src/share/vm/opto/memnode.cpp

Sat, 16 Mar 2013 07:39:14 -0700

author
morris
date
Sat, 16 Mar 2013 07:39:14 -0700
changeset 4760
96ef09c26978
parent 4695
ff55877839bc
child 5110
6f3fd5150b67
permissions
-rw-r--r--

8009166: [parfait] Null pointer deference in hotspot/src/share/vm/opto/type.cpp
Summary: add guarantee() to as_instance_type()
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
   108   if (tinst == NULL || !tinst->is_known_instance_field())
   109     return mchain;  // don't try to optimize non-instance types
   110   uint instance_id = tinst->instance_id();
   111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   112   Node *prev = NULL;
   113   Node *result = mchain;
   114   while (prev != result) {
   115     prev = result;
   116     if (result == start_mem)
   117       break;  // hit one of our sentinels
   118     // skip over a call which does not affect this memory slice
   119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   120       Node *proj_in = result->in(0);
   121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   122         break;  // hit one of our sentinels
   123       } else if (proj_in->is_Call()) {
   124         CallNode *call = proj_in->as_Call();
   125         if (!call->may_modify(t_adr, phase)) {
   126           result = call->in(TypeFunc::Memory);
   127         }
   128       } else if (proj_in->is_Initialize()) {
   129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   130         // Stop if this is the initialization for the object instance which
   131         // which contains this memory slice, otherwise skip over it.
   132         if (alloc != NULL && alloc->_idx != instance_id) {
   133           result = proj_in->in(TypeFunc::Memory);
   134         }
   135       } else if (proj_in->is_MemBar()) {
   136         result = proj_in->in(TypeFunc::Memory);
   137       } else {
   138         assert(false, "unexpected projection");
   139       }
   140     } else if (result->is_ClearArray()) {
   141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   142         // Can not bypass initialization of the instance
   143         // we are looking for.
   144         break;
   145       }
   146       // Otherwise skip it (the call updated 'result' value).
   147     } else if (result->is_MergeMem()) {
   148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   149     }
   150   }
   151   return result;
   152 }
   154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   157   PhaseIterGVN *igvn = phase->is_IterGVN();
   158   Node *result = mchain;
   159   result = optimize_simple_memory_chain(result, t_adr, phase);
   160   if (is_instance && igvn != NULL  && result->is_Phi()) {
   161     PhiNode *mphi = result->as_Phi();
   162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   163     const TypePtr *t = mphi->adr_type();
   164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   166         t->is_oopptr()->cast_to_exactness(true)
   167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   169       // clone the Phi with our address type
   170       result = mphi->split_out_instance(t_adr, igvn);
   171     } else {
   172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   173     }
   174   }
   175   return result;
   176 }
   178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   179   uint alias_idx = phase->C->get_alias_index(tp);
   180   Node *mem = mmem;
   181 #ifdef ASSERT
   182   {
   183     // Check that current type is consistent with the alias index used during graph construction
   184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   185     bool consistent =  adr_check == NULL || adr_check->empty() ||
   186                        phase->C->must_alias(adr_check, alias_idx );
   187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   194       // don't assert if it is dead code.
   195       consistent = true;
   196     }
   197     if( !consistent ) {
   198       st->print("alias_idx==%d, adr_check==", alias_idx);
   199       if( adr_check == NULL ) {
   200         st->print("NULL");
   201       } else {
   202         adr_check->dump();
   203       }
   204       st->cr();
   205       print_alias_types();
   206       assert(consistent, "adr_check must match alias idx");
   207     }
   208   }
   209 #endif
   210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   211   // means an array I have not precisely typed yet.  Do not do any
   212   // alias stuff with it any time soon.
   213   const TypeOopPtr *toop = tp->isa_oopptr();
   214   if( tp->base() != Type::AnyPtr &&
   215       !(toop &&
   216         toop->klass() != NULL &&
   217         toop->klass()->is_java_lang_Object() &&
   218         toop->offset() == Type::OffsetBot) ) {
   219     // compress paths and change unreachable cycles to TOP
   220     // If not, we can update the input infinitely along a MergeMem cycle
   221     // Equivalent code in PhiNode::Ideal
   222     Node* m  = phase->transform(mmem);
   223     // If transformed to a MergeMem, get the desired slice
   224     // Otherwise the returned node represents memory for every slice
   225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   226     // Update input if it is progress over what we have now
   227   }
   228   return mem;
   229 }
   231 //--------------------------Ideal_common---------------------------------------
   232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   233 // Unhook non-raw memories from complete (macro-expanded) initializations.
   234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   235   // If our control input is a dead region, kill all below the region
   236   Node *ctl = in(MemNode::Control);
   237   if (ctl && remove_dead_region(phase, can_reshape))
   238     return this;
   239   ctl = in(MemNode::Control);
   240   // Don't bother trying to transform a dead node
   241   if (ctl && ctl->is_top())  return NodeSentinel;
   243   PhaseIterGVN *igvn = phase->is_IterGVN();
   244   // Wait if control on the worklist.
   245   if (ctl && can_reshape && igvn != NULL) {
   246     Node* bol = NULL;
   247     Node* cmp = NULL;
   248     if (ctl->in(0)->is_If()) {
   249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   250       bol = ctl->in(0)->in(1);
   251       if (bol->is_Bool())
   252         cmp = ctl->in(0)->in(1)->in(1);
   253     }
   254     if (igvn->_worklist.member(ctl) ||
   255         (bol != NULL && igvn->_worklist.member(bol)) ||
   256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   257       // This control path may be dead.
   258       // Delay this memory node transformation until the control is processed.
   259       phase->is_IterGVN()->_worklist.push(this);
   260       return NodeSentinel; // caller will return NULL
   261     }
   262   }
   263   // Ignore if memory is dead, or self-loop
   264   Node *mem = in(MemNode::Memory);
   265   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
   266   assert(mem != this, "dead loop in MemNode::Ideal");
   268   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   269     // This memory slice may be dead.
   270     // Delay this mem node transformation until the memory is processed.
   271     phase->is_IterGVN()->_worklist.push(this);
   272     return NodeSentinel; // caller will return NULL
   273   }
   275   Node *address = in(MemNode::Address);
   276   const Type *t_adr = phase->type(address);
   277   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
   279   if (can_reshape && igvn != NULL &&
   280       (igvn->_worklist.member(address) ||
   281        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
   282     // The address's base and type may change when the address is processed.
   283     // Delay this mem node transformation until the address is processed.
   284     phase->is_IterGVN()->_worklist.push(this);
   285     return NodeSentinel; // caller will return NULL
   286   }
   288   // Do NOT remove or optimize the next lines: ensure a new alias index
   289   // is allocated for an oop pointer type before Escape Analysis.
   290   // Note: C++ will not remove it since the call has side effect.
   291   if (t_adr->isa_oopptr()) {
   292     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   293   }
   295 #ifdef ASSERT
   296   Node* base = NULL;
   297   if (address->is_AddP())
   298     base = address->in(AddPNode::Base);
   299   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
   300       !t_adr->isa_rawptr()) {
   301     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
   302     Compile* C = phase->C;
   303     tty->cr();
   304     tty->print_cr("===== NULL+offs not RAW address =====");
   305     if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
   306     if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
   307     if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
   308     if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
   309     if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
   310     tty->cr();
   311     base->dump(1);
   312     tty->cr();
   313     this->dump(2);
   314     tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
   315     tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
   316     tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
   317     tty->cr();
   318   }
   319   assert(base == NULL || t_adr->isa_rawptr() ||
   320         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   321 #endif
   323   // Avoid independent memory operations
   324   Node* old_mem = mem;
   326   // The code which unhooks non-raw memories from complete (macro-expanded)
   327   // initializations was removed. After macro-expansion all stores catched
   328   // by Initialize node became raw stores and there is no information
   329   // which memory slices they modify. So it is unsafe to move any memory
   330   // operation above these stores. Also in most cases hooked non-raw memories
   331   // were already unhooked by using information from detect_ptr_independence()
   332   // and find_previous_store().
   334   if (mem->is_MergeMem()) {
   335     MergeMemNode* mmem = mem->as_MergeMem();
   336     const TypePtr *tp = t_adr->is_ptr();
   338     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   339   }
   341   if (mem != old_mem) {
   342     set_req(MemNode::Memory, mem);
   343     if (can_reshape && old_mem->outcnt() == 0) {
   344         igvn->_worklist.push(old_mem);
   345     }
   346     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   347     return this;
   348   }
   350   // let the subclass continue analyzing...
   351   return NULL;
   352 }
   354 // Helper function for proving some simple control dominations.
   355 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   356 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   357 // is not a constant (dominated by the method's StartNode).
   358 // Used by MemNode::find_previous_store to prove that the
   359 // control input of a memory operation predates (dominates)
   360 // an allocation it wants to look past.
   361 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   362   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   363     return false; // Conservative answer for dead code
   365   // Check 'dom'. Skip Proj and CatchProj nodes.
   366   dom = dom->find_exact_control(dom);
   367   if (dom == NULL || dom->is_top())
   368     return false; // Conservative answer for dead code
   370   if (dom == sub) {
   371     // For the case when, for example, 'sub' is Initialize and the original
   372     // 'dom' is Proj node of the 'sub'.
   373     return false;
   374   }
   376   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   377     return true;
   379   // 'dom' dominates 'sub' if its control edge and control edges
   380   // of all its inputs dominate or equal to sub's control edge.
   382   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   383   // Or Region for the check in LoadNode::Ideal();
   384   // 'sub' should have sub->in(0) != NULL.
   385   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   386          sub->is_Region(), "expecting only these nodes");
   388   // Get control edge of 'sub'.
   389   Node* orig_sub = sub;
   390   sub = sub->find_exact_control(sub->in(0));
   391   if (sub == NULL || sub->is_top())
   392     return false; // Conservative answer for dead code
   394   assert(sub->is_CFG(), "expecting control");
   396   if (sub == dom)
   397     return true;
   399   if (sub->is_Start() || sub->is_Root())
   400     return false;
   402   {
   403     // Check all control edges of 'dom'.
   405     ResourceMark rm;
   406     Arena* arena = Thread::current()->resource_area();
   407     Node_List nlist(arena);
   408     Unique_Node_List dom_list(arena);
   410     dom_list.push(dom);
   411     bool only_dominating_controls = false;
   413     for (uint next = 0; next < dom_list.size(); next++) {
   414       Node* n = dom_list.at(next);
   415       if (n == orig_sub)
   416         return false; // One of dom's inputs dominated by sub.
   417       if (!n->is_CFG() && n->pinned()) {
   418         // Check only own control edge for pinned non-control nodes.
   419         n = n->find_exact_control(n->in(0));
   420         if (n == NULL || n->is_top())
   421           return false; // Conservative answer for dead code
   422         assert(n->is_CFG(), "expecting control");
   423         dom_list.push(n);
   424       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   425         only_dominating_controls = true;
   426       } else if (n->is_CFG()) {
   427         if (n->dominates(sub, nlist))
   428           only_dominating_controls = true;
   429         else
   430           return false;
   431       } else {
   432         // First, own control edge.
   433         Node* m = n->find_exact_control(n->in(0));
   434         if (m != NULL) {
   435           if (m->is_top())
   436             return false; // Conservative answer for dead code
   437           dom_list.push(m);
   438         }
   439         // Now, the rest of edges.
   440         uint cnt = n->req();
   441         for (uint i = 1; i < cnt; i++) {
   442           m = n->find_exact_control(n->in(i));
   443           if (m == NULL || m->is_top())
   444             continue;
   445           dom_list.push(m);
   446         }
   447       }
   448     }
   449     return only_dominating_controls;
   450   }
   451 }
   453 //---------------------detect_ptr_independence---------------------------------
   454 // Used by MemNode::find_previous_store to prove that two base
   455 // pointers are never equal.
   456 // The pointers are accompanied by their associated allocations,
   457 // if any, which have been previously discovered by the caller.
   458 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   459                                       Node* p2, AllocateNode* a2,
   460                                       PhaseTransform* phase) {
   461   // Attempt to prove that these two pointers cannot be aliased.
   462   // They may both manifestly be allocations, and they should differ.
   463   // Or, if they are not both allocations, they can be distinct constants.
   464   // Otherwise, one is an allocation and the other a pre-existing value.
   465   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   466     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   467   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   468     return (a1 != a2);
   469   } else if (a1 != NULL) {                  // one allocation a1
   470     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   471     return all_controls_dominate(p2, a1);
   472   } else { //(a2 != NULL)                   // one allocation a2
   473     return all_controls_dominate(p1, a2);
   474   }
   475   return false;
   476 }
   479 // The logic for reordering loads and stores uses four steps:
   480 // (a) Walk carefully past stores and initializations which we
   481 //     can prove are independent of this load.
   482 // (b) Observe that the next memory state makes an exact match
   483 //     with self (load or store), and locate the relevant store.
   484 // (c) Ensure that, if we were to wire self directly to the store,
   485 //     the optimizer would fold it up somehow.
   486 // (d) Do the rewiring, and return, depending on some other part of
   487 //     the optimizer to fold up the load.
   488 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   489 // specific to loads and stores, so they are handled by the callers.
   490 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   491 //
   492 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   493   Node*         ctrl   = in(MemNode::Control);
   494   Node*         adr    = in(MemNode::Address);
   495   intptr_t      offset = 0;
   496   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   497   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   499   if (offset == Type::OffsetBot)
   500     return NULL;            // cannot unalias unless there are precise offsets
   502   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   504   intptr_t size_in_bytes = memory_size();
   506   Node* mem = in(MemNode::Memory);   // start searching here...
   508   int cnt = 50;             // Cycle limiter
   509   for (;;) {                // While we can dance past unrelated stores...
   510     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   512     if (mem->is_Store()) {
   513       Node* st_adr = mem->in(MemNode::Address);
   514       intptr_t st_offset = 0;
   515       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   516       if (st_base == NULL)
   517         break;              // inscrutable pointer
   518       if (st_offset != offset && st_offset != Type::OffsetBot) {
   519         const int MAX_STORE = BytesPerLong;
   520         if (st_offset >= offset + size_in_bytes ||
   521             st_offset <= offset - MAX_STORE ||
   522             st_offset <= offset - mem->as_Store()->memory_size()) {
   523           // Success:  The offsets are provably independent.
   524           // (You may ask, why not just test st_offset != offset and be done?
   525           // The answer is that stores of different sizes can co-exist
   526           // in the same sequence of RawMem effects.  We sometimes initialize
   527           // a whole 'tile' of array elements with a single jint or jlong.)
   528           mem = mem->in(MemNode::Memory);
   529           continue;           // (a) advance through independent store memory
   530         }
   531       }
   532       if (st_base != base &&
   533           detect_ptr_independence(base, alloc,
   534                                   st_base,
   535                                   AllocateNode::Ideal_allocation(st_base, phase),
   536                                   phase)) {
   537         // Success:  The bases are provably independent.
   538         mem = mem->in(MemNode::Memory);
   539         continue;           // (a) advance through independent store memory
   540       }
   542       // (b) At this point, if the bases or offsets do not agree, we lose,
   543       // since we have not managed to prove 'this' and 'mem' independent.
   544       if (st_base == base && st_offset == offset) {
   545         return mem;         // let caller handle steps (c), (d)
   546       }
   548     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   549       InitializeNode* st_init = mem->in(0)->as_Initialize();
   550       AllocateNode*  st_alloc = st_init->allocation();
   551       if (st_alloc == NULL)
   552         break;              // something degenerated
   553       bool known_identical = false;
   554       bool known_independent = false;
   555       if (alloc == st_alloc)
   556         known_identical = true;
   557       else if (alloc != NULL)
   558         known_independent = true;
   559       else if (all_controls_dominate(this, st_alloc))
   560         known_independent = true;
   562       if (known_independent) {
   563         // The bases are provably independent: Either they are
   564         // manifestly distinct allocations, or else the control
   565         // of this load dominates the store's allocation.
   566         int alias_idx = phase->C->get_alias_index(adr_type());
   567         if (alias_idx == Compile::AliasIdxRaw) {
   568           mem = st_alloc->in(TypeFunc::Memory);
   569         } else {
   570           mem = st_init->memory(alias_idx);
   571         }
   572         continue;           // (a) advance through independent store memory
   573       }
   575       // (b) at this point, if we are not looking at a store initializing
   576       // the same allocation we are loading from, we lose.
   577       if (known_identical) {
   578         // From caller, can_see_stored_value will consult find_captured_store.
   579         return mem;         // let caller handle steps (c), (d)
   580       }
   582     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   583       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   584       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   585         CallNode *call = mem->in(0)->as_Call();
   586         if (!call->may_modify(addr_t, phase)) {
   587           mem = call->in(TypeFunc::Memory);
   588           continue;         // (a) advance through independent call memory
   589         }
   590       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   591         mem = mem->in(0)->in(TypeFunc::Memory);
   592         continue;           // (a) advance through independent MemBar memory
   593       } else if (mem->is_ClearArray()) {
   594         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   595           // (the call updated 'mem' value)
   596           continue;         // (a) advance through independent allocation memory
   597         } else {
   598           // Can not bypass initialization of the instance
   599           // we are looking for.
   600           return mem;
   601         }
   602       } else if (mem->is_MergeMem()) {
   603         int alias_idx = phase->C->get_alias_index(adr_type());
   604         mem = mem->as_MergeMem()->memory_at(alias_idx);
   605         continue;           // (a) advance through independent MergeMem memory
   606       }
   607     }
   609     // Unless there is an explicit 'continue', we must bail out here,
   610     // because 'mem' is an inscrutable memory state (e.g., a call).
   611     break;
   612   }
   614   return NULL;              // bail out
   615 }
   617 //----------------------calculate_adr_type-------------------------------------
   618 // Helper function.  Notices when the given type of address hits top or bottom.
   619 // Also, asserts a cross-check of the type against the expected address type.
   620 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   621   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   622   #ifdef PRODUCT
   623   cross_check = NULL;
   624   #else
   625   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   626   #endif
   627   const TypePtr* tp = t->isa_ptr();
   628   if (tp == NULL) {
   629     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   630     return TypePtr::BOTTOM;           // touches lots of memory
   631   } else {
   632     #ifdef ASSERT
   633     // %%%% [phh] We don't check the alias index if cross_check is
   634     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   635     if (cross_check != NULL &&
   636         cross_check != TypePtr::BOTTOM &&
   637         cross_check != TypeRawPtr::BOTTOM) {
   638       // Recheck the alias index, to see if it has changed (due to a bug).
