src/share/vm/opto/memnode.cpp

Tue, 07 Apr 2009 19:04:24 -0700

author
kvn
date
Tue, 07 Apr 2009 19:04:24 -0700
changeset 1143
f2049ae95c3d
parent 1116
fbde8ec322d0
child 1420
685e959d09ea
permissions
-rw-r--r--

6711117: Assertion in 64bit server vm (flat != TypePtr::BOTTOM,"cannot alias-analyze an untyped ptr")
Summary: Delay a memory node transformation if its control or address on IGVN worklist.
Reviewed-by: never

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_memnode.cpp.incl"
duke@435 31
kvn@509 32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 33
duke@435 34 //=============================================================================
duke@435 35 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 36
duke@435 37 const TypePtr *MemNode::adr_type() const {
duke@435 38 Node* adr = in(Address);
duke@435 39 const TypePtr* cross_check = NULL;
duke@435 40 DEBUG_ONLY(cross_check = _adr_type);
duke@435 41 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 42 }
duke@435 43
duke@435 44 #ifndef PRODUCT
duke@435 45 void MemNode::dump_spec(outputStream *st) const {
duke@435 46 if (in(Address) == NULL) return; // node is dead
duke@435 47 #ifndef ASSERT
duke@435 48 // fake the missing field
duke@435 49 const TypePtr* _adr_type = NULL;
duke@435 50 if (in(Address) != NULL)
duke@435 51 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 52 #endif
duke@435 53 dump_adr_type(this, _adr_type, st);
duke@435 54
duke@435 55 Compile* C = Compile::current();
duke@435 56 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 57 st->print(" Volatile!");
duke@435 58 }
duke@435 59
duke@435 60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 61 st->print(" @");
duke@435 62 if (adr_type == NULL) {
duke@435 63 st->print("NULL");
duke@435 64 } else {
duke@435 65 adr_type->dump_on(st);
duke@435 66 Compile* C = Compile::current();
duke@435 67 Compile::AliasType* atp = NULL;
duke@435 68 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 69 if (atp == NULL)
duke@435 70 st->print(", idx=?\?;");
duke@435 71 else if (atp->index() == Compile::AliasIdxBot)
duke@435 72 st->print(", idx=Bot;");
duke@435 73 else if (atp->index() == Compile::AliasIdxTop)
duke@435 74 st->print(", idx=Top;");
duke@435 75 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 76 st->print(", idx=Raw;");
duke@435 77 else {
duke@435 78 ciField* field = atp->field();
duke@435 79 if (field) {
duke@435 80 st->print(", name=");
duke@435 81 field->print_name_on(st);
duke@435 82 }
duke@435 83 st->print(", idx=%d;", atp->index());
duke@435 84 }
duke@435 85 }
duke@435 86 }
duke@435 87
duke@435 88 extern void print_alias_types();
duke@435 89
duke@435 90 #endif
duke@435 91
kvn@509 92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 93 const TypeOopPtr *tinst = t_adr->isa_oopptr();
kvn@658 94 if (tinst == NULL || !tinst->is_known_instance_field())
kvn@509 95 return mchain; // don't try to optimize non-instance types
kvn@509 96 uint instance_id = tinst->instance_id();
kvn@688 97 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 98 Node *prev = NULL;
kvn@509 99 Node *result = mchain;
kvn@509 100 while (prev != result) {
kvn@509 101 prev = result;
kvn@688 102 if (result == start_mem)
twisti@1040 103 break; // hit one of our sentinels
kvn@509 104 // skip over a call which does not affect this memory slice
kvn@509 105 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 106 Node *proj_in = result->in(0);
kvn@688 107 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
twisti@1040 108 break; // hit one of our sentinels
kvn@688 109 } else if (proj_in->is_Call()) {
kvn@509 110 CallNode *call = proj_in->as_Call();
kvn@509 111 if (!call->may_modify(t_adr, phase)) {
kvn@509 112 result = call->in(TypeFunc::Memory);
kvn@509 113 }
kvn@509 114 } else if (proj_in->is_Initialize()) {
kvn@509 115 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 116 // Stop if this is the initialization for the object instance which
kvn@509 117 // which contains this memory slice, otherwise skip over it.
kvn@509 118 if (alloc != NULL && alloc->_idx != instance_id) {
kvn@509 119 result = proj_in->in(TypeFunc::Memory);
kvn@509 120 }
kvn@509 121 } else if (proj_in->is_MemBar()) {
kvn@509 122 result = proj_in->in(TypeFunc::Memory);
kvn@688 123 } else {
kvn@688 124 assert(false, "unexpected projection");
kvn@509 125 }
kvn@509 126 } else if (result->is_MergeMem()) {
kvn@509 127 result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
kvn@509 128 }
kvn@509 129 }
kvn@509 130 return result;
kvn@509 131 }
kvn@509 132
kvn@509 133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
kvn@509 134 const TypeOopPtr *t_oop = t_adr->isa_oopptr();
kvn@658 135 bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
kvn@509 136 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 137 Node *result = mchain;
kvn@509 138 result = optimize_simple_memory_chain(result, t_adr, phase);
kvn@509 139 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 140 PhiNode *mphi = result->as_Phi();
kvn@509 141 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 142 const TypePtr *t = mphi->adr_type();
kvn@598 143 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 144 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 145 t->is_oopptr()->cast_to_exactness(true)
kvn@682 146 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 147 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 148 // clone the Phi with our address type
kvn@509 149 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 150 } else {
kvn@509 151 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 152 }
kvn@509 153 }
kvn@509 154 return result;
kvn@509 155 }
kvn@509 156
kvn@499 157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 158 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 159 Node *mem = mmem;
kvn@499 160 #ifdef ASSERT
kvn@499 161 {
kvn@499 162 // Check that current type is consistent with the alias index used during graph construction
kvn@499 163 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 164 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 165 phase->C->must_alias(adr_check, alias_idx );
kvn@499 166 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 167 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 168 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 169 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 170 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 171 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 172 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 173 // don't assert if it is dead code.
kvn@499 174 consistent = true;
kvn@499 175 }
kvn@499 176 if( !consistent ) {
kvn@499 177 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 178 if( adr_check == NULL ) {
kvn@499 179 st->print("NULL");
kvn@499 180 } else {
kvn@499 181 adr_check->dump();
kvn@499 182 }
kvn@499 183 st->cr();
kvn@499 184 print_alias_types();
kvn@499 185 assert(consistent, "adr_check must match alias idx");
kvn@499 186 }
kvn@499 187 }
kvn@499 188 #endif
kvn@499 189 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 190 // means an array I have not precisely typed yet. Do not do any
kvn@499 191 // alias stuff with it any time soon.
kvn@499 192 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@499 193 if( tp->base() != Type::AnyPtr &&
kvn@499 194 !(tinst &&
kvn@499 195 tinst->klass()->is_java_lang_Object() &&
kvn@499 196 tinst->offset() == Type::OffsetBot) ) {
kvn@499 197 // compress paths and change unreachable cycles to TOP
kvn@499 198 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 199 // Equivalent code in PhiNode::Ideal
kvn@499 200 Node* m = phase->transform(mmem);
twisti@1040 201 // If transformed to a MergeMem, get the desired slice
kvn@499 202 // Otherwise the returned node represents memory for every slice
kvn@499 203 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 204 // Update input if it is progress over what we have now
kvn@499 205 }
kvn@499 206 return mem;
kvn@499 207 }
kvn@499 208
duke@435 209 //--------------------------Ideal_common---------------------------------------
duke@435 210 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 211 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 213 // If our control input is a dead region, kill all below the region
duke@435 214 Node *ctl = in(MemNode::Control);
duke@435 215 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 216 return this;
kvn@740 217 ctl = in(MemNode::Control);
kvn@740 218 // Don't bother trying to transform a dead node
kvn@740 219 if( ctl && ctl->is_top() ) return NodeSentinel;
duke@435 220
kvn@1143 221 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1143 222 // Wait if control on the worklist.
kvn@1143 223 if (ctl && can_reshape && igvn != NULL) {
kvn@1143 224 Node* bol = NULL;
kvn@1143 225 Node* cmp = NULL;
kvn@1143 226 if (ctl->in(0)->is_If()) {
kvn@1143 227 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
kvn@1143 228 bol = ctl->in(0)->in(1);
kvn@1143 229 if (bol->is_Bool())
kvn@1143 230 cmp = ctl->in(0)->in(1)->in(1);
kvn@1143 231 }
kvn@1143 232 if (igvn->_worklist.member(ctl) ||
kvn@1143 233 (bol != NULL && igvn->_worklist.member(bol)) ||
kvn@1143 234 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
kvn@1143 235 // This control path may be dead.
kvn@1143 236 // Delay this memory node transformation until the control is processed.
kvn@1143 237 phase->is_IterGVN()->_worklist.push(this);
kvn@1143 238 return NodeSentinel; // caller will return NULL
kvn@1143 239 }
kvn@1143 240 }
duke@435 241 // Ignore if memory is dead, or self-loop
duke@435 242 Node *mem = in(MemNode::Memory);
duke@435 243 if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 244 assert( mem != this, "dead loop in MemNode::Ideal" );
duke@435 245
duke@435 246 Node *address = in(MemNode::Address);
duke@435 247 const Type *t_adr = phase->type( address );
duke@435 248 if( t_adr == Type::TOP ) return NodeSentinel; // caller will return NULL
duke@435 249
kvn@1143 250 if( can_reshape && igvn != NULL &&
kvn@1143 251 (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
kvn@855 252 // The address's base and type may change when the address is processed.
