src/share/vm/opto/memnode.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 801
8261ee795323
child 979
82a980778b92
child 988
041fe019d769
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_memnode.cpp.incl"
duke@435 31
kvn@509 32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 33
duke@435 34 //=============================================================================
duke@435 35 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 36
duke@435 37 const TypePtr *MemNode::adr_type() const {
duke@435 38 Node* adr = in(Address);
duke@435 39 const TypePtr* cross_check = NULL;
duke@435 40 DEBUG_ONLY(cross_check = _adr_type);
duke@435 41 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 42 }
duke@435 43
duke@435 44 #ifndef PRODUCT
duke@435 45 void MemNode::dump_spec(outputStream *st) const {
duke@435 46 if (in(Address) == NULL) return; // node is dead
duke@435 47 #ifndef ASSERT
duke@435 48 // fake the missing field
duke@435 49 const TypePtr* _adr_type = NULL;
duke@435 50 if (in(Address) != NULL)
duke@435 51 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 52 #endif
duke@435 53 dump_adr_type(this, _adr_type, st);
duke@435 54
duke@435 55 Compile* C = Compile::current();
duke@435 56 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 57 st->print(" Volatile!");
duke@435 58 }
duke@435 59
duke@435 60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 61 st->print(" @");
duke@435 62 if (adr_type == NULL) {
duke@435 63 st->print("NULL");
duke@435 64 } else {
duke@435 65 adr_type->dump_on(st);
duke@435 66 Compile* C = Compile::current();
duke@435 67 Compile::AliasType* atp = NULL;
duke@435 68 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 69 if (atp == NULL)
duke@435 70 st->print(", idx=?\?;");
duke@435 71 else if (atp->index() == Compile::AliasIdxBot)
duke@435 72 st->print(", idx=Bot;");
duke@435 73 else if (atp->index() == Compile::AliasIdxTop)
duke@435 74 st->print(", idx=Top;");
duke@435 75 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 76 st->print(", idx=Raw;");
duke@435 77 else {
duke@435 78 ciField* field = atp->field();
duke@435 79 if (field) {
duke@435 80 st->print(", name=");
duke@435 81 field->print_name_on(st);
duke@435 82 }
duke@435 83 st->print(", idx=%d;", atp->index());
duke@435 84 }
duke@435 85 }
duke@435 86 }
duke@435 87
duke@435 88 extern void print_alias_types();
duke@435 89
duke@435 90 #endif
duke@435 91
kvn@509 92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 93 const TypeOopPtr *tinst = t_adr->isa_oopptr();
kvn@658 94 if (tinst == NULL || !tinst->is_known_instance_field())
kvn@509 95 return mchain; // don't try to optimize non-instance types
kvn@509 96 uint instance_id = tinst->instance_id();
kvn@688 97 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 98 Node *prev = NULL;
kvn@509 99 Node *result = mchain;
kvn@509 100 while (prev != result) {
kvn@509 101 prev = result;
kvn@688 102 if (result == start_mem)
kvn@688 103 break; // hit one of our sentinals
kvn@509 104 // skip over a call which does not affect this memory slice
kvn@509 105 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 106 Node *proj_in = result->in(0);
kvn@688 107 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
kvn@688 108 break; // hit one of our sentinals
kvn@688 109 } else if (proj_in->is_Call()) {
kvn@509 110 CallNode *call = proj_in->as_Call();
kvn@509 111 if (!call->may_modify(t_adr, phase)) {
kvn@509 112 result = call->in(TypeFunc::Memory);
kvn@509 113 }
kvn@509 114 } else if (proj_in->is_Initialize()) {
kvn@509 115 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 116 // Stop if this is the initialization for the object instance which
kvn@509 117 // which contains this memory slice, otherwise skip over it.
kvn@509 118 if (alloc != NULL && alloc->_idx != instance_id) {
kvn@509 119 result = proj_in->in(TypeFunc::Memory);
kvn@509 120 }
kvn@509 121 } else if (proj_in->is_MemBar()) {
kvn@509 122 result = proj_in->in(TypeFunc::Memory);
kvn@688 123 } else {
kvn@688 124 assert(false, "unexpected projection");
kvn@509 125 }
kvn@509 126 } else if (result->is_MergeMem()) {
kvn@509 127 result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
kvn@509 128 }
kvn@509 129 }
kvn@509 130 return result;
kvn@509 131 }
kvn@509 132
kvn@509 133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 134 const TypeOopPtr *t_oop = t_adr->isa_oopptr();
kvn@658 135 bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
kvn@509 136 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 137 Node *result = mchain;
kvn@509 138 result = optimize_simple_memory_chain(result, t_adr, phase);
kvn@509 139 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 140 PhiNode *mphi = result->as_Phi();
kvn@509 141 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 142 const TypePtr *t = mphi->adr_type();
kvn@598 143 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 144 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 145 t->is_oopptr()->cast_to_exactness(true)
kvn@682 146 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 147 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 148 // clone the Phi with our address type
kvn@509 149 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 150 } else {
kvn@509 151 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 152 }
kvn@509 153 }
kvn@509 154 return result;
kvn@509 155 }
kvn@509 156
kvn@499 157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 158 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 159 Node *mem = mmem;
kvn@499 160 #ifdef ASSERT
kvn@499 161 {
kvn@499 162 // Check that current type is consistent with the alias index used during graph construction
kvn@499 163 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 164 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 165 phase->C->must_alias(adr_check, alias_idx );
kvn@499 166 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 167 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 168 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 169 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 170 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 171 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 172 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 173 // don't assert if it is dead code.
kvn@499 174 consistent = true;
kvn@499 175 }
kvn@499 176 if( !consistent ) {
kvn@499 177 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 178 if( adr_check == NULL ) {
kvn@499 179 st->print("NULL");
kvn@499 180 } else {
kvn@499 181 adr_check->dump();
kvn@499 182 }
kvn@499 183 st->cr();
kvn@499 184 print_alias_types();
kvn@499 185 assert(consistent, "adr_check must match alias idx");
kvn@499 186 }
kvn@499 187 }
kvn@499 188 #endif
kvn@499 189 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 190 // means an array I have not precisely typed yet. Do not do any
kvn@499 191 // alias stuff with it any time soon.
kvn@499 192 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@499 193 if( tp->base() != Type::AnyPtr &&
kvn@499 194 !(tinst &&
kvn@499 195 tinst->klass()->is_java_lang_Object() &&
kvn@499 196 tinst->offset() == Type::OffsetBot) ) {
kvn@499 197 // compress paths and change unreachable cycles to TOP
kvn@499 198 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 199 // Equivalent code in PhiNode::Ideal
kvn@499 200 Node* m = phase->transform(mmem);
kvn@499 201 // If tranformed to a MergeMem, get the desired slice
kvn@499 202 // Otherwise the returned node represents memory for every slice
kvn@499 203 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 204 // Update input if it is progress over what we have now
kvn@499 205 }
kvn@499 206 return mem;
kvn@499 207 }
kvn@499 208
duke@435 209 //--------------------------Ideal_common---------------------------------------
duke@435 210 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 211 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 213 // If our control input is a dead region, kill all below the region
duke@435 214 Node *ctl = in(MemNode::Control);
duke@435 215 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 216 return this;
kvn@740 217 ctl = in(MemNode::Control);
kvn@740 218 // Don't bother trying to transform a dead node
kvn@740 219 if( ctl && ctl->is_top() ) return NodeSentinel;
duke@435 220
duke@435 221 // Ignore if memory is dead, or self-loop
duke@435 222 Node *mem = in(MemNode::Memory);
duke@435 223 if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 224 assert( mem != this, "dead loop in MemNode::Ideal" );
duke@435 225
duke@435 226 Node *address = in(MemNode::Address);
duke@435 227 const Type *t_adr = phase->type( address );
duke@435 228 if( t_adr == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 229
kvn@855 230 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@855 231 if( can_reshape && igvn != NULL && igvn->_worklist.member(address) ) {
kvn@855 232 // The address's base and type may change when the address is processed.
kvn@855 233 // Delay this mem node transformation until the address is processed.
kvn@855 234 phase->is_IterGVN()->_worklist.push(this);
kvn@855 235 return NodeSentinel; // caller will return NULL
kvn@855 236 }
kvn@855 237
duke@435 238 // Avoid independent memory operations
duke@435 239 Node* old_mem = mem;
duke@435 240
kvn@471 241 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 242 // initializations was removed. After macro-expansion all stores catched
kvn@471 243 // by Initialize node became raw stores and there is no information
kvn@471 244 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 245 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 246 // were already unhooked by using information from detect_ptr_independence()
kvn@471 247 // and find_previous_store().
duke@435 248
duke@435 249 if (mem->is_MergeMem()) {
duke@435 250 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 251 const TypePtr *tp = t_adr->is_ptr();
kvn@499 252
kvn@499 253 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 254 }
duke@435 255
duke@435 256 if (mem != old_mem) {
duke@435 257 set_req(MemNode::Memory, mem);
kvn@740 258 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 259 return this;
duke@435 260 }
duke@435 261
duke@435 262 // let the subclass continue analyzing...
duke@435 263 return NULL;
duke@435 264 }
duke@435 265
duke@435 266 // Helper function for proving some simple control dominations.
kvn@554 267 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 268 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 269 // is not a constant (dominated by the method's StartNode).
duke@435 270 // Used by MemNode::find_previous_store to prove that the
duke@435 271 // control input of a memory operation predates (dominates)
duke@435 272 // an allocation it wants to look past.
kvn@554 273 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 274 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 275 return false; // Conservative answer for dead code
kvn@554 276
kvn@628 277 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 278 dom = dom->find_exact_control(dom);
kvn@554 279 if (dom == NULL || dom->is_top())
kvn@554 280 return false; // Conservative answer for dead code
kvn@554 281
kvn@628 282 if (dom == sub) {
kvn@628 283 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 284 // 'dom' is Proj node of the 'sub'.
kvn@628 285 return false;
kvn@628 286 }
kvn@628 287
kvn@590 288 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 289 return true;
kvn@554 290
kvn@554 291 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 292 // of all its inputs dominate or equal to sub's control edge.
kvn@554 293
kvn@554 294 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 295 // Or Region for the check in LoadNode::Ideal();
kvn@598 296 // 'sub' should have sub->in(0) != NULL.
kvn@598 297 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@598 298 sub->is_Region(), "expecting only these nodes");
kvn@554 299
kvn@554 300 // Get control edge of 'sub'.
kvn@628 301 Node* orig_sub = sub;
kvn@554 302 sub = sub->find_exact_control(sub->in(0));
kvn@554 303 if (sub == NULL || sub->is_top())
kvn@554 304 return false; // Conservative answer for dead code
kvn@554 305
kvn@554 306 assert(sub->is_CFG(), "expecting control");
kvn@554 307
kvn@554 308 if (sub == dom)
kvn@554 309 return true;
kvn@554 310
kvn@554 311 if (sub->is_Start() || sub->is_Root())
kvn@554 312 return false;
kvn@554 313
kvn@554 314 {
kvn@554 315 // Check all control edges of 'dom'.
kvn@554 316
kvn@554 317 ResourceMark rm;
kvn@554 318 Arena* arena = Thread::current()->resource_area();
kvn@554 319 Node_List nlist(arena);
kvn@554 320 Unique_Node_List dom_list(arena);
kvn@554 321
kvn@554 322 dom_list.push(dom);
kvn@554 323 bool only_dominating_controls = false;
kvn@554 324
kvn@554 325 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 326 Node* n = dom_list.at(next);
kvn@628 327 if (n == orig_sub)
kvn@628 328 return false; // One of dom's inputs dominated by sub.
kvn@554 329 if (!n->is_CFG() && n->pinned()) {
kvn@554 330 // Check only own control edge for pinned non-control nodes.
kvn@554 331 n = n->find_exact_control(n->in(0));
kvn@554 332 if (n == NULL || n->is_top())
kvn@554 333 return false; // Conservative answer for dead code
kvn@554 334 assert(n->is_CFG(), "expecting control");
kvn@628 335 dom_list.push(n);
kvn@628 336 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 337 only_dominating_controls = true;
kvn@554 338 } else if (n->is_CFG()) {
kvn@554 339 if (n->dominates(sub, nlist))
kvn@554 340 only_dominating_controls = true;
kvn@554 341 else
kvn@554 342 return false;
kvn@554 343 } else {
kvn@554 344 // First, own control edge.
kvn@554 345 Node* m = n->find_exact_control(n->in(0));
kvn@590 346 if (m != NULL) {
kvn@590 347 if (m->is_top())
kvn@590 348 return false; // Conservative answer for dead code
kvn@590 349 dom_list.push(m);
kvn@590 350 }
kvn@554 351 // Now, the rest of edges.
kvn@554 352 uint cnt = n->req();
kvn@554 353 for (uint i = 1; i < cnt; i++) {
kvn@554 354 m = n->find_exact_control(n->in(i));
kvn@554 355 if (m == NULL || m->is_top())
kvn@554 356 continue;
kvn@554 357 dom_list.push(m);
duke@435 358 }
duke@435 359 }
duke@435 360 }
kvn@554 361 return only_dominating_controls;
duke@435 362 }
duke@435 363 }
duke@435 364
duke@435 365 //---------------------detect_ptr_independence---------------------------------
duke@435 366 // Used by MemNode::find_previous_store to prove that two base
duke@435 367 // pointers are never equal.
duke@435 368 // The pointers are accompanied by their associated allocations,
duke@435 369 // if any, which have been previously discovered by the caller.
duke@435 370 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 371 Node* p2, AllocateNode* a2,
duke@435 372 PhaseTransform* phase) {
duke@435 373 // Attempt to prove that these two pointers cannot be aliased.
duke@435 374 // They may both manifestly be allocations, and they should differ.
duke@435 375 // Or, if they are not both allocations, they can be distinct constants.
duke@435 376 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 377 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 378 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 379 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 380 return (a1 != a2);
duke@435 381 } else if (a1 != NULL) { // one allocation a1
duke@435 382 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 383 return all_controls_dominate(p2, a1);
duke@435 384 } else { //(a2 != NULL) // one allocation a2
kvn@554 385 return all_controls_dominate(p1, a2);
duke@435 386 }
duke@435 387 return false;
duke@435 388 }
duke@435 389
duke@435 390
duke@435 391 // The logic for reordering loads and stores uses four steps:
duke@435 392 // (a) Walk carefully past stores and initializations which we
duke@435 393 // can prove are independent of this load.
duke@435 394 // (b) Observe that the next memory state makes an exact match
duke@435 395 // with self (load or store), and locate the relevant store.
duke@435 396 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 397 // the optimizer would fold it up somehow.
duke@435 398 // (d) Do the rewiring, and return, depending on some other part of
duke@435 399 // the optimizer to fold up the load.
duke@435 400 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 401 // specific to loads and stores, so they are handled by the callers.
duke@435 402 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 403 //
duke@435 404 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 405 Node* ctrl = in(MemNode::Control);
duke@435 406 Node* adr = in(MemNode::Address);
duke@435 407 intptr_t offset = 0;
duke@435 408 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 409 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 410
duke@435 411 if (offset == Type::OffsetBot)
duke@435 412 return NULL; // cannot unalias unless there are precise offsets
duke@435 413
kvn@509 414 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 415
duke@435 416 intptr_t size_in_bytes = memory_size();
duke@435 417
duke@435 418 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 419
duke@435 420 int cnt = 50; // Cycle limiter
duke@435 421 for (;;) { // While we can dance past unrelated stores...
duke@435 422 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 423
duke@435 424 if (mem->is_Store()) {
duke@435 425 Node* st_adr = mem->in(MemNode::Address);
duke@435 426 intptr_t st_offset = 0;
duke@435 427 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 428 if (st_base == NULL)
duke@435 429 break; // inscrutable pointer
duke@435 430 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 431 const int MAX_STORE = BytesPerLong;
duke@435 432 if (st_offset >= offset + size_in_bytes ||
duke@435 433 st_offset <= offset - MAX_STORE ||
duke@435 434 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 435 // Success: The offsets are provably independent.
duke@435 436 // (You may ask, why not just test st_offset != offset and be done?
duke@435 437 // The answer is that stores of different sizes can co-exist
duke@435 438 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 439 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 440 mem = mem->in(MemNode::Memory);
duke@435 441 continue; // (a) advance through independent store memory
duke@435 442 }
duke@435 443 }
duke@435 444 if (st_base != base &&
duke@435 445 detect_ptr_independence(base, alloc,
duke@435 446 st_base,
duke@435 447 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 448 phase)) {
duke@435 449 // Success: The bases are provably independent.
duke@435 450 mem = mem->in(MemNode::Memory);
duke@435 451 continue; // (a) advance through independent store memory
duke@435 452 }
duke@435 453
duke@435 454 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 455 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 456 if (st_base == base && st_offset == offset) {
duke@435 457 return mem; // let caller handle steps (c), (d)
duke@435 458 }
duke@435 459
duke@435 460 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 461 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 462 AllocateNode* st_alloc = st_init->allocation();
duke@435 463 if (st_alloc == NULL)
duke@435 464 break; // something degenerated
duke@435 465 bool known_identical = false;
duke@435 466 bool known_independent = false;
duke@435 467 if (alloc == st_alloc)
duke@435 468 known_identical = true;
duke@435 469 else if (alloc != NULL)
duke@435 470 known_independent = true;
kvn@554 471 else if (all_controls_dominate(this, st_alloc))
duke@435 472 known_independent = true;
duke@435 473
duke@435 474 if (known_independent) {
duke@435 475 // The bases are provably independent: Either they are
duke@435 476 // manifestly distinct allocations, or else the control
duke@435 477 // of this load dominates the store's allocation.
duke@435 478 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 479 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 480 mem = st_alloc->in(TypeFunc::Memory);
duke@435 481 } else {
duke@435 482 mem = st_init->memory(alias_idx);
duke@435 483 }
duke@435 484 continue; // (a) advance through independent store memory
duke@435 485 }
duke@435 486
duke@435 487 // (b) at this point, if we are not looking at a store initializing
duke@435 488 // the same allocation we are loading from, we lose.
duke@435 489 if (known_identical) {
duke@435 490 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 491 return mem; // let caller handle steps (c), (d)
duke@435 492 }
duke@435 493
kvn@658 494 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 495 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 496 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 497 CallNode *call = mem->in(0)->as_Call();
kvn@509 498 if (!call->may_modify(addr_t, phase)) {
kvn@509 499 mem = call->in(TypeFunc::Memory);
kvn@509 500 continue; // (a) advance through independent call memory
kvn@509 501 }
kvn@509 502 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 503 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 504 continue; // (a) advance through independent MemBar memory
kvn@509 505 } else if (mem->is_MergeMem()) {
kvn@509 506 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 507 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 508 continue; // (a) advance through independent MergeMem memory
kvn@509 509 }
duke@435 510 }
duke@435 511
duke@435 512 // Unless there is an explicit 'continue', we must bail out here,
duke@435 513 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 514 break;
duke@435 515 }
duke@435 516
duke@435 517 return NULL; // bail out
duke@435 518 }
duke@435 519
duke@435 520 //----------------------calculate_adr_type-------------------------------------
duke@435 521 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 522 // Also, asserts a cross-check of the type against the expected address type.