   639       Compile* C = Compile::current();
   640       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   641              "must stay in the original alias category");
   642       // The type of the address must be contained in the adr_type,
   643       // disregarding "null"-ness.
   644       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   645       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   646       assert(cross_check->meet(tp_notnull) == cross_check,
   647              "real address must not escape from expected memory type");
   648     }
   649     #endif
   650     return tp;
   651   }
   652 }
   654 //------------------------adr_phi_is_loop_invariant----------------------------
   655 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   656 // loop is loop invariant. Make a quick traversal of Phi and associated
   657 // CastPP nodes, looking to see if they are a closed group within the loop.
   658 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   659   // The idea is that the phi-nest must boil down to only CastPP nodes
   660   // with the same data. This implies that any path into the loop already
   661   // includes such a CastPP, and so the original cast, whatever its input,
   662   // must be covered by an equivalent cast, with an earlier control input.
   663   ResourceMark rm;
   665   // The loop entry input of the phi should be the unique dominating
   666   // node for every Phi/CastPP in the loop.
   667   Unique_Node_List closure;
   668   closure.push(adr_phi->in(LoopNode::EntryControl));
   670   // Add the phi node and the cast to the worklist.
   671   Unique_Node_List worklist;
   672   worklist.push(adr_phi);
   673   if( cast != NULL ){
   674     if( !cast->is_ConstraintCast() ) return false;
   675     worklist.push(cast);
   676   }
   678   // Begin recursive walk of phi nodes.
   679   while( worklist.size() ){
   680     // Take a node off the worklist
   681     Node *n = worklist.pop();
   682     if( !closure.member(n) ){
   683       // Add it to the closure.
   684       closure.push(n);
   685       // Make a sanity check to ensure we don't waste too much time here.
   686       if( closure.size() > 20) return false;
   687       // This node is OK if:
   688       //  - it is a cast of an identical value
   689       //  - or it is a phi node (then we add its inputs to the worklist)
   690       // Otherwise, the node is not OK, and we presume the cast is not invariant
   691       if( n->is_ConstraintCast() ){
   692         worklist.push(n->in(1));
   693       } else if( n->is_Phi() ) {
   694         for( uint i = 1; i < n->req(); i++ ) {
   695           worklist.push(n->in(i));
   696         }
   697       } else {
   698         return false;
   699       }
   700     }
   701   }
   703   // Quit when the worklist is empty, and we've found no offending nodes.
   704   return true;
   705 }
   707 //------------------------------Ideal_DU_postCCP-------------------------------
   708 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   709 // going away in this pass and we need to make this memory op depend on the
   710 // gating null check.
   711 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   712   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   713 }
   715 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   716 // some sense; we get to keep around the knowledge that an oop is not-null
   717 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   718 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   719 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   720 // some of the more trivial cases in the optimizer.  Removing more useless
   721 // Phi's started allowing Loads to illegally float above null checks.  I gave
   722 // up on this approach.  CNC 10/20/2000
   723 // This static method may be called not from MemNode (EncodePNode calls it).
   724 // Only the control edge of the node 'n' might be updated.
   725 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   726   Node *skipped_cast = NULL;
   727   // Need a null check?  Regular static accesses do not because they are
   728   // from constant addresses.  Array ops are gated by the range check (which
   729   // always includes a NULL check).  Just check field ops.
   730   if( n->in(MemNode::Control) == NULL ) {
   731     // Scan upwards for the highest location we can place this memory op.
   732     while( true ) {
   733       switch( adr->Opcode() ) {
   735       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   736         adr = adr->in(AddPNode::Base);
   737         continue;
   739       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   740       case Op_DecodeNKlass:
   741         adr = adr->in(1);
   742         continue;
   744       case Op_EncodeP:
   745       case Op_EncodePKlass:
   746         // EncodeP node's control edge could be set by this method
   747         // when EncodeP node depends on CastPP node.
   748         //
   749         // Use its control edge for memory op because EncodeP may go away
   750         // later when it is folded with following or preceding DecodeN node.
   751         if (adr->in(0) == NULL) {
   752           // Keep looking for cast nodes.
   753           adr = adr->in(1);
   754           continue;
   755         }
   756         ccp->hash_delete(n);
   757         n->set_req(MemNode::Control, adr->in(0));
   758         ccp->hash_insert(n);
   759         return n;
   761       case Op_CastPP:
   762         // If the CastPP is useless, just peek on through it.
   763         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   764           // Remember the cast that we've peeked though. If we peek
   765           // through more than one, then we end up remembering the highest
   766           // one, that is, if in a loop, the one closest to the top.
   767           skipped_cast = adr;
   768           adr = adr->in(1);
   769           continue;
   770         }
   771         // CastPP is going away in this pass!  We need this memory op to be
   772         // control-dependent on the test that is guarding the CastPP.
   773         ccp->hash_delete(n);
   774         n->set_req(MemNode::Control, adr->in(0));
   775         ccp->hash_insert(n);
   776         return n;
   778       case Op_Phi:
   779         // Attempt to float above a Phi to some dominating point.
   780         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   781           // If we've already peeked through a Cast (which could have set the
   782           // control), we can't float above a Phi, because the skipped Cast
   783           // may not be loop invariant.
   784           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   785             adr = adr->in(1);
   786             continue;
   787           }
   788         }
   790         // Intentional fallthrough!
   792         // No obvious dominating point.  The mem op is pinned below the Phi
   793         // by the Phi itself.  If the Phi goes away (no true value is merged)
   794         // then the mem op can float, but not indefinitely.  It must be pinned
   795         // behind the controls leading to the Phi.
   796       case Op_CheckCastPP:
   797         // These usually stick around to change address type, however a
   798         // useless one can be elided and we still need to pick up a control edge
   799         if (adr->in(0) == NULL) {
   800           // This CheckCastPP node has NO control and is likely useless. But we
   801           // need check further up the ancestor chain for a control input to keep
   802           // the node in place. 4959717.
   803           skipped_cast = adr;
   804           adr = adr->in(1);
   805           continue;
   806         }
   807         ccp->hash_delete(n);
   808         n->set_req(MemNode::Control, adr->in(0));
   809         ccp->hash_insert(n);
   810         return n;
   812         // List of "safe" opcodes; those that implicitly block the memory
   813         // op below any null check.
   814       case Op_CastX2P:          // no null checks on native pointers
   815       case Op_Parm:             // 'this' pointer is not null
   816       case Op_LoadP:            // Loading from within a klass
   817       case Op_LoadN:            // Loading from within a klass
   818       case Op_LoadKlass:        // Loading from within a klass
   819       case Op_LoadNKlass:       // Loading from within a klass
   820       case Op_ConP:             // Loading from a klass
   821       case Op_ConN:             // Loading from a klass
   822       case Op_ConNKlass:        // Loading from a klass
   823       case Op_CreateEx:         // Sucking up the guts of an exception oop
   824       case Op_Con:              // Reading from TLS
   825       case Op_CMoveP:           // CMoveP is pinned
   826       case Op_CMoveN:           // CMoveN is pinned
   827         break;                  // No progress
   829       case Op_Proj:             // Direct call to an allocation routine
   830       case Op_SCMemProj:        // Memory state from store conditional ops
   831 #ifdef ASSERT
   832         {
   833           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   834           const Node* call = adr->in(0);
   835           if (call->is_CallJava()) {
   836             const CallJavaNode* call_java = call->as_CallJava();
   837             const TypeTuple *r = call_java->tf()->range();
   838             assert(r->cnt() > TypeFunc::Parms, "must return value");
   839             const Type* ret_type = r->field_at(TypeFunc::Parms);
   840             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   841             // We further presume that this is one of
   842             // new_instance_Java, new_array_Java, or
   843             // the like, but do not assert for this.
   844           } else if (call->is_Allocate()) {
   845             // similar case to new_instance_Java, etc.
   846           } else if (!call->is_CallLeaf()) {
   847             // Projections from fetch_oop (OSR) are allowed as well.
   848             ShouldNotReachHere();
   849           }
   850         }
   851 #endif
   852         break;
   853       default:
   854         ShouldNotReachHere();
   855       }
   856       break;
   857     }
   858   }
   860   return  NULL;               // No progress
   861 }
   864 //=============================================================================
   865 uint LoadNode::size_of() const { return sizeof(*this); }
   866 uint LoadNode::cmp( const Node &n ) const
   867 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   868 const Type *LoadNode::bottom_type() const { return _type; }
   869 uint LoadNode::ideal_reg() const {
   870   return _type->ideal_reg();
   871 }
   873 #ifndef PRODUCT
   874 void LoadNode::dump_spec(outputStream *st) const {
   875   MemNode::dump_spec(st);
   876   if( !Verbose && !WizardMode ) {
   877     // standard dump does this in Verbose and WizardMode
   878     st->print(" #"); _type->dump_on(st);
   879   }
   880 }
   881 #endif
   883 #ifdef ASSERT
   884 //----------------------------is_immutable_value-------------------------------
   885 // Helper function to allow a raw load without control edge for some cases
   886 bool LoadNode::is_immutable_value(Node* adr) {
   887   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   888           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   889           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   890            in_bytes(JavaThread::osthread_offset())));
   891 }
   892 #endif
   894 //----------------------------LoadNode::make-----------------------------------
   895 // Polymorphic factory method:
   896 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   897   Compile* C = gvn.C;
   899   // sanity check the alias category against the created node type
   900   assert(!(adr_type->isa_oopptr() &&
   901            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   902          "use LoadKlassNode instead");
   903   assert(!(adr_type->isa_aryptr() &&
   904            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   905          "use LoadRangeNode instead");
   906   // Check control edge of raw loads
   907   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   908           // oop will be recorded in oop map if load crosses safepoint
   909           rt->isa_oopptr() || is_immutable_value(adr),
   910           "raw memory operations should have control edge");
   911   switch (bt) {
   912   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   913   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   914   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   915   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   916   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   917   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   918   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
   919   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
   920   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   921   case T_OBJECT:
   922 #ifdef _LP64
   923     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   924       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   925       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
   926     } else
   927 #endif
   928     {
   929       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
   930       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   931     }
   932   }
   933   ShouldNotReachHere();
   934   return (LoadNode*)NULL;
   935 }
   937 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   938   bool require_atomic = true;
   939   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   940 }
   945 //------------------------------hash-------------------------------------------
   946 uint LoadNode::hash() const {
   947   // unroll addition of interesting fields
   948   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   949 }
   951 //---------------------------can_see_stored_value------------------------------
   952 // This routine exists to make sure this set of tests is done the same
   953 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   954 // will change the graph shape in a way which makes memory alive twice at the
   955 // same time (uses the Oracle model of aliasing), then some
   956 // LoadXNode::Identity will fold things back to the equivalence-class model
   957 // of aliasing.
   958 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   959   Node* ld_adr = in(MemNode::Address);
   961   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   962   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   963   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   964       atp->field() != NULL && !atp->field()->is_volatile()) {
   965     uint alias_idx = atp->index();
   966     bool final = atp->field()->is_final();
   967     Node* result = NULL;
   968     Node* current = st;
   969     // Skip through chains of MemBarNodes checking the MergeMems for
   970     // new states for the slice of this load.  Stop once any other
   971     // kind of node is encountered.  Loads from final memory can skip
   972     // through any kind of MemBar but normal loads shouldn't skip
   973     // through MemBarAcquire since the could allow them to move out of
   974     // a synchronized region.
   975     while (current->is_Proj()) {
   976       int opc = current->in(0)->Opcode();
   977       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
   978           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
   979           opc == Op_MemBarReleaseLock) {
   980         Node* mem = current->in(0)->in(TypeFunc::Memory);
   981         if (mem->is_MergeMem()) {
   982           MergeMemNode* merge = mem->as_MergeMem();
   983           Node* new_st = merge->memory_at(alias_idx);
   984           if (new_st == merge->base_memory()) {
   985             // Keep searching
   986             current = merge->base_memory();
   987             continue;
   988           }
   989           // Save the new memory state for the slice and fall through
   990           // to exit.
   991           result = new_st;
   992         }
   993       }
   994       break;
   995     }
   996     if (result != NULL) {
   997       st = result;
   998     }
   999   }
  1002   // Loop around twice in the case Load -> Initialize -> Store.
  1003   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
  1004   for (int trip = 0; trip <= 1; trip++) {
  1006     if (st->is_Store()) {
  1007       Node* st_adr = st->in(MemNode::Address);
  1008       if (!phase->eqv(st_adr, ld_adr)) {
  1009         // Try harder before giving up...  Match raw and non-raw pointers.
  1010         intptr_t st_off = 0;
  1011         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
  1012         if (alloc == NULL)       return NULL;
  1013         intptr_t ld_off = 0;
  1014         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
  1015         if (alloc != allo2)      return NULL;
  1016         if (ld_off != st_off)    return NULL;
  1017         // At this point we have proven something like this setup:
  1018         //  A = Allocate(...)
  1019         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
  1020         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
  1021         // (Actually, we haven't yet proven the Q's are the same.)
  1022         // In other words, we are loading from a casted version of
  1023         // the same pointer-and-offset that we stored to.
  1024         // Thus, we are able to replace L by V.
  1026       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
  1027       if (store_Opcode() != st->Opcode())
  1028         return NULL;
  1029       return st->in(MemNode::ValueIn);
  1032     intptr_t offset = 0;  // scratch
  1034     // A load from a freshly-created object always returns zero.
  1035     // (This can happen after LoadNode::Ideal resets the load's memory input
  1036     // to find_captured_store, which returned InitializeNode::zero_memory.)
  1037     if (st->is_Proj() && st->in(0)->is_Allocate() &&
  1038         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
  1039         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
  1040       // return a zero value for the load's basic type
  1041       // (This is one of the few places where a generic PhaseTransform
  1042       // can create new nodes.  Think of it as lazily manifesting
  1043       // virtually pre-existing constants.)
  1044       return phase->zerocon(memory_type());
  1047     // A load from an initialization barrier can match a captured store.
  1048     if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1049       InitializeNode* init = st->in(0)->as_Initialize();
  1050       AllocateNode* alloc = init->allocation();
  1051       if (alloc != NULL &&
  1052           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
  1053         // examine a captured store value
  1054         st = init->find_captured_store(offset, memory_size(), phase);
  1055         if (st != NULL)
  1056           continue;             // take one more trip around
  1060     break;
  1063   return NULL;
  1066 //----------------------is_instance_field_load_with_local_phi------------------
  1067 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1068   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
  1069       in(MemNode::Address)->is_AddP() ) {
  1070     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
  1071     // Only instances.
  1072     if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1073         t_oop->offset() != Type::OffsetBot &&
  1074         t_oop->offset() != Type::OffsetTop) {
  1075       return true;
  1078   return false;
  1081 //------------------------------Identity---------------------------------------
  1082 // Loads are identity if previous store is to same address
  1083 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1084   // If the previous store-maker is the right kind of Store, and the store is
  1085   // to the same address, then we are equal to the value stored.
  1086   Node* mem = in(MemNode::Memory);
  1087   Node* value = can_see_stored_value(mem, phase);
  1088   if( value ) {
  1089     // byte, short & char stores truncate naturally.
  1090     // A load has to load the truncated value which requires
  1091     // some sort of masking operation and that requires an
  1092     // Ideal call instead of an Identity call.
  1093     if (memory_size() < BytesPerInt) {
  1094       // If the input to the store does not fit with the load's result type,
  1095       // it must be truncated via an Ideal call.
  1096       if (!phase->type(value)->higher_equal(phase->type(this)))
  1097         return this;
  1099     // (This works even when value is a Con, but LoadNode::Value
  1100     // usually runs first, producing the singleton type of the Con.)
  1101     return value;
  1104   // Search for an existing data phi which was generated before for the same
  1105   // instance's field to avoid infinite generation of phis in a loop.
  1106   Node *region = mem->in(0);
  1107   if (is_instance_field_load_with_local_phi(region)) {
  1108     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1109     int this_index  = phase->C->get_alias_index(addr_t);
  1110     int this_offset = addr_t->offset();
  1111     int this_id    = addr_t->is_oopptr()->instance_id();
  1112     const Type* this_type = bottom_type();
  1113     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1114       Node* phi = region->fast_out(i);
  1115       if (phi->is_Phi() && phi != mem &&
  1116           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1117         return phi;
  1122   return this;
  1126 // Returns true if the AliasType refers to the field that holds the
  1127 // cached box array.  Currently only handles the IntegerCache case.
  1128 static bool is_autobox_cache(Compile::AliasType* atp) {
  1129   if (atp != NULL && atp->field() != NULL) {
  1130     ciField* field = atp->field();
  1131     ciSymbol* klass = field->holder()->name();
  1132     if (field->name() == ciSymbol::cache_field_name() &&
  1133         field->holder()->uses_default_loader() &&
  1134         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1135       return true;
  1138   return false;
  1141 // Fetch the base value in the autobox array
  1142 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1143   if (atp != NULL && atp->field() != NULL) {
  1144     ciField* field = atp->field();
  1145     ciSymbol* klass = field->holder()->name();
  1146     if (field->name() == ciSymbol::cache_field_name() &&
  1147         field->holder()->uses_default_loader() &&
  1148         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1149       assert(field->is_constant(), "what?");
  1150       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1151       // Fetch the box object at the base of the array and get its value
  1152       ciInstance* box = array->obj_at(0)->as_instance();
  1153       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1154       if (ik->nof_nonstatic_fields() == 1) {
  1155         // This should be true nonstatic_field_at requires calling
  1156         // nof_nonstatic_fields so check it anyway
  1157         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1158         cache_offset = c.as_int();
  1160       return true;
  1163   return false;
  1166 // Returns true if the AliasType refers to the value field of an
  1167 // autobox object.  Currently only handles Integer.
