src/share/vm/opto/memnode.cpp

Thu, 03 Jan 2013 15:09:55 -0800

author
kvn
date
Thu, 03 Jan 2013 15:09:55 -0800
changeset 4410
00af3a3a8df4
parent 4164
d804e148cff8
child 4479
b30b3c2a0cf2
permissions
-rw-r--r--

8005522: use fast-string instructions on x86 for zeroing
Summary: use 'rep stosb' instead of 'rep stosq' when fast-string operations are available.
Reviewed-by: twisti, roland

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "oops/objArrayKlass.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/connode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/machnode.hpp"
stefank@2314 36 #include "opto/matcher.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/mulnode.hpp"
stefank@2314 39 #include "opto/phaseX.hpp"
stefank@2314 40 #include "opto/regmask.hpp"
stefank@2314 41
duke@435 42 // Portions of code courtesy of Clifford Click
duke@435 43
duke@435 44 // Optimization - Graph Style
duke@435 45
kvn@509 46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 47
duke@435 48 //=============================================================================
duke@435 49 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 50
duke@435 51 const TypePtr *MemNode::adr_type() const {
duke@435 52 Node* adr = in(Address);
duke@435 53 const TypePtr* cross_check = NULL;
duke@435 54 DEBUG_ONLY(cross_check = _adr_type);
duke@435 55 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 56 }
duke@435 57
duke@435 58 #ifndef PRODUCT
duke@435 59 void MemNode::dump_spec(outputStream *st) const {
duke@435 60 if (in(Address) == NULL) return; // node is dead
duke@435 61 #ifndef ASSERT
duke@435 62 // fake the missing field
duke@435 63 const TypePtr* _adr_type = NULL;
duke@435 64 if (in(Address) != NULL)
duke@435 65 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 66 #endif
duke@435 67 dump_adr_type(this, _adr_type, st);
duke@435 68
duke@435 69 Compile* C = Compile::current();
duke@435 70 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 71 st->print(" Volatile!");
duke@435 72 }
duke@435 73
duke@435 74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 75 st->print(" @");
duke@435 76 if (adr_type == NULL) {
duke@435 77 st->print("NULL");
duke@435 78 } else {
duke@435 79 adr_type->dump_on(st);
duke@435 80 Compile* C = Compile::current();
duke@435 81 Compile::AliasType* atp = NULL;
duke@435 82 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 83 if (atp == NULL)
duke@435 84 st->print(", idx=?\?;");
duke@435 85 else if (atp->index() == Compile::AliasIdxBot)
duke@435 86 st->print(", idx=Bot;");
duke@435 87 else if (atp->index() == Compile::AliasIdxTop)
duke@435 88 st->print(", idx=Top;");
duke@435 89 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 90 st->print(", idx=Raw;");
duke@435 91 else {
duke@435 92 ciField* field = atp->field();
duke@435 93 if (field) {
duke@435 94 st->print(", name=");
duke@435 95 field->print_name_on(st);
duke@435 96 }
duke@435 97 st->print(", idx=%d;", atp->index());
duke@435 98 }
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 extern void print_alias_types();
duke@435 103
duke@435 104 #endif
duke@435 105
kvn@509 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 107 const TypeOopPtr *tinst = t_adr->isa_oopptr();
kvn@658 108 if (tinst == NULL || !tinst->is_known_instance_field())
kvn@509 109 return mchain; // don't try to optimize non-instance types
kvn@509 110 uint instance_id = tinst->instance_id();
kvn@688 111 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 112 Node *prev = NULL;
kvn@509 113 Node *result = mchain;
kvn@509 114 while (prev != result) {
kvn@509 115 prev = result;
kvn@688 116 if (result == start_mem)
twisti@1040 117 break; // hit one of our sentinels
kvn@509 118 // skip over a call which does not affect this memory slice
kvn@509 119 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 120 Node *proj_in = result->in(0);
kvn@688 121 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
twisti@1040 122 break; // hit one of our sentinels
kvn@688 123 } else if (proj_in->is_Call()) {
kvn@509 124 CallNode *call = proj_in->as_Call();
kvn@509 125 if (!call->may_modify(t_adr, phase)) {
kvn@509 126 result = call->in(TypeFunc::Memory);
kvn@509 127 }
kvn@509 128 } else if (proj_in->is_Initialize()) {
kvn@509 129 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 130 // Stop if this is the initialization for the object instance which
kvn@509 131 // which contains this memory slice, otherwise skip over it.
kvn@509 132 if (alloc != NULL && alloc->_idx != instance_id) {
kvn@509 133 result = proj_in->in(TypeFunc::Memory);
kvn@509 134 }
kvn@509 135 } else if (proj_in->is_MemBar()) {
kvn@509 136 result = proj_in->in(TypeFunc::Memory);
kvn@688 137 } else {
kvn@688 138 assert(false, "unexpected projection");
kvn@509 139 }
kvn@1535 140 } else if (result->is_ClearArray()) {
kvn@1535 141 if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
kvn@1535 142 // Can not bypass initialization of the instance
kvn@1535 143 // we are looking for.
kvn@1535 144 break;
kvn@1535 145 }
kvn@1535 146 // Otherwise skip it (the call updated 'result' value).
kvn@509 147 } else if (result->is_MergeMem()) {
kvn@509 148 result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
kvn@509 149 }
kvn@509 150 }
kvn@509 151 return result;
kvn@509 152 }
kvn@509 153
kvn@509 154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 155 const TypeOopPtr *t_oop = t_adr->isa_oopptr();
kvn@658 156 bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
kvn@509 157 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 158 Node *result = mchain;
kvn@509 159 result = optimize_simple_memory_chain(result, t_adr, phase);
kvn@509 160 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 161 PhiNode *mphi = result->as_Phi();
kvn@509 162 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 163 const TypePtr *t = mphi->adr_type();
kvn@598 164 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 165 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 166 t->is_oopptr()->cast_to_exactness(true)
kvn@682 167 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 168 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 169 // clone the Phi with our address type
kvn@509 170 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 171 } else {
kvn@509 172 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 173 }
kvn@509 174 }
kvn@509 175 return result;
kvn@509 176 }
kvn@509 177
kvn@499 178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 179 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 180 Node *mem = mmem;
kvn@499 181 #ifdef ASSERT
kvn@499 182 {
kvn@499 183 // Check that current type is consistent with the alias index used during graph construction
kvn@499 184 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 185 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 186 phase->C->must_alias(adr_check, alias_idx );
kvn@499 187 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 188 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 189 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 190 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 191 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 192 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 193 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 194 // don't assert if it is dead code.
kvn@499 195 consistent = true;
kvn@499 196 }
kvn@499 197 if( !consistent ) {
kvn@499 198 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 199 if( adr_check == NULL ) {
kvn@499 200 st->print("NULL");
kvn@499 201 } else {
kvn@499 202 adr_check->dump();
kvn@499 203 }
kvn@499 204 st->cr();
kvn@499 205 print_alias_types();
kvn@499 206 assert(consistent, "adr_check must match alias idx");
kvn@499 207 }
kvn@499 208 }
kvn@499 209 #endif
never@2170 210 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 211 // means an array I have not precisely typed yet. Do not do any
kvn@499 212 // alias stuff with it any time soon.
never@2170 213 const TypeOopPtr *toop = tp->isa_oopptr();
kvn@499 214 if( tp->base() != Type::AnyPtr &&
never@2170 215 !(toop &&
never@2170 216 toop->klass() != NULL &&
never@2170 217 toop->klass()->is_java_lang_Object() &&
never@2170 218 toop->offset() == Type::OffsetBot) ) {
kvn@499 219 // compress paths and change unreachable cycles to TOP
kvn@499 220 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 221 // Equivalent code in PhiNode::Ideal
kvn@499 222 Node* m = phase->transform(mmem);
twisti@1040 223 // If transformed to a MergeMem, get the desired slice
kvn@499 224 // Otherwise the returned node represents memory for every slice
kvn@499 225 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 226 // Update input if it is progress over what we have now
kvn@499 227 }
kvn@499 228 return mem;
kvn@499 229 }
kvn@499 230
duke@435 231 //--------------------------Ideal_common---------------------------------------
duke@435 232 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 233 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 235 // If our control input is a dead region, kill all below the region
duke@435 236 Node *ctl = in(MemNode::Control);
duke@435 237 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 238 return this;
kvn@740 239 ctl = in(MemNode::Control);
kvn@740 240 // Don't bother trying to transform a dead node
kvn@740 241 if( ctl && ctl->is_top() ) return NodeSentinel;
duke@435 242
kvn@1143 243 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1143 244 // Wait if control on the worklist.
kvn@1143 245 if (ctl && can_reshape && igvn != NULL) {
kvn@1143 246 Node* bol = NULL;
kvn@1143 247 Node* cmp = NULL;
kvn@1143 248 if (ctl->in(0)->is_If()) {
kvn@1143 249 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
kvn@1143 250 bol = ctl->in(0)->in(1);
kvn@1143 251 if (bol->is_Bool())
kvn@1143 252 cmp = ctl->in(0)->in(1)->in(1);
kvn@1143 253 }
kvn@1143 254 if (igvn->_worklist.member(ctl) ||
kvn@1143 255 (bol != NULL && igvn->_worklist.member(bol)) ||
kvn@1143 256 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
kvn@1143 257 // This control path may be dead.
kvn@1143 258 // Delay this memory node transformation until the control is processed.
kvn@1143 259 phase->is_IterGVN()->_worklist.push(this);
kvn@1143 260 return NodeSentinel; // caller will return NULL
kvn@1143 261 }
kvn@1143 262 }
duke@435 263 // Ignore if memory is dead, or self-loop
duke@435 264 Node *mem = in(MemNode::Memory);
duke@435 265 if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 266 assert( mem != this, "dead loop in MemNode::Ideal" );
duke@435 267
kvn@3320 268 if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
kvn@3320 269 // This memory slice may be dead.
kvn@3320 270 // Delay this mem node transformation until the memory is processed.
kvn@3320 271 phase->is_IterGVN()->_worklist.push(this);
kvn@3320 272 return NodeSentinel; // caller will return NULL
kvn@3320 273 }
kvn@3320 274
duke@435 275 Node *address = in(MemNode::Address);
duke@435 276 const Type *t_adr = phase->type( address );
duke@435 277 if( t_adr == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 278
kvn@1143 279 if( can_reshape && igvn != NULL &&
kvn@2181 280 (igvn->_worklist.member(address) ||
kvn@2181 281 igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
kvn@855 282 // The address's base and type may change when the address is processed.
kvn@855 283 // Delay this mem node transformation until the address is processed.
kvn@855 284 phase->is_IterGVN()->_worklist.push(this);
kvn@855 285 return NodeSentinel; // caller will return NULL
kvn@855 286 }
kvn@855 287
kvn@1497 288 // Do NOT remove or optimize the next lines: ensure a new alias index
kvn@1497 289 // is allocated for an oop pointer type before Escape Analysis.
kvn@1497 290 // Note: C++ will not remove it since the call has side effect.
kvn@1497 291 if ( t_adr->isa_oopptr() ) {
kvn@1497 292 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
kvn@1497 293 }
kvn@1497 294
kvn@1143 295 #ifdef ASSERT
kvn@1143 296 Node* base = NULL;
kvn@1143 297 if (address->is_AddP())
kvn@1143 298 base = address->in(AddPNode::Base);
kvn@1143 299 assert(base == NULL || t_adr->isa_rawptr() ||
kvn@1143 300 !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
kvn@1143 301 #endif
kvn@1143 302
duke@435 303 // Avoid independent memory operations
duke@435 304 Node* old_mem = mem;
duke@435 305
kvn@471 306 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 307 // initializations was removed. After macro-expansion all stores catched
kvn@471 308 // by Initialize node became raw stores and there is no information
kvn@471 309 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 310 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 311 // were already unhooked by using information from detect_ptr_independence()
kvn@471 312 // and find_previous_store().
duke@435 313
duke@435 314 if (mem->is_MergeMem()) {
duke@435 315 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 316 const TypePtr *tp = t_adr->is_ptr();
kvn@499 317
kvn@499 318 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 319 }
duke@435 320
duke@435 321 if (mem != old_mem) {
duke@435 322 set_req(MemNode::Memory, mem);
kvn@740 323 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 324 return this;
duke@435 325 }
duke@435 326
duke@435 327 // let the subclass continue analyzing...
duke@435 328 return NULL;
duke@435 329 }
duke@435 330
duke@435 331 // Helper function for proving some simple control dominations.
kvn@554 332 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 333 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 334 // is not a constant (dominated by the method's StartNode).
duke@435 335 // Used by MemNode::find_previous_store to prove that the
duke@435 336 // control input of a memory operation predates (dominates)
duke@435 337 // an allocation it wants to look past.
kvn@554 338 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 339 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 340 return false; // Conservative answer for dead code
kvn@554 341
kvn@628 342 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 343 dom = dom->find_exact_control(dom);
kvn@554 344 if (dom == NULL || dom->is_top())
kvn@554 345 return false; // Conservative answer for dead code
kvn@554 346
kvn@628 347 if (dom == sub) {
kvn@628 348 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 349 // 'dom' is Proj node of the 'sub'.
kvn@628 350 return false;
kvn@628 351 }
kvn@628 352
kvn@590 353 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 354 return true;
kvn@554 355
kvn@554 356 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 357 // of all its inputs dominate or equal to sub's control edge.
kvn@554 358
kvn@554 359 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 360 // Or Region for the check in LoadNode::Ideal();
kvn@598 361 // 'sub' should have sub->in(0) != NULL.
kvn@598 362 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@598 363 sub->is_Region(), "expecting only these nodes");
kvn@554 364
kvn@554 365 // Get control edge of 'sub'.
kvn@628 366 Node* orig_sub = sub;
kvn@554 367 sub = sub->find_exact_control(sub->in(0));
kvn@554 368 if (sub == NULL || sub->is_top())
kvn@554 369 return false; // Conservative answer for dead code
kvn@554 370
kvn@554 371 assert(sub->is_CFG(), "expecting control");
kvn@554 372
kvn@554 373 if (sub == dom)
kvn@554 374 return true;
kvn@554 375
kvn@554 376 if (sub->is_Start() || sub->is_Root())
kvn@554 377 return false;
kvn@554 378
kvn@554 379 {
kvn@554 380 // Check all control edges of 'dom'.
kvn@554 381
kvn@554 382 ResourceMark rm;
kvn@554 383 Arena* arena = Thread::current()->resource_area();
kvn@554 384 Node_List nlist(arena);
kvn@554 385 Unique_Node_List dom_list(arena);
kvn@554 386
kvn@554 387 dom_list.push(dom);
kvn@554 388 bool only_dominating_controls = false;
kvn@554 389
kvn@554 390 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 391 Node* n = dom_list.at(next);
kvn@628 392 if (n == orig_sub)
kvn@628 393 return false; // One of dom's inputs dominated by sub.
kvn@554 394 if (!n->is_CFG() && n->pinned()) {
kvn@554 395 // Check only own control edge for pinned non-control nodes.
kvn@554 396 n = n->find_exact_control(n->in(0));
kvn@554 397 if (n == NULL || n->is_top())
kvn@554 398 return false; // Conservative answer for dead code
kvn@554 399 assert(n->is_CFG(), "expecting control");
kvn@628 400 dom_list.push(n);
kvn@628 401 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 402 only_dominating_controls = true;
kvn@554 403 } else if (n->is_CFG()) {
kvn@554 404 if (n->dominates(sub, nlist))
kvn@554 405 only_dominating_controls = true;
kvn@554 406 else
kvn@554 407 return false;
kvn@554 408 } else {
kvn@554 409 // First, own control edge.
kvn@554 410 Node* m = n->find_exact_control(n->in(0));
kvn@590 411 if (m != NULL) {
kvn@590 412 if (m->is_top())
kvn@590 413 return false; // Conservative answer for dead code
kvn@590 414 dom_list.push(m);
kvn@590 415 }
kvn@554 416 // Now, the rest of edges.
kvn@554 417 uint cnt = n->req();
kvn@554 418 for (uint i = 1; i < cnt; i++) {
kvn@554 419 m = n->find_exact_control(n->in(i));
kvn@554 420 if (m == NULL || m->is_top())
kvn@554 421 continue;
kvn@554 422 dom_list.push(m);
duke@435 423 }
duke@435 424 }
duke@435 425 }
kvn@554 426 return only_dominating_controls;
duke@435 427 }
duke@435 428 }
duke@435 429
duke@435 430 //---------------------detect_ptr_independence---------------------------------
duke@435 431 // Used by MemNode::find_previous_store to prove that two base
duke@435 432 // pointers are never equal.
duke@435 433 // The pointers are accompanied by their associated allocations,
duke@435 434 // if any, which have been previously discovered by the caller.
duke@435 435 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 436 Node* p2, AllocateNode* a2,
duke@435 437 PhaseTransform* phase) {
duke@435 438 // Attempt to prove that these two pointers cannot be aliased.
duke@435 439 // They may both manifestly be allocations, and they should differ.
duke@435 440 // Or, if they are not both allocations, they can be distinct constants.
duke@435 441 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 442 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 443 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 444 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 445 return (a1 != a2);
duke@435 446 } else if (a1 != NULL) { // one allocation a1
duke@435 447 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 448 return all_controls_dominate(p2, a1);
duke@435 449 } else { //(a2 != NULL) // one allocation a2
kvn@554 450 return all_controls_dominate(p1, a2);
duke@435 451 }
duke@435 452 return false;
duke@435 453 }
duke@435 454
duke@435 455
duke@435 456 // The logic for reordering loads and stores uses four steps:
duke@435 457 // (a) Walk carefully past stores and initializations which we
duke@435 458 // can prove are independent of this load.
duke@435 459 // (b) Observe that the next memory state makes an exact match
duke@435 460 // with self (load or store), and locate the relevant store.
duke@435 461 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 462 // the optimizer would fold it up somehow.
duke@435 463 // (d) Do the rewiring, and return, depending on some other part of
duke@435 464 // the optimizer to fold up the load.
duke@435 465 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 466 // specific to loads and stores, so they are handled by the callers.
duke@435 467 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 468 //
duke@435 469 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 470 Node* ctrl = in(MemNode::Control);
duke@435 471 Node* adr = in(MemNode::Address);
duke@435 472 intptr_t offset = 0;
duke@435 473 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 474 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 475
duke@435 476 if (offset == Type::OffsetBot)
duke@435 477 return NULL; // cannot unalias unless there are precise offsets
duke@435 478
kvn@509 479 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 480
duke@435 481 intptr_t size_in_bytes = memory_size();
duke@435 482
duke@435 483 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 484
duke@435 485 int cnt = 50; // Cycle limiter
duke@435 486 for (;;) { // While we can dance past unrelated stores...
duke@435 487 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 488
duke@435 489 if (mem->is_Store()) {
duke@435 490 Node* st_adr = mem->in(MemNode::Address);
duke@435 491 intptr_t st_offset = 0;
duke@435 492 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 493 if (st_base == NULL)
duke@435 494 break; // inscrutable pointer
duke@435 495 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 496 const int MAX_STORE = BytesPerLong;
duke@435 497 if (st_offset >= offset + size_in_bytes ||
duke@435 498 st_offset <= offset - MAX_STORE ||
duke@435 499 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 500 // Success: The offsets are provably independent.
duke@435 501 // (You may ask, why not just test st_offset != offset and be done?
duke@435 502 // The answer is that stores of different sizes can co-exist
duke@435 503 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 504 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 505 mem = mem->in(MemNode::Memory);
duke@435 506 continue; // (a) advance through independent store memory
duke@435 507 }
duke@435 508 }
duke@435 509 if (st_base != base &&
duke@435 510 detect_ptr_independence(base, alloc,
duke@435 511 st_base,
duke@435 512 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 513 phase)) {
duke@435 514 // Success: The bases are provably independent.
duke@435 515 mem = mem->in(MemNode::Memory);
duke@435 516 continue; // (a) advance through independent store memory
duke@435 517 }
duke@435 518
duke@435 519 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 520 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 521 if (st_base == base && st_offset == offset) {
duke@435 522 return mem; // let caller handle steps (c), (d)
duke@435 523 }
duke@435 524
duke@435 525 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 526 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 527 AllocateNode* st_alloc = st_init->allocation();
duke@435 528 if (st_alloc == NULL)
duke@435 529 break; // something degenerated
duke@435 530 bool known_identical = false;
duke@435 531 bool known_independent = false;
duke@435 532 if (alloc == st_alloc)
duke@435 533 known_identical = true;
duke@435 534 else if (alloc != NULL)
duke@435 535 known_independent = true;
kvn@554 536 else if (all_controls_dominate(this, st_alloc))
duke@435 537 known_independent = true;
duke@435 538
duke@435 539 if (known_independent) {
duke@435 540 // The bases are provably independent: Either they are
duke@435 541 // manifestly distinct allocations, or else the control
duke@435 542 // of this load dominates the store's allocation.
duke@435 543 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 544 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 545 mem = st_alloc->in(TypeFunc::Memory);
duke@435 546 } else {
duke@435 547 mem = st_init->memory(alias_idx);
duke@435 548 }
duke@435 549 continue; // (a) advance through independent store memory
duke@435 550 }
duke@435 551
duke@435 552 // (b) at this point, if we are not looking at a store initializing
duke@435 553 // the same allocation we are loading from, we lose.