duke@435 523 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 524 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 525 #ifdef PRODUCT
duke@435 526 cross_check = NULL;
duke@435 527 #else
duke@435 528 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 529 #endif
duke@435 530 const TypePtr* tp = t->isa_ptr();
duke@435 531 if (tp == NULL) {
duke@435 532 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 533 return TypePtr::BOTTOM; // touches lots of memory
duke@435 534 } else {
duke@435 535 #ifdef ASSERT
duke@435 536 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 537 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 538 if (cross_check != NULL &&
duke@435 539 cross_check != TypePtr::BOTTOM &&
duke@435 540 cross_check != TypeRawPtr::BOTTOM) {
duke@435 541 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 542 Compile* C = Compile::current();
duke@435 543 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 544 "must stay in the original alias category");
duke@435 545 // The type of the address must be contained in the adr_type,
duke@435 546 // disregarding "null"-ness.
duke@435 547 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 548 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
duke@435 549 assert(cross_check->meet(tp_notnull) == cross_check,
duke@435 550 "real address must not escape from expected memory type");
duke@435 551 }
duke@435 552 #endif
duke@435 553 return tp;
duke@435 554 }
duke@435 555 }
duke@435 556
duke@435 557 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 558 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 559 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 560 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 561 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 562 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 563 // with the same data. This implies that any path into the loop already
duke@435 564 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 565 // must be covered by an equivalent cast, with an earlier control input.
duke@435 566 ResourceMark rm;
duke@435 567
duke@435 568 // The loop entry input of the phi should be the unique dominating
duke@435 569 // node for every Phi/CastPP in the loop.
duke@435 570 Unique_Node_List closure;
duke@435 571 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 572
duke@435 573 // Add the phi node and the cast to the worklist.
duke@435 574 Unique_Node_List worklist;
duke@435 575 worklist.push(adr_phi);
duke@435 576 if( cast != NULL ){
duke@435 577 if( !cast->is_ConstraintCast() ) return false;
duke@435 578 worklist.push(cast);
duke@435 579 }
duke@435 580
duke@435 581 // Begin recursive walk of phi nodes.
duke@435 582 while( worklist.size() ){
duke@435 583 // Take a node off the worklist
duke@435 584 Node *n = worklist.pop();
duke@435 585 if( !closure.member(n) ){
duke@435 586 // Add it to the closure.
duke@435 587 closure.push(n);
duke@435 588 // Make a sanity check to ensure we don't waste too much time here.
duke@435 589 if( closure.size() > 20) return false;
duke@435 590 // This node is OK if:
duke@435 591 // - it is a cast of an identical value
duke@435 592 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 593 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 594 if( n->is_ConstraintCast() ){
duke@435 595 worklist.push(n->in(1));
duke@435 596 } else if( n->is_Phi() ) {
duke@435 597 for( uint i = 1; i < n->req(); i++ ) {
duke@435 598 worklist.push(n->in(i));
duke@435 599 }
duke@435 600 } else {
duke@435 601 return false;
duke@435 602 }
duke@435 603 }
duke@435 604 }
duke@435 605
duke@435 606 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 607 return true;
duke@435 608 }
duke@435 609
duke@435 610 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 611 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 612 // going away in this pass and we need to make this memory op depend on the
duke@435 613 // gating null check.
kvn@598 614 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 615 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 616 }
duke@435 617
duke@435 618 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 619 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 620 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 621 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 622 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 623 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 624 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 625 // up on this approach. CNC 10/20/2000
kvn@598 626 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 627 // Only the control edge of the node 'n' might be updated.
kvn@598 628 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 629 Node *skipped_cast = NULL;
duke@435 630 // Need a null check? Regular static accesses do not because they are
duke@435 631 // from constant addresses. Array ops are gated by the range check (which
duke@435 632 // always includes a NULL check). Just check field ops.
kvn@598 633 if( n->in(MemNode::Control) == NULL ) {
duke@435 634 // Scan upwards for the highest location we can place this memory op.
duke@435 635 while( true ) {
duke@435 636 switch( adr->Opcode() ) {
duke@435 637
duke@435 638 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 639 adr = adr->in(AddPNode::Base);
duke@435 640 continue;
duke@435 641
coleenp@548 642 case Op_DecodeN: // No change to NULL-ness, so peek thru
coleenp@548 643 adr = adr->in(1);
coleenp@548 644 continue;
coleenp@548 645
duke@435 646 case Op_CastPP:
duke@435 647 // If the CastPP is useless, just peek on through it.
duke@435 648 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 649 // Remember the cast that we've peeked though. If we peek
duke@435 650 // through more than one, then we end up remembering the highest
duke@435 651 // one, that is, if in a loop, the one closest to the top.
duke@435 652 skipped_cast = adr;
duke@435 653 adr = adr->in(1);
duke@435 654 continue;
duke@435 655 }
duke@435 656 // CastPP is going away in this pass! We need this memory op to be
duke@435 657 // control-dependent on the test that is guarding the CastPP.
kvn@598 658 ccp->hash_delete(n);
kvn@598 659 n->set_req(MemNode::Control, adr->in(0));
kvn@598 660 ccp->hash_insert(n);
kvn@598 661 return n;
duke@435 662
duke@435 663 case Op_Phi:
duke@435 664 // Attempt to float above a Phi to some dominating point.
duke@435 665 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 666 // If we've already peeked through a Cast (which could have set the
duke@435 667 // control), we can't float above a Phi, because the skipped Cast
duke@435 668 // may not be loop invariant.
duke@435 669 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 670 adr = adr->in(1);
duke@435 671 continue;
duke@435 672 }
duke@435 673 }
duke@435 674
duke@435 675 // Intentional fallthrough!
duke@435 676
duke@435 677 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 678 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 679 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 680 // behind the controls leading to the Phi.
duke@435 681 case Op_CheckCastPP:
duke@435 682 // These usually stick around to change address type, however a
duke@435 683 // useless one can be elided and we still need to pick up a control edge
duke@435 684 if (adr->in(0) == NULL) {
duke@435 685 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 686 // need check further up the ancestor chain for a control input to keep
duke@435 687 // the node in place. 4959717.
duke@435 688 skipped_cast = adr;
duke@435 689 adr = adr->in(1);
duke@435 690 continue;
duke@435 691 }
kvn@598 692 ccp->hash_delete(n);
kvn@598 693 n->set_req(MemNode::Control, adr->in(0));
kvn@598 694 ccp->hash_insert(n);
kvn@598 695 return n;
duke@435 696
duke@435 697 // List of "safe" opcodes; those that implicitly block the memory
duke@435 698 // op below any null check.
duke@435 699 case Op_CastX2P: // no null checks on native pointers
duke@435 700 case Op_Parm: // 'this' pointer is not null
duke@435 701 case Op_LoadP: // Loading from within a klass
coleenp@548 702 case Op_LoadN: // Loading from within a klass
duke@435 703 case Op_LoadKlass: // Loading from within a klass
kvn@599 704 case Op_LoadNKlass: // Loading from within a klass
duke@435 705 case Op_ConP: // Loading from a klass
kvn@598 706 case Op_ConN: // Loading from a klass
duke@435 707 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 708 case Op_Con: // Reading from TLS
duke@435 709 case Op_CMoveP: // CMoveP is pinned
kvn@599 710 case Op_CMoveN: // CMoveN is pinned
duke@435 711 break; // No progress
duke@435 712
duke@435 713 case Op_Proj: // Direct call to an allocation routine
duke@435 714 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 715 #ifdef ASSERT
duke@435 716 {
duke@435 717 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 718 const Node* call = adr->in(0);
kvn@598 719 if (call->is_CallJava()) {
kvn@598 720 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 721 const TypeTuple *r = call_java->tf()->range();
kvn@499 722 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 723 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 724 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 725 // We further presume that this is one of
duke@435 726 // new_instance_Java, new_array_Java, or
duke@435 727 // the like, but do not assert for this.
duke@435 728 } else if (call->is_Allocate()) {
duke@435 729 // similar case to new_instance_Java, etc.
duke@435 730 } else if (!call->is_CallLeaf()) {
duke@435 731 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 732 ShouldNotReachHere();
duke@435 733 }
duke@435 734 }
duke@435 735 #endif
duke@435 736 break;
duke@435 737 default:
duke@435 738 ShouldNotReachHere();
duke@435 739 }
duke@435 740 break;
duke@435 741 }
duke@435 742 }
duke@435 743
duke@435 744 return NULL; // No progress
duke@435 745 }
duke@435 746
duke@435 747
duke@435 748 //=============================================================================
duke@435 749 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 750 uint LoadNode::cmp( const Node &n ) const
duke@435 751 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 752 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 753 uint LoadNode::ideal_reg() const {
duke@435 754 return Matcher::base2reg[_type->base()];
duke@435 755 }
duke@435 756
duke@435 757 #ifndef PRODUCT
duke@435 758 void LoadNode::dump_spec(outputStream *st) const {
duke@435 759 MemNode::dump_spec(st);
duke@435 760 if( !Verbose && !WizardMode ) {
duke@435 761 // standard dump does this in Verbose and WizardMode
duke@435 762 st->print(" #"); _type->dump_on(st);
duke@435 763 }
duke@435 764 }
duke@435 765 #endif
duke@435 766
duke@435 767
duke@435 768 //----------------------------LoadNode::make-----------------------------------
duke@435 769 // Polymorphic factory method:
coleenp@548 770 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
coleenp@548 771 Compile* C = gvn.C;
coleenp@548 772
duke@435 773 // sanity check the alias category against the created node type
duke@435 774 assert(!(adr_type->isa_oopptr() &&
duke@435 775 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 776 "use LoadKlassNode instead");
duke@435 777 assert(!(adr_type->isa_aryptr() &&
duke@435 778 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 779 "use LoadRangeNode instead");
duke@435 780 switch (bt) {
duke@435 781 case T_BOOLEAN:
duke@435 782 case T_BYTE: return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int() );
duke@435 783 case T_INT: return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int() );
duke@435 784 case T_CHAR: return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int() );
duke@435 785 case T_SHORT: return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int() );
duke@435 786 case T_LONG: return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long() );
duke@435 787 case T_FLOAT: return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt );
duke@435 788 case T_DOUBLE: return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt );
duke@435 789 case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr() );
coleenp@548 790 case T_OBJECT:
coleenp@548 791 #ifdef _LP64
kvn@598 792 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 793 Node* load = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
kvn@656 794 return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 795 } else
coleenp@548 796 #endif
kvn@598 797 {
kvn@598 798 assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@598 799 return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
kvn@598 800 }
duke@435 801 }
duke@435 802 ShouldNotReachHere();
duke@435 803 return (LoadNode*)NULL;
duke@435 804 }
duke@435 805
duke@435 806 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
duke@435 807 bool require_atomic = true;
duke@435 808 return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
duke@435 809 }
duke@435 810
duke@435 811
duke@435 812
duke@435 813
duke@435 814 //------------------------------hash-------------------------------------------
duke@435 815 uint LoadNode::hash() const {
duke@435 816 // unroll addition of interesting fields
duke@435 817 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 818 }
duke@435 819
duke@435 820 //---------------------------can_see_stored_value------------------------------
duke@435 821 // This routine exists to make sure this set of tests is done the same
duke@435 822 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 823 // will change the graph shape in a way which makes memory alive twice at the
duke@435 824 // same time (uses the Oracle model of aliasing), then some
duke@435 825 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 826 // of aliasing.
duke@435 827 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 828 Node* ld_adr = in(MemNode::Address);
duke@435 829
never@452 830 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
never@452 831 Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
never@452 832 if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
never@452 833 atp->field() != NULL && !atp->field()->is_volatile()) {
never@452 834 uint alias_idx = atp->index();
never@452 835 bool final = atp->field()->is_final();
never@452 836 Node* result = NULL;
never@452 837 Node* current = st;
never@452 838 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 839 // new states for the slice of this load. Stop once any other
never@452 840 // kind of node is encountered. Loads from final memory can skip
never@452 841 // through any kind of MemBar but normal loads shouldn't skip
never@452 842 // through MemBarAcquire since the could allow them to move out of
never@452 843 // a synchronized region.
never@452 844 while (current->is_Proj()) {
never@452 845 int opc = current->in(0)->Opcode();
never@452 846 if ((final && opc == Op_MemBarAcquire) ||
never@452 847 opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
never@452 848 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 849 if (mem->is_MergeMem()) {
never@452 850 MergeMemNode* merge = mem->as_MergeMem();
never@452 851 Node* new_st = merge->memory_at(alias_idx);
never@452 852 if (new_st == merge->base_memory()) {
never@452 853 // Keep searching
never@452 854 current = merge->base_memory();
never@452 855 continue;
never@452 856 }
never@452 857 // Save the new memory state for the slice and fall through
never@452 858 // to exit.
never@452 859 result = new_st;
never@452 860 }
never@452 861 }
never@452 862 break;
never@452 863 }
never@452 864 if (result != NULL) {
never@452 865 st = result;
never@452 866 }
never@452 867 }
never@452 868
never@452 869
duke@435 870 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 871 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 872 for (int trip = 0; trip <= 1; trip++) {
duke@435 873
duke@435 874 if (st->is_Store()) {
duke@435 875 Node* st_adr = st->in(MemNode::Address);
duke@435 876 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 877 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 878 intptr_t st_off = 0;
duke@435 879 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 880 if (alloc == NULL) return NULL;
duke@435 881 intptr_t ld_off = 0;
duke@435 882 AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
duke@435 883 if (alloc != allo2) return NULL;
duke@435 884 if (ld_off != st_off) return NULL;
duke@435 885 // At this point we have proven something like this setup:
duke@435 886 // A = Allocate(...)
duke@435 887 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 888 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 889 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 890 // In other words, we are loading from a casted version of
duke@435 891 // the same pointer-and-offset that we stored to.
duke@435 892 // Thus, we are able to replace L by V.
duke@435 893 }
duke@435 894 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 895 if (store_Opcode() != st->Opcode())
duke@435 896 return NULL;
duke@435 897 return st->in(MemNode::ValueIn);
duke@435 898 }
duke@435 899
duke@435 900 intptr_t offset = 0; // scratch
duke@435 901
duke@435 902 // A load from a freshly-created object always returns zero.
duke@435 903 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 904 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 905 if (st->is_Proj() && st->in(0)->is_Allocate() &&
duke@435 906 st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
duke@435 907 offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
duke@435 908 // return a zero value for the load's basic type
duke@435 909 // (This is one of the few places where a generic PhaseTransform
duke@435 910 // can create new nodes. Think of it as lazily manifesting
duke@435 911 // virtually pre-existing constants.)
duke@435 912 return phase->zerocon(memory_type());
duke@435 913 }
duke@435 914
duke@435 915 // A load from an initialization barrier can match a captured store.
duke@435 916 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 917 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 918 AllocateNode* alloc = init->allocation();
duke@435 919 if (alloc != NULL &&
duke@435 920 alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
duke@435 921 // examine a captured store value
duke@435 922 st = init->find_captured_store(offset, memory_size(), phase);
duke@435 923 if (st != NULL)
duke@435 924 continue; // take one more trip around
duke@435 925 }
duke@435 926 }
duke@435 927
duke@435 928 break;
duke@435 929 }
duke@435 930
duke@435 931 return NULL;
duke@435 932 }
duke@435 933
kvn@499 934 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 935 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@499 936 if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
kvn@499 937 in(MemNode::Address)->is_AddP() ) {
kvn@499 938 const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@499 939 // Only instances.
kvn@658 940 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@499 941 t_oop->offset() != Type::OffsetBot &&
kvn@499 942 t_oop->offset() != Type::OffsetTop) {
kvn@499 943 return true;
kvn@499 944 }
kvn@499 945 }
kvn@499 946 return false;
kvn@499 947 }
kvn@499 948
duke@435 949 //------------------------------Identity---------------------------------------
duke@435 950 // Loads are identity if previous store is to same address
duke@435 951 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 952 // If the previous store-maker is the right kind of Store, and the store is
duke@435 953 // to the same address, then we are equal to the value stored.
duke@435 954 Node* mem = in(MemNode::Memory);
duke@435 955 Node* value = can_see_stored_value(mem, phase);
duke@435 956 if( value ) {
duke@435 957 // byte, short & char stores truncate naturally.
duke@435 958 // A load has to load the truncated value which requires
duke@435 959 // some sort of masking operation and that requires an
duke@435 960 // Ideal call instead of an Identity call.
duke@435 961 if (memory_size() < BytesPerInt) {
duke@435 962 // If the input to the store does not fit with the load's result type,
duke@435 963 // it must be truncated via an Ideal call.
duke@435 964 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 965 return this;
duke@435 966 }
duke@435 967 // (This works even when value is a Con, but LoadNode::Value
duke@435 968 // usually runs first, producing the singleton type of the Con.)
duke@435 969 return value;
duke@435 970 }
kvn@499 971
kvn@499 972 // Search for an existing data phi which was generated before for the same
kvn@499 973 // instance's field to avoid infinite genertion of phis in a loop.
kvn@499 974 Node *region = mem->in(0);
kvn@499 975 if (is_instance_field_load_with_local_phi(region)) {
kvn@499 976 const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
kvn@499 977 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 978 int this_offset = addr_t->offset();
kvn@499 979 int this_id = addr_t->is_oopptr()->instance_id();
kvn@499 980 const Type* this_type = bottom_type();
kvn@499 981 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 982 Node* phi = region->fast_out(i);
kvn@499 983 if (phi->is_Phi() && phi != mem &&
kvn@499 984 phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
kvn@499 985 return phi;
kvn@499 986 }
kvn@499 987 }
kvn@499 988 }
kvn@499 989
duke@435 990 return this;
duke@435 991 }
duke@435 992
never@452 993
never@452 994 // Returns true if the AliasType refers to the field that holds the
never@452 995 // cached box array. Currently only handles the IntegerCache case.