  1168 static bool is_autobox_object(Compile::AliasType* atp) {
  1169   if (atp != NULL && atp->field() != NULL) {
  1170     ciField* field = atp->field();
  1171     ciSymbol* klass = field->holder()->name();
  1172     if (field->name() == ciSymbol::value_name() &&
  1173         field->holder()->uses_default_loader() &&
  1174         klass == ciSymbol::java_lang_Integer()) {
  1175       return true;
  1178   return false;
  1182 // We're loading from an object which has autobox behaviour.
  1183 // If this object is result of a valueOf call we'll have a phi
  1184 // merging a newly allocated object and a load from the cache.
  1185 // We want to replace this load with the original incoming
  1186 // argument to the valueOf call.
  1187 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1188   Node* base = in(Address)->in(AddPNode::Base);
  1189   if (base->is_Phi() && base->req() == 3) {
  1190     AllocateNode* allocation = NULL;
  1191     int allocation_index = -1;
  1192     int load_index = -1;
  1193     for (uint i = 1; i < base->req(); i++) {
  1194       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1195       if (allocation != NULL) {
  1196         allocation_index = i;
  1197         load_index = 3 - allocation_index;
  1198         break;
  1201     bool has_load = ( allocation != NULL &&
  1202                       (base->in(load_index)->is_Load() ||
  1203                        base->in(load_index)->is_DecodeN() &&
  1204                        base->in(load_index)->in(1)->is_Load()) );
  1205     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1206       // Push the loads from the phi that comes from valueOf up
  1207       // through it to allow elimination of the loads and the recovery
  1208       // of the original value.
  1209       Node* mem_phi = in(Memory);
  1210       Node* offset = in(Address)->in(AddPNode::Offset);
  1211       Node* region = base->in(0);
  1213       Node* in1 = clone();
  1214       Node* in1_addr = in1->in(Address)->clone();
  1215       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1216       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1217       in1_addr->set_req(AddPNode::Offset, offset);
  1218       in1->set_req(0, region->in(allocation_index));
  1219       in1->set_req(Address, in1_addr);
  1220       in1->set_req(Memory, mem_phi->in(allocation_index));
  1222       Node* in2 = clone();
  1223       Node* in2_addr = in2->in(Address)->clone();
  1224       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1225       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1226       in2_addr->set_req(AddPNode::Offset, offset);
  1227       in2->set_req(0, region->in(load_index));
  1228       in2->set_req(Address, in2_addr);
  1229       in2->set_req(Memory, mem_phi->in(load_index));
  1231       in1_addr = phase->transform(in1_addr);
  1232       in1 =      phase->transform(in1);
  1233       in2_addr = phase->transform(in2_addr);
  1234       in2 =      phase->transform(in2);
  1236       PhiNode* result = PhiNode::make_blank(region, this);
  1237       result->set_req(allocation_index, in1);
  1238       result->set_req(load_index, in2);
  1239       return result;
  1241   } else if (base->is_Load() ||
  1242              base->is_DecodeN() && base->in(1)->is_Load()) {
  1243     if (base->is_DecodeN()) {
  1244       // Get LoadN node which loads cached Integer object
  1245       base = base->in(1);
  1247     // Eliminate the load of Integer.value for integers from the cache
  1248     // array by deriving the value from the index into the array.
  1249     // Capture the offset of the load and then reverse the computation.
  1250     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1251     if (load_base->is_DecodeN()) {
  1252       // Get LoadN node which loads IntegerCache.cache field
  1253       load_base = load_base->in(1);
  1255     if (load_base != NULL) {
  1256       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1257       intptr_t cache_offset;
  1258       int shift = -1;
  1259       Node* cache = NULL;
  1260       if (is_autobox_cache(atp)) {
  1261         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1262         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1264       if (cache != NULL && base->in(Address)->is_AddP()) {
  1265         Node* elements[4];
  1266         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1267         int cache_low;
  1268         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1269           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1270           // Add up all the offsets making of the address of the load
  1271           Node* result = elements[0];
  1272           for (int i = 1; i < count; i++) {
  1273             result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
  1275           // Remove the constant offset from the address and then
  1276           // remove the scaling of the offset to recover the original index.
  1277           result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset)));
  1278           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1279             // Peel the shift off directly but wrap it in a dummy node
  1280             // since Ideal can't return existing nodes
  1281             result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
  1282           } else {
  1283             result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
  1285 #ifdef _LP64
  1286           result = new (phase->C) ConvL2INode(phase->transform(result));
  1287 #endif
  1288           return result;
  1293   return NULL;
  1296 //------------------------------split_through_phi------------------------------
  1297 // Split instance field load through Phi.
  1298 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1299   Node* mem     = in(MemNode::Memory);
  1300   Node* address = in(MemNode::Address);
  1301   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1302   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1304   assert(mem->is_Phi() && (t_oop != NULL) &&
  1305          t_oop->is_known_instance_field(), "invalide conditions");
  1307   Node *region = mem->in(0);
  1308   if (region == NULL) {
  1309     return NULL; // Wait stable graph
  1311   uint cnt = mem->req();
  1312   for (uint i = 1; i < cnt; i++) {
  1313     Node* rc = region->in(i);
  1314     if (rc == NULL || phase->type(rc) == Type::TOP)
  1315       return NULL; // Wait stable graph
  1316     Node *in = mem->in(i);
  1317     if (in == NULL) {
  1318       return NULL; // Wait stable graph
  1321   // Check for loop invariant.
  1322   if (cnt == 3) {
  1323     for (uint i = 1; i < cnt; i++) {
  1324       Node *in = mem->in(i);
  1325       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1326       if (m == mem) {
  1327         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1328         return this;
  1332   // Split through Phi (see original code in loopopts.cpp).
  1333   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1335   // Do nothing here if Identity will find a value
  1336   // (to avoid infinite chain of value phis generation).
  1337   if (!phase->eqv(this, this->Identity(phase)))
  1338     return NULL;
  1340   // Skip the split if the region dominates some control edge of the address.
  1341   if (!MemNode::all_controls_dominate(address, region))
  1342     return NULL;
  1344   const Type* this_type = this->bottom_type();
  1345   int this_index  = phase->C->get_alias_index(addr_t);
  1346   int this_offset = addr_t->offset();
  1347   int this_iid    = addr_t->is_oopptr()->instance_id();
  1348   PhaseIterGVN *igvn = phase->is_IterGVN();
  1349   Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1350   for (uint i = 1; i < region->req(); i++) {
  1351     Node *x;
  1352     Node* the_clone = NULL;
  1353     if (region->in(i) == phase->C->top()) {
  1354       x = phase->C->top();      // Dead path?  Use a dead data op
  1355     } else {
  1356       x = this->clone();        // Else clone up the data op
  1357       the_clone = x;            // Remember for possible deletion.
  1358       // Alter data node to use pre-phi inputs
  1359       if (this->in(0) == region) {
  1360         x->set_req(0, region->in(i));
  1361       } else {
  1362         x->set_req(0, NULL);
  1364       for (uint j = 1; j < this->req(); j++) {
  1365         Node *in = this->in(j);
  1366         if (in->is_Phi() && in->in(0) == region)
  1367           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
  1370     // Check for a 'win' on some paths
  1371     const Type *t = x->Value(igvn);
  1373     bool singleton = t->singleton();
  1375     // See comments in PhaseIdealLoop::split_thru_phi().
  1376     if (singleton && t == Type::TOP) {
  1377       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1380     if (singleton) {
  1381       x = igvn->makecon(t);
  1382     } else {
  1383       // We now call Identity to try to simplify the cloned node.
  1384       // Note that some Identity methods call phase->type(this).
  1385       // Make sure that the type array is big enough for
  1386       // our new node, even though we may throw the node away.
  1387       // (This tweaking with igvn only works because x is a new node.)
  1388       igvn->set_type(x, t);
  1389       // If x is a TypeNode, capture any more-precise type permanently into Node
  1390       // otherwise it will be not updated during igvn->transform since
  1391       // igvn->type(x) is set to x->Value() already.
  1392       x->raise_bottom_type(t);
  1393       Node *y = x->Identity(igvn);
  1394       if (y != x) {
  1395         x = y;
  1396       } else {
  1397         y = igvn->hash_find(x);
  1398         if (y) {
  1399           x = y;
  1400         } else {
  1401           // Else x is a new node we are keeping
  1402           // We do not need register_new_node_with_optimizer
  1403           // because set_type has already been called.
  1404           igvn->_worklist.push(x);
  1408     if (x != the_clone && the_clone != NULL)
  1409       igvn->remove_dead_node(the_clone);
  1410     phi->set_req(i, x);
  1412   // Record Phi
  1413   igvn->register_new_node_with_optimizer(phi);
  1414   return phi;
  1417 //------------------------------Ideal------------------------------------------
  1418 // If the load is from Field memory and the pointer is non-null, we can
  1419 // zero out the control input.
  1420 // If the offset is constant and the base is an object allocation,
  1421 // try to hook me up to the exact initializing store.
  1422 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1423   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1424   if (p)  return (p == NodeSentinel) ? NULL : p;
  1426   Node* ctrl    = in(MemNode::Control);
  1427   Node* address = in(MemNode::Address);
  1429   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1430   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1431   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1432       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1433     ctrl = ctrl->in(0);
  1434     set_req(MemNode::Control,ctrl);
  1437   intptr_t ignore = 0;
  1438   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1439   if (base != NULL
  1440       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1441     // Check for useless control edge in some common special cases
  1442     if (in(MemNode::Control) != NULL
  1443         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1444         && all_controls_dominate(base, phase->C->start())) {
  1445       // A method-invariant, non-null address (constant or 'this' argument).
  1446       set_req(MemNode::Control, NULL);
  1449     if (EliminateAutoBox && can_reshape) {
  1450       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1451       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1452       if (is_autobox_object(atp)) {
  1453         Node* result = eliminate_autobox(phase);
  1454         if (result != NULL) return result;
  1459   Node* mem = in(MemNode::Memory);
  1460   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1462   if (addr_t != NULL) {
  1463     // try to optimize our memory input
  1464     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1465     if (opt_mem != mem) {
  1466       set_req(MemNode::Memory, opt_mem);
  1467       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1468       return this;
  1470     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1471     if (can_reshape && opt_mem->is_Phi() &&
  1472         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1473       PhaseIterGVN *igvn = phase->is_IterGVN();
  1474       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1475         // Delay this transformation until memory Phi is processed.
  1476         phase->is_IterGVN()->_worklist.push(this);
  1477         return NULL;
  1479       // Split instance field load through Phi.
  1480       Node* result = split_through_phi(phase);
  1481       if (result != NULL) return result;
  1485   // Check for prior store with a different base or offset; make Load
  1486   // independent.  Skip through any number of them.  Bail out if the stores
  1487   // are in an endless dead cycle and report no progress.  This is a key
  1488   // transform for Reflection.  However, if after skipping through the Stores
  1489   // we can't then fold up against a prior store do NOT do the transform as
  1490   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1491   // array memory alive twice: once for the hoisted Load and again after the
  1492   // bypassed Store.  This situation only works if EVERYBODY who does
  1493   // anti-dependence work knows how to bypass.  I.e. we need all
  1494   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1495   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1496   // fold up, do so.
  1497   Node* prev_mem = find_previous_store(phase);
  1498   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1499   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1500     // (c) See if we can fold up on the spot, but don't fold up here.
  1501     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1502     // just return a prior value, which is done by Identity calls.
  1503     if (can_see_stored_value(prev_mem, phase)) {
  1504       // Make ready for step (d):
  1505       set_req(MemNode::Memory, prev_mem);
  1506       return this;
  1510   return NULL;                  // No further progress
  1513 // Helper to recognize certain Klass fields which are invariant across
  1514 // some group of array types (e.g., int[] or all T[] where T < Object).
  1515 const Type*
  1516 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1517                                  ciKlass* klass) const {
  1518   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1519     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1520     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1521     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1522     return TypeInt::make(klass->modifier_flags());
  1524   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1525     // The field is Klass::_access_flags.  Return its (constant) value.
  1526     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1527     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1528     return TypeInt::make(klass->access_flags());
  1530   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1531     // The field is Klass::_layout_helper.  Return its constant value if known.
  1532     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1533     return TypeInt::make(klass->layout_helper());
  1536   // No match.
  1537   return NULL;
  1540 //------------------------------Value-----------------------------------------
  1541 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1542   // Either input is TOP ==> the result is TOP
  1543   Node* mem = in(MemNode::Memory);
  1544   const Type *t1 = phase->type(mem);
  1545   if (t1 == Type::TOP)  return Type::TOP;
  1546   Node* adr = in(MemNode::Address);
  1547   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1548   if (tp == NULL || tp->empty())  return Type::TOP;
  1549   int off = tp->offset();
  1550   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1551   Compile* C = phase->C;
  1553   // Try to guess loaded type from pointer type
  1554   if (tp->base() == Type::AryPtr) {
  1555     const Type *t = tp->is_aryptr()->elem();
  1556     // Don't do this for integer types. There is only potential profit if
  1557     // the element type t is lower than _type; that is, for int types, if _type is
  1558     // more restrictive than t.  This only happens here if one is short and the other
  1559     // char (both 16 bits), and in those cases we've made an intentional decision
  1560     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1561     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1562     //
  1563     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1564     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1565     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1566     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1567     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1568     // In fact, that could have been the original type of p1, and p1 could have
  1569     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1570     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1571     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1572         && (_type->isa_vect() == NULL)
  1573         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1574       // t might actually be lower than _type, if _type is a unique
  1575       // concrete subclass of abstract class t.
  1576       // Make sure the reference is not into the header, by comparing
  1577       // the offset against the offset of the start of the array's data.
  1578       // Different array types begin at slightly different offsets (12 vs. 16).
  1579       // We choose T_BYTE as an example base type that is least restrictive
  1580       // as to alignment, which will therefore produce the smallest
  1581       // possible base offset.
  1582       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1583       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1584         const Type* jt = t->join(_type);
  1585         // In any case, do not allow the join, per se, to empty out the type.
  1586         if (jt->empty() && !t->empty()) {
  1587           // This can happen if a interface-typed array narrows to a class type.
  1588           jt = _type;
  1591         if (EliminateAutoBox && adr->is_AddP()) {
  1592           // The pointers in the autobox arrays are always non-null
  1593           Node* base = adr->in(AddPNode::Base);
  1594           if (base != NULL &&
  1595               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1596             Compile::AliasType* atp = C->alias_type(base->adr_type());
  1597             if (is_autobox_cache(atp)) {
  1598               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1602         return jt;
  1605   } else if (tp->base() == Type::InstPtr) {
  1606     ciEnv* env = C->env();
  1607     const TypeInstPtr* tinst = tp->is_instptr();
  1608     ciKlass* klass = tinst->klass();
  1609     assert( off != Type::OffsetBot ||
  1610             // arrays can be cast to Objects
  1611             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1612             // unsafe field access may not have a constant offset
  1613             C->has_unsafe_access(),
  1614             "Field accesses must be precise" );
  1615     // For oop loads, we expect the _type to be precise
  1616     if (klass == env->String_klass() &&
  1617         adr->is_AddP() && off != Type::OffsetBot) {
  1618       // For constant Strings treat the final fields as compile time constants.
  1619       Node* base = adr->in(AddPNode::Base);
  1620       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1621       if (t != NULL && t->singleton()) {
  1622         ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1623         if (field != NULL && field->is_final()) {
  1624           ciObject* string = t->const_oop();
  1625           ciConstant constant = string->as_instance()->field_value(field);
  1626           if (constant.basic_type() == T_INT) {
  1627             return TypeInt::make(constant.as_int());
  1628           } else if (constant.basic_type() == T_ARRAY) {
  1629             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1630               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1631             } else {
  1632               return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1638     // Optimizations for constant objects
  1639     ciObject* const_oop = tinst->const_oop();
  1640     if (const_oop != NULL) {
  1641       // For constant CallSites treat the target field as a compile time constant.
  1642       if (const_oop->is_call_site()) {
  1643         ciCallSite* call_site = const_oop->as_call_site();
  1644         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1645         if (field != NULL && field->is_call_site_target()) {
  1646           ciMethodHandle* target = call_site->get_target();
  1647           if (target != NULL) {  // just in case
  1648             ciConstant constant(T_OBJECT, target);
  1649             const Type* t;
  1650             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1651               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1652             } else {
  1653               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1655             // Add a dependence for invalidation of the optimization.
  1656             if (!call_site->is_constant_call_site()) {
  1657               C->dependencies()->assert_call_site_target_value(call_site, target);
  1659             return t;
  1664   } else if (tp->base() == Type::KlassPtr) {
  1665     assert( off != Type::OffsetBot ||
  1666             // arrays can be cast to Objects
  1667             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1668             // also allow array-loading from the primary supertype
  1669             // array during subtype checks
  1670             Opcode() == Op_LoadKlass,
  1671             "Field accesses must be precise" );
  1672     // For klass/static loads, we expect the _type to be precise
  1675   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1676   if (tkls != NULL && !StressReflectiveCode) {
  1677     ciKlass* klass = tkls->klass();
  1678     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1679       // We are loading a field from a Klass metaobject whose identity
  1680       // is known at compile time (the type is "exact" or "precise").
  1681       // Check for fields we know are maintained as constants by the VM.
  1682       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1683         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1684         // (Folds up type checking code.)
  1685         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1686         return TypeInt::make(klass->super_check_offset());
  1688       // Compute index into primary_supers array
  1689       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1690       // Check for overflowing; use unsigned compare to handle the negative case.
  1691       if( depth < ciKlass::primary_super_limit() ) {
  1692         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1693         // (Folds up type checking code.)
  1694         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1695         ciKlass *ss = klass->super_of_depth(depth);
  1696         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1698       const Type* aift = load_array_final_field(tkls, klass);
  1699       if (aift != NULL)  return aift;
  1700       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
  1701           && klass->is_array_klass()) {
  1702         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
  1703         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1704         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1705         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1707       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1708         // The field is Klass::_java_mirror.  Return its (constant) value.
  1709         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1710         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1711         return TypeInstPtr::make(klass->java_mirror());
  1715     // We can still check if we are loading from the primary_supers array at a
  1716     // shallow enough depth.  Even though the klass is not exact, entries less
  1717     // than or equal to its super depth are correct.