duke@435 554 if (known_identical) {
duke@435 555 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 556 return mem; // let caller handle steps (c), (d)
duke@435 557 }
duke@435 558
kvn@658 559 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 560 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 561 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 562 CallNode *call = mem->in(0)->as_Call();
kvn@509 563 if (!call->may_modify(addr_t, phase)) {
kvn@509 564 mem = call->in(TypeFunc::Memory);
kvn@509 565 continue; // (a) advance through independent call memory
kvn@509 566 }
kvn@509 567 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 568 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 569 continue; // (a) advance through independent MemBar memory
kvn@1535 570 } else if (mem->is_ClearArray()) {
kvn@1535 571 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
kvn@1535 572 // (the call updated 'mem' value)
kvn@1535 573 continue; // (a) advance through independent allocation memory
kvn@1535 574 } else {
kvn@1535 575 // Can not bypass initialization of the instance
kvn@1535 576 // we are looking for.
kvn@1535 577 return mem;
kvn@1535 578 }
kvn@509 579 } else if (mem->is_MergeMem()) {
kvn@509 580 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 581 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 582 continue; // (a) advance through independent MergeMem memory
kvn@509 583 }
duke@435 584 }
duke@435 585
duke@435 586 // Unless there is an explicit 'continue', we must bail out here,
duke@435 587 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 588 break;
duke@435 589 }
duke@435 590
duke@435 591 return NULL; // bail out
duke@435 592 }
duke@435 593
duke@435 594 //----------------------calculate_adr_type-------------------------------------
duke@435 595 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 596 // Also, asserts a cross-check of the type against the expected address type.
duke@435 597 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 598 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 599 #ifdef PRODUCT
duke@435 600 cross_check = NULL;
duke@435 601 #else
duke@435 602 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 603 #endif
duke@435 604 const TypePtr* tp = t->isa_ptr();
duke@435 605 if (tp == NULL) {
duke@435 606 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 607 return TypePtr::BOTTOM; // touches lots of memory
duke@435 608 } else {
duke@435 609 #ifdef ASSERT
duke@435 610 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 611 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 612 if (cross_check != NULL &&
duke@435 613 cross_check != TypePtr::BOTTOM &&
duke@435 614 cross_check != TypeRawPtr::BOTTOM) {
duke@435 615 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 616 Compile* C = Compile::current();
duke@435 617 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 618 "must stay in the original alias category");
duke@435 619 // The type of the address must be contained in the adr_type,
duke@435 620 // disregarding "null"-ness.
duke@435 621 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 622 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
duke@435 623 assert(cross_check->meet(tp_notnull) == cross_check,
duke@435 624 "real address must not escape from expected memory type");
duke@435 625 }
duke@435 626 #endif
duke@435 627 return tp;
duke@435 628 }
duke@435 629 }
duke@435 630
duke@435 631 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 632 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 633 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 634 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 635 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 636 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 637 // with the same data. This implies that any path into the loop already
duke@435 638 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 639 // must be covered by an equivalent cast, with an earlier control input.
duke@435 640 ResourceMark rm;
duke@435 641
duke@435 642 // The loop entry input of the phi should be the unique dominating
duke@435 643 // node for every Phi/CastPP in the loop.
duke@435 644 Unique_Node_List closure;
duke@435 645 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 646
duke@435 647 // Add the phi node and the cast to the worklist.
duke@435 648 Unique_Node_List worklist;
duke@435 649 worklist.push(adr_phi);
duke@435 650 if( cast != NULL ){
duke@435 651 if( !cast->is_ConstraintCast() ) return false;
duke@435 652 worklist.push(cast);
duke@435 653 }
duke@435 654
duke@435 655 // Begin recursive walk of phi nodes.
duke@435 656 while( worklist.size() ){
duke@435 657 // Take a node off the worklist
duke@435 658 Node *n = worklist.pop();
duke@435 659 if( !closure.member(n) ){
duke@435 660 // Add it to the closure.
duke@435 661 closure.push(n);
duke@435 662 // Make a sanity check to ensure we don't waste too much time here.
duke@435 663 if( closure.size() > 20) return false;
duke@435 664 // This node is OK if:
duke@435 665 // - it is a cast of an identical value
duke@435 666 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 667 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 668 if( n->is_ConstraintCast() ){
duke@435 669 worklist.push(n->in(1));
duke@435 670 } else if( n->is_Phi() ) {
duke@435 671 for( uint i = 1; i < n->req(); i++ ) {
duke@435 672 worklist.push(n->in(i));
duke@435 673 }
duke@435 674 } else {
duke@435 675 return false;
duke@435 676 }
duke@435 677 }
duke@435 678 }
duke@435 679
duke@435 680 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 681 return true;
duke@435 682 }
duke@435 683
duke@435 684 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 685 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 686 // going away in this pass and we need to make this memory op depend on the
duke@435 687 // gating null check.
kvn@598 688 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 689 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 690 }
duke@435 691
duke@435 692 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 693 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 694 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 695 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 696 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 697 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 698 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 699 // up on this approach. CNC 10/20/2000
kvn@598 700 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 701 // Only the control edge of the node 'n' might be updated.
kvn@598 702 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 703 Node *skipped_cast = NULL;
duke@435 704 // Need a null check? Regular static accesses do not because they are
duke@435 705 // from constant addresses. Array ops are gated by the range check (which
duke@435 706 // always includes a NULL check). Just check field ops.
kvn@598 707 if( n->in(MemNode::Control) == NULL ) {
duke@435 708 // Scan upwards for the highest location we can place this memory op.
duke@435 709 while( true ) {
duke@435 710 switch( adr->Opcode() ) {
duke@435 711
duke@435 712 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 713 adr = adr->in(AddPNode::Base);
duke@435 714 continue;
duke@435 715
coleenp@548 716 case Op_DecodeN: // No change to NULL-ness, so peek thru
roland@4159 717 case Op_DecodeNKlass:
coleenp@548 718 adr = adr->in(1);
coleenp@548 719 continue;
coleenp@548 720
kvn@3842 721 case Op_EncodeP:
roland@4159 722 case Op_EncodePKlass:
kvn@3842 723 // EncodeP node's control edge could be set by this method
kvn@3842 724 // when EncodeP node depends on CastPP node.
kvn@3842 725 //
kvn@3842 726 // Use its control edge for memory op because EncodeP may go away
kvn@3842 727 // later when it is folded with following or preceding DecodeN node.
kvn@3842 728 if (adr->in(0) == NULL) {
kvn@3842 729 // Keep looking for cast nodes.
kvn@3842 730 adr = adr->in(1);
kvn@3842 731 continue;
kvn@3842 732 }
kvn@3842 733 ccp->hash_delete(n);
kvn@3842 734 n->set_req(MemNode::Control, adr->in(0));
kvn@3842 735 ccp->hash_insert(n);
kvn@3842 736 return n;
kvn@3842 737
duke@435 738 case Op_CastPP:
duke@435 739 // If the CastPP is useless, just peek on through it.
duke@435 740 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 741 // Remember the cast that we've peeked though. If we peek
duke@435 742 // through more than one, then we end up remembering the highest
duke@435 743 // one, that is, if in a loop, the one closest to the top.
duke@435 744 skipped_cast = adr;
duke@435 745 adr = adr->in(1);
duke@435 746 continue;
duke@435 747 }
duke@435 748 // CastPP is going away in this pass! We need this memory op to be
duke@435 749 // control-dependent on the test that is guarding the CastPP.
kvn@598 750 ccp->hash_delete(n);
kvn@598 751 n->set_req(MemNode::Control, adr->in(0));
kvn@598 752 ccp->hash_insert(n);
kvn@598 753 return n;
duke@435 754
duke@435 755 case Op_Phi:
duke@435 756 // Attempt to float above a Phi to some dominating point.
duke@435 757 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 758 // If we've already peeked through a Cast (which could have set the
duke@435 759 // control), we can't float above a Phi, because the skipped Cast
duke@435 760 // may not be loop invariant.
duke@435 761 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 762 adr = adr->in(1);
duke@435 763 continue;
duke@435 764 }
duke@435 765 }
duke@435 766
duke@435 767 // Intentional fallthrough!
duke@435 768
duke@435 769 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 770 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 771 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 772 // behind the controls leading to the Phi.
duke@435 773 case Op_CheckCastPP:
duke@435 774 // These usually stick around to change address type, however a
duke@435 775 // useless one can be elided and we still need to pick up a control edge
duke@435 776 if (adr->in(0) == NULL) {
duke@435 777 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 778 // need check further up the ancestor chain for a control input to keep
duke@435 779 // the node in place. 4959717.
duke@435 780 skipped_cast = adr;
duke@435 781 adr = adr->in(1);
duke@435 782 continue;
duke@435 783 }
kvn@598 784 ccp->hash_delete(n);
kvn@598 785 n->set_req(MemNode::Control, adr->in(0));
kvn@598 786 ccp->hash_insert(n);
kvn@598 787 return n;
duke@435 788
duke@435 789 // List of "safe" opcodes; those that implicitly block the memory
duke@435 790 // op below any null check.
duke@435 791 case Op_CastX2P: // no null checks on native pointers
duke@435 792 case Op_Parm: // 'this' pointer is not null
duke@435 793 case Op_LoadP: // Loading from within a klass
coleenp@548 794 case Op_LoadN: // Loading from within a klass
duke@435 795 case Op_LoadKlass: // Loading from within a klass
kvn@599 796 case Op_LoadNKlass: // Loading from within a klass
duke@435 797 case Op_ConP: // Loading from a klass
kvn@598 798 case Op_ConN: // Loading from a klass
roland@4159 799 case Op_ConNKlass: // Loading from a klass
duke@435 800 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 801 case Op_Con: // Reading from TLS
duke@435 802 case Op_CMoveP: // CMoveP is pinned
kvn@599 803 case Op_CMoveN: // CMoveN is pinned
duke@435 804 break; // No progress
duke@435 805
duke@435 806 case Op_Proj: // Direct call to an allocation routine
duke@435 807 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 808 #ifdef ASSERT
duke@435 809 {
duke@435 810 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 811 const Node* call = adr->in(0);
kvn@598 812 if (call->is_CallJava()) {
kvn@598 813 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 814 const TypeTuple *r = call_java->tf()->range();
kvn@499 815 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 816 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 817 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 818 // We further presume that this is one of
duke@435 819 // new_instance_Java, new_array_Java, or
duke@435 820 // the like, but do not assert for this.
duke@435 821 } else if (call->is_Allocate()) {
duke@435 822 // similar case to new_instance_Java, etc.
duke@435 823 } else if (!call->is_CallLeaf()) {
duke@435 824 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 825 ShouldNotReachHere();
duke@435 826 }
duke@435 827 }
duke@435 828 #endif
duke@435 829 break;
duke@435 830 default:
duke@435 831 ShouldNotReachHere();
duke@435 832 }
duke@435 833 break;
duke@435 834 }
duke@435 835 }
duke@435 836
duke@435 837 return NULL; // No progress
duke@435 838 }
duke@435 839
duke@435 840
duke@435 841 //=============================================================================
duke@435 842 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 843 uint LoadNode::cmp( const Node &n ) const
duke@435 844 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 845 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 846 uint LoadNode::ideal_reg() const {
coleenp@4037 847 return _type->ideal_reg();
duke@435 848 }
duke@435 849
duke@435 850 #ifndef PRODUCT
duke@435 851 void LoadNode::dump_spec(outputStream *st) const {
duke@435 852 MemNode::dump_spec(st);
duke@435 853 if( !Verbose && !WizardMode ) {
duke@435 854 // standard dump does this in Verbose and WizardMode
duke@435 855 st->print(" #"); _type->dump_on(st);
duke@435 856 }
duke@435 857 }
duke@435 858 #endif
duke@435 859
kvn@1964 860 #ifdef ASSERT
kvn@1964 861 //----------------------------is_immutable_value-------------------------------
kvn@1964 862 // Helper function to allow a raw load without control edge for some cases
kvn@1964 863 bool LoadNode::is_immutable_value(Node* adr) {
kvn@1964 864 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
kvn@1964 865 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1964 866 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
kvn@1964 867 in_bytes(JavaThread::osthread_offset())));
kvn@1964 868 }
kvn@1964 869 #endif
duke@435 870
duke@435 871 //----------------------------LoadNode::make-----------------------------------
duke@435 872 // Polymorphic factory method:
coleenp@548 873 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
coleenp@548 874 Compile* C = gvn.C;
coleenp@548 875
duke@435 876 // sanity check the alias category against the created node type
duke@435 877 assert(!(adr_type->isa_oopptr() &&
duke@435 878 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 879 "use LoadKlassNode instead");
duke@435 880 assert(!(adr_type->isa_aryptr() &&
duke@435 881 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 882 "use LoadRangeNode instead");
kvn@1964 883 // Check control edge of raw loads
kvn@1964 884 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 885 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 886 rt->isa_oopptr() || is_immutable_value(adr),
kvn@1964 887 "raw memory operations should have control edge");
duke@435 888 switch (bt) {
kvn@4115 889 case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 890 case T_BYTE: return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 891 case T_INT: return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 892 case T_CHAR: return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 893 case T_SHORT: return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 894 case T_LONG: return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long() );
kvn@4115 895 case T_FLOAT: return new (C) LoadFNode (ctl, mem, adr, adr_type, rt );
kvn@4115 896 case T_DOUBLE: return new (C) LoadDNode (ctl, mem, adr, adr_type, rt );
kvn@4115 897 case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr() );
coleenp@548 898 case T_OBJECT:
coleenp@548 899 #ifdef _LP64
kvn@598 900 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 901 Node* load = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
kvn@4115 902 return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 903 } else
coleenp@548 904 #endif
kvn@598 905 {
roland@4159 906 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
kvn@4115 907 return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
kvn@598 908 }
duke@435 909 }
duke@435 910 ShouldNotReachHere();
duke@435 911 return (LoadNode*)NULL;
duke@435 912 }
duke@435 913
duke@435 914 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
duke@435 915 bool require_atomic = true;
kvn@4115 916 return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
duke@435 917 }
duke@435 918
duke@435 919
duke@435 920
duke@435 921
duke@435 922 //------------------------------hash-------------------------------------------
duke@435 923 uint LoadNode::hash() const {
duke@435 924 // unroll addition of interesting fields
duke@435 925 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 926 }
duke@435 927
duke@435 928 //---------------------------can_see_stored_value------------------------------
duke@435 929 // This routine exists to make sure this set of tests is done the same
duke@435 930 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 931 // will change the graph shape in a way which makes memory alive twice at the
duke@435 932 // same time (uses the Oracle model of aliasing), then some
duke@435 933 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 934 // of aliasing.
duke@435 935 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 936 Node* ld_adr = in(MemNode::Address);
duke@435 937
never@452 938 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
never@452 939 Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
never@452 940 if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
never@452 941 atp->field() != NULL && !atp->field()->is_volatile()) {
never@452 942 uint alias_idx = atp->index();
never@452 943 bool final = atp->field()->is_final();
never@452 944 Node* result = NULL;
never@452 945 Node* current = st;
never@452 946 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 947 // new states for the slice of this load. Stop once any other
never@452 948 // kind of node is encountered. Loads from final memory can skip
never@452 949 // through any kind of MemBar but normal loads shouldn't skip
never@452 950 // through MemBarAcquire since the could allow them to move out of
never@452 951 // a synchronized region.
never@452 952 while (current->is_Proj()) {
never@452 953 int opc = current->in(0)->Opcode();
roland@3047 954 if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
roland@3047 955 opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
roland@3047 956 opc == Op_MemBarReleaseLock) {
never@452 957 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 958 if (mem->is_MergeMem()) {
never@452 959 MergeMemNode* merge = mem->as_MergeMem();
never@452 960 Node* new_st = merge->memory_at(alias_idx);
never@452 961 if (new_st == merge->base_memory()) {
never@452 962 // Keep searching
never@452 963 current = merge->base_memory();
never@452 964 continue;
never@452 965 }
never@452 966 // Save the new memory state for the slice and fall through
never@452 967 // to exit.
never@452 968 result = new_st;
never@452 969 }
never@452 970 }
never@452 971 break;
never@452 972 }
never@452 973 if (result != NULL) {
never@452 974 st = result;
never@452 975 }
never@452 976 }
never@452 977
never@452 978
duke@435 979 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 980 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 981 for (int trip = 0; trip <= 1; trip++) {
duke@435 982
duke@435 983 if (st->is_Store()) {
duke@435 984 Node* st_adr = st->in(MemNode::Address);
duke@435 985 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 986 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 987 intptr_t st_off = 0;
duke@435 988 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 989 if (alloc == NULL) return NULL;
duke@435 990 intptr_t ld_off = 0;
duke@435 991 AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
duke@435 992 if (alloc != allo2) return NULL;
duke@435 993 if (ld_off != st_off) return NULL;
duke@435 994 // At this point we have proven something like this setup:
duke@435 995 // A = Allocate(...)
duke@435 996 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 997 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 998 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 999 // In other words, we are loading from a casted version of
duke@435 1000 // the same pointer-and-offset that we stored to.
duke@435 1001 // Thus, we are able to replace L by V.
duke@435 1002 }
duke@435 1003 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 1004 if (store_Opcode() != st->Opcode())
duke@435 1005 return NULL;
duke@435 1006 return st->in(MemNode::ValueIn);
duke@435 1007 }
duke@435 1008
duke@435 1009 intptr_t offset = 0; // scratch
duke@435 1010
duke@435 1011 // A load from a freshly-created object always returns zero.
duke@435 1012 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 1013 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 1014 if (st->is_Proj() && st->in(0)->is_Allocate() &&
duke@435 1015 st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
duke@435 1016 offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
duke@435 1017 // return a zero value for the load's basic type
duke@435 1018 // (This is one of the few places where a generic PhaseTransform
duke@435 1019 // can create new nodes. Think of it as lazily manifesting
duke@435 1020 // virtually pre-existing constants.)
duke@435 1021 return phase->zerocon(memory_type());
duke@435 1022 }
duke@435 1023
duke@435 1024 // A load from an initialization barrier can match a captured store.
duke@435 1025 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 1026 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 1027 AllocateNode* alloc = init->allocation();
duke@435 1028 if (alloc != NULL &&
duke@435 1029 alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
duke@435 1030 // examine a captured store value
duke@435 1031 st = init->find_captured_store(offset, memory_size(), phase);
duke@435 1032 if (st != NULL)
duke@435 1033 continue; // take one more trip around
duke@435 1034 }
duke@435 1035 }
duke@435 1036
duke@435 1037 break;
duke@435 1038 }
duke@435 1039
duke@435 1040 return NULL;
duke@435 1041 }
duke@435 1042
kvn@499 1043 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 1044 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@499 1045 if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
kvn@499 1046 in(MemNode::Address)->is_AddP() ) {
kvn@499 1047 const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@499 1048 // Only instances.
kvn@658 1049 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@499 1050 t_oop->offset() != Type::OffsetBot &&
kvn@499 1051 t_oop->offset() != Type::OffsetTop) {
kvn@499 1052 return true;
kvn@499 1053 }
kvn@499 1054 }
kvn@499 1055 return false;
kvn@499 1056 }
kvn@499 1057
duke@435 1058 //------------------------------Identity---------------------------------------
duke@435 1059 // Loads are identity if previous store is to same address
duke@435 1060 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 1061 // If the previous store-maker is the right kind of Store, and the store is
duke@435 1062 // to the same address, then we are equal to the value stored.
duke@435 1063 Node* mem = in(MemNode::Memory);
duke@435 1064 Node* value = can_see_stored_value(mem, phase);
duke@435 1065 if( value ) {
duke@435 1066 // byte, short & char stores truncate naturally.
duke@435 1067 // A load has to load the truncated value which requires
duke@435 1068 // some sort of masking operation and that requires an
duke@435 1069 // Ideal call instead of an Identity call.
duke@435 1070 if (memory_size() < BytesPerInt) {
duke@435 1071 // If the input to the store does not fit with the load's result type,
duke@435 1072 // it must be truncated via an Ideal call.
duke@435 1073 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 1074 return this;
duke@435 1075 }
duke@435 1076 // (This works even when value is a Con, but LoadNode::Value
duke@435 1077 // usually runs first, producing the singleton type of the Con.)
duke@435 1078 return value;
duke@435 1079 }
kvn@499 1080
kvn@499 1081 // Search for an existing data phi which was generated before for the same
twisti@1040 1082 // instance's field to avoid infinite generation of phis in a loop.
kvn@499 1083 Node *region = mem->in(0);
kvn@499 1084 if (is_instance_field_load_with_local_phi(region)) {
kvn@499 1085 const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
kvn@499 1086 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 1087 int this_offset = addr_t->offset();
kvn@499 1088 int this_id = addr_t->is_oopptr()->instance_id();
kvn@499 1089 const Type* this_type = bottom_type();
kvn@499 1090 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 1091 Node* phi = region->fast_out(i);
kvn@499 1092 if (phi->is_Phi() && phi != mem &&
kvn@499 1093 phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
kvn@499 1094 return phi;
kvn@499 1095 }
kvn@499 1096 }
kvn@499 1097 }
kvn@499 1098
duke@435 1099 return this;
duke@435 1100 }
duke@435 1101
never@452 1102
never@452 1103 // Returns true if the AliasType refers to the field that holds the
never@452 1104 // cached box array. Currently only handles the IntegerCache case.