kvn@855 253 // Delay this mem node transformation until the address is processed.
kvn@855 254 phase->is_IterGVN()->_worklist.push(this);
kvn@855 255 return NodeSentinel; // caller will return NULL
kvn@855 256 }
kvn@855 257
kvn@1143 258 #ifdef ASSERT
kvn@1143 259 Node* base = NULL;
kvn@1143 260 if (address->is_AddP())
kvn@1143 261 base = address->in(AddPNode::Base);
kvn@1143 262 assert(base == NULL || t_adr->isa_rawptr() ||
kvn@1143 263 !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
kvn@1143 264 #endif
kvn@1143 265
duke@435 266 // Avoid independent memory operations
duke@435 267 Node* old_mem = mem;
duke@435 268
kvn@471 269 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 270 // initializations was removed. After macro-expansion all stores catched
kvn@471 271 // by Initialize node became raw stores and there is no information
kvn@471 272 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 273 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 274 // were already unhooked by using information from detect_ptr_independence()
kvn@471 275 // and find_previous_store().
duke@435 276
duke@435 277 if (mem->is_MergeMem()) {
duke@435 278 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 279 const TypePtr *tp = t_adr->is_ptr();
kvn@499 280
kvn@499 281 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 282 }
duke@435 283
duke@435 284 if (mem != old_mem) {
duke@435 285 set_req(MemNode::Memory, mem);
kvn@740 286 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 287 return this;
duke@435 288 }
duke@435 289
duke@435 290 // let the subclass continue analyzing...
duke@435 291 return NULL;
duke@435 292 }
duke@435 293
duke@435 294 // Helper function for proving some simple control dominations.
kvn@554 295 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 296 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 297 // is not a constant (dominated by the method's StartNode).
duke@435 298 // Used by MemNode::find_previous_store to prove that the
duke@435 299 // control input of a memory operation predates (dominates)
duke@435 300 // an allocation it wants to look past.
kvn@554 301 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 302 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 303 return false; // Conservative answer for dead code
kvn@554 304
kvn@628 305 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 306 dom = dom->find_exact_control(dom);
kvn@554 307 if (dom == NULL || dom->is_top())
kvn@554 308 return false; // Conservative answer for dead code
kvn@554 309
kvn@628 310 if (dom == sub) {
kvn@628 311 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 312 // 'dom' is Proj node of the 'sub'.
kvn@628 313 return false;
kvn@628 314 }
kvn@628 315
kvn@590 316 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 317 return true;
kvn@554 318
kvn@554 319 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 320 // of all its inputs dominate or equal to sub's control edge.
kvn@554 321
kvn@554 322 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 323 // Or Region for the check in LoadNode::Ideal();
kvn@598 324 // 'sub' should have sub->in(0) != NULL.
kvn@598 325 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@598 326 sub->is_Region(), "expecting only these nodes");
kvn@554 327
kvn@554 328 // Get control edge of 'sub'.
kvn@628 329 Node* orig_sub = sub;
kvn@554 330 sub = sub->find_exact_control(sub->in(0));
kvn@554 331 if (sub == NULL || sub->is_top())
kvn@554 332 return false; // Conservative answer for dead code
kvn@554 333
kvn@554 334 assert(sub->is_CFG(), "expecting control");
kvn@554 335
kvn@554 336 if (sub == dom)
kvn@554 337 return true;
kvn@554 338
kvn@554 339 if (sub->is_Start() || sub->is_Root())
kvn@554 340 return false;
kvn@554 341
kvn@554 342 {
kvn@554 343 // Check all control edges of 'dom'.
kvn@554 344
kvn@554 345 ResourceMark rm;
kvn@554 346 Arena* arena = Thread::current()->resource_area();
kvn@554 347 Node_List nlist(arena);
kvn@554 348 Unique_Node_List dom_list(arena);
kvn@554 349
kvn@554 350 dom_list.push(dom);
kvn@554 351 bool only_dominating_controls = false;
kvn@554 352
kvn@554 353 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 354 Node* n = dom_list.at(next);
kvn@628 355 if (n == orig_sub)
kvn@628 356 return false; // One of dom's inputs dominated by sub.
kvn@554 357 if (!n->is_CFG() && n->pinned()) {
kvn@554 358 // Check only own control edge for pinned non-control nodes.
kvn@554 359 n = n->find_exact_control(n->in(0));
kvn@554 360 if (n == NULL || n->is_top())
kvn@554 361 return false; // Conservative answer for dead code
kvn@554 362 assert(n->is_CFG(), "expecting control");
kvn@628 363 dom_list.push(n);
kvn@628 364 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 365 only_dominating_controls = true;
kvn@554 366 } else if (n->is_CFG()) {
kvn@554 367 if (n->dominates(sub, nlist))
kvn@554 368 only_dominating_controls = true;
kvn@554 369 else
kvn@554 370 return false;
kvn@554 371 } else {
kvn@554 372 // First, own control edge.
kvn@554 373 Node* m = n->find_exact_control(n->in(0));
kvn@590 374 if (m != NULL) {
kvn@590 375 if (m->is_top())
kvn@590 376 return false; // Conservative answer for dead code
kvn@590 377 dom_list.push(m);
kvn@590 378 }
kvn@554 379 // Now, the rest of edges.
kvn@554 380 uint cnt = n->req();
kvn@554 381 for (uint i = 1; i < cnt; i++) {
kvn@554 382 m = n->find_exact_control(n->in(i));
kvn@554 383 if (m == NULL || m->is_top())
kvn@554 384 continue;
kvn@554 385 dom_list.push(m);
duke@435 386 }
duke@435 387 }
duke@435 388 }
kvn@554 389 return only_dominating_controls;
duke@435 390 }
duke@435 391 }
duke@435 392
duke@435 393 //---------------------detect_ptr_independence---------------------------------
duke@435 394 // Used by MemNode::find_previous_store to prove that two base
duke@435 395 // pointers are never equal.
duke@435 396 // The pointers are accompanied by their associated allocations,
duke@435 397 // if any, which have been previously discovered by the caller.
duke@435 398 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 399 Node* p2, AllocateNode* a2,
duke@435 400 PhaseTransform* phase) {
duke@435 401 // Attempt to prove that these two pointers cannot be aliased.
duke@435 402 // They may both manifestly be allocations, and they should differ.
duke@435 403 // Or, if they are not both allocations, they can be distinct constants.
duke@435 404 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 405 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 406 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 407 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 408 return (a1 != a2);
duke@435 409 } else if (a1 != NULL) { // one allocation a1
duke@435 410 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 411 return all_controls_dominate(p2, a1);
duke@435 412 } else { //(a2 != NULL) // one allocation a2
kvn@554 413 return all_controls_dominate(p1, a2);
duke@435 414 }
duke@435 415 return false;
duke@435 416 }
duke@435 417
duke@435 418
duke@435 419 // The logic for reordering loads and stores uses four steps:
duke@435 420 // (a) Walk carefully past stores and initializations which we
duke@435 421 // can prove are independent of this load.
duke@435 422 // (b) Observe that the next memory state makes an exact match
duke@435 423 // with self (load or store), and locate the relevant store.
duke@435 424 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 425 // the optimizer would fold it up somehow.
duke@435 426 // (d) Do the rewiring, and return, depending on some other part of
duke@435 427 // the optimizer to fold up the load.
duke@435 428 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 429 // specific to loads and stores, so they are handled by the callers.
duke@435 430 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 431 //
duke@435 432 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 433 Node* ctrl = in(MemNode::Control);
duke@435 434 Node* adr = in(MemNode::Address);
duke@435 435 intptr_t offset = 0;
duke@435 436 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 437 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 438
duke@435 439 if (offset == Type::OffsetBot)
duke@435 440 return NULL; // cannot unalias unless there are precise offsets
duke@435 441
kvn@509 442 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 443
duke@435 444 intptr_t size_in_bytes = memory_size();
duke@435 445
duke@435 446 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 447
duke@435 448 int cnt = 50; // Cycle limiter
duke@435 449 for (;;) { // While we can dance past unrelated stores...
duke@435 450 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 451
duke@435 452 if (mem->is_Store()) {
duke@435 453 Node* st_adr = mem->in(MemNode::Address);
duke@435 454 intptr_t st_offset = 0;
duke@435 455 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 456 if (st_base == NULL)
duke@435 457 break; // inscrutable pointer
duke@435 458 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 459 const int MAX_STORE = BytesPerLong;
duke@435 460 if (st_offset >= offset + size_in_bytes ||
duke@435 461 st_offset <= offset - MAX_STORE ||
duke@435 462 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 463 // Success: The offsets are provably independent.
duke@435 464 // (You may ask, why not just test st_offset != offset and be done?