  1718     if (klass->is_loaded() ) {
  1719       ciType *inner = klass;
  1720       while( inner->is_obj_array_klass() )
  1721         inner = inner->as_obj_array_klass()->base_element_type();
  1722       if( inner->is_instance_klass() &&
  1723           !inner->as_instance_klass()->flags().is_interface() ) {
  1724         // Compute index into primary_supers array
  1725         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1726         // Check for overflowing; use unsigned compare to handle the negative case.
  1727         if( depth < ciKlass::primary_super_limit() &&
  1728             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1729           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1730           // (Folds up type checking code.)
  1731           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1732           ciKlass *ss = klass->super_of_depth(depth);
  1733           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1738     // If the type is enough to determine that the thing is not an array,
  1739     // we can give the layout_helper a positive interval type.
  1740     // This will help short-circuit some reflective code.
  1741     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1742         && !klass->is_array_klass() // not directly typed as an array
  1743         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1744         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1745         ) {
  1746       // Note:  When interfaces are reliable, we can narrow the interface
  1747       // test to (klass != Serializable && klass != Cloneable).
  1748       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1749       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1750       // The key property of this type is that it folds up tests
  1751       // for array-ness, since it proves that the layout_helper is positive.
  1752       // Thus, a generic value like the basic object layout helper works fine.
  1753       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1757   // If we are loading from a freshly-allocated object, produce a zero,
  1758   // if the load is provably beyond the header of the object.
  1759   // (Also allow a variable load from a fresh array to produce zero.)
  1760   const TypeOopPtr *tinst = tp->isa_oopptr();
  1761   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1762   if (ReduceFieldZeroing || is_instance) {
  1763     Node* value = can_see_stored_value(mem,phase);
  1764     if (value != NULL && value->is_Con()) {
  1765       assert(value->bottom_type()->higher_equal(_type),"sanity");
  1766       return value->bottom_type();
  1770   if (is_instance) {
  1771     // If we have an instance type and our memory input is the
  1772     // programs's initial memory state, there is no matching store,
  1773     // so just return a zero of the appropriate type
  1774     Node *mem = in(MemNode::Memory);
  1775     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1776       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1777       return Type::get_zero_type(_type->basic_type());
  1780   return _type;
  1783 //------------------------------match_edge-------------------------------------
  1784 // Do we Match on this edge index or not?  Match only the address.
  1785 uint LoadNode::match_edge(uint idx) const {
  1786   return idx == MemNode::Address;
  1789 //--------------------------LoadBNode::Ideal--------------------------------------
  1790 //
  1791 //  If the previous store is to the same address as this load,
  1792 //  and the value stored was larger than a byte, replace this load
  1793 //  with the value stored truncated to a byte.  If no truncation is
  1794 //  needed, the replacement is done in LoadNode::Identity().
  1795 //
  1796 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1797   Node* mem = in(MemNode::Memory);
  1798   Node* value = can_see_stored_value(mem,phase);
  1799   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1800     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
  1801     return new (phase->C) RShiftINode(result, phase->intcon(24));
  1803   // Identity call will handle the case where truncation is not needed.
  1804   return LoadNode::Ideal(phase, can_reshape);
  1807 const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1808   Node* mem = in(MemNode::Memory);
  1809   Node* value = can_see_stored_value(mem,phase);
  1810   if (value != NULL && value->is_Con() &&
  1811       !value->bottom_type()->higher_equal(_type)) {
  1812     // If the input to the store does not fit with the load's result type,
  1813     // it must be truncated. We can't delay until Ideal call since
  1814     // a singleton Value is needed for split_thru_phi optimization.
  1815     int con = value->get_int();
  1816     return TypeInt::make((con << 24) >> 24);
  1818   return LoadNode::Value(phase);
  1821 //--------------------------LoadUBNode::Ideal-------------------------------------
  1822 //
  1823 //  If the previous store is to the same address as this load,
  1824 //  and the value stored was larger than a byte, replace this load
  1825 //  with the value stored truncated to a byte.  If no truncation is
  1826 //  needed, the replacement is done in LoadNode::Identity().
  1827 //
  1828 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1829   Node* mem = in(MemNode::Memory);
  1830   Node* value = can_see_stored_value(mem, phase);
  1831   if (value && !phase->type(value)->higher_equal(_type))
  1832     return new (phase->C) AndINode(value, phase->intcon(0xFF));
  1833   // Identity call will handle the case where truncation is not needed.
  1834   return LoadNode::Ideal(phase, can_reshape);
  1837 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1838   Node* mem = in(MemNode::Memory);
  1839   Node* value = can_see_stored_value(mem,phase);
  1840   if (value != NULL && value->is_Con() &&
  1841       !value->bottom_type()->higher_equal(_type)) {
  1842     // If the input to the store does not fit with the load's result type,
  1843     // it must be truncated. We can't delay until Ideal call since
  1844     // a singleton Value is needed for split_thru_phi optimization.
  1845     int con = value->get_int();
  1846     return TypeInt::make(con & 0xFF);
  1848   return LoadNode::Value(phase);
  1851 //--------------------------LoadUSNode::Ideal-------------------------------------
  1852 //
  1853 //  If the previous store is to the same address as this load,
  1854 //  and the value stored was larger than a char, replace this load
  1855 //  with the value stored truncated to a char.  If no truncation is
  1856 //  needed, the replacement is done in LoadNode::Identity().
  1857 //
  1858 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1859   Node* mem = in(MemNode::Memory);
  1860   Node* value = can_see_stored_value(mem,phase);
  1861   if( value && !phase->type(value)->higher_equal( _type ) )
  1862     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
  1863   // Identity call will handle the case where truncation is not needed.
  1864   return LoadNode::Ideal(phase, can_reshape);
  1867 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1868   Node* mem = in(MemNode::Memory);
  1869   Node* value = can_see_stored_value(mem,phase);
  1870   if (value != NULL && value->is_Con() &&
  1871       !value->bottom_type()->higher_equal(_type)) {
  1872     // If the input to the store does not fit with the load's result type,
  1873     // it must be truncated. We can't delay until Ideal call since
  1874     // a singleton Value is needed for split_thru_phi optimization.
  1875     int con = value->get_int();
  1876     return TypeInt::make(con & 0xFFFF);
  1878   return LoadNode::Value(phase);
  1881 //--------------------------LoadSNode::Ideal--------------------------------------
  1882 //
  1883 //  If the previous store is to the same address as this load,
  1884 //  and the value stored was larger than a short, replace this load
  1885 //  with the value stored truncated to a short.  If no truncation is
  1886 //  needed, the replacement is done in LoadNode::Identity().
  1887 //
  1888 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1889   Node* mem = in(MemNode::Memory);
  1890   Node* value = can_see_stored_value(mem,phase);
  1891   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1892     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
  1893     return new (phase->C) RShiftINode(result, phase->intcon(16));
  1895   // Identity call will handle the case where truncation is not needed.
  1896   return LoadNode::Ideal(phase, can_reshape);
  1899 const Type* LoadSNode::Value(PhaseTransform *phase) const {
  1900   Node* mem = in(MemNode::Memory);
  1901   Node* value = can_see_stored_value(mem,phase);
  1902   if (value != NULL && value->is_Con() &&
  1903       !value->bottom_type()->higher_equal(_type)) {
  1904     // If the input to the store does not fit with the load's result type,
  1905     // it must be truncated. We can't delay until Ideal call since
  1906     // a singleton Value is needed for split_thru_phi optimization.
  1907     int con = value->get_int();
  1908     return TypeInt::make((con << 16) >> 16);
  1910   return LoadNode::Value(phase);
  1913 //=============================================================================
  1914 //----------------------------LoadKlassNode::make------------------------------
  1915 // Polymorphic factory method:
  1916 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1917   Compile* C = gvn.C;
  1918   Node *ctl = NULL;
  1919   // sanity check the alias category against the created node type
  1920   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
  1921   assert(adr_type != NULL, "expecting TypeKlassPtr");
  1922 #ifdef _LP64
  1923   if (adr_type->is_ptr_to_narrowklass()) {
  1924     assert(UseCompressedKlassPointers, "no compressed klasses");
  1925     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
  1926     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
  1928 #endif
  1929   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1930   return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
  1933 //------------------------------Value------------------------------------------
  1934 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1935   return klass_value_common(phase);
  1938 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1939   // Either input is TOP ==> the result is TOP
  1940   const Type *t1 = phase->type( in(MemNode::Memory) );
  1941   if (t1 == Type::TOP)  return Type::TOP;
  1942   Node *adr = in(MemNode::Address);
  1943   const Type *t2 = phase->type( adr );
  1944   if (t2 == Type::TOP)  return Type::TOP;
  1945   const TypePtr *tp = t2->is_ptr();
  1946   if (TypePtr::above_centerline(tp->ptr()) ||
  1947       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1949   // Return a more precise klass, if possible
  1950   const TypeInstPtr *tinst = tp->isa_instptr();
  1951   if (tinst != NULL) {
  1952     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1953     int offset = tinst->offset();
  1954     if (ik == phase->C->env()->Class_klass()
  1955         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1956             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1957       // We are loading a special hidden field from a Class mirror object,
  1958       // the field which points to the VM's Klass metaobject.
  1959       ciType* t = tinst->java_mirror_type();
  1960       // java_mirror_type returns non-null for compile-time Class constants.
  1961       if (t != NULL) {
  1962         // constant oop => constant klass
  1963         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1964           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1966         if (!t->is_klass()) {
  1967           // a primitive Class (e.g., int.class) has NULL for a klass field
  1968           return TypePtr::NULL_PTR;
  1970         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1971         return TypeKlassPtr::make(t->as_klass());
  1973       // non-constant mirror, so we can't tell what's going on
  1975     if( !ik->is_loaded() )
  1976       return _type;             // Bail out if not loaded
  1977     if (offset == oopDesc::klass_offset_in_bytes()) {
  1978       if (tinst->klass_is_exact()) {
  1979         return TypeKlassPtr::make(ik);
  1981       // See if we can become precise: no subklasses and no interface
  1982       // (Note:  We need to support verified interfaces.)
  1983       if (!ik->is_interface() && !ik->has_subklass()) {
  1984         //assert(!UseExactTypes, "this code should be useless with exact types");
  1985         // Add a dependence; if any subclass added we need to recompile
  1986         if (!ik->is_final()) {
  1987           // %%% should use stronger assert_unique_concrete_subtype instead
  1988           phase->C->dependencies()->assert_leaf_type(ik);
  1990         // Return precise klass
  1991         return TypeKlassPtr::make(ik);
  1994       // Return root of possible klass
  1995       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1999   // Check for loading klass from an array
  2000   const TypeAryPtr *tary = tp->isa_aryptr();
  2001   if( tary != NULL ) {
  2002     ciKlass *tary_klass = tary->klass();
  2003     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  2004         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  2005       if (tary->klass_is_exact()) {
  2006         return TypeKlassPtr::make(tary_klass);
  2008       ciArrayKlass *ak = tary->klass()->as_array_klass();
  2009       // If the klass is an object array, we defer the question to the
  2010       // array component klass.
  2011       if( ak->is_obj_array_klass() ) {
  2012         assert( ak->is_loaded(), "" );
  2013         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  2014         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  2015           ciInstanceKlass* ik = base_k->as_instance_klass();
  2016           // See if we can become precise: no subklasses and no interface
  2017           if (!ik->is_interface() && !ik->has_subklass()) {
  2018             //assert(!UseExactTypes, "this code should be useless with exact types");
  2019             // Add a dependence; if any subclass added we need to recompile
  2020             if (!ik->is_final()) {
  2021               phase->C->dependencies()->assert_leaf_type(ik);
  2023             // Return precise array klass
  2024             return TypeKlassPtr::make(ak);
  2027         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2028       } else {                  // Found a type-array?
  2029         //assert(!UseExactTypes, "this code should be useless with exact types");
  2030         assert( ak->is_type_array_klass(), "" );
  2031         return TypeKlassPtr::make(ak); // These are always precise
  2036   // Check for loading klass from an array klass
  2037   const TypeKlassPtr *tkls = tp->isa_klassptr();
  2038   if (tkls != NULL && !StressReflectiveCode) {
  2039     ciKlass* klass = tkls->klass();
  2040     if( !klass->is_loaded() )
  2041       return _type;             // Bail out if not loaded
  2042     if( klass->is_obj_array_klass() &&
  2043         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
  2044       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  2045       // // Always returning precise element type is incorrect,
  2046       // // e.g., element type could be object and array may contain strings
  2047       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  2049       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  2050       // according to the element type's subclassing.
  2051       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  2053     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  2054         tkls->offset() == in_bytes(Klass::super_offset())) {
  2055       ciKlass* sup = klass->as_instance_klass()->super();
  2056       // The field is Klass::_super.  Return its (constant) value.
  2057       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  2058       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  2062   // Bailout case
  2063   return LoadNode::Value(phase);
  2066 //------------------------------Identity---------------------------------------
  2067 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  2068 // Also feed through the klass in Allocate(...klass...)._klass.
  2069 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  2070   return klass_identity_common(phase);
  2073 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  2074   Node* x = LoadNode::Identity(phase);
  2075   if (x != this)  return x;
  2077   // Take apart the address into an oop and and offset.
  2078   // Return 'this' if we cannot.
  2079   Node*    adr    = in(MemNode::Address);
  2080   intptr_t offset = 0;
  2081   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2082   if (base == NULL)     return this;
  2083   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  2084   if (toop == NULL)     return this;
  2086   // We can fetch the klass directly through an AllocateNode.
  2087   // This works even if the klass is not constant (clone or newArray).
  2088   if (offset == oopDesc::klass_offset_in_bytes()) {
  2089     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  2090     if (allocated_klass != NULL) {
  2091       return allocated_klass;
  2095   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
  2096   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
  2097   // See inline_native_Class_query for occurrences of these patterns.
  2098   // Java Example:  x.getClass().isAssignableFrom(y)
  2099   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  2100   //
  2101   // This improves reflective code, often making the Class
  2102   // mirror go completely dead.  (Current exception:  Class
  2103   // mirrors may appear in debug info, but we could clean them out by
  2104   // introducing a new debug info operator for Klass*.java_mirror).
  2105   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  2106       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2107           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2108     // We are loading a special hidden field from a Class mirror,
  2109     // the field which points to its Klass or ArrayKlass metaobject.
  2110     if (base->is_Load()) {
  2111       Node* adr2 = base->in(MemNode::Address);
  2112       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  2113       if (tkls != NULL && !tkls->empty()
  2114           && (tkls->klass()->is_instance_klass() ||
  2115               tkls->klass()->is_array_klass())
  2116           && adr2->is_AddP()
  2117           ) {
  2118         int mirror_field = in_bytes(Klass::java_mirror_offset());
  2119         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2120           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
  2122         if (tkls->offset() == mirror_field) {
  2123           return adr2->in(AddPNode::Base);
  2129   return this;
  2133 //------------------------------Value------------------------------------------
  2134 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  2135   const Type *t = klass_value_common(phase);
  2136   if (t == Type::TOP)
  2137     return t;
  2139   return t->make_narrowklass();
  2142 //------------------------------Identity---------------------------------------
  2143 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2144 // Also feed through the klass in Allocate(...klass...)._klass.
  2145 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2146   Node *x = klass_identity_common(phase);
  2148   const Type *t = phase->type( x );
  2149   if( t == Type::TOP ) return x;
  2150   if( t->isa_narrowklass()) return x;
  2151   assert (!t->isa_narrowoop(), "no narrow oop here");
  2153   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
  2156 //------------------------------Value-----------------------------------------
  2157 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2158   // Either input is TOP ==> the result is TOP
  2159   const Type *t1 = phase->type( in(MemNode::Memory) );
  2160   if( t1 == Type::TOP ) return Type::TOP;
  2161   Node *adr = in(MemNode::Address);
  2162   const Type *t2 = phase->type( adr );
  2163   if( t2 == Type::TOP ) return Type::TOP;
  2164   const TypePtr *tp = t2->is_ptr();
  2165   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2166   const TypeAryPtr *tap = tp->isa_aryptr();
  2167   if( !tap ) return _type;
  2168   return tap->size();
  2171 //-------------------------------Ideal---------------------------------------
  2172 // Feed through the length in AllocateArray(...length...)._length.
  2173 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2174   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2175   if (p)  return (p == NodeSentinel) ? NULL : p;
  2177   // Take apart the address into an oop and and offset.
  2178   // Return 'this' if we cannot.
  2179   Node*    adr    = in(MemNode::Address);
  2180   intptr_t offset = 0;
  2181   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2182   if (base == NULL)     return NULL;
  2183   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2184   if (tary == NULL)     return NULL;
  2186   // We can fetch the length directly through an AllocateArrayNode.
  2187   // This works even if the length is not constant (clone or newArray).
  2188   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2189     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2190     if (alloc != NULL) {
  2191       Node* allocated_length = alloc->Ideal_length();
  2192       Node* len = alloc->make_ideal_length(tary, phase);
  2193       if (allocated_length != len) {
  2194         // New CastII improves on this.
  2195         return len;
  2200   return NULL;
  2203 //------------------------------Identity---------------------------------------
  2204 // Feed through the length in AllocateArray(...length...)._length.
  2205 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2206   Node* x = LoadINode::Identity(phase);
  2207   if (x != this)  return x;
  2209   // Take apart the address into an oop and and offset.
  2210   // Return 'this' if we cannot.
  2211   Node*    adr    = in(MemNode::Address);
  2212   intptr_t offset = 0;
  2213   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2214   if (base == NULL)     return this;
  2215   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2216   if (tary == NULL)     return this;
  2218   // We can fetch the length directly through an AllocateArrayNode.
  2219   // This works even if the length is not constant (clone or newArray).
  2220   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2221     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2222     if (alloc != NULL) {
  2223       Node* allocated_length = alloc->Ideal_length();
  2224       // Do not allow make_ideal_length to allocate a CastII node.
  2225       Node* len = alloc->make_ideal_length(tary, phase, false);
  2226       if (allocated_length == len) {
  2227         // Return allocated_length only if it would not be improved by a CastII.