never@452 1105 static bool is_autobox_cache(Compile::AliasType* atp) {
never@452 1106 if (atp != NULL && atp->field() != NULL) {
never@452 1107 ciField* field = atp->field();
never@452 1108 ciSymbol* klass = field->holder()->name();
never@452 1109 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1110 field->holder()->uses_default_loader() &&
never@452 1111 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1112 return true;
never@452 1113 }
never@452 1114 }
never@452 1115 return false;
never@452 1116 }
never@452 1117
never@452 1118 // Fetch the base value in the autobox array
never@452 1119 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
never@452 1120 if (atp != NULL && atp->field() != NULL) {
never@452 1121 ciField* field = atp->field();
never@452 1122 ciSymbol* klass = field->holder()->name();
never@452 1123 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1124 field->holder()->uses_default_loader() &&
never@452 1125 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1126 assert(field->is_constant(), "what?");
never@452 1127 ciObjArray* array = field->constant_value().as_object()->as_obj_array();
never@452 1128 // Fetch the box object at the base of the array and get its value
never@452 1129 ciInstance* box = array->obj_at(0)->as_instance();
never@452 1130 ciInstanceKlass* ik = box->klass()->as_instance_klass();
never@452 1131 if (ik->nof_nonstatic_fields() == 1) {
never@452 1132 // This should be true nonstatic_field_at requires calling
never@452 1133 // nof_nonstatic_fields so check it anyway
never@452 1134 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
never@452 1135 cache_offset = c.as_int();
never@452 1136 }
never@452 1137 return true;
never@452 1138 }
never@452 1139 }
never@452 1140 return false;
never@452 1141 }
never@452 1142
never@452 1143 // Returns true if the AliasType refers to the value field of an
never@452 1144 // autobox object. Currently only handles Integer.
never@452 1145 static bool is_autobox_object(Compile::AliasType* atp) {
never@452 1146 if (atp != NULL && atp->field() != NULL) {
never@452 1147 ciField* field = atp->field();
never@452 1148 ciSymbol* klass = field->holder()->name();
never@452 1149 if (field->name() == ciSymbol::value_name() &&
never@452 1150 field->holder()->uses_default_loader() &&
never@452 1151 klass == ciSymbol::java_lang_Integer()) {
never@452 1152 return true;
never@452 1153 }
never@452 1154 }
never@452 1155 return false;
never@452 1156 }
never@452 1157
never@452 1158
never@452 1159 // We're loading from an object which has autobox behaviour.
never@452 1160 // If this object is result of a valueOf call we'll have a phi
never@452 1161 // merging a newly allocated object and a load from the cache.
never@452 1162 // We want to replace this load with the original incoming
never@452 1163 // argument to the valueOf call.
never@452 1164 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
never@452 1165 Node* base = in(Address)->in(AddPNode::Base);
never@452 1166 if (base->is_Phi() && base->req() == 3) {
never@452 1167 AllocateNode* allocation = NULL;
never@452 1168 int allocation_index = -1;
never@452 1169 int load_index = -1;
never@452 1170 for (uint i = 1; i < base->req(); i++) {
never@452 1171 allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
never@452 1172 if (allocation != NULL) {
never@452 1173 allocation_index = i;
never@452 1174 load_index = 3 - allocation_index;
never@452 1175 break;
never@452 1176 }
never@452 1177 }
kvn@1018 1178 bool has_load = ( allocation != NULL &&
kvn@1018 1179 (base->in(load_index)->is_Load() ||
kvn@1018 1180 base->in(load_index)->is_DecodeN() &&
kvn@1018 1181 base->in(load_index)->in(1)->is_Load()) );
kvn@1018 1182 if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
never@452 1183 // Push the loads from the phi that comes from valueOf up
never@452 1184 // through it to allow elimination of the loads and the recovery
never@452 1185 // of the original value.
never@452 1186 Node* mem_phi = in(Memory);
never@452 1187 Node* offset = in(Address)->in(AddPNode::Offset);
never@988 1188 Node* region = base->in(0);
never@452 1189
never@452 1190 Node* in1 = clone();
never@452 1191 Node* in1_addr = in1->in(Address)->clone();
never@452 1192 in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
never@452 1193 in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
never@452 1194 in1_addr->set_req(AddPNode::Offset, offset);
never@988 1195 in1->set_req(0, region->in(allocation_index));
never@452 1196 in1->set_req(Address, in1_addr);
never@452 1197 in1->set_req(Memory, mem_phi->in(allocation_index));
never@452 1198
never@452 1199 Node* in2 = clone();
never@452 1200 Node* in2_addr = in2->in(Address)->clone();
never@452 1201 in2_addr->set_req(AddPNode::Base, base->in(load_index));
never@452 1202 in2_addr->set_req(AddPNode::Address, base->in(load_index));
never@452 1203 in2_addr->set_req(AddPNode::Offset, offset);
never@988 1204 in2->set_req(0, region->in(load_index));
never@452 1205 in2->set_req(Address, in2_addr);
never@452 1206 in2->set_req(Memory, mem_phi->in(load_index));
never@452 1207
never@452 1208 in1_addr = phase->transform(in1_addr);
never@452 1209 in1 = phase->transform(in1);
never@452 1210 in2_addr = phase->transform(in2_addr);
never@452 1211 in2 = phase->transform(in2);
never@452 1212
never@988 1213 PhiNode* result = PhiNode::make_blank(region, this);
never@452 1214 result->set_req(allocation_index, in1);
never@452 1215 result->set_req(load_index, in2);
never@452 1216 return result;
never@452 1217 }
kvn@1018 1218 } else if (base->is_Load() ||
kvn@1018 1219 base->is_DecodeN() && base->in(1)->is_Load()) {
kvn@1018 1220 if (base->is_DecodeN()) {
kvn@1018 1221 // Get LoadN node which loads cached Integer object
kvn@1018 1222 base = base->in(1);
kvn@1018 1223 }
never@452 1224 // Eliminate the load of Integer.value for integers from the cache
never@452 1225 // array by deriving the value from the index into the array.
never@452 1226 // Capture the offset of the load and then reverse the computation.
never@452 1227 Node* load_base = base->in(Address)->in(AddPNode::Base);
kvn@1018 1228 if (load_base->is_DecodeN()) {
kvn@1018 1229 // Get LoadN node which loads IntegerCache.cache field
kvn@1018 1230 load_base = load_base->in(1);
kvn@1018 1231 }
never@452 1232 if (load_base != NULL) {
never@452 1233 Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
never@452 1234 intptr_t cache_offset;
never@452 1235 int shift = -1;
never@452 1236 Node* cache = NULL;
never@452 1237 if (is_autobox_cache(atp)) {
kvn@464 1238 shift = exact_log2(type2aelembytes(T_OBJECT));
never@452 1239 cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
never@452 1240 }
never@452 1241 if (cache != NULL && base->in(Address)->is_AddP()) {
never@452 1242 Node* elements[4];
never@452 1243 int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@452 1244 int cache_low;
never@452 1245 if (count > 0 && fetch_autobox_base(atp, cache_low)) {
never@452 1246 int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
never@452 1247 // Add up all the offsets making of the address of the load
never@452 1248 Node* result = elements[0];
never@452 1249 for (int i = 1; i < count; i++) {
kvn@4115 1250 result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
never@452 1251 }
never@452 1252 // Remove the constant offset from the address and then
never@452 1253 // remove the scaling of the offset to recover the original index.
kvn@4115 1254 result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset)));
never@452 1255 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
never@452 1256 // Peel the shift off directly but wrap it in a dummy node
never@452 1257 // since Ideal can't return existing nodes
kvn@4115 1258 result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
never@452 1259 } else {
kvn@4115 1260 result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
never@452 1261 }
never@452 1262 #ifdef _LP64
kvn@4115 1263 result = new (phase->C) ConvL2INode(phase->transform(result));
never@452 1264 #endif
never@452 1265 return result;
never@452 1266 }
never@452 1267 }
never@452 1268 }
never@452 1269 }
never@452 1270 return NULL;
never@452 1271 }
never@452 1272
kvn@598 1273 //------------------------------split_through_phi------------------------------
kvn@598 1274 // Split instance field load through Phi.
kvn@598 1275 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@598 1276 Node* mem = in(MemNode::Memory);
kvn@598 1277 Node* address = in(MemNode::Address);
kvn@598 1278 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@598 1279 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@598 1280
kvn@598 1281 assert(mem->is_Phi() && (t_oop != NULL) &&
kvn@658 1282 t_oop->is_known_instance_field(), "invalide conditions");
kvn@598 1283
kvn@598 1284 Node *region = mem->in(0);
kvn@598 1285 if (region == NULL) {
kvn@598 1286 return NULL; // Wait stable graph
kvn@598 1287 }
kvn@598 1288 uint cnt = mem->req();
kvn@2810 1289 for (uint i = 1; i < cnt; i++) {
kvn@2810 1290 Node* rc = region->in(i);
kvn@2810 1291 if (rc == NULL || phase->type(rc) == Type::TOP)
kvn@2810 1292 return NULL; // Wait stable graph
kvn@598 1293 Node *in = mem->in(i);
kvn@2810 1294 if (in == NULL) {
kvn@598 1295 return NULL; // Wait stable graph
kvn@598 1296 }
kvn@598 1297 }
kvn@598 1298 // Check for loop invariant.
kvn@598 1299 if (cnt == 3) {
kvn@2810 1300 for (uint i = 1; i < cnt; i++) {
kvn@598 1301 Node *in = mem->in(i);
kvn@598 1302 Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
kvn@598 1303 if (m == mem) {
kvn@598 1304 set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
kvn@598 1305 return this;
kvn@598 1306 }
kvn@598 1307 }
kvn@598 1308 }
kvn@598 1309 // Split through Phi (see original code in loopopts.cpp).
kvn@598 1310 assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
kvn@598 1311
kvn@598 1312 // Do nothing here if Identity will find a value
kvn@598 1313 // (to avoid infinite chain of value phis generation).
kvn@2810 1314 if (!phase->eqv(this, this->Identity(phase)))
kvn@598 1315 return NULL;
kvn@598 1316
kvn@598 1317 // Skip the split if the region dominates some control edge of the address.
kvn@2810 1318 if (!MemNode::all_controls_dominate(address, region))
kvn@598 1319 return NULL;
kvn@598 1320
kvn@598 1321 const Type* this_type = this->bottom_type();
kvn@598 1322 int this_index = phase->C->get_alias_index(addr_t);
kvn@598 1323 int this_offset = addr_t->offset();
kvn@598 1324 int this_iid = addr_t->is_oopptr()->instance_id();
kvn@598 1325 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@4115 1326 Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@2810 1327 for (uint i = 1; i < region->req(); i++) {
kvn@598 1328 Node *x;
kvn@598 1329 Node* the_clone = NULL;
kvn@2810 1330 if (region->in(i) == phase->C->top()) {
kvn@598 1331 x = phase->C->top(); // Dead path? Use a dead data op
kvn@598 1332 } else {
kvn@598 1333 x = this->clone(); // Else clone up the data op
kvn@598 1334 the_clone = x; // Remember for possible deletion.
kvn@598 1335 // Alter data node to use pre-phi inputs
kvn@2810 1336 if (this->in(0) == region) {
kvn@2810 1337 x->set_req(0, region->in(i));
kvn@598 1338 } else {
kvn@2810 1339 x->set_req(0, NULL);
kvn@598 1340 }
kvn@2810 1341 for (uint j = 1; j < this->req(); j++) {
kvn@598 1342 Node *in = this->in(j);
kvn@2810 1343 if (in->is_Phi() && in->in(0) == region)
kvn@2810 1344 x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
kvn@598 1345 }
kvn@598 1346 }
kvn@598 1347 // Check for a 'win' on some paths
kvn@598 1348 const Type *t = x->Value(igvn);
kvn@598 1349
kvn@598 1350 bool singleton = t->singleton();
kvn@598 1351
kvn@598 1352 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@2810 1353 if (singleton && t == Type::TOP) {
kvn@598 1354 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1355 }
kvn@598 1356
kvn@2810 1357 if (singleton) {
kvn@598 1358 x = igvn->makecon(t);
kvn@598 1359 } else {
kvn@598 1360 // We now call Identity to try to simplify the cloned node.
kvn@598 1361 // Note that some Identity methods call phase->type(this).
kvn@598 1362 // Make sure that the type array is big enough for
kvn@598 1363 // our new node, even though we may throw the node away.
kvn@598 1364 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1365 igvn->set_type(x, t);
kvn@728 1366 // If x is a TypeNode, capture any more-precise type permanently into Node
twisti@1040 1367 // otherwise it will be not updated during igvn->transform since
kvn@728 1368 // igvn->type(x) is set to x->Value() already.
kvn@728 1369 x->raise_bottom_type(t);
kvn@598 1370 Node *y = x->Identity(igvn);
kvn@2810 1371 if (y != x) {
kvn@598 1372 x = y;
kvn@598 1373 } else {
kvn@598 1374 y = igvn->hash_find(x);
kvn@2810 1375 if (y) {
kvn@598 1376 x = y;
kvn@598 1377 } else {
kvn@598 1378 // Else x is a new node we are keeping
kvn@598 1379 // We do not need register_new_node_with_optimizer
kvn@598 1380 // because set_type has already been called.
kvn@598 1381 igvn->_worklist.push(x);
kvn@598 1382 }
kvn@598 1383 }
kvn@598 1384 }
kvn@598 1385 if (x != the_clone && the_clone != NULL)
kvn@598 1386 igvn->remove_dead_node(the_clone);
kvn@598 1387 phi->set_req(i, x);
kvn@598 1388 }
kvn@2810 1389 // Record Phi
kvn@2810 1390 igvn->register_new_node_with_optimizer(phi);
kvn@2810 1391 return phi;
kvn@598 1392 }
never@452 1393
duke@435 1394 //------------------------------Ideal------------------------------------------
duke@435 1395 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1396 // zero out the control input.
duke@435 1397 // If the offset is constant and the base is an object allocation,
duke@435 1398 // try to hook me up to the exact initializing store.
duke@435 1399 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1400 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1401 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1402
duke@435 1403 Node* ctrl = in(MemNode::Control);
duke@435 1404 Node* address = in(MemNode::Address);
duke@435 1405
duke@435 1406 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1407 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1408 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1409 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1410 ctrl = ctrl->in(0);
duke@435 1411 set_req(MemNode::Control,ctrl);
duke@435 1412 }
duke@435 1413
kvn@1143 1414 intptr_t ignore = 0;
kvn@1143 1415 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@1143 1416 if (base != NULL
kvn@1143 1417 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
kvn@1143 1418 // Check for useless control edge in some common special cases
kvn@1143 1419 if (in(MemNode::Control) != NULL
duke@435 1420 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1421 && all_controls_dominate(base, phase->C->start())) {
duke@435 1422 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1423 set_req(MemNode::Control, NULL);
duke@435 1424 }
kvn@1143 1425
kvn@1143 1426 if (EliminateAutoBox && can_reshape) {
kvn@1143 1427 assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
never@452 1428 Compile::AliasType* atp = phase->C->alias_type(adr_type());
never@452 1429 if (is_autobox_object(atp)) {
never@452 1430 Node* result = eliminate_autobox(phase);
never@452 1431 if (result != NULL) return result;
never@452 1432 }
never@452 1433 }
never@452 1434 }
never@452 1435
kvn@509 1436 Node* mem = in(MemNode::Memory);
kvn@509 1437 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1438
kvn@509 1439 if (addr_t != NULL) {
kvn@509 1440 // try to optimize our memory input
kvn@509 1441 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
kvn@509 1442 if (opt_mem != mem) {
kvn@509 1443 set_req(MemNode::Memory, opt_mem);
kvn@740 1444 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1445 return this;
kvn@509 1446 }
kvn@509 1447 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@509 1448 if (can_reshape && opt_mem->is_Phi() &&
kvn@658 1449 (t_oop != NULL) && t_oop->is_known_instance_field()) {
kvn@3260 1450 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@3260 1451 if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
kvn@3260 1452 // Delay this transformation until memory Phi is processed.
kvn@3260 1453 phase->is_IterGVN()->_worklist.push(this);
kvn@3260 1454 return NULL;
kvn@3260 1455 }
kvn@598 1456 // Split instance field load through Phi.
kvn@598 1457 Node* result = split_through_phi(phase);
kvn@598 1458 if (result != NULL) return result;
kvn@509 1459 }
kvn@509 1460 }
kvn@509 1461
duke@435 1462 // Check for prior store with a different base or offset; make Load
duke@435 1463 // independent. Skip through any number of them. Bail out if the stores
duke@435 1464 // are in an endless dead cycle and report no progress. This is a key
duke@435 1465 // transform for Reflection. However, if after skipping through the Stores
duke@435 1466 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1467 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1468 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1469 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1470 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1471 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1472 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1473 // fold up, do so.
duke@435 1474 Node* prev_mem = find_previous_store(phase);
duke@435 1475 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1476 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1477 // (c) See if we can fold up on the spot, but don't fold up here.
twisti@993 1478 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
duke@435 1479 // just return a prior value, which is done by Identity calls.
duke@435 1480 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1481 // Make ready for step (d):
duke@435 1482 set_req(MemNode::Memory, prev_mem);
duke@435 1483 return this;
duke@435 1484 }
duke@435 1485 }
duke@435 1486
duke@435 1487 return NULL; // No further progress
duke@435 1488 }
duke@435 1489
duke@435 1490 // Helper to recognize certain Klass fields which are invariant across
duke@435 1491 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1492 const Type*
duke@435 1493 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1494 ciKlass* klass) const {
stefank@3391 1495 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
duke@435 1496 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1497 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1498 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1499 return TypeInt::make(klass->modifier_flags());
duke@435 1500 }
stefank@3391 1501 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
duke@435 1502 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1503 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1504 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1505 return TypeInt::make(klass->access_flags());
duke@435 1506 }
stefank@3391 1507 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
duke@435 1508 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1509 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1510 return TypeInt::make(klass->layout_helper());
duke@435 1511 }
duke@435 1512
duke@435 1513 // No match.
duke@435 1514 return NULL;
duke@435 1515 }
duke@435 1516
duke@435 1517 //------------------------------Value-----------------------------------------
duke@435 1518 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1519 // Either input is TOP ==> the result is TOP
duke@435 1520 Node* mem = in(MemNode::Memory);
duke@435 1521 const Type *t1 = phase->type(mem);
duke@435 1522 if (t1 == Type::TOP) return Type::TOP;
duke@435 1523 Node* adr = in(MemNode::Address);
duke@435 1524 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1525 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1526 int off = tp->offset();
duke@435 1527 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
twisti@3102 1528 Compile* C = phase->C;
duke@435 1529
duke@435 1530 // Try to guess loaded type from pointer type
duke@435 1531 if (tp->base() == Type::AryPtr) {
duke@435 1532 const Type *t = tp->is_aryptr()->elem();
duke@435 1533 // Don't do this for integer types. There is only potential profit if
duke@435 1534 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1535 // more restrictive than t. This only happens here if one is short and the other
duke@435 1536 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1537 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1538 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1539 //
duke@435 1540 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1541 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1542 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1543 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1544 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1545 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1546 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1547 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1548 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@3882 1549 && (_type->isa_vect() == NULL)
kvn@728 1550 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1551 // t might actually be lower than _type, if _type is a unique
duke@435 1552 // concrete subclass of abstract class t.
duke@435 1553 // Make sure the reference is not into the header, by comparing
duke@435 1554 // the offset against the offset of the start of the array's data.
duke@435 1555 // Different array types begin at slightly different offsets (12 vs. 16).
duke@435 1556 // We choose T_BYTE as an example base type that is least restrictive
duke@435 1557 // as to alignment, which will therefore produce the smallest
duke@435 1558 // possible base offset.
duke@435 1559 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1560 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
duke@435 1561 const Type* jt = t->join(_type);
duke@435 1562 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1563 if (jt->empty() && !t->empty()) {
duke@435 1564 // This can happen if a interface-typed array narrows to a class type.
duke@435 1565 jt = _type;
duke@435 1566 }
never@452 1567
kvn@1143 1568 if (EliminateAutoBox && adr->is_AddP()) {
never@452 1569 // The pointers in the autobox arrays are always non-null
kvn@1143 1570 Node* base = adr->in(AddPNode::Base);
kvn@1143 1571 if (base != NULL &&
kvn@1143 1572 !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
twisti@3102 1573 Compile::AliasType* atp = C->alias_type(base->adr_type());
never@452 1574 if (is_autobox_cache(atp)) {
never@452 1575 return jt->join(TypePtr::NOTNULL)->is_ptr();
never@452 1576 }
never@452 1577 }
never@452 1578 }
duke@435 1579 return jt;
duke@435 1580 }
duke@435 1581 }
duke@435 1582 } else if (tp->base() == Type::InstPtr) {
twisti@3102 1583 ciEnv* env = C->env();
never@1515 1584 const TypeInstPtr* tinst = tp->is_instptr();
never@1515 1585 ciKlass* klass = tinst->klass();
duke@435 1586 assert( off != Type::OffsetBot ||
duke@435 1587 // arrays can be cast to Objects
duke@435 1588 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1589 // unsafe field access may not have a constant offset
twisti@3102 1590 C->has_unsafe_access(),
duke@435 1591 "Field accesses must be precise" );
duke@435 1592 // For oop loads, we expect the _type to be precise
twisti@3102 1593 if (klass == env->String_klass() &&
never@1515 1594 adr->is_AddP() && off != Type::OffsetBot) {
kvn@2602 1595 // For constant Strings treat the final fields as compile time constants.