duke@435 465 // The answer is that stores of different sizes can co-exist
duke@435 466 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 467 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 468 mem = mem->in(MemNode::Memory);
duke@435 469 continue; // (a) advance through independent store memory
duke@435 470 }
duke@435 471 }
duke@435 472 if (st_base != base &&
duke@435 473 detect_ptr_independence(base, alloc,
duke@435 474 st_base,
duke@435 475 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 476 phase)) {
duke@435 477 // Success: The bases are provably independent.
duke@435 478 mem = mem->in(MemNode::Memory);
duke@435 479 continue; // (a) advance through independent store memory
duke@435 480 }
duke@435 481
duke@435 482 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 483 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 484 if (st_base == base && st_offset == offset) {
duke@435 485 return mem; // let caller handle steps (c), (d)
duke@435 486 }
duke@435 487
duke@435 488 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 489 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 490 AllocateNode* st_alloc = st_init->allocation();
duke@435 491 if (st_alloc == NULL)
duke@435 492 break; // something degenerated
duke@435 493 bool known_identical = false;
duke@435 494 bool known_independent = false;
duke@435 495 if (alloc == st_alloc)
duke@435 496 known_identical = true;
duke@435 497 else if (alloc != NULL)
duke@435 498 known_independent = true;
kvn@554 499 else if (all_controls_dominate(this, st_alloc))
duke@435 500 known_independent = true;
duke@435 501
duke@435 502 if (known_independent) {
duke@435 503 // The bases are provably independent: Either they are
duke@435 504 // manifestly distinct allocations, or else the control
duke@435 505 // of this load dominates the store's allocation.
duke@435 506 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 507 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 508 mem = st_alloc->in(TypeFunc::Memory);
duke@435 509 } else {
duke@435 510 mem = st_init->memory(alias_idx);
duke@435 511 }
duke@435 512 continue; // (a) advance through independent store memory
duke@435 513 }
duke@435 514
duke@435 515 // (b) at this point, if we are not looking at a store initializing
duke@435 516 // the same allocation we are loading from, we lose.
duke@435 517 if (known_identical) {
duke@435 518 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 519 return mem; // let caller handle steps (c), (d)
duke@435 520 }
duke@435 521
kvn@658 522 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 523 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 524 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 525 CallNode *call = mem->in(0)->as_Call();
kvn@509 526 if (!call->may_modify(addr_t, phase)) {
kvn@509 527 mem = call->in(TypeFunc::Memory);
kvn@509 528 continue; // (a) advance through independent call memory
kvn@509 529 }
kvn@509 530 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 531 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 532 continue; // (a) advance through independent MemBar memory
kvn@509 533 } else if (mem->is_MergeMem()) {
kvn@509 534 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 535 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 536 continue; // (a) advance through independent MergeMem memory
kvn@509 537 }
duke@435 538 }
duke@435 539
duke@435 540 // Unless there is an explicit 'continue', we must bail out here,
duke@435 541 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 542 break;
duke@435 543 }
duke@435 544
duke@435 545 return NULL; // bail out
duke@435 546 }
duke@435 547
duke@435 548 //----------------------calculate_adr_type-------------------------------------
duke@435 549 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 550 // Also, asserts a cross-check of the type against the expected address type.
duke@435 551 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 552 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 553 #ifdef PRODUCT
duke@435 554 cross_check = NULL;
duke@435 555 #else
duke@435 556 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 557 #endif
duke@435 558 const TypePtr* tp = t->isa_ptr();
duke@435 559 if (tp == NULL) {
duke@435 560 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 561 return TypePtr::BOTTOM; // touches lots of memory
duke@435 562 } else {
duke@435 563 #ifdef ASSERT
duke@435 564 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 565 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 566 if (cross_check != NULL &&
duke@435 567 cross_check != TypePtr::BOTTOM &&
duke@435 568 cross_check != TypeRawPtr::BOTTOM) {
duke@435 569 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 570 Compile* C = Compile::current();
duke@435 571 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 572 "must stay in the original alias category");
duke@435 573 // The type of the address must be contained in the adr_type,
duke@435 574 // disregarding "null"-ness.
duke@435 575 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 576 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
duke@435 577 assert(cross_check->meet(tp_notnull) == cross_check,
duke@435 578 "real address must not escape from expected memory type");
duke@435 579 }
duke@435 580 #endif
duke@435 581 return tp;
duke@435 582 }
duke@435 583 }
duke@435 584
duke@435 585 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 586 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 587 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 588 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 589 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 590 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 591 // with the same data. This implies that any path into the loop already
duke@435 592 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 593 // must be covered by an equivalent cast, with an earlier control input.
duke@435 594 ResourceMark rm;
duke@435 595
duke@435 596 // The loop entry input of the phi should be the unique dominating
duke@435 597 // node for every Phi/CastPP in the loop.
duke@435 598 Unique_Node_List closure;
duke@435 599 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 600
duke@435 601 // Add the phi node and the cast to the worklist.
duke@435 602 Unique_Node_List worklist;
duke@435 603 worklist.push(adr_phi);
duke@435 604 if( cast != NULL ){
duke@435 605 if( !cast->is_ConstraintCast() ) return false;
duke@435 606 worklist.push(cast);
duke@435 607 }
duke@435 608
duke@435 609 // Begin recursive walk of phi nodes.
duke@435 610 while( worklist.size() ){
duke@435 611 // Take a node off the worklist
duke@435 612 Node *n = worklist.pop();
duke@435 613 if( !closure.member(n) ){
duke@435 614 // Add it to the closure.
duke@435 615 closure.push(n);
duke@435 616 // Make a sanity check to ensure we don't waste too much time here.
duke@435 617 if( closure.size() > 20) return false;
duke@435 618 // This node is OK if:
duke@435 619 // - it is a cast of an identical value
duke@435 620 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 621 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 622 if( n->is_ConstraintCast() ){
duke@435 623 worklist.push(n->in(1));
duke@435 624 } else if( n->is_Phi() ) {
duke@435 625 for( uint i = 1; i < n->req(); i++ ) {
duke@435 626 worklist.push(n->in(i));
duke@435 627 }
duke@435 628 } else {
duke@435 629 return false;
duke@435 630 }
duke@435 631 }
duke@435 632 }
duke@435 633
duke@435 634 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 635 return true;
duke@435 636 }
duke@435 637
duke@435 638 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 639 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 640 // going away in this pass and we need to make this memory op depend on the
duke@435 641 // gating null check.
kvn@598 642 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 643 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 644 }
duke@435 645
duke@435 646 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 647 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 648 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 649 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 650 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 651 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 652 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 653 // up on this approach. CNC 10/20/2000
kvn@598 654 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 655 // Only the control edge of the node 'n' might be updated.
kvn@598 656 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 657 Node *skipped_cast = NULL;
duke@435 658 // Need a null check? Regular static accesses do not because they are
duke@435 659 // from constant addresses. Array ops are gated by the range check (which
duke@435 660 // always includes a NULL check). Just check field ops.
kvn@598 661 if( n->in(MemNode::Control) == NULL ) {
duke@435 662 // Scan upwards for the highest location we can place this memory op.
duke@435 663 while( true ) {
duke@435 664 switch( adr->Opcode() ) {
duke@435 665
duke@435 666 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 667 adr = adr->in(AddPNode::Base);
duke@435 668 continue;
duke@435 669
coleenp@548 670 case Op_DecodeN: // No change to NULL-ness, so peek thru
coleenp@548 671 adr = adr->in(1);
coleenp@548 672 continue;
coleenp@548 673
duke@435 674 case Op_CastPP:
duke@435 675 // If the CastPP is useless, just peek on through it.
duke@435 676 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 677 // Remember the cast that we've peeked though. If we peek
duke@435 678 // through more than one, then we end up remembering the highest
duke@435 679 // one, that is, if in a loop, the one closest to the top.
duke@435 680 skipped_cast = adr;
duke@435 681 adr = adr->in(1);
duke@435 682 continue;
duke@435 683 }
duke@435 684 // CastPP is going away in this pass! We need this memory op to be
duke@435 685 // control-dependent on the test that is guarding the CastPP.
kvn@598 686 ccp->hash_delete(n);
kvn@598 687 n->set_req(MemNode::Control, adr->in(0));
kvn@598 688 ccp->hash_insert(n);
kvn@598 689 return n;
duke@435 690
duke@435 691 case Op_Phi:
duke@435 692 // Attempt to float above a Phi to some dominating point.
duke@435 693 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 694 // If we've already peeked through a Cast (which could have set the
duke@435 695 // control), we can't float above a Phi, because the skipped Cast
duke@435 696 // may not be loop invariant.
duke@435 697 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 698 adr = adr->in(1);
duke@435 699 continue;
duke@435 700 }
duke@435 701 }
duke@435 702
duke@435 703 // Intentional fallthrough!
duke@435 704
duke@435 705 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 706 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 707 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 708 // behind the controls leading to the Phi.
duke@435 709 case Op_CheckCastPP:
duke@435 710 // These usually stick around to change address type, however a
duke@435 711 // useless one can be elided and we still need to pick up a control edge
duke@435 712 if (adr->in(0) == NULL) {
duke@435 713 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 714 // need check further up the ancestor chain for a control input to keep
duke@435 715 // the node in place. 4959717.