  2228         return allocated_length;
  2233   return this;
  2237 //=============================================================================
  2238 //---------------------------StoreNode::make-----------------------------------
  2239 // Polymorphic factory method:
  2240 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2241   Compile* C = gvn.C;
  2242   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2243           ctl != NULL, "raw memory operations should have control edge");
  2245   switch (bt) {
  2246   case T_BOOLEAN:
  2247   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
  2248   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
  2249   case T_CHAR:
  2250   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
  2251   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
  2252   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
  2253   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
  2254   case T_METADATA:
  2255   case T_ADDRESS:
  2256   case T_OBJECT:
  2257 #ifdef _LP64
  2258     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2259       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2260       return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
  2261     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
  2262                (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
  2263                 adr->bottom_type()->isa_rawptr())) {
  2264       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
  2265       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
  2267 #endif
  2269       return new (C) StorePNode(ctl, mem, adr, adr_type, val);
  2272   ShouldNotReachHere();
  2273   return (StoreNode*)NULL;
  2276 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2277   bool require_atomic = true;
  2278   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2282 //--------------------------bottom_type----------------------------------------
  2283 const Type *StoreNode::bottom_type() const {
  2284   return Type::MEMORY;
  2287 //------------------------------hash-------------------------------------------
  2288 uint StoreNode::hash() const {
  2289   // unroll addition of interesting fields
  2290   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2292   // Since they are not commoned, do not hash them:
  2293   return NO_HASH;
  2296 //------------------------------Ideal------------------------------------------
  2297 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2298 // When a store immediately follows a relevant allocation/initialization,
  2299 // try to capture it into the initialization, or hoist it above.
  2300 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2301   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2302   if (p)  return (p == NodeSentinel) ? NULL : p;
  2304   Node* mem     = in(MemNode::Memory);
  2305   Node* address = in(MemNode::Address);
  2307   // Back-to-back stores to same address?  Fold em up.  Generally
  2308   // unsafe if I have intervening uses...  Also disallowed for StoreCM
  2309   // since they must follow each StoreP operation.  Redundant StoreCMs
  2310   // are eliminated just before matching in final_graph_reshape.
  2311   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  2312       mem->Opcode() != Op_StoreCM) {
  2313     // Looking at a dead closed cycle of memory?
  2314     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2316     assert(Opcode() == mem->Opcode() ||
  2317            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2318            "no mismatched stores, except on raw memory");
  2320     if (mem->outcnt() == 1 &&           // check for intervening uses
  2321         mem->as_Store()->memory_size() <= this->memory_size()) {
  2322       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2323       // For example, 'mem' might be the final state at a conditional return.
  2324       // Or, 'mem' might be used by some node which is live at the same time
  2325       // 'this' is live, which might be unschedulable.  So, require exactly
  2326       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2327       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2328       if (can_reshape) {  // (%%% is this an anachronism?)
  2329         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2330                   phase->is_IterGVN());
  2331       } else {
  2332         // It's OK to do this in the parser, since DU info is always accurate,
  2333         // and the parser always refers to nodes via SafePointNode maps.
  2334         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2336       return this;
  2340   // Capture an unaliased, unconditional, simple store into an initializer.
  2341   // Or, if it is independent of the allocation, hoist it above the allocation.
  2342   if (ReduceFieldZeroing && /*can_reshape &&*/
  2343       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2344     InitializeNode* init = mem->in(0)->as_Initialize();
  2345     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
  2346     if (offset > 0) {
  2347       Node* moved = init->capture_store(this, offset, phase, can_reshape);
  2348       // If the InitializeNode captured me, it made a raw copy of me,
  2349       // and I need to disappear.
  2350       if (moved != NULL) {
  2351         // %%% hack to ensure that Ideal returns a new node:
  2352         mem = MergeMemNode::make(phase->C, mem);
  2353         return mem;             // fold me away
  2358   return NULL;                  // No further progress
  2361 //------------------------------Value-----------------------------------------
  2362 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2363   // Either input is TOP ==> the result is TOP
  2364   const Type *t1 = phase->type( in(MemNode::Memory) );
  2365   if( t1 == Type::TOP ) return Type::TOP;
  2366   const Type *t2 = phase->type( in(MemNode::Address) );
  2367   if( t2 == Type::TOP ) return Type::TOP;
  2368   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2369   if( t3 == Type::TOP ) return Type::TOP;
  2370   return Type::MEMORY;
  2373 //------------------------------Identity---------------------------------------
  2374 // Remove redundant stores:
  2375 //   Store(m, p, Load(m, p)) changes to m.
  2376 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2377 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2378   Node* mem = in(MemNode::Memory);
  2379   Node* adr = in(MemNode::Address);
  2380   Node* val = in(MemNode::ValueIn);
  2382   // Load then Store?  Then the Store is useless
  2383   if (val->is_Load() &&
  2384       val->in(MemNode::Address)->eqv_uncast(adr) &&
  2385       val->in(MemNode::Memory )->eqv_uncast(mem) &&
  2386       val->as_Load()->store_Opcode() == Opcode()) {
  2387     return mem;
  2390   // Two stores in a row of the same value?
  2391   if (mem->is_Store() &&
  2392       mem->in(MemNode::Address)->eqv_uncast(adr) &&
  2393       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  2394       mem->Opcode() == Opcode()) {
  2395     return mem;
  2398   // Store of zero anywhere into a freshly-allocated object?
  2399   // Then the store is useless.
  2400   // (It must already have been captured by the InitializeNode.)
  2401   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2402     // a newly allocated object is already all-zeroes everywhere
  2403     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2404       return mem;
  2407     // the store may also apply to zero-bits in an earlier object
  2408     Node* prev_mem = find_previous_store(phase);
  2409     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2410     if (prev_mem != NULL) {
  2411       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2412       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2413         // prev_val and val might differ by a cast; it would be good
  2414         // to keep the more informative of the two.
  2415         return mem;
  2420   return this;
  2423 //------------------------------match_edge-------------------------------------
  2424 // Do we Match on this edge index or not?  Match only memory & value
  2425 uint StoreNode::match_edge(uint idx) const {
  2426   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2429 //------------------------------cmp--------------------------------------------
  2430 // Do not common stores up together.  They generally have to be split
  2431 // back up anyways, so do not bother.
  2432 uint StoreNode::cmp( const Node &n ) const {
  2433   return (&n == this);          // Always fail except on self
  2436 //------------------------------Ideal_masked_input-----------------------------
  2437 // Check for a useless mask before a partial-word store
  2438 // (StoreB ... (AndI valIn conIa) )
  2439 // If (conIa & mask == mask) this simplifies to
  2440 // (StoreB ... (valIn) )
  2441 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2442   Node *val = in(MemNode::ValueIn);
  2443   if( val->Opcode() == Op_AndI ) {
  2444     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2445     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2446       set_req(MemNode::ValueIn, val->in(1));
  2447       return this;
  2450   return NULL;
  2454 //------------------------------Ideal_sign_extended_input----------------------
  2455 // Check for useless sign-extension before a partial-word store
  2456 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2457 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2458 // (StoreB ... (valIn) )
  2459 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2460   Node *val = in(MemNode::ValueIn);
  2461   if( val->Opcode() == Op_RShiftI ) {
  2462     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2463     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2464       Node *shl = val->in(1);
  2465       if( shl->Opcode() == Op_LShiftI ) {
  2466         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2467         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2468           set_req(MemNode::ValueIn, shl->in(1));
  2469           return this;
  2474   return NULL;
  2477 //------------------------------value_never_loaded-----------------------------------
  2478 // Determine whether there are any possible loads of the value stored.
  2479 // For simplicity, we actually check if there are any loads from the
  2480 // address stored to, not just for loads of the value stored by this node.
  2481 //
  2482 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2483   Node *adr = in(Address);
  2484   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2485   if (adr_oop == NULL)
  2486     return false;
  2487   if (!adr_oop->is_known_instance_field())
  2488     return false; // if not a distinct instance, there may be aliases of the address
  2489   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2490     Node *use = adr->fast_out(i);
  2491     int opc = use->Opcode();
  2492     if (use->is_Load() || use->is_LoadStore()) {
  2493       return false;
  2496   return true;
  2499 //=============================================================================
  2500 //------------------------------Ideal------------------------------------------
  2501 // If the store is from an AND mask that leaves the low bits untouched, then
  2502 // we can skip the AND operation.  If the store is from a sign-extension
  2503 // (a left shift, then right shift) we can skip both.
  2504 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2505   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2506   if( progress != NULL ) return progress;
  2508   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2509   if( progress != NULL ) return progress;
  2511   // Finally check the default case
  2512   return StoreNode::Ideal(phase, can_reshape);
  2515 //=============================================================================
  2516 //------------------------------Ideal------------------------------------------
  2517 // If the store is from an AND mask that leaves the low bits untouched, then
  2518 // we can skip the AND operation
  2519 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2520   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2521   if( progress != NULL ) return progress;
  2523   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2524   if( progress != NULL ) return progress;
  2526   // Finally check the default case
  2527   return StoreNode::Ideal(phase, can_reshape);
  2530 //=============================================================================
  2531 //------------------------------Identity---------------------------------------
  2532 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2533   // No need to card mark when storing a null ptr
  2534   Node* my_store = in(MemNode::OopStore);
  2535   if (my_store->is_Store()) {
  2536     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2537     if( t1 == TypePtr::NULL_PTR ) {
  2538       return in(MemNode::Memory);
  2541   return this;
  2544 //=============================================================================
  2545 //------------------------------Ideal---------------------------------------
  2546 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2547   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2548   if (progress != NULL) return progress;
  2550   Node* my_store = in(MemNode::OopStore);
  2551   if (my_store->is_MergeMem()) {
  2552     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2553     set_req(MemNode::OopStore, mem);
  2554     return this;
  2557   return NULL;
  2560 //------------------------------Value-----------------------------------------
  2561 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2562   // Either input is TOP ==> the result is TOP
  2563   const Type *t = phase->type( in(MemNode::Memory) );
  2564   if( t == Type::TOP ) return Type::TOP;
  2565   t = phase->type( in(MemNode::Address) );
  2566   if( t == Type::TOP ) return Type::TOP;
  2567   t = phase->type( in(MemNode::ValueIn) );
  2568   if( t == Type::TOP ) return Type::TOP;
  2569   // If extra input is TOP ==> the result is TOP
  2570   t = phase->type( in(MemNode::OopStore) );
  2571   if( t == Type::TOP ) return Type::TOP;
  2573   return StoreNode::Value( phase );
  2577 //=============================================================================
  2578 //----------------------------------SCMemProjNode------------------------------
  2579 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2581   return bottom_type();
  2584 //=============================================================================
  2585 //----------------------------------LoadStoreNode------------------------------
  2586 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
  2587   : Node(required),
  2588     _type(rt),
  2589     _adr_type(at)
  2591   init_req(MemNode::Control, c  );
  2592   init_req(MemNode::Memory , mem);
  2593   init_req(MemNode::Address, adr);
  2594   init_req(MemNode::ValueIn, val);
  2595   init_class_id(Class_LoadStore);
  2598 uint LoadStoreNode::ideal_reg() const {
  2599   return _type->ideal_reg();
  2602 bool LoadStoreNode::result_not_used() const {
  2603   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  2604     Node *x = fast_out(i);
  2605     if (x->Opcode() == Op_SCMemProj) continue;
  2606     return false;
  2608   return true;
  2611 uint LoadStoreNode::size_of() const { return sizeof(*this); }
  2613 //=============================================================================
  2614 //----------------------------------LoadStoreConditionalNode--------------------
  2615 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
  2616   init_req(ExpectedIn, ex );
  2619 //=============================================================================
  2620 //-------------------------------adr_type--------------------------------------
  2621 // Do we Match on this edge index or not?  Do not match memory
  2622 const TypePtr* ClearArrayNode::adr_type() const {
  2623   Node *adr = in(3);
  2624   return MemNode::calculate_adr_type(adr->bottom_type());
  2627 //------------------------------match_edge-------------------------------------
  2628 // Do we Match on this edge index or not?  Do not match memory
  2629 uint ClearArrayNode::match_edge(uint idx) const {
  2630   return idx > 1;
  2633 //------------------------------Identity---------------------------------------
  2634 // Clearing a zero length array does nothing
  2635 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2636   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2639 //------------------------------Idealize---------------------------------------
  2640 // Clearing a short array is faster with stores
  2641 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2642   const int unit = BytesPerLong;
  2643   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2644   if (!t)  return NULL;
  2645   if (!t->is_con())  return NULL;
  2646   intptr_t raw_count = t->get_con();
  2647   intptr_t size = raw_count;
  2648   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2649   // Clearing nothing uses the Identity call.
  2650   // Negative clears are possible on dead ClearArrays
  2651   // (see jck test stmt114.stmt11402.val).
  2652   if (size <= 0 || size % unit != 0)  return NULL;
  2653   intptr_t count = size / unit;
  2654   // Length too long; use fast hardware clear
  2655   if (size > Matcher::init_array_short_size)  return NULL;
  2656   Node *mem = in(1);
  2657   if( phase->type(mem)==Type::TOP ) return NULL;
  2658   Node *adr = in(3);
  2659   const Type* at = phase->type(adr);
  2660   if( at==Type::TOP ) return NULL;
  2661   const TypePtr* atp = at->isa_ptr();
  2662   // adjust atp to be the correct array element address type
  2663   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2664   else              atp = atp->add_offset(Type::OffsetBot);
  2665   // Get base for derived pointer purposes
  2666   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2667   Node *base = adr->in(1);
  2669   Node *zero = phase->makecon(TypeLong::ZERO);
  2670   Node *off  = phase->MakeConX(BytesPerLong);
  2671   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
  2672   count--;
  2673   while( count-- ) {
  2674     mem = phase->transform(mem);
  2675     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
  2676     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
  2678   return mem;
  2681 //----------------------------step_through----------------------------------
  2682 // Return allocation input memory edge if it is different instance
  2683 // or itself if it is the one we are looking for.
  2684 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2685   Node* n = *np;
  2686   assert(n->is_ClearArray(), "sanity");
  2687   intptr_t offset;
  2688   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2689   // This method is called only before Allocate nodes are expanded during
  2690   // macro nodes expansion. Before that ClearArray nodes are only generated
  2691   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2692   assert(alloc != NULL, "should have allocation");
  2693   if (alloc->_idx == instance_id) {
  2694     // Can not bypass initialization of the instance we are looking for.
  2695     return false;
  2697   // Otherwise skip it.
  2698   InitializeNode* init = alloc->initialization();
  2699   if (init != NULL)
  2700     *np = init->in(TypeFunc::Memory);
  2701   else
  2702     *np = alloc->in(TypeFunc::Memory);
  2703   return true;
  2706 //----------------------------clear_memory-------------------------------------
  2707 // Generate code to initialize object storage to zero.
  2708 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2709                                    intptr_t start_offset,
  2710                                    Node* end_offset,
  2711                                    PhaseGVN* phase) {
  2712   Compile* C = phase->C;
  2713   intptr_t offset = start_offset;
  2715   int unit = BytesPerLong;
  2716   if ((offset % unit) != 0) {
  2717     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
  2718     adr = phase->transform(adr);
  2719     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2720     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2721     mem = phase->transform(mem);
  2722     offset += BytesPerInt;
  2724   assert((offset % unit) == 0, "");
  2726   // Initialize the remaining stuff, if any, with a ClearArray.
  2727   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2730 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2731                                    Node* start_offset,
  2732                                    Node* end_offset,
  2733                                    PhaseGVN* phase) {
  2734   if (start_offset == end_offset) {
  2735     // nothing to do
  2736     return mem;
  2739   Compile* C = phase->C;
  2740   int unit = BytesPerLong;
  2741   Node* zbase = start_offset;
  2742   Node* zend  = end_offset;
  2744   // Scale to the unit required by the CPU:
  2745   if (!Matcher::init_array_count_is_in_bytes) {
  2746     Node* shift = phase->intcon(exact_log2(unit));
  2747     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
  2748     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
  2751   // Bulk clear double-words
  2752   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
  2753   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
  2754   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
  2755   return phase->transform(mem);
  2758 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2759                                    intptr_t start_offset,
  2760                                    intptr_t end_offset,
  2761                                    PhaseGVN* phase) {
  2762   if (start_offset == end_offset) {
  2763     // nothing to do
  2764     return mem;
  2767   Compile* C = phase->C;
  2768   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2769   intptr_t done_offset = end_offset;
  2770   if ((done_offset % BytesPerLong) != 0) {
  2771     done_offset -= BytesPerInt;
  2773   if (done_offset > start_offset) {
  2774     mem = clear_memory(ctl, mem, dest,
  2775                        start_offset, phase->MakeConX(done_offset), phase);
  2777   if (done_offset < end_offset) { // emit the final 32-bit store
  2778     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2779     adr = phase->transform(adr);
  2780     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2781     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2782     mem = phase->transform(mem);
  2783     done_offset += BytesPerInt;
  2785   assert(done_offset == end_offset, "");
  2786   return mem;
  2789 //=============================================================================
  2790 // Do not match memory edge.
  2791 uint StrIntrinsicNode::match_edge(uint idx) const {
  2792   return idx == 2 || idx == 3;
  2795 //------------------------------Ideal------------------------------------------
  2796 // Return a node which is more "ideal" than the current node.  Strip out
  2797 // control copies
  2798 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2799   if (remove_dead_region(phase, can_reshape)) return this;
  2800   // Don't bother trying to transform a dead node
  2801   if (in(0) && in(0)->is_top())  return NULL;
  2803   if (can_reshape) {
  2804     Node* mem = phase->transform(in(MemNode::Memory));
  2805     // If transformed to a MergeMem, get the desired slice
  2806     uint alias_idx = phase->C->get_alias_index(adr_type());
  2807     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  2808     if (mem != in(MemNode::Memory)) {
  2809       set_req(MemNode::Memory, mem);
  2810       return this;
  2813   return NULL;
  2816 //------------------------------Value------------------------------------------
  2817 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  2818   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2819   return bottom_type();
  2822 //=============================================================================
  2823 //------------------------------match_edge-------------------------------------
  2824 // Do not match memory edge
  2825 uint EncodeISOArrayNode::match_edge(uint idx) const {
  2826   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
  2829 //------------------------------Ideal------------------------------------------
  2830 // Return a node which is more "ideal" than the current node.  Strip out
  2831 // control copies
  2832 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2833   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2836 //------------------------------Value------------------------------------------
  2837 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
  2838   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2839   return bottom_type();
  2842 //=============================================================================
  2843 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2844   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2845     _adr_type(C->get_adr_type(alias_idx))
  2847   init_class_id(Class_MemBar);
  2848   Node* top = C->top();
  2849   init_req(TypeFunc::I_O,top);
  2850   init_req(TypeFunc::FramePtr,top);
  2851   init_req(TypeFunc::ReturnAdr,top);
  2852   if (precedent != NULL)
  2853     init_req(TypeFunc::Parms, precedent);
  2856 //------------------------------cmp--------------------------------------------
  2857 uint MemBarNode::hash() const { return NO_HASH; }
  2858 uint MemBarNode::cmp( const Node &n ) const {
  2859   return (&n == this);          // Always fail except on self
  2862 //------------------------------make-------------------------------------------
  2863 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2864   switch (opcode) {
  2865   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
  2866   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
  2867   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
  2868   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
  2869   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
  2870   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
  2871   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
  2872   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
  2873   default:                 ShouldNotReachHere(); return NULL;
  2877 //------------------------------Ideal------------------------------------------
  2878 // Return a node which is more "ideal" than the current node.  Strip out
  2879 // control copies
  2880 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2881   if (remove_dead_region(phase, can_reshape)) return this;
  2882   // Don't bother trying to transform a dead node
  2883   if (in(0) && in(0)->is_top())  return NULL;
  2885   // Eliminate volatile MemBars for scalar replaced objects.