never@1515 1596 Node* base = adr->in(AddPNode::Base);
never@2121 1597 const TypeOopPtr* t = phase->type(base)->isa_oopptr();
never@2121 1598 if (t != NULL && t->singleton()) {
twisti@3102 1599 ciField* field = env->String_klass()->get_field_by_offset(off, false);
kvn@2602 1600 if (field != NULL && field->is_final()) {
kvn@2602 1601 ciObject* string = t->const_oop();
kvn@2602 1602 ciConstant constant = string->as_instance()->field_value(field);
kvn@2602 1603 if (constant.basic_type() == T_INT) {
kvn@2602 1604 return TypeInt::make(constant.as_int());
kvn@2602 1605 } else if (constant.basic_type() == T_ARRAY) {
kvn@2602 1606 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
jcoomes@2661 1607 return TypeNarrowOop::make_from_constant(constant.as_object(), true);
kvn@2602 1608 } else {
jcoomes@2661 1609 return TypeOopPtr::make_from_constant(constant.as_object(), true);
kvn@2602 1610 }
never@1515 1611 }
never@1515 1612 }
never@1515 1613 }
never@1515 1614 }
twisti@3102 1615 // Optimizations for constant objects
twisti@3102 1616 ciObject* const_oop = tinst->const_oop();
twisti@3102 1617 if (const_oop != NULL) {
twisti@3102 1618 // For constant CallSites treat the target field as a compile time constant.
twisti@3102 1619 if (const_oop->is_call_site()) {
twisti@3102 1620 ciCallSite* call_site = const_oop->as_call_site();
twisti@3102 1621 ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
twisti@3102 1622 if (field != NULL && field->is_call_site_target()) {
twisti@3102 1623 ciMethodHandle* target = call_site->get_target();
twisti@3102 1624 if (target != NULL) { // just in case
twisti@3102 1625 ciConstant constant(T_OBJECT, target);
twisti@3102 1626 const Type* t;
twisti@3102 1627 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
twisti@3102 1628 t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
twisti@3102 1629 } else {
twisti@3102 1630 t = TypeOopPtr::make_from_constant(constant.as_object(), true);
twisti@3102 1631 }
twisti@3102 1632 // Add a dependence for invalidation of the optimization.
twisti@3102 1633 if (!call_site->is_constant_call_site()) {
twisti@3102 1634 C->dependencies()->assert_call_site_target_value(call_site, target);
twisti@3102 1635 }
twisti@3102 1636 return t;
twisti@3102 1637 }
twisti@3102 1638 }
twisti@3102 1639 }
twisti@3102 1640 }
duke@435 1641 } else if (tp->base() == Type::KlassPtr) {
duke@435 1642 assert( off != Type::OffsetBot ||
duke@435 1643 // arrays can be cast to Objects
duke@435 1644 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1645 // also allow array-loading from the primary supertype
duke@435 1646 // array during subtype checks
duke@435 1647 Opcode() == Op_LoadKlass,
duke@435 1648 "Field accesses must be precise" );
duke@435 1649 // For klass/static loads, we expect the _type to be precise
duke@435 1650 }
duke@435 1651
duke@435 1652 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1653 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1654 ciKlass* klass = tkls->klass();
duke@435 1655 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1656 // We are loading a field from a Klass metaobject whose identity
duke@435 1657 // is known at compile time (the type is "exact" or "precise").
duke@435 1658 // Check for fields we know are maintained as constants by the VM.
stefank@3391 1659 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
duke@435 1660 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1661 // (Folds up type checking code.)
duke@435 1662 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1663 return TypeInt::make(klass->super_check_offset());
duke@435 1664 }
duke@435 1665 // Compute index into primary_supers array
coleenp@4037 1666 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1667 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1668 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1669 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1670 // (Folds up type checking code.)
duke@435 1671 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1672 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1673 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1674 }
duke@435 1675 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1676 if (aift != NULL) return aift;
coleenp@4142 1677 if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
duke@435 1678 && klass->is_array_klass()) {
coleenp@4142 1679 // The field is ArrayKlass::_component_mirror. Return its (constant) value.
duke@435 1680 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1681 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1682 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1683 }
stefank@3391 1684 if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
duke@435 1685 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1686 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1687 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1688 return TypeInstPtr::make(klass->java_mirror());
duke@435 1689 }
duke@435 1690 }
duke@435 1691
duke@435 1692 // We can still check if we are loading from the primary_supers array at a
duke@435 1693 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1694 // than or equal to its super depth are correct.
duke@435 1695 if (klass->is_loaded() ) {
coleenp@4037 1696 ciType *inner = klass;
duke@435 1697 while( inner->is_obj_array_klass() )
duke@435 1698 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1699 if( inner->is_instance_klass() &&
duke@435 1700 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1701 // Compute index into primary_supers array
coleenp@4037 1702 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1703 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1704 if( depth < ciKlass::primary_super_limit() &&
duke@435 1705 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1706 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1707 // (Folds up type checking code.)
duke@435 1708 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1709 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1710 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1711 }
duke@435 1712 }
duke@435 1713 }
duke@435 1714
duke@435 1715 // If the type is enough to determine that the thing is not an array,
duke@435 1716 // we can give the layout_helper a positive interval type.
duke@435 1717 // This will help short-circuit some reflective code.
stefank@3391 1718 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
duke@435 1719 && !klass->is_array_klass() // not directly typed as an array
duke@435 1720 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1721 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1722 ) {
duke@435 1723 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1724 // test to (klass != Serializable && klass != Cloneable).
duke@435 1725 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1726 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1727 // The key property of this type is that it folds up tests
duke@435 1728 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1729 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1730 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1731 }
duke@435 1732 }
duke@435 1733
duke@435 1734 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1735 // if the load is provably beyond the header of the object.
duke@435 1736 // (Also allow a variable load from a fresh array to produce zero.)
kvn@2810 1737 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@2810 1738 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
kvn@2810 1739 if (ReduceFieldZeroing || is_instance) {
duke@435 1740 Node* value = can_see_stored_value(mem,phase);
kvn@3442 1741 if (value != NULL && value->is_Con()) {
kvn@3442 1742 assert(value->bottom_type()->higher_equal(_type),"sanity");
duke@435 1743 return value->bottom_type();
kvn@3442 1744 }
duke@435 1745 }
duke@435 1746
kvn@2810 1747 if (is_instance) {
kvn@499 1748 // If we have an instance type and our memory input is the
kvn@499 1749 // programs's initial memory state, there is no matching store,
kvn@499 1750 // so just return a zero of the appropriate type
kvn@499 1751 Node *mem = in(MemNode::Memory);
kvn@499 1752 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1753 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1754 return Type::get_zero_type(_type->basic_type());
kvn@499 1755 }
kvn@499 1756 }
duke@435 1757 return _type;
duke@435 1758 }
duke@435 1759
duke@435 1760 //------------------------------match_edge-------------------------------------
duke@435 1761 // Do we Match on this edge index or not? Match only the address.
duke@435 1762 uint LoadNode::match_edge(uint idx) const {
duke@435 1763 return idx == MemNode::Address;
duke@435 1764 }
duke@435 1765
duke@435 1766 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1767 //
duke@435 1768 // If the previous store is to the same address as this load,
duke@435 1769 // and the value stored was larger than a byte, replace this load
duke@435 1770 // with the value stored truncated to a byte. If no truncation is
duke@435 1771 // needed, the replacement is done in LoadNode::Identity().
duke@435 1772 //
duke@435 1773 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1774 Node* mem = in(MemNode::Memory);
duke@435 1775 Node* value = can_see_stored_value(mem,phase);
duke@435 1776 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1777 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
kvn@4115 1778 return new (phase->C) RShiftINode(result, phase->intcon(24));
duke@435 1779 }
duke@435 1780 // Identity call will handle the case where truncation is not needed.
duke@435 1781 return LoadNode::Ideal(phase, can_reshape);
duke@435 1782 }
duke@435 1783
kvn@3442 1784 const Type* LoadBNode::Value(PhaseTransform *phase) const {
kvn@3442 1785 Node* mem = in(MemNode::Memory);
kvn@3442 1786 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1787 if (value != NULL && value->is_Con() &&
kvn@3448 1788 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1789 // If the input to the store does not fit with the load's result type,
kvn@3442 1790 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1791 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1792 int con = value->get_int();
kvn@3442 1793 return TypeInt::make((con << 24) >> 24);
kvn@3442 1794 }
kvn@3442 1795 return LoadNode::Value(phase);
kvn@3442 1796 }
kvn@3442 1797
twisti@1059 1798 //--------------------------LoadUBNode::Ideal-------------------------------------
twisti@1059 1799 //
twisti@1059 1800 // If the previous store is to the same address as this load,
twisti@1059 1801 // and the value stored was larger than a byte, replace this load
twisti@1059 1802 // with the value stored truncated to a byte. If no truncation is
twisti@1059 1803 // needed, the replacement is done in LoadNode::Identity().
twisti@1059 1804 //
twisti@1059 1805 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
twisti@1059 1806 Node* mem = in(MemNode::Memory);
twisti@1059 1807 Node* value = can_see_stored_value(mem, phase);
twisti@1059 1808 if (value && !phase->type(value)->higher_equal(_type))
kvn@4115 1809 return new (phase->C) AndINode(value, phase->intcon(0xFF));
twisti@1059 1810 // Identity call will handle the case where truncation is not needed.
twisti@1059 1811 return LoadNode::Ideal(phase, can_reshape);
twisti@1059 1812 }
twisti@1059 1813
kvn@3442 1814 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
kvn@3442 1815 Node* mem = in(MemNode::Memory);
kvn@3442 1816 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1817 if (value != NULL && value->is_Con() &&
kvn@3448 1818 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1819 // If the input to the store does not fit with the load's result type,
kvn@3442 1820 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1821 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1822 int con = value->get_int();
kvn@3442 1823 return TypeInt::make(con & 0xFF);
kvn@3442 1824 }
kvn@3442 1825 return LoadNode::Value(phase);
kvn@3442 1826 }
kvn@3442 1827
twisti@993 1828 //--------------------------LoadUSNode::Ideal-------------------------------------
duke@435 1829 //
duke@435 1830 // If the previous store is to the same address as this load,
duke@435 1831 // and the value stored was larger than a char, replace this load
duke@435 1832 // with the value stored truncated to a char. If no truncation is
duke@435 1833 // needed, the replacement is done in LoadNode::Identity().
duke@435 1834 //
twisti@993 1835 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1836 Node* mem = in(MemNode::Memory);
duke@435 1837 Node* value = can_see_stored_value(mem,phase);
duke@435 1838 if( value && !phase->type(value)->higher_equal( _type ) )
kvn@4115 1839 return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
duke@435 1840 // Identity call will handle the case where truncation is not needed.
duke@435 1841 return LoadNode::Ideal(phase, can_reshape);
duke@435 1842 }
duke@435 1843
kvn@3442 1844 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
kvn@3442 1845 Node* mem = in(MemNode::Memory);
kvn@3442 1846 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1847 if (value != NULL && value->is_Con() &&
kvn@3448 1848 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1849 // If the input to the store does not fit with the load's result type,
kvn@3442 1850 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1851 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1852 int con = value->get_int();
kvn@3442 1853 return TypeInt::make(con & 0xFFFF);
kvn@3442 1854 }
kvn@3442 1855 return LoadNode::Value(phase);
kvn@3442 1856 }
kvn@3442 1857
duke@435 1858 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1859 //
duke@435 1860 // If the previous store is to the same address as this load,
duke@435 1861 // and the value stored was larger than a short, replace this load
duke@435 1862 // with the value stored truncated to a short. If no truncation is
duke@435 1863 // needed, the replacement is done in LoadNode::Identity().
duke@435 1864 //
duke@435 1865 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1866 Node* mem = in(MemNode::Memory);
duke@435 1867 Node* value = can_see_stored_value(mem,phase);
duke@435 1868 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1869 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
kvn@4115 1870 return new (phase->C) RShiftINode(result, phase->intcon(16));
duke@435 1871 }
duke@435 1872 // Identity call will handle the case where truncation is not needed.
duke@435 1873 return LoadNode::Ideal(phase, can_reshape);
duke@435 1874 }
duke@435 1875
kvn@3442 1876 const Type* LoadSNode::Value(PhaseTransform *phase) const {
kvn@3442 1877 Node* mem = in(MemNode::Memory);
kvn@3442 1878 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1879 if (value != NULL && value->is_Con() &&
kvn@3448 1880 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1881 // If the input to the store does not fit with the load's result type,
kvn@3442 1882 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1883 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1884 int con = value->get_int();
kvn@3442 1885 return TypeInt::make((con << 16) >> 16);
kvn@3442 1886 }
kvn@3442 1887 return LoadNode::Value(phase);
kvn@3442 1888 }
kvn@3442 1889
duke@435 1890 //=============================================================================
kvn@599 1891 //----------------------------LoadKlassNode::make------------------------------
kvn@599 1892 // Polymorphic factory method:
kvn@599 1893 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 1894 Compile* C = gvn.C;
kvn@599 1895 Node *ctl = NULL;
kvn@599 1896 // sanity check the alias category against the created node type
coleenp@4037 1897 const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
coleenp@4037 1898 assert(adr_type != NULL, "expecting TypeKlassPtr");
kvn@599 1899 #ifdef _LP64
roland@4159 1900 if (adr_type->is_ptr_to_narrowklass()) {
coleenp@4037 1901 assert(UseCompressedKlassPointers, "no compressed klasses");
roland@4159 1902 Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
roland@4159 1903 return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 1904 }
kvn@599 1905 #endif
roland@4159 1906 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@4115 1907 return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
kvn@599 1908 }
kvn@599 1909
duke@435 1910 //------------------------------Value------------------------------------------
duke@435 1911 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1912 return klass_value_common(phase);
kvn@599 1913 }
kvn@599 1914
kvn@599 1915 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 1916 // Either input is TOP ==> the result is TOP
duke@435 1917 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1918 if (t1 == Type::TOP) return Type::TOP;
duke@435 1919 Node *adr = in(MemNode::Address);
duke@435 1920 const Type *t2 = phase->type( adr );
duke@435 1921 if (t2 == Type::TOP) return Type::TOP;
duke@435 1922 const TypePtr *tp = t2->is_ptr();
duke@435 1923 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 1924 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 1925
duke@435 1926 // Return a more precise klass, if possible
duke@435 1927 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 1928 if (tinst != NULL) {
duke@435 1929 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 1930 int offset = tinst->offset();
duke@435 1931 if (ik == phase->C->env()->Class_klass()
duke@435 1932 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1933 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1934 // We are loading a special hidden field from a Class mirror object,
duke@435 1935 // the field which points to the VM's Klass metaobject.
duke@435 1936 ciType* t = tinst->java_mirror_type();
duke@435 1937 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 1938 if (t != NULL) {
duke@435 1939 // constant oop => constant klass
duke@435 1940 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1941 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 1942 }
duke@435 1943 if (!t->is_klass()) {
duke@435 1944 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 1945 return TypePtr::NULL_PTR;
duke@435 1946 }
duke@435 1947 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 1948 return TypeKlassPtr::make(t->as_klass());
duke@435 1949 }
duke@435 1950 // non-constant mirror, so we can't tell what's going on
duke@435 1951 }
duke@435 1952 if( !ik->is_loaded() )
duke@435 1953 return _type; // Bail out if not loaded
duke@435 1954 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1955 if (tinst->klass_is_exact()) {
duke@435 1956 return TypeKlassPtr::make(ik);
duke@435 1957 }
duke@435 1958 // See if we can become precise: no subklasses and no interface
duke@435 1959 // (Note: We need to support verified interfaces.)
duke@435 1960 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1961 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1962 // Add a dependence; if any subclass added we need to recompile
duke@435 1963 if (!ik->is_final()) {
duke@435 1964 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 1965 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1966 }
duke@435 1967 // Return precise klass
duke@435 1968 return TypeKlassPtr::make(ik);
duke@435 1969 }
duke@435 1970
duke@435 1971 // Return root of possible klass
duke@435 1972 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 1973 }
duke@435 1974 }
duke@435 1975
duke@435 1976 // Check for loading klass from an array
duke@435 1977 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 1978 if( tary != NULL ) {
duke@435 1979 ciKlass *tary_klass = tary->klass();
duke@435 1980 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 1981 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 1982 if (tary->klass_is_exact()) {
duke@435 1983 return TypeKlassPtr::make(tary_klass);
duke@435 1984 }
duke@435 1985 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 1986 // If the klass is an object array, we defer the question to the
duke@435 1987 // array component klass.
duke@435 1988 if( ak->is_obj_array_klass() ) {
duke@435 1989 assert( ak->is_loaded(), "" );
duke@435 1990 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 1991 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 1992 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 1993 // See if we can become precise: no subklasses and no interface
duke@435 1994 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1995 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1996 // Add a dependence; if any subclass added we need to recompile
duke@435 1997 if (!ik->is_final()) {
duke@435 1998 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1999 }
duke@435 2000 // Return precise array klass
duke@435 2001 return TypeKlassPtr::make(ak);
duke@435 2002 }
duke@435 2003 }
duke@435 2004 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 2005 } else { // Found a type-array?
duke@435 2006 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2007 assert( ak->is_type_array_klass(), "" );
duke@435 2008 return TypeKlassPtr::make(ak); // These are always precise
duke@435 2009 }
duke@435 2010 }
duke@435 2011 }
duke@435 2012
duke@435 2013 // Check for loading klass from an array klass
duke@435 2014 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 2015 if (tkls != NULL && !StressReflectiveCode) {
duke@435 2016 ciKlass* klass = tkls->klass();
duke@435 2017 if( !klass->is_loaded() )
duke@435 2018 return _type; // Bail out if not loaded
duke@435 2019 if( klass->is_obj_array_klass() &&
coleenp@4142 2020 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
duke@435 2021 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 2022 // // Always returning precise element type is incorrect,
duke@435 2023 // // e.g., element type could be object and array may contain strings
duke@435 2024 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 2025
duke@435 2026 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 2027 // according to the element type's subclassing.
duke@435 2028 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 2029 }
duke@435 2030 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
stefank@3391 2031 tkls->offset() == in_bytes(Klass::super_offset())) {
duke@435 2032 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 2033 // The field is Klass::_super. Return its (constant) value.
duke@435 2034 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 2035 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 2036 }
duke@435 2037 }
duke@435 2038
duke@435 2039 // Bailout case
duke@435 2040 return LoadNode::Value(phase);
duke@435 2041 }
duke@435 2042
duke@435 2043 //------------------------------Identity---------------------------------------
duke@435 2044 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 2045 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 2046 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2047 return klass_identity_common(phase);
kvn@599 2048 }
kvn@599 2049
kvn@599 2050 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 2051 Node* x = LoadNode::Identity(phase);
duke@435 2052 if (x != this) return x;
duke@435 2053
duke@435 2054 // Take apart the address into an oop and and offset.
duke@435 2055 // Return 'this' if we cannot.
duke@435 2056 Node* adr = in(MemNode::Address);
duke@435 2057 intptr_t offset = 0;
duke@435 2058 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2059 if (base == NULL) return this;
duke@435 2060 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 2061 if (toop == NULL) return this;
duke@435 2062
duke@435 2063 // We can fetch the klass directly through an AllocateNode.
duke@435 2064 // This works even if the klass is not constant (clone or newArray).
duke@435 2065 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 2066 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 2067 if (allocated_klass != NULL) {
duke@435 2068 return allocated_klass;
duke@435 2069 }
duke@435 2070 }
duke@435 2071
coleenp@4037 2072 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
coleenp@4142 2073 // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
duke@435 2074 // See inline_native_Class_query for occurrences of these patterns.
duke@435 2075 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 2076 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 2077 //
duke@435 2078 // This improves reflective code, often making the Class
duke@435 2079 // mirror go completely dead. (Current exception: Class
duke@435 2080 // mirrors may appear in debug info, but we could clean them out by
coleenp@4037 2081 // introducing a new debug info operator for Klass*.java_mirror).
duke@435 2082 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 2083 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 2084 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 2085 // We are loading a special hidden field from a Class mirror,
coleenp@4142 2086 // the field which points to its Klass or ArrayKlass metaobject.