duke@435 716 skipped_cast = adr;
duke@435 717 adr = adr->in(1);
duke@435 718 continue;
duke@435 719 }
kvn@598 720 ccp->hash_delete(n);
kvn@598 721 n->set_req(MemNode::Control, adr->in(0));
kvn@598 722 ccp->hash_insert(n);
kvn@598 723 return n;
duke@435 724
duke@435 725 // List of "safe" opcodes; those that implicitly block the memory
duke@435 726 // op below any null check.
duke@435 727 case Op_CastX2P: // no null checks on native pointers
duke@435 728 case Op_Parm: // 'this' pointer is not null
duke@435 729 case Op_LoadP: // Loading from within a klass
coleenp@548 730 case Op_LoadN: // Loading from within a klass
duke@435 731 case Op_LoadKlass: // Loading from within a klass
kvn@599 732 case Op_LoadNKlass: // Loading from within a klass
duke@435 733 case Op_ConP: // Loading from a klass
kvn@598 734 case Op_ConN: // Loading from a klass
duke@435 735 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 736 case Op_Con: // Reading from TLS
duke@435 737 case Op_CMoveP: // CMoveP is pinned
kvn@599 738 case Op_CMoveN: // CMoveN is pinned
duke@435 739 break; // No progress
duke@435 740
duke@435 741 case Op_Proj: // Direct call to an allocation routine
duke@435 742 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 743 #ifdef ASSERT
duke@435 744 {
duke@435 745 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 746 const Node* call = adr->in(0);
kvn@598 747 if (call->is_CallJava()) {
kvn@598 748 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 749 const TypeTuple *r = call_java->tf()->range();
kvn@499 750 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 751 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 752 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 753 // We further presume that this is one of
duke@435 754 // new_instance_Java, new_array_Java, or
duke@435 755 // the like, but do not assert for this.
duke@435 756 } else if (call->is_Allocate()) {
duke@435 757 // similar case to new_instance_Java, etc.
duke@435 758 } else if (!call->is_CallLeaf()) {
duke@435 759 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 760 ShouldNotReachHere();
duke@435 761 }
duke@435 762 }
duke@435 763 #endif
duke@435 764 break;
duke@435 765 default:
duke@435 766 ShouldNotReachHere();
duke@435 767 }
duke@435 768 break;
duke@435 769 }
duke@435 770 }
duke@435 771
duke@435 772 return NULL; // No progress
duke@435 773 }
duke@435 774
duke@435 775
duke@435 776 //=============================================================================
duke@435 777 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 778 uint LoadNode::cmp( const Node &n ) const
duke@435 779 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 780 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 781 uint LoadNode::ideal_reg() const {
duke@435 782 return Matcher::base2reg[_type->base()];
duke@435 783 }
duke@435 784
duke@435 785 #ifndef PRODUCT
duke@435 786 void LoadNode::dump_spec(outputStream *st) const {
duke@435 787 MemNode::dump_spec(st);
duke@435 788 if( !Verbose && !WizardMode ) {
duke@435 789 // standard dump does this in Verbose and WizardMode
duke@435 790 st->print(" #"); _type->dump_on(st);
duke@435 791 }
duke@435 792 }
duke@435 793 #endif
duke@435 794
duke@435 795
duke@435 796 //----------------------------LoadNode::make-----------------------------------
duke@435 797 // Polymorphic factory method:
coleenp@548 798 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
coleenp@548 799 Compile* C = gvn.C;
coleenp@548 800
duke@435 801 // sanity check the alias category against the created node type
duke@435 802 assert(!(adr_type->isa_oopptr() &&
duke@435 803 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 804 "use LoadKlassNode instead");
duke@435 805 assert(!(adr_type->isa_aryptr() &&
duke@435 806 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 807 "use LoadRangeNode instead");
duke@435 808 switch (bt) {
twisti@1059 809 case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 810 case T_BYTE: return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 811 case T_INT: return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 812 case T_CHAR: return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 813 case T_SHORT: return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int() );
twisti@993 814 case T_LONG: return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long() );
twisti@993 815 case T_FLOAT: return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt );
twisti@993 816 case T_DOUBLE: return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt );
twisti@993 817 case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr() );
coleenp@548 818 case T_OBJECT:
coleenp@548 819 #ifdef _LP64
kvn@598 820 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 821 Node* load = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
kvn@656 822 return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 823 } else
coleenp@548 824 #endif
kvn@598 825 {
kvn@598 826 assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@598 827 return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
kvn@598 828 }
duke@435 829 }
duke@435 830 ShouldNotReachHere();
duke@435 831 return (LoadNode*)NULL;
duke@435 832 }
duke@435 833
duke@435 834 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
duke@435 835 bool require_atomic = true;
duke@435 836 return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
duke@435 837 }
duke@435 838
duke@435 839
duke@435 840
duke@435 841
duke@435 842 //------------------------------hash-------------------------------------------
duke@435 843 uint LoadNode::hash() const {
duke@435 844 // unroll addition of interesting fields
duke@435 845 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 846 }
duke@435 847
duke@435 848 //---------------------------can_see_stored_value------------------------------
duke@435 849 // This routine exists to make sure this set of tests is done the same
duke@435 850 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 851 // will change the graph shape in a way which makes memory alive twice at the
duke@435 852 // same time (uses the Oracle model of aliasing), then some
duke@435 853 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 854 // of aliasing.
duke@435 855 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 856 Node* ld_adr = in(MemNode::Address);
duke@435 857
never@452 858 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
never@452 859 Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
never@452 860 if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
never@452 861 atp->field() != NULL && !atp->field()->is_volatile()) {
never@452 862 uint alias_idx = atp->index();
never@452 863 bool final = atp->field()->is_final();
never@452 864 Node* result = NULL;
never@452 865 Node* current = st;
never@452 866 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 867 // new states for the slice of this load. Stop once any other
never@452 868 // kind of node is encountered. Loads from final memory can skip
never@452 869 // through any kind of MemBar but normal loads shouldn't skip
never@452 870 // through MemBarAcquire since the could allow them to move out of
never@452 871 // a synchronized region.
never@452 872 while (current->is_Proj()) {
never@452 873 int opc = current->in(0)->Opcode();
never@452 874 if ((final && opc == Op_MemBarAcquire) ||
never@452 875 opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
never@452 876 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 877 if (mem->is_MergeMem()) {
never@452 878 MergeMemNode* merge = mem->as_MergeMem();
never@452 879 Node* new_st = merge->memory_at(alias_idx);
never@452 880 if (new_st == merge->base_memory()) {
never@452 881 // Keep searching
never@452 882 current = merge->base_memory();
never@452 883 continue;
never@452 884 }
never@452 885 // Save the new memory state for the slice and fall through
never@452 886 // to exit.
never@452 887 result = new_st;
never@452 888 }
never@452 889 }
never@452 890 break;
never@452 891 }
never@452 892 if (result != NULL) {
never@452 893 st = result;
never@452 894 }
never@452 895 }
never@452 896
never@452 897
duke@435 898 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 899 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 900 for (int trip = 0; trip <= 1; trip++) {
duke@435 901
duke@435 902 if (st->is_Store()) {
duke@435 903 Node* st_adr = st->in(MemNode::Address);
duke@435 904 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 905 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 906 intptr_t st_off = 0;
duke@435 907 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 908 if (alloc == NULL) return NULL;
duke@435 909 intptr_t ld_off = 0;
duke@435 910 AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
duke@435 911 if (alloc != allo2) return NULL;
duke@435 912 if (ld_off != st_off) return NULL;
duke@435 913 // At this point we have proven something like this setup:
duke@435 914 // A = Allocate(...)
duke@435 915 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 916 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 917 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 918 // In other words, we are loading from a casted version of
duke@435 919 // the same pointer-and-offset that we stored to.
duke@435 920 // Thus, we are able to replace L by V.
duke@435 921 }
duke@435 922 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 923 if (store_Opcode() != st->Opcode())
duke@435 924 return NULL;
duke@435 925 return st->in(MemNode::ValueIn);
duke@435 926 }
duke@435 927
duke@435 928 intptr_t offset = 0; // scratch
duke@435 929
duke@435 930 // A load from a freshly-created object always returns zero.
duke@435 931 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 932 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 933 if (st->is_Proj() && st->in(0)->is_Allocate() &&
duke@435 934 st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
duke@435 935 offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
duke@435 936 // return a zero value for the load's basic type
duke@435 937 // (This is one of the few places where a generic PhaseTransform
duke@435 938 // can create new nodes. Think of it as lazily manifesting
duke@435 939 // virtually pre-existing constants.)
duke@435 940 return phase->zerocon(memory_type());
duke@435 941 }
duke@435 942
duke@435 943 // A load from an initialization barrier can match a captured store.
duke@435 944 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 945 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 946 AllocateNode* alloc = init->allocation();
duke@435 947 if (alloc != NULL &&
duke@435 948 alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
duke@435 949 // examine a captured store value
duke@435 950 st = init->find_captured_store(offset, memory_size(), phase);
duke@435 951 if (st != NULL)
duke@435 952 continue; // take one more trip around
duke@435 953 }
duke@435 954 }
duke@435 955
duke@435 956 break;
duke@435 957 }
duke@435 958
duke@435 959 return NULL;
duke@435 960 }
duke@435 961
kvn@499 962 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 963 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@499 964 if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
kvn@499 965 in(MemNode::Address)->is_AddP() ) {
kvn@499 966 const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@499 967 // Only instances.
