti@1059 1833 // Identity call will handle the case where truncation is not needed.
twisti@1059 1834 return LoadNode::Ideal(phase, can_reshape);
twisti@1059 1835 }
twisti@1059 1836
kvn@3442 1837 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
kvn@3442 1838 Node* mem = in(MemNode::Memory);
kvn@3442 1839 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1840 if (value != NULL && value->is_Con() &&
kvn@3448 1841 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1842 // If the input to the store does not fit with the load's result type,
kvn@3442 1843 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1844 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1845 int con = value->get_int();
kvn@3442 1846 return TypeInt::make(con & 0xFF);
kvn@3442 1847 }
kvn@3442 1848 return LoadNode::Value(phase);
kvn@3442 1849 }
kvn@3442 1850
twisti@993 1851 //--------------------------LoadUSNode::Ideal-------------------------------------
duke@435 1852 //
duke@435 1853 // If the previous store is to the same address as this load,
duke@435 1854 // and the value stored was larger than a char, replace this load
duke@435 1855 // with the value stored truncated to a char. If no truncation is
duke@435 1856 // needed, the replacement is done in LoadNode::Identity().
duke@435 1857 //
twisti@993 1858 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1859 Node* mem = in(MemNode::Memory);
duke@435 1860 Node* value = can_see_stored_value(mem,phase);
duke@435 1861 if( value && !phase->type(value)->higher_equal( _type ) )
kvn@4115 1862 return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
duke@435 1863 // Identity call will handle the case where truncation is not needed.
duke@435 1864 return LoadNode::Ideal(phase, can_reshape);
duke@435 1865 }
duke@435 1866
kvn@3442 1867 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
kvn@3442 1868 Node* mem = in(MemNode::Memory);
kvn@3442 1869 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1870 if (value != NULL && value->is_Con() &&
kvn@3448 1871 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1872 // If the input to the store does not fit with the load's result type,
kvn@3442 1873 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1874 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1875 int con = value->get_int();
kvn@3442 1876 return TypeInt::make(con & 0xFFFF);
kvn@3442 1877 }
kvn@3442 1878 return LoadNode::Value(phase);
kvn@3442 1879 }
kvn@3442 1880
duke@435 1881 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1882 //
duke@435 1883 // If the previous store is to the same address as this load,
duke@435 1884 // and the value stored was larger than a short, replace this load
duke@435 1885 // with the value stored truncated to a short. If no truncation is
duke@435 1886 // needed, the replacement is done in LoadNode::Identity().
duke@435 1887 //
duke@435 1888 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1889 Node* mem = in(MemNode::Memory);
duke@435 1890 Node* value = can_see_stored_value(mem,phase);
duke@435 1891 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1892 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
kvn@4115 1893 return new (phase->C) RShiftINode(result, phase->intcon(16));
duke@435 1894 }
duke@435 1895 // Identity call will handle the case where truncation is not needed.
duke@435 1896 return LoadNode::Ideal(phase, can_reshape);
duke@435 1897 }
duke@435 1898
kvn@3442 1899 const Type* LoadSNode::Value(PhaseTransform *phase) const {
kvn@3442 1900 Node* mem = in(MemNode::Memory);
kvn@3442 1901 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1902 if (value != NULL && value->is_Con() &&
kvn@3448 1903 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1904 // If the input to the store does not fit with the load's result type,
kvn@3442 1905 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1906 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1907 int con = value->get_int();
kvn@3442 1908 return TypeInt::make((con << 16) >> 16);
kvn@3442 1909 }
kvn@3442 1910 return LoadNode::Value(phase);
kvn@3442 1911 }
kvn@3442 1912
duke@435 1913 //=============================================================================
kvn@599 1914 //----------------------------LoadKlassNode::make------------------------------
kvn@599 1915 // Polymorphic factory method:
kvn@599 1916 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 1917 Compile* C = gvn.C;
kvn@599 1918 Node *ctl = NULL;
kvn@599 1919 // sanity check the alias category against the created node type
coleenp@4037 1920 const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
coleenp@4037 1921 assert(adr_type != NULL, "expecting TypeKlassPtr");
kvn@599 1922 #ifdef _LP64
roland@4159 1923 if (adr_type->is_ptr_to_narrowklass()) {
coleenp@4037 1924 assert(UseCompressedKlassPointers, "no compressed klasses");
roland@4159 1925 Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
roland@4159 1926 return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 1927 }
kvn@599 1928 #endif
roland@4159 1929 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@4115 1930 return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
kvn@599 1931 }
kvn@599 1932
duke@435 1933 //------------------------------Value------------------------------------------
duke@435 1934 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1935 return klass_value_common(phase);
kvn@599 1936 }
kvn@599 1937
kvn@599 1938 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 1939 // Either input is TOP ==> the result is TOP
duke@435 1940 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1941 if (t1 == Type::TOP) return Type::TOP;
duke@435 1942 Node *adr = in(MemNode::Address);
duke@435 1943 const Type *t2 = phase->type( adr );
duke@435 1944 if (t2 == Type::TOP) return Type::TOP;
duke@435 1945 const TypePtr *tp = t2->is_ptr();
duke@435 1946 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 1947 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 1948
duke@435 1949 // Return a more precise klass, if possible
duke@435 1950 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 1951 if (tinst != NULL) {
duke@435 1952 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 1953 int offset = tinst->offset();
duke@435 1954 if (ik == phase->C->env()->Class_klass()
duke@435 1955 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1956 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1957 // We are loading a special hidden field from a Class mirror object,
duke@435 1958 // the field which points to the VM's Klass metaobject.
duke@435 1959 ciType* t = tinst->java_mirror_type();
duke@435 1960 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 1961 if (t != NULL) {
duke@435 1962 // constant oop => constant klass
duke@435 1963 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1964 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 1965 }
duke@435 1966 if (!t->is_klass()) {
duke@435 1967 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 1968 return TypePtr::NULL_PTR;
duke@435 1969 }
duke@435 1970 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 1971 return TypeKlassPtr::make(t->as_klass());
duke@435 1972 }
duke@435 1973 // non-constant mirror, so we can't tell what's going on
duke@435 1974 }
duke@435 1975 if( !ik->is_loaded() )
duke@435 1976 return _type; // Bail out if not loaded
duke@435 1977 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1978 if (tinst->klass_is_exact()) {
duke@435 1979 return TypeKlassPtr::make(ik);
duke@435 1980 }
duke@435 1981 // See if we can become precise: no subklasses and no interface
duke@435 1982 // (Note: We need to support verified interfaces.)
duke@435 1983 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1984 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1985 // Add a dependence; if any subclass added we need to recompile
duke@435 1986 if (!ik->is_final()) {
duke@435 1987 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 1988 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1989 }
duke@435 1990 // Return precise klass
duke@435 1991 return TypeKlassPtr::make(ik);
duke@435 1992 }
duke@435 1993
duke@435 1994 // Return root of possible klass
duke@435 1995 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 1996 }
duke@435 1997 }
duke@435 1998
duke@435 1999 // Check for loading klass from an array
duke@435 2000 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 2001 if( tary != NULL ) {
duke@435 2002 ciKlass *tary_klass = tary->klass();
duke@435 2003 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 2004 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 2005 if (tary->klass_is_exact()) {
duke@435 2006 return TypeKlassPtr::make(tary_klass);
duke@435 2007 }
duke@435 2008 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 2009 // If the klass is an object array, we defer the question to the
duke@435 2010 // array component klass.
duke@435 2011 if( ak->is_obj_array_klass() ) {
duke@435 2012 assert( ak->is_loaded(), "" );
duke@435 2013 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 2014 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 2015 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 2016 // See if we can become precise: no subklasses and no interface
duke@435 2017 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2018 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2019 // Add a dependence; if any subclass added we need to recompile
duke@435 2020 if (!ik->is_final()) {
duke@435 2021 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 2022 }
duke@435 2023 // Return precise array klass
duke@435 2024 return TypeKlassPtr::make(ak);
duke@435 2025 }
duke@435 2026 }
duke@435 2027 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 2028 } else { // Found a type-array?
duke@435 2029 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2030 assert( ak->is_type_array_klass(), "" );
duke@435 2031 return TypeKlassPtr::make(ak); // These are always precise
duke@435 2032 }
duke@435 2033 }
duke@435 2034 }
duke@435 2035
duke@435 2036 // Check for loading klass from an array klass
duke@435 2037 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 2038 if (tkls != NULL && !StressReflectiveCode) {
duke@435 2039 ciKlass* klass = tkls->klass();
duke@435 2040 if( !klass->is_loaded() )
duke@435 2041 return _type; // Bail out if not loaded
duke@435 2042 if( klass->is_obj_array_klass() &&
coleenp@4142 2043 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
duke@435 2044 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 2045 // // Always returning precise element type is incorrect,
duke@435 2046 // // e.g., element type could be object and array may contain strings
duke@435 2047 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 2048
duke@435 2049 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 2050 // according to the element type's subclassing.
duke@435 2051 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 2052 }
duke@435 2053 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
stefank@3391 2054 tkls->offset() == in_bytes(Klass::super_offset())) {
duke@435 2055 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 2056 // The field is Klass::_super. Return its (constant) value.
duke@435 2057 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 2058 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 2059 }
duke@435 2060 }
duke@435 2061
duke@435 2062 // Bailout case
duke@435 2063 return LoadNode::Value(phase);
duke@435 2064 }
duke@435 2065
duke@435 2066 //------------------------------Identity---------------------------------------
duke@435 2067 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 2068 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 2069 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2070 return klass_identity_common(phase);
kvn@599 2071 }
kvn@599 2072
kvn@599 2073 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 2074 Node* x = LoadNode::Identity(phase);
duke@435 2075 if (x != this) return x;
duke@435 2076
duke@435 2077 // Take apart the address into an oop and and offset.
duke@435 2078 // Return 'this' if we cannot.
duke@435 2079 Node* adr = in(MemNode::Address);
duke@435 2080 intptr_t offset = 0;
duke@435 2081 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2082 if (base == NULL) return this;
duke@435 2083 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 2084 if (toop == NULL) return this;
duke@435 2085
duke@435 2086 // We can fetch the klass directly through an AllocateNode.
duke@435 2087 // This works even if the klass is not constant (clone or newArray).
duke@435 2088 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 2089 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 2090 if (allocated_klass != NULL) {
duke@435 2091 return allocated_klass;
duke@435 2092 }
duke@435 2093 }
duke@435 2094
coleenp@4037 2095 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
coleenp@4142 2096 // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
duke@435 2097 // See inline_native_Class_query for occurrences of these patterns.
duke@435 2098 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 2099 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 2100 //
duke@435 2101 // This improves reflective code, often making the Class
duke@435 2102 // mirror go completely dead. (Current exception: Class
duke@435 2103 // mirrors may appear in debug info, but we could clean them out by
coleenp@4037 2104 // introducing a new debug info operator for Klass*.java_mirror).
duke@435 2105 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 2106 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 2107 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 2108 // We are loading a special hidden field from a Class mirror,
coleenp@4142 2109 // the field which points to its Klass or ArrayKlass metaobject.
duke@435 2110 if (base->is_Load()) {
duke@435 2111 Node* adr2 = base->in(MemNode::Address);
duke@435 2112 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 2113 if (tkls != NULL && !tkls->empty()
duke@435 2114 && (tkls->klass()->is_instance_klass() ||
duke@435 2115 tkls->klass()->is_array_klass())
duke@435 2116 && adr2->is_AddP()
duke@435 2117 ) {
stefank@3391 2118 int mirror_field = in_bytes(Klass::java_mirror_offset());
duke@435 2119 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
coleenp@4142 2120 mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
duke@435 2121 }
stefank@3391 2122 if (tkls->offset() == mirror_field) {
duke@435 2123 return adr2->in(AddPNode::Base);
duke@435 2124 }
duke@435 2125 }
duke@435 2126 }
duke@435 2127 }
duke@435 2128
duke@435 2129 return this;
duke@435 2130 }
duke@435 2131
kvn@599 2132
kvn@599 2133 //------------------------------Value------------------------------------------
kvn@599 2134 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 2135 const Type *t = klass_value_common(phase);
kvn@656 2136 if (t == Type::TOP)
kvn@656 2137 return t;
kvn@656 2138
roland@4159 2139 return t->make_narrowklass();
kvn@599 2140 }
kvn@599 2141
kvn@599 2142 //------------------------------Identity---------------------------------------
kvn@599 2143 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 2144 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 2145 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2146 Node *x = klass_identity_common(phase);
kvn@599 2147
kvn@599 2148 const Type *t = phase->type( x );
kvn@599 2149 if( t == Type::TOP ) return x;
roland@4159 2150 if( t->isa_narrowklass()) return x;
roland@4159 2151 assert (!t->isa_narrowoop(), "no narrow oop here");
roland@4159 2152
roland@4159 2153 return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
kvn@599 2154 }
kvn@599 2155
duke@435 2156 //------------------------------Value-----------------------------------------
duke@435 2157 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 2158 // Either input is TOP ==> the result is TOP
duke@435 2159 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2160 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2161 Node *adr = in(MemNode::Address);
duke@435 2162 const Type *t2 = phase->type( adr );
duke@435 2163 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2164 const TypePtr *tp = t2->is_ptr();
duke@435 2165 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 2166 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 2167 if( !tap ) return _type;
duke@435 2168 return tap->size();
duke@435 2169 }
duke@435 2170
rasbold@801 2171 //-------------------------------Ideal---------------------------------------
rasbold@801 2172 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 2173 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 2174 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 2175 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 2176
rasbold@801 2177 // Take apart the address into an oop and and offset.