duke@435 2087 if (base->is_Load()) {
duke@435 2088 Node* adr2 = base->in(MemNode::Address);
duke@435 2089 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 2090 if (tkls != NULL && !tkls->empty()
duke@435 2091 && (tkls->klass()->is_instance_klass() ||
duke@435 2092 tkls->klass()->is_array_klass())
duke@435 2093 && adr2->is_AddP()
duke@435 2094 ) {
stefank@3391 2095 int mirror_field = in_bytes(Klass::java_mirror_offset());
duke@435 2096 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
coleenp@4142 2097 mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
duke@435 2098 }
stefank@3391 2099 if (tkls->offset() == mirror_field) {
duke@435 2100 return adr2->in(AddPNode::Base);
duke@435 2101 }
duke@435 2102 }
duke@435 2103 }
duke@435 2104 }
duke@435 2105
duke@435 2106 return this;
duke@435 2107 }
duke@435 2108
kvn@599 2109
kvn@599 2110 //------------------------------Value------------------------------------------
kvn@599 2111 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 2112 const Type *t = klass_value_common(phase);
kvn@656 2113 if (t == Type::TOP)
kvn@656 2114 return t;
kvn@656 2115
roland@4159 2116 return t->make_narrowklass();
kvn@599 2117 }
kvn@599 2118
kvn@599 2119 //------------------------------Identity---------------------------------------
kvn@599 2120 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 2121 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 2122 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2123 Node *x = klass_identity_common(phase);
kvn@599 2124
kvn@599 2125 const Type *t = phase->type( x );
kvn@599 2126 if( t == Type::TOP ) return x;
roland@4159 2127 if( t->isa_narrowklass()) return x;
roland@4159 2128 assert (!t->isa_narrowoop(), "no narrow oop here");
roland@4159 2129
roland@4159 2130 return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
kvn@599 2131 }
kvn@599 2132
duke@435 2133 //------------------------------Value-----------------------------------------
duke@435 2134 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 2135 // Either input is TOP ==> the result is TOP
duke@435 2136 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2137 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2138 Node *adr = in(MemNode::Address);
duke@435 2139 const Type *t2 = phase->type( adr );
duke@435 2140 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2141 const TypePtr *tp = t2->is_ptr();
duke@435 2142 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 2143 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 2144 if( !tap ) return _type;
duke@435 2145 return tap->size();
duke@435 2146 }
duke@435 2147
rasbold@801 2148 //-------------------------------Ideal---------------------------------------
rasbold@801 2149 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 2150 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 2151 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 2152 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 2153
rasbold@801 2154 // Take apart the address into an oop and and offset.
rasbold@801 2155 // Return 'this' if we cannot.
rasbold@801 2156 Node* adr = in(MemNode::Address);
rasbold@801 2157 intptr_t offset = 0;
rasbold@801 2158 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 2159 if (base == NULL) return NULL;
rasbold@801 2160 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 2161 if (tary == NULL) return NULL;
rasbold@801 2162
rasbold@801 2163 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 2164 // This works even if the length is not constant (clone or newArray).
rasbold@801 2165 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2166 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2167 if (alloc != NULL) {
rasbold@801 2168 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2169 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 2170 if (allocated_length != len) {
rasbold@801 2171 // New CastII improves on this.
rasbold@801 2172 return len;
rasbold@801 2173 }
rasbold@801 2174 }
rasbold@801 2175 }
rasbold@801 2176
rasbold@801 2177 return NULL;
rasbold@801 2178 }
rasbold@801 2179
duke@435 2180 //------------------------------Identity---------------------------------------
duke@435 2181 // Feed through the length in AllocateArray(...length...)._length.
duke@435 2182 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 2183 Node* x = LoadINode::Identity(phase);
duke@435 2184 if (x != this) return x;
duke@435 2185
duke@435 2186 // Take apart the address into an oop and and offset.
duke@435 2187 // Return 'this' if we cannot.
duke@435 2188 Node* adr = in(MemNode::Address);
duke@435 2189 intptr_t offset = 0;
duke@435 2190 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2191 if (base == NULL) return this;
duke@435 2192 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 2193 if (tary == NULL) return this;
duke@435 2194
duke@435 2195 // We can fetch the length directly through an AllocateArrayNode.
duke@435 2196 // This works even if the length is not constant (clone or newArray).
duke@435 2197 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2198 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2199 if (alloc != NULL) {
rasbold@801 2200 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2201 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 2202 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 2203 if (allocated_length == len) {
rasbold@801 2204 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 2205 return allocated_length;
rasbold@801 2206 }
duke@435 2207 }
duke@435 2208 }
duke@435 2209
duke@435 2210 return this;
duke@435 2211
duke@435 2212 }
rasbold@801 2213
duke@435 2214 //=============================================================================
duke@435 2215 //---------------------------StoreNode::make-----------------------------------
duke@435 2216 // Polymorphic factory method:
coleenp@548 2217 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
coleenp@548 2218 Compile* C = gvn.C;
kvn@1964 2219 assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 2220 ctl != NULL, "raw memory operations should have control edge");
coleenp@548 2221
duke@435 2222 switch (bt) {
duke@435 2223 case T_BOOLEAN:
kvn@4115 2224 case T_BYTE: return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
kvn@4115 2225 case T_INT: return new (C) StoreINode(ctl, mem, adr, adr_type, val);
duke@435 2226 case T_CHAR:
kvn@4115 2227 case T_SHORT: return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
kvn@4115 2228 case T_LONG: return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
kvn@4115 2229 case T_FLOAT: return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
kvn@4115 2230 case T_DOUBLE: return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
coleenp@4037 2231 case T_METADATA:
duke@435 2232 case T_ADDRESS:
coleenp@548 2233 case T_OBJECT:
coleenp@548 2234 #ifdef _LP64
roland@4159 2235 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2236 val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
kvn@4115 2237 return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
roland@4159 2238 } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
roland@4159 2239 (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
roland@4159 2240 adr->bottom_type()->isa_rawptr())) {
roland@4159 2241 val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
roland@4159 2242 return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
roland@4159 2243 }
coleenp@548 2244 #endif
kvn@656 2245 {
kvn@4115 2246 return new (C) StorePNode(ctl, mem, adr, adr_type, val);
kvn@656 2247 }
duke@435 2248 }
duke@435 2249 ShouldNotReachHere();
duke@435 2250 return (StoreNode*)NULL;
duke@435 2251 }
duke@435 2252
duke@435 2253 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
duke@435 2254 bool require_atomic = true;
kvn@4115 2255 return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
duke@435 2256 }
duke@435 2257
duke@435 2258
duke@435 2259 //--------------------------bottom_type----------------------------------------
duke@435 2260 const Type *StoreNode::bottom_type() const {
duke@435 2261 return Type::MEMORY;
duke@435 2262 }
duke@435 2263
duke@435 2264 //------------------------------hash-------------------------------------------
duke@435 2265 uint StoreNode::hash() const {
duke@435 2266 // unroll addition of interesting fields
duke@435 2267 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2268
duke@435 2269 // Since they are not commoned, do not hash them:
duke@435 2270 return NO_HASH;
duke@435 2271 }
duke@435 2272
duke@435 2273 //------------------------------Ideal------------------------------------------
duke@435 2274 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2275 // When a store immediately follows a relevant allocation/initialization,
duke@435 2276 // try to capture it into the initialization, or hoist it above.
duke@435 2277 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2278 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2279 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2280
duke@435 2281 Node* mem = in(MemNode::Memory);
duke@435 2282 Node* address = in(MemNode::Address);
duke@435 2283
never@2780 2284 // Back-to-back stores to same address? Fold em up. Generally
never@2780 2285 // unsafe if I have intervening uses... Also disallowed for StoreCM
never@2780 2286 // since they must follow each StoreP operation. Redundant StoreCMs
never@2780 2287 // are eliminated just before matching in final_graph_reshape.
kvn@3407 2288 if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
never@2780 2289 mem->Opcode() != Op_StoreCM) {
duke@435 2290 // Looking at a dead closed cycle of memory?
duke@435 2291 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2292
duke@435 2293 assert(Opcode() == mem->Opcode() ||
duke@435 2294 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2295 "no mismatched stores, except on raw memory");
duke@435 2296
duke@435 2297 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2298 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2299 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2300 // For example, 'mem' might be the final state at a conditional return.
duke@435 2301 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2302 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2303 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2304 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2305 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2306 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2307 phase->is_IterGVN());
duke@435 2308 } else {
duke@435 2309 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2310 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2311 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2312 }
duke@435 2313 return this;
duke@435 2314 }
duke@435 2315 }
duke@435 2316
duke@435 2317 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2318 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2319 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2320 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2321 InitializeNode* init = mem->in(0)->as_Initialize();
duke@435 2322 intptr_t offset = init->can_capture_store(this, phase);
duke@435 2323 if (offset > 0) {
duke@435 2324 Node* moved = init->capture_store(this, offset, phase);
duke@435 2325 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2326 // and I need to disappear.
duke@435 2327 if (moved != NULL) {
duke@435 2328 // %%% hack to ensure that Ideal returns a new node:
duke@435 2329 mem = MergeMemNode::make(phase->C, mem);
duke@435 2330 return mem; // fold me away
duke@435 2331 }
duke@435 2332 }
duke@435 2333 }
duke@435 2334
duke@435 2335 return NULL; // No further progress
duke@435 2336 }
duke@435 2337
duke@435 2338 //------------------------------Value-----------------------------------------
duke@435 2339 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2340 // Either input is TOP ==> the result is TOP
duke@435 2341 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2342 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2343 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2344 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2345 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2346 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2347 return Type::MEMORY;
duke@435 2348 }
duke@435 2349
duke@435 2350 //------------------------------Identity---------------------------------------
duke@435 2351 // Remove redundant stores:
duke@435 2352 // Store(m, p, Load(m, p)) changes to m.
duke@435 2353 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2354 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2355 Node* mem = in(MemNode::Memory);
duke@435 2356 Node* adr = in(MemNode::Address);
duke@435 2357 Node* val = in(MemNode::ValueIn);
duke@435 2358
duke@435 2359 // Load then Store? Then the Store is useless
duke@435 2360 if (val->is_Load() &&
kvn@3407 2361 val->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2362 val->in(MemNode::Memory )->eqv_uncast(mem) &&
duke@435 2363 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2364 return mem;
duke@435 2365 }
duke@435 2366
duke@435 2367 // Two stores in a row of the same value?
duke@435 2368 if (mem->is_Store() &&
kvn@3407 2369 mem->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2370 mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
duke@435 2371 mem->Opcode() == Opcode()) {
duke@435 2372 return mem;
duke@435 2373 }
duke@435 2374
duke@435 2375 // Store of zero anywhere into a freshly-allocated object?
duke@435 2376 // Then the store is useless.
duke@435 2377 // (It must already have been captured by the InitializeNode.)
duke@435 2378 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2379 // a newly allocated object is already all-zeroes everywhere
duke@435 2380 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2381 return mem;
duke@435 2382 }
duke@435 2383
duke@435 2384 // the store may also apply to zero-bits in an earlier object
duke@435 2385 Node* prev_mem = find_previous_store(phase);
duke@435 2386 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2387 if (prev_mem != NULL) {
duke@435 2388 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2389 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2390 // prev_val and val might differ by a cast; it would be good
duke@435 2391 // to keep the more informative of the two.
duke@435 2392 return mem;
duke@435 2393 }
duke@435 2394 }
duke@435 2395 }
duke@435 2396
duke@435 2397 return this;
duke@435 2398 }
duke@435 2399
duke@435 2400 //------------------------------match_edge-------------------------------------
duke@435 2401 // Do we Match on this edge index or not? Match only memory & value
duke@435 2402 uint StoreNode::match_edge(uint idx) const {
duke@435 2403 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2404 }
duke@435 2405
duke@435 2406 //------------------------------cmp--------------------------------------------
duke@435 2407 // Do not common stores up together. They generally have to be split
duke@435 2408 // back up anyways, so do not bother.
duke@435 2409 uint StoreNode::cmp( const Node &n ) const {
duke@435 2410 return (&n == this); // Always fail except on self
duke@435 2411 }
duke@435 2412
duke@435 2413 //------------------------------Ideal_masked_input-----------------------------
duke@435 2414 // Check for a useless mask before a partial-word store
duke@435 2415 // (StoreB ... (AndI valIn conIa) )
duke@435 2416 // If (conIa & mask == mask) this simplifies to
duke@435 2417 // (StoreB ... (valIn) )
duke@435 2418 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2419 Node *val = in(MemNode::ValueIn);
duke@435 2420 if( val->Opcode() == Op_AndI ) {
duke@435 2421 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2422 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2423 set_req(MemNode::ValueIn, val->in(1));
duke@435 2424 return this;
duke@435 2425 }
duke@435 2426 }
duke@435 2427 return NULL;
duke@435 2428 }
duke@435 2429
duke@435 2430
duke@435 2431 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2432 // Check for useless sign-extension before a partial-word store
duke@435 2433 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2434 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2435 // (StoreB ... (valIn) )
duke@435 2436 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2437 Node *val = in(MemNode::ValueIn);
duke@435 2438 if( val->Opcode() == Op_RShiftI ) {
duke@435 2439 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2440 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2441 Node *shl = val->in(1);
duke@435 2442 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2443 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2444 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2445 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2446 return this;
duke@435 2447 }
duke@435 2448 }
duke@435 2449 }
duke@435 2450 }
duke@435 2451 return NULL;
duke@435 2452 }
duke@435 2453
duke@435 2454 //------------------------------value_never_loaded-----------------------------------
duke@435 2455 // Determine whether there are any possible loads of the value stored.
duke@435 2456 // For simplicity, we actually check if there are any loads from the
duke@435 2457 // address stored to, not just for loads of the value stored by this node.
duke@435 2458 //
duke@435 2459 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2460 Node *adr = in(Address);
duke@435 2461 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2462 if (adr_oop == NULL)
duke@435 2463 return false;
kvn@658 2464 if (!adr_oop->is_known_instance_field())
duke@435 2465 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2466 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2467 Node *use = adr->fast_out(i);
duke@435 2468 int opc = use->Opcode();
duke@435 2469 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2470 return false;
duke@435 2471 }
duke@435 2472 }
duke@435 2473 return true;
duke@435 2474 }
duke@435 2475
duke@435 2476 //=============================================================================
duke@435 2477 //------------------------------Ideal------------------------------------------
duke@435 2478 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2479 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2480 // (a left shift, then right shift) we can skip both.
duke@435 2481 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2482 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2483 if( progress != NULL ) return progress;
duke@435 2484
duke@435 2485 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2486 if( progress != NULL ) return progress;
duke@435 2487
duke@435 2488 // Finally check the default case
duke@435 2489 return StoreNode::Ideal(phase, can_reshape);
duke@435 2490 }
duke@435 2491
duke@435 2492 //=============================================================================
duke@435 2493 //------------------------------Ideal------------------------------------------
duke@435 2494 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2495 // we can skip the AND operation
duke@435 2496 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2497 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2498 if( progress != NULL ) return progress;
duke@435 2499
duke@435 2500 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2501 if( progress != NULL ) return progress;
duke@435 2502
duke@435 2503 // Finally check the default case
duke@435 2504 return StoreNode::Ideal(phase, can_reshape);
duke@435 2505 }
duke@435 2506
duke@435 2507 //=============================================================================
duke@435 2508 //------------------------------Identity---------------------------------------
duke@435 2509 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2510 // No need to card mark when storing a null ptr
duke@435 2511 Node* my_store = in(MemNode::OopStore);
duke@435 2512 if (my_store->is_Store()) {
duke@435 2513 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2514 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2515 return in(MemNode::Memory);
duke@435 2516 }
duke@435 2517 }
duke@435 2518 return this;
duke@435 2519 }
duke@435 2520
cfang@1420 2521 //=============================================================================
cfang@1420 2522 //------------------------------Ideal---------------------------------------
cfang@1420 2523 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1420 2524 Node* progress = StoreNode::Ideal(phase, can_reshape);
cfang@1420 2525 if (progress != NULL) return progress;
cfang@1420 2526
cfang@1420 2527 Node* my_store = in(MemNode::OopStore);
cfang@1420 2528 if (my_store->is_MergeMem()) {
cfang@1420 2529 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
cfang@1420 2530 set_req(MemNode::OopStore, mem);
cfang@1420 2531 return this;
cfang@1420 2532 }
cfang@1420 2533
cfang@1420 2534 return NULL;
cfang@1420 2535 }
cfang@1420 2536
duke@435 2537 //------------------------------Value-----------------------------------------
duke@435 2538 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2539 // Either input is TOP ==> the result is TOP
kvn@478 2540 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2541 if( t == Type::TOP ) return Type::TOP;
kvn@478 2542 t = phase->type( in(MemNode::Address) );
kvn@478 2543 if( t == Type::TOP ) return Type::TOP;
kvn@478 2544 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2545 if( t == Type::TOP ) return Type::TOP;
duke@435 2546 // If extra input is TOP ==> the result is TOP
kvn@478 2547 t = phase->type( in(MemNode::OopStore) );
kvn@478 2548 if( t == Type::TOP ) return Type::TOP;
duke@435 2549
duke@435 2550 return StoreNode::Value( phase );
duke@435 2551 }
duke@435 2552
duke@435 2553
duke@435 2554 //=============================================================================
duke@435 2555 //----------------------------------SCMemProjNode------------------------------
duke@435 2556 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2557 {
duke@435 2558 return bottom_type();
duke@435 2559 }
duke@435 2560
duke@435 2561 //=============================================================================
roland@4106 2562 //----------------------------------LoadStoreNode------------------------------
roland@4106 2563 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
roland@4106 2564 : Node(required),
roland@4106 2565 _type(rt),
roland@4106 2566 _adr_type(at)
roland@4106 2567 {
duke@435 2568 init_req(MemNode::Control, c );
duke@435 2569 init_req(MemNode::Memory , mem);
duke@435 2570 init_req(MemNode::Address, adr);
duke@435 2571 init_req(MemNode::ValueIn, val);
duke@435 2572 init_class_id(Class_LoadStore);
roland@4106 2573 }
roland@4106 2574
roland@4106 2575 uint LoadStoreNode::ideal_reg() const {
roland@4106 2576 return _type->ideal_reg();
roland@4106 2577 }
roland@4106 2578
roland@4106 2579 bool LoadStoreNode::result_not_used() const {
roland@4106 2580 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
roland@4106 2581 Node *x = fast_out(i);
roland@4106 2582 if (x->Opcode() == Op_SCMemProj) continue;
roland@4106 2583 return false;
roland@4106 2584 }
roland@4106 2585 return true;
roland@4106 2586 }
roland@4106 2587
roland@4106 2588 uint LoadStoreNode::size_of() const { return sizeof(*this); }
roland@4106 2589
roland@4106 2590 //=============================================================================
roland@4106 2591 //----------------------------------LoadStoreConditionalNode--------------------
roland@4106 2592 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
roland@4106 2593 init_req(ExpectedIn, ex );
duke@435 2594 }
duke@435 2595
duke@435 2596 //=============================================================================
duke@435 2597 //-------------------------------adr_type--------------------------------------
duke@435 2598 // Do we Match on this edge index or not? Do not match memory
duke@435 2599 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2600 Node *adr = in(3);
duke@435 2601 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2602 }
duke@435 2603
duke@435 2604 //------------------------------match_edge-------------------------------------
duke@435 2605 // Do we Match on this edge index or not? Do not match memory
duke@435 2606 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2607 return idx > 1;
duke@435 2608 }
duke@435 2609
duke@435 2610 //------------------------------Identity---------------------------------------
duke@435 2611 // Clearing a zero length array does nothing
duke@435 2612 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2613 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2614 }
duke@435 2615
duke@435 2616 //------------------------------Idealize---------------------------------------
duke@435 2617 // Clearing a short array is faster with stores
duke@435 2618 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2619 const int unit = BytesPerLong;
duke@435 2620 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2621 if (!t) return NULL;
duke@435 2622 if (!t->is_con()) return NULL;
duke@435 2623 intptr_t raw_count = t->get_con();
duke@435 2624 intptr_t size = raw_count;
duke@435 2625 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2626 // Clearing nothing uses the Identity call.
duke@435 2627 // Negative clears are possible on dead ClearArrays
duke@435 2628 // (see jck test stmt114.stmt11402.val).
duke@435 2629 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2630 intptr_t count = size / unit;
duke@435 2631 // Length too long; use fast hardware clear
duke@435 2632 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2633 Node *mem = in(1);
duke@435 2634 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2635 Node *adr = in(3);
duke@435 2636 const Type* at = phase->type(adr);
duke@435 2637 if( at==Type::TOP ) return NULL;
duke@435 2638 const TypePtr* atp = at->isa_ptr();
duke@435 2639 // adjust atp to be the correct array element address type
duke@435 2640 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2641 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2642 // Get base for derived pointer purposes
duke@435 2643 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2644 Node *base = adr->in(1);
duke@435 2645
duke@435 2646 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2647 Node *off = phase->MakeConX(BytesPerLong);
kvn@4115 2648 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2649 count--;
duke@435 2650 while( count-- ) {
duke@435 2651 mem = phase->transform(mem);
kvn@4115 2652 adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
kvn@4115 2653 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2654 }
duke@435 2655 return mem;
duke@435 2656 }
duke@435 2657
kvn@1535 2658 //----------------------------step_through----------------------------------
kvn@1535 2659 // Return allocation input memory edge if it is different instance
kvn@1535 2660 // or itself if it is the one we are looking for.