kvn@658 968 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@499 969 t_oop->offset() != Type::OffsetBot &&
kvn@499 970 t_oop->offset() != Type::OffsetTop) {
kvn@499 971 return true;
kvn@499 972 }
kvn@499 973 }
kvn@499 974 return false;
kvn@499 975 }
kvn@499 976
duke@435 977 //------------------------------Identity---------------------------------------
duke@435 978 // Loads are identity if previous store is to same address
duke@435 979 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 980 // If the previous store-maker is the right kind of Store, and the store is
duke@435 981 // to the same address, then we are equal to the value stored.
duke@435 982 Node* mem = in(MemNode::Memory);
duke@435 983 Node* value = can_see_stored_value(mem, phase);
duke@435 984 if( value ) {
duke@435 985 // byte, short & char stores truncate naturally.
duke@435 986 // A load has to load the truncated value which requires
duke@435 987 // some sort of masking operation and that requires an
duke@435 988 // Ideal call instead of an Identity call.
duke@435 989 if (memory_size() < BytesPerInt) {
duke@435 990 // If the input to the store does not fit with the load's result type,
duke@435 991 // it must be truncated via an Ideal call.
duke@435 992 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 993 return this;
duke@435 994 }
duke@435 995 // (This works even when value is a Con, but LoadNode::Value
duke@435 996 // usually runs first, producing the singleton type of the Con.)
duke@435 997 return value;
duke@435 998 }
kvn@499 999
kvn@499 1000 // Search for an existing data phi which was generated before for the same
twisti@1040 1001 // instance's field to avoid infinite generation of phis in a loop.
kvn@499 1002 Node *region = mem->in(0);
kvn@499 1003 if (is_instance_field_load_with_local_phi(region)) {
kvn@499 1004 const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
kvn@499 1005 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 1006 int this_offset = addr_t->offset();
kvn@499 1007 int this_id = addr_t->is_oopptr()->instance_id();
kvn@499 1008 const Type* this_type = bottom_type();
kvn@499 1009 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 1010 Node* phi = region->fast_out(i);
kvn@499 1011 if (phi->is_Phi() && phi != mem &&
kvn@499 1012 phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
kvn@499 1013 return phi;
kvn@499 1014 }
kvn@499 1015 }
kvn@499 1016 }
kvn@499 1017
duke@435 1018 return this;
duke@435 1019 }
duke@435 1020
never@452 1021
never@452 1022 // Returns true if the AliasType refers to the field that holds the
never@452 1023 // cached box array. Currently only handles the IntegerCache case.
never@452 1024 static bool is_autobox_cache(Compile::AliasType* atp) {
never@452 1025 if (atp != NULL && atp->field() != NULL) {
never@452 1026 ciField* field = atp->field();
never@452 1027 ciSymbol* klass = field->holder()->name();
never@452 1028 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1029 field->holder()->uses_default_loader() &&
never@452 1030 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1031 return true;
never@452 1032 }
never@452 1033 }
never@452 1034 return false;
never@452 1035 }
never@452 1036
never@452 1037 // Fetch the base value in the autobox array
never@452 1038 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
never@452 1039 if (atp != NULL && atp->field() != NULL) {
never@452 1040 ciField* field = atp->field();
never@452 1041 ciSymbol* klass = field->holder()->name();
never@452 1042 if (field->name() == ciSymbol::cache_field_name() &&
never@452 1043 field->holder()->uses_default_loader() &&
never@452 1044 klass == ciSymbol::java_lang_Integer_IntegerCache()) {
never@452 1045 assert(field->is_constant(), "what?");
never@452 1046 ciObjArray* array = field->constant_value().as_object()->as_obj_array();
never@452 1047 // Fetch the box object at the base of the array and get its value
never@452 1048 ciInstance* box = array->obj_at(0)->as_instance();
never@452 1049 ciInstanceKlass* ik = box->klass()->as_instance_klass();
never@452 1050 if (ik->nof_nonstatic_fields() == 1) {
never@452 1051 // This should be true nonstatic_field_at requires calling
never@452 1052 // nof_nonstatic_fields so check it anyway
never@452 1053 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
never@452 1054 cache_offset = c.as_int();
never@452 1055 }
never@452 1056 return true;
never@452 1057 }
never@452 1058 }
never@452 1059 return false;
never@452 1060 }
never@452 1061
never@452 1062 // Returns true if the AliasType refers to the value field of an
never@452 1063 // autobox object. Currently only handles Integer.
never@452 1064 static bool is_autobox_object(Compile::AliasType* atp) {
never@452 1065 if (atp != NULL && atp->field() != NULL) {
never@452 1066 ciField* field = atp->field();
never@452 1067 ciSymbol* klass = field->holder()->name();
never@452 1068 if (field->name() == ciSymbol::value_name() &&
never@452 1069 field->holder()->uses_default_loader() &&
never@452 1070 klass == ciSymbol::java_lang_Integer()) {
never@452 1071 return true;
never@452 1072 }
never@452 1073 }
never@452 1074 return false;
never@452 1075 }
never@452 1076
never@452 1077
never@452 1078 // We're loading from an object which has autobox behaviour.
never@452 1079 // If this object is result of a valueOf call we'll have a phi
never@452 1080 // merging a newly allocated object and a load from the cache.
never@452 1081 // We want to replace this load with the original incoming
never@452 1082 // argument to the valueOf call.
never@452 1083 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
never@452 1084 Node* base = in(Address)->in(AddPNode::Base);
never@452 1085 if (base->is_Phi() && base->req() == 3) {
never@452 1086 AllocateNode* allocation = NULL;
never@452 1087 int allocation_index = -1;
never@452 1088 int load_index = -1;
never@452 1089 for (uint i = 1; i < base->req(); i++) {
never@452 1090 allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
never@452 1091 if (allocation != NULL) {
never@452 1092 allocation_index = i;
never@452 1093 load_index = 3 - allocation_index;
never@452 1094 break;
never@452 1095 }
never@452 1096 }
kvn@1018 1097 bool has_load = ( allocation != NULL &&
kvn@1018 1098 (base->in(load_index)->is_Load() ||
kvn@1018 1099 base->in(load_index)->is_DecodeN() &&
kvn@1018 1100 base->in(load_index)->in(1)->is_Load()) );
kvn@1018 1101 if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
never@452 1102 // Push the loads from the phi that comes from valueOf up
never@452 1103 // through it to allow elimination of the loads and the recovery
never@452 1104 // of the original value.
never@452 1105 Node* mem_phi = in(Memory);
never@452 1106 Node* offset = in(Address)->in(AddPNode::Offset);
never@988 1107 Node* region = base->in(0);
never@452 1108
never@452 1109 Node* in1 = clone();
never@452 1110 Node* in1_addr = in1->in(Address)->clone();
never@452 1111 in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
never@452 1112 in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
never@452 1113 in1_addr->set_req(AddPNode::Offset, offset);
never@988 1114 in1->set_req(0, region->in(allocation_index));
never@452 1115 in1->set_req(Address, in1_addr);
never@452 1116 in1->set_req(Memory, mem_phi->in(allocation_index));
never@452 1117
never@452 1118 Node* in2 = clone();
never@452 1119 Node* in2_addr = in2->in(Address)->clone();
never@452 1120 in2_addr->set_req(AddPNode::Base, base->in(load_index));
never@452 1121 in2_addr->set_req(AddPNode::Address, base->in(load_index));
never@452 1122 in2_addr->set_req(AddPNode::Offset, offset);
never@988 1123 in2->set_req(0, region->in(load_index));
never@452 1124 in2->set_req(Address, in2_addr);
never@452 1125 in2->set_req(Memory, mem_phi->in(load_index));
never@452 1126
never@452 1127 in1_addr = phase->transform(in1_addr);
never@452 1128 in1 = phase->transform(in1);
never@452 1129 in2_addr = phase->transform(in2_addr);
never@452 1130 in2 = phase->transform(in2);
never@452 1131
never@988 1132 PhiNode* result = PhiNode::make_blank(region, this);
never@452 1133 result->set_req(allocation_index, in1);
never@452 1134 result->set_req(load_index, in2);
never@452 1135 return result;
never@452 1136 }
kvn@1018 1137 } else if (base->is_Load() ||
kvn@1018 1138 base->is_DecodeN() && base->in(1)->is_Load()) {
kvn@1018 1139 if (base->is_DecodeN()) {
kvn@1018 1140 // Get LoadN node which loads cached Integer object
kvn@1018 1141 base = base->in(1);
kvn@1018 1142 }
never@452 1143 // Eliminate the load of Integer.value for integers from the cache
never@452 1144 // array by deriving the value from the index into the array.
never@452 1145 // Capture the offset of the load and then reverse the computation.