never@452 996 static bool is_autobox_cache(Compile::AliasType* atp) {
never@452 997 if (atp != NULL && atp->field() != NULL) {
never@452 998 ciField* field = atp->field();
never@452 999 ciSymbol* klass = field->holder()->name();
never@452 1000 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1001 field->holder()->uses_default_loader() &&
never@452 1002 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1003 return true;
never@452 1004 }
never@452 1005 }
never@452 1006 return false;
never@452 1007 }
never@452 1008
never@452 1009 // Fetch the base value in the autobox array
never@452 1010 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
never@452 1011 if (atp != NULL && atp->field() != NULL) {
never@452 1012 ciField* field = atp->field();
never@452 1013 ciSymbol* klass = field->holder()->name();
never@452 1014 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1015 field->holder()->uses_default_loader() &&
never@452 1016 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1017 assert(field->is_constant(), "what?");
never@452 1018 ciObjArray* array = field->constant_value().as_object()->as_obj_array();
never@452 1019 // Fetch the box object at the base of the array and get its value
never@452 1020 ciInstance* box = array->obj_at(0)->as_instance();
never@452 1021 ciInstanceKlass* ik = box->klass()->as_instance_klass();
never@452 1022 if (ik->nof_nonstatic_fields() == 1) {
never@452 1023 // This should be true nonstatic_field_at requires calling
never@452 1024 // nof_nonstatic_fields so check it anyway
never@452 1025 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
never@452 1026 cache_offset = c.as_int();
never@452 1027 }
never@452 1028 return true;
never@452 1029 }
never@452 1030 }
never@452 1031 return false;
never@452 1032 }
never@452 1033
never@452 1034 // Returns true if the AliasType refers to the value field of an
never@452 1035 // autobox object. Currently only handles Integer.
never@452 1036 static bool is_autobox_object(Compile::AliasType* atp) {
never@452 1037 if (atp != NULL && atp->field() != NULL) {
never@452 1038 ciField* field = atp->field();
never@452 1039 ciSymbol* klass = field->holder()->name();
never@452 1040 if (field->name() == ciSymbol::value_name() &&
never@452 1041 field->holder()->uses_default_loader() &&
never@452 1042 klass == ciSymbol::java_lang_Integer()) {
never@452 1043 return true;
never@452 1044 }
never@452 1045 }
never@452 1046 return false;
never@452 1047 }
never@452 1048
never@452 1049
never@452 1050 // We're loading from an object which has autobox behaviour.
never@452 1051 // If this object is result of a valueOf call we'll have a phi
never@452 1052 // merging a newly allocated object and a load from the cache.
never@452 1053 // We want to replace this load with the original incoming
never@452 1054 // argument to the valueOf call.
never@452 1055 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
never@452 1056 Node* base = in(Address)->in(AddPNode::Base);
never@452 1057 if (base->is_Phi() && base->req() == 3) {
never@452 1058 AllocateNode* allocation = NULL;
never@452 1059 int allocation_index = -1;
never@452 1060 int load_index = -1;
never@452 1061 for (uint i = 1; i < base->req(); i++) {
never@452 1062 allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
never@452 1063 if (allocation != NULL) {
never@452 1064 allocation_index = i;
never@452 1065 load_index = 3 - allocation_index;
never@452 1066 break;
never@452 1067 }
never@452 1068 }
never@452 1069 LoadNode* load = NULL;
never@452 1070 if (allocation != NULL && base->in(load_index)->is_Load()) {
never@452 1071 load = base->in(load_index)->as_Load();
never@452 1072 }
never@452 1073 if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
never@452 1074 // Push the loads from the phi that comes from valueOf up
never@452 1075 // through it to allow elimination of the loads and the recovery
never@452 1076 // of the original value.
never@452 1077 Node* mem_phi = in(Memory);
never@452 1078 Node* offset = in(Address)->in(AddPNode::Offset);
never@452 1079
never@452 1080 Node* in1 = clone();
never@452 1081 Node* in1_addr = in1->in(Address)->clone();
never@452 1082 in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
never@452 1083 in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
never@452 1084 in1_addr->set_req(AddPNode::Offset, offset);
never@452 1085 in1->set_req(0, base->in(allocation_index));
never@452 1086 in1->set_req(Address, in1_addr);
never@452 1087 in1->set_req(Memory, mem_phi->in(allocation_index));
never@452 1088
never@452 1089 Node* in2 = clone();
never@452 1090 Node* in2_addr = in2->in(Address)->clone();
never@452 1091 in2_addr->set_req(AddPNode::Base, base->in(load_index));
never@452 1092 in2_addr->set_req(AddPNode::Address, base->in(load_index));
never@452 1093 in2_addr->set_req(AddPNode::Offset, offset);
never@452 1094 in2->set_req(0, base->in(load_index));
never@452 1095 in2->set_req(Address, in2_addr);
never@452 1096 in2->set_req(Memory, mem_phi->in(load_index));
never@452 1097
never@452 1098 in1_addr = phase->transform(in1_addr);
never@452 1099 in1 = phase->transform(in1);
never@452 1100 in2_addr = phase->transform(in2_addr);
never@452 1101 in2 = phase->transform(in2);
never@452 1102
never@452 1103 PhiNode* result = PhiNode::make_blank(base->in(0), this);
never@452 1104 result->set_req(allocation_index, in1);
never@452 1105 result->set_req(load_index, in2);
never@452 1106 return result;
never@452 1107 }
never@452 1108 } else if (base->is_Load()) {
never@452 1109 // Eliminate the load of Integer.value for integers from the cache
never@452 1110 // array by deriving the value from the index into the array.
never@452 1111 // Capture the offset of the load and then reverse the computation.
never@452 1112 Node* load_base = base->in(Address)->in(AddPNode::Base);
never@452 1113 if (load_base != NULL) {
never@452 1114 Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
never@452 1115 intptr_t cache_offset;
never@452 1116 int shift = -1;
never@452 1117 Node* cache = NULL;
never@452 1118 if (is_autobox_cache(atp)) {
kvn@464 1119 shift = exact_log2(type2aelembytes(T_OBJECT));
never@452 1120 cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
never@452 1121 }
never@452 1122 if (cache != NULL && base->in(Address)->is_AddP()) {
never@452 1123 Node* elements[4];
never@452 1124 int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@452 1125 int cache_low;
never@452 1126 if (count > 0 && fetch_autobox_base(atp, cache_low)) {
never@452 1127 int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
never@452 1128 // Add up all the offsets making of the address of the load
never@452 1129 Node* result = elements[0];
never@452 1130 for (int i = 1; i < count; i++) {
never@452 1131 result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
never@452 1132 }
never@452 1133 // Remove the constant offset from the address and then
never@452 1134 // remove the scaling of the offset to recover the original index.
never@452 1135 result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
never@452 1136 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
never@452 1137 // Peel the shift off directly but wrap it in a dummy node
never@452 1138 // since Ideal can't return existing nodes
never@452 1139 result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
never@452 1140 } else {
never@452 1141 result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
never@452 1142 }
never@452 1143 #ifdef _LP64
never@452 1144 result = new (phase->C, 2) ConvL2INode(phase->transform(result));
never@452 1145 #endif
never@452 1146 return result;
never@452 1147 }
never@452 1148 }
never@452 1149 }
never@452 1150 }
never@452 1151 return NULL;
never@452 1152 }
never@452 1153
kvn@598 1154 //------------------------------split_through_phi------------------------------
kvn@598 1155 // Split instance field load through Phi.
kvn@598 1156 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@598 1157 Node* mem = in(MemNode::Memory);
kvn@598 1158 Node* address = in(MemNode::Address);
kvn@598 1159 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@598 1160 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@598 1161
kvn@598 1162 assert(mem->is_Phi() && (t_oop != NULL) &&
kvn@658 1163 t_oop->is_known_instance_field(), "invalide conditions");
kvn@598 1164
kvn@598 1165 Node *region = mem->in(0);
kvn@598 1166 if (region == NULL) {
kvn@598 1167 return NULL; // Wait stable graph
kvn@598 1168 }
kvn@598 1169 uint cnt = mem->req();
kvn@598 1170 for( uint i = 1; i < cnt; i++ ) {
kvn@598 1171 Node *in = mem->in(i);
kvn@598 1172 if( in == NULL ) {
kvn@598 1173 return NULL; // Wait stable graph
kvn@598 1174 }
kvn@598 1175 }
kvn@598 1176 // Check for loop invariant.
kvn@598 1177 if (cnt == 3) {
kvn@598 1178 for( uint i = 1; i < cnt; i++ ) {
kvn@598 1179 Node *in = mem->in(i);
kvn@598 1180 Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
kvn@598 1181 if (m == mem) {
kvn@598 1182 set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
kvn@598 1183 return this;
kvn@598 1184 }
kvn@598 1185 }
kvn@598 1186 }
kvn@598 1187 // Split through Phi (see original code in loopopts.cpp).
kvn@598 1188 assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
kvn@598 1189
kvn@598 1190 // Do nothing here if Identity will find a value
kvn@598 1191 // (to avoid infinite chain of value phis generation).
kvn@598 1192 if ( !phase->eqv(this, this->Identity(phase)) )
kvn@598 1193 return NULL;
kvn@598 1194
kvn@598 1195 // Skip the split if the region dominates some control edge of the address.
kvn@598 1196 if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
kvn@598 1197 return NULL;
kvn@598 1198
kvn@598 1199 const Type* this_type = this->bottom_type();
kvn@598 1200 int this_index = phase->C->get_alias_index(addr_t);
kvn@598 1201 int this_offset = addr_t->offset();
kvn@598 1202 int this_iid = addr_t->is_oopptr()->instance_id();
kvn@598 1203 int wins = 0;
kvn@598 1204 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@598 1205 Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@598 1206 for( uint i = 1; i < region->req(); i++ ) {
kvn@598 1207 Node *x;
kvn@598 1208 Node* the_clone = NULL;
kvn@598 1209 if( region->in(i) == phase->C->top() ) {
kvn@598 1210 x = phase->C->top(); // Dead path? Use a dead data op
kvn@598 1211 } else {
kvn@598 1212 x = this->clone(); // Else clone up the data op
kvn@598 1213 the_clone = x; // Remember for possible deletion.
kvn@598 1214 // Alter data node to use pre-phi inputs
kvn@598 1215 if( this->in(0) == region ) {
kvn@598 1216 x->set_req( 0, region->in(i) );
kvn@598 1217 } else {
kvn@598 1218 x->set_req( 0, NULL );
kvn@598 1219 }
kvn@598 1220 for( uint j = 1; j < this->req(); j++ ) {
kvn@598 1221 Node *in = this->in(j);
kvn@598 1222 if( in->is_Phi() && in->in(0) == region )
kvn@598 1223 x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
kvn@598 1224 }
kvn@598 1225 }
kvn@598 1226 // Check for a 'win' on some paths
kvn@598 1227 const Type *t = x->Value(igvn);
kvn@598 1228
kvn@598 1229 bool singleton = t->singleton();
kvn@598 1230
kvn@598 1231 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@598 1232 if( singleton && t == Type::TOP ) {
kvn@598 1233 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1234 }
kvn@598 1235
kvn@598 1236 if( singleton ) {
kvn@598 1237 wins++;
kvn@598 1238 x = igvn->makecon(t);
kvn@598 1239 } else {
kvn@598 1240 // We now call Identity to try to simplify the cloned node.
kvn@598 1241 // Note that some Identity methods call phase->type(this).
kvn@598 1242 // Make sure that the type array is big enough for
kvn@598 1243 // our new node, even though we may throw the node away.
kvn@598 1244 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1245 igvn->set_type(x, t);
kvn@728 1246 // If x is a TypeNode, capture any more-precise type permanently into Node
kvn@728 1247 // othewise it will be not updated during igvn->transform since
kvn@728 1248 // igvn->type(x) is set to x->Value() already.
kvn@728 1249 x->raise_bottom_type(t);
kvn@598 1250 Node *y = x->Identity(igvn);
kvn@598 1251 if( y != x ) {
kvn@598 1252 wins++;
kvn@598 1253 x = y;
kvn@598 1254 } else {
kvn@598 1255 y = igvn->hash_find(x);
kvn@598 1256 if( y ) {
kvn@598 1257 wins++;
kvn@598 1258 x = y;
kvn@598 1259 } else {
kvn@598 1260 // Else x is a new node we are keeping
kvn@598 1261 // We do not need register_new_node_with_optimizer
kvn@598 1262 // because set_type has already been called.
kvn@598 1263 igvn->_worklist.push(x);
kvn@598 1264 }
kvn@598 1265 }
kvn@598 1266 }
kvn@598 1267 if (x != the_clone && the_clone != NULL)
kvn@598 1268 igvn->remove_dead_node(the_clone);
kvn@598 1269 phi->set_req(i, x);
kvn@598 1270 }
kvn@598 1271 if( wins > 0 ) {
kvn@598 1272 // Record Phi
kvn@598 1273 igvn->register_new_node_with_optimizer(phi);
kvn@598 1274 return phi;
kvn@598 1275 }
kvn@598 1276 igvn->remove_dead_node(phi);
kvn@598 1277 return NULL;
kvn@598 1278 }
never@452 1279
duke@435 1280 //------------------------------Ideal------------------------------------------
duke@435 1281 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1282 // zero out the control input.
duke@435 1283 // If the offset is constant and the base is an object allocation,
duke@435 1284 // try to hook me up to the exact initializing store.
duke@435 1285 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1286 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1287 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1288
duke@435 1289 Node* ctrl = in(MemNode::Control);
duke@435 1290 Node* address = in(MemNode::Address);
duke@435 1291
duke@435 1292 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1293 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1294 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1295 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1296 ctrl = ctrl->in(0);
duke@435 1297 set_req(MemNode::Control,ctrl);
duke@435 1298 }
duke@435 1299
duke@435 1300 // Check for useless control edge in some common special cases
duke@435 1301 if (in(MemNode::Control) != NULL) {
duke@435 1302 intptr_t ignore = 0;
duke@435 1303 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
duke@435 1304 if (base != NULL
duke@435 1305 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1306 && all_controls_dominate(base, phase->C->start())) {
duke@435 1307 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1308 set_req(MemNode::Control, NULL);
duke@435 1309 }
duke@435 1310 }
duke@435 1311
never@452 1312 if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
never@452 1313 Node* base = in(Address)->in(AddPNode::Base);
never@452 1314 if (base != NULL) {
never@452 1315 Compile::AliasType* atp = phase->C->alias_type(adr_type());
never@452 1316 if (is_autobox_object(atp)) {
never@452 1317 Node* result = eliminate_autobox(phase);
never@452 1318 if (result != NULL) return result;
never@452 1319 }
never@452 1320 }
never@452 1321 }
never@452 1322
kvn@509 1323 Node* mem = in(MemNode::Memory);
kvn@509 1324 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1325
kvn@509 1326 if (addr_t != NULL) {
kvn@509 1327 // try to optimize our memory input
kvn@509 1328 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
kvn@509 1329 if (opt_mem != mem) {
kvn@509 1330 set_req(MemNode::Memory, opt_mem);
kvn@740 1331 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1332 return this;
kvn@509 1333 }
kvn@509 1334 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@509 1335 if (can_reshape && opt_mem->is_Phi() &&
kvn@658 1336 (t_oop != NULL) && t_oop->is_known_instance_field()) {
kvn@598 1337 // Split instance field load through Phi.
kvn@598 1338 Node* result = split_through_phi(phase);
kvn@598 1339 if (result != NULL) return result;
kvn@509 1340 }
kvn@509 1341 }
kvn@509 1342
duke@435 1343 // Check for prior store with a different base or offset; make Load
duke@435 1344 // independent. Skip through any number of them. Bail out if the stores
duke@435 1345 // are in an endless dead cycle and report no progress. This is a key
duke@435 1346 // transform for Reflection. However, if after skipping through the Stores
duke@435 1347 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1348 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1349 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1350 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1351 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1352 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1353 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1354 // fold up, do so.
duke@435 1355 Node* prev_mem = find_previous_store(phase);
duke@435 1356 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1357 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1358 // (c) See if we can fold up on the spot, but don't fold up here.
duke@435 1359 // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
duke@435 1360 // just return a prior value, which is done by Identity calls.
duke@435 1361 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1362 // Make ready for step (d):
duke@435 1363 set_req(MemNode::Memory, prev_mem);
duke@435 1364 return this;
duke@435 1365 }
duke@435 1366 }
duke@435 1367
duke@435 1368 return NULL; // No further progress
duke@435 1369 }
duke@435 1370
duke@435 1371 // Helper to recognize certain Klass fields which are invariant across
duke@435 1372 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1373 const Type*
duke@435 1374 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1375 ciKlass* klass) const {
duke@435 1376 if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1377 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1378 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1379 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1380 return TypeInt::make(klass->modifier_flags());
duke@435 1381 }
duke@435 1382 if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1383 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1384 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1385 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1386 return TypeInt::make(klass->access_flags());
duke@435 1387 }
duke@435 1388 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1389 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1390 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1391 return TypeInt::make(klass->layout_helper());
duke@435 1392 }
duke@435 1393
duke@435 1394 // No match.
duke@435 1395 return NULL;
duke@435 1396 }
duke@435 1397
duke@435 1398 //------------------------------Value-----------------------------------------
duke@435 1399 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1400 // Either input is TOP ==> the result is TOP
duke@435 1401 Node* mem = in(MemNode::Memory);
duke@435 1402 const Type *t1 = phase->type(mem);
duke@435 1403 if (t1 == Type::TOP) return Type::TOP;
duke@435 1404 Node* adr = in(MemNode::Address);
duke@435 1405 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1406 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1407 int off = tp->offset();
duke@435 1408 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
duke@435 1409
duke@435 1410 // Try to guess loaded type from pointer type
duke@435 1411 if (tp->base() == Type::AryPtr) {
duke@435 1412 const Type *t = tp->is_aryptr()->elem();
duke@435 1413 // Don't do this for integer types. There is only potential profit if
duke@435 1414 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1415 // more restrictive than t. This only happens here if one is short and the other
duke@435 1416 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1417 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1418 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1419 //
duke@435 1420 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1421 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1422 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1423 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1424 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1425 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1426 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1427 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1428 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@728 1429 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1430 // t might actually be lower than _type, if _type is a unique
duke@435 1431 // concrete subclass of abstract class t.
duke@435 1432 // Make sure the reference is not into the header, by comparing
duke@435 1433 // the offset against the offset of the start of the array's data.
duke@435 1434 // Different array types begin at slightly different offsets (12 vs. 16).
duke@435 1435 // We choose T_BYTE as an example base type that is least restrictive
duke@435 1436 // as to alignment, which will therefore produce the smallest
duke@435 1437 // possible base offset.
duke@435 1438 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1439 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
duke@435 1440 const Type* jt = t->join(_type);
duke@435 1441 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1442 if (jt->empty() && !t->empty()) {
duke@435 1443 // This can happen if a interface-typed array narrows to a class type.