  2886   if (can_reshape && req() == (Precedent+1) &&
  2887       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2888     // Volatile field loads and stores.
  2889     Node* my_mem = in(MemBarNode::Precedent);
  2890     if (my_mem != NULL && my_mem->is_Mem()) {
  2891       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2892       // Check for scalar replaced object reference.
  2893       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2894           t_oop->offset() != Type::OffsetBot &&
  2895           t_oop->offset() != Type::OffsetTop) {
  2896         // Replace MemBar projections by its inputs.
  2897         PhaseIterGVN* igvn = phase->is_IterGVN();
  2898         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2899         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2900         // Must return either the original node (now dead) or a new node
  2901         // (Do not return a top here, since that would break the uniqueness of top.)
  2902         return new (phase->C) ConINode(TypeInt::ZERO);
  2906   return NULL;
  2909 //------------------------------Value------------------------------------------
  2910 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2911   if( !in(0) ) return Type::TOP;
  2912   if( phase->type(in(0)) == Type::TOP )
  2913     return Type::TOP;
  2914   return TypeTuple::MEMBAR;
  2917 //------------------------------match------------------------------------------
  2918 // Construct projections for memory.
  2919 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2920   switch (proj->_con) {
  2921   case TypeFunc::Control:
  2922   case TypeFunc::Memory:
  2923     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2925   ShouldNotReachHere();
  2926   return NULL;
  2929 //===========================InitializeNode====================================
  2930 // SUMMARY:
  2931 // This node acts as a memory barrier on raw memory, after some raw stores.
  2932 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2933 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2934 // It can coalesce related raw stores into larger units (called 'tiles').
  2935 // It can avoid zeroing new storage for memory units which have raw inits.
  2936 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2937 //
  2938 // EXAMPLE:
  2939 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2940 //   ctl = incoming control; mem* = incoming memory
  2941 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2942 // First allocate uninitialized memory and fill in the header:
  2943 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2944 //   ctl := alloc.Control; mem* := alloc.Memory*
  2945 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2946 // Then initialize to zero the non-header parts of the raw memory block:
  2947 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2948 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2949 // After the initialize node executes, the object is ready for service:
  2950 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2951 // Suppose its body is immediately initialized as {1,2}:
  2952 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2953 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2954 //   mem.SLICE(#short[*]) := store2
  2955 //
  2956 // DETAILS:
  2957 // An InitializeNode collects and isolates object initialization after
  2958 // an AllocateNode and before the next possible safepoint.  As a
  2959 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2960 // down past any safepoint or any publication of the allocation.
  2961 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2962 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2963 //
  2964 // The semantics of the InitializeNode include an implicit zeroing of
  2965 // the new object from object header to the end of the object.
  2966 // (The object header and end are determined by the AllocateNode.)
  2967 //
  2968 // Certain stores may be added as direct inputs to the InitializeNode.
  2969 // These stores must update raw memory, and they must be to addresses
  2970 // derived from the raw address produced by AllocateNode, and with
  2971 // a constant offset.  They must be ordered by increasing offset.
  2972 // The first one is at in(RawStores), the last at in(req()-1).
  2973 // Unlike most memory operations, they are not linked in a chain,
  2974 // but are displayed in parallel as users of the rawmem output of
  2975 // the allocation.
  2976 //
  2977 // (See comments in InitializeNode::capture_store, which continue
  2978 // the example given above.)
  2979 //
  2980 // When the associated Allocate is macro-expanded, the InitializeNode
  2981 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2982 // may also be created at that point to represent any required zeroing.
  2983 // The InitializeNode is then marked 'complete', prohibiting further
  2984 // capturing of nearby memory operations.
  2985 //
  2986 // During macro-expansion, all captured initializations which store
  2987 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2988 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2989 // initialized in fewer memory operations.  Memory words which are
  2990 // covered by neither tiles nor non-constant stores are pre-zeroed
  2991 // by explicit stores of zero.  (The code shape happens to do all
  2992 // zeroing first, then all other stores, with both sequences occurring
  2993 // in order of ascending offsets.)
  2994 //
  2995 // Alternatively, code may be inserted between an AllocateNode and its
  2996 // InitializeNode, to perform arbitrary initialization of the new object.
  2997 // E.g., the object copying intrinsics insert complex data transfers here.
  2998 // The initialization must then be marked as 'complete' disable the
  2999 // built-in zeroing semantics and the collection of initializing stores.
  3000 //
  3001 // While an InitializeNode is incomplete, reads from the memory state
  3002 // produced by it are optimizable if they match the control edge and
  3003 // new oop address associated with the allocation/initialization.
  3004 // They return a stored value (if the offset matches) or else zero.
  3005 // A write to the memory state, if it matches control and address,
  3006 // and if it is to a constant offset, may be 'captured' by the
  3007 // InitializeNode.  It is cloned as a raw memory operation and rewired
  3008 // inside the initialization, to the raw oop produced by the allocation.
  3009 // Operations on addresses which are provably distinct (e.g., to
  3010 // other AllocateNodes) are allowed to bypass the initialization.
  3011 //
  3012 // The effect of all this is to consolidate object initialization
  3013 // (both arrays and non-arrays, both piecewise and bulk) into a
  3014 // single location, where it can be optimized as a unit.
  3015 //
  3016 // Only stores with an offset less than TrackedInitializationLimit words
  3017 // will be considered for capture by an InitializeNode.  This puts a
  3018 // reasonable limit on the complexity of optimized initializations.
  3020 //---------------------------InitializeNode------------------------------------
  3021 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  3022   : _is_complete(Incomplete), _does_not_escape(false),
  3023     MemBarNode(C, adr_type, rawoop)
  3025   init_class_id(Class_Initialize);
  3027   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  3028   assert(in(RawAddress) == rawoop, "proper init");
  3029   // Note:  allocation() can be NULL, for secondary initialization barriers
  3032 // Since this node is not matched, it will be processed by the
  3033 // register allocator.  Declare that there are no constraints
  3034 // on the allocation of the RawAddress edge.
  3035 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  3036   // This edge should be set to top, by the set_complete.  But be conservative.
  3037   if (idx == InitializeNode::RawAddress)
  3038     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  3039   return RegMask::Empty;
  3042 Node* InitializeNode::memory(uint alias_idx) {
  3043   Node* mem = in(Memory);
  3044   if (mem->is_MergeMem()) {
  3045     return mem->as_MergeMem()->memory_at(alias_idx);
  3046   } else {
  3047     // incoming raw memory is not split
  3048     return mem;
  3052 bool InitializeNode::is_non_zero() {
  3053   if (is_complete())  return false;
  3054   remove_extra_zeroes();
  3055   return (req() > RawStores);
  3058 void InitializeNode::set_complete(PhaseGVN* phase) {
  3059   assert(!is_complete(), "caller responsibility");
  3060   _is_complete = Complete;
  3062   // After this node is complete, it contains a bunch of
  3063   // raw-memory initializations.  There is no need for
  3064   // it to have anything to do with non-raw memory effects.
  3065   // Therefore, tell all non-raw users to re-optimize themselves,
  3066   // after skipping the memory effects of this initialization.
  3067   PhaseIterGVN* igvn = phase->is_IterGVN();
  3068   if (igvn)  igvn->add_users_to_worklist(this);
  3071 // convenience function
  3072 // return false if the init contains any stores already
  3073 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  3074   InitializeNode* init = initialization();
  3075   if (init == NULL || init->is_complete())  return false;
  3076   init->remove_extra_zeroes();
  3077   // for now, if this allocation has already collected any inits, bail:
  3078   if (init->is_non_zero())  return false;
  3079   init->set_complete(phase);
  3080   return true;
  3083 void InitializeNode::remove_extra_zeroes() {
  3084   if (req() == RawStores)  return;
  3085   Node* zmem = zero_memory();
  3086   uint fill = RawStores;
  3087   for (uint i = fill; i < req(); i++) {
  3088     Node* n = in(i);
  3089     if (n->is_top() || n == zmem)  continue;  // skip
  3090     if (fill < i)  set_req(fill, n);          // compact
  3091     ++fill;
  3093   // delete any empty spaces created:
  3094   while (fill < req()) {
  3095     del_req(fill);
  3099 // Helper for remembering which stores go with which offsets.
  3100 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  3101   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  3102   intptr_t offset = -1;
  3103   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  3104                                                phase, offset);
  3105   if (base == NULL)     return -1;  // something is dead,
  3106   if (offset < 0)       return -1;  //        dead, dead
  3107   return offset;
  3110 // Helper for proving that an initialization expression is
  3111 // "simple enough" to be folded into an object initialization.
  3112 // Attempts to prove that a store's initial value 'n' can be captured
  3113 // within the initialization without creating a vicious cycle, such as:
  3114 //     { Foo p = new Foo(); p.next = p; }
  3115 // True for constants and parameters and small combinations thereof.
  3116 bool InitializeNode::detect_init_independence(Node* n,
  3117                                               bool st_is_pinned,
  3118                                               int& count) {
  3119   if (n == NULL)      return true;   // (can this really happen?)
  3120   if (n->is_Proj())   n = n->in(0);
  3121   if (n == this)      return false;  // found a cycle
  3122   if (n->is_Con())    return true;
  3123   if (n->is_Start())  return true;   // params, etc., are OK
  3124   if (n->is_Root())   return true;   // even better
  3126   Node* ctl = n->in(0);
  3127   if (ctl != NULL && !ctl->is_top()) {
  3128     if (ctl->is_Proj())  ctl = ctl->in(0);
  3129     if (ctl == this)  return false;
  3131     // If we already know that the enclosing memory op is pinned right after
  3132     // the init, then any control flow that the store has picked up
  3133     // must have preceded the init, or else be equal to the init.
  3134     // Even after loop optimizations (which might change control edges)
  3135     // a store is never pinned *before* the availability of its inputs.
  3136     if (!MemNode::all_controls_dominate(n, this))
  3137       return false;                  // failed to prove a good control
  3141   // Check data edges for possible dependencies on 'this'.
  3142   if ((count += 1) > 20)  return false;  // complexity limit
  3143   for (uint i = 1; i < n->req(); i++) {
  3144     Node* m = n->in(i);
  3145     if (m == NULL || m == n || m->is_top())  continue;
  3146     uint first_i = n->find_edge(m);
  3147     if (i != first_i)  continue;  // process duplicate edge just once
  3148     if (!detect_init_independence(m, st_is_pinned, count)) {
  3149       return false;
  3153   return true;
  3156 // Here are all the checks a Store must pass before it can be moved into
  3157 // an initialization.  Returns zero if a check fails.
  3158 // On success, returns the (constant) offset to which the store applies,
  3159 // within the initialized memory.
  3160 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
  3161   const int FAIL = 0;
  3162   if (st->req() != MemNode::ValueIn + 1)
  3163     return FAIL;                // an inscrutable StoreNode (card mark?)
  3164   Node* ctl = st->in(MemNode::Control);
  3165   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  3166     return FAIL;                // must be unconditional after the initialization
  3167   Node* mem = st->in(MemNode::Memory);
  3168   if (!(mem->is_Proj() && mem->in(0) == this))
  3169     return FAIL;                // must not be preceded by other stores
  3170   Node* adr = st->in(MemNode::Address);
  3171   intptr_t offset;
  3172   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  3173   if (alloc == NULL)
  3174     return FAIL;                // inscrutable address
  3175   if (alloc != allocation())
  3176     return FAIL;                // wrong allocation!  (store needs to float up)
  3177   Node* val = st->in(MemNode::ValueIn);
  3178   int complexity_count = 0;
  3179   if (!detect_init_independence(val, true, complexity_count))
  3180     return FAIL;                // stored value must be 'simple enough'
  3182   // The Store can be captured only if nothing after the allocation
  3183   // and before the Store is using the memory location that the store
  3184   // overwrites.
  3185   bool failed = false;
  3186   // If is_complete_with_arraycopy() is true the shape of the graph is
  3187   // well defined and is safe so no need for extra checks.
  3188   if (!is_complete_with_arraycopy()) {
  3189     // We are going to look at each use of the memory state following
  3190     // the allocation to make sure nothing reads the memory that the
  3191     // Store writes.
  3192     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
  3193     int alias_idx = phase->C->get_alias_index(t_adr);
  3194     ResourceMark rm;
  3195     Unique_Node_List mems;
  3196     mems.push(mem);
  3197     Node* unique_merge = NULL;
  3198     for (uint next = 0; next < mems.size(); ++next) {
  3199       Node *m  = mems.at(next);
  3200       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  3201         Node *n = m->fast_out(j);
  3202         if (n->outcnt() == 0) {
  3203           continue;
  3205         if (n == st) {
  3206           continue;
  3207         } else if (n->in(0) != NULL && n->in(0) != ctl) {
  3208           // If the control of this use is different from the control
  3209           // of the Store which is right after the InitializeNode then
  3210           // this node cannot be between the InitializeNode and the
  3211           // Store.
  3212           continue;
  3213         } else if (n->is_MergeMem()) {
  3214           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
  3215             // We can hit a MergeMemNode (that will likely go away
  3216             // later) that is a direct use of the memory state
  3217             // following the InitializeNode on the same slice as the
  3218             // store node that we'd like to capture. We need to check
  3219             // the uses of the MergeMemNode.
  3220             mems.push(n);
  3222         } else if (n->is_Mem()) {
  3223           Node* other_adr = n->in(MemNode::Address);
  3224           if (other_adr == adr) {
  3225             failed = true;
  3226             break;
  3227           } else {
  3228             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
  3229             if (other_t_adr != NULL) {
  3230               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
  3231               if (other_alias_idx == alias_idx) {
  3232                 // A load from the same memory slice as the store right
  3233                 // after the InitializeNode. We check the control of the
  3234                 // object/array that is loaded from. If it's the same as
  3235                 // the store control then we cannot capture the store.
  3236                 assert(!n->is_Store(), "2 stores to same slice on same control?");
  3237                 Node* base = other_adr;
  3238                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
  3239                 base = base->in(AddPNode::Base);
  3240                 if (base != NULL) {
  3241                   base = base->uncast();
  3242                   if (base->is_Proj() && base->in(0) == alloc) {
  3243                     failed = true;
  3244                     break;
  3250         } else {
  3251           failed = true;
  3252           break;
  3257   if (failed) {
  3258     if (!can_reshape) {
  3259       // We decided we couldn't capture the store during parsing. We
  3260       // should try again during the next IGVN once the graph is
  3261       // cleaner.
  3262       phase->C->record_for_igvn(st);
  3264     return FAIL;
  3267   return offset;                // success
  3270 // Find the captured store in(i) which corresponds to the range
  3271 // [start..start+size) in the initialized object.
  3272 // If there is one, return its index i.  If there isn't, return the
  3273 // negative of the index where it should be inserted.
  3274 // Return 0 if the queried range overlaps an initialization boundary
  3275 // or if dead code is encountered.
  3276 // If size_in_bytes is zero, do not bother with overlap checks.
  3277 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3278                                                    int size_in_bytes,
  3279                                                    PhaseTransform* phase) {
  3280   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3282   if (is_complete())
  3283     return FAIL;                // arraycopy got here first; punt
  3285   assert(allocation() != NULL, "must be present");
  3287   // no negatives, no header fields:
  3288   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3290   // after a certain size, we bail out on tracking all the stores:
  3291   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3292   if (start >= ti_limit)  return FAIL;
  3294   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3295     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3297     Node*    st     = in(i);
  3298     intptr_t st_off = get_store_offset(st, phase);
  3299     if (st_off < 0) {
  3300       if (st != zero_memory()) {
  3301         return FAIL;            // bail out if there is dead garbage
  3303     } else if (st_off > start) {
  3304       // ...we are done, since stores are ordered
  3305       if (st_off < start + size_in_bytes) {
  3306         return FAIL;            // the next store overlaps
  3308       return -(int)i;           // not found; here is where to put it
  3309     } else if (st_off < start) {
  3310       if (size_in_bytes != 0 &&
  3311           start < st_off + MAX_STORE &&
  3312           start < st_off + st->as_Store()->memory_size()) {
  3313         return FAIL;            // the previous store overlaps
  3315     } else {
  3316       if (size_in_bytes != 0 &&
  3317           st->as_Store()->memory_size() != size_in_bytes) {
  3318         return FAIL;            // mismatched store size
  3320       return i;
  3323     ++i;
  3327 // Look for a captured store which initializes at the offset 'start'
  3328 // with the given size.  If there is no such store, and no other
  3329 // initialization interferes, then return zero_memory (the memory
  3330 // projection of the AllocateNode).
  3331 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3332                                           PhaseTransform* phase) {
  3333   assert(stores_are_sane(phase), "");
  3334   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3335   if (i == 0) {
  3336     return NULL;                // something is dead
  3337   } else if (i < 0) {
  3338     return zero_memory();       // just primordial zero bits here
  3339   } else {
  3340     Node* st = in(i);           // here is the store at this position
  3341     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3342     return st;
  3346 // Create, as a raw pointer, an address within my new object at 'offset'.