never@452 1146 Node* load_base = base->in(Address)->in(AddPNode::Base);
kvn@1018 1147 if (load_base->is_DecodeN()) {
kvn@1018 1148 // Get LoadN node which loads IntegerCache.cache field
kvn@1018 1149 load_base = load_base->in(1);
kvn@1018 1150 }
never@452 1151 if (load_base != NULL) {
never@452 1152 Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
never@452 1153 intptr_t cache_offset;
never@452 1154 int shift = -1;
never@452 1155 Node* cache = NULL;
never@452 1156 if (is_autobox_cache(atp)) {
kvn@464 1157 shift = exact_log2(type2aelembytes(T_OBJECT));
never@452 1158 cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
never@452 1159 }
never@452 1160 if (cache != NULL && base->in(Address)->is_AddP()) {
never@452 1161 Node* elements[4];
never@452 1162 int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@452 1163 int cache_low;
never@452 1164 if (count > 0 && fetch_autobox_base(atp, cache_low)) {
never@452 1165 int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
never@452 1166 // Add up all the offsets making of the address of the load
never@452 1167 Node* result = elements[0];
never@452 1168 for (int i = 1; i < count; i++) {
never@452 1169 result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
never@452 1170 }
never@452 1171 // Remove the constant offset from the address and then
never@452 1172 // remove the scaling of the offset to recover the original index.
never@452 1173 result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
never@452 1174 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
never@452 1175 // Peel the shift off directly but wrap it in a dummy node
never@452 1176 // since Ideal can't return existing nodes
never@452 1177 result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
never@452 1178 } else {
never@452 1179 result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
never@452 1180 }
never@452 1181 #ifdef _LP64
never@452 1182 result = new (phase->C, 2) ConvL2INode(phase->transform(result));
never@452 1183 #endif
never@452 1184 return result;
never@452 1185 }
never@452 1186 }
never@452 1187 }
never@452 1188 }
never@452 1189 return NULL;
never@452 1190 }
never@452 1191
kvn@598 1192 //------------------------------split_through_phi------------------------------
kvn@598 1193 // Split instance field load through Phi.
kvn@598 1194 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@598 1195 Node* mem = in(MemNode::Memory);
kvn@598 1196 Node* address = in(MemNode::Address);
kvn@598 1197 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@598 1198 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@598 1199
kvn@598 1200 assert(mem->is_Phi() && (t_oop != NULL) &&
kvn@658 1201 t_oop->is_known_instance_field(), "invalide conditions");
kvn@598 1202
kvn@598 1203 Node *region = mem->in(0);
kvn@598 1204 if (region == NULL) {
kvn@598 1205 return NULL; // Wait stable graph
kvn@598 1206 }
kvn@598 1207 uint cnt = mem->req();
kvn@598 1208 for( uint i = 1; i < cnt; i++ ) {
kvn@598 1209 Node *in = mem->in(i);
kvn@598 1210 if( in == NULL ) {
kvn@598 1211 return NULL; // Wait stable graph
kvn@598 1212 }
kvn@598 1213 }
kvn@598 1214 // Check for loop invariant.
kvn@598 1215 if (cnt == 3) {
kvn@598 1216 for( uint i = 1; i < cnt; i++ ) {
kvn@598 1217 Node *in = mem->in(i);
kvn@598 1218 Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
kvn@598 1219 if (m == mem) {
kvn@598 1220 set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
kvn@598 1221 return this;
kvn@598 1222 }
kvn@598 1223 }
kvn@598 1224 }
kvn@598 1225 // Split through Phi (see original code in loopopts.cpp).
kvn@598 1226 assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
kvn@598 1227
kvn@598 1228 // Do nothing here if Identity will find a value
kvn@598 1229 // (to avoid infinite chain of value phis generation).
kvn@598 1230 if ( !phase->eqv(this, this->Identity(phase)) )
kvn@598 1231 return NULL;
kvn@598 1232
kvn@598 1233 // Skip the split if the region dominates some control edge of the address.
kvn@598 1234 if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
kvn@598 1235 return NULL;
kvn@598 1236
kvn@598 1237 const Type* this_type = this->bottom_type();
kvn@598 1238 int this_index = phase->C->get_alias_index(addr_t);
kvn@598 1239 int this_offset = addr_t->offset();
kvn@598 1240 int this_iid = addr_t->is_oopptr()->instance_id();
kvn@598 1241 int wins = 0;
kvn@598 1242 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@598 1243 Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@598 1244 for( uint i = 1; i < region->req(); i++ ) {
kvn@598 1245 Node *x;
kvn@598 1246 Node* the_clone = NULL;
kvn@598 1247 if( region->in(i) == phase->C->top() ) {
kvn@598 1248 x = phase->C->top(); // Dead path? Use a dead data op
kvn@598 1249 } else {
kvn@598 1250 x = this->clone(); // Else clone up the data op
kvn@598 1251 the_clone = x; // Remember for possible deletion.
kvn@598 1252 // Alter data node to use pre-phi inputs
kvn@598 1253 if( this->in(0) == region ) {
kvn@598 1254 x->set_req( 0, region->in(i) );
kvn@598 1255 } else {
kvn@598 1256 x->set_req( 0, NULL );
kvn@598 1257 }
kvn@598 1258 for( uint j = 1; j < this->req(); j++ ) {
kvn@598 1259 Node *in = this->in(j);
kvn@598 1260 if( in->is_Phi() && in->in(0) == region )
kvn@598 1261 x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
kvn@598 1262 }
kvn@598 1263 }
kvn@598 1264 // Check for a 'win' on some paths
kvn@598 1265 const Type *t = x->Value(igvn);
kvn@598 1266
kvn@598 1267 bool singleton = t->singleton();
kvn@598 1268
kvn@598 1269 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@598 1270 if( singleton && t == Type::TOP ) {
kvn@598 1271 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1272 }
kvn@598 1273
kvn@598 1274 if( singleton ) {
kvn@598 1275 wins++;
kvn@598 1276 x = igvn->makecon(t);
kvn@598 1277 } else {
kvn@598 1278 // We now call Identity to try to simplify the cloned node.
kvn@598 1279 // Note that some Identity methods call phase->type(this).
kvn@598 1280 // Make sure that the type array is big enough for
kvn@598 1281 // our new node, even though we may throw the node away.
kvn@598 1282 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1283 igvn->set_type(x, t);
kvn@728 1284 // If x is a TypeNode, capture any more-precise type permanently into Node
twisti@1040 1285 // otherwise it will be not updated during igvn->transform since
kvn@728 1286 // igvn->type(x) is set to x->Value() already.
kvn@728 1287 x->raise_bottom_type(t);
kvn@598 1288 Node *y = x->Identity(igvn);
kvn@598 1289 if( y != x ) {
kvn@598 1290 wins++;
kvn@598 1291 x = y;
kvn@598 1292 } else {
kvn@598 1293 y = igvn->hash_find(x);
kvn@598 1294 if( y ) {
kvn@598 1295 wins++;
kvn@598 1296 x = y;
kvn@598 1297 } else {
kvn@598 1298 // Else x is a new node we are keeping
kvn@598 1299 // We do not need register_new_node_with_optimizer
kvn@598 1300 // because set_type has already been called.
kvn@598 1301 igvn->_worklist.push(x);
kvn@598 1302 }
kvn@598 1303 }
kvn@598 1304 }
kvn@598 1305 if (x != the_clone && the_clone != NULL)
kvn@598 1306 igvn->remove_dead_node(the_clone);
kvn@598 1307 phi->set_req(i, x);
kvn@598 1308 }
kvn@598 1309 if( wins > 0 ) {
kvn@598 1310 // Record Phi
kvn@598 1311 igvn->register_new_node_with_optimizer(phi);
kvn@598 1312 return phi;
kvn@598 1313 }
kvn@598 1314 igvn->remove_dead_node(phi);
kvn@598 1315 return NULL;
kvn@598 1316 }
never@452 1317
duke@435 1318 //------------------------------Ideal------------------------------------------
duke@435 1319 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1320 // zero out the control input.
duke@435 1321 // If the offset is constant and the base is an object allocation,
duke@435 1322 // try to hook me up to the exact initializing store.
duke@435 1323 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1324 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1325 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1326
duke@435 1327 Node* ctrl = in(MemNode::Control);
duke@435 1328 Node* address = in(MemNode::Address);
duke@435 1329
duke@435 1330 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1331 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1332 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1333 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1334 ctrl = ctrl->in(0);
duke@435 1335 set_req(MemNode::Control,ctrl);
duke@435 1336 }
duke@435 1337
kvn@1143 1338 intptr_t ignore = 0;
kvn@1143 1339 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@1143 1340 if (base != NULL
kvn@1143 1341 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
kvn@1143 1342 // Check for useless control edge in some common special cases
kvn@1143 1343 if (in(MemNode::Control) != NULL
duke@435 1344 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1345 && all_controls_dominate(base, phase->C->start())) {
duke@435 1346 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1347 set_req(MemNode::Control, NULL);
duke@435 1348 }
kvn@1143 1349
kvn@1143 1350 if (EliminateAutoBox && can_reshape) {
kvn@1143 1351 assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
never@452 1352 Compile::AliasType* atp = phase->C->alias_type(adr_type());
never@452 1353 if (is_autobox_object(atp)) {
never@452 1354 Node* result = eliminate_autobox(phase);
never@452 1355 if (result != NULL) return result;
never@452 1356 }
never@452 1357 }
never@452 1358 }
never@452 1359
kvn@509 1360 Node* mem = in(MemNode::Memory);
kvn@509 1361 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1362
kvn@509 1363 if (addr_t != NULL) {
kvn@509 1364 // try to optimize our memory input
kvn@509 1365 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
kvn@509 1366 if (opt_mem != mem) {
kvn@509 1367 set_req(MemNode::Memory, opt_mem);
kvn@740 1368 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1369 return this;
kvn@509 1370 }
kvn@509 1371 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@509 1372 if (can_reshape && opt_mem->is_Phi() &&
kvn@658 1373 (t_oop != NULL) && t_oop->is_known_instance_field()) {
kvn@598 1374 // Split instance field load through Phi.