kvn@1535 2661 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
kvn@1535 2662 Node* n = *np;
kvn@1535 2663 assert(n->is_ClearArray(), "sanity");
kvn@1535 2664 intptr_t offset;
kvn@1535 2665 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
kvn@1535 2666 // This method is called only before Allocate nodes are expanded during
kvn@1535 2667 // macro nodes expansion. Before that ClearArray nodes are only generated
kvn@1535 2668 // in LibraryCallKit::generate_arraycopy() which follows allocations.
kvn@1535 2669 assert(alloc != NULL, "should have allocation");
kvn@1535 2670 if (alloc->_idx == instance_id) {
kvn@1535 2671 // Can not bypass initialization of the instance we are looking for.
kvn@1535 2672 return false;
kvn@1535 2673 }
kvn@1535 2674 // Otherwise skip it.
kvn@1535 2675 InitializeNode* init = alloc->initialization();
kvn@1535 2676 if (init != NULL)
kvn@1535 2677 *np = init->in(TypeFunc::Memory);
kvn@1535 2678 else
kvn@1535 2679 *np = alloc->in(TypeFunc::Memory);
kvn@1535 2680 return true;
kvn@1535 2681 }
kvn@1535 2682
duke@435 2683 //----------------------------clear_memory-------------------------------------
duke@435 2684 // Generate code to initialize object storage to zero.
duke@435 2685 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2686 intptr_t start_offset,
duke@435 2687 Node* end_offset,
duke@435 2688 PhaseGVN* phase) {
duke@435 2689 Compile* C = phase->C;
duke@435 2690 intptr_t offset = start_offset;
duke@435 2691
duke@435 2692 int unit = BytesPerLong;
duke@435 2693 if ((offset % unit) != 0) {
kvn@4115 2694 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2695 adr = phase->transform(adr);
duke@435 2696 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2697 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2698 mem = phase->transform(mem);
duke@435 2699 offset += BytesPerInt;
duke@435 2700 }
duke@435 2701 assert((offset % unit) == 0, "");
duke@435 2702
duke@435 2703 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2704 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2705 }
duke@435 2706
duke@435 2707 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2708 Node* start_offset,
duke@435 2709 Node* end_offset,
duke@435 2710 PhaseGVN* phase) {
never@503 2711 if (start_offset == end_offset) {
never@503 2712 // nothing to do
never@503 2713 return mem;
never@503 2714 }
never@503 2715
duke@435 2716 Compile* C = phase->C;
duke@435 2717 int unit = BytesPerLong;
duke@435 2718 Node* zbase = start_offset;
duke@435 2719 Node* zend = end_offset;
duke@435 2720
duke@435 2721 // Scale to the unit required by the CPU:
duke@435 2722 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2723 Node* shift = phase->intcon(exact_log2(unit));
kvn@4115 2724 zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
kvn@4115 2725 zend = phase->transform( new(C) URShiftXNode(zend, shift) );
duke@435 2726 }
duke@435 2727
kvn@4410 2728 // Bulk clear double-words
kvn@4115 2729 Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
kvn@4115 2730 Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
kvn@4115 2731 mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2732 return phase->transform(mem);
duke@435 2733 }
duke@435 2734
duke@435 2735 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2736 intptr_t start_offset,
duke@435 2737 intptr_t end_offset,
duke@435 2738 PhaseGVN* phase) {
never@503 2739 if (start_offset == end_offset) {
never@503 2740 // nothing to do
never@503 2741 return mem;
never@503 2742 }
never@503 2743
duke@435 2744 Compile* C = phase->C;
duke@435 2745 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2746 intptr_t done_offset = end_offset;
duke@435 2747 if ((done_offset % BytesPerLong) != 0) {
duke@435 2748 done_offset -= BytesPerInt;
duke@435 2749 }
duke@435 2750 if (done_offset > start_offset) {
duke@435 2751 mem = clear_memory(ctl, mem, dest,
duke@435 2752 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2753 }
duke@435 2754 if (done_offset < end_offset) { // emit the final 32-bit store
kvn@4115 2755 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2756 adr = phase->transform(adr);
duke@435 2757 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2758 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2759 mem = phase->transform(mem);
duke@435 2760 done_offset += BytesPerInt;
duke@435 2761 }
duke@435 2762 assert(done_offset == end_offset, "");
duke@435 2763 return mem;
duke@435 2764 }
duke@435 2765
duke@435 2766 //=============================================================================
kvn@2694 2767 // Do not match memory edge.
kvn@2694 2768 uint StrIntrinsicNode::match_edge(uint idx) const {
kvn@2694 2769 return idx == 2 || idx == 3;
duke@435 2770 }
duke@435 2771
duke@435 2772 //------------------------------Ideal------------------------------------------
duke@435 2773 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2774 // control copies
kvn@2694 2775 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2694 2776 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2777 // Don't bother trying to transform a dead node
kvn@3311 2778 if (in(0) && in(0)->is_top()) return NULL;
kvn@2694 2779
kvn@2699 2780 if (can_reshape) {
kvn@2699 2781 Node* mem = phase->transform(in(MemNode::Memory));
kvn@2699 2782 // If transformed to a MergeMem, get the desired slice
kvn@2699 2783 uint alias_idx = phase->C->get_alias_index(adr_type());
kvn@2699 2784 mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
kvn@2699 2785 if (mem != in(MemNode::Memory)) {
kvn@2699 2786 set_req(MemNode::Memory, mem);
kvn@2699 2787 return this;
kvn@2699 2788 }
kvn@2699 2789 }
kvn@2694 2790 return NULL;
rasbold@604 2791 }
rasbold@604 2792
kvn@3311 2793 //------------------------------Value------------------------------------------
kvn@3311 2794 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
kvn@3311 2795 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@3311 2796 return bottom_type();
kvn@3311 2797 }
kvn@3311 2798
duke@435 2799 //=============================================================================
duke@435 2800 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2801 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2802 _adr_type(C->get_adr_type(alias_idx))
duke@435 2803 {
duke@435 2804 init_class_id(Class_MemBar);
duke@435 2805 Node* top = C->top();
duke@435 2806 init_req(TypeFunc::I_O,top);
duke@435 2807 init_req(TypeFunc::FramePtr,top);
duke@435 2808 init_req(TypeFunc::ReturnAdr,top);
duke@435 2809 if (precedent != NULL)
duke@435 2810 init_req(TypeFunc::Parms, precedent);
duke@435 2811 }
duke@435 2812
duke@435 2813 //------------------------------cmp--------------------------------------------
duke@435 2814 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2815 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2816 return (&n == this); // Always fail except on self
duke@435 2817 }
duke@435 2818
duke@435 2819 //------------------------------make-------------------------------------------
duke@435 2820 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2821 switch (opcode) {
kvn@4115 2822 case Op_MemBarAcquire: return new(C) MemBarAcquireNode(C, atp, pn);
kvn@4115 2823 case Op_MemBarRelease: return new(C) MemBarReleaseNode(C, atp, pn);
kvn@4115 2824 case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
kvn@4115 2825 case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
kvn@4115 2826 case Op_MemBarVolatile: return new(C) MemBarVolatileNode(C, atp, pn);
kvn@4115 2827 case Op_MemBarCPUOrder: return new(C) MemBarCPUOrderNode(C, atp, pn);
kvn@4115 2828 case Op_Initialize: return new(C) InitializeNode(C, atp, pn);
kvn@4115 2829 case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C, atp, pn);
duke@435 2830 default: ShouldNotReachHere(); return NULL;
duke@435 2831 }
duke@435 2832 }
duke@435 2833
duke@435 2834 //------------------------------Ideal------------------------------------------
duke@435 2835 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2836 // control copies
duke@435 2837 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1535 2838 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2839 // Don't bother trying to transform a dead node
kvn@3311 2840 if (in(0) && in(0)->is_top()) return NULL;
kvn@1535 2841
kvn@1535 2842 // Eliminate volatile MemBars for scalar replaced objects.
kvn@1535 2843 if (can_reshape && req() == (Precedent+1) &&
kvn@1535 2844 (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
kvn@1535 2845 // Volatile field loads and stores.
kvn@1535 2846 Node* my_mem = in(MemBarNode::Precedent);
kvn@1535 2847 if (my_mem != NULL && my_mem->is_Mem()) {
kvn@1535 2848 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@1535 2849 // Check for scalar replaced object reference.
kvn@1535 2850 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@1535 2851 t_oop->offset() != Type::OffsetBot &&
kvn@1535 2852 t_oop->offset() != Type::OffsetTop) {
kvn@1535 2853 // Replace MemBar projections by its inputs.
kvn@1535 2854 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@1535 2855 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
kvn@1535 2856 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
kvn@1535 2857 // Must return either the original node (now dead) or a new node
kvn@1535 2858 // (Do not return a top here, since that would break the uniqueness of top.)
kvn@4115 2859 return new (phase->C) ConINode(TypeInt::ZERO);
kvn@1535 2860 }
kvn@1535 2861 }
kvn@1535 2862 }
kvn@1535 2863 return NULL;
duke@435 2864 }
duke@435 2865
duke@435 2866 //------------------------------Value------------------------------------------
duke@435 2867 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 2868 if( !in(0) ) return Type::TOP;
duke@435 2869 if( phase->type(in(0)) == Type::TOP )
duke@435 2870 return Type::TOP;
duke@435 2871 return TypeTuple::MEMBAR;
duke@435 2872 }
duke@435 2873
duke@435 2874 //------------------------------match------------------------------------------
duke@435 2875 // Construct projections for memory.
duke@435 2876 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 2877 switch (proj->_con) {
duke@435 2878 case TypeFunc::Control:
duke@435 2879 case TypeFunc::Memory:
kvn@4115 2880 return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 2881 }
duke@435 2882 ShouldNotReachHere();
duke@435 2883 return NULL;
duke@435 2884 }
duke@435 2885
duke@435 2886 //===========================InitializeNode====================================
duke@435 2887 // SUMMARY:
duke@435 2888 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 2889 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 2890 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 2891 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 2892 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 2893 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 2894 //
duke@435 2895 // EXAMPLE:
duke@435 2896 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 2897 // ctl = incoming control; mem* = incoming memory
duke@435 2898 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 2899 // First allocate uninitialized memory and fill in the header:
duke@435 2900 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 2901 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 2902 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 2903 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 2904 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 2905 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 2906 // After the initialize node executes, the object is ready for service:
duke@435 2907 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 2908 // Suppose its body is immediately initialized as {1,2}:
duke@435 2909 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2910 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2911 // mem.SLICE(#short[*]) := store2
duke@435 2912 //
duke@435 2913 // DETAILS:
duke@435 2914 // An InitializeNode collects and isolates object initialization after
duke@435 2915 // an AllocateNode and before the next possible safepoint. As a
duke@435 2916 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 2917 // down past any safepoint or any publication of the allocation.
duke@435 2918 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 2919 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 2920 //
duke@435 2921 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 2922 // the new object from object header to the end of the object.
duke@435 2923 // (The object header and end are determined by the AllocateNode.)
duke@435 2924 //
duke@435 2925 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 2926 // These stores must update raw memory, and they must be to addresses
duke@435 2927 // derived from the raw address produced by AllocateNode, and with
duke@435 2928 // a constant offset. They must be ordered by increasing offset.
duke@435 2929 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 2930 // Unlike most memory operations, they are not linked in a chain,
duke@435 2931 // but are displayed in parallel as users of the rawmem output of
duke@435 2932 // the allocation.
duke@435 2933 //
duke@435 2934 // (See comments in InitializeNode::capture_store, which continue
duke@435 2935 // the example given above.)
duke@435 2936 //
duke@435 2937 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 2938 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 2939 // may also be created at that point to represent any required zeroing.
duke@435 2940 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 2941 // capturing of nearby memory operations.
duke@435 2942 //
duke@435 2943 // During macro-expansion, all captured initializations which store
twisti@1040 2944 // constant values of 32 bits or smaller are coalesced (if advantageous)
duke@435 2945 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 2946 // initialized in fewer memory operations. Memory words which are
duke@435 2947 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 2948 // by explicit stores of zero. (The code shape happens to do all
duke@435 2949 // zeroing first, then all other stores, with both sequences occurring
duke@435 2950 // in order of ascending offsets.)
duke@435 2951 //
duke@435 2952 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 2953 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 2954 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 2955 // The initialization must then be marked as 'complete' disable the
duke@435 2956 // built-in zeroing semantics and the collection of initializing stores.
duke@435 2957 //
duke@435 2958 // While an InitializeNode is incomplete, reads from the memory state
duke@435 2959 // produced by it are optimizable if they match the control edge and
duke@435 2960 // new oop address associated with the allocation/initialization.
duke@435 2961 // They return a stored value (if the offset matches) or else zero.
duke@435 2962 // A write to the memory state, if it matches control and address,
duke@435 2963 // and if it is to a constant offset, may be 'captured' by the
duke@435 2964 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 2965 // inside the initialization, to the raw oop produced by the allocation.
duke@435 2966 // Operations on addresses which are provably distinct (e.g., to
duke@435 2967 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 2968 //
duke@435 2969 // The effect of all this is to consolidate object initialization
duke@435 2970 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 2971 // single location, where it can be optimized as a unit.
duke@435 2972 //
duke@435 2973 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 2974 // will be considered for capture by an InitializeNode. This puts a
duke@435 2975 // reasonable limit on the complexity of optimized initializations.
duke@435 2976
duke@435 2977 //---------------------------InitializeNode------------------------------------
duke@435 2978 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
roland@3392 2979 : _is_complete(Incomplete), _does_not_escape(false),
duke@435 2980 MemBarNode(C, adr_type, rawoop)
duke@435 2981 {
duke@435 2982 init_class_id(Class_Initialize);
duke@435 2983
duke@435 2984 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 2985 assert(in(RawAddress) == rawoop, "proper init");
duke@435 2986 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 2987 }
duke@435 2988
duke@435 2989 // Since this node is not matched, it will be processed by the
duke@435 2990 // register allocator. Declare that there are no constraints
duke@435 2991 // on the allocation of the RawAddress edge.
duke@435 2992 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 2993 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 2994 if (idx == InitializeNode::RawAddress)
duke@435 2995 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 2996 return RegMask::Empty;
duke@435 2997 }
duke@435 2998
duke@435 2999 Node* InitializeNode::memory(uint alias_idx) {
duke@435 3000 Node* mem = in(Memory);
duke@435 3001 if (mem->is_MergeMem()) {
duke@435 3002 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 3003 } else {
duke@435 3004 // incoming raw memory is not split
duke@435 3005 return mem;
duke@435 3006 }
duke@435 3007 }
duke@435 3008
duke@435 3009 bool InitializeNode::is_non_zero() {
duke@435 3010 if (is_complete()) return false;
duke@435 3011 remove_extra_zeroes();
duke@435 3012 return (req() > RawStores);
duke@435 3013 }
duke@435 3014
duke@435 3015 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 3016 assert(!is_complete(), "caller responsibility");
kvn@3157 3017 _is_complete = Complete;
duke@435 3018
duke@435 3019 // After this node is complete, it contains a bunch of
duke@435 3020 // raw-memory initializations. There is no need for
duke@435 3021 // it to have anything to do with non-raw memory effects.
duke@435 3022 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 3023 // after skipping the memory effects of this initialization.
duke@435 3024 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 3025 if (igvn) igvn->add_users_to_worklist(this);
duke@435 3026 }
duke@435 3027
duke@435 3028 // convenience function
duke@435 3029 // return false if the init contains any stores already
duke@435 3030 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 3031 InitializeNode* init = initialization();
duke@435 3032 if (init == NULL || init->is_complete()) return false;
duke@435 3033 init->remove_extra_zeroes();
duke@435 3034 // for now, if this allocation has already collected any inits, bail:
duke@435 3035 if (init->is_non_zero()) return false;
duke@435 3036 init->set_complete(phase);
duke@435 3037 return true;
duke@435 3038 }
duke@435 3039
duke@435 3040 void InitializeNode::remove_extra_zeroes() {
duke@435 3041 if (req() == RawStores) return;
duke@435 3042 Node* zmem = zero_memory();
duke@435 3043 uint fill = RawStores;
duke@435 3044 for (uint i = fill; i < req(); i++) {
duke@435 3045 Node* n = in(i);
duke@435 3046 if (n->is_top() || n == zmem) continue; // skip
duke@435 3047 if (fill < i) set_req(fill, n); // compact
duke@435 3048 ++fill;
duke@435 3049 }
duke@435 3050 // delete any empty spaces created:
duke@435 3051 while (fill < req()) {
duke@435 3052 del_req(fill);
duke@435 3053 }
duke@435 3054 }
duke@435 3055
duke@435 3056 // Helper for remembering which stores go with which offsets.
duke@435 3057 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 3058 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 3059 intptr_t offset = -1;
duke@435 3060 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 3061 phase, offset);
duke@435 3062 if (base == NULL) return -1; // something is dead,
duke@435 3063 if (offset < 0) return -1; // dead, dead
duke@435 3064 return offset;
duke@435 3065 }
duke@435 3066
duke@435 3067 // Helper for proving that an initialization expression is
duke@435 3068 // "simple enough" to be folded into an object initialization.
duke@435 3069 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 3070 // within the initialization without creating a vicious cycle, such as:
duke@435 3071 // { Foo p = new Foo(); p.next = p; }
duke@435 3072 // True for constants and parameters and small combinations thereof.
duke@435 3073 bool InitializeNode::detect_init_independence(Node* n,
duke@435 3074 bool st_is_pinned,
duke@435 3075 int& count) {
duke@435 3076 if (n == NULL) return true; // (can this really happen?)
duke@435 3077 if (n->is_Proj()) n = n->in(0);
duke@435 3078 if (n == this) return false; // found a cycle
duke@435 3079 if (n->is_Con()) return true;
duke@435 3080 if (n->is_Start()) return true; // params, etc., are OK
duke@435 3081 if (n->is_Root()) return true; // even better
duke@435 3082
duke@435 3083 Node* ctl = n->in(0);
duke@435 3084 if (ctl != NULL && !ctl->is_top()) {
duke@435 3085 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 3086 if (ctl == this) return false;
duke@435 3087
duke@435 3088 // If we already know that the enclosing memory op is pinned right after
duke@435 3089 // the init, then any control flow that the store has picked up
duke@435 3090 // must have preceded the init, or else be equal to the init.
duke@435 3091 // Even after loop optimizations (which might change control edges)
duke@435 3092 // a store is never pinned *before* the availability of its inputs.
kvn@554 3093 if (!MemNode::all_controls_dominate(n, this))
duke@435 3094 return false; // failed to prove a good control
duke@435 3095
duke@435 3096 }
duke@435 3097
duke@435 3098 // Check data edges for possible dependencies on 'this'.
duke@435 3099 if ((count += 1) > 20) return false; // complexity limit
duke@435 3100 for (uint i = 1; i < n->req(); i++) {
duke@435 3101 Node* m = n->in(i);
duke@435 3102 if (m == NULL || m == n || m->is_top()) continue;
duke@435 3103 uint first_i = n->find_edge(m);
duke@435 3104 if (i != first_i) continue; // process duplicate edge just once
duke@435 3105 if (!detect_init_independence(m, st_is_pinned, count)) {
duke@435 3106 return false;
duke@435 3107 }
duke@435 3108 }
duke@435 3109
duke@435 3110 return true;
duke@435 3111 }
duke@435 3112
duke@435 3113 // Here are all the checks a Store must pass before it can be moved into
duke@435 3114 // an initialization. Returns zero if a check fails.
duke@435 3115 // On success, returns the (constant) offset to which the store applies,
duke@435 3116 // within the initialized memory.
duke@435 3117 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
duke@435 3118 const int FAIL = 0;
duke@435 3119 if (st->req() != MemNode::ValueIn + 1)
duke@435 3120 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 3121 Node* ctl = st->in(MemNode::Control);
duke@435 3122 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 3123 return FAIL; // must be unconditional after the initialization
duke@435 3124 Node* mem = st->in(MemNode::Memory);
duke@435 3125 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 3126 return FAIL; // must not be preceded by other stores
duke@435 3127 Node* adr = st->in(MemNode::Address);
duke@435 3128 intptr_t offset;
duke@435 3129 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 3130 if (alloc == NULL)
duke@435 3131 return FAIL; // inscrutable address
duke@435 3132 if (alloc != allocation())
duke@435 3133 return FAIL; // wrong allocation! (store needs to float up)
duke@435 3134 Node* val = st->in(MemNode::ValueIn);
duke@435 3135 int complexity_count = 0;
duke@435 3136 if (!detect_init_independence(val, true, complexity_count))
duke@435 3137 return FAIL; // stored value must be 'simple enough'
duke@435 3138
duke@435 3139 return offset; // success
duke@435 3140 }
duke@435 3141
duke@435 3142 // Find the captured store in(i) which corresponds to the range
duke@435 3143 // [start..start+size) in the initialized object.
duke@435 3144 // If there is one, return its index i. If there isn't, return the
duke@435 3145 // negative of the index where it should be inserted.
duke@435 3146 // Return 0 if the queried range overlaps an initialization boundary
duke@435 3147 // or if dead code is encountered.