rasbold@801 2178 // Return 'this' if we cannot.
rasbold@801 2179 Node* adr = in(MemNode::Address);
rasbold@801 2180 intptr_t offset = 0;
rasbold@801 2181 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 2182 if (base == NULL) return NULL;
rasbold@801 2183 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 2184 if (tary == NULL) return NULL;
rasbold@801 2185
rasbold@801 2186 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 2187 // This works even if the length is not constant (clone or newArray).
rasbold@801 2188 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2189 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2190 if (alloc != NULL) {
rasbold@801 2191 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2192 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 2193 if (allocated_length != len) {
rasbold@801 2194 // New CastII improves on this.
rasbold@801 2195 return len;
rasbold@801 2196 }
rasbold@801 2197 }
rasbold@801 2198 }
rasbold@801 2199
rasbold@801 2200 return NULL;
rasbold@801 2201 }
rasbold@801 2202
duke@435 2203 //------------------------------Identity---------------------------------------
duke@435 2204 // Feed through the length in AllocateArray(...length...)._length.
duke@435 2205 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 2206 Node* x = LoadINode::Identity(phase);
duke@435 2207 if (x != this) return x;
duke@435 2208
duke@435 2209 // Take apart the address into an oop and and offset.
duke@435 2210 // Return 'this' if we cannot.
duke@435 2211 Node* adr = in(MemNode::Address);
duke@435 2212 intptr_t offset = 0;
duke@435 2213 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2214 if (base == NULL) return this;
duke@435 2215 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 2216 if (tary == NULL) return this;
duke@435 2217
duke@435 2218 // We can fetch the length directly through an AllocateArrayNode.
duke@435 2219 // This works even if the length is not constant (clone or newArray).
duke@435 2220 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2221 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2222 if (alloc != NULL) {
rasbold@801 2223 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2224 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 2225 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 2226 if (allocated_length == len) {
rasbold@801 2227 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 2228 return allocated_length;
rasbold@801 2229 }
duke@435 2230 }
duke@435 2231 }
duke@435 2232
duke@435 2233 return this;
duke@435 2234
duke@435 2235 }
rasbold@801 2236
duke@435 2237 //=============================================================================
duke@435 2238 //---------------------------StoreNode::make-----------------------------------
duke@435 2239 // Polymorphic factory method:
coleenp@548 2240 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
coleenp@548 2241 Compile* C = gvn.C;
kvn@1964 2242 assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 2243 ctl != NULL, "raw memory operations should have control edge");
coleenp@548 2244
duke@435 2245 switch (bt) {
duke@435 2246 case T_BOOLEAN:
kvn@4115 2247 case T_BYTE: return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
kvn@4115 2248 case T_INT: return new (C) StoreINode(ctl, mem, adr, adr_type, val);
duke@435 2249 case T_CHAR:
kvn@4115 2250 case T_SHORT: return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
kvn@4115 2251 case T_LONG: return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
kvn@4115 2252 case T_FLOAT: return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
kvn@4115 2253 case T_DOUBLE: return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
coleenp@4037 2254 case T_METADATA:
duke@435 2255 case T_ADDRESS:
coleenp@548 2256 case T_OBJECT:
coleenp@548 2257 #ifdef _LP64
roland@4159 2258 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2259 val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
kvn@4115 2260 return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
roland@4159 2261 } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
roland@4159 2262 (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
roland@4159 2263 adr->bottom_type()->isa_rawptr())) {
roland@4159 2264 val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
roland@4159 2265 return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
roland@4159 2266 }
coleenp@548 2267 #endif
kvn@656 2268 {
kvn@4115 2269 return new (C) StorePNode(ctl, mem, adr, adr_type, val);
kvn@656 2270 }
duke@435 2271 }
duke@435 2272 ShouldNotReachHere();
duke@435 2273 return (StoreNode*)NULL;
duke@435 2274 }
duke@435 2275
duke@435 2276 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
duke@435 2277 bool require_atomic = true;
kvn@4115 2278 return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
duke@435 2279 }
duke@435 2280
duke@435 2281
duke@435 2282 //--------------------------bottom_type----------------------------------------
duke@435 2283 const Type *StoreNode::bottom_type() const {
duke@435 2284 return Type::MEMORY;
duke@435 2285 }
duke@435 2286
duke@435 2287 //------------------------------hash-------------------------------------------
duke@435 2288 uint StoreNode::hash() const {
duke@435 2289 // unroll addition of interesting fields
duke@435 2290 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2291
duke@435 2292 // Since they are not commoned, do not hash them:
duke@435 2293 return NO_HASH;
duke@435 2294 }
duke@435 2295
duke@435 2296 //------------------------------Ideal------------------------------------------
duke@435 2297 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2298 // When a store immediately follows a relevant allocation/initialization,
duke@435 2299 // try to capture it into the initialization, or hoist it above.
duke@435 2300 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2301 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2302 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2303
duke@435 2304 Node* mem = in(MemNode::Memory);
duke@435 2305 Node* address = in(MemNode::Address);
duke@435 2306
never@2780 2307 // Back-to-back stores to same address? Fold em up. Generally
never@2780 2308 // unsafe if I have intervening uses... Also disallowed for StoreCM
never@2780 2309 // since they must follow each StoreP operation. Redundant StoreCMs
never@2780 2310 // are eliminated just before matching in final_graph_reshape.
kvn@3407 2311 if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
never@2780 2312 mem->Opcode() != Op_StoreCM) {
duke@435 2313 // Looking at a dead closed cycle of memory?
duke@435 2314 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2315
duke@435 2316 assert(Opcode() == mem->Opcode() ||
duke@435 2317 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2318 "no mismatched stores, except on raw memory");
duke@435 2319
duke@435 2320 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2321 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2322 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2323 // For example, 'mem' might be the final state at a conditional return.
duke@435 2324 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2325 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2326 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2327 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2328 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2329 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2330 phase->is_IterGVN());
duke@435 2331 } else {
duke@435 2332 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2333 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2334 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2335 }
duke@435 2336 return this;
duke@435 2337 }
duke@435 2338 }
duke@435 2339
duke@435 2340 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2341 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2342 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2343 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2344 InitializeNode* init = mem->in(0)->as_Initialize();
roland@4657 2345 intptr_t offset = init->can_capture_store(this, phase, can_reshape);
duke@435 2346 if (offset > 0) {
roland@4657 2347 Node* moved = init->capture_store(this, offset, phase, can_reshape);
duke@435 2348 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2349 // and I need to disappear.
duke@435 2350 if (moved != NULL) {
duke@435 2351 // %%% hack to ensure that Ideal returns a new node:
duke@435 2352 mem = MergeMemNode::make(phase->C, mem);
duke@435 2353 return mem; // fold me away
duke@435 2354 }
duke@435 2355 }
duke@435 2356 }
duke@435 2357
duke@435 2358 return NULL; // No further progress
duke@435 2359 }
duke@435 2360
duke@435 2361 //------------------------------Value-----------------------------------------
duke@435 2362 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2363 // Either input is TOP ==> the result is TOP
duke@435 2364 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2365 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2366 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2367 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2368 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2369 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2370 return Type::MEMORY;
duke@435 2371 }
duke@435 2372
duke@435 2373 //------------------------------Identity---------------------------------------
duke@435 2374 // Remove redundant stores:
duke@435 2375 // Store(m, p, Load(m, p)) changes to m.
duke@435 2376 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2377 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2378 Node* mem = in(MemNode::Memory);
duke@435 2379 Node* adr = in(MemNode::Address);
duke@435 2380 Node* val = in(MemNode::ValueIn);
duke@435 2381
duke@435 2382 // Load then Store? Then the Store is useless
duke@435 2383 if (val->is_Load() &&
kvn@3407 2384 val->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2385 val->in(MemNode::Memory )->eqv_uncast(mem) &&
duke@435 2386 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2387 return mem;
duke@435 2388 }
duke@435 2389
duke@435 2390 // Two stores in a row of the same value?
duke@435 2391 if (mem->is_Store() &&
kvn@3407 2392 mem->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2393 mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
duke@435 2394 mem->Opcode() == Opcode()) {
duke@435 2395 return mem;
duke@435 2396 }
duke@435 2397
duke@435 2398 // Store of zero anywhere into a freshly-allocated object?
duke@435 2399 // Then the store is useless.
duke@435 2400 // (It must already have been captured by the InitializeNode.)
duke@435 2401 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2402 // a newly allocated object is already all-zeroes everywhere
duke@435 2403 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2404 return mem;
duke@435 2405 }
duke@435 2406
duke@435 2407 // the store may also apply to zero-bits in an earlier object
duke@435 2408 Node* prev_mem = find_previous_store(phase);
duke@435 2409 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2410 if (prev_mem != NULL) {
duke@435 2411 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2412 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2413 // prev_val and val might differ by a cast; it would be good
duke@435 2414 // to keep the more informative of the two.
duke@435 2415 return mem;
duke@435 2416 }
duke@435 2417 }
duke@435 2418 }
duke@435 2419
duke@435 2420 return this;
duke@435 2421 }
duke@435 2422
duke@435 2423 //------------------------------match_edge-------------------------------------
duke@435 2424 // Do we Match on this edge index or not? Match only memory & value
duke@435 2425 uint StoreNode::match_edge(uint idx) const {
duke@435 2426 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2427 }
duke@435 2428
duke@435 2429 //------------------------------cmp--------------------------------------------
duke@435 2430 // Do not common stores up together. They generally have to be split
duke@435 2431 // back up anyways, so do not bother.
duke@435 2432 uint StoreNode::cmp( const Node &n ) const {
duke@435 2433 return (&n == this); // Always fail except on self
duke@435 2434 }
duke@435 2435
duke@435 2436 //------------------------------Ideal_masked_input-----------------------------
duke@435 2437 // Check for a useless mask before a partial-word store
duke@435 2438 // (StoreB ... (AndI valIn conIa) )
duke@435 2439 // If (conIa & mask == mask) this simplifies to
duke@435 2440 // (StoreB ... (valIn) )
duke@435 2441 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2442 Node *val = in(MemNode::ValueIn);
duke@435 2443 if( val->Opcode() == Op_AndI ) {
duke@435 2444 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2445 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2446 set_req(MemNode::ValueIn, val->in(1));
duke@435 2447 return this;
duke@435 2448 }
duke@435 2449 }
duke@435 2450 return NULL;
duke@435 2451 }
duke@435 2452
duke@435 2453
duke@435 2454 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2455 // Check for useless sign-extension before a partial-word store
duke@435 2456 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2457 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2458 // (StoreB ... (valIn) )
duke@435 2459 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2460 Node *val = in(MemNode::ValueIn);
duke@435 2461 if( val->Opcode() == Op_RShiftI ) {
duke@435 2462 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2463 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2464 Node *shl = val->in(1);
duke@435 2465 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2466 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2467 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2468 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2469 return this;
duke@435 2470 }
duke@435 2471 }
duke@435 2472 }
duke@435 2473 }
duke@435 2474 return NULL;
duke@435 2475 }
duke@435 2476
duke@435 2477 //------------------------------value_never_loaded-----------------------------------
duke@435 2478 // Determine whether there are any possible loads of the value stored.
duke@435 2479 // For simplicity, we actually check if there are any loads from the
duke@435 2480 // address stored to, not just for loads of the value stored by this node.
duke@435 2481 //
duke@435 2482 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2483 Node *adr = in(Address);
duke@435 2484 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2485 if (adr_oop == NULL)
duke@435 2486 return false;
kvn@658 2487 if (!adr_oop->is_known_instance_field())
duke@435 2488 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2489 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2490 Node *use = adr->fast_out(i);
duke@435 2491 int opc = use->Opcode();
duke@435 2492 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2493 return false;
duke@435 2494 }
duke@435 2495 }
duke@435 2496 return true;
duke@435 2497 }
duke@435 2498
duke@435 2499 //=============================================================================
duke@435 2500 //------------------------------Ideal------------------------------------------
duke@435 2501 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2502 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2503 // (a left shift, then right shift) we can skip both.