duke@435 1444 jt = _type;
duke@435 1445 }
never@452 1446
never@452 1447 if (EliminateAutoBox) {
never@452 1448 // The pointers in the autobox arrays are always non-null
never@452 1449 Node* base = in(Address)->in(AddPNode::Base);
never@452 1450 if (base != NULL) {
never@452 1451 Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
never@452 1452 if (is_autobox_cache(atp)) {
never@452 1453 return jt->join(TypePtr::NOTNULL)->is_ptr();
never@452 1454 }
never@452 1455 }
never@452 1456 }
duke@435 1457 return jt;
duke@435 1458 }
duke@435 1459 }
duke@435 1460 } else if (tp->base() == Type::InstPtr) {
duke@435 1461 assert( off != Type::OffsetBot ||
duke@435 1462 // arrays can be cast to Objects
duke@435 1463 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1464 // unsafe field access may not have a constant offset
duke@435 1465 phase->C->has_unsafe_access(),
duke@435 1466 "Field accesses must be precise" );
duke@435 1467 // For oop loads, we expect the _type to be precise
duke@435 1468 } else if (tp->base() == Type::KlassPtr) {
duke@435 1469 assert( off != Type::OffsetBot ||
duke@435 1470 // arrays can be cast to Objects
duke@435 1471 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1472 // also allow array-loading from the primary supertype
duke@435 1473 // array during subtype checks
duke@435 1474 Opcode() == Op_LoadKlass,
duke@435 1475 "Field accesses must be precise" );
duke@435 1476 // For klass/static loads, we expect the _type to be precise
duke@435 1477 }
duke@435 1478
duke@435 1479 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1480 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1481 ciKlass* klass = tkls->klass();
duke@435 1482 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1483 // We are loading a field from a Klass metaobject whose identity
duke@435 1484 // is known at compile time (the type is "exact" or "precise").
duke@435 1485 // Check for fields we know are maintained as constants by the VM.
duke@435 1486 if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1487 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1488 // (Folds up type checking code.)
duke@435 1489 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1490 return TypeInt::make(klass->super_check_offset());
duke@435 1491 }
duke@435 1492 // Compute index into primary_supers array
duke@435 1493 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
duke@435 1494 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1495 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1496 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1497 // (Folds up type checking code.)
duke@435 1498 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1499 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1500 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1501 }
duke@435 1502 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1503 if (aift != NULL) return aift;
duke@435 1504 if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
duke@435 1505 && klass->is_array_klass()) {
duke@435 1506 // The field is arrayKlass::_component_mirror. Return its (constant) value.
duke@435 1507 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1508 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1509 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1510 }
duke@435 1511 if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1512 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1513 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1514 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1515 return TypeInstPtr::make(klass->java_mirror());
duke@435 1516 }
duke@435 1517 }
duke@435 1518
duke@435 1519 // We can still check if we are loading from the primary_supers array at a
duke@435 1520 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1521 // than or equal to its super depth are correct.
duke@435 1522 if (klass->is_loaded() ) {
duke@435 1523 ciType *inner = klass->klass();
duke@435 1524 while( inner->is_obj_array_klass() )
duke@435 1525 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1526 if( inner->is_instance_klass() &&
duke@435 1527 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1528 // Compute index into primary_supers array
duke@435 1529 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
duke@435 1530 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1531 if( depth < ciKlass::primary_super_limit() &&
duke@435 1532 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1533 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1534 // (Folds up type checking code.)
duke@435 1535 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1536 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1537 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1538 }
duke@435 1539 }
duke@435 1540 }
duke@435 1541
duke@435 1542 // If the type is enough to determine that the thing is not an array,
duke@435 1543 // we can give the layout_helper a positive interval type.
duke@435 1544 // This will help short-circuit some reflective code.
duke@435 1545 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
duke@435 1546 && !klass->is_array_klass() // not directly typed as an array
duke@435 1547 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1548 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1549 ) {
duke@435 1550 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1551 // test to (klass != Serializable && klass != Cloneable).
duke@435 1552 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1553 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1554 // The key property of this type is that it folds up tests
duke@435 1555 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1556 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1557 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1558 }
duke@435 1559 }
duke@435 1560
duke@435 1561 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1562 // if the load is provably beyond the header of the object.
duke@435 1563 // (Also allow a variable load from a fresh array to produce zero.)
duke@435 1564 if (ReduceFieldZeroing) {
duke@435 1565 Node* value = can_see_stored_value(mem,phase);
duke@435 1566 if (value != NULL && value->is_Con())
duke@435 1567 return value->bottom_type();
duke@435 1568 }
duke@435 1569
kvn@499 1570 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@658 1571 if (tinst != NULL && tinst->is_known_instance_field()) {
kvn@499 1572 // If we have an instance type and our memory input is the
kvn@499 1573 // programs's initial memory state, there is no matching store,
kvn@499 1574 // so just return a zero of the appropriate type
kvn@499 1575 Node *mem = in(MemNode::Memory);
kvn@499 1576 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1577 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1578 return Type::get_zero_type(_type->basic_type());
kvn@499 1579 }
kvn@499 1580 }
duke@435 1581 return _type;
duke@435 1582 }
duke@435 1583
duke@435 1584 //------------------------------match_edge-------------------------------------
duke@435 1585 // Do we Match on this edge index or not? Match only the address.
duke@435 1586 uint LoadNode::match_edge(uint idx) const {
duke@435 1587 return idx == MemNode::Address;
duke@435 1588 }
duke@435 1589
duke@435 1590 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1591 //
duke@435 1592 // If the previous store is to the same address as this load,
duke@435 1593 // and the value stored was larger than a byte, replace this load
duke@435 1594 // with the value stored truncated to a byte. If no truncation is
duke@435 1595 // needed, the replacement is done in LoadNode::Identity().
duke@435 1596 //
duke@435 1597 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1598 Node* mem = in(MemNode::Memory);
duke@435 1599 Node* value = can_see_stored_value(mem,phase);
duke@435 1600 if( value && !phase->type(value)->higher_equal( _type ) ) {
duke@435 1601 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
duke@435 1602 return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
duke@435 1603 }
duke@435 1604 // Identity call will handle the case where truncation is not needed.
duke@435 1605 return LoadNode::Ideal(phase, can_reshape);
duke@435 1606 }
duke@435 1607
duke@435 1608 //--------------------------LoadCNode::Ideal--------------------------------------
duke@435 1609 //
duke@435 1610 // If the previous store is to the same address as this load,
duke@435 1611 // and the value stored was larger than a char, replace this load
duke@435 1612 // with the value stored truncated to a char. If no truncation is
duke@435 1613 // needed, the replacement is done in LoadNode::Identity().
duke@435 1614 //
duke@435 1615 Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1616 Node* mem = in(MemNode::Memory);
duke@435 1617 Node* value = can_see_stored_value(mem,phase);
duke@435 1618 if( value && !phase->type(value)->higher_equal( _type ) )
duke@435 1619 return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
duke@435 1620 // Identity call will handle the case where truncation is not needed.
duke@435 1621 return LoadNode::Ideal(phase, can_reshape);
duke@435 1622 }
duke@435 1623
duke@435 1624 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1625 //
duke@435 1626 // If the previous store is to the same address as this load,
duke@435 1627 // and the value stored was larger than a short, replace this load
duke@435 1628 // with the value stored truncated to a short. If no truncation is
duke@435 1629 // needed, the replacement is done in LoadNode::Identity().
duke@435 1630 //
duke@435 1631 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1632 Node* mem = in(MemNode::Memory);
duke@435 1633 Node* value = can_see_stored_value(mem,phase);
duke@435 1634 if( value && !phase->type(value)->higher_equal( _type ) ) {
duke@435 1635 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
duke@435 1636 return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
duke@435 1637 }
duke@435 1638 // Identity call will handle the case where truncation is not needed.
duke@435 1639 return LoadNode::Ideal(phase, can_reshape);
duke@435 1640 }
duke@435 1641
duke@435 1642 //=============================================================================
kvn@599 1643 //----------------------------LoadKlassNode::make------------------------------
kvn@599 1644 // Polymorphic factory method:
kvn@599 1645 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 1646 Compile* C = gvn.C;
kvn@599 1647 Node *ctl = NULL;
kvn@599 1648 // sanity check the alias category against the created node type
kvn@599 1649 const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
kvn@599 1650 assert(adr_type != NULL, "expecting TypeOopPtr");
kvn@599 1651 #ifdef _LP64
kvn@599 1652 if (adr_type->is_ptr_to_narrowoop()) {
kvn@656 1653 Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
kvn@656 1654 return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 1655 }
kvn@599 1656 #endif
kvn@603 1657 assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@603 1658 return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
kvn@599 1659 }
kvn@599 1660
duke@435 1661 //------------------------------Value------------------------------------------
duke@435 1662 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1663 return klass_value_common(phase);
kvn@599 1664 }
kvn@599 1665
kvn@599 1666 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 1667 // Either input is TOP ==> the result is TOP
duke@435 1668 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1669 if (t1 == Type::TOP) return Type::TOP;
duke@435 1670 Node *adr = in(MemNode::Address);
duke@435 1671 const Type *t2 = phase->type( adr );
duke@435 1672 if (t2 == Type::TOP) return Type::TOP;
duke@435 1673 const TypePtr *tp = t2->is_ptr();
duke@435 1674 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 1675 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 1676
duke@435 1677 // Return a more precise klass, if possible
duke@435 1678 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 1679 if (tinst != NULL) {
duke@435 1680 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 1681 int offset = tinst->offset();
duke@435 1682 if (ik == phase->C->env()->Class_klass()
duke@435 1683 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1684 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1685 // We are loading a special hidden field from a Class mirror object,
duke@435 1686 // the field which points to the VM's Klass metaobject.
duke@435 1687 ciType* t = tinst->java_mirror_type();
duke@435 1688 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 1689 if (t != NULL) {
duke@435 1690 // constant oop => constant klass
duke@435 1691 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1692 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 1693 }
duke@435 1694 if (!t->is_klass()) {
duke@435 1695 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 1696 return TypePtr::NULL_PTR;
duke@435 1697 }
duke@435 1698 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 1699 return TypeKlassPtr::make(t->as_klass());
duke@435 1700 }
duke@435 1701 // non-constant mirror, so we can't tell what's going on
duke@435 1702 }
duke@435 1703 if( !ik->is_loaded() )
duke@435 1704 return _type; // Bail out if not loaded
duke@435 1705 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1706 if (tinst->klass_is_exact()) {
duke@435 1707 return TypeKlassPtr::make(ik);
duke@435 1708 }
duke@435 1709 // See if we can become precise: no subklasses and no interface
duke@435 1710 // (Note: We need to support verified interfaces.)
duke@435 1711 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1712 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1713 // Add a dependence; if any subclass added we need to recompile
duke@435 1714 if (!ik->is_final()) {
duke@435 1715 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 1716 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1717 }
duke@435 1718 // Return precise klass
duke@435 1719 return TypeKlassPtr::make(ik);
duke@435 1720 }
duke@435 1721
duke@435 1722 // Return root of possible klass
duke@435 1723 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 1724 }
duke@435 1725 }
duke@435 1726
duke@435 1727 // Check for loading klass from an array
duke@435 1728 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 1729 if( tary != NULL ) {
duke@435 1730 ciKlass *tary_klass = tary->klass();
duke@435 1731 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 1732 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 1733 if (tary->klass_is_exact()) {
duke@435 1734 return TypeKlassPtr::make(tary_klass);
duke@435 1735 }
duke@435 1736 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 1737 // If the klass is an object array, we defer the question to the
duke@435 1738 // array component klass.
duke@435 1739 if( ak->is_obj_array_klass() ) {
duke@435 1740 assert( ak->is_loaded(), "" );
duke@435 1741 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 1742 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 1743 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 1744 // See if we can become precise: no subklasses and no interface
duke@435 1745 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1746 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1747 // Add a dependence; if any subclass added we need to recompile
duke@435 1748 if (!ik->is_final()) {
duke@435 1749 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1750 }
duke@435 1751 // Return precise array klass
duke@435 1752 return TypeKlassPtr::make(ak);
duke@435 1753 }
duke@435 1754 }
duke@435 1755 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 1756 } else { // Found a type-array?
duke@435 1757 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1758 assert( ak->is_type_array_klass(), "" );
duke@435 1759 return TypeKlassPtr::make(ak); // These are always precise
duke@435 1760 }
duke@435 1761 }
duke@435 1762 }
duke@435 1763
duke@435 1764 // Check for loading klass from an array klass
duke@435 1765 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1766 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1767 ciKlass* klass = tkls->klass();
duke@435 1768 if( !klass->is_loaded() )
duke@435 1769 return _type; // Bail out if not loaded
duke@435 1770 if( klass->is_obj_array_klass() &&
duke@435 1771 (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
duke@435 1772 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 1773 // // Always returning precise element type is incorrect,
duke@435 1774 // // e.g., element type could be object and array may contain strings
duke@435 1775 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 1776
duke@435 1777 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 1778 // according to the element type's subclassing.
duke@435 1779 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 1780 }
duke@435 1781 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
duke@435 1782 (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
duke@435 1783 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 1784 // The field is Klass::_super. Return its (constant) value.
duke@435 1785 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 1786 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 1787 }
duke@435 1788 }
duke@435 1789
duke@435 1790 // Bailout case
duke@435 1791 return LoadNode::Value(phase);
duke@435 1792 }
duke@435 1793
duke@435 1794 //------------------------------Identity---------------------------------------
duke@435 1795 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 1796 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 1797 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 1798 return klass_identity_common(phase);
kvn@599 1799 }
kvn@599 1800
kvn@599 1801 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 1802 Node* x = LoadNode::Identity(phase);
duke@435 1803 if (x != this) return x;
duke@435 1804
duke@435 1805 // Take apart the address into an oop and and offset.
duke@435 1806 // Return 'this' if we cannot.
duke@435 1807 Node* adr = in(MemNode::Address);
duke@435 1808 intptr_t offset = 0;
duke@435 1809 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 1810 if (base == NULL) return this;
duke@435 1811 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 1812 if (toop == NULL) return this;
duke@435 1813
duke@435 1814 // We can fetch the klass directly through an AllocateNode.
duke@435 1815 // This works even if the klass is not constant (clone or newArray).
duke@435 1816 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1817 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 1818 if (allocated_klass != NULL) {
duke@435 1819 return allocated_klass;
duke@435 1820 }
duke@435 1821 }
duke@435 1822
duke@435 1823 // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
duke@435 1824 // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
duke@435 1825 // See inline_native_Class_query for occurrences of these patterns.
duke@435 1826 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 1827 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 1828 //
duke@435 1829 // This improves reflective code, often making the Class
duke@435 1830 // mirror go completely dead. (Current exception: Class
duke@435 1831 // mirrors may appear in debug info, but we could clean them out by
duke@435 1832 // introducing a new debug info operator for klassOop.java_mirror).
duke@435 1833 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 1834 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1835 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1836 // We are loading a special hidden field from a Class mirror,
duke@435 1837 // the field which points to its Klass or arrayKlass metaobject.
duke@435 1838 if (base->is_Load()) {
duke@435 1839 Node* adr2 = base->in(MemNode::Address);
duke@435 1840 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 1841 if (tkls != NULL && !tkls->empty()
duke@435 1842 && (tkls->klass()->is_instance_klass() ||
duke@435 1843 tkls->klass()->is_array_klass())
duke@435 1844 && adr2->is_AddP()
duke@435 1845 ) {
duke@435 1846 int mirror_field = Klass::java_mirror_offset_in_bytes();
duke@435 1847 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1848 mirror_field = in_bytes(arrayKlass::component_mirror_offset());
duke@435 1849 }
duke@435 1850 if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
duke@435 1851 return adr2->in(AddPNode::Base);
duke@435 1852 }
duke@435 1853 }
duke@435 1854 }
duke@435 1855 }
duke@435 1856
duke@435 1857 return this;
duke@435 1858 }
duke@435 1859
kvn@599 1860
kvn@599 1861 //------------------------------Value------------------------------------------
kvn@599 1862 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1863 const Type *t = klass_value_common(phase);
kvn@656 1864 if (t == Type::TOP)
kvn@656 1865 return t;
kvn@656 1866
kvn@656 1867 return t->make_narrowoop();
kvn@599 1868 }
kvn@599 1869
kvn@599 1870 //------------------------------Identity---------------------------------------
kvn@599 1871 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 1872 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 1873 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 1874 Node *x = klass_identity_common(phase);
kvn@599 1875
kvn@599 1876 const Type *t = phase->type( x );
kvn@599 1877 if( t == Type::TOP ) return x;
kvn@599 1878 if( t->isa_narrowoop()) return x;
kvn@599 1879
kvn@656 1880 return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
kvn@599 1881 }
kvn@599 1882
duke@435 1883 //------------------------------Value-----------------------------------------
duke@435 1884 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 1885 // Either input is TOP ==> the result is TOP
duke@435 1886 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1887 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1888 Node *adr = in(MemNode::Address);
duke@435 1889 const Type *t2 = phase->type( adr );
duke@435 1890 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1891 const TypePtr *tp = t2->is_ptr();
duke@435 1892 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 1893 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 1894 if( !tap ) return _type;
duke@435 1895 return tap->size();
duke@435 1896 }
duke@435 1897
rasbold@801 1898 //-------------------------------Ideal---------------------------------------
rasbold@801 1899 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 1900 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 1901 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 1902 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 1903
rasbold@801 1904 // Take apart the address into an oop and and offset.
rasbold@801 1905 // Return 'this' if we cannot.
rasbold@801 1906 Node* adr = in(MemNode::Address);
rasbold@801 1907 intptr_t offset = 0;
rasbold@801 1908 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 1909 if (base == NULL) return NULL;
rasbold@801 1910 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 1911 if (tary == NULL) return NULL;
rasbold@801 1912
rasbold@801 1913 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 1914 // This works even if the length is not constant (clone or newArray).
rasbold@801 1915 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 1916 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 1917 if (alloc != NULL) {
rasbold@801 1918 Node* allocated_length = alloc->Ideal_length();
rasbold@801 1919 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 1920 if (allocated_length != len) {
rasbold@801 1921 // New CastII improves on this.
rasbold@801 1922 return len;
rasbold@801 1923 }
rasbold@801 1924 }
rasbold@801 1925 }
rasbold@801 1926
rasbold@801 1927 return NULL;
rasbold@801 1928 }
rasbold@801 1929
duke@435 1930 //------------------------------Identity---------------------------------------
duke@435 1931 // Feed through the length in AllocateArray(...length...)._length.
duke@435 1932 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 1933 Node* x = LoadINode::Identity(phase);
duke@435 1934 if (x != this) return x;
duke@435 1935
duke@435 1936 // Take apart the address into an oop and and offset.
duke@435 1937 // Return 'this' if we cannot.
duke@435 1938 Node* adr = in(MemNode::Address);
duke@435 1939 intptr_t offset = 0;
duke@435 1940 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 1941 if (base == NULL) return this;
duke@435 1942 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 1943 if (tary == NULL) return this;
duke@435 1944
duke@435 1945 // We can fetch the length directly through an AllocateArrayNode.
duke@435 1946 // This works even if the length is not constant (clone or newArray).