duke@435 3148 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 3149 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 3150 int size_in_bytes,
duke@435 3151 PhaseTransform* phase) {
duke@435 3152 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 3153
duke@435 3154 if (is_complete())
duke@435 3155 return FAIL; // arraycopy got here first; punt
duke@435 3156
duke@435 3157 assert(allocation() != NULL, "must be present");
duke@435 3158
duke@435 3159 // no negatives, no header fields:
coleenp@548 3160 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 3161
duke@435 3162 // after a certain size, we bail out on tracking all the stores:
duke@435 3163 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3164 if (start >= ti_limit) return FAIL;
duke@435 3165
duke@435 3166 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 3167 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 3168
duke@435 3169 Node* st = in(i);
duke@435 3170 intptr_t st_off = get_store_offset(st, phase);
duke@435 3171 if (st_off < 0) {
duke@435 3172 if (st != zero_memory()) {
duke@435 3173 return FAIL; // bail out if there is dead garbage
duke@435 3174 }
duke@435 3175 } else if (st_off > start) {
duke@435 3176 // ...we are done, since stores are ordered
duke@435 3177 if (st_off < start + size_in_bytes) {
duke@435 3178 return FAIL; // the next store overlaps
duke@435 3179 }
duke@435 3180 return -(int)i; // not found; here is where to put it
duke@435 3181 } else if (st_off < start) {
duke@435 3182 if (size_in_bytes != 0 &&
duke@435 3183 start < st_off + MAX_STORE &&
duke@435 3184 start < st_off + st->as_Store()->memory_size()) {
duke@435 3185 return FAIL; // the previous store overlaps
duke@435 3186 }
duke@435 3187 } else {
duke@435 3188 if (size_in_bytes != 0 &&
duke@435 3189 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 3190 return FAIL; // mismatched store size
duke@435 3191 }
duke@435 3192 return i;
duke@435 3193 }
duke@435 3194
duke@435 3195 ++i;
duke@435 3196 }
duke@435 3197 }
duke@435 3198
duke@435 3199 // Look for a captured store which initializes at the offset 'start'
duke@435 3200 // with the given size. If there is no such store, and no other
duke@435 3201 // initialization interferes, then return zero_memory (the memory
duke@435 3202 // projection of the AllocateNode).
duke@435 3203 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 3204 PhaseTransform* phase) {
duke@435 3205 assert(stores_are_sane(phase), "");
duke@435 3206 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3207 if (i == 0) {
duke@435 3208 return NULL; // something is dead
duke@435 3209 } else if (i < 0) {
duke@435 3210 return zero_memory(); // just primordial zero bits here
duke@435 3211 } else {
duke@435 3212 Node* st = in(i); // here is the store at this position
duke@435 3213 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 3214 return st;
duke@435 3215 }
duke@435 3216 }
duke@435 3217
duke@435 3218 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 3219 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 3220 PhaseTransform* phase) {
duke@435 3221 Node* addr = in(RawAddress);
duke@435 3222 if (offset != 0) {
duke@435 3223 Compile* C = phase->C;
kvn@4115 3224 addr = phase->transform( new (C) AddPNode(C->top(), addr,
duke@435 3225 phase->MakeConX(offset)) );
duke@435 3226 }
duke@435 3227 return addr;
duke@435 3228 }
duke@435 3229
duke@435 3230 // Clone the given store, converting it into a raw store
duke@435 3231 // initializing a field or element of my new object.
duke@435 3232 // Caller is responsible for retiring the original store,
duke@435 3233 // with subsume_node or the like.
duke@435 3234 //
duke@435 3235 // From the example above InitializeNode::InitializeNode,
duke@435 3236 // here are the old stores to be captured:
duke@435 3237 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3238 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3239 //
duke@435 3240 // Here is the changed code; note the extra edges on init:
duke@435 3241 // alloc = (Allocate ...)
duke@435 3242 // rawoop = alloc.RawAddress
duke@435 3243 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 3244 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 3245 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 3246 // rawstore1 rawstore2)
duke@435 3247 //
duke@435 3248 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
duke@435 3249 PhaseTransform* phase) {
duke@435 3250 assert(stores_are_sane(phase), "");
duke@435 3251
duke@435 3252 if (start < 0) return NULL;
duke@435 3253 assert(can_capture_store(st, phase) == start, "sanity");
duke@435 3254
duke@435 3255 Compile* C = phase->C;
duke@435 3256 int size_in_bytes = st->memory_size();
duke@435 3257 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3258 if (i == 0) return NULL; // bail out
duke@435 3259 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 3260 if (i > 0) {
duke@435 3261 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 3262 set_req(i, C->top()); // temporarily disconnect it
duke@435 3263 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 3264 } else {
duke@435 3265 i = -i; // no pre-existing store
duke@435 3266 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 3267 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 3268 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 3269 else
duke@435 3270 ins_req(i, C->top()); // build a new edge
duke@435 3271 }
duke@435 3272 Node* new_st = st->clone();
duke@435 3273 new_st->set_req(MemNode::Control, in(Control));
duke@435 3274 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 3275 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 3276 new_st = phase->transform(new_st);
duke@435 3277
duke@435 3278 // At this point, new_st might have swallowed a pre-existing store
duke@435 3279 // at the same offset, or perhaps new_st might have disappeared,
duke@435 3280 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 3281
duke@435 3282 // In any case, wire it in:
duke@435 3283 set_req(i, new_st);
duke@435 3284
duke@435 3285 // The caller may now kill the old guy.
duke@435 3286 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 3287 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 3288 assert(!is_complete(), "");
duke@435 3289 return new_st;
duke@435 3290 }
duke@435 3291
duke@435 3292 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 3293 intptr_t st_off, int st_size,
duke@435 3294 jlong con) {
duke@435 3295 if ((st_off & (st_size-1)) != 0)
duke@435 3296 return false; // strange store offset (assume size==2**N)
duke@435 3297 address addr = (address)tiles + st_off;
duke@435 3298 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 3299 switch (st_size) {
duke@435 3300 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 3301 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 3302 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 3303 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 3304 default: return false; // strange store size (detect size!=2**N here)
duke@435 3305 }
duke@435 3306 return true; // return success to caller
duke@435 3307 }
duke@435 3308
duke@435 3309 // Coalesce subword constants into int constants and possibly
duke@435 3310 // into long constants. The goal, if the CPU permits,
duke@435 3311 // is to initialize the object with a small number of 64-bit tiles.
duke@435 3312 // Also, convert floating-point constants to bit patterns.
duke@435 3313 // Non-constants are not relevant to this pass.
duke@435 3314 //
duke@435 3315 // In terms of the running example on InitializeNode::InitializeNode
duke@435 3316 // and InitializeNode::capture_store, here is the transformation
duke@435 3317 // of rawstore1 and rawstore2 into rawstore12:
duke@435 3318 // alloc = (Allocate ...)
duke@435 3319 // rawoop = alloc.RawAddress
duke@435 3320 // tile12 = 0x00010002
duke@435 3321 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 3322 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 3323 //
duke@435 3324 void
duke@435 3325 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 3326 Node* size_in_bytes,
duke@435 3327 PhaseGVN* phase) {
duke@435 3328 Compile* C = phase->C;
duke@435 3329
duke@435 3330 assert(stores_are_sane(phase), "");
duke@435 3331 // Note: After this pass, they are not completely sane,
duke@435 3332 // since there may be some overlaps.
duke@435 3333
duke@435 3334 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 3335
duke@435 3336 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3337 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 3338 size_limit = MIN2(size_limit, ti_limit);
duke@435 3339 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 3340 int num_tiles = size_limit / BytesPerLong;
duke@435 3341
duke@435 3342 // allocate space for the tile map:
duke@435 3343 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 3344 jlong tiles_buf[small_len];
duke@435 3345 Node* nodes_buf[small_len];
duke@435 3346 jlong inits_buf[small_len];
duke@435 3347 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 3348 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3349 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 3350 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 3351 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 3352 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3353 // tiles: exact bitwise model of all primitive constants
duke@435 3354 // nodes: last constant-storing node subsumed into the tiles model
duke@435 3355 // inits: which bytes (in each tile) are touched by any initializations
duke@435 3356
duke@435 3357 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 3358
duke@435 3359 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 3360 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3361 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3362 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3363 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3364 Node* st = in(i);
duke@435 3365 intptr_t st_off = get_store_offset(st, phase);
duke@435 3366
duke@435 3367 // Figure out the store's offset and constant value:
duke@435 3368 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3369 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3370 int st_size = st->as_Store()->memory_size();
duke@435 3371 if (st_off + st_size > size_limit) break;
duke@435 3372
duke@435 3373 // Record which bytes are touched, whether by constant or not.
duke@435 3374 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3375 continue; // skip (strange store size)
duke@435 3376
duke@435 3377 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3378 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3379 BasicType type = val->basic_type();
duke@435 3380
duke@435 3381 jlong con = 0;
duke@435 3382 switch (type) {
duke@435 3383 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3384 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3385 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3386 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3387 default: continue; //skip (odd store type)
duke@435 3388 }
duke@435 3389
duke@435 3390 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3391 st->Opcode() == Op_StoreL) {
duke@435 3392 continue; // This StoreL is already optimal.
duke@435 3393 }
duke@435 3394
duke@435 3395 // Store down the constant.
duke@435 3396 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3397
duke@435 3398 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3399
duke@435 3400 if (type == T_INT && st_size == BytesPerInt
duke@435 3401 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3402 jlong lcon = tiles[j];
duke@435 3403 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3404 st->Opcode() == Op_StoreI) {
duke@435 3405 // This StoreI is already optimal by itself.
duke@435 3406 jint* intcon = (jint*) &tiles[j];
duke@435 3407 intcon[1] = 0; // undo the store_constant()
duke@435 3408
duke@435 3409 // If the previous store is also optimal by itself, back up and
duke@435 3410 // undo the action of the previous loop iteration... if we can.
duke@435 3411 // But if we can't, just let the previous half take care of itself.
duke@435 3412 st = nodes[j];
duke@435 3413 st_off -= BytesPerInt;
duke@435 3414 con = intcon[0];
duke@435 3415 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3416 assert(st_off >= header_size, "still ignoring header");
duke@435 3417 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3418 assert(in(i-1) == zmem, "must be");
duke@435 3419 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3420 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3421 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3422 intcon[0] = 0; // undo store_constant()
duke@435 3423 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3424 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3425 --old_subword; // undo ++old_subword
duke@435 3426 }
duke@435 3427 continue; // This StoreI is already optimal.
duke@435 3428 }
duke@435 3429 }
duke@435 3430
duke@435 3431 // This store is not needed.
duke@435 3432 set_req(i, zmem);
duke@435 3433 nodes[j] = st; // record for the moment
duke@435 3434 if (st_size < BytesPerLong) // something has changed
duke@435 3435 ++old_subword; // includes int/float, but who's counting...
duke@435 3436 else ++old_long;
duke@435 3437 }
duke@435 3438
duke@435 3439 if ((old_subword + old_long) == 0)
duke@435 3440 return; // nothing more to do
duke@435 3441
duke@435 3442 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3443 // Be sure to insert them before overlapping non-constant stores.
duke@435 3444 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3445 for (int j = 0; j < num_tiles; j++) {
duke@435 3446 jlong con = tiles[j];
duke@435 3447 jlong init = inits[j];
duke@435 3448 if (con == 0) continue;
duke@435 3449 jint con0, con1; // split the constant, address-wise
duke@435 3450 jint init0, init1; // split the init map, address-wise
duke@435 3451 { union { jlong con; jint intcon[2]; } u;
duke@435 3452 u.con = con;
duke@435 3453 con0 = u.intcon[0];
duke@435 3454 con1 = u.intcon[1];
duke@435 3455 u.con = init;
duke@435 3456 init0 = u.intcon[0];
duke@435 3457 init1 = u.intcon[1];
duke@435 3458 }
duke@435 3459
duke@435 3460 Node* old = nodes[j];
duke@435 3461 assert(old != NULL, "need the prior store");
duke@435 3462 intptr_t offset = (j * BytesPerLong);
duke@435 3463
duke@435 3464 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3465
duke@435 3466 if (offset < header_size) {
duke@435 3467 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3468 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3469 split = true; // only the second word counts
duke@435 3470 // Example: int a[] = { 42 ... }
duke@435 3471 } else if (con0 == 0 && init0 == -1) {
duke@435 3472 split = true; // first word is covered by full inits
duke@435 3473 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3474 } else if (con1 == 0 && init1 == -1) {
duke@435 3475 split = true; // second word is covered by full inits
duke@435 3476 // Example: int a[] = { ... 42, foo() ... }
duke@435 3477 }
duke@435 3478
duke@435 3479 // Here's a case where init0 is neither 0 nor -1:
duke@435 3480 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3481 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3482 // In this case the tile is not split; it is (jlong)42.
duke@435 3483 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3484 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3485
duke@435 3486 Node* ctl = old->in(MemNode::Control);
duke@435 3487 Node* adr = make_raw_address(offset, phase);
duke@435 3488 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3489
duke@435 3490 // One or two coalesced stores to plop down.
duke@435 3491 Node* st[2];
duke@435 3492 intptr_t off[2];
duke@435 3493 int nst = 0;
duke@435 3494 if (!split) {
duke@435 3495 ++new_long;
duke@435 3496 off[nst] = offset;
coleenp@548 3497 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3498 phase->longcon(con), T_LONG);
duke@435 3499 } else {
duke@435 3500 // Omit either if it is a zero.
duke@435 3501 if (con0 != 0) {
duke@435 3502 ++new_int;
duke@435 3503 off[nst] = offset;
coleenp@548 3504 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3505 phase->intcon(con0), T_INT);
duke@435 3506 }
duke@435 3507 if (con1 != 0) {
duke@435 3508 ++new_int;
duke@435 3509 offset += BytesPerInt;
duke@435 3510 adr = make_raw_address(offset, phase);
duke@435 3511 off[nst] = offset;
coleenp@548 3512 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3513 phase->intcon(con1), T_INT);
duke@435 3514 }
duke@435 3515 }
duke@435 3516
duke@435 3517 // Insert second store first, then the first before the second.
duke@435 3518 // Insert each one just before any overlapping non-constant stores.
duke@435 3519 while (nst > 0) {
duke@435 3520 Node* st1 = st[--nst];
duke@435 3521 C->copy_node_notes_to(st1, old);
duke@435 3522 st1 = phase->transform(st1);
duke@435 3523 offset = off[nst];
duke@435 3524 assert(offset >= header_size, "do not smash header");
duke@435 3525 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3526 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3527 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3528 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3529 set_req(--ins_idx, st1);
duke@435 3530 else
duke@435 3531 ins_req(ins_idx, st1);
duke@435 3532 }
duke@435 3533 }
duke@435 3534
duke@435 3535 if (PrintCompilation && WizardMode)
duke@435 3536 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3537 old_subword, old_long, new_int, new_long);
duke@435 3538 if (C->log() != NULL)
duke@435 3539 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3540 old_subword, old_long, new_int, new_long);
duke@435 3541
duke@435 3542 // Clean up any remaining occurrences of zmem:
duke@435 3543 remove_extra_zeroes();
duke@435 3544 }
duke@435 3545
duke@435 3546 // Explore forward from in(start) to find the first fully initialized
duke@435 3547 // word, and return its offset. Skip groups of subword stores which
duke@435 3548 // together initialize full words. If in(start) is itself part of a
duke@435 3549 // fully initialized word, return the offset of in(start). If there
duke@435 3550 // are no following full-word stores, or if something is fishy, return
duke@435 3551 // a negative value.
duke@435 3552 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3553 int int_map = 0;
duke@435 3554 intptr_t int_map_off = 0;
duke@435 3555 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3556
duke@435 3557 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3558 Node* st = in(i);
duke@435 3559
duke@435 3560 intptr_t st_off = get_store_offset(st, phase);
duke@435 3561 if (st_off < 0) break; // return conservative answer
duke@435 3562
duke@435 3563 int st_size = st->as_Store()->memory_size();
duke@435 3564 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3565 return st_off; // we found a complete word init
duke@435 3566 }
duke@435 3567
duke@435 3568 // update the map:
duke@435 3569
duke@435 3570 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3571 if (this_int_off != int_map_off) {
duke@435 3572 // reset the map:
duke@435 3573 int_map = 0;
duke@435 3574 int_map_off = this_int_off;
duke@435 3575 }
duke@435 3576
duke@435 3577 int subword_off = st_off - this_int_off;
duke@435 3578 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3579 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3580 return this_int_off; // we found a complete word init
duke@435 3581 }
duke@435 3582
duke@435 3583 // Did this store hit or cross the word boundary?
duke@435 3584 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3585 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3586 // We passed the current int, without fully initializing it.
duke@435 3587 int_map_off = next_int_off;
duke@435 3588 int_map >>= BytesPerInt;
duke@435 3589 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3590 // We passed the current and next int.
duke@435 3591 return this_int_off + BytesPerInt;
duke@435 3592 }
duke@435 3593 }
duke@435 3594
duke@435 3595 return -1;
duke@435 3596 }
duke@435 3597
duke@435 3598
duke@435 3599 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3600 // At this point, we may perform additional optimizations.
duke@435 3601 // Linearize the stores by ascending offset, to make memory
duke@435 3602 // activity as coherent as possible.
duke@435 3603 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3604 intptr_t header_size,
duke@435 3605 Node* size_in_bytes,
duke@435 3606 PhaseGVN* phase) {
duke@435 3607 assert(!is_complete(), "not already complete");
duke@435 3608 assert(stores_are_sane(phase), "");
duke@435 3609 assert(allocation() != NULL, "must be present");
duke@435 3610
duke@435 3611 remove_extra_zeroes();
duke@435 3612
duke@435 3613 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3614 // reduce instruction count for common initialization patterns
duke@435 3615 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3616
duke@435 3617 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3618 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3619 #ifdef ASSERT
coleenp@548 3620 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3621 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3622 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3623 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3624 #endif
duke@435 3625 intptr_t zeroes_done = header_size;
duke@435 3626
duke@435 3627 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3628 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3629
duke@435 3630 if (ZeroTLAB) do_zeroing = false;
duke@435 3631 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3632
duke@435 3633 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3634 Node* st = in(i);
duke@435 3635 intptr_t st_off = get_store_offset(st, phase);
duke@435 3636 if (st_off < 0)
duke@435 3637 break; // unknown junk in the inits
duke@435 3638 if (st->in(MemNode::Memory) != zmem)
duke@435 3639 break; // complicated store chains somehow in list
duke@435 3640
duke@435 3641 int st_size = st->as_Store()->memory_size();
duke@435 3642 intptr_t next_init_off = st_off + st_size;
duke@435 3643
duke@435 3644 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3645 // See if this store needs a zero before it or under it.
duke@435 3646 intptr_t zeroes_needed = st_off;
duke@435 3647
duke@435 3648 if (st_size < BytesPerInt) {
duke@435 3649 // Look for subword stores which only partially initialize words.
duke@435 3650 // If we find some, we must lay down some word-level zeroes first,
duke@435 3651 // underneath the subword stores.
duke@435 3652 //
duke@435 3653 // Examples:
duke@435 3654 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3655 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3656 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3657 //
duke@435 3658 // Note: coalesce_subword_stores may have already done this,
duke@435 3659 // if it was prompted by constant non-zero subword initializers.
duke@435 3660 // But this case can still arise with non-constant stores.
duke@435 3661
duke@435 3662 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3663
duke@435 3664 // In the examples above:
duke@435 3665 // in(i) p q r s x y z
duke@435 3666 // st_off 12 13 14 15 12 13 14
duke@435 3667 // st_size 1 1 1 1 1 1 1
duke@435 3668 // next_full_s. 12 16 16 16 16 16 16
duke@435 3669 // z's_done 12 16 16 16 12 16 12
duke@435 3670 // z's_needed 12 16 16 16 16 16 16
duke@435 3671 // zsize 0 0 0 0 4 0 4
duke@435 3672 if (next_full_store < 0) {
duke@435 3673 // Conservative tack: Zero to end of current word.
duke@435 3674 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3675 } else {
duke@435 3676 // Zero to beginning of next fully initialized word.
duke@435 3677 // Or, don't zero at all, if we are already in that word.
duke@435 3678 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3679 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3680 zeroes_needed = next_full_store;
duke@435 3681 }
duke@435 3682 }
duke@435 3683
duke@435 3684 if (zeroes_needed > zeroes_done) {
duke@435 3685 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3686 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3687 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3688 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3689 zeroes_done, zeroes_needed,
duke@435 3690 phase);
duke@435 3691 zeroes_done = zeroes_needed;
duke@435 3692 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3693 do_zeroing = false; // leave the hole, next time
duke@435 3694 }
duke@435 3695 }
duke@435 3696
duke@435 3697 // Collect the store and move on:
duke@435 3698 st->set_req(MemNode::Memory, inits);
duke@435 3699 inits = st; // put it on the linearized chain
duke@435 3700 set_req(i, zmem); // unhook from previous position
duke@435 3701
duke@435 3702 if (zeroes_done == st_off)
duke@435 3703 zeroes_done = next_init_off;
duke@435 3704
duke@435 3705 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3706
duke@435 3707 #ifdef ASSERT
duke@435 3708 // Various order invariants. Weaker than stores_are_sane because
duke@435 3709 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3710 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3711 last_init_off = st_off;
duke@435 3712 const Type* val = NULL;
duke@435 3713 if (st_size >= BytesPerInt &&
duke@435 3714 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3715 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3716 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3717 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3718 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3719 } else {
duke@435 3720 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3721 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3722 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3723 last_init_end = next_init_off; // it's a non-tile
duke@435 3724 }
duke@435 3725 #endif //ASSERT
duke@435 3726 }
duke@435 3727
duke@435 3728 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3729 add_req(inits);
duke@435 3730
duke@435 3731 if (!ZeroTLAB) {
duke@435 3732 // If anything remains to be zeroed, zero it all now.