duke@435 2504 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2505 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2506 if( progress != NULL ) return progress;
duke@435 2507
duke@435 2508 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2509 if( progress != NULL ) return progress;
duke@435 2510
duke@435 2511 // Finally check the default case
duke@435 2512 return StoreNode::Ideal(phase, can_reshape);
duke@435 2513 }
duke@435 2514
duke@435 2515 //=============================================================================
duke@435 2516 //------------------------------Ideal------------------------------------------
duke@435 2517 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2518 // we can skip the AND operation
duke@435 2519 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2520 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2521 if( progress != NULL ) return progress;
duke@435 2522
duke@435 2523 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2524 if( progress != NULL ) return progress;
duke@435 2525
duke@435 2526 // Finally check the default case
duke@435 2527 return StoreNode::Ideal(phase, can_reshape);
duke@435 2528 }
duke@435 2529
duke@435 2530 //=============================================================================
duke@435 2531 //------------------------------Identity---------------------------------------
duke@435 2532 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2533 // No need to card mark when storing a null ptr
duke@435 2534 Node* my_store = in(MemNode::OopStore);
duke@435 2535 if (my_store->is_Store()) {
duke@435 2536 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2537 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2538 return in(MemNode::Memory);
duke@435 2539 }
duke@435 2540 }
duke@435 2541 return this;
duke@435 2542 }
duke@435 2543
cfang@1420 2544 //=============================================================================
cfang@1420 2545 //------------------------------Ideal---------------------------------------
cfang@1420 2546 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1420 2547 Node* progress = StoreNode::Ideal(phase, can_reshape);
cfang@1420 2548 if (progress != NULL) return progress;
cfang@1420 2549
cfang@1420 2550 Node* my_store = in(MemNode::OopStore);
cfang@1420 2551 if (my_store->is_MergeMem()) {
cfang@1420 2552 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
cfang@1420 2553 set_req(MemNode::OopStore, mem);
cfang@1420 2554 return this;
cfang@1420 2555 }
cfang@1420 2556
cfang@1420 2557 return NULL;
cfang@1420 2558 }
cfang@1420 2559
duke@435 2560 //------------------------------Value-----------------------------------------
duke@435 2561 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2562 // Either input is TOP ==> the result is TOP
kvn@478 2563 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2564 if( t == Type::TOP ) return Type::TOP;
kvn@478 2565 t = phase->type( in(MemNode::Address) );
kvn@478 2566 if( t == Type::TOP ) return Type::TOP;
kvn@478 2567 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2568 if( t == Type::TOP ) return Type::TOP;
duke@435 2569 // If extra input is TOP ==> the result is TOP
kvn@478 2570 t = phase->type( in(MemNode::OopStore) );
kvn@478 2571 if( t == Type::TOP ) return Type::TOP;
duke@435 2572
duke@435 2573 return StoreNode::Value( phase );
duke@435 2574 }
duke@435 2575
duke@435 2576
duke@435 2577 //=============================================================================
duke@435 2578 //----------------------------------SCMemProjNode------------------------------
duke@435 2579 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2580 {
duke@435 2581 return bottom_type();
duke@435 2582 }
duke@435 2583
duke@435 2584 //=============================================================================
roland@4106 2585 //----------------------------------LoadStoreNode------------------------------
roland@4106 2586 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
roland@4106 2587 : Node(required),
roland@4106 2588 _type(rt),
roland@4106 2589 _adr_type(at)
roland@4106 2590 {
duke@435 2591 init_req(MemNode::Control, c );
duke@435 2592 init_req(MemNode::Memory , mem);
duke@435 2593 init_req(MemNode::Address, adr);
duke@435 2594 init_req(MemNode::ValueIn, val);
duke@435 2595 init_class_id(Class_LoadStore);
roland@4106 2596 }
roland@4106 2597
roland@4106 2598 uint LoadStoreNode::ideal_reg() const {
roland@4106 2599 return _type->ideal_reg();
roland@4106 2600 }
roland@4106 2601
roland@4106 2602 bool LoadStoreNode::result_not_used() const {
roland@4106 2603 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
roland@4106 2604 Node *x = fast_out(i);
roland@4106 2605 if (x->Opcode() == Op_SCMemProj) continue;
roland@4106 2606 return false;
roland@4106 2607 }
roland@4106 2608 return true;
roland@4106 2609 }
roland@4106 2610
roland@4106 2611 uint LoadStoreNode::size_of() const { return sizeof(*this); }
roland@4106 2612
roland@4106 2613 //=============================================================================
roland@4106 2614 //----------------------------------LoadStoreConditionalNode--------------------
roland@4106 2615 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
roland@4106 2616 init_req(ExpectedIn, ex );
duke@435 2617 }
duke@435 2618
duke@435 2619 //=============================================================================
duke@435 2620 //-------------------------------adr_type--------------------------------------
duke@435 2621 // Do we Match on this edge index or not? Do not match memory
duke@435 2622 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2623 Node *adr = in(3);
duke@435 2624 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2625 }
duke@435 2626
duke@435 2627 //------------------------------match_edge-------------------------------------
duke@435 2628 // Do we Match on this edge index or not? Do not match memory
duke@435 2629 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2630 return idx > 1;
duke@435 2631 }
duke@435 2632
duke@435 2633 //------------------------------Identity---------------------------------------
duke@435 2634 // Clearing a zero length array does nothing
duke@435 2635 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2636 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2637 }
duke@435 2638
duke@435 2639 //------------------------------Idealize---------------------------------------
duke@435 2640 // Clearing a short array is faster with stores
duke@435 2641 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2642 const int unit = BytesPerLong;
duke@435 2643 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2644 if (!t) return NULL;
duke@435 2645 if (!t->is_con()) return NULL;
duke@435 2646 intptr_t raw_count = t->get_con();
duke@435 2647 intptr_t size = raw_count;
duke@435 2648 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2649 // Clearing nothing uses the Identity call.
duke@435 2650 // Negative clears are possible on dead ClearArrays
duke@435 2651 // (see jck test stmt114.stmt11402.val).
duke@435 2652 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2653 intptr_t count = size / unit;
duke@435 2654 // Length too long; use fast hardware clear
duke@435 2655 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2656 Node *mem = in(1);
duke@435 2657 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2658 Node *adr = in(3);
duke@435 2659 const Type* at = phase->type(adr);
duke@435 2660 if( at==Type::TOP ) return NULL;
duke@435 2661 const TypePtr* atp = at->isa_ptr();
duke@435 2662 // adjust atp to be the correct array element address type
duke@435 2663 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2664 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2665 // Get base for derived pointer purposes
duke@435 2666 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2667 Node *base = adr->in(1);
duke@435 2668
duke@435 2669 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2670 Node *off = phase->MakeConX(BytesPerLong);
kvn@4115 2671 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2672 count--;
duke@435 2673 while( count-- ) {
duke@435 2674 mem = phase->transform(mem);
kvn@4115 2675 adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
kvn@4115 2676 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2677 }
duke@435 2678 return mem;
duke@435 2679 }
duke@435 2680
kvn@1535 2681 //----------------------------step_through----------------------------------
kvn@1535 2682 // Return allocation input memory edge if it is different instance
kvn@1535 2683 // or itself if it is the one we are looking for.
kvn@1535 2684 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
kvn@1535 2685 Node* n = *np;
kvn@1535 2686 assert(n->is_ClearArray(), "sanity");
kvn@1535 2687 intptr_t offset;
kvn@1535 2688 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
kvn@1535 2689 // This method is called only before Allocate nodes are expanded during
kvn@1535 2690 // macro nodes expansion. Before that ClearArray nodes are only generated
kvn@1535 2691 // in LibraryCallKit::generate_arraycopy() which follows allocations.
kvn@1535 2692 assert(alloc != NULL, "should have allocation");
kvn@1535 2693 if (alloc->_idx == instance_id) {
kvn@1535 2694 // Can not bypass initialization of the instance we are looking for.
kvn@1535 2695 return false;
kvn@1535 2696 }
kvn@1535 2697 // Otherwise skip it.
kvn@1535 2698 InitializeNode* init = alloc->initialization();
kvn@1535 2699 if (init != NULL)
kvn@1535 2700 *np = init->in(TypeFunc::Memory);
kvn@1535 2701 else
kvn@1535 2702 *np = alloc->in(TypeFunc::Memory);
kvn@1535 2703 return true;
kvn@1535 2704 }
kvn@1535 2705
duke@435 2706 //----------------------------clear_memory-------------------------------------
duke@435 2707 // Generate code to initialize object storage to zero.
duke@435 2708 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2709 intptr_t start_offset,
duke@435 2710 Node* end_offset,
duke@435 2711 PhaseGVN* phase) {
duke@435 2712 Compile* C = phase->C;
duke@435 2713 intptr_t offset = start_offset;
duke@435 2714
duke@435 2715 int unit = BytesPerLong;
duke@435 2716 if ((offset % unit) != 0) {
kvn@4115 2717 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2718 adr = phase->transform(adr);
duke@435 2719 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2720 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2721 mem = phase->transform(mem);
duke@435 2722 offset += BytesPerInt;
duke@435 2723 }
duke@435 2724 assert((offset % unit) == 0, "");
duke@435 2725
duke@435 2726 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2727 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2728 }
duke@435 2729
duke@435 2730 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2731 Node* start_offset,
duke@435 2732 Node* end_offset,
duke@435 2733 PhaseGVN* phase) {
never@503 2734 if (start_offset == end_offset) {
never@503 2735 // nothing to do
never@503 2736 return mem;
never@503 2737 }
never@503 2738
duke@435 2739 Compile* C = phase->C;
duke@435 2740 int unit = BytesPerLong;
duke@435 2741 Node* zbase = start_offset;
duke@435 2742 Node* zend = end_offset;
duke@435 2743
duke@435 2744 // Scale to the unit required by the CPU:
duke@435 2745 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2746 Node* shift = phase->intcon(exact_log2(unit));
kvn@4115 2747 zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
kvn@4115 2748 zend = phase->transform( new(C) URShiftXNode(zend, shift) );
duke@435 2749 }
duke@435 2750
kvn@4410 2751 // Bulk clear double-words
kvn@4115 2752 Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
kvn@4115 2753 Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
kvn@4115 2754 mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2755 return phase->transform(mem);
duke@435 2756 }
duke@435 2757
duke@435 2758 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2759 intptr_t start_offset,
duke@435 2760 intptr_t end_offset,
duke@435 2761 PhaseGVN* phase) {
never@503 2762 if (start_offset == end_offset) {
never@503 2763 // nothing to do
never@503 2764 return mem;
never@503 2765 }
never@503 2766
duke@435 2767 Compile* C = phase->C;
duke@435 2768 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2769 intptr_t done_offset = end_offset;
duke@435 2770 if ((done_offset % BytesPerLong) != 0) {
duke@435 2771 done_offset -= BytesPerInt;
duke@435 2772 }
duke@435 2773 if (done_offset > start_offset) {
duke@435 2774 mem = clear_memory(ctl, mem, dest,
duke@435 2775 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2776 }
duke@435 2777 if (done_offset < end_offset) { // emit the final 32-bit store
kvn@4115 2778 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2779 adr = phase->transform(adr);
duke@435 2780 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2781 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2782 mem = phase->transform(mem);
duke@435 2783 done_offset += BytesPerInt;
duke@435 2784 }
duke@435 2785 assert(done_offset == end_offset, "");
duke@435 2786 return mem;
duke@435 2787 }
duke@435 2788
duke@435 2789 //=============================================================================
kvn@2694 2790 // Do not match memory edge.