duke@435 1947 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 1948 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 1949 if (alloc != NULL) {
rasbold@801 1950 Node* allocated_length = alloc->Ideal_length();
rasbold@801 1951 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 1952 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 1953 if (allocated_length == len) {
rasbold@801 1954 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 1955 return allocated_length;
rasbold@801 1956 }
duke@435 1957 }
duke@435 1958 }
duke@435 1959
duke@435 1960 return this;
duke@435 1961
duke@435 1962 }
rasbold@801 1963
duke@435 1964 //=============================================================================
duke@435 1965 //---------------------------StoreNode::make-----------------------------------
duke@435 1966 // Polymorphic factory method:
coleenp@548 1967 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
coleenp@548 1968 Compile* C = gvn.C;
coleenp@548 1969
duke@435 1970 switch (bt) {
duke@435 1971 case T_BOOLEAN:
duke@435 1972 case T_BYTE: return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
duke@435 1973 case T_INT: return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
duke@435 1974 case T_CHAR:
duke@435 1975 case T_SHORT: return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
duke@435 1976 case T_LONG: return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
duke@435 1977 case T_FLOAT: return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
duke@435 1978 case T_DOUBLE: return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
duke@435 1979 case T_ADDRESS:
coleenp@548 1980 case T_OBJECT:
coleenp@548 1981 #ifdef _LP64
kvn@598 1982 if (adr->bottom_type()->is_ptr_to_narrowoop() ||
coleenp@548 1983 (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
coleenp@548 1984 adr->bottom_type()->isa_rawptr())) {
kvn@656 1985 val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
kvn@656 1986 return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
coleenp@548 1987 } else
coleenp@548 1988 #endif
kvn@656 1989 {
kvn@656 1990 return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
kvn@656 1991 }
duke@435 1992 }
duke@435 1993 ShouldNotReachHere();
duke@435 1994 return (StoreNode*)NULL;
duke@435 1995 }
duke@435 1996
duke@435 1997 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
duke@435 1998 bool require_atomic = true;
duke@435 1999 return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
duke@435 2000 }
duke@435 2001
duke@435 2002
duke@435 2003 //--------------------------bottom_type----------------------------------------
duke@435 2004 const Type *StoreNode::bottom_type() const {
duke@435 2005 return Type::MEMORY;
duke@435 2006 }
duke@435 2007
duke@435 2008 //------------------------------hash-------------------------------------------
duke@435 2009 uint StoreNode::hash() const {
duke@435 2010 // unroll addition of interesting fields
duke@435 2011 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2012
duke@435 2013 // Since they are not commoned, do not hash them:
duke@435 2014 return NO_HASH;
duke@435 2015 }
duke@435 2016
duke@435 2017 //------------------------------Ideal------------------------------------------
duke@435 2018 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2019 // When a store immediately follows a relevant allocation/initialization,
duke@435 2020 // try to capture it into the initialization, or hoist it above.
duke@435 2021 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2022 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2023 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2024
duke@435 2025 Node* mem = in(MemNode::Memory);
duke@435 2026 Node* address = in(MemNode::Address);
duke@435 2027
duke@435 2028 // Back-to-back stores to same address? Fold em up.
duke@435 2029 // Generally unsafe if I have intervening uses...
duke@435 2030 if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
duke@435 2031 // Looking at a dead closed cycle of memory?
duke@435 2032 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2033
duke@435 2034 assert(Opcode() == mem->Opcode() ||
duke@435 2035 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2036 "no mismatched stores, except on raw memory");
duke@435 2037
duke@435 2038 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2039 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2040 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2041 // For example, 'mem' might be the final state at a conditional return.
duke@435 2042 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2043 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2044 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2045 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2046 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2047 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2048 phase->is_IterGVN());
duke@435 2049 } else {
duke@435 2050 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2051 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2052 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2053 }
duke@435 2054 return this;
duke@435 2055 }
duke@435 2056 }
duke@435 2057
duke@435 2058 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2059 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2060 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2061 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2062 InitializeNode* init = mem->in(0)->as_Initialize();
duke@435 2063 intptr_t offset = init->can_capture_store(this, phase);
duke@435 2064 if (offset > 0) {
duke@435 2065 Node* moved = init->capture_store(this, offset, phase);
duke@435 2066 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2067 // and I need to disappear.
duke@435 2068 if (moved != NULL) {
duke@435 2069 // %%% hack to ensure that Ideal returns a new node:
duke@435 2070 mem = MergeMemNode::make(phase->C, mem);
duke@435 2071 return mem; // fold me away
duke@435 2072 }
duke@435 2073 }
duke@435 2074 }
duke@435 2075
duke@435 2076 return NULL; // No further progress
duke@435 2077 }
duke@435 2078
duke@435 2079 //------------------------------Value-----------------------------------------
duke@435 2080 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2081 // Either input is TOP ==> the result is TOP
duke@435 2082 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2083 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2084 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2085 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2086 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2087 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2088 return Type::MEMORY;
duke@435 2089 }
duke@435 2090
duke@435 2091 //------------------------------Identity---------------------------------------
duke@435 2092 // Remove redundant stores:
duke@435 2093 // Store(m, p, Load(m, p)) changes to m.
duke@435 2094 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2095 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2096 Node* mem = in(MemNode::Memory);
duke@435 2097 Node* adr = in(MemNode::Address);
duke@435 2098 Node* val = in(MemNode::ValueIn);
duke@435 2099
duke@435 2100 // Load then Store? Then the Store is useless
duke@435 2101 if (val->is_Load() &&
duke@435 2102 phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
duke@435 2103 phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
duke@435 2104 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2105 return mem;
duke@435 2106 }
duke@435 2107
duke@435 2108 // Two stores in a row of the same value?
duke@435 2109 if (mem->is_Store() &&
duke@435 2110 phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
duke@435 2111 phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
duke@435 2112 mem->Opcode() == Opcode()) {
duke@435 2113 return mem;
duke@435 2114 }
duke@435 2115
duke@435 2116 // Store of zero anywhere into a freshly-allocated object?
duke@435 2117 // Then the store is useless.
duke@435 2118 // (It must already have been captured by the InitializeNode.)
duke@435 2119 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2120 // a newly allocated object is already all-zeroes everywhere
duke@435 2121 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2122 return mem;
duke@435 2123 }
duke@435 2124
duke@435 2125 // the store may also apply to zero-bits in an earlier object
duke@435 2126 Node* prev_mem = find_previous_store(phase);
duke@435 2127 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2128 if (prev_mem != NULL) {
duke@435 2129 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2130 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2131 // prev_val and val might differ by a cast; it would be good
duke@435 2132 // to keep the more informative of the two.
duke@435 2133 return mem;
duke@435 2134 }
duke@435 2135 }
duke@435 2136 }
duke@435 2137
duke@435 2138 return this;
duke@435 2139 }
duke@435 2140
duke@435 2141 //------------------------------match_edge-------------------------------------
duke@435 2142 // Do we Match on this edge index or not? Match only memory & value
duke@435 2143 uint StoreNode::match_edge(uint idx) const {
duke@435 2144 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2145 }
duke@435 2146
duke@435 2147 //------------------------------cmp--------------------------------------------
duke@435 2148 // Do not common stores up together. They generally have to be split
duke@435 2149 // back up anyways, so do not bother.
duke@435 2150 uint StoreNode::cmp( const Node &n ) const {
duke@435 2151 return (&n == this); // Always fail except on self
duke@435 2152 }
duke@435 2153
duke@435 2154 //------------------------------Ideal_masked_input-----------------------------
duke@435 2155 // Check for a useless mask before a partial-word store
duke@435 2156 // (StoreB ... (AndI valIn conIa) )
duke@435 2157 // If (conIa & mask == mask) this simplifies to
duke@435 2158 // (StoreB ... (valIn) )
duke@435 2159 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2160 Node *val = in(MemNode::ValueIn);
duke@435 2161 if( val->Opcode() == Op_AndI ) {
duke@435 2162 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2163 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2164 set_req(MemNode::ValueIn, val->in(1));
duke@435 2165 return this;
duke@435 2166 }
duke@435 2167 }
duke@435 2168 return NULL;
duke@435 2169 }
duke@435 2170
duke@435 2171
duke@435 2172 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2173 // Check for useless sign-extension before a partial-word store
duke@435 2174 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2175 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2176 // (StoreB ... (valIn) )
duke@435 2177 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2178 Node *val = in(MemNode::ValueIn);
duke@435 2179 if( val->Opcode() == Op_RShiftI ) {
duke@435 2180 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2181 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2182 Node *shl = val->in(1);
duke@435 2183 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2184 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2185 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2186 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2187 return this;
duke@435 2188 }
duke@435 2189 }
duke@435 2190 }
duke@435 2191 }
duke@435 2192 return NULL;
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------value_never_loaded-----------------------------------
duke@435 2196 // Determine whether there are any possible loads of the value stored.
duke@435 2197 // For simplicity, we actually check if there are any loads from the
duke@435 2198 // address stored to, not just for loads of the value stored by this node.
duke@435 2199 //
duke@435 2200 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2201 Node *adr = in(Address);
duke@435 2202 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2203 if (adr_oop == NULL)
duke@435 2204 return false;
kvn@658 2205 if (!adr_oop->is_known_instance_field())
duke@435 2206 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2207 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2208 Node *use = adr->fast_out(i);
duke@435 2209 int opc = use->Opcode();
duke@435 2210 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2211 return false;
duke@435 2212 }
duke@435 2213 }
duke@435 2214 return true;
duke@435 2215 }
duke@435 2216
duke@435 2217 //=============================================================================
duke@435 2218 //------------------------------Ideal------------------------------------------
duke@435 2219 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2220 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2221 // (a left shift, then right shift) we can skip both.
duke@435 2222 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2223 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2224 if( progress != NULL ) return progress;
duke@435 2225
duke@435 2226 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2227 if( progress != NULL ) return progress;
duke@435 2228
duke@435 2229 // Finally check the default case
duke@435 2230 return StoreNode::Ideal(phase, can_reshape);
duke@435 2231 }
duke@435 2232
duke@435 2233 //=============================================================================
duke@435 2234 //------------------------------Ideal------------------------------------------
duke@435 2235 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2236 // we can skip the AND operation
duke@435 2237 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2238 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2239 if( progress != NULL ) return progress;
duke@435 2240
duke@435 2241 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2242 if( progress != NULL ) return progress;
duke@435 2243
duke@435 2244 // Finally check the default case
duke@435 2245 return StoreNode::Ideal(phase, can_reshape);
duke@435 2246 }
duke@435 2247
duke@435 2248 //=============================================================================
duke@435 2249 //------------------------------Identity---------------------------------------
duke@435 2250 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2251 // No need to card mark when storing a null ptr
duke@435 2252 Node* my_store = in(MemNode::OopStore);
duke@435 2253 if (my_store->is_Store()) {
duke@435 2254 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2255 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2256 return in(MemNode::Memory);
duke@435 2257 }
duke@435 2258 }
duke@435 2259 return this;
duke@435 2260 }
duke@435 2261
duke@435 2262 //------------------------------Value-----------------------------------------
duke@435 2263 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2264 // Either input is TOP ==> the result is TOP
kvn@478 2265 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2266 if( t == Type::TOP ) return Type::TOP;
kvn@478 2267 t = phase->type( in(MemNode::Address) );
kvn@478 2268 if( t == Type::TOP ) return Type::TOP;
kvn@478 2269 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2270 if( t == Type::TOP ) return Type::TOP;
duke@435 2271 // If extra input is TOP ==> the result is TOP
kvn@478 2272 t = phase->type( in(MemNode::OopStore) );
kvn@478 2273 if( t == Type::TOP ) return Type::TOP;
duke@435 2274
duke@435 2275 return StoreNode::Value( phase );
duke@435 2276 }
duke@435 2277
duke@435 2278
duke@435 2279 //=============================================================================
duke@435 2280 //----------------------------------SCMemProjNode------------------------------
duke@435 2281 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2282 {
duke@435 2283 return bottom_type();
duke@435 2284 }
duke@435 2285
duke@435 2286 //=============================================================================
duke@435 2287 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
duke@435 2288 init_req(MemNode::Control, c );
duke@435 2289 init_req(MemNode::Memory , mem);
duke@435 2290 init_req(MemNode::Address, adr);
duke@435 2291 init_req(MemNode::ValueIn, val);
duke@435 2292 init_req( ExpectedIn, ex );
duke@435 2293 init_class_id(Class_LoadStore);
duke@435 2294
duke@435 2295 }
duke@435 2296
duke@435 2297 //=============================================================================
duke@435 2298 //-------------------------------adr_type--------------------------------------
duke@435 2299 // Do we Match on this edge index or not? Do not match memory
duke@435 2300 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2301 Node *adr = in(3);
duke@435 2302 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2303 }
duke@435 2304
duke@435 2305 //------------------------------match_edge-------------------------------------
duke@435 2306 // Do we Match on this edge index or not? Do not match memory
duke@435 2307 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2308 return idx > 1;
duke@435 2309 }
duke@435 2310
duke@435 2311 //------------------------------Identity---------------------------------------
duke@435 2312 // Clearing a zero length array does nothing
duke@435 2313 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2314 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2315 }
duke@435 2316
duke@435 2317 //------------------------------Idealize---------------------------------------
duke@435 2318 // Clearing a short array is faster with stores
duke@435 2319 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2320 const int unit = BytesPerLong;
duke@435 2321 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2322 if (!t) return NULL;
duke@435 2323 if (!t->is_con()) return NULL;
duke@435 2324 intptr_t raw_count = t->get_con();
duke@435 2325 intptr_t size = raw_count;
duke@435 2326 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2327 // Clearing nothing uses the Identity call.
duke@435 2328 // Negative clears are possible on dead ClearArrays
duke@435 2329 // (see jck test stmt114.stmt11402.val).
duke@435 2330 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2331 intptr_t count = size / unit;
duke@435 2332 // Length too long; use fast hardware clear
duke@435 2333 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2334 Node *mem = in(1);
duke@435 2335 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2336 Node *adr = in(3);
duke@435 2337 const Type* at = phase->type(adr);
duke@435 2338 if( at==Type::TOP ) return NULL;
duke@435 2339 const TypePtr* atp = at->isa_ptr();
duke@435 2340 // adjust atp to be the correct array element address type
duke@435 2341 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2342 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2343 // Get base for derived pointer purposes
duke@435 2344 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2345 Node *base = adr->in(1);
duke@435 2346
duke@435 2347 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2348 Node *off = phase->MakeConX(BytesPerLong);
duke@435 2349 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2350 count--;
duke@435 2351 while( count-- ) {
duke@435 2352 mem = phase->transform(mem);
duke@435 2353 adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
duke@435 2354 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2355 }
duke@435 2356 return mem;
duke@435 2357 }
duke@435 2358
duke@435 2359 //----------------------------clear_memory-------------------------------------
duke@435 2360 // Generate code to initialize object storage to zero.
duke@435 2361 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2362 intptr_t start_offset,
duke@435 2363 Node* end_offset,
duke@435 2364 PhaseGVN* phase) {
duke@435 2365 Compile* C = phase->C;
duke@435 2366 intptr_t offset = start_offset;
duke@435 2367
duke@435 2368 int unit = BytesPerLong;
duke@435 2369 if ((offset % unit) != 0) {
duke@435 2370 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2371 adr = phase->transform(adr);
duke@435 2372 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2373 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2374 mem = phase->transform(mem);
duke@435 2375 offset += BytesPerInt;
duke@435 2376 }
duke@435 2377 assert((offset % unit) == 0, "");
duke@435 2378
duke@435 2379 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2380 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2381 }
duke@435 2382
duke@435 2383 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2384 Node* start_offset,
duke@435 2385 Node* end_offset,
duke@435 2386 PhaseGVN* phase) {
never@503 2387 if (start_offset == end_offset) {
never@503 2388 // nothing to do
never@503 2389 return mem;
never@503 2390 }
never@503 2391
duke@435 2392 Compile* C = phase->C;
duke@435 2393 int unit = BytesPerLong;
duke@435 2394 Node* zbase = start_offset;
duke@435 2395 Node* zend = end_offset;
duke@435 2396
duke@435 2397 // Scale to the unit required by the CPU:
duke@435 2398 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2399 Node* shift = phase->intcon(exact_log2(unit));
duke@435 2400 zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
duke@435 2401 zend = phase->transform( new(C,3) URShiftXNode(zend, shift) );
duke@435 2402 }
duke@435 2403
duke@435 2404 Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
duke@435 2405 Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
duke@435 2406
duke@435 2407 // Bulk clear double-words
duke@435 2408 Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
duke@435 2409 mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2410 return phase->transform(mem);
duke@435 2411 }
duke@435 2412
duke@435 2413 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2414 intptr_t start_offset,
duke@435 2415 intptr_t end_offset,
duke@435 2416 PhaseGVN* phase) {
never@503 2417 if (start_offset == end_offset) {
never@503 2418 // nothing to do
never@503 2419 return mem;
never@503 2420 }
never@503 2421
duke@435 2422 Compile* C = phase->C;
duke@435 2423 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2424 intptr_t done_offset = end_offset;
duke@435 2425 if ((done_offset % BytesPerLong) != 0) {
duke@435 2426 done_offset -= BytesPerInt;
duke@435 2427 }
duke@435 2428 if (done_offset > start_offset) {
duke@435 2429 mem = clear_memory(ctl, mem, dest,
duke@435 2430 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2431 }
duke@435 2432 if (done_offset < end_offset) { // emit the final 32-bit store
duke@435 2433 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2434 adr = phase->transform(adr);
duke@435 2435 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2436 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2437 mem = phase->transform(mem);
duke@435 2438 done_offset += BytesPerInt;
duke@435 2439 }
duke@435 2440 assert(done_offset == end_offset, "");
duke@435 2441 return mem;
duke@435 2442 }
duke@435 2443
duke@435 2444 //=============================================================================
duke@435 2445 // Do we match on this edge? No memory edges
duke@435 2446 uint StrCompNode::match_edge(uint idx) const {
duke@435 2447 return idx == 5 || idx == 6;
duke@435 2448 }
duke@435 2449
duke@435 2450 //------------------------------Ideal------------------------------------------
duke@435 2451 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2452 // control copies
duke@435 2453 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2454 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 2455 }
duke@435 2456
rasbold@604 2457 //------------------------------Ideal------------------------------------------
rasbold@604 2458 // Return a node which is more "ideal" than the current node. Strip out
rasbold@604 2459 // control copies
rasbold@604 2460 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
rasbold@604 2461 return remove_dead_region(phase, can_reshape) ? this : NULL;
rasbold@604 2462 }
rasbold@604 2463
duke@435 2464
duke@435 2465 //=============================================================================
duke@435 2466 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2467 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2468 _adr_type(C->get_adr_type(alias_idx))
duke@435 2469 {
duke@435 2470 init_class_id(Class_MemBar);
duke@435 2471 Node* top = C->top();
duke@435 2472 init_req(TypeFunc::I_O,top);
duke@435 2473 init_req(TypeFunc::FramePtr,top);
duke@435 2474 init_req(TypeFunc::ReturnAdr,top);
duke@435 2475 if (precedent != NULL)
duke@435 2476 init_req(TypeFunc::Parms, precedent);
duke@435 2477 }
duke@435 2478
duke@435 2479 //------------------------------cmp--------------------------------------------
duke@435 2480 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2481 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2482 return (&n == this); // Always fail except on self
duke@435 2483 }
duke@435 2484
duke@435 2485 //------------------------------make-------------------------------------------
duke@435 2486 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2487 int len = Precedent + (pn == NULL? 0: 1);
duke@435 2488 switch (opcode) {
duke@435 2489 case Op_MemBarAcquire: return new(C, len) MemBarAcquireNode(C, atp, pn);
duke@435 2490 case Op_MemBarRelease: return new(C, len) MemBarReleaseNode(C, atp, pn);
duke@435 2491 case Op_MemBarVolatile: return new(C, len) MemBarVolatileNode(C, atp, pn);
duke@435 2492 case Op_MemBarCPUOrder: return new(C, len) MemBarCPUOrderNode(C, atp, pn);
duke@435 2493 case Op_Initialize: return new(C, len) InitializeNode(C, atp, pn);
duke@435 2494 default: ShouldNotReachHere(); return NULL;
duke@435 2495 }
duke@435 2496 }
duke@435 2497
duke@435 2498 //------------------------------Ideal------------------------------------------
duke@435 2499 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2500 // control copies
duke@435 2501 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@740 2502 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 2503 }
duke@435 2504
duke@435 2505 //------------------------------Value------------------------------------------
duke@435 2506 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 2507 if( !in(0) ) return Type::TOP;
duke@435 2508 if( phase->type(in(0)) == Type::TOP )
duke@435 2509 return Type::TOP;
duke@435 2510 return TypeTuple::MEMBAR;
duke@435 2511 }
duke@435 2512
duke@435 2513 //------------------------------match------------------------------------------
duke@435 2514 // Construct projections for memory.