duke@435 3733 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3734 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3735 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3736 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3737 assert(allocation() != NULL, "");
never@2346 3738 if (allocation()->Opcode() == Op_Allocate) {
never@2346 3739 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
never@2346 3740 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
never@2346 3741 if (zeroes_done == k->layout_helper())
never@2346 3742 zeroes_done = size_limit;
never@2346 3743 }
duke@435 3744 }
duke@435 3745 if (zeroes_done < size_limit) {
duke@435 3746 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3747 zeroes_done, size_in_bytes, phase);
duke@435 3748 }
duke@435 3749 }
duke@435 3750
duke@435 3751 set_complete(phase);
duke@435 3752 return rawmem;
duke@435 3753 }
duke@435 3754
duke@435 3755
duke@435 3756 #ifdef ASSERT
duke@435 3757 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 3758 if (is_complete())
duke@435 3759 return true; // stores could be anything at this point
coleenp@548 3760 assert(allocation() != NULL, "must be present");
coleenp@548 3761 intptr_t last_off = allocation()->minimum_header_size();
duke@435 3762 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 3763 Node* st = in(i);
duke@435 3764 intptr_t st_off = get_store_offset(st, phase);
duke@435 3765 if (st_off < 0) continue; // ignore dead garbage
duke@435 3766 if (last_off > st_off) {
duke@435 3767 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
duke@435 3768 this->dump(2);
duke@435 3769 assert(false, "ascending store offsets");
duke@435 3770 return false;
duke@435 3771 }
duke@435 3772 last_off = st_off + st->as_Store()->memory_size();
duke@435 3773 }
duke@435 3774 return true;
duke@435 3775 }
duke@435 3776 #endif //ASSERT
duke@435 3777
duke@435 3778
duke@435 3779
duke@435 3780
duke@435 3781 //============================MergeMemNode=====================================
duke@435 3782 //
duke@435 3783 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 3784 // contributing store or call operations. Each contributor provides the memory
duke@435 3785 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 3786 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 3787 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 3788 // to using the MergeMem as a whole.
duke@435 3789 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 3790 //
duke@435 3791 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 3792 //
duke@435 3793 // In one special case (and more cases in the future), alias categories overlap.
duke@435 3794 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 3795 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 3796 // it is exactly equivalent to that state W:
duke@435 3797 // MergeMem(<Bot>: W) <==> W
duke@435 3798 //
duke@435 3799 // Usually, the merge has more than one input. In that case, where inputs
duke@435 3800 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 3801 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 3802 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 3803 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 3804 //
duke@435 3805 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 3806 // This simply means that the merge observes out only the relevant parts of
duke@435 3807 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 3808 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 3809 //
duke@435 3810 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 3811 // and that memory slices "leak through":
duke@435 3812 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 3813 //
duke@435 3814 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 3815 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 3816 //
duke@435 3817 // In the last example, Y is not part of the combined memory state of the
duke@435 3818 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 3819 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 3820 // a precursor to state Y'.
duke@435 3821 //
duke@435 3822 //
duke@435 3823 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 3824 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 3825 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 3826 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 3827 //
duke@435 3828 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 3829 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 3830 // without the need to reach out via TLS to Compile::current.)
duke@435 3831 //
duke@435 3832 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 3833 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 3834 // containing all alias categories.
duke@435 3835 //
duke@435 3836 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 3837 //
duke@435 3838 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 3839 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 3840 // there is no particular input for that alias type. Note that the length of
duke@435 3841 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 3842 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 3843 // filled with "top" in the unused in() positions.
duke@435 3844 //
duke@435 3845 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 3846 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 3847 //
duke@435 3848 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 3849 // the type of random VM bits like TLS references.) Since it is always the
duke@435 3850 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 3851 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 3852 //
duke@435 3853 //
duke@435 3854 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 3855 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 3856 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 3857 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 3858 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 3859 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 3860 //
duke@435 3861 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 3862 // really that different from the other memory inputs. An abbreviation called
duke@435 3863 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 3864 //
duke@435 3865 //
duke@435 3866 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 3867 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 3868 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 3869 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 3870 //
duke@435 3871 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 3872 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 3873 //
duke@435 3874 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 3875 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 3876 // actually a disjoint union of memory states, rather than an overlay.
duke@435 3877 //
duke@435 3878
duke@435 3879 //------------------------------MergeMemNode-----------------------------------
duke@435 3880 Node* MergeMemNode::make_empty_memory() {
duke@435 3881 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 3882 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 3883 return empty_memory;
duke@435 3884 }
duke@435 3885
duke@435 3886 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 3887 init_class_id(Class_MergeMem);
duke@435 3888 // all inputs are nullified in Node::Node(int)
duke@435 3889 // set_input(0, NULL); // no control input
duke@435 3890
duke@435 3891 // Initialize the edges uniformly to top, for starters.
duke@435 3892 Node* empty_mem = make_empty_memory();
duke@435 3893 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 3894 init_req(i,empty_mem);
duke@435 3895 }
duke@435 3896 assert(empty_memory() == empty_mem, "");
duke@435 3897
duke@435 3898 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 3899 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 3900 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 3901 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 3902 mms.set_memory(mms.memory2());
duke@435 3903 }
duke@435 3904 assert(base_memory() == mdef->base_memory(), "");
duke@435 3905 } else {
duke@435 3906 set_base_memory(new_base);
duke@435 3907 }
duke@435 3908 }
duke@435 3909
duke@435 3910 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 3911 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 3912 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
kvn@4115 3913 return new(C) MergeMemNode(mem);
duke@435 3914 }
duke@435 3915
duke@435 3916 //------------------------------cmp--------------------------------------------
duke@435 3917 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 3918 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 3919 return (&n == this); // Always fail except on self
duke@435 3920 }
duke@435 3921
duke@435 3922 //------------------------------Identity---------------------------------------
duke@435 3923 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 3924 // Identity if this merge point does not record any interesting memory
duke@435 3925 // disambiguations.
duke@435 3926 Node* base_mem = base_memory();
duke@435 3927 Node* empty_mem = empty_memory();
duke@435 3928 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 3929 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3930 Node* mem = in(i);
duke@435 3931 if (mem != empty_mem && mem != base_mem) {
duke@435 3932 return this; // Many memory splits; no change
duke@435 3933 }
duke@435 3934 }
duke@435 3935 }
duke@435 3936 return base_mem; // No memory splits; ID on the one true input
duke@435 3937 }
duke@435 3938
duke@435 3939 //------------------------------Ideal------------------------------------------
duke@435 3940 // This method is invoked recursively on chains of MergeMem nodes
duke@435 3941 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 3942 // Remove chain'd MergeMems
duke@435 3943 //
duke@435 3944 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 3945 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 3946 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 3947 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 3948 Node *progress = NULL;
duke@435 3949
duke@435 3950
duke@435 3951 Node* old_base = base_memory();
duke@435 3952 Node* empty_mem = empty_memory();
duke@435 3953 if (old_base == empty_mem)
duke@435 3954 return NULL; // Dead memory path.
duke@435 3955
duke@435 3956 MergeMemNode* old_mbase;
duke@435 3957 if (old_base != NULL && old_base->is_MergeMem())
duke@435 3958 old_mbase = old_base->as_MergeMem();
duke@435 3959 else
duke@435 3960 old_mbase = NULL;
duke@435 3961 Node* new_base = old_base;
duke@435 3962
duke@435 3963 // simplify stacked MergeMems in base memory
duke@435 3964 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 3965
duke@435 3966 // the base memory might contribute new slices beyond my req()
duke@435 3967 if (old_mbase) grow_to_match(old_mbase);
duke@435 3968
duke@435 3969 // Look carefully at the base node if it is a phi.
duke@435 3970 PhiNode* phi_base;
duke@435 3971 if (new_base != NULL && new_base->is_Phi())
duke@435 3972 phi_base = new_base->as_Phi();
duke@435 3973 else
duke@435 3974 phi_base = NULL;
duke@435 3975
duke@435 3976 Node* phi_reg = NULL;
duke@435 3977 uint phi_len = (uint)-1;
duke@435 3978 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 3979 // do not examine phi if degraded to a copy
duke@435 3980 phi_reg = phi_base->region();
duke@435 3981 phi_len = phi_base->req();
duke@435 3982 // see if the phi is unfinished
duke@435 3983 for (uint i = 1; i < phi_len; i++) {
duke@435 3984 if (phi_base->in(i) == NULL) {
duke@435 3985 // incomplete phi; do not look at it yet!
duke@435 3986 phi_reg = NULL;
duke@435 3987 phi_len = (uint)-1;
duke@435 3988 break;
duke@435 3989 }
duke@435 3990 }
duke@435 3991 }
duke@435 3992
duke@435 3993 // Note: We do not call verify_sparse on entry, because inputs
duke@435 3994 // can normalize to the base_memory via subsume_node or similar
duke@435 3995 // mechanisms. This method repairs that damage.
duke@435 3996
duke@435 3997 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 3998
duke@435 3999 // Look at each slice.
duke@435 4000 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4001 Node* old_in = in(i);
duke@435 4002 // calculate the old memory value
duke@435 4003 Node* old_mem = old_in;
duke@435 4004 if (old_mem == empty_mem) old_mem = old_base;
duke@435 4005 assert(old_mem == memory_at(i), "");
duke@435 4006
duke@435 4007 // maybe update (reslice) the old memory value
duke@435 4008
duke@435 4009 // simplify stacked MergeMems
duke@435 4010 Node* new_mem = old_mem;
duke@435 4011 MergeMemNode* old_mmem;
duke@435 4012 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 4013 old_mmem = old_mem->as_MergeMem();
duke@435 4014 else
duke@435 4015 old_mmem = NULL;
duke@435 4016 if (old_mmem == this) {
duke@435 4017 // This can happen if loops break up and safepoints disappear.
duke@435 4018 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 4019 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 4020 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 4021 // also, we can end up with a self-loop of the mergemem.
duke@435 4022 // In general, if loops degenerate and memory effects disappear,
duke@435 4023 // a mergemem can be left looking at itself. This simply means
duke@435 4024 // that the mergemem's default should be used, since there is
duke@435 4025 // no longer any apparent effect on this slice.
duke@435 4026 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 4027 // from start. Update the input to TOP.
duke@435 4028 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 4029 }
duke@435 4030 else if (old_mmem != NULL) {
duke@435 4031 new_mem = old_mmem->memory_at(i);
duke@435 4032 }
twisti@1040 4033 // else preceding memory was not a MergeMem
duke@435 4034
duke@435 4035 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 4036 if (new_mem != NULL && new_mem != new_base &&
duke@435 4037 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 4038 if (new_mem->is_Phi()) {
duke@435 4039 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 4040 for (uint i = 1; i < phi_len; i++) {
duke@435 4041 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 4042 phi_mem = NULL;
duke@435 4043 break;
duke@435 4044 }
duke@435 4045 }
duke@435 4046 if (phi_mem != NULL) {
duke@435 4047 // equivalent phi nodes; revert to the def
duke@435 4048 new_mem = new_base;
duke@435 4049 }
duke@435 4050 }
duke@435 4051 }
duke@435 4052
duke@435 4053 // maybe store down a new value
duke@435 4054 Node* new_in = new_mem;
duke@435 4055 if (new_in == new_base) new_in = empty_mem;
duke@435 4056
duke@435 4057 if (new_in != old_in) {
duke@435 4058 // Warning: Do not combine this "if" with the previous "if"
duke@435 4059 // A memory slice might have be be rewritten even if it is semantically
duke@435 4060 // unchanged, if the base_memory value has changed.
duke@435 4061 set_req(i, new_in);
duke@435 4062 progress = this; // Report progress
duke@435 4063 }
duke@435 4064 }
duke@435 4065
duke@435 4066 if (new_base != old_base) {
duke@435 4067 set_req(Compile::AliasIdxBot, new_base);
duke@435 4068 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 4069 assert(base_memory() == new_base, "");
duke@435 4070 progress = this;
duke@435 4071 }
duke@435 4072
duke@435 4073 if( base_memory() == this ) {
duke@435 4074 // a self cycle indicates this memory path is dead
duke@435 4075 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4076 }
duke@435 4077
duke@435 4078 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 4079 // Recursion must occur after the self cycle check above
duke@435 4080 if( base_memory()->is_MergeMem() ) {
duke@435 4081 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 4082 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 4083 if( m != NULL && (m->is_top() ||
duke@435 4084 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 4085 // propagate rollup of dead cycle to self
duke@435 4086 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4087 }
duke@435 4088 }
duke@435 4089
duke@435 4090 if( base_memory() == empty_mem ) {
duke@435 4091 progress = this;
duke@435 4092 // Cut inputs during Parse phase only.
duke@435 4093 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 4094 if( !can_reshape ) {
duke@435 4095 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4096 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 4097 }
duke@435 4098 }
duke@435 4099 }
duke@435 4100
duke@435 4101 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 4102 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 4103 // transform should be attempted. Look for this->phi->this cycle.
duke@435 4104 uint merge_width = req();
duke@435 4105 if (merge_width > Compile::AliasIdxRaw) {
duke@435 4106 PhiNode* phi = base_memory()->as_Phi();
duke@435 4107 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 4108 if (phi->in(i) == this) {
duke@435 4109 phase->is_IterGVN()->_worklist.push(phi);
duke@435 4110 break;
duke@435 4111 }
duke@435 4112 }
duke@435 4113 }
duke@435 4114 }
duke@435 4115
kvn@499 4116 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 4117 return progress;
duke@435 4118 }
duke@435 4119
duke@435 4120 //-------------------------set_base_memory-------------------------------------
duke@435 4121 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 4122 Node* empty_mem = empty_memory();
duke@435 4123 set_req(Compile::AliasIdxBot, new_base);
duke@435 4124 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 4125 // Clear out other occurrences of new_base:
duke@435 4126 if (new_base != empty_mem) {
duke@435 4127 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4128 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 4129 }
duke@435 4130 }
duke@435 4131 }
duke@435 4132
duke@435 4133 //------------------------------out_RegMask------------------------------------
duke@435 4134 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 4135 return RegMask::Empty;
duke@435 4136 }
duke@435 4137
duke@435 4138 //------------------------------dump_spec--------------------------------------
duke@435 4139 #ifndef PRODUCT
duke@435 4140 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 4141 st->print(" {");
duke@435 4142 Node* base_mem = base_memory();
duke@435 4143 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 4144 Node* mem = memory_at(i);
duke@435 4145 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 4146 st->print( " N%d:", mem->_idx );
duke@435 4147 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 4148 }
duke@435 4149 st->print(" }");
duke@435 4150 }
duke@435 4151 #endif // !PRODUCT
duke@435 4152
duke@435 4153
duke@435 4154 #ifdef ASSERT
duke@435 4155 static bool might_be_same(Node* a, Node* b) {
duke@435 4156 if (a == b) return true;
duke@435 4157 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 4158 // phis shift around during optimization
duke@435 4159 return true; // pretty stupid...
duke@435 4160 }
duke@435 4161
duke@435 4162 // verify a narrow slice (either incoming or outgoing)
duke@435 4163 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 4164 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 4165 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 4166 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 4167 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 4168 assert(n != NULL, "");
duke@435 4169 // Elide intervening MergeMem's
duke@435 4170 while (n->is_MergeMem()) {
duke@435 4171 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 4172 }
duke@435 4173 Compile* C = Compile::current();
duke@435 4174 const TypePtr* n_adr_type = n->adr_type();
duke@435 4175 if (n == m->empty_memory()) {
duke@435 4176 // Implicit copy of base_memory()
duke@435 4177 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 4178 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 4179 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 4180 } else {
duke@435 4181 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 4182 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 4183 bool expected_wide_mem = false;
duke@435 4184 if (n == m->base_memory()) {
duke@435 4185 expected_wide_mem = true;
duke@435 4186 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 4187 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 4188 expected_wide_mem = true;
duke@435 4189 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 4190 // memory can "leak through" calls on channels that
duke@435 4191 // are write-once. Allow this also.
duke@435 4192 expected_wide_mem = true;
duke@435 4193 }
duke@435 4194 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 4195 }
duke@435 4196 }
duke@435 4197 #else // !ASSERT
duke@435 4198 #define verify_memory_slice(m,i,n) (0) // PRODUCT version is no-op
duke@435 4199 #endif
duke@435 4200
duke@435 4201
duke@435 4202 //-----------------------------memory_at---------------------------------------
duke@435 4203 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 4204 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 4205 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 4206 "must avoid base_memory and AliasIdxTop");
duke@435 4207
duke@435 4208 // Otherwise, it is a narrow slice.
duke@435 4209 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 4210 Compile *C = Compile::current();
duke@435 4211 if (is_empty_memory(n)) {
duke@435 4212 // the array is sparse; empty slots are the "top" node
duke@435 4213 n = base_memory();
duke@435 4214 assert(Node::in_dump()
duke@435 4215 || n == NULL || n->bottom_type() == Type::TOP
kvn@2599 4216 || n->adr_type() == NULL // address is TOP
duke@435 4217 || n->adr_type() == TypePtr::BOTTOM
duke@435 4218 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 4219 || Compile::current()->AliasLevel() == 0,
duke@435 4220 "must be a wide memory");
duke@435 4221 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 4222 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 4223 } else {
duke@435 4224 // make sure the stored slice is sane
duke@435 4225 #ifdef ASSERT
duke@435 4226 if (is_error_reported() || Node::in_dump()) {
duke@435 4227 } else if (might_be_same(n, base_memory())) {
duke@435 4228 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 4229 // This can arise normally from node subsumption during optimization.
duke@435 4230 } else {
duke@435 4231 verify_memory_slice(this, alias_idx, n);
duke@435 4232 }
duke@435 4233 #endif
duke@435 4234 }
duke@435 4235 return n;
duke@435 4236 }
duke@435 4237
duke@435 4238 //---------------------------set_memory_at-------------------------------------
duke@435 4239 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 4240 verify_memory_slice(this, alias_idx, n);
duke@435 4241 Node* empty_mem = empty_memory();
duke@435 4242 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 4243 uint need_req = alias_idx+1;
duke@435 4244 if (req() < need_req) {
duke@435 4245 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 4246 // grow the sparse array
duke@435 4247 do {
duke@435 4248 add_req(empty_mem);
duke@435 4249 } while (req() < need_req);
duke@435 4250 }
duke@435 4251 set_req( alias_idx, n );
duke@435 4252 }
duke@435 4253
duke@435 4254
duke@435 4255
duke@435 4256 //--------------------------iteration_setup------------------------------------
duke@435 4257 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 4258 if (other != NULL) {
duke@435 4259 grow_to_match(other);
duke@435 4260 // invariant: the finite support of mm2 is within mm->req()
duke@435 4261 #ifdef ASSERT
duke@435 4262 for (uint i = req(); i < other->req(); i++) {
duke@435 4263 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 4264 }
duke@435 4265 #endif
duke@435 4266 }
duke@435 4267 // Replace spurious copies of base_memory by top.
duke@435 4268 Node* base_mem = base_memory();
duke@435 4269 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 4270 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 4271 if (in(i) == base_mem)
duke@435 4272 set_req(i, empty_memory());
duke@435 4273 }
duke@435 4274 }
duke@435 4275 }
duke@435 4276
duke@435 4277 //---------------------------grow_to_match-------------------------------------
duke@435 4278 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 4279 Node* empty_mem = empty_memory();
duke@435 4280 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4281 // look for the finite support of the other memory
duke@435 4282 for (uint i = other->req(); --i >= req(); ) {
duke@435 4283 if (other->in(i) != empty_mem) {
duke@435 4284 uint new_len = i+1;
duke@435 4285 while (req() < new_len) add_req(empty_mem);
duke@435 4286 break;
duke@435 4287 }
duke@435 4288 }
duke@435 4289 }
duke@435 4290
duke@435 4291 //---------------------------verify_sparse-------------------------------------
duke@435 4292 #ifndef PRODUCT
duke@435 4293 bool MergeMemNode::verify_sparse() const {
duke@435 4294 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 4295 Node* base_mem = base_memory();
duke@435 4296 // The following can happen in degenerate cases, since empty==top.
duke@435 4297 if (is_empty_memory(base_mem)) return true;
duke@435 4298 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4299 assert(in(i) != NULL, "sane slice");
duke@435 4300 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 4301 }
duke@435 4302 return true;
duke@435 4303 }
duke@435 4304
duke@435 4305 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 4306 Node* n;
duke@435 4307 n = mm->in(idx);
duke@435 4308 if (mem == n) return true; // might be empty_memory()
duke@435 4309 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 4310 if (mem == n) return true;
duke@435 4311 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 4312 if (mem == n) return true;
duke@435 4313 if (n == NULL) break;
duke@435 4314 }
duke@435 4315 return false;
duke@435 4316 }
duke@435 4317 #endif // !PRODUCT

mercurial