kvn@2694 2791 uint StrIntrinsicNode::match_edge(uint idx) const {
kvn@2694 2792 return idx == 2 || idx == 3;
duke@435 2793 }
duke@435 2794
duke@435 2795 //------------------------------Ideal------------------------------------------
duke@435 2796 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2797 // control copies
kvn@2694 2798 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2694 2799 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2800 // Don't bother trying to transform a dead node
kvn@3311 2801 if (in(0) && in(0)->is_top()) return NULL;
kvn@2694 2802
kvn@2699 2803 if (can_reshape) {
kvn@2699 2804 Node* mem = phase->transform(in(MemNode::Memory));
kvn@2699 2805 // If transformed to a MergeMem, get the desired slice
kvn@2699 2806 uint alias_idx = phase->C->get_alias_index(adr_type());
kvn@2699 2807 mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
kvn@2699 2808 if (mem != in(MemNode::Memory)) {
kvn@2699 2809 set_req(MemNode::Memory, mem);
kvn@2699 2810 return this;
kvn@2699 2811 }
kvn@2699 2812 }
kvn@2694 2813 return NULL;
rasbold@604 2814 }
rasbold@604 2815
kvn@3311 2816 //------------------------------Value------------------------------------------
kvn@3311 2817 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
kvn@3311 2818 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@3311 2819 return bottom_type();
kvn@3311 2820 }
kvn@3311 2821
duke@435 2822 //=============================================================================
kvn@4479 2823 //------------------------------match_edge-------------------------------------
kvn@4479 2824 // Do not match memory edge
kvn@4479 2825 uint EncodeISOArrayNode::match_edge(uint idx) const {
kvn@4479 2826 return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
kvn@4479 2827 }
kvn@4479 2828
kvn@4479 2829 //------------------------------Ideal------------------------------------------
kvn@4479 2830 // Return a node which is more "ideal" than the current node. Strip out
kvn@4479 2831 // control copies
kvn@4479 2832 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@4479 2833 return remove_dead_region(phase, can_reshape) ? this : NULL;
kvn@4479 2834 }
kvn@4479 2835
kvn@4479 2836 //------------------------------Value------------------------------------------
kvn@4479 2837 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
kvn@4479 2838 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@4479 2839 return bottom_type();
kvn@4479 2840 }
kvn@4479 2841
kvn@4479 2842 //=============================================================================
duke@435 2843 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2844 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2845 _adr_type(C->get_adr_type(alias_idx))
duke@435 2846 {
duke@435 2847 init_class_id(Class_MemBar);
duke@435 2848 Node* top = C->top();
duke@435 2849 init_req(TypeFunc::I_O,top);
duke@435 2850 init_req(TypeFunc::FramePtr,top);
duke@435 2851 init_req(TypeFunc::ReturnAdr,top);
duke@435 2852 if (precedent != NULL)
duke@435 2853 init_req(TypeFunc::Parms, precedent);
duke@435 2854 }
duke@435 2855
duke@435 2856 //------------------------------cmp--------------------------------------------
duke@435 2857 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2858 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2859 return (&n == this); // Always fail except on self
duke@435 2860 }
duke@435 2861
duke@435 2862 //------------------------------make-------------------------------------------
duke@435 2863 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2864 switch (opcode) {
kvn@4115 2865 case Op_MemBarAcquire: return new(C) MemBarAcquireNode(C, atp, pn);
kvn@4115 2866 case Op_MemBarRelease: return new(C) MemBarReleaseNode(C, atp, pn);
kvn@4115 2867 case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
kvn@4115 2868 case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
kvn@4115 2869 case Op_MemBarVolatile: return new(C) MemBarVolatileNode(C, atp, pn);
kvn@4115 2870 case Op_MemBarCPUOrder: return new(C) MemBarCPUOrderNode(C, atp, pn);
kvn@4115 2871 case Op_Initialize: return new(C) InitializeNode(C, atp, pn);
kvn@4115 2872 case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C, atp, pn);
duke@435 2873 default: ShouldNotReachHere(); return NULL;
duke@435 2874 }
duke@435 2875 }
duke@435 2876
duke@435 2877 //------------------------------Ideal------------------------------------------
duke@435 2878 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2879 // control copies
duke@435 2880 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1535 2881 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2882 // Don't bother trying to transform a dead node
kvn@3311 2883 if (in(0) && in(0)->is_top()) return NULL;
kvn@1535 2884
kvn@1535 2885 // Eliminate volatile MemBars for scalar replaced objects.
kvn@1535 2886 if (can_reshape && req() == (Precedent+1) &&
kvn@1535 2887 (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
kvn@1535 2888 // Volatile field loads and stores.
kvn@1535 2889 Node* my_mem = in(MemBarNode::Precedent);
kvn@1535 2890 if (my_mem != NULL && my_mem->is_Mem()) {
kvn@1535 2891 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@1535 2892 // Check for scalar replaced object reference.
kvn@1535 2893 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@1535 2894 t_oop->offset() != Type::OffsetBot &&
kvn@1535 2895 t_oop->offset() != Type::OffsetTop) {
kvn@1535 2896 // Replace MemBar projections by its inputs.
kvn@1535 2897 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@1535 2898 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
kvn@1535 2899 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
kvn@1535 2900 // Must return either the original node (now dead) or a new node
kvn@1535 2901 // (Do not return a top here, since that would break the uniqueness of top.)
kvn@4115 2902 return new (phase->C) ConINode(TypeInt::ZERO);
kvn@1535 2903 }
kvn@1535 2904 }
kvn@1535 2905 }
kvn@1535 2906 return NULL;
duke@435 2907 }
duke@435 2908
duke@435 2909 //------------------------------Value------------------------------------------
duke@435 2910 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 2911 if( !in(0) ) return Type::TOP;
duke@435 2912 if( phase->type(in(0)) == Type::TOP )
duke@435 2913 return Type::TOP;
duke@435 2914 return TypeTuple::MEMBAR;
duke@435 2915 }
duke@435 2916
duke@435 2917 //------------------------------match------------------------------------------
duke@435 2918 // Construct projections for memory.
duke@435 2919 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 2920 switch (proj->_con) {
duke@435 2921 case TypeFunc::Control:
duke@435 2922 case TypeFunc::Memory:
kvn@4115 2923 return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 2924 }
duke@435 2925 ShouldNotReachHere();
duke@435 2926 return NULL;
duke@435 2927 }
duke@435 2928
duke@435 2929 //===========================InitializeNode====================================
duke@435 2930 // SUMMARY:
duke@435 2931 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 2932 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 2933 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 2934 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 2935 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 2936 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 2937 //
duke@435 2938 // EXAMPLE:
duke@435 2939 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 2940 // ctl = incoming control; mem* = incoming memory
duke@435 2941 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 2942 // First allocate uninitialized memory and fill in the header:
duke@435 2943 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 2944 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 2945 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 2946 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 2947 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 2948 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 2949 // After the initialize node executes, the object is ready for service:
duke@435 2950 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 2951 // Suppose its body is immediately initialized as {1,2}:
duke@435 2952 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2953 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2954 // mem.SLICE(#short[*]) := store2
duke@435 2955 //
duke@435 2956 // DETAILS:
duke@435 2957 // An InitializeNode collects and isolates object initialization after
duke@435 2958 // an AllocateNode and before the next possible safepoint. As a
duke@435 2959 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 2960 // down past any safepoint or any publication of the allocation.
duke@435 2961 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 2962 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 2963 //
duke@435 2964 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 2965 // the new object from object header to the end of the object.
duke@435 2966 // (The object header and end are determined by the AllocateNode.)
duke@435 2967 //
duke@435 2968 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 2969 // These stores must update raw memory, and they must be to addresses
duke@435 2970 // derived from the raw address produced by AllocateNode, and with
duke@435 2971 // a constant offset. They must be ordered by increasing offset.
duke@435 2972 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 2973 // Unlike most memory operations, they are not linked in a chain,
duke@435 2974 // but are displayed in parallel as users of the rawmem output of
duke@435 2975 // the allocation.
duke@435 2976 //
duke@435 2977 // (See comments in InitializeNode::capture_store, which continue
duke@435 2978 // the example given above.)
duke@435 2979 //
duke@435 2980 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 2981 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 2982 // may also be created at that point to represent any required zeroing.
duke@435 2983 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 2984 // capturing of nearby memory operations.
duke@435 2985 //
duke@435 2986 // During macro-expansion, all captured initializations which store
twisti@1040 2987 // constant values of 32 bits or smaller are coalesced (if advantageous)
duke@435 2988 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 2989 // initialized in fewer memory operations. Memory words which are
duke@435 2990 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 2991 // by explicit stores of zero. (The code shape happens to do all
duke@435 2992 // zeroing first, then all other stores, with both sequences occurring
duke@435 2993 // in order of ascending offsets.)
duke@435 2994 //
duke@435 2995 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 2996 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 2997 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 2998 // The initialization must then be marked as 'complete' disable the
duke@435 2999 // built-in zeroing semantics and the collection of initializing stores.
duke@435 3000 //
duke@435 3001 // While an InitializeNode is incomplete, reads from the memory state
duke@435 3002 // produced by it are optimizable if they match the control edge and
duke@435 3003 // new oop address associated with the allocation/initialization.
duke@435 3004 // They return a stored value (if the offset matches) or else zero.
duke@435 3005 // A write to the memory state, if it matches control and address,
duke@435 3006 // and if it is to a constant offset, may be 'captured' by the
duke@435 3007 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 3008 // inside the initialization, to the raw oop produced by the allocation.
duke@435 3009 // Operations on addresses which are provably distinct (e.g., to
duke@435 3010 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 3011 //
duke@435 3012 // The effect of all this is to consolidate object initialization
duke@435 3013 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 3014 // single location, where it can be optimized as a unit.
duke@435 3015 //
duke@435 3016 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 3017 // will be considered for capture by an InitializeNode. This puts a
duke@435 3018 // reasonable limit on the complexity of optimized initializations.
duke@435 3019
duke@435 3020 //---------------------------InitializeNode------------------------------------
duke@435 3021 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
roland@3392 3022 : _is_complete(Incomplete), _does_not_escape(false),
duke@435 3023 MemBarNode(C, adr_type, rawoop)
duke@435 3024 {
duke@435 3025 init_class_id(Class_Initialize);
duke@435 3026
duke@435 3027 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 3028 assert(in(RawAddress) == rawoop, "proper init");
duke@435 3029 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 3030 }
duke@435 3031
duke@435 3032 // Since this node is not matched, it will be processed by the
duke@435 3033 // register allocator. Declare that there are no constraints
duke@435 3034 // on the allocation of the RawAddress edge.
duke@435 3035 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 3036 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 3037 if (idx == InitializeNode::RawAddress)
duke@435 3038 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 3039 return RegMask::Empty;
duke@435 3040 }
duke@435 3041
duke@435 3042 Node* InitializeNode::memory(uint alias_idx) {
duke@435 3043 Node* mem = in(Memory);
duke@435 3044 if (mem->is_MergeMem()) {
duke@435 3045 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 3046 } else {
duke@435 3047 // incoming raw memory is not split
duke@435 3048 return mem;
duke@435 3049 }
duke@435 3050 }
duke@435 3051
duke@435 3052 bool InitializeNode::is_non_zero() {
duke@435 3053 if (is_complete()) return false;
duke@435 3054 remove_extra_zeroes();
duke@435 3055 return (req() > RawStores);
duke@435 3056 }
duke@435 3057
duke@435 3058 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 3059 assert(!is_complete(), "caller responsibility");
kvn@3157 3060 _is_complete = Complete;
duke@435 3061
duke@435 3062 // After this node is complete, it contains a bunch of
duke@435 3063 // raw-memory initializations. There is no need for
duke@435 3064 // it to have anything to do with non-raw memory effects.
duke@435 3065 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 3066 // after skipping the memory effects of this initialization.
duke@435 3067 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 3068 if (igvn) igvn->add_users_to_worklist(this);
duke@435 3069 }
duke@435 3070
duke@435 3071 // convenience function
duke@435 3072 // return false if the init contains any stores already
duke@435 3073 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 3074 InitializeNode* init = initialization();
duke@435 3075 if (init == NULL || init->is_complete()) return false;
duke@435 3076 init->remove_extra_zeroes();
duke@435 3077 // for now, if this allocation has already collected any inits, bail:
duke@435 3078 if (init->is_non_zero()) return false;
duke@435 3079 init->set_complete(phase);
duke@435 3080 return true;
duke@435 3081 }
duke@435 3082
duke@435 3083 void InitializeNode::remove_extra_zeroes() {
duke@435 3084 if (req() == RawStores) return;
duke@435 3085 Node* zmem = zero_memory();
duke@435 3086 uint fill = RawStores;
duke@435 3087 for (uint i = fill; i < req(); i++) {
duke@435 3088 Node* n = in(i);
duke@435 3089 if (n->is_top() || n == zmem) continue; // skip
duke@435 3090 if (fill < i) set_req(fill, n); // compact
duke@435 3091 ++fill;
duke@435 3092 }
duke@435 3093 // delete any empty spaces created:
duke@435 3094 while (fill < req()) {
duke@435 3095 del_req(fill);
duke@435 3096 }
duke@435 3097 }
duke@435 3098
duke@435 3099 // Helper for remembering which stores go with which offsets.
duke@435 3100 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 3101 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 3102 intptr_t offset = -1;
duke@435 3103 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 3104 phase, offset);
duke@435 3105 if (base == NULL) return -1; // something is dead,
duke@435 3106 if (offset < 0) return -1; // dead, dead
duke@435 3107 return offset;
duke@435 3108 }
duke@435 3109
duke@435 3110 // Helper for proving that an initialization expression is
duke@435 3111 // "simple enough" to be folded into an object initialization.
duke@435 3112 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 3113 // within the initialization without creating a vicious cycle, such as:
duke@435 3114 // { Foo p = new Foo(); p.next = p; }
duke@435 3115 // True for constants and parameters and small combinations thereof.