duke@435 2515 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 2516 switch (proj->_con) {
duke@435 2517 case TypeFunc::Control:
duke@435 2518 case TypeFunc::Memory:
duke@435 2519 return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 2520 }
duke@435 2521 ShouldNotReachHere();
duke@435 2522 return NULL;
duke@435 2523 }
duke@435 2524
duke@435 2525 //===========================InitializeNode====================================
duke@435 2526 // SUMMARY:
duke@435 2527 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 2528 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 2529 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 2530 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 2531 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 2532 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 2533 //
duke@435 2534 // EXAMPLE:
duke@435 2535 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 2536 // ctl = incoming control; mem* = incoming memory
duke@435 2537 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 2538 // First allocate uninitialized memory and fill in the header:
duke@435 2539 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 2540 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 2541 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 2542 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 2543 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 2544 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 2545 // After the initialize node executes, the object is ready for service:
duke@435 2546 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 2547 // Suppose its body is immediately initialized as {1,2}:
duke@435 2548 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2549 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2550 // mem.SLICE(#short[*]) := store2
duke@435 2551 //
duke@435 2552 // DETAILS:
duke@435 2553 // An InitializeNode collects and isolates object initialization after
duke@435 2554 // an AllocateNode and before the next possible safepoint. As a
duke@435 2555 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 2556 // down past any safepoint or any publication of the allocation.
duke@435 2557 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 2558 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 2559 //
duke@435 2560 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 2561 // the new object from object header to the end of the object.
duke@435 2562 // (The object header and end are determined by the AllocateNode.)
duke@435 2563 //
duke@435 2564 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 2565 // These stores must update raw memory, and they must be to addresses
duke@435 2566 // derived from the raw address produced by AllocateNode, and with
duke@435 2567 // a constant offset. They must be ordered by increasing offset.
duke@435 2568 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 2569 // Unlike most memory operations, they are not linked in a chain,
duke@435 2570 // but are displayed in parallel as users of the rawmem output of
duke@435 2571 // the allocation.
duke@435 2572 //
duke@435 2573 // (See comments in InitializeNode::capture_store, which continue
duke@435 2574 // the example given above.)
duke@435 2575 //
duke@435 2576 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 2577 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 2578 // may also be created at that point to represent any required zeroing.
duke@435 2579 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 2580 // capturing of nearby memory operations.
duke@435 2581 //
duke@435 2582 // During macro-expansion, all captured initializations which store
duke@435 2583 // constant values of 32 bits or smaller are coalesced (if advantagous)
duke@435 2584 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 2585 // initialized in fewer memory operations. Memory words which are
duke@435 2586 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 2587 // by explicit stores of zero. (The code shape happens to do all
duke@435 2588 // zeroing first, then all other stores, with both sequences occurring
duke@435 2589 // in order of ascending offsets.)
duke@435 2590 //
duke@435 2591 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 2592 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 2593 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 2594 // The initialization must then be marked as 'complete' disable the
duke@435 2595 // built-in zeroing semantics and the collection of initializing stores.
duke@435 2596 //
duke@435 2597 // While an InitializeNode is incomplete, reads from the memory state
duke@435 2598 // produced by it are optimizable if they match the control edge and
duke@435 2599 // new oop address associated with the allocation/initialization.
duke@435 2600 // They return a stored value (if the offset matches) or else zero.
duke@435 2601 // A write to the memory state, if it matches control and address,
duke@435 2602 // and if it is to a constant offset, may be 'captured' by the
duke@435 2603 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 2604 // inside the initialization, to the raw oop produced by the allocation.
duke@435 2605 // Operations on addresses which are provably distinct (e.g., to
duke@435 2606 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 2607 //
duke@435 2608 // The effect of all this is to consolidate object initialization
duke@435 2609 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 2610 // single location, where it can be optimized as a unit.
duke@435 2611 //
duke@435 2612 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 2613 // will be considered for capture by an InitializeNode. This puts a
duke@435 2614 // reasonable limit on the complexity of optimized initializations.
duke@435 2615
duke@435 2616 //---------------------------InitializeNode------------------------------------
duke@435 2617 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
duke@435 2618 : _is_complete(false),
duke@435 2619 MemBarNode(C, adr_type, rawoop)
duke@435 2620 {
duke@435 2621 init_class_id(Class_Initialize);
duke@435 2622
duke@435 2623 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 2624 assert(in(RawAddress) == rawoop, "proper init");
duke@435 2625 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 2626 }
duke@435 2627
duke@435 2628 // Since this node is not matched, it will be processed by the
duke@435 2629 // register allocator. Declare that there are no constraints
duke@435 2630 // on the allocation of the RawAddress edge.
duke@435 2631 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 2632 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 2633 if (idx == InitializeNode::RawAddress)
duke@435 2634 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 2635 return RegMask::Empty;
duke@435 2636 }
duke@435 2637
duke@435 2638 Node* InitializeNode::memory(uint alias_idx) {
duke@435 2639 Node* mem = in(Memory);
duke@435 2640 if (mem->is_MergeMem()) {
duke@435 2641 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 2642 } else {
duke@435 2643 // incoming raw memory is not split
duke@435 2644 return mem;
duke@435 2645 }
duke@435 2646 }
duke@435 2647
duke@435 2648 bool InitializeNode::is_non_zero() {
duke@435 2649 if (is_complete()) return false;
duke@435 2650 remove_extra_zeroes();
duke@435 2651 return (req() > RawStores);
duke@435 2652 }
duke@435 2653
duke@435 2654 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 2655 assert(!is_complete(), "caller responsibility");
duke@435 2656 _is_complete = true;
duke@435 2657
duke@435 2658 // After this node is complete, it contains a bunch of
duke@435 2659 // raw-memory initializations. There is no need for
duke@435 2660 // it to have anything to do with non-raw memory effects.
duke@435 2661 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 2662 // after skipping the memory effects of this initialization.
duke@435 2663 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 2664 if (igvn) igvn->add_users_to_worklist(this);
duke@435 2665 }
duke@435 2666
duke@435 2667 // convenience function
duke@435 2668 // return false if the init contains any stores already
duke@435 2669 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 2670 InitializeNode* init = initialization();
duke@435 2671 if (init == NULL || init->is_complete()) return false;
duke@435 2672 init->remove_extra_zeroes();
duke@435 2673 // for now, if this allocation has already collected any inits, bail:
duke@435 2674 if (init->is_non_zero()) return false;
duke@435 2675 init->set_complete(phase);
duke@435 2676 return true;
duke@435 2677 }
duke@435 2678
duke@435 2679 void InitializeNode::remove_extra_zeroes() {
duke@435 2680 if (req() == RawStores) return;
duke@435 2681 Node* zmem = zero_memory();
duke@435 2682 uint fill = RawStores;
duke@435 2683 for (uint i = fill; i < req(); i++) {
duke@435 2684 Node* n = in(i);
duke@435 2685 if (n->is_top() || n == zmem) continue; // skip
duke@435 2686 if (fill < i) set_req(fill, n); // compact
duke@435 2687 ++fill;
duke@435 2688 }
duke@435 2689 // delete any empty spaces created:
duke@435 2690 while (fill < req()) {
duke@435 2691 del_req(fill);
duke@435 2692 }
duke@435 2693 }
duke@435 2694
duke@435 2695 // Helper for remembering which stores go with which offsets.
duke@435 2696 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 2697 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 2698 intptr_t offset = -1;
duke@435 2699 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 2700 phase, offset);
duke@435 2701 if (base == NULL) return -1; // something is dead,
duke@435 2702 if (offset < 0) return -1; // dead, dead
duke@435 2703 return offset;
duke@435 2704 }
duke@435 2705
duke@435 2706 // Helper for proving that an initialization expression is
duke@435 2707 // "simple enough" to be folded into an object initialization.
duke@435 2708 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 2709 // within the initialization without creating a vicious cycle, such as:
duke@435 2710 // { Foo p = new Foo(); p.next = p; }
duke@435 2711 // True for constants and parameters and small combinations thereof.
duke@435 2712 bool InitializeNode::detect_init_independence(Node* n,
duke@435 2713 bool st_is_pinned,
duke@435 2714 int& count) {
duke@435 2715 if (n == NULL) return true; // (can this really happen?)
duke@435 2716 if (n->is_Proj()) n = n->in(0);
duke@435 2717 if (n == this) return false; // found a cycle
duke@435 2718 if (n->is_Con()) return true;
duke@435 2719 if (n->is_Start()) return true; // params, etc., are OK
duke@435 2720 if (n->is_Root()) return true; // even better
duke@435 2721
duke@435 2722 Node* ctl = n->in(0);
duke@435 2723 if (ctl != NULL && !ctl->is_top()) {
duke@435 2724 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 2725 if (ctl == this) return false;
duke@435 2726
duke@435 2727 // If we already know that the enclosing memory op is pinned right after
duke@435 2728 // the init, then any control flow that the store has picked up
duke@435 2729 // must have preceded the init, or else be equal to the init.
duke@435 2730 // Even after loop optimizations (which might change control edges)
duke@435 2731 // a store is never pinned *before* the availability of its inputs.
kvn@554 2732 if (!MemNode::all_controls_dominate(n, this))
duke@435 2733 return false; // failed to prove a good control
duke@435 2734
duke@435 2735 }
duke@435 2736
duke@435 2737 // Check data edges for possible dependencies on 'this'.
duke@435 2738 if ((count += 1) > 20) return false; // complexity limit
duke@435 2739 for (uint i = 1; i < n->req(); i++) {
duke@435 2740 Node* m = n->in(i);
duke@435 2741 if (m == NULL || m == n || m->is_top()) continue;
duke@435 2742 uint first_i = n->find_edge(m);
duke@435 2743 if (i != first_i) continue; // process duplicate edge just once
duke@435 2744 if (!detect_init_independence(m, st_is_pinned, count)) {
duke@435 2745 return false;
duke@435 2746 }
duke@435 2747 }
duke@435 2748
duke@435 2749 return true;
duke@435 2750 }
duke@435 2751
duke@435 2752 // Here are all the checks a Store must pass before it can be moved into
duke@435 2753 // an initialization. Returns zero if a check fails.
duke@435 2754 // On success, returns the (constant) offset to which the store applies,
duke@435 2755 // within the initialized memory.
duke@435 2756 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
duke@435 2757 const int FAIL = 0;
duke@435 2758 if (st->req() != MemNode::ValueIn + 1)
duke@435 2759 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 2760 Node* ctl = st->in(MemNode::Control);
duke@435 2761 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 2762 return FAIL; // must be unconditional after the initialization
duke@435 2763 Node* mem = st->in(MemNode::Memory);
duke@435 2764 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 2765 return FAIL; // must not be preceded by other stores
duke@435 2766 Node* adr = st->in(MemNode::Address);
duke@435 2767 intptr_t offset;
duke@435 2768 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 2769 if (alloc == NULL)
duke@435 2770 return FAIL; // inscrutable address
duke@435 2771 if (alloc != allocation())
duke@435 2772 return FAIL; // wrong allocation! (store needs to float up)
duke@435 2773 Node* val = st->in(MemNode::ValueIn);
duke@435 2774 int complexity_count = 0;
duke@435 2775 if (!detect_init_independence(val, true, complexity_count))
duke@435 2776 return FAIL; // stored value must be 'simple enough'
duke@435 2777
duke@435 2778 return offset; // success
duke@435 2779 }
duke@435 2780
duke@435 2781 // Find the captured store in(i) which corresponds to the range
duke@435 2782 // [start..start+size) in the initialized object.
duke@435 2783 // If there is one, return its index i. If there isn't, return the
duke@435 2784 // negative of the index where it should be inserted.
duke@435 2785 // Return 0 if the queried range overlaps an initialization boundary
duke@435 2786 // or if dead code is encountered.
duke@435 2787 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 2788 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 2789 int size_in_bytes,
duke@435 2790 PhaseTransform* phase) {
duke@435 2791 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 2792
duke@435 2793 if (is_complete())
duke@435 2794 return FAIL; // arraycopy got here first; punt
duke@435 2795
duke@435 2796 assert(allocation() != NULL, "must be present");
duke@435 2797
duke@435 2798 // no negatives, no header fields:
coleenp@548 2799 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 2800
duke@435 2801 // after a certain size, we bail out on tracking all the stores:
duke@435 2802 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 2803 if (start >= ti_limit) return FAIL;
duke@435 2804
duke@435 2805 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 2806 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 2807
duke@435 2808 Node* st = in(i);
duke@435 2809 intptr_t st_off = get_store_offset(st, phase);
duke@435 2810 if (st_off < 0) {
duke@435 2811 if (st != zero_memory()) {
duke@435 2812 return FAIL; // bail out if there is dead garbage
duke@435 2813 }
duke@435 2814 } else if (st_off > start) {
duke@435 2815 // ...we are done, since stores are ordered
duke@435 2816 if (st_off < start + size_in_bytes) {
duke@435 2817 return FAIL; // the next store overlaps
duke@435 2818 }
duke@435 2819 return -(int)i; // not found; here is where to put it
duke@435 2820 } else if (st_off < start) {
duke@435 2821 if (size_in_bytes != 0 &&
duke@435 2822 start < st_off + MAX_STORE &&
duke@435 2823 start < st_off + st->as_Store()->memory_size()) {
duke@435 2824 return FAIL; // the previous store overlaps
duke@435 2825 }
duke@435 2826 } else {
duke@435 2827 if (size_in_bytes != 0 &&
duke@435 2828 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 2829 return FAIL; // mismatched store size
duke@435 2830 }
duke@435 2831 return i;
duke@435 2832 }
duke@435 2833
duke@435 2834 ++i;
duke@435 2835 }
duke@435 2836 }
duke@435 2837
duke@435 2838 // Look for a captured store which initializes at the offset 'start'
duke@435 2839 // with the given size. If there is no such store, and no other
duke@435 2840 // initialization interferes, then return zero_memory (the memory
duke@435 2841 // projection of the AllocateNode).
duke@435 2842 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 2843 PhaseTransform* phase) {
duke@435 2844 assert(stores_are_sane(phase), "");
duke@435 2845 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 2846 if (i == 0) {
duke@435 2847 return NULL; // something is dead
duke@435 2848 } else if (i < 0) {
duke@435 2849 return zero_memory(); // just primordial zero bits here
duke@435 2850 } else {
duke@435 2851 Node* st = in(i); // here is the store at this position
duke@435 2852 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 2853 return st;
duke@435 2854 }
duke@435 2855 }
duke@435 2856
duke@435 2857 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 2858 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 2859 PhaseTransform* phase) {
duke@435 2860 Node* addr = in(RawAddress);
duke@435 2861 if (offset != 0) {
duke@435 2862 Compile* C = phase->C;
duke@435 2863 addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
duke@435 2864 phase->MakeConX(offset)) );
duke@435 2865 }
duke@435 2866 return addr;
duke@435 2867 }
duke@435 2868
duke@435 2869 // Clone the given store, converting it into a raw store
duke@435 2870 // initializing a field or element of my new object.
duke@435 2871 // Caller is responsible for retiring the original store,
duke@435 2872 // with subsume_node or the like.
duke@435 2873 //
duke@435 2874 // From the example above InitializeNode::InitializeNode,
duke@435 2875 // here are the old stores to be captured:
duke@435 2876 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2877 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2878 //
duke@435 2879 // Here is the changed code; note the extra edges on init:
duke@435 2880 // alloc = (Allocate ...)
duke@435 2881 // rawoop = alloc.RawAddress
duke@435 2882 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 2883 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 2884 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 2885 // rawstore1 rawstore2)
duke@435 2886 //
duke@435 2887 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
duke@435 2888 PhaseTransform* phase) {
duke@435 2889 assert(stores_are_sane(phase), "");
duke@435 2890
duke@435 2891 if (start < 0) return NULL;
duke@435 2892 assert(can_capture_store(st, phase) == start, "sanity");
duke@435 2893
duke@435 2894 Compile* C = phase->C;
duke@435 2895 int size_in_bytes = st->memory_size();
duke@435 2896 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 2897 if (i == 0) return NULL; // bail out
duke@435 2898 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 2899 if (i > 0) {
duke@435 2900 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 2901 set_req(i, C->top()); // temporarily disconnect it
duke@435 2902 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 2903 } else {
duke@435 2904 i = -i; // no pre-existing store
duke@435 2905 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 2906 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 2907 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 2908 else
duke@435 2909 ins_req(i, C->top()); // build a new edge
duke@435 2910 }
duke@435 2911 Node* new_st = st->clone();
duke@435 2912 new_st->set_req(MemNode::Control, in(Control));
duke@435 2913 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 2914 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 2915 new_st = phase->transform(new_st);
duke@435 2916
duke@435 2917 // At this point, new_st might have swallowed a pre-existing store
duke@435 2918 // at the same offset, or perhaps new_st might have disappeared,
duke@435 2919 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 2920
duke@435 2921 // In any case, wire it in:
duke@435 2922 set_req(i, new_st);
duke@435 2923
duke@435 2924 // The caller may now kill the old guy.