  3347 Node* InitializeNode::make_raw_address(intptr_t offset,
  3348                                        PhaseTransform* phase) {
  3349   Node* addr = in(RawAddress);
  3350   if (offset != 0) {
  3351     Compile* C = phase->C;
  3352     addr = phase->transform( new (C) AddPNode(C->top(), addr,
  3353                                                  phase->MakeConX(offset)) );
  3355   return addr;
  3358 // Clone the given store, converting it into a raw store
  3359 // initializing a field or element of my new object.
  3360 // Caller is responsible for retiring the original store,
  3361 // with subsume_node or the like.
  3362 //
  3363 // From the example above InitializeNode::InitializeNode,
  3364 // here are the old stores to be captured:
  3365 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3366 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3367 //
  3368 // Here is the changed code; note the extra edges on init:
  3369 //   alloc = (Allocate ...)
  3370 //   rawoop = alloc.RawAddress
  3371 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3372 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3373 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3374 //                      rawstore1 rawstore2)
  3375 //
  3376 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3377                                     PhaseTransform* phase, bool can_reshape) {
  3378   assert(stores_are_sane(phase), "");
  3380   if (start < 0)  return NULL;
  3381   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
  3383   Compile* C = phase->C;
  3384   int size_in_bytes = st->memory_size();
  3385   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3386   if (i == 0)  return NULL;     // bail out
  3387   Node* prev_mem = NULL;        // raw memory for the captured store
  3388   if (i > 0) {
  3389     prev_mem = in(i);           // there is a pre-existing store under this one
  3390     set_req(i, C->top());       // temporarily disconnect it
  3391     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3392   } else {
  3393     i = -i;                     // no pre-existing store
  3394     prev_mem = zero_memory();   // a slice of the newly allocated object
  3395     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3396       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3397     else
  3398       ins_req(i, C->top());     // build a new edge
  3400   Node* new_st = st->clone();
  3401   new_st->set_req(MemNode::Control, in(Control));
  3402   new_st->set_req(MemNode::Memory,  prev_mem);
  3403   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3404   new_st = phase->transform(new_st);
  3406   // At this point, new_st might have swallowed a pre-existing store
  3407   // at the same offset, or perhaps new_st might have disappeared,
  3408   // if it redundantly stored the same value (or zero to fresh memory).
  3410   // In any case, wire it in:
  3411   set_req(i, new_st);
  3413   // The caller may now kill the old guy.
  3414   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3415   assert(check_st == new_st || check_st == NULL, "must be findable");
  3416   assert(!is_complete(), "");
  3417   return new_st;
  3420 static bool store_constant(jlong* tiles, int num_tiles,
  3421                            intptr_t st_off, int st_size,
  3422                            jlong con) {
  3423   if ((st_off & (st_size-1)) != 0)
  3424     return false;               // strange store offset (assume size==2**N)
  3425   address addr = (address)tiles + st_off;
  3426   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3427   switch (st_size) {
  3428   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3429   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3430   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3431   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3432   default: return false;        // strange store size (detect size!=2**N here)
  3434   return true;                  // return success to caller
  3437 // Coalesce subword constants into int constants and possibly
  3438 // into long constants.  The goal, if the CPU permits,
  3439 // is to initialize the object with a small number of 64-bit tiles.
  3440 // Also, convert floating-point constants to bit patterns.
  3441 // Non-constants are not relevant to this pass.
  3442 //
  3443 // In terms of the running example on InitializeNode::InitializeNode
  3444 // and InitializeNode::capture_store, here is the transformation
  3445 // of rawstore1 and rawstore2 into rawstore12:
  3446 //   alloc = (Allocate ...)
  3447 //   rawoop = alloc.RawAddress
  3448 //   tile12 = 0x00010002
  3449 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3450 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3451 //
  3452 void
  3453 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3454                                         Node* size_in_bytes,
  3455                                         PhaseGVN* phase) {
  3456   Compile* C = phase->C;
  3458   assert(stores_are_sane(phase), "");
  3459   // Note:  After this pass, they are not completely sane,
  3460   // since there may be some overlaps.
  3462   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3464   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3465   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3466   size_limit = MIN2(size_limit, ti_limit);
  3467   size_limit = align_size_up(size_limit, BytesPerLong);
  3468   int num_tiles = size_limit / BytesPerLong;
  3470   // allocate space for the tile map:
  3471   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3472   jlong  tiles_buf[small_len];
  3473   Node*  nodes_buf[small_len];
  3474   jlong  inits_buf[small_len];
  3475   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3476                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3477   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3478                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3479   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3480                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3481   // tiles: exact bitwise model of all primitive constants
  3482   // nodes: last constant-storing node subsumed into the tiles model
  3483   // inits: which bytes (in each tile) are touched by any initializations
  3485   //// Pass A: Fill in the tile model with any relevant stores.
  3487   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3488   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3489   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3490   Node* zmem = zero_memory(); // initially zero memory state
  3491   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3492     Node* st = in(i);
  3493     intptr_t st_off = get_store_offset(st, phase);
  3495     // Figure out the store's offset and constant value:
  3496     if (st_off < header_size)             continue; //skip (ignore header)
  3497     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3498     int st_size = st->as_Store()->memory_size();
  3499     if (st_off + st_size > size_limit)    break;
  3501     // Record which bytes are touched, whether by constant or not.
  3502     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3503       continue;                 // skip (strange store size)
  3505     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3506     if (!val->singleton())                continue; //skip (non-con store)
  3507     BasicType type = val->basic_type();
  3509     jlong con = 0;
  3510     switch (type) {
  3511     case T_INT:    con = val->is_int()->get_con();  break;
  3512     case T_LONG:   con = val->is_long()->get_con(); break;
  3513     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3514     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3515     default:                              continue; //skip (odd store type)
  3518     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3519         st->Opcode() == Op_StoreL) {
  3520       continue;                 // This StoreL is already optimal.
  3523     // Store down the constant.
  3524     store_constant(tiles, num_tiles, st_off, st_size, con);
  3526     intptr_t j = st_off >> LogBytesPerLong;
  3528     if (type == T_INT && st_size == BytesPerInt
  3529         && (st_off & BytesPerInt) == BytesPerInt) {
  3530       jlong lcon = tiles[j];
  3531       if (!Matcher::isSimpleConstant64(lcon) &&
  3532           st->Opcode() == Op_StoreI) {
  3533         // This StoreI is already optimal by itself.
  3534         jint* intcon = (jint*) &tiles[j];
  3535         intcon[1] = 0;  // undo the store_constant()
  3537         // If the previous store is also optimal by itself, back up and
  3538         // undo the action of the previous loop iteration... if we can.
  3539         // But if we can't, just let the previous half take care of itself.
  3540         st = nodes[j];
  3541         st_off -= BytesPerInt;
  3542         con = intcon[0];
  3543         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3544           assert(st_off >= header_size, "still ignoring header");
  3545           assert(get_store_offset(st, phase) == st_off, "must be");
  3546           assert(in(i-1) == zmem, "must be");
  3547           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3548           assert(con == tcon->is_int()->get_con(), "must be");
  3549           // Undo the effects of the previous loop trip, which swallowed st:
  3550           intcon[0] = 0;        // undo store_constant()
  3551           set_req(i-1, st);     // undo set_req(i, zmem)
  3552           nodes[j] = NULL;      // undo nodes[j] = st
  3553           --old_subword;        // undo ++old_subword
  3555         continue;               // This StoreI is already optimal.
  3559     // This store is not needed.
  3560     set_req(i, zmem);
  3561     nodes[j] = st;              // record for the moment
  3562     if (st_size < BytesPerLong) // something has changed
  3563           ++old_subword;        // includes int/float, but who's counting...
  3564     else  ++old_long;
  3567   if ((old_subword + old_long) == 0)
  3568     return;                     // nothing more to do
  3570   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3571   // Be sure to insert them before overlapping non-constant stores.
  3572   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3573   for (int j = 0; j < num_tiles; j++) {
  3574     jlong con  = tiles[j];
  3575     jlong init = inits[j];
  3576     if (con == 0)  continue;
  3577     jint con0,  con1;           // split the constant, address-wise
  3578     jint init0, init1;          // split the init map, address-wise
  3579     { union { jlong con; jint intcon[2]; } u;
  3580       u.con = con;
  3581       con0  = u.intcon[0];
  3582       con1  = u.intcon[1];
  3583       u.con = init;
  3584       init0 = u.intcon[0];
  3585       init1 = u.intcon[1];
  3588     Node* old = nodes[j];
  3589     assert(old != NULL, "need the prior store");
  3590     intptr_t offset = (j * BytesPerLong);
  3592     bool split = !Matcher::isSimpleConstant64(con);
  3594     if (offset < header_size) {
  3595       assert(offset + BytesPerInt >= header_size, "second int counts");
  3596       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3597       split = true;             // only the second word counts
  3598       // Example:  int a[] = { 42 ... }
  3599     } else if (con0 == 0 && init0 == -1) {
  3600       split = true;             // first word is covered by full inits
  3601       // Example:  int a[] = { ... foo(), 42 ... }
  3602     } else if (con1 == 0 && init1 == -1) {
  3603       split = true;             // second word is covered by full inits
  3604       // Example:  int a[] = { ... 42, foo() ... }
  3607     // Here's a case where init0 is neither 0 nor -1:
  3608     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3609     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3610     // In this case the tile is not split; it is (jlong)42.
  3611     // The big tile is stored down, and then the foo() value is inserted.
  3612     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3614     Node* ctl = old->in(MemNode::Control);
  3615     Node* adr = make_raw_address(offset, phase);
  3616     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3618     // One or two coalesced stores to plop down.
  3619     Node*    st[2];
  3620     intptr_t off[2];
  3621     int  nst = 0;
  3622     if (!split) {
  3623       ++new_long;
  3624       off[nst] = offset;
  3625       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3626                                   phase->longcon(con), T_LONG);
  3627     } else {
  3628       // Omit either if it is a zero.
  3629       if (con0 != 0) {
  3630         ++new_int;
  3631         off[nst]  = offset;
  3632         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3633                                     phase->intcon(con0), T_INT);
  3635       if (con1 != 0) {
  3636         ++new_int;
  3637         offset += BytesPerInt;
  3638         adr = make_raw_address(offset, phase);
  3639         off[nst]  = offset;
  3640         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3641                                     phase->intcon(con1), T_INT);
  3645     // Insert second store first, then the first before the second.
  3646     // Insert each one just before any overlapping non-constant stores.
  3647     while (nst > 0) {
  3648       Node* st1 = st[--nst];
  3649       C->copy_node_notes_to(st1, old);
  3650       st1 = phase->transform(st1);
  3651       offset = off[nst];
  3652       assert(offset >= header_size, "do not smash header");
  3653       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3654       guarantee(ins_idx != 0, "must re-insert constant store");
  3655       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3656       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3657         set_req(--ins_idx, st1);
  3658       else
  3659         ins_req(ins_idx, st1);
  3663   if (PrintCompilation && WizardMode)
  3664     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3665                   old_subword, old_long, new_int, new_long);
  3666   if (C->log() != NULL)
  3667     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3668                    old_subword, old_long, new_int, new_long);
  3670   // Clean up any remaining occurrences of zmem:
  3671   remove_extra_zeroes();
  3674 // Explore forward from in(start) to find the first fully initialized
  3675 // word, and return its offset.  Skip groups of subword stores which
  3676 // together initialize full words.  If in(start) is itself part of a
  3677 // fully initialized word, return the offset of in(start).  If there
  3678 // are no following full-word stores, or if something is fishy, return
  3679 // a negative value.
  3680 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3681   int       int_map = 0;
  3682   intptr_t  int_map_off = 0;
  3683   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3685   for (uint i = start, limit = req(); i < limit; i++) {
  3686     Node* st = in(i);
  3688     intptr_t st_off = get_store_offset(st, phase);
  3689     if (st_off < 0)  break;  // return conservative answer
  3691     int st_size = st->as_Store()->memory_size();
  3692     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3693       return st_off;            // we found a complete word init
  3696     // update the map:
  3698     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3699     if (this_int_off != int_map_off) {
  3700       // reset the map:
  3701       int_map = 0;
  3702       int_map_off = this_int_off;
  3705     int subword_off = st_off - this_int_off;
  3706     int_map |= right_n_bits(st_size) << subword_off;
  3707     if ((int_map & FULL_MAP) == FULL_MAP) {
  3708       return this_int_off;      // we found a complete word init
  3711     // Did this store hit or cross the word boundary?
  3712     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3713     if (next_int_off == this_int_off + BytesPerInt) {
  3714       // We passed the current int, without fully initializing it.
  3715       int_map_off = next_int_off;
  3716       int_map >>= BytesPerInt;
  3717     } else if (next_int_off > this_int_off + BytesPerInt) {
  3718       // We passed the current and next int.
  3719       return this_int_off + BytesPerInt;
  3723   return -1;
  3727 // Called when the associated AllocateNode is expanded into CFG.
  3728 // At this point, we may perform additional optimizations.
  3729 // Linearize the stores by ascending offset, to make memory
  3730 // activity as coherent as possible.
  3731 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3732                                       intptr_t header_size,
  3733                                       Node* size_in_bytes,
  3734                                       PhaseGVN* phase) {
  3735   assert(!is_complete(), "not already complete");
  3736   assert(stores_are_sane(phase), "");
  3737   assert(allocation() != NULL, "must be present");
  3739   remove_extra_zeroes();
  3741   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3742     // reduce instruction count for common initialization patterns
  3743     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3745   Node* zmem = zero_memory();   // initially zero memory state
  3746   Node* inits = zmem;           // accumulating a linearized chain of inits
  3747   #ifdef ASSERT
  3748   intptr_t first_offset = allocation()->minimum_header_size();
  3749   intptr_t last_init_off = first_offset;  // previous init offset
  3750   intptr_t last_init_end = first_offset;  // previous init offset+size
  3751   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3752   #endif
  3753   intptr_t zeroes_done = header_size;
  3755   bool do_zeroing = true;       // we might give up if inits are very sparse
  3756   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3758   if (ZeroTLAB)  do_zeroing = false;
  3759   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3761   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3762     Node* st = in(i);
  3763     intptr_t st_off = get_store_offset(st, phase);
  3764     if (st_off < 0)
  3765       break;                    // unknown junk in the inits
  3766     if (st->in(MemNode::Memory) != zmem)
  3767       break;                    // complicated store chains somehow in list
  3769     int st_size = st->as_Store()->memory_size();
  3770     intptr_t next_init_off = st_off + st_size;
  3772     if (do_zeroing && zeroes_done < next_init_off) {
  3773       // See if this store needs a zero before it or under it.
  3774       intptr_t zeroes_needed = st_off;
  3776       if (st_size < BytesPerInt) {
  3777         // Look for subword stores which only partially initialize words.
  3778         // If we find some, we must lay down some word-level zeroes first,
  3779         // underneath the subword stores.
  3780         //
  3781         // Examples:
  3782         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3783         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3784         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3785         //
  3786         // Note:  coalesce_subword_stores may have already done this,
  3787         // if it was prompted by constant non-zero subword initializers.
  3788         // But this case can still arise with non-constant stores.
  3790         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3792         // In the examples above:
  3793         //   in(i)          p   q   r   s     x   y     z
  3794         //   st_off        12  13  14  15    12  13    14
  3795         //   st_size        1   1   1   1     1   1     1
  3796         //   next_full_s.  12  16  16  16    16  16    16
  3797         //   z's_done      12  16  16  16    12  16    12
  3798         //   z's_needed    12  16  16  16    16  16    16
  3799         //   zsize          0   0   0   0     4   0     4
  3800         if (next_full_store < 0) {
  3801           // Conservative tack:  Zero to end of current word.
  3802           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3803         } else {
  3804           // Zero to beginning of next fully initialized word.
  3805           // Or, don't zero at all, if we are already in that word.
  3806           assert(next_full_store >= zeroes_needed, "must go forward");
  3807           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3808           zeroes_needed = next_full_store;
  3812       if (zeroes_needed > zeroes_done) {
  3813         intptr_t zsize = zeroes_needed - zeroes_done;
  3814         // Do some incremental zeroing on rawmem, in parallel with inits.
  3815         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3816         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3817                                               zeroes_done, zeroes_needed,
  3818                                               phase);
  3819         zeroes_done = zeroes_needed;
  3820         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3821           do_zeroing = false;   // leave the hole, next time
  3825     // Collect the store and move on:
  3826     st->set_req(MemNode::Memory, inits);
  3827     inits = st;                 // put it on the linearized chain
  3828     set_req(i, zmem);           // unhook from previous position
  3830     if (zeroes_done == st_off)
  3831       zeroes_done = next_init_off;
  3833     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3835     #ifdef ASSERT
  3836     // Various order invariants.  Weaker than stores_are_sane because
  3837     // a large constant tile can be filled in by smaller non-constant stores.
  3838     assert(st_off >= last_init_off, "inits do not reverse");
  3839     last_init_off = st_off;
  3840     const Type* val = NULL;
  3841     if (st_size >= BytesPerInt &&
  3842         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3843         (int)val->basic_type() < (int)T_OBJECT) {
  3844       assert(st_off >= last_tile_end, "tiles do not overlap");
  3845       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3846       last_tile_end = MAX2(last_tile_end, next_init_off);
  3847     } else {
  3848       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3849       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3850       assert(st_off      >= last_init_end, "inits do not overlap");
  3851       last_init_end = next_init_off;  // it's a non-tile
  3853     #endif //ASSERT
  3856   remove_extra_zeroes();        // clear out all the zmems left over
  3857   add_req(inits);
  3859   if (!ZeroTLAB) {
  3860     // If anything remains to be zeroed, zero it all now.