duke@435 3116 bool InitializeNode::detect_init_independence(Node* n,
duke@435 3117 bool st_is_pinned,
duke@435 3118 int& count) {
duke@435 3119 if (n == NULL) return true; // (can this really happen?)
duke@435 3120 if (n->is_Proj()) n = n->in(0);
duke@435 3121 if (n == this) return false; // found a cycle
duke@435 3122 if (n->is_Con()) return true;
duke@435 3123 if (n->is_Start()) return true; // params, etc., are OK
duke@435 3124 if (n->is_Root()) return true; // even better
duke@435 3125
duke@435 3126 Node* ctl = n->in(0);
duke@435 3127 if (ctl != NULL && !ctl->is_top()) {
duke@435 3128 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 3129 if (ctl == this) return false;
duke@435 3130
duke@435 3131 // If we already know that the enclosing memory op is pinned right after
duke@435 3132 // the init, then any control flow that the store has picked up
duke@435 3133 // must have preceded the init, or else be equal to the init.
duke@435 3134 // Even after loop optimizations (which might change control edges)
duke@435 3135 // a store is never pinned *before* the availability of its inputs.
kvn@554 3136 if (!MemNode::all_controls_dominate(n, this))
duke@435 3137 return false; // failed to prove a good control
duke@435 3138
duke@435 3139 }
duke@435 3140
duke@435 3141 // Check data edges for possible dependencies on 'this'.
duke@435 3142 if ((count += 1) > 20) return false; // complexity limit
duke@435 3143 for (uint i = 1; i < n->req(); i++) {
duke@435 3144 Node* m = n->in(i);
duke@435 3145 if (m == NULL || m == n || m->is_top()) continue;
duke@435 3146 uint first_i = n->find_edge(m);
duke@435 3147 if (i != first_i) continue; // process duplicate edge just once
duke@435 3148 if (!detect_init_independence(m, st_is_pinned, count)) {
duke@435 3149 return false;
duke@435 3150 }
duke@435 3151 }
duke@435 3152
duke@435 3153 return true;
duke@435 3154 }
duke@435 3155
duke@435 3156 // Here are all the checks a Store must pass before it can be moved into
duke@435 3157 // an initialization. Returns zero if a check fails.
duke@435 3158 // On success, returns the (constant) offset to which the store applies,
duke@435 3159 // within the initialized memory.
roland@4657 3160 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
duke@435 3161 const int FAIL = 0;
duke@435 3162 if (st->req() != MemNode::ValueIn + 1)
duke@435 3163 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 3164 Node* ctl = st->in(MemNode::Control);
duke@435 3165 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 3166 return FAIL; // must be unconditional after the initialization
duke@435 3167 Node* mem = st->in(MemNode::Memory);
duke@435 3168 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 3169 return FAIL; // must not be preceded by other stores
duke@435 3170 Node* adr = st->in(MemNode::Address);
duke@435 3171 intptr_t offset;
duke@435 3172 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 3173 if (alloc == NULL)
duke@435 3174 return FAIL; // inscrutable address
duke@435 3175 if (alloc != allocation())
duke@435 3176 return FAIL; // wrong allocation! (store needs to float up)
duke@435 3177 Node* val = st->in(MemNode::ValueIn);
duke@435 3178 int complexity_count = 0;
duke@435 3179 if (!detect_init_independence(val, true, complexity_count))
duke@435 3180 return FAIL; // stored value must be 'simple enough'
duke@435 3181
roland@4657 3182 // The Store can be captured only if nothing after the allocation
roland@4657 3183 // and before the Store is using the memory location that the store
roland@4657 3184 // overwrites.
roland@4657 3185 bool failed = false;
roland@4657 3186 // If is_complete_with_arraycopy() is true the shape of the graph is
roland@4657 3187 // well defined and is safe so no need for extra checks.
roland@4657 3188 if (!is_complete_with_arraycopy()) {
roland@4657 3189 // We are going to look at each use of the memory state following
roland@4657 3190 // the allocation to make sure nothing reads the memory that the
roland@4657 3191 // Store writes.
roland@4657 3192 const TypePtr* t_adr = phase->type(adr)->isa_ptr();
roland@4657 3193 int alias_idx = phase->C->get_alias_index(t_adr);
roland@4657 3194 ResourceMark rm;
roland@4657 3195 Unique_Node_List mems;
roland@4657 3196 mems.push(mem);
roland@4657 3197 Node* unique_merge = NULL;
roland@4657 3198 for (uint next = 0; next < mems.size(); ++next) {
roland@4657 3199 Node *m = mems.at(next);
roland@4657 3200 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
roland@4657 3201 Node *n = m->fast_out(j);
roland@4657 3202 if (n->outcnt() == 0) {
roland@4657 3203 continue;
roland@4657 3204 }
roland@4657 3205 if (n == st) {
roland@4657 3206 continue;
roland@4657 3207 } else if (n->in(0) != NULL && n->in(0) != ctl) {
roland@4657 3208 // If the control of this use is different from the control
roland@4657 3209 // of the Store which is right after the InitializeNode then
roland@4657 3210 // this node cannot be between the InitializeNode and the
roland@4657 3211 // Store.
roland@4657 3212 continue;
roland@4657 3213 } else if (n->is_MergeMem()) {
roland@4657 3214 if (n->as_MergeMem()->memory_at(alias_idx) == m) {
roland@4657 3215 // We can hit a MergeMemNode (that will likely go away
roland@4657 3216 // later) that is a direct use of the memory state
roland@4657 3217 // following the InitializeNode on the same slice as the
roland@4657 3218 // store node that we'd like to capture. We need to check
roland@4657 3219 // the uses of the MergeMemNode.
roland@4657 3220 mems.push(n);
roland@4657 3221 }
roland@4657 3222 } else if (n->is_Mem()) {
roland@4657 3223 Node* other_adr = n->in(MemNode::Address);
roland@4657 3224 if (other_adr == adr) {
roland@4657 3225 failed = true;
roland@4657 3226 break;
roland@4657 3227 } else {
roland@4657 3228 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
roland@4657 3229 if (other_t_adr != NULL) {
roland@4657 3230 int other_alias_idx = phase->C->get_alias_index(other_t_adr);
roland@4657 3231 if (other_alias_idx == alias_idx) {
roland@4657 3232 // A load from the same memory slice as the store right
roland@4657 3233 // after the InitializeNode. We check the control of the
roland@4657 3234 // object/array that is loaded from. If it's the same as
roland@4657 3235 // the store control then we cannot capture the store.
roland@4657 3236 assert(!n->is_Store(), "2 stores to same slice on same control?");
roland@4657 3237 Node* base = other_adr;
roland@4657 3238 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
roland@4657 3239 base = base->in(AddPNode::Base);
roland@4657 3240 if (base != NULL) {
roland@4657 3241 base = base->uncast();
roland@4657 3242 if (base->is_Proj() && base->in(0) == alloc) {
roland@4657 3243 failed = true;
roland@4657 3244 break;
roland@4657 3245 }
roland@4657 3246 }
roland@4657 3247 }
roland@4657 3248 }
roland@4657 3249 }
roland@4657 3250 } else {
roland@4657 3251 failed = true;
roland@4657 3252 break;
roland@4657 3253 }
roland@4657 3254 }
roland@4657 3255 }
roland@4657 3256 }
roland@4657 3257 if (failed) {
roland@4657 3258 if (!can_reshape) {
roland@4657 3259 // We decided we couldn't capture the store during parsing. We
roland@4657 3260 // should try again during the next IGVN once the graph is
roland@4657 3261 // cleaner.
roland@4657 3262 phase->C->record_for_igvn(st);
roland@4657 3263 }
roland@4657 3264 return FAIL;
roland@4657 3265 }
roland@4657 3266
duke@435 3267 return offset; // success
duke@435 3268 }
duke@435 3269
duke@435 3270 // Find the captured store in(i) which corresponds to the range
duke@435 3271 // [start..start+size) in the initialized object.
duke@435 3272 // If there is one, return its index i. If there isn't, return the
duke@435 3273 // negative of the index where it should be inserted.
duke@435 3274 // Return 0 if the queried range overlaps an initialization boundary
duke@435 3275 // or if dead code is encountered.
duke@435 3276 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 3277 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 3278 int size_in_bytes,
duke@435 3279 PhaseTransform* phase) {
duke@435 3280 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 3281
duke@435 3282 if (is_complete())
duke@435 3283 return FAIL; // arraycopy got here first; punt
duke@435 3284
duke@435 3285 assert(allocation() != NULL, "must be present");
duke@435 3286
duke@435 3287 // no negatives, no header fields:
coleenp@548 3288 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 3289
duke@435 3290 // after a certain size, we bail out on tracking all the stores:
duke@435 3291 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3292 if (start >= ti_limit) return FAIL;
duke@435 3293
duke@435 3294 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 3295 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 3296
duke@435 3297 Node* st = in(i);
duke@435 3298 intptr_t st_off = get_store_offset(st, phase);
duke@435 3299 if (st_off < 0) {
duke@435 3300 if (st != zero_memory()) {
duke@435 3301 return FAIL; // bail out if there is dead garbage
duke@435 3302 }
duke@435 3303 } else if (st_off > start) {
duke@435 3304 // ...we are done, since stores are ordered
duke@435 3305 if (st_off < start + size_in_bytes) {
duke@435 3306 return FAIL; // the next store overlaps
duke@435 3307 }
duke@435 3308 return -(int)i; // not found; here is where to put it
duke@435 3309 } else if (st_off < start) {
duke@435 3310 if (size_in_bytes != 0 &&
duke@435 3311 start < st_off + MAX_STORE &&
duke@435 3312 start < st_off + st->as_Store()->memory_size()) {
duke@435 3313 return FAIL; // the previous store overlaps
duke@435 3314 }
duke@435 3315 } else {
duke@435 3316 if (size_in_bytes != 0 &&
duke@435 3317 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 3318 return FAIL; // mismatched store size
duke@435 3319 }
duke@435 3320 return i;
duke@435 3321 }
duke@435 3322
duke@435 3323 ++i;
duke@435 3324 }
duke@435 3325 }
duke@435 3326
duke@435 3327 // Look for a captured store which initializes at the offset 'start'
duke@435 3328 // with the given size. If there is no such store, and no other
duke@435 3329 // initialization interferes, then return zero_memory (the memory
duke@435 3330 // projection of the AllocateNode).
duke@435 3331 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 3332 PhaseTransform* phase) {
duke@435 3333 assert(stores_are_sane(phase), "");
duke@435 3334 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3335 if (i == 0) {
duke@435 3336 return NULL; // something is dead
duke@435 3337 } else if (i < 0) {
duke@435 3338 return zero_memory(); // just primordial zero bits here
duke@435 3339 } else {
duke@435 3340 Node* st = in(i); // here is the store at this position
duke@435 3341 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 3342 return st;
duke@435 3343 }
duke@435 3344 }
duke@435 3345
duke@435 3346 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 3347 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 3348 PhaseTransform* phase) {
duke@435 3349 Node* addr = in(RawAddress);
duke@435 3350 if (offset != 0) {
duke@435 3351 Compile* C = phase->C;
kvn@4115 3352 addr = phase->transform( new (C) AddPNode(C->top(), addr,
duke@435 3353 phase->MakeConX(offset)) );
duke@435 3354 }
duke@435 3355 return addr;
duke@435 3356 }
duke@435 3357
duke@435 3358 // Clone the given store, converting it into a raw store
duke@435 3359 // initializing a field or element of my new object.
duke@435 3360 // Caller is responsible for retiring the original store,
duke@435 3361 // with subsume_node or the like.
duke@435 3362 //
duke@435 3363 // From the example above InitializeNode::InitializeNode,
duke@435 3364 // here are the old stores to be captured:
duke@435 3365 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3366 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3367 //
duke@435 3368 // Here is the changed code; note the extra edges on init:
duke@435 3369 // alloc = (Allocate ...)
duke@435 3370 // rawoop = alloc.RawAddress
duke@435 3371 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 3372 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 3373 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 3374 // rawstore1 rawstore2)
duke@435 3375 //
duke@435 3376 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
roland@4657 3377 PhaseTransform* phase, bool can_reshape) {
duke@435 3378 assert(stores_are_sane(phase), "");
duke@435 3379
duke@435 3380 if (start < 0) return NULL;
roland@4657 3381 assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
duke@435 3382
duke@435 3383 Compile* C = phase->C;
duke@435 3384 int size_in_bytes = st->memory_size();
duke@435 3385 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3386 if (i == 0) return NULL; // bail out
duke@435 3387 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 3388 if (i > 0) {
duke@435 3389 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 3390 set_req(i, C->top()); // temporarily disconnect it
duke@435 3391 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 3392 } else {
duke@435 3393 i = -i; // no pre-existing store
duke@435 3394 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 3395 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 3396 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 3397 else
duke@435 3398 ins_req(i, C->top()); // build a new edge
duke@435 3399 }
duke@435 3400 Node* new_st = st->clone();
duke@435 3401 new_st->set_req(MemNode::Control, in(Control));
duke@435 3402 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 3403 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 3404 new_st = phase->transform(new_st);
duke@435 3405
duke@435 3406 // At this point, new_st might have swallowed a pre-existing store
duke@435 3407 // at the same offset, or perhaps new_st might have disappeared,
duke@435 3408 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 3409
duke@435 3410 // In any case, wire it in:
duke@435 3411 set_req(i, new_st);
duke@435 3412
duke@435 3413 // The caller may now kill the old guy.