kvn@598 1375 Node* result = split_through_phi(phase);
kvn@598 1376 if (result != NULL) return result;
kvn@509 1377 }
kvn@509 1378 }
kvn@509 1379
duke@435 1380 // Check for prior store with a different base or offset; make Load
duke@435 1381 // independent. Skip through any number of them. Bail out if the stores
duke@435 1382 // are in an endless dead cycle and report no progress. This is a key
duke@435 1383 // transform for Reflection. However, if after skipping through the Stores
duke@435 1384 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1385 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1386 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1387 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1388 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1389 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1390 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1391 // fold up, do so.
duke@435 1392 Node* prev_mem = find_previous_store(phase);
duke@435 1393 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1394 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1395 // (c) See if we can fold up on the spot, but don't fold up here.
twisti@993 1396 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
duke@435 1397 // just return a prior value, which is done by Identity calls.
duke@435 1398 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1399 // Make ready for step (d):
duke@435 1400 set_req(MemNode::Memory, prev_mem);
duke@435 1401 return this;
duke@435 1402 }
duke@435 1403 }
duke@435 1404
duke@435 1405 return NULL; // No further progress
duke@435 1406 }
duke@435 1407
duke@435 1408 // Helper to recognize certain Klass fields which are invariant across
duke@435 1409 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1410 const Type*
duke@435 1411 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1412 ciKlass* klass) const {
duke@435 1413 if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1414 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1415 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1416 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1417 return TypeInt::make(klass->modifier_flags());
duke@435 1418 }
duke@435 1419 if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1420 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1421 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1422 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1423 return TypeInt::make(klass->access_flags());
duke@435 1424 }
duke@435 1425 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1426 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1427 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1428 return TypeInt::make(klass->layout_helper());
duke@435 1429 }
duke@435 1430
duke@435 1431 // No match.
duke@435 1432 return NULL;
duke@435 1433 }
duke@435 1434
duke@435 1435 //------------------------------Value-----------------------------------------
duke@435 1436 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1437 // Either input is TOP ==> the result is TOP
duke@435 1438 Node* mem = in(MemNode::Memory);
duke@435 1439 const Type *t1 = phase->type(mem);
duke@435 1440 if (t1 == Type::TOP) return Type::TOP;
duke@435 1441 Node* adr = in(MemNode::Address);
duke@435 1442 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1443 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1444 int off = tp->offset();
duke@435 1445 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
duke@435 1446
duke@435 1447 // Try to guess loaded type from pointer type
duke@435 1448 if (tp->base() == Type::AryPtr) {
duke@435 1449 const Type *t = tp->is_aryptr()->elem();
duke@435 1450 // Don't do this for integer types. There is only potential profit if
duke@435 1451 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1452 // more restrictive than t. This only happens here if one is short and the other
duke@435 1453 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1454 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1455 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1456 //
duke@435 1457 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1458 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1459 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1460 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1461 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1462 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1463 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1464 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1465 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@728 1466 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1467 // t might actually be lower than _type, if _type is a unique
duke@435 1468 // concrete subclass of abstract class t.
duke@435 1469 // Make sure the reference is not into the header, by comparing
duke@435 1470 // the offset against the offset of the start of the array's data.
duke@435 1471 // Different array types begin at slightly different offsets (12 vs. 16).
duke@435 1472 // We choose T_BYTE as an example base type that is least restrictive
duke@435 1473 // as to alignment, which will therefore produce the smallest
duke@435 1474 // possible base offset.
duke@435 1475 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1476 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
duke@435 1477 const Type* jt = t->join(_type);
duke@435 1478 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1479 if (jt->empty() && !t->empty()) {
duke@435 1480 // This can happen if a interface-typed array narrows to a class type.
duke@435 1481 jt = _type;
duke@435 1482 }
never@452 1483
kvn@1143 1484 if (EliminateAutoBox && adr->is_AddP()) {
never@452 1485 // The pointers in the autobox arrays are always non-null
kvn@1143 1486 Node* base = adr->in(AddPNode::Base);
kvn@1143 1487 if (base != NULL &&
kvn@1143 1488 !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
never@452 1489 Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
never@452 1490 if (is_autobox_cache(atp)) {
never@452 1491 return jt->join(TypePtr::NOTNULL)->is_ptr();
never@452 1492 }
never@452 1493 }
never@452 1494 }
duke@435 1495 return jt;
duke@435 1496 }
duke@435 1497 }
duke@435 1498 } else if (tp->base() == Type::InstPtr) {
duke@435 1499 assert( off != Type::OffsetBot ||
duke@435 1500 // arrays can be cast to Objects
duke@435 1501 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1502 // unsafe field access may not have a constant offset
duke@435 1503 phase->C->has_unsafe_access(),
duke@435 1504 "Field accesses must be precise" );
duke@435 1505 // For oop loads, we expect the _type to be precise
duke@435 1506 } else if (tp->base() == Type::KlassPtr) {
duke@435 1507 assert( off != Type::OffsetBot ||
duke@435 1508 // arrays can be cast to Objects
duke@435 1509 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1510 // also allow array-loading from the primary supertype
duke@435 1511 // array during subtype checks
duke@435 1512 Opcode() == Op_LoadKlass,
duke@435 1513 "Field accesses must be precise" );
duke@435 1514 // For klass/static loads, we expect the _type to be precise
duke@435 1515 }
duke@435 1516
duke@435 1517 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1518 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1519 ciKlass* klass = tkls->klass();
duke@435 1520 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1521 // We are loading a field from a Klass metaobject whose identity
duke@435 1522 // is known at compile time (the type is "exact" or "precise").
duke@435 1523 // Check for fields we know are maintained as constants by the VM.
duke@435 1524 if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1525 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1526 // (Folds up type checking code.)
duke@435 1527 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1528 return TypeInt::make(klass->super_check_offset());
duke@435 1529 }
duke@435 1530 // Compute index into primary_supers array
duke@435 1531 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
duke@435 1532 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1533 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1534 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1535 // (Folds up type checking code.)
duke@435 1536 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1537 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1538 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1539 }
duke@435 1540 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1541 if (aift != NULL) return aift;
duke@435 1542 if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
duke@435 1543 && klass->is_array_klass()) {
duke@435 1544 // The field is arrayKlass::_component_mirror. Return its (constant) value.
duke@435 1545 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1546 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1547 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1548 }
duke@435 1549 if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
duke@435 1550 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1551 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1552 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1553 return TypeInstPtr::make(klass->java_mirror());
duke@435 1554 }
duke@435 1555 }
duke@435 1556
duke@435 1557 // We can still check if we are loading from the primary_supers array at a
duke@435 1558 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1559 // than or equal to its super depth are correct.
duke@435 1560 if (klass->is_loaded() ) {
duke@435 1561 ciType *inner = klass->klass();
duke@435 1562 while( inner->is_obj_array_klass() )
duke@435 1563 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1564 if( inner->is_instance_klass() &&
duke@435 1565 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1566 // Compute index into primary_supers array
duke@435 1567 juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
duke@435 1568 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1569 if( depth < ciKlass::primary_super_limit() &&
duke@435 1570 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1571 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1572 // (Folds up type checking code.)
duke@435 1573 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1574 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1575 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1576 }
duke@435 1577 }
duke@435 1578 }
duke@435 1579
duke@435 1580 // If the type is enough to determine that the thing is not an array,
duke@435 1581 // we can give the layout_helper a positive interval type.
duke@435 1582 // This will help short-circuit some reflective code.
duke@435 1583 if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
duke@435 1584 && !klass->is_array_klass() // not directly typed as an array
duke@435 1585 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1586 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1587 ) {
duke@435 1588 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1589 // test to (klass != Serializable && klass != Cloneable).
duke@435 1590 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1591 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1592 // The key property of this type is that it folds up tests
duke@435 1593 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1594 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1595 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1596 }
duke@435 1597 }
duke@435 1598
duke@435 1599 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1600 // if the load is provably beyond the header of the object.
duke@435 1601 // (Also allow a variable load from a fresh array to produce zero.)
duke@435 1602 if (ReduceFieldZeroing) {
duke@435 1603 Node* value = can_see_stored_value(mem,phase);
duke@435 1604 if (value != NULL && value->is_Con())
duke@435 1605 return value->bottom_type();
duke@435 1606 }
duke@435 1607
kvn@499 1608 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@658 1609 if (tinst != NULL && tinst->is_known_instance_field()) {
kvn@499 1610 // If we have an instance type and our memory input is the
kvn@499 1611 // programs's initial memory state, there is no matching store,
kvn@499 1612 // so just return a zero of the appropriate type
kvn@499 1613 Node *mem = in(MemNode::Memory);
kvn@499 1614 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1615 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1616 return Type::get_zero_type(_type->basic_type());
kvn@499 1617 }
kvn@499 1618 }
duke@435 1619 return _type;
duke@435 1620 }
duke@435 1621
duke@435 1622 //------------------------------match_edge-------------------------------------
duke@435 1623 // Do we Match on this edge index or not? Match only the address.