  3861     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3862     // if it is the last unused 4 bytes of an instance, forget about it
  3863     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3864     if (zeroes_done + BytesPerLong >= size_limit) {
  3865       assert(allocation() != NULL, "");
  3866       if (allocation()->Opcode() == Op_Allocate) {
  3867         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3868         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3869         if (zeroes_done == k->layout_helper())
  3870           zeroes_done = size_limit;
  3873     if (zeroes_done < size_limit) {
  3874       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3875                                             zeroes_done, size_in_bytes, phase);
  3879   set_complete(phase);
  3880   return rawmem;
  3884 #ifdef ASSERT
  3885 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3886   if (is_complete())
  3887     return true;                // stores could be anything at this point
  3888   assert(allocation() != NULL, "must be present");
  3889   intptr_t last_off = allocation()->minimum_header_size();
  3890   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3891     Node* st = in(i);
  3892     intptr_t st_off = get_store_offset(st, phase);
  3893     if (st_off < 0)  continue;  // ignore dead garbage
  3894     if (last_off > st_off) {
  3895       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3896       this->dump(2);
  3897       assert(false, "ascending store offsets");
  3898       return false;
  3900     last_off = st_off + st->as_Store()->memory_size();
  3902   return true;
  3904 #endif //ASSERT
  3909 //============================MergeMemNode=====================================
  3910 //
  3911 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3912 // contributing store or call operations.  Each contributor provides the memory
  3913 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3914 // if a MergeMem has an input X for alias category #6, then any memory reference
  3915 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3916 // to using the MergeMem as a whole.
  3917 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3918 //
  3919 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3920 //
  3921 // In one special case (and more cases in the future), alias categories overlap.
  3922 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3923 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3924 // it is exactly equivalent to that state W:
  3925 //   MergeMem(<Bot>: W) <==> W
  3926 //
  3927 // Usually, the merge has more than one input.  In that case, where inputs
  3928 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3929 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3930 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3931 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3932 //
  3933 // A merge can take a "wide" memory state as one of its narrow inputs.
  3934 // This simply means that the merge observes out only the relevant parts of
  3935 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3936 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3937 //
  3938 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3939 // and that memory slices "leak through":
  3940 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3941 //
  3942 // But, in such a cascade, repeated memory slices can "block the leak":
  3943 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3944 //
  3945 // In the last example, Y is not part of the combined memory state of the
  3946 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3947 // memory states from arising, so you can be sure that the state Y is somehow
  3948 // a precursor to state Y'.
  3949 //
  3950 //
  3951 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3952 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3953 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3954 // Compile::alias_type (and kin) produce and manage these indexes.
  3955 //
  3956 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3957 // (Note that this provides quick access to the top node inside MergeMem methods,
  3958 // without the need to reach out via TLS to Compile::current.)
  3959 //
  3960 // As a consequence of what was just described, a MergeMem that represents a full
  3961 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3962 // containing all alias categories.
  3963 //
  3964 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3965 //
  3966 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3967 // a memory state for the alias type <N>, or else the top node, meaning that
  3968 // there is no particular input for that alias type.  Note that the length of
  3969 // a MergeMem is variable, and may be extended at any time to accommodate new
  3970 // memory states at larger alias indexes.  When merges grow, they are of course
  3971 // filled with "top" in the unused in() positions.
  3972 //
  3973 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3974 // (Top was chosen because it works smoothly with passes like GCM.)
  3975 //
  3976 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3977 // the type of random VM bits like TLS references.)  Since it is always the
  3978 // first non-Bot memory slice, some low-level loops use it to initialize an
  3979 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3980 //
  3981 //
  3982 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3983 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3984 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3985 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3986 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3987 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3988 //
  3989 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3990 // really that different from the other memory inputs.  An abbreviation called
  3991 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3992 //
  3993 //
  3994 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3995 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3996 // that "emerges though" the base memory will be marked as excluding the alias types
  3997 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3998 //
  3999 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  4000 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  4001 //
  4002 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  4003 // (It is currently unimplemented.)  As you can see, the resulting merge is
  4004 // actually a disjoint union of memory states, rather than an overlay.
  4005 //
  4007 //------------------------------MergeMemNode-----------------------------------
  4008 Node* MergeMemNode::make_empty_memory() {
  4009   Node* empty_memory = (Node*) Compile::current()->top();
  4010   assert(empty_memory->is_top(), "correct sentinel identity");
  4011   return empty_memory;
  4014 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  4015   init_class_id(Class_MergeMem);
  4016   // all inputs are nullified in Node::Node(int)
  4017   // set_input(0, NULL);  // no control input
  4019   // Initialize the edges uniformly to top, for starters.
  4020   Node* empty_mem = make_empty_memory();
  4021   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  4022     init_req(i,empty_mem);
  4024   assert(empty_memory() == empty_mem, "");
  4026   if( new_base != NULL && new_base->is_MergeMem() ) {
  4027     MergeMemNode* mdef = new_base->as_MergeMem();
  4028     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  4029     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  4030       mms.set_memory(mms.memory2());
  4032     assert(base_memory() == mdef->base_memory(), "");
  4033   } else {
  4034     set_base_memory(new_base);
  4038 // Make a new, untransformed MergeMem with the same base as 'mem'.
  4039 // If mem is itself a MergeMem, populate the result with the same edges.
  4040 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  4041   return new(C) MergeMemNode(mem);
  4044 //------------------------------cmp--------------------------------------------
  4045 uint MergeMemNode::hash() const { return NO_HASH; }
  4046 uint MergeMemNode::cmp( const Node &n ) const {
  4047   return (&n == this);          // Always fail except on self
  4050 //------------------------------Identity---------------------------------------
  4051 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  4052   // Identity if this merge point does not record any interesting memory
  4053   // disambiguations.
  4054   Node* base_mem = base_memory();
  4055   Node* empty_mem = empty_memory();
  4056   if (base_mem != empty_mem) {  // Memory path is not dead?
  4057     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4058       Node* mem = in(i);
  4059       if (mem != empty_mem && mem != base_mem) {
  4060         return this;            // Many memory splits; no change
  4064   return base_mem;              // No memory splits; ID on the one true input
  4067 //------------------------------Ideal------------------------------------------
  4068 // This method is invoked recursively on chains of MergeMem nodes
  4069 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  4070   // Remove chain'd MergeMems
  4071   //
  4072   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  4073   // relative to the "in(Bot)".  Since we are patching both at the same time,
  4074   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  4075   // but rewrite each "in(i)" relative to the new "in(Bot)".
  4076   Node *progress = NULL;
  4079   Node* old_base = base_memory();
  4080   Node* empty_mem = empty_memory();
  4081   if (old_base == empty_mem)
  4082     return NULL; // Dead memory path.
  4084   MergeMemNode* old_mbase;
  4085   if (old_base != NULL && old_base->is_MergeMem())
  4086     old_mbase = old_base->as_MergeMem();
  4087   else
  4088     old_mbase = NULL;
  4089   Node* new_base = old_base;
  4091   // simplify stacked MergeMems in base memory
  4092   if (old_mbase)  new_base = old_mbase->base_memory();
  4094   // the base memory might contribute new slices beyond my req()
  4095   if (old_mbase)  grow_to_match(old_mbase);
  4097   // Look carefully at the base node if it is a phi.
  4098   PhiNode* phi_base;
  4099   if (new_base != NULL && new_base->is_Phi())
  4100     phi_base = new_base->as_Phi();
  4101   else
  4102     phi_base = NULL;
  4104   Node*    phi_reg = NULL;
  4105   uint     phi_len = (uint)-1;
  4106   if (phi_base != NULL && !phi_base->is_copy()) {
  4107     // do not examine phi if degraded to a copy
  4108     phi_reg = phi_base->region();
  4109     phi_len = phi_base->req();
  4110     // see if the phi is unfinished
  4111     for (uint i = 1; i < phi_len; i++) {
  4112       if (phi_base->in(i) == NULL) {
  4113         // incomplete phi; do not look at it yet!
  4114         phi_reg = NULL;
  4115         phi_len = (uint)-1;
  4116         break;
  4121   // Note:  We do not call verify_sparse on entry, because inputs
  4122   // can normalize to the base_memory via subsume_node or similar
  4123   // mechanisms.  This method repairs that damage.
  4125   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  4127   // Look at each slice.
  4128   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4129     Node* old_in = in(i);
  4130     // calculate the old memory value
  4131     Node* old_mem = old_in;
  4132     if (old_mem == empty_mem)  old_mem = old_base;
  4133     assert(old_mem == memory_at(i), "");
  4135     // maybe update (reslice) the old memory value
  4137     // simplify stacked MergeMems
  4138     Node* new_mem = old_mem;
  4139     MergeMemNode* old_mmem;
  4140     if (old_mem != NULL && old_mem->is_MergeMem())
  4141       old_mmem = old_mem->as_MergeMem();
  4142     else
  4143       old_mmem = NULL;
  4144     if (old_mmem == this) {
  4145       // This can happen if loops break up and safepoints disappear.
  4146       // A merge of BotPtr (default) with a RawPtr memory derived from a
  4147       // safepoint can be rewritten to a merge of the same BotPtr with
  4148       // the BotPtr phi coming into the loop.  If that phi disappears
  4149       // also, we can end up with a self-loop of the mergemem.
  4150       // In general, if loops degenerate and memory effects disappear,
  4151       // a mergemem can be left looking at itself.  This simply means
  4152       // that the mergemem's default should be used, since there is
  4153       // no longer any apparent effect on this slice.
  4154       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  4155       //       from start.  Update the input to TOP.
  4156       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  4158     else if (old_mmem != NULL) {
  4159       new_mem = old_mmem->memory_at(i);
  4161     // else preceding memory was not a MergeMem
  4163     // replace equivalent phis (unfortunately, they do not GVN together)
  4164     if (new_mem != NULL && new_mem != new_base &&
  4165         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  4166       if (new_mem->is_Phi()) {
  4167         PhiNode* phi_mem = new_mem->as_Phi();
  4168         for (uint i = 1; i < phi_len; i++) {
  4169           if (phi_base->in(i) != phi_mem->in(i)) {
  4170             phi_mem = NULL;
  4171             break;
  4174         if (phi_mem != NULL) {
  4175           // equivalent phi nodes; revert to the def
  4176           new_mem = new_base;
  4181     // maybe store down a new value
  4182     Node* new_in = new_mem;
  4183     if (new_in == new_base)  new_in = empty_mem;
  4185     if (new_in != old_in) {
  4186       // Warning:  Do not combine this "if" with the previous "if"
  4187       // A memory slice might have be be rewritten even if it is semantically
  4188       // unchanged, if the base_memory value has changed.
  4189       set_req(i, new_in);
  4190       progress = this;          // Report progress
  4194   if (new_base != old_base) {
  4195     set_req(Compile::AliasIdxBot, new_base);
  4196     // Don't use set_base_memory(new_base), because we need to update du.
  4197     assert(base_memory() == new_base, "");
  4198     progress = this;
  4201   if( base_memory() == this ) {
  4202     // a self cycle indicates this memory path is dead
  4203     set_req(Compile::AliasIdxBot, empty_mem);
  4206   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  4207   // Recursion must occur after the self cycle check above
  4208   if( base_memory()->is_MergeMem() ) {
  4209     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  4210     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  4211     if( m != NULL && (m->is_top() ||
  4212         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  4213       // propagate rollup of dead cycle to self
  4214       set_req(Compile::AliasIdxBot, empty_mem);
  4218   if( base_memory() == empty_mem ) {
  4219     progress = this;
  4220     // Cut inputs during Parse phase only.
  4221     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  4222     if( !can_reshape ) {
  4223       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4224         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  4229   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  4230     // Check if PhiNode::Ideal's "Split phis through memory merges"
  4231     // transform should be attempted. Look for this->phi->this cycle.
  4232     uint merge_width = req();
  4233     if (merge_width > Compile::AliasIdxRaw) {
  4234       PhiNode* phi = base_memory()->as_Phi();
  4235       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  4236         if (phi->in(i) == this) {
  4237           phase->is_IterGVN()->_worklist.push(phi);
  4238           break;
  4244   assert(progress || verify_sparse(), "please, no dups of base");
  4245   return progress;
  4248 //-------------------------set_base_memory-------------------------------------
  4249 void MergeMemNode::set_base_memory(Node *new_base) {
  4250   Node* empty_mem = empty_memory();
  4251   set_req(Compile::AliasIdxBot, new_base);
  4252   assert(memory_at(req()) == new_base, "must set default memory");
  4253   // Clear out other occurrences of new_base:
  4254   if (new_base != empty_mem) {
  4255     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4256       if (in(i) == new_base)  set_req(i, empty_mem);
  4261 //------------------------------out_RegMask------------------------------------
  4262 const RegMask &MergeMemNode::out_RegMask() const {
  4263   return RegMask::Empty;
  4266 //------------------------------dump_spec--------------------------------------
  4267 #ifndef PRODUCT
  4268 void MergeMemNode::dump_spec(outputStream *st) const {
  4269   st->print(" {");
  4270   Node* base_mem = base_memory();
  4271   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4272     Node* mem = memory_at(i);
  4273     if (mem == base_mem) { st->print(" -"); continue; }
  4274     st->print( " N%d:", mem->_idx );
  4275     Compile::current()->get_adr_type(i)->dump_on(st);
  4277   st->print(" }");
  4279 #endif // !PRODUCT
  4282 #ifdef ASSERT
  4283 static bool might_be_same(Node* a, Node* b) {
  4284   if (a == b)  return true;
  4285   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4286   // phis shift around during optimization
  4287   return true;  // pretty stupid...
  4290 // verify a narrow slice (either incoming or outgoing)
  4291 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4292   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4293   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4294   if (Node::in_dump())      return;  // muzzle asserts when printing
  4295   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4296   assert(n != NULL, "");
  4297   // Elide intervening MergeMem's
  4298   while (n->is_MergeMem()) {
  4299     n = n->as_MergeMem()->memory_at(alias_idx);
  4301   Compile* C = Compile::current();
  4302   const TypePtr* n_adr_type = n->adr_type();
  4303   if (n == m->empty_memory()) {
  4304     // Implicit copy of base_memory()
  4305   } else if (n_adr_type != TypePtr::BOTTOM) {
  4306     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4307     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4308   } else {
  4309     // A few places like make_runtime_call "know" that VM calls are narrow,
  4310     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4311     bool expected_wide_mem = false;
  4312     if (n == m->base_memory()) {
  4313       expected_wide_mem = true;
  4314     } else if (alias_idx == Compile::AliasIdxRaw ||
  4315                n == m->memory_at(Compile::AliasIdxRaw)) {
  4316       expected_wide_mem = true;
  4317     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4318       // memory can "leak through" calls on channels that
  4319       // are write-once.  Allow this also.
  4320       expected_wide_mem = true;
  4322     assert(expected_wide_mem, "expected narrow slice replacement");
  4325 #else // !ASSERT
  4326 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4327 #endif
  4330 //-----------------------------memory_at---------------------------------------
  4331 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4332   assert(alias_idx >= Compile::AliasIdxRaw ||
  4333          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4334          "must avoid base_memory and AliasIdxTop");
  4336   // Otherwise, it is a narrow slice.
  4337   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4338   Compile *C = Compile::current();
  4339   if (is_empty_memory(n)) {
  4340     // the array is sparse; empty slots are the "top" node
  4341     n = base_memory();
  4342     assert(Node::in_dump()
  4343            || n == NULL || n->bottom_type() == Type::TOP
  4344            || n->adr_type() == NULL // address is TOP
  4345            || n->adr_type() == TypePtr::BOTTOM
  4346            || n->adr_type() == TypeRawPtr::BOTTOM
  4347            || Compile::current()->AliasLevel() == 0,
  4348            "must be a wide memory");
  4349     // AliasLevel == 0 if we are organizing the memory states manually.
  4350     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4351   } else {
  4352     // make sure the stored slice is sane
  4353     #ifdef ASSERT
  4354     if (is_error_reported() || Node::in_dump()) {
  4355     } else if (might_be_same(n, base_memory())) {
  4356       // Give it a pass:  It is a mostly harmless repetition of the base.
  4357       // This can arise normally from node subsumption during optimization.
  4358     } else {
  4359       verify_memory_slice(this, alias_idx, n);
  4361     #endif
  4363   return n;
  4366 //---------------------------set_memory_at-------------------------------------
  4367 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4368   verify_memory_slice(this, alias_idx, n);
  4369   Node* empty_mem = empty_memory();
  4370   if (n == base_memory())  n = empty_mem;  // collapse default
  4371   uint need_req = alias_idx+1;
  4372   if (req() < need_req) {
  4373     if (n == empty_mem)  return;  // already the default, so do not grow me
  4374     // grow the sparse array
  4375     do {
  4376       add_req(empty_mem);
  4377     } while (req() < need_req);
  4379   set_req( alias_idx, n );
  4384 //--------------------------iteration_setup------------------------------------
  4385 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4386   if (other != NULL) {
  4387     grow_to_match(other);
  4388     // invariant:  the finite support of mm2 is within mm->req()
  4389     #ifdef ASSERT
  4390     for (uint i = req(); i < other->req(); i++) {
  4391       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4393     #endif
  4395   // Replace spurious copies of base_memory by top.
  4396   Node* base_mem = base_memory();
  4397   if (base_mem != NULL && !base_mem->is_top()) {
  4398     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4399       if (in(i) == base_mem)
  4400         set_req(i, empty_memory());
  4405 //---------------------------grow_to_match-------------------------------------
  4406 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4407   Node* empty_mem = empty_memory();
  4408   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4409   // look for the finite support of the other memory
  4410   for (uint i = other->req(); --i >= req(); ) {
  4411     if (other->in(i) != empty_mem) {
  4412       uint new_len = i+1;
  4413       while (req() < new_len)  add_req(empty_mem);
  4414       break;
  4419 //---------------------------verify_sparse-------------------------------------
  4420 #ifndef PRODUCT
  4421 bool MergeMemNode::verify_sparse() const {
  4422   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4423   Node* base_mem = base_memory();
  4424   // The following can happen in degenerate cases, since empty==top.
  4425   if (is_empty_memory(base_mem))  return true;
  4426   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4427     assert(in(i) != NULL, "sane slice");
  4428     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4430   return true;
  4433 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4434   Node* n;
  4435   n = mm->in(idx);
  4436   if (mem == n)  return true;  // might be empty_memory()
  4437   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4438   if (mem == n)  return true;
  4439   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4440     if (mem == n)  return true;
  4441     if (n == NULL)  break;
  4443   return false;
  4445 #endif // !PRODUCT

mercurial