duke@435 3414 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 3415 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 3416 assert(!is_complete(), "");
duke@435 3417 return new_st;
duke@435 3418 }
duke@435 3419
duke@435 3420 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 3421 intptr_t st_off, int st_size,
duke@435 3422 jlong con) {
duke@435 3423 if ((st_off & (st_size-1)) != 0)
duke@435 3424 return false; // strange store offset (assume size==2**N)
duke@435 3425 address addr = (address)tiles + st_off;
duke@435 3426 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 3427 switch (st_size) {
duke@435 3428 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 3429 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 3430 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 3431 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 3432 default: return false; // strange store size (detect size!=2**N here)
duke@435 3433 }
duke@435 3434 return true; // return success to caller
duke@435 3435 }
duke@435 3436
duke@435 3437 // Coalesce subword constants into int constants and possibly
duke@435 3438 // into long constants. The goal, if the CPU permits,
duke@435 3439 // is to initialize the object with a small number of 64-bit tiles.
duke@435 3440 // Also, convert floating-point constants to bit patterns.
duke@435 3441 // Non-constants are not relevant to this pass.
duke@435 3442 //
duke@435 3443 // In terms of the running example on InitializeNode::InitializeNode
duke@435 3444 // and InitializeNode::capture_store, here is the transformation
duke@435 3445 // of rawstore1 and rawstore2 into rawstore12:
duke@435 3446 // alloc = (Allocate ...)
duke@435 3447 // rawoop = alloc.RawAddress
duke@435 3448 // tile12 = 0x00010002
duke@435 3449 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 3450 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 3451 //
duke@435 3452 void
duke@435 3453 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 3454 Node* size_in_bytes,
duke@435 3455 PhaseGVN* phase) {
duke@435 3456 Compile* C = phase->C;
duke@435 3457
duke@435 3458 assert(stores_are_sane(phase), "");
duke@435 3459 // Note: After this pass, they are not completely sane,
duke@435 3460 // since there may be some overlaps.
duke@435 3461
duke@435 3462 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 3463
duke@435 3464 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3465 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 3466 size_limit = MIN2(size_limit, ti_limit);
duke@435 3467 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 3468 int num_tiles = size_limit / BytesPerLong;
duke@435 3469
duke@435 3470 // allocate space for the tile map:
duke@435 3471 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 3472 jlong tiles_buf[small_len];
duke@435 3473 Node* nodes_buf[small_len];
duke@435 3474 jlong inits_buf[small_len];
duke@435 3475 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 3476 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3477 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 3478 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 3479 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 3480 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3481 // tiles: exact bitwise model of all primitive constants
duke@435 3482 // nodes: last constant-storing node subsumed into the tiles model
duke@435 3483 // inits: which bytes (in each tile) are touched by any initializations
duke@435 3484
duke@435 3485 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 3486
duke@435 3487 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 3488 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3489 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3490 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3491 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3492 Node* st = in(i);
duke@435 3493 intptr_t st_off = get_store_offset(st, phase);
duke@435 3494
duke@435 3495 // Figure out the store's offset and constant value:
duke@435 3496 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3497 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3498 int st_size = st->as_Store()->memory_size();
duke@435 3499 if (st_off + st_size > size_limit) break;
duke@435 3500
duke@435 3501 // Record which bytes are touched, whether by constant or not.
duke@435 3502 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3503 continue; // skip (strange store size)
duke@435 3504
duke@435 3505 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3506 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3507 BasicType type = val->basic_type();
duke@435 3508
duke@435 3509 jlong con = 0;
duke@435 3510 switch (type) {
duke@435 3511 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3512 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3513 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3514 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3515 default: continue; //skip (odd store type)
duke@435 3516 }
duke@435 3517
duke@435 3518 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3519 st->Opcode() == Op_StoreL) {
duke@435 3520 continue; // This StoreL is already optimal.
duke@435 3521 }
duke@435 3522
duke@435 3523 // Store down the constant.
duke@435 3524 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3525
duke@435 3526 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3527
duke@435 3528 if (type == T_INT && st_size == BytesPerInt
duke@435 3529 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3530 jlong lcon = tiles[j];
duke@435 3531 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3532 st->Opcode() == Op_StoreI) {
duke@435 3533 // This StoreI is already optimal by itself.
duke@435 3534 jint* intcon = (jint*) &tiles[j];
duke@435 3535 intcon[1] = 0; // undo the store_constant()
duke@435 3536
duke@435 3537 // If the previous store is also optimal by itself, back up and
duke@435 3538 // undo the action of the previous loop iteration... if we can.
duke@435 3539 // But if we can't, just let the previous half take care of itself.
duke@435 3540 st = nodes[j];
duke@435 3541 st_off -= BytesPerInt;
duke@435 3542 con = intcon[0];
duke@435 3543 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3544 assert(st_off >= header_size, "still ignoring header");
duke@435 3545 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3546 assert(in(i-1) == zmem, "must be");
duke@435 3547 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3548 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3549 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3550 intcon[0] = 0; // undo store_constant()
duke@435 3551 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3552 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3553 --old_subword; // undo ++old_subword
duke@435 3554 }
duke@435 3555 continue; // This StoreI is already optimal.
duke@435 3556 }
duke@435 3557 }
duke@435 3558
duke@435 3559 // This store is not needed.
duke@435 3560 set_req(i, zmem);
duke@435 3561 nodes[j] = st; // record for the moment
duke@435 3562 if (st_size < BytesPerLong) // something has changed
duke@435 3563 ++old_subword; // includes int/float, but who's counting...
duke@435 3564 else ++old_long;
duke@435 3565 }
duke@435 3566
duke@435 3567 if ((old_subword + old_long) == 0)
duke@435 3568 return; // nothing more to do
duke@435 3569
duke@435 3570 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3571 // Be sure to insert them before overlapping non-constant stores.
duke@435 3572 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3573 for (int j = 0; j < num_tiles; j++) {
duke@435 3574 jlong con = tiles[j];
duke@435 3575 jlong init = inits[j];
duke@435 3576 if (con == 0) continue;
duke@435 3577 jint con0, con1; // split the constant, address-wise
duke@435 3578 jint init0, init1; // split the init map, address-wise
duke@435 3579 { union { jlong con; jint intcon[2]; } u;
duke@435 3580 u.con = con;
duke@435 3581 con0 = u.intcon[0];
duke@435 3582 con1 = u.intcon[1];
duke@435 3583 u.con = init;
duke@435 3584 init0 = u.intcon[0];
duke@435 3585 init1 = u.intcon[1];
duke@435 3586 }
duke@435 3587
duke@435 3588 Node* old = nodes[j];
duke@435 3589 assert(old != NULL, "need the prior store");
duke@435 3590 intptr_t offset = (j * BytesPerLong);
duke@435 3591
duke@435 3592 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3593
duke@435 3594 if (offset < header_size) {
duke@435 3595 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3596 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3597 split = true; // only the second word counts
duke@435 3598 // Example: int a[] = { 42 ... }
duke@435 3599 } else if (con0 == 0 && init0 == -1) {
duke@435 3600 split = true; // first word is covered by full inits
duke@435 3601 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3602 } else if (con1 == 0 && init1 == -1) {
duke@435 3603 split = true; // second word is covered by full inits
duke@435 3604 // Example: int a[] = { ... 42, foo() ... }
duke@435 3605 }
duke@435 3606
duke@435 3607 // Here's a case where init0 is neither 0 nor -1:
duke@435 3608 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3609 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3610 // In this case the tile is not split; it is (jlong)42.
duke@435 3611 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3612 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3613
duke@435 3614 Node* ctl = old->in(MemNode::Control);
duke@435 3615 Node* adr = make_raw_address(offset, phase);
duke@435 3616 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3617
duke@435 3618 // One or two coalesced stores to plop down.
duke@435 3619 Node* st[2];
duke@435 3620 intptr_t off[2];
duke@435 3621 int nst = 0;
duke@435 3622 if (!split) {
duke@435 3623 ++new_long;
duke@435 3624 off[nst] = offset;
coleenp@548 3625 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3626 phase->longcon(con), T_LONG);
duke@435 3627 } else {
duke@435 3628 // Omit either if it is a zero.
duke@435 3629 if (con0 != 0) {
duke@435 3630 ++new_int;
duke@435 3631 off[nst] = offset;
coleenp@548 3632 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3633 phase->intcon(con0), T_INT);
duke@435 3634 }
duke@435 3635 if (con1 != 0) {
duke@435 3636 ++new_int;
duke@435 3637 offset += BytesPerInt;
duke@435 3638 adr = make_raw_address(offset, phase);
duke@435 3639 off[nst] = offset;
coleenp@548 3640 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3641 phase->intcon(con1), T_INT);
duke@435 3642 }
duke@435 3643 }
duke@435 3644
duke@435 3645 // Insert second store first, then the first before the second.
duke@435 3646 // Insert each one just before any overlapping non-constant stores.
duke@435 3647 while (nst > 0) {
duke@435 3648 Node* st1 = st[--nst];
duke@435 3649 C->copy_node_notes_to(st1, old);
duke@435 3650 st1 = phase->transform(st1);
duke@435 3651 offset = off[nst];
duke@435 3652 assert(offset >= header_size, "do not smash header");
duke@435 3653 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3654 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3655 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3656 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3657 set_req(--ins_idx, st1);
duke@435 3658 else
duke@435 3659 ins_req(ins_idx, st1);
duke@435 3660 }
duke@435 3661 }
duke@435 3662
duke@435 3663 if (PrintCompilation && WizardMode)
duke@435 3664 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3665 old_subword, old_long, new_int, new_long);
duke@435 3666 if (C->log() != NULL)
duke@435 3667 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3668 old_subword, old_long, new_int, new_long);
duke@435 3669
duke@435 3670 // Clean up any remaining occurrences of zmem:
duke@435 3671 remove_extra_zeroes();
duke@435 3672 }
duke@435 3673
duke@435 3674 // Explore forward from in(start) to find the first fully initialized
duke@435 3675 // word, and return its offset. Skip groups of subword stores which
duke@435 3676 // together initialize full words. If in(start) is itself part of a
duke@435 3677 // fully initialized word, return the offset of in(start). If there
duke@435 3678 // are no following full-word stores, or if something is fishy, return
duke@435 3679 // a negative value.
duke@435 3680 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3681 int int_map = 0;
duke@435 3682 intptr_t int_map_off = 0;
duke@435 3683 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3684
duke@435 3685 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3686 Node* st = in(i);
duke@435 3687
duke@435 3688 intptr_t st_off = get_store_offset(st, phase);
duke@435 3689 if (st_off < 0) break; // return conservative answer
duke@435 3690
duke@435 3691 int st_size = st->as_Store()->memory_size();
duke@435 3692 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3693 return st_off; // we found a complete word init
duke@435 3694 }
duke@435 3695
duke@435 3696 // update the map:
duke@435 3697
duke@435 3698 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3699 if (this_int_off != int_map_off) {
duke@435 3700 // reset the map:
duke@435 3701 int_map = 0;
duke@435 3702 int_map_off = this_int_off;
duke@435 3703 }
duke@435 3704
duke@435 3705 int subword_off = st_off - this_int_off;
duke@435 3706 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3707 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3708 return this_int_off; // we found a complete word init
duke@435 3709 }
duke@435 3710
duke@435 3711 // Did this store hit or cross the word boundary?
duke@435 3712 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3713 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3714 // We passed the current int, without fully initializing it.
duke@435 3715 int_map_off = next_int_off;
duke@435 3716 int_map >>= BytesPerInt;
duke@435 3717 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3718 // We passed the current and next int.
duke@435 3719 return this_int_off + BytesPerInt;
duke@435 3720 }
duke@435 3721 }
duke@435 3722
duke@435 3723 return -1;
duke@435 3724 }
duke@435 3725
duke@435 3726
duke@435 3727 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3728 // At this point, we may perform additional optimizations.
duke@435 3729 // Linearize the stores by ascending offset, to make memory
duke@435 3730 // activity as coherent as possible.