duke@435 2925 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 2926 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 2927 assert(!is_complete(), "");
duke@435 2928 return new_st;
duke@435 2929 }
duke@435 2930
duke@435 2931 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 2932 intptr_t st_off, int st_size,
duke@435 2933 jlong con) {
duke@435 2934 if ((st_off & (st_size-1)) != 0)
duke@435 2935 return false; // strange store offset (assume size==2**N)
duke@435 2936 address addr = (address)tiles + st_off;
duke@435 2937 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 2938 switch (st_size) {
duke@435 2939 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 2940 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 2941 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 2942 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 2943 default: return false; // strange store size (detect size!=2**N here)
duke@435 2944 }
duke@435 2945 return true; // return success to caller
duke@435 2946 }
duke@435 2947
duke@435 2948 // Coalesce subword constants into int constants and possibly
duke@435 2949 // into long constants. The goal, if the CPU permits,
duke@435 2950 // is to initialize the object with a small number of 64-bit tiles.
duke@435 2951 // Also, convert floating-point constants to bit patterns.
duke@435 2952 // Non-constants are not relevant to this pass.
duke@435 2953 //
duke@435 2954 // In terms of the running example on InitializeNode::InitializeNode
duke@435 2955 // and InitializeNode::capture_store, here is the transformation
duke@435 2956 // of rawstore1 and rawstore2 into rawstore12:
duke@435 2957 // alloc = (Allocate ...)
duke@435 2958 // rawoop = alloc.RawAddress
duke@435 2959 // tile12 = 0x00010002
duke@435 2960 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 2961 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 2962 //
duke@435 2963 void
duke@435 2964 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 2965 Node* size_in_bytes,
duke@435 2966 PhaseGVN* phase) {
duke@435 2967 Compile* C = phase->C;
duke@435 2968
duke@435 2969 assert(stores_are_sane(phase), "");
duke@435 2970 // Note: After this pass, they are not completely sane,
duke@435 2971 // since there may be some overlaps.
duke@435 2972
duke@435 2973 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 2974
duke@435 2975 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 2976 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 2977 size_limit = MIN2(size_limit, ti_limit);
duke@435 2978 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 2979 int num_tiles = size_limit / BytesPerLong;
duke@435 2980
duke@435 2981 // allocate space for the tile map:
duke@435 2982 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 2983 jlong tiles_buf[small_len];
duke@435 2984 Node* nodes_buf[small_len];
duke@435 2985 jlong inits_buf[small_len];
duke@435 2986 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 2987 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 2988 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 2989 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 2990 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 2991 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 2992 // tiles: exact bitwise model of all primitive constants
duke@435 2993 // nodes: last constant-storing node subsumed into the tiles model
duke@435 2994 // inits: which bytes (in each tile) are touched by any initializations
duke@435 2995
duke@435 2996 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 2997
duke@435 2998 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 2999 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3000 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3001 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3002 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3003 Node* st = in(i);
duke@435 3004 intptr_t st_off = get_store_offset(st, phase);
duke@435 3005
duke@435 3006 // Figure out the store's offset and constant value:
duke@435 3007 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3008 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3009 int st_size = st->as_Store()->memory_size();
duke@435 3010 if (st_off + st_size > size_limit) break;
duke@435 3011
duke@435 3012 // Record which bytes are touched, whether by constant or not.
duke@435 3013 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3014 continue; // skip (strange store size)
duke@435 3015
duke@435 3016 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3017 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3018 BasicType type = val->basic_type();
duke@435 3019
duke@435 3020 jlong con = 0;
duke@435 3021 switch (type) {
duke@435 3022 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3023 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3024 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3025 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3026 default: continue; //skip (odd store type)
duke@435 3027 }
duke@435 3028
duke@435 3029 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3030 st->Opcode() == Op_StoreL) {
duke@435 3031 continue; // This StoreL is already optimal.
duke@435 3032 }
duke@435 3033
duke@435 3034 // Store down the constant.
duke@435 3035 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3036
duke@435 3037 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3038
duke@435 3039 if (type == T_INT && st_size == BytesPerInt
duke@435 3040 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3041 jlong lcon = tiles[j];
duke@435 3042 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3043 st->Opcode() == Op_StoreI) {
duke@435 3044 // This StoreI is already optimal by itself.
duke@435 3045 jint* intcon = (jint*) &tiles[j];
duke@435 3046 intcon[1] = 0; // undo the store_constant()
duke@435 3047
duke@435 3048 // If the previous store is also optimal by itself, back up and
duke@435 3049 // undo the action of the previous loop iteration... if we can.
duke@435 3050 // But if we can't, just let the previous half take care of itself.
duke@435 3051 st = nodes[j];
duke@435 3052 st_off -= BytesPerInt;
duke@435 3053 con = intcon[0];
duke@435 3054 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3055 assert(st_off >= header_size, "still ignoring header");
duke@435 3056 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3057 assert(in(i-1) == zmem, "must be");
duke@435 3058 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3059 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3060 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3061 intcon[0] = 0; // undo store_constant()
duke@435 3062 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3063 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3064 --old_subword; // undo ++old_subword
duke@435 3065 }
duke@435 3066 continue; // This StoreI is already optimal.
duke@435 3067 }
duke@435 3068 }
duke@435 3069
duke@435 3070 // This store is not needed.
duke@435 3071 set_req(i, zmem);
duke@435 3072 nodes[j] = st; // record for the moment
duke@435 3073 if (st_size < BytesPerLong) // something has changed
duke@435 3074 ++old_subword; // includes int/float, but who's counting...
duke@435 3075 else ++old_long;
duke@435 3076 }
duke@435 3077
duke@435 3078 if ((old_subword + old_long) == 0)
duke@435 3079 return; // nothing more to do
duke@435 3080
duke@435 3081 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3082 // Be sure to insert them before overlapping non-constant stores.
duke@435 3083 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3084 for (int j = 0; j < num_tiles; j++) {
duke@435 3085 jlong con = tiles[j];
duke@435 3086 jlong init = inits[j];
duke@435 3087 if (con == 0) continue;
duke@435 3088 jint con0, con1; // split the constant, address-wise
duke@435 3089 jint init0, init1; // split the init map, address-wise
duke@435 3090 { union { jlong con; jint intcon[2]; } u;
duke@435 3091 u.con = con;
duke@435 3092 con0 = u.intcon[0];
duke@435 3093 con1 = u.intcon[1];
duke@435 3094 u.con = init;
duke@435 3095 init0 = u.intcon[0];
duke@435 3096 init1 = u.intcon[1];
duke@435 3097 }
duke@435 3098
duke@435 3099 Node* old = nodes[j];
duke@435 3100 assert(old != NULL, "need the prior store");
duke@435 3101 intptr_t offset = (j * BytesPerLong);
duke@435 3102
duke@435 3103 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3104
duke@435 3105 if (offset < header_size) {
duke@435 3106 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3107 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3108 split = true; // only the second word counts
duke@435 3109 // Example: int a[] = { 42 ... }
duke@435 3110 } else if (con0 == 0 && init0 == -1) {
duke@435 3111 split = true; // first word is covered by full inits
duke@435 3112 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3113 } else if (con1 == 0 && init1 == -1) {
duke@435 3114 split = true; // second word is covered by full inits
duke@435 3115 // Example: int a[] = { ... 42, foo() ... }
duke@435 3116 }
duke@435 3117
duke@435 3118 // Here's a case where init0 is neither 0 nor -1:
duke@435 3119 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3120 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3121 // In this case the tile is not split; it is (jlong)42.
duke@435 3122 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3123 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3124
duke@435 3125 Node* ctl = old->in(MemNode::Control);
duke@435 3126 Node* adr = make_raw_address(offset, phase);
duke@435 3127 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3128
duke@435 3129 // One or two coalesced stores to plop down.
duke@435 3130 Node* st[2];
duke@435 3131 intptr_t off[2];
duke@435 3132 int nst = 0;
duke@435 3133 if (!split) {
duke@435 3134 ++new_long;
duke@435 3135 off[nst] = offset;
coleenp@548 3136 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3137 phase->longcon(con), T_LONG);
duke@435 3138 } else {
duke@435 3139 // Omit either if it is a zero.
duke@435 3140 if (con0 != 0) {
duke@435 3141 ++new_int;
duke@435 3142 off[nst] = offset;
coleenp@548 3143 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3144 phase->intcon(con0), T_INT);
duke@435 3145 }
duke@435 3146 if (con1 != 0) {
duke@435 3147 ++new_int;
duke@435 3148 offset += BytesPerInt;
duke@435 3149 adr = make_raw_address(offset, phase);
duke@435 3150 off[nst] = offset;
coleenp@548 3151 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3152 phase->intcon(con1), T_INT);
duke@435 3153 }
duke@435 3154 }
duke@435 3155
duke@435 3156 // Insert second store first, then the first before the second.
duke@435 3157 // Insert each one just before any overlapping non-constant stores.
duke@435 3158 while (nst > 0) {
duke@435 3159 Node* st1 = st[--nst];
duke@435 3160 C->copy_node_notes_to(st1, old);
duke@435 3161 st1 = phase->transform(st1);
duke@435 3162 offset = off[nst];
duke@435 3163 assert(offset >= header_size, "do not smash header");
duke@435 3164 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3165 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3166 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3167 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3168 set_req(--ins_idx, st1);
duke@435 3169 else
duke@435 3170 ins_req(ins_idx, st1);
duke@435 3171 }
duke@435 3172 }
duke@435 3173
duke@435 3174 if (PrintCompilation && WizardMode)
duke@435 3175 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3176 old_subword, old_long, new_int, new_long);
duke@435 3177 if (C->log() != NULL)
duke@435 3178 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3179 old_subword, old_long, new_int, new_long);
duke@435 3180
duke@435 3181 // Clean up any remaining occurrences of zmem:
duke@435 3182 remove_extra_zeroes();
duke@435 3183 }
duke@435 3184
duke@435 3185 // Explore forward from in(start) to find the first fully initialized
duke@435 3186 // word, and return its offset. Skip groups of subword stores which
duke@435 3187 // together initialize full words. If in(start) is itself part of a
duke@435 3188 // fully initialized word, return the offset of in(start). If there
duke@435 3189 // are no following full-word stores, or if something is fishy, return
duke@435 3190 // a negative value.
duke@435 3191 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3192 int int_map = 0;
duke@435 3193 intptr_t int_map_off = 0;
duke@435 3194 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3195
duke@435 3196 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3197 Node* st = in(i);
duke@435 3198
duke@435 3199 intptr_t st_off = get_store_offset(st, phase);
duke@435 3200 if (st_off < 0) break; // return conservative answer
duke@435 3201
duke@435 3202 int st_size = st->as_Store()->memory_size();
duke@435 3203 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3204 return st_off; // we found a complete word init
duke@435 3205 }
duke@435 3206
duke@435 3207 // update the map:
duke@435 3208
duke@435 3209 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3210 if (this_int_off != int_map_off) {
duke@435 3211 // reset the map:
duke@435 3212 int_map = 0;
duke@435 3213 int_map_off = this_int_off;
duke@435 3214 }
duke@435 3215
duke@435 3216 int subword_off = st_off - this_int_off;
duke@435 3217 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3218 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3219 return this_int_off; // we found a complete word init
duke@435 3220 }
duke@435 3221
duke@435 3222 // Did this store hit or cross the word boundary?
duke@435 3223 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3224 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3225 // We passed the current int, without fully initializing it.
duke@435 3226 int_map_off = next_int_off;
duke@435 3227 int_map >>= BytesPerInt;
duke@435 3228 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3229 // We passed the current and next int.
duke@435 3230 return this_int_off + BytesPerInt;
duke@435 3231 }
duke@435 3232 }
duke@435 3233
duke@435 3234 return -1;
duke@435 3235 }
duke@435 3236
duke@435 3237
duke@435 3238 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3239 // At this point, we may perform additional optimizations.
duke@435 3240 // Linearize the stores by ascending offset, to make memory
duke@435 3241 // activity as coherent as possible.
duke@435 3242 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3243 intptr_t header_size,
duke@435 3244 Node* size_in_bytes,
duke@435 3245 PhaseGVN* phase) {
duke@435 3246 assert(!is_complete(), "not already complete");
duke@435 3247 assert(stores_are_sane(phase), "");
duke@435 3248 assert(allocation() != NULL, "must be present");
duke@435 3249
duke@435 3250 remove_extra_zeroes();
duke@435 3251
duke@435 3252 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3253 // reduce instruction count for common initialization patterns
duke@435 3254 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3255
duke@435 3256 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3257 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3258 #ifdef ASSERT
coleenp@548 3259 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3260 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3261 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3262 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3263 #endif
duke@435 3264 intptr_t zeroes_done = header_size;
duke@435 3265
duke@435 3266 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3267 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3268
duke@435 3269 if (ZeroTLAB) do_zeroing = false;
duke@435 3270 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3271
duke@435 3272 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3273 Node* st = in(i);
duke@435 3274 intptr_t st_off = get_store_offset(st, phase);
duke@435 3275 if (st_off < 0)
duke@435 3276 break; // unknown junk in the inits
duke@435 3277 if (st->in(MemNode::Memory) != zmem)
duke@435 3278 break; // complicated store chains somehow in list
duke@435 3279
duke@435 3280 int st_size = st->as_Store()->memory_size();
duke@435 3281 intptr_t next_init_off = st_off + st_size;
duke@435 3282
duke@435 3283 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3284 // See if this store needs a zero before it or under it.
duke@435 3285 intptr_t zeroes_needed = st_off;
duke@435 3286
duke@435 3287 if (st_size < BytesPerInt) {
duke@435 3288 // Look for subword stores which only partially initialize words.
duke@435 3289 // If we find some, we must lay down some word-level zeroes first,
duke@435 3290 // underneath the subword stores.
duke@435 3291 //
duke@435 3292 // Examples:
duke@435 3293 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3294 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3295 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3296 //
duke@435 3297 // Note: coalesce_subword_stores may have already done this,
duke@435 3298 // if it was prompted by constant non-zero subword initializers.
duke@435 3299 // But this case can still arise with non-constant stores.
duke@435 3300
duke@435 3301 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3302
duke@435 3303 // In the examples above:
duke@435 3304 // in(i) p q r s x y z
duke@435 3305 // st_off 12 13 14 15 12 13 14
duke@435 3306 // st_size 1 1 1 1 1 1 1
duke@435 3307 // next_full_s. 12 16 16 16 16 16 16
duke@435 3308 // z's_done 12 16 16 16 12 16 12
duke@435 3309 // z's_needed 12 16 16 16 16 16 16
duke@435 3310 // zsize 0 0 0 0 4 0 4
duke@435 3311 if (next_full_store < 0) {
duke@435 3312 // Conservative tack: Zero to end of current word.
duke@435 3313 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3314 } else {
duke@435 3315 // Zero to beginning of next fully initialized word.
duke@435 3316 // Or, don't zero at all, if we are already in that word.
duke@435 3317 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3318 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3319 zeroes_needed = next_full_store;
duke@435 3320 }
duke@435 3321 }
duke@435 3322
duke@435 3323 if (zeroes_needed > zeroes_done) {
duke@435 3324 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3325 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3326 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3327 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3328 zeroes_done, zeroes_needed,
duke@435 3329 phase);
duke@435 3330 zeroes_done = zeroes_needed;
duke@435 3331 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3332 do_zeroing = false; // leave the hole, next time
duke@435 3333 }
duke@435 3334 }
duke@435 3335
duke@435 3336 // Collect the store and move on:
duke@435 3337 st->set_req(MemNode::Memory, inits);
duke@435 3338 inits = st; // put it on the linearized chain
duke@435 3339 set_req(i, zmem); // unhook from previous position
duke@435 3340
duke@435 3341 if (zeroes_done == st_off)
duke@435 3342 zeroes_done = next_init_off;
duke@435 3343
duke@435 3344 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3345
duke@435 3346 #ifdef ASSERT
duke@435 3347 // Various order invariants. Weaker than stores_are_sane because
duke@435 3348 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3349 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3350 last_init_off = st_off;
duke@435 3351 const Type* val = NULL;
duke@435 3352 if (st_size >= BytesPerInt &&
duke@435 3353 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3354 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3355 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3356 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3357 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3358 } else {
duke@435 3359 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3360 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3361 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3362 last_init_end = next_init_off; // it's a non-tile
duke@435 3363 }
duke@435 3364 #endif //ASSERT
duke@435 3365 }
duke@435 3366
duke@435 3367 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3368 add_req(inits);
duke@435 3369
duke@435 3370 if (!ZeroTLAB) {
duke@435 3371 // If anything remains to be zeroed, zero it all now.
duke@435 3372 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3373 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3374 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3375 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3376 assert(allocation() != NULL, "");
duke@435 3377 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
duke@435 3378 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
duke@435 3379 if (zeroes_done == k->layout_helper())
duke@435 3380 zeroes_done = size_limit;
duke@435 3381 }
duke@435 3382 if (zeroes_done < size_limit) {
duke@435 3383 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3384 zeroes_done, size_in_bytes, phase);
duke@435 3385 }
duke@435 3386 }
duke@435 3387
duke@435 3388 set_complete(phase);
duke@435 3389 return rawmem;
duke@435 3390 }
duke@435 3391
duke@435 3392
duke@435 3393 #ifdef ASSERT
duke@435 3394 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 3395 if (is_complete())
duke@435 3396 return true; // stores could be anything at this point
coleenp@548 3397 assert(allocation() != NULL, "must be present");
coleenp@548 3398 intptr_t last_off = allocation()->minimum_header_size();
duke@435 3399 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 3400 Node* st = in(i);
duke@435 3401 intptr_t st_off = get_store_offset(st, phase);
duke@435 3402 if (st_off < 0) continue; // ignore dead garbage
duke@435 3403 if (last_off > st_off) {
duke@435 3404 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
duke@435 3405 this->dump(2);
duke@435 3406 assert(false, "ascending store offsets");
duke@435 3407 return false;
duke@435 3408 }
duke@435 3409 last_off = st_off + st->as_Store()->memory_size();
duke@435 3410 }
duke@435 3411 return true;
duke@435 3412 }
duke@435 3413 #endif //ASSERT
duke@435 3414
duke@435 3415
duke@435 3416
duke@435 3417
duke@435 3418 //============================MergeMemNode=====================================
duke@435 3419 //
duke@435 3420 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 3421 // contributing store or call operations. Each contributor provides the memory
duke@435 3422 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 3423 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 3424 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 3425 // to using the MergeMem as a whole.