duke@435 3731 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3732 intptr_t header_size,
duke@435 3733 Node* size_in_bytes,
duke@435 3734 PhaseGVN* phase) {
duke@435 3735 assert(!is_complete(), "not already complete");
duke@435 3736 assert(stores_are_sane(phase), "");
duke@435 3737 assert(allocation() != NULL, "must be present");
duke@435 3738
duke@435 3739 remove_extra_zeroes();
duke@435 3740
duke@435 3741 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3742 // reduce instruction count for common initialization patterns
duke@435 3743 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3744
duke@435 3745 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3746 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3747 #ifdef ASSERT
coleenp@548 3748 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3749 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3750 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3751 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3752 #endif
duke@435 3753 intptr_t zeroes_done = header_size;
duke@435 3754
duke@435 3755 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3756 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3757
duke@435 3758 if (ZeroTLAB) do_zeroing = false;
duke@435 3759 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3760
duke@435 3761 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3762 Node* st = in(i);
duke@435 3763 intptr_t st_off = get_store_offset(st, phase);
duke@435 3764 if (st_off < 0)
duke@435 3765 break; // unknown junk in the inits
duke@435 3766 if (st->in(MemNode::Memory) != zmem)
duke@435 3767 break; // complicated store chains somehow in list
duke@435 3768
duke@435 3769 int st_size = st->as_Store()->memory_size();
duke@435 3770 intptr_t next_init_off = st_off + st_size;
duke@435 3771
duke@435 3772 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3773 // See if this store needs a zero before it or under it.
duke@435 3774 intptr_t zeroes_needed = st_off;
duke@435 3775
duke@435 3776 if (st_size < BytesPerInt) {
duke@435 3777 // Look for subword stores which only partially initialize words.
duke@435 3778 // If we find some, we must lay down some word-level zeroes first,
duke@435 3779 // underneath the subword stores.
duke@435 3780 //
duke@435 3781 // Examples:
duke@435 3782 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3783 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3784 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3785 //
duke@435 3786 // Note: coalesce_subword_stores may have already done this,
duke@435 3787 // if it was prompted by constant non-zero subword initializers.
duke@435 3788 // But this case can still arise with non-constant stores.
duke@435 3789
duke@435 3790 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3791
duke@435 3792 // In the examples above:
duke@435 3793 // in(i) p q r s x y z
duke@435 3794 // st_off 12 13 14 15 12 13 14
duke@435 3795 // st_size 1 1 1 1 1 1 1
duke@435 3796 // next_full_s. 12 16 16 16 16 16 16
duke@435 3797 // z's_done 12 16 16 16 12 16 12
duke@435 3798 // z's_needed 12 16 16 16 16 16 16
duke@435 3799 // zsize 0 0 0 0 4 0 4
duke@435 3800 if (next_full_store < 0) {
duke@435 3801 // Conservative tack: Zero to end of current word.
duke@435 3802 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3803 } else {
duke@435 3804 // Zero to beginning of next fully initialized word.
duke@435 3805 // Or, don't zero at all, if we are already in that word.
duke@435 3806 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3807 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3808 zeroes_needed = next_full_store;
duke@435 3809 }
duke@435 3810 }
duke@435 3811
duke@435 3812 if (zeroes_needed > zeroes_done) {
duke@435 3813 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3814 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3815 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3816 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3817 zeroes_done, zeroes_needed,
duke@435 3818 phase);
duke@435 3819 zeroes_done = zeroes_needed;
duke@435 3820 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3821 do_zeroing = false; // leave the hole, next time
duke@435 3822 }
duke@435 3823 }
duke@435 3824
duke@435 3825 // Collect the store and move on:
duke@435 3826 st->set_req(MemNode::Memory, inits);
duke@435 3827 inits = st; // put it on the linearized chain
duke@435 3828 set_req(i, zmem); // unhook from previous position
duke@435 3829
duke@435 3830 if (zeroes_done == st_off)
duke@435 3831 zeroes_done = next_init_off;
duke@435 3832
duke@435 3833 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3834
duke@435 3835 #ifdef ASSERT
duke@435 3836 // Various order invariants. Weaker than stores_are_sane because
duke@435 3837 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3838 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3839 last_init_off = st_off;
duke@435 3840 const Type* val = NULL;
duke@435 3841 if (st_size >= BytesPerInt &&
duke@435 3842 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3843 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3844 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3845 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3846 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3847 } else {
duke@435 3848 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3849 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3850 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3851 last_init_end = next_init_off; // it's a non-tile
duke@435 3852 }
duke@435 3853 #endif //ASSERT
duke@435 3854 }
duke@435 3855
duke@435 3856 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3857 add_req(inits);
duke@435 3858
duke@435 3859 if (!ZeroTLAB) {
duke@435 3860 // If anything remains to be zeroed, zero it all now.
duke@435 3861 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3862 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3863 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3864 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3865 assert(allocation() != NULL, "");
never@2346 3866 if (allocation()->Opcode() == Op_Allocate) {
never@2346 3867 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
never@2346 3868 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
never@2346 3869 if (zeroes_done == k->layout_helper())
never@2346 3870 zeroes_done = size_limit;
never@2346 3871 }
duke@435 3872 }
duke@435 3873 if (zeroes_done < size_limit) {
duke@435 3874 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3875 zeroes_done, size_in_bytes, phase);
duke@435 3876 }
duke@435 3877 }
duke@435 3878
duke@435 3879 set_complete(phase);
duke@435 3880 return rawmem;
duke@435 3881 }
duke@435 3882
duke@435 3883
duke@435 3884 #ifdef ASSERT
duke@435 3885 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 3886 if (is_complete())
duke@435 3887 return true; // stores could be anything at this point
coleenp@548 3888 assert(allocation() != NULL, "must be present");
coleenp@548 3889 intptr_t last_off = allocation()->minimum_header_size();
duke@435 3890 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 3891 Node* st = in(i);
duke@435 3892 intptr_t st_off = get_store_offset(st, phase);
duke@435 3893 if (st_off < 0) continue; // ignore dead garbage
duke@435 3894 if (last_off > st_off) {
duke@435 3895 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
duke@435 3896 this->dump(2);
duke@435 3897 assert(false, "ascending store offsets");
duke@435 3898 return false;
duke@435 3899 }
duke@435 3900 last_off = st_off + st->as_Store()->memory_size();
duke@435 3901 }
duke@435 3902 return true;
duke@435 3903 }
duke@435 3904 #endif //ASSERT
duke@435 3905
duke@435 3906
duke@435 3907
duke@435 3908
duke@435 3909 //============================MergeMemNode=====================================
duke@435 3910 //
duke@435 3911 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 3912 // contributing store or call operations. Each contributor provides the memory
duke@435 3913 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 3914 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 3915 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 3916 // to using the MergeMem as a whole.
duke@435 3917 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 3918 //
duke@435 3919 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 3920 //
duke@435 3921 // In one special case (and more cases in the future), alias categories overlap.
duke@435 3922 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 3923 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 3924 // it is exactly equivalent to that state W:
duke@435 3925 // MergeMem(<Bot>: W) <==> W
duke@435 3926 //
duke@435 3927 // Usually, the merge has more than one input. In that case, where inputs
duke@435 3928 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 3929 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 3930 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 3931 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 3932 //
duke@435 3933 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 3934 // This simply means that the merge observes out only the relevant parts of
duke@435 3935 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 3936 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 3937 //
duke@435 3938 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 3939 // and that memory slices "leak through":
duke@435 3940 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 3941 //
duke@435 3942 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 3943 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 3944 //
duke@435 3945 // In the last example, Y is not part of the combined memory state of the
duke@435 3946 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 3947 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 3948 // a precursor to state Y'.
duke@435 3949 //
duke@435 3950 //
duke@435 3951 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 3952 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 3953 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 3954 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 3955 //
duke@435 3956 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 3957 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 3958 // without the need to reach out via TLS to Compile::current.)
duke@435 3959 //
duke@435 3960 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 3961 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 3962 // containing all alias categories.
duke@435 3963 //
duke@435 3964 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 3965 //
duke@435 3966 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 3967 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 3968 // there is no particular input for that alias type. Note that the length of
duke@435 3969 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 3970 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 3971 // filled with "top" in the unused in() positions.
duke@435 3972 //
duke@435 3973 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 3974 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 3975 //
duke@435 3976 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 3977 // the type of random VM bits like TLS references.) Since it is always the
duke@435 3978 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 3979 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 3980 //
duke@435 3981 //
duke@435 3982 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 3983 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 3984 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 3985 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 3986 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 3987 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 3988 //
duke@435 3989 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 3990 // really that different from the other memory inputs. An abbreviation called
duke@435 3991 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 3992 //
duke@435 3993 //
duke@435 3994 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 3995 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 3996 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 3997 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 3998 //
duke@435 3999 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 4000 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 4001 //
duke@435 4002 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 4003 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 4004 // actually a disjoint union of memory states, rather than an overlay.
duke@435 4005 //
duke@435 4006
duke@435 4007 //------------------------------MergeMemNode-----------------------------------
duke@435 4008 Node* MergeMemNode::make_empty_memory() {
duke@435 4009 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 4010 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 4011 return empty_memory;
duke@435 4012 }
duke@435 4013
duke@435 4014 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 4015 init_class_id(Class_MergeMem);
duke@435 4016 // all inputs are nullified in Node::Node(int)
duke@435 4017 // set_input(0, NULL); // no control input
duke@435 4018
duke@435 4019 // Initialize the edges uniformly to top, for starters.
duke@435 4020 Node* empty_mem = make_empty_memory();
duke@435 4021 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 4022 init_req(i,empty_mem);
duke@435 4023 }
duke@435 4024 assert(empty_memory() == empty_mem, "");
duke@435 4025
duke@435 4026 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 4027 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 4028 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 4029 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 4030 mms.set_memory(mms.memory2());
duke@435 4031 }
duke@435 4032 assert(base_memory() == mdef->base_memory(), "");
duke@435 4033 } else {
duke@435 4034 set_base_memory(new_base);
duke@435 4035 }
duke@435 4036 }
duke@435 4037
duke@435 4038 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 4039 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 4040 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
kvn@4115 4041 return new(C) MergeMemNode(mem);
duke@435 4042 }
duke@435 4043
duke@435 4044 //------------------------------cmp--------------------------------------------
duke@435 4045 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 4046 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 4047 return (&n == this); // Always fail except on self
duke@435 4048 }
duke@435 4049
duke@435 4050 //------------------------------Identity---------------------------------------
duke@435 4051 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 4052 // Identity if this merge point does not record any interesting memory
duke@435 4053 // disambiguations.
duke@435 4054 Node* base_mem = base_memory();
duke@435 4055 Node* empty_mem = empty_memory();
duke@435 4056 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 4057 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4058 Node* mem = in(i);
duke@435 4059 if (mem != empty_mem && mem != base_mem) {
duke@435 4060 return this; // Many memory splits; no change
duke@435 4061 }
duke@435 4062 }
duke@435 4063 }
duke@435 4064 return base_mem; // No memory splits; ID on the one true input
duke@435 4065 }
duke@435 4066
duke@435 4067 //------------------------------Ideal------------------------------------------
duke@435 4068 // This method is invoked recursively on chains of MergeMem nodes
duke@435 4069 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 4070 // Remove chain'd MergeMems
duke@435 4071 //
duke@435 4072 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 4073 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 4074 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 4075 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 4076 Node *progress = NULL;
duke@435 4077
duke@435 4078
duke@435 4079 Node* old_base = base_memory();
duke@435 4080 Node* empty_mem = empty_memory();
duke@435 4081 if (old_base == empty_mem)
duke@435 4082 return NULL; // Dead memory path.
duke@435 4083
duke@435 4084 MergeMemNode* old_mbase;
duke@435 4085 if (old_base != NULL && old_base->is_MergeMem())
duke@435 4086 old_mbase = old_base->as_MergeMem();
duke@435 4087 else
duke@435 4088 old_mbase = NULL;
duke@435 4089 Node* new_base = old_base;
duke@435 4090
duke@435 4091 // simplify stacked MergeMems in base memory
duke@435 4092 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 4093
duke@435 4094 // the base memory might contribute new slices beyond my req()
duke@435 4095 if (old_mbase) grow_to_match(old_mbase);
duke@435 4096
duke@435 4097 // Look carefully at the base node if it is a phi.
duke@435 4098 PhiNode* phi_base;
duke@435 4099 if (new_base != NULL && new_base->is_Phi())
duke@435 4100 phi_base = new_base->as_Phi();
duke@435 4101 else
duke@435 4102 phi_base = NULL;
duke@435 4103
duke@435 4104 Node* phi_reg = NULL;
duke@435 4105 uint phi_len = (uint)-1;
duke@435 4106 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 4107 // do not examine phi if degraded to a copy
duke@435 4108 phi_reg = phi_base->region();
duke@435 4109 phi_len = phi_base->req();
duke@435 4110 // see if the phi is unfinished
duke@435 4111 for (uint i = 1; i < phi_len; i++) {
duke@435 4112 if (phi_base->in(i) == NULL) {
duke@435 4113 // incomplete phi; do not look at it yet!
duke@435 4114 phi_reg = NULL;
duke@435 4115 phi_len = (uint)-1;
duke@435 4116 break;
duke@435 4117 }
duke@435 4118 }
duke@435 4119 }
duke@435 4120
duke@435 4121 // Note: We do not call verify_sparse on entry, because inputs
duke@435 4122 // can normalize to the base_memory via subsume_node or similar
duke@435 4123 // mechanisms. This method repairs that damage.
duke@435 4124
duke@435 4125 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4126
duke@435 4127 // Look at each slice.
duke@435 4128 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4129 Node* old_in = in(i);
duke@435 4130 // calculate the old memory value
duke@435 4131 Node* old_mem = old_in;
duke@435 4132 if (old_mem == empty_mem) old_mem = old_base;
duke@435 4133 assert(old_mem == memory_at(i), "");
duke@435 4134
duke@435 4135 // maybe update (reslice) the old memory value
duke@435 4136
duke@435 4137 // simplify stacked MergeMems
duke@435 4138 Node* new_mem = old_mem;
duke@435 4139 MergeMemNode* old_mmem;
duke@435 4140 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 4141 old_mmem = old_mem->as_MergeMem();
duke@435 4142 else
duke@435 4143 old_mmem = NULL;
duke@435 4144 if (old_mmem == this) {
duke@435 4145 // This can happen if loops break up and safepoints disappear.
duke@435 4146 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 4147 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 4148 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 4149 // also, we can end up with a self-loop of the mergemem.
duke@435 4150 // In general, if loops degenerate and memory effects disappear,
duke@435 4151 // a mergemem can be left looking at itself. This simply means
duke@435 4152 // that the mergemem's default should be used, since there is
duke@435 4153 // no longer any apparent effect on this slice.
duke@435 4154 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 4155 // from start. Update the input to TOP.
duke@435 4156 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 4157 }
duke@435 4158 else if (old_mmem != NULL) {
duke@435 4159 new_mem = old_mmem->memory_at(i);
duke@435 4160 }
twisti@1040 4161 // else preceding memory was not a MergeMem
duke@435 4162
duke@435 4163 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 4164 if (new_mem != NULL && new_mem != new_base &&
duke@435 4165 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 4166 if (new_mem->is_Phi()) {
duke@435 4167 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 4168 for (uint i = 1; i < phi_len; i++) {
duke@435 4169 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 4170 phi_mem = NULL;
duke@435 4171 break;
duke@435 4172 }
duke@435 4173 }
duke@435 4174 if (phi_mem != NULL) {
duke@435 4175 // equivalent phi nodes; revert to the def
duke@435 4176 new_mem = new_base;
duke@435 4177 }
duke@435 4178 }
duke@435 4179 }
duke@435 4180
duke@435 4181 // maybe store down a new value
duke@435 4182 Node* new_in = new_mem;
duke@435 4183 if (new_in == new_base) new_in = empty_mem;
duke@435 4184
duke@435 4185 if (new_in != old_in) {
duke@435 4186 // Warning: Do not combine this "if" with the previous "if"
duke@435 4187 // A memory slice might have be be rewritten even if it is semantically
duke@435 4188 // unchanged, if the base_memory value has changed.
duke@435 4189 set_req(i, new_in);
duke@435 4190 progress = this; // Report progress
duke@435 4191 }
duke@435 4192 }
duke@435 4193
duke@435 4194 if (new_base != old_base) {
duke@435 4195 set_req(Compile::AliasIdxBot, new_base);
duke@435 4196 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 4197 assert(base_memory() == new_base, "");
duke@435 4198 progress = this;
duke@435 4199 }
duke@435 4200
duke@435 4201 if( base_memory() == this ) {
duke@435 4202 // a self cycle indicates this memory path is dead
duke@435 4203 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4204 }
duke@435 4205
duke@435 4206 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 4207 // Recursion must occur after the self cycle check above
duke@435 4208 if( base_memory()->is_MergeMem() ) {
duke@435 4209 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 4210 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 4211 if( m != NULL && (m->is_top() ||
duke@435 4212 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 4213 // propagate rollup of dead cycle to self
duke@435 4214 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4215 }
duke@435 4216 }
duke@435 4217
duke@435 4218 if( base_memory() == empty_mem ) {
duke@435 4219 progress = this;
duke@435 4220 // Cut inputs during Parse phase only.
duke@435 4221 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 4222 if( !can_reshape ) {
duke@435 4223 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4224 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 4225 }
duke@435 4226 }
duke@435 4227 }
duke@435 4228
duke@435 4229 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 4230 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 4231 // transform should be attempted. Look for this->phi->this cycle.
duke@435 4232 uint merge_width = req();
duke@435 4233 if (merge_width > Compile::AliasIdxRaw) {
duke@435 4234 PhiNode* phi = base_memory()->as_Phi();
duke@435 4235 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 4236 if (phi->in(i) == this) {
duke@435 4237 phase->is_IterGVN()->_worklist.push(phi);
duke@435 4238 break;
duke@435 4239 }
duke@435 4240 }
duke@435 4241 }
duke@435 4242 }
duke@435 4243
kvn@499 4244 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 4245 return progress;
duke@435 4246 }
duke@435 4247
duke@435 4248 //-------------------------set_base_memory-------------------------------------
duke@435 4249 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 4250 Node* empty_mem = empty_memory();
duke@435 4251 set_req(Compile::AliasIdxBot, new_base);
duke@435 4252 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 4253 // Clear out other occurrences of new_base:
duke@435 4254 if (new_base != empty_mem) {
duke@435 4255 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4256 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 4257 }
duke@435 4258 }
duke@435 4259 }
duke@435 4260
duke@435 4261 //------------------------------out_RegMask------------------------------------
duke@435 4262 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 4263 return RegMask::Empty;
duke@435 4264 }
duke@435 4265
duke@435 4266 //------------------------------dump_spec--------------------------------------
duke@435 4267 #ifndef PRODUCT
duke@435 4268 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 4269 st->print(" {");
duke@435 4270 Node* base_mem = base_memory();
duke@435 4271 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 4272 Node* mem = memory_at(i);
duke@435 4273 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 4274 st->print( " N%d:", mem->_idx );
duke@435 4275 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 4276 }
duke@435 4277 st->print(" }");
duke@435 4278 }
duke@435 4279 #endif // !PRODUCT
duke@435 4280
duke@435 4281
duke@435 4282 #ifdef ASSERT
duke@435 4283 static bool might_be_same(Node* a, Node* b) {
duke@435 4284 if (a == b) return true;
duke@435 4285 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 4286 // phis shift around during optimization
duke@435 4287 return true; // pretty stupid...
duke@435 4288 }
duke@435 4289
duke@435 4290 // verify a narrow slice (either incoming or outgoing)
duke@435 4291 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 4292 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 4293 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 4294 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 4295 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 4296 assert(n != NULL, "");
duke@435 4297 // Elide intervening MergeMem's
duke@435 4298 while (n->is_MergeMem()) {
duke@435 4299 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 4300 }
duke@435 4301 Compile* C = Compile::current();
duke@435 4302 const TypePtr* n_adr_type = n->adr_type();
duke@435 4303 if (n == m->empty_memory()) {
duke@435 4304 // Implicit copy of base_memory()
duke@435 4305 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 4306 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 4307 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 4308 } else {
duke@435 4309 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 4310 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 4311 bool expected_wide_mem = false;
duke@435 4312 if (n == m->base_memory()) {
duke@435 4313 expected_wide_mem = true;
duke@435 4314 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 4315 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 4316 expected_wide_mem = true;
duke@435 4317 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 4318 // memory can "leak through" calls on channels that
duke@435 4319 // are write-once. Allow this also.
duke@435 4320 expected_wide_mem = true;
duke@435 4321 }
duke@435 4322 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 4323 }
duke@435 4324 }
duke@435 4325 #else // !ASSERT
duke@435 4326 #define verify_memory_slice(m,i,n) (0) // PRODUCT version is no-op
duke@435 4327 #endif
duke@435 4328
duke@435 4329
duke@435 4330 //-----------------------------memory_at---------------------------------------
duke@435 4331 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 4332 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 4333 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 4334 "must avoid base_memory and AliasIdxTop");
duke@435 4335
duke@435 4336 // Otherwise, it is a narrow slice.
duke@435 4337 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 4338 Compile *C = Compile::current();
duke@435 4339 if (is_empty_memory(n)) {
duke@435 4340 // the array is sparse; empty slots are the "top" node
duke@435 4341 n = base_memory();
duke@435 4342 assert(Node::in_dump()
duke@435 4343 || n == NULL || n->bottom_type() == Type::TOP
kvn@2599 4344 || n->adr_type() == NULL // address is TOP
duke@435 4345 || n->adr_type() == TypePtr::BOTTOM
duke@435 4346 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 4347 || Compile::current()->AliasLevel() == 0,
duke@435 4348 "must be a wide memory");
duke@435 4349 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 4350 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 4351 } else {
duke@435 4352 // make sure the stored slice is sane
duke@435 4353 #ifdef ASSERT
duke@435 4354 if (is_error_reported() || Node::in_dump()) {
duke@435 4355 } else if (might_be_same(n, base_memory())) {
duke@435 4356 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 4357 // This can arise normally from node subsumption during optimization.
duke@435 4358 } else {
duke@435 4359 verify_memory_slice(this, alias_idx, n);
duke@435 4360 }
duke@435 4361 #endif
duke@435 4362 }
duke@435 4363 return n;
duke@435 4364 }
duke@435 4365
duke@435 4366 //---------------------------set_memory_at-------------------------------------
duke@435 4367 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 4368 verify_memory_slice(this, alias_idx, n);
duke@435 4369 Node* empty_mem = empty_memory();
duke@435 4370 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 4371 uint need_req = alias_idx+1;
duke@435 4372 if (req() < need_req) {
duke@435 4373 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 4374 // grow the sparse array
duke@435 4375 do {
duke@435 4376 add_req(empty_mem);
duke@435 4377 } while (req() < need_req);
duke@435 4378 }
duke@435 4379 set_req( alias_idx, n );
duke@435 4380 }
duke@435 4381
duke@435 4382
duke@435 4383
duke@435 4384 //--------------------------iteration_setup------------------------------------
duke@435 4385 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 4386 if (other != NULL) {
duke@435 4387 grow_to_match(other);
duke@435 4388 // invariant: the finite support of mm2 is within mm->req()
duke@435 4389 #ifdef ASSERT
duke@435 4390 for (uint i = req(); i < other->req(); i++) {
duke@435 4391 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 4392 }
duke@435 4393 #endif
duke@435 4394 }
duke@435 4395 // Replace spurious copies of base_memory by top.
duke@435 4396 Node* base_mem = base_memory();
duke@435 4397 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 4398 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 4399 if (in(i) == base_mem)
duke@435 4400 set_req(i, empty_memory());
duke@435 4401 }
duke@435 4402 }
duke@435 4403 }
duke@435 4404
duke@435 4405 //---------------------------grow_to_match-------------------------------------
duke@435 4406 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 4407 Node* empty_mem = empty_memory();
duke@435 4408 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4409 // look for the finite support of the other memory
duke@435 4410 for (uint i = other->req(); --i >= req(); ) {
duke@435 4411 if (other->in(i) != empty_mem) {
duke@435 4412 uint new_len = i+1;
duke@435 4413 while (req() < new_len) add_req(empty_mem);
duke@435 4414 break;
duke@435 4415 }
duke@435 4416 }
duke@435 4417 }
duke@435 4418
duke@435 4419 //---------------------------verify_sparse-------------------------------------
duke@435 4420 #ifndef PRODUCT
duke@435 4421 bool MergeMemNode::verify_sparse() const {
duke@435 4422 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 4423 Node* base_mem = base_memory();
duke@435 4424 // The following can happen in degenerate cases, since empty==top.
duke@435 4425 if (is_empty_memory(base_mem)) return true;
duke@435 4426 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4427 assert(in(i) != NULL, "sane slice");
duke@435 4428 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 4429 }
duke@435 4430 return true;
duke@435 4431 }
duke@435 4432
duke@435 4433 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 4434 Node* n;
duke@435 4435 n = mm->in(idx);
duke@435 4436 if (mem == n) return true; // might be empty_memory()
duke@435 4437 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 4438 if (mem == n) return true;
duke@435 4439 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 4440 if (mem == n) return true;
duke@435 4441 if (n == NULL) break;
duke@435 4442 }
duke@435 4443 return false;
duke@435 4444 }
duke@435 4445 #endif // !PRODUCT

mercurial