duke@435 3426 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 3427 //
duke@435 3428 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 3429 //
duke@435 3430 // In one special case (and more cases in the future), alias categories overlap.
duke@435 3431 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 3432 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 3433 // it is exactly equivalent to that state W:
duke@435 3434 // MergeMem(<Bot>: W) <==> W
duke@435 3435 //
duke@435 3436 // Usually, the merge has more than one input. In that case, where inputs
duke@435 3437 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 3438 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 3439 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 3440 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 3441 //
duke@435 3442 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 3443 // This simply means that the merge observes out only the relevant parts of
duke@435 3444 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 3445 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 3446 //
duke@435 3447 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 3448 // and that memory slices "leak through":
duke@435 3449 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 3450 //
duke@435 3451 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 3452 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 3453 //
duke@435 3454 // In the last example, Y is not part of the combined memory state of the
duke@435 3455 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 3456 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 3457 // a precursor to state Y'.
duke@435 3458 //
duke@435 3459 //
duke@435 3460 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 3461 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 3462 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 3463 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 3464 //
duke@435 3465 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 3466 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 3467 // without the need to reach out via TLS to Compile::current.)
duke@435 3468 //
duke@435 3469 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 3470 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 3471 // containing all alias categories.
duke@435 3472 //
duke@435 3473 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 3474 //
duke@435 3475 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 3476 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 3477 // there is no particular input for that alias type. Note that the length of
duke@435 3478 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 3479 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 3480 // filled with "top" in the unused in() positions.
duke@435 3481 //
duke@435 3482 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 3483 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 3484 //
duke@435 3485 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 3486 // the type of random VM bits like TLS references.) Since it is always the
duke@435 3487 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 3488 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 3489 //
duke@435 3490 //
duke@435 3491 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 3492 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 3493 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 3494 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 3495 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 3496 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 3497 //
duke@435 3498 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 3499 // really that different from the other memory inputs. An abbreviation called
duke@435 3500 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 3501 //
duke@435 3502 //
duke@435 3503 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 3504 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 3505 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 3506 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 3507 //
duke@435 3508 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 3509 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 3510 //
duke@435 3511 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 3512 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 3513 // actually a disjoint union of memory states, rather than an overlay.
duke@435 3514 //
duke@435 3515
duke@435 3516 //------------------------------MergeMemNode-----------------------------------
duke@435 3517 Node* MergeMemNode::make_empty_memory() {
duke@435 3518 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 3519 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 3520 return empty_memory;
duke@435 3521 }
duke@435 3522
duke@435 3523 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 3524 init_class_id(Class_MergeMem);
duke@435 3525 // all inputs are nullified in Node::Node(int)
duke@435 3526 // set_input(0, NULL); // no control input
duke@435 3527
duke@435 3528 // Initialize the edges uniformly to top, for starters.
duke@435 3529 Node* empty_mem = make_empty_memory();
duke@435 3530 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 3531 init_req(i,empty_mem);
duke@435 3532 }
duke@435 3533 assert(empty_memory() == empty_mem, "");
duke@435 3534
duke@435 3535 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 3536 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 3537 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 3538 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 3539 mms.set_memory(mms.memory2());
duke@435 3540 }
duke@435 3541 assert(base_memory() == mdef->base_memory(), "");
duke@435 3542 } else {
duke@435 3543 set_base_memory(new_base);
duke@435 3544 }
duke@435 3545 }
duke@435 3546
duke@435 3547 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 3548 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 3549 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
duke@435 3550 return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
duke@435 3551 }
duke@435 3552
duke@435 3553 //------------------------------cmp--------------------------------------------
duke@435 3554 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 3555 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 3556 return (&n == this); // Always fail except on self
duke@435 3557 }
duke@435 3558
duke@435 3559 //------------------------------Identity---------------------------------------
duke@435 3560 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 3561 // Identity if this merge point does not record any interesting memory
duke@435 3562 // disambiguations.
duke@435 3563 Node* base_mem = base_memory();
duke@435 3564 Node* empty_mem = empty_memory();
duke@435 3565 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 3566 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3567 Node* mem = in(i);
duke@435 3568 if (mem != empty_mem && mem != base_mem) {
duke@435 3569 return this; // Many memory splits; no change
duke@435 3570 }
duke@435 3571 }
duke@435 3572 }
duke@435 3573 return base_mem; // No memory splits; ID on the one true input
duke@435 3574 }
duke@435 3575
duke@435 3576 //------------------------------Ideal------------------------------------------
duke@435 3577 // This method is invoked recursively on chains of MergeMem nodes
duke@435 3578 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 3579 // Remove chain'd MergeMems
duke@435 3580 //
duke@435 3581 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 3582 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 3583 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 3584 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 3585 Node *progress = NULL;
duke@435 3586
duke@435 3587
duke@435 3588 Node* old_base = base_memory();
duke@435 3589 Node* empty_mem = empty_memory();
duke@435 3590 if (old_base == empty_mem)
duke@435 3591 return NULL; // Dead memory path.
duke@435 3592
duke@435 3593 MergeMemNode* old_mbase;
duke@435 3594 if (old_base != NULL && old_base->is_MergeMem())
duke@435 3595 old_mbase = old_base->as_MergeMem();
duke@435 3596 else
duke@435 3597 old_mbase = NULL;
duke@435 3598 Node* new_base = old_base;
duke@435 3599
duke@435 3600 // simplify stacked MergeMems in base memory
duke@435 3601 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 3602
duke@435 3603 // the base memory might contribute new slices beyond my req()
duke@435 3604 if (old_mbase) grow_to_match(old_mbase);
duke@435 3605
duke@435 3606 // Look carefully at the base node if it is a phi.
duke@435 3607 PhiNode* phi_base;
duke@435 3608 if (new_base != NULL && new_base->is_Phi())
duke@435 3609 phi_base = new_base->as_Phi();
duke@435 3610 else
duke@435 3611 phi_base = NULL;
duke@435 3612
duke@435 3613 Node* phi_reg = NULL;
duke@435 3614 uint phi_len = (uint)-1;
duke@435 3615 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 3616 // do not examine phi if degraded to a copy
duke@435 3617 phi_reg = phi_base->region();
duke@435 3618 phi_len = phi_base->req();
duke@435 3619 // see if the phi is unfinished
duke@435 3620 for (uint i = 1; i < phi_len; i++) {
duke@435 3621 if (phi_base->in(i) == NULL) {
duke@435 3622 // incomplete phi; do not look at it yet!
duke@435 3623 phi_reg = NULL;
duke@435 3624 phi_len = (uint)-1;
duke@435 3625 break;
duke@435 3626 }
duke@435 3627 }
duke@435 3628 }
duke@435 3629
duke@435 3630 // Note: We do not call verify_sparse on entry, because inputs
duke@435 3631 // can normalize to the base_memory via subsume_node or similar
duke@435 3632 // mechanisms. This method repairs that damage.
duke@435 3633
duke@435 3634 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 3635
duke@435 3636 // Look at each slice.
duke@435 3637 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3638 Node* old_in = in(i);
duke@435 3639 // calculate the old memory value
duke@435 3640 Node* old_mem = old_in;
duke@435 3641 if (old_mem == empty_mem) old_mem = old_base;
duke@435 3642 assert(old_mem == memory_at(i), "");
duke@435 3643
duke@435 3644 // maybe update (reslice) the old memory value
duke@435 3645
duke@435 3646 // simplify stacked MergeMems
duke@435 3647 Node* new_mem = old_mem;
duke@435 3648 MergeMemNode* old_mmem;
duke@435 3649 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 3650 old_mmem = old_mem->as_MergeMem();
duke@435 3651 else
duke@435 3652 old_mmem = NULL;
duke@435 3653 if (old_mmem == this) {
duke@435 3654 // This can happen if loops break up and safepoints disappear.
duke@435 3655 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 3656 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 3657 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 3658 // also, we can end up with a self-loop of the mergemem.
duke@435 3659 // In general, if loops degenerate and memory effects disappear,
duke@435 3660 // a mergemem can be left looking at itself. This simply means
duke@435 3661 // that the mergemem's default should be used, since there is
duke@435 3662 // no longer any apparent effect on this slice.
duke@435 3663 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 3664 // from start. Update the input to TOP.
duke@435 3665 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 3666 }
duke@435 3667 else if (old_mmem != NULL) {
duke@435 3668 new_mem = old_mmem->memory_at(i);
duke@435 3669 }
duke@435 3670 // else preceeding memory was not a MergeMem
duke@435 3671
duke@435 3672 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 3673 if (new_mem != NULL && new_mem != new_base &&
duke@435 3674 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 3675 if (new_mem->is_Phi()) {
duke@435 3676 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 3677 for (uint i = 1; i < phi_len; i++) {
duke@435 3678 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 3679 phi_mem = NULL;
duke@435 3680 break;
duke@435 3681 }
duke@435 3682 }
duke@435 3683 if (phi_mem != NULL) {
duke@435 3684 // equivalent phi nodes; revert to the def
duke@435 3685 new_mem = new_base;
duke@435 3686 }
duke@435 3687 }
duke@435 3688 }
duke@435 3689
duke@435 3690 // maybe store down a new value
duke@435 3691 Node* new_in = new_mem;
duke@435 3692 if (new_in == new_base) new_in = empty_mem;
duke@435 3693
duke@435 3694 if (new_in != old_in) {
duke@435 3695 // Warning: Do not combine this "if" with the previous "if"
duke@435 3696 // A memory slice might have be be rewritten even if it is semantically
duke@435 3697 // unchanged, if the base_memory value has changed.
duke@435 3698 set_req(i, new_in);
duke@435 3699 progress = this; // Report progress
duke@435 3700 }
duke@435 3701 }
duke@435 3702
duke@435 3703 if (new_base != old_base) {
duke@435 3704 set_req(Compile::AliasIdxBot, new_base);
duke@435 3705 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 3706 assert(base_memory() == new_base, "");
duke@435 3707 progress = this;
duke@435 3708 }
duke@435 3709
duke@435 3710 if( base_memory() == this ) {
duke@435 3711 // a self cycle indicates this memory path is dead
duke@435 3712 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 3713 }
duke@435 3714
duke@435 3715 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 3716 // Recursion must occur after the self cycle check above
duke@435 3717 if( base_memory()->is_MergeMem() ) {
duke@435 3718 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 3719 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 3720 if( m != NULL && (m->is_top() ||
duke@435 3721 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 3722 // propagate rollup of dead cycle to self
duke@435 3723 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 3724 }
duke@435 3725 }
duke@435 3726
duke@435 3727 if( base_memory() == empty_mem ) {
duke@435 3728 progress = this;
duke@435 3729 // Cut inputs during Parse phase only.
duke@435 3730 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 3731 if( !can_reshape ) {
duke@435 3732 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3733 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 3734 }
duke@435 3735 }
duke@435 3736 }
duke@435 3737
duke@435 3738 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 3739 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 3740 // transform should be attempted. Look for this->phi->this cycle.
duke@435 3741 uint merge_width = req();
duke@435 3742 if (merge_width > Compile::AliasIdxRaw) {
duke@435 3743 PhiNode* phi = base_memory()->as_Phi();
duke@435 3744 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 3745 if (phi->in(i) == this) {
duke@435 3746 phase->is_IterGVN()->_worklist.push(phi);
duke@435 3747 break;
duke@435 3748 }
duke@435 3749 }
duke@435 3750 }
duke@435 3751 }
duke@435 3752
kvn@499 3753 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 3754 return progress;
duke@435 3755 }
duke@435 3756
duke@435 3757 //-------------------------set_base_memory-------------------------------------
duke@435 3758 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 3759 Node* empty_mem = empty_memory();
duke@435 3760 set_req(Compile::AliasIdxBot, new_base);
duke@435 3761 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 3762 // Clear out other occurrences of new_base:
duke@435 3763 if (new_base != empty_mem) {
duke@435 3764 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3765 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 3766 }
duke@435 3767 }
duke@435 3768 }
duke@435 3769
duke@435 3770 //------------------------------out_RegMask------------------------------------
duke@435 3771 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 3772 return RegMask::Empty;
duke@435 3773 }
duke@435 3774
duke@435 3775 //------------------------------dump_spec--------------------------------------
duke@435 3776 #ifndef PRODUCT
duke@435 3777 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 3778 st->print(" {");
duke@435 3779 Node* base_mem = base_memory();
duke@435 3780 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 3781 Node* mem = memory_at(i);
duke@435 3782 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 3783 st->print( " N%d:", mem->_idx );
duke@435 3784 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 3785 }
duke@435 3786 st->print(" }");
duke@435 3787 }
duke@435 3788 #endif // !PRODUCT
duke@435 3789
duke@435 3790
duke@435 3791 #ifdef ASSERT
duke@435 3792 static bool might_be_same(Node* a, Node* b) {
duke@435 3793 if (a == b) return true;
duke@435 3794 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 3795 // phis shift around during optimization
duke@435 3796 return true; // pretty stupid...
duke@435 3797 }
duke@435 3798
duke@435 3799 // verify a narrow slice (either incoming or outgoing)
duke@435 3800 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 3801 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 3802 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 3803 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 3804 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 3805 assert(n != NULL, "");
duke@435 3806 // Elide intervening MergeMem's
duke@435 3807 while (n->is_MergeMem()) {
duke@435 3808 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 3809 }
duke@435 3810 Compile* C = Compile::current();
duke@435 3811 const TypePtr* n_adr_type = n->adr_type();
duke@435 3812 if (n == m->empty_memory()) {
duke@435 3813 // Implicit copy of base_memory()
duke@435 3814 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 3815 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 3816 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 3817 } else {
duke@435 3818 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 3819 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 3820 bool expected_wide_mem = false;
duke@435 3821 if (n == m->base_memory()) {
duke@435 3822 expected_wide_mem = true;
duke@435 3823 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 3824 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 3825 expected_wide_mem = true;
duke@435 3826 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 3827 // memory can "leak through" calls on channels that
duke@435 3828 // are write-once. Allow this also.
duke@435 3829 expected_wide_mem = true;
duke@435 3830 }
duke@435 3831 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 3832 }
duke@435 3833 }
duke@435 3834 #else // !ASSERT
duke@435 3835 #define verify_memory_slice(m,i,n) (0) // PRODUCT version is no-op
duke@435 3836 #endif
duke@435 3837
duke@435 3838
duke@435 3839 //-----------------------------memory_at---------------------------------------
duke@435 3840 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 3841 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 3842 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 3843 "must avoid base_memory and AliasIdxTop");
duke@435 3844
duke@435 3845 // Otherwise, it is a narrow slice.
duke@435 3846 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 3847 Compile *C = Compile::current();
duke@435 3848 if (is_empty_memory(n)) {
duke@435 3849 // the array is sparse; empty slots are the "top" node
duke@435 3850 n = base_memory();
duke@435 3851 assert(Node::in_dump()
duke@435 3852 || n == NULL || n->bottom_type() == Type::TOP
duke@435 3853 || n->adr_type() == TypePtr::BOTTOM
duke@435 3854 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 3855 || Compile::current()->AliasLevel() == 0,
duke@435 3856 "must be a wide memory");
duke@435 3857 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 3858 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 3859 } else {
duke@435 3860 // make sure the stored slice is sane
duke@435 3861 #ifdef ASSERT
duke@435 3862 if (is_error_reported() || Node::in_dump()) {
duke@435 3863 } else if (might_be_same(n, base_memory())) {
duke@435 3864 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 3865 // This can arise normally from node subsumption during optimization.
duke@435 3866 } else {
duke@435 3867 verify_memory_slice(this, alias_idx, n);
duke@435 3868 }
duke@435 3869 #endif
duke@435 3870 }
duke@435 3871 return n;
duke@435 3872 }
duke@435 3873
duke@435 3874 //---------------------------set_memory_at-------------------------------------
duke@435 3875 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 3876 verify_memory_slice(this, alias_idx, n);
duke@435 3877 Node* empty_mem = empty_memory();
duke@435 3878 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 3879 uint need_req = alias_idx+1;
duke@435 3880 if (req() < need_req) {
duke@435 3881 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 3882 // grow the sparse array
duke@435 3883 do {
duke@435 3884 add_req(empty_mem);
duke@435 3885 } while (req() < need_req);
duke@435 3886 }
duke@435 3887 set_req( alias_idx, n );
duke@435 3888 }
duke@435 3889
duke@435 3890
duke@435 3891
duke@435 3892 //--------------------------iteration_setup------------------------------------
duke@435 3893 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 3894 if (other != NULL) {
duke@435 3895 grow_to_match(other);
duke@435 3896 // invariant: the finite support of mm2 is within mm->req()
duke@435 3897 #ifdef ASSERT
duke@435 3898 for (uint i = req(); i < other->req(); i++) {
duke@435 3899 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 3900 }
duke@435 3901 #endif
duke@435 3902 }
duke@435 3903 // Replace spurious copies of base_memory by top.
duke@435 3904 Node* base_mem = base_memory();
duke@435 3905 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 3906 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 3907 if (in(i) == base_mem)
duke@435 3908 set_req(i, empty_memory());
duke@435 3909 }
duke@435 3910 }
duke@435 3911 }
duke@435 3912
duke@435 3913 //---------------------------grow_to_match-------------------------------------
duke@435 3914 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 3915 Node* empty_mem = empty_memory();
duke@435 3916 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 3917 // look for the finite support of the other memory
duke@435 3918 for (uint i = other->req(); --i >= req(); ) {
duke@435 3919 if (other->in(i) != empty_mem) {
duke@435 3920 uint new_len = i+1;
duke@435 3921 while (req() < new_len) add_req(empty_mem);
duke@435 3922 break;
duke@435 3923 }
duke@435 3924 }
duke@435 3925 }
duke@435 3926
duke@435 3927 //---------------------------verify_sparse-------------------------------------
duke@435 3928 #ifndef PRODUCT
duke@435 3929 bool MergeMemNode::verify_sparse() const {
duke@435 3930 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 3931 Node* base_mem = base_memory();
duke@435 3932 // The following can happen in degenerate cases, since empty==top.
duke@435 3933 if (is_empty_memory(base_mem)) return true;
duke@435 3934 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3935 assert(in(i) != NULL, "sane slice");
duke@435 3936 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 3937 }
duke@435 3938 return true;
duke@435 3939 }
duke@435 3940
duke@435 3941 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 3942 Node* n;
duke@435 3943 n = mm->in(idx);
duke@435 3944 if (mem == n) return true; // might be empty_memory()
duke@435 3945 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 3946 if (mem == n) return true;
duke@435 3947 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 3948 if (mem == n) return true;
duke@435 3949 if (n == NULL) break;
duke@435 3950 }
duke@435 3951 return false;
duke@435 3952 }
duke@435 3953 #endif // !PRODUCT

mercurial