duke@435 1624 uint LoadNode::match_edge(uint idx) const {
duke@435 1625 return idx == MemNode::Address;
duke@435 1626 }
duke@435 1627
duke@435 1628 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1629 //
duke@435 1630 // If the previous store is to the same address as this load,
duke@435 1631 // and the value stored was larger than a byte, replace this load
duke@435 1632 // with the value stored truncated to a byte. If no truncation is
duke@435 1633 // needed, the replacement is done in LoadNode::Identity().
duke@435 1634 //
duke@435 1635 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1636 Node* mem = in(MemNode::Memory);
duke@435 1637 Node* value = can_see_stored_value(mem,phase);
duke@435 1638 if( value && !phase->type(value)->higher_equal( _type ) ) {
duke@435 1639 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
duke@435 1640 return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
duke@435 1641 }
duke@435 1642 // Identity call will handle the case where truncation is not needed.
duke@435 1643 return LoadNode::Ideal(phase, can_reshape);
duke@435 1644 }
duke@435 1645
twisti@1059 1646 //--------------------------LoadUBNode::Ideal-------------------------------------
twisti@1059 1647 //
twisti@1059 1648 // If the previous store is to the same address as this load,
twisti@1059 1649 // and the value stored was larger than a byte, replace this load
twisti@1059 1650 // with the value stored truncated to a byte. If no truncation is
twisti@1059 1651 // needed, the replacement is done in LoadNode::Identity().
twisti@1059 1652 //
twisti@1059 1653 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
twisti@1059 1654 Node* mem = in(MemNode::Memory);
twisti@1059 1655 Node* value = can_see_stored_value(mem, phase);
twisti@1059 1656 if (value && !phase->type(value)->higher_equal(_type))
twisti@1059 1657 return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
twisti@1059 1658 // Identity call will handle the case where truncation is not needed.
twisti@1059 1659 return LoadNode::Ideal(phase, can_reshape);
twisti@1059 1660 }
twisti@1059 1661
twisti@993 1662 //--------------------------LoadUSNode::Ideal-------------------------------------
duke@435 1663 //
duke@435 1664 // If the previous store is to the same address as this load,
duke@435 1665 // and the value stored was larger than a char, replace this load
duke@435 1666 // with the value stored truncated to a char. If no truncation is
duke@435 1667 // needed, the replacement is done in LoadNode::Identity().
duke@435 1668 //
twisti@993 1669 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1670 Node* mem = in(MemNode::Memory);
duke@435 1671 Node* value = can_see_stored_value(mem,phase);
duke@435 1672 if( value && !phase->type(value)->higher_equal( _type ) )
duke@435 1673 return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
duke@435 1674 // Identity call will handle the case where truncation is not needed.
duke@435 1675 return LoadNode::Ideal(phase, can_reshape);
duke@435 1676 }
duke@435 1677
duke@435 1678 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1679 //
duke@435 1680 // If the previous store is to the same address as this load,
duke@435 1681 // and the value stored was larger than a short, replace this load
duke@435 1682 // with the value stored truncated to a short. If no truncation is
duke@435 1683 // needed, the replacement is done in LoadNode::Identity().
duke@435 1684 //
duke@435 1685 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1686 Node* mem = in(MemNode::Memory);
duke@435 1687 Node* value = can_see_stored_value(mem,phase);
duke@435 1688 if( value && !phase->type(value)->higher_equal( _type ) ) {
duke@435 1689 Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
duke@435 1690 return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
duke@435 1691 }
duke@435 1692 // Identity call will handle the case where truncation is not needed.
duke@435 1693 return LoadNode::Ideal(phase, can_reshape);
duke@435 1694 }
duke@435 1695
duke@435 1696 //=============================================================================
kvn@599 1697 //----------------------------LoadKlassNode::make------------------------------
kvn@599 1698 // Polymorphic factory method:
kvn@599 1699 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 1700 Compile* C = gvn.C;
kvn@599 1701 Node *ctl = NULL;
kvn@599 1702 // sanity check the alias category against the created node type
kvn@599 1703 const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
kvn@599 1704 assert(adr_type != NULL, "expecting TypeOopPtr");
kvn@599 1705 #ifdef _LP64
kvn@599 1706 if (adr_type->is_ptr_to_narrowoop()) {
kvn@656 1707 Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
kvn@656 1708 return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 1709 }
kvn@599 1710 #endif
kvn@603 1711 assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@603 1712 return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
kvn@599 1713 }
kvn@599 1714
duke@435 1715 //------------------------------Value------------------------------------------
duke@435 1716 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1717 return klass_value_common(phase);
kvn@599 1718 }
kvn@599 1719
kvn@599 1720 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 1721 // Either input is TOP ==> the result is TOP
duke@435 1722 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1723 if (t1 == Type::TOP) return Type::TOP;
duke@435 1724 Node *adr = in(MemNode::Address);
duke@435 1725 const Type *t2 = phase->type( adr );
duke@435 1726 if (t2 == Type::TOP) return Type::TOP;
duke@435 1727 const TypePtr *tp = t2->is_ptr();
duke@435 1728 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 1729 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 1730
duke@435 1731 // Return a more precise klass, if possible
duke@435 1732 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 1733 if (tinst != NULL) {
duke@435 1734 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 1735 int offset = tinst->offset();
duke@435 1736 if (ik == phase->C->env()->Class_klass()
duke@435 1737 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1738 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1739 // We are loading a special hidden field from a Class mirror object,
duke@435 1740 // the field which points to the VM's Klass metaobject.
duke@435 1741 ciType* t = tinst->java_mirror_type();
duke@435 1742 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 1743 if (t != NULL) {
duke@435 1744 // constant oop => constant klass
duke@435 1745 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1746 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 1747 }
duke@435 1748 if (!t->is_klass()) {
duke@435 1749 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 1750 return TypePtr::NULL_PTR;
duke@435 1751 }
duke@435 1752 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 1753 return TypeKlassPtr::make(t->as_klass());
duke@435 1754 }
duke@435 1755 // non-constant mirror, so we can't tell what's going on
duke@435 1756 }
duke@435 1757 if( !ik->is_loaded() )
duke@435 1758 return _type; // Bail out if not loaded
duke@435 1759 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1760 if (tinst->klass_is_exact()) {
duke@435 1761 return TypeKlassPtr::make(ik);
duke@435 1762 }
duke@435 1763 // See if we can become precise: no subklasses and no interface
duke@435 1764 // (Note: We need to support verified interfaces.)
duke@435 1765 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1766 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1767 // Add a dependence; if any subclass added we need to recompile
duke@435 1768 if (!ik->is_final()) {
duke@435 1769 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 1770 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1771 }
duke@435 1772 // Return precise klass
duke@435 1773 return TypeKlassPtr::make(ik);
duke@435 1774 }
duke@435 1775
duke@435 1776 // Return root of possible klass
duke@435 1777 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 1778 }
duke@435 1779 }
duke@435 1780
duke@435 1781 // Check for loading klass from an array
duke@435 1782 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 1783 if( tary != NULL ) {
duke@435 1784 ciKlass *tary_klass = tary->klass();
duke@435 1785 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 1786 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 1787 if (tary->klass_is_exact()) {
duke@435 1788 return TypeKlassPtr::make(tary_klass);
duke@435 1789 }
duke@435 1790 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 1791 // If the klass is an object array, we defer the question to the
duke@435 1792 // array component klass.
duke@435 1793 if( ak->is_obj_array_klass() ) {
duke@435 1794 assert( ak->is_loaded(), "" );
duke@435 1795 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 1796 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 1797 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 1798 // See if we can become precise: no subklasses and no interface
duke@435 1799 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 1800 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1801 // Add a dependence; if any subclass added we need to recompile
duke@435 1802 if (!ik->is_final()) {
duke@435 1803 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 1804 }
duke@435 1805 // Return precise array klass
duke@435 1806 return TypeKlassPtr::make(ak);
duke@435 1807 }
duke@435 1808 }
duke@435 1809 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 1810 } else { // Found a type-array?
duke@435 1811 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 1812 assert( ak->is_type_array_klass(), "" );
duke@435 1813 return TypeKlassPtr::make(ak); // These are always precise
duke@435 1814 }
duke@435 1815 }
duke@435 1816 }
duke@435 1817
duke@435 1818 // Check for loading klass from an array klass
duke@435 1819 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1820 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1821 ciKlass* klass = tkls->klass();
duke@435 1822 if( !klass->is_loaded() )
duke@435 1823 return _type; // Bail out if not loaded
duke@435 1824 if( klass->is_obj_array_klass() &&
duke@435 1825 (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
duke@435 1826 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 1827 // // Always returning precise element type is incorrect,
duke@435 1828 // // e.g., element type could be object and array may contain strings
duke@435 1829 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 1830
duke@435 1831 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 1832 // according to the element type's subclassing.
duke@435 1833 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 1834 }
duke@435 1835 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
duke@435 1836 (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
duke@435 1837 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 1838 // The field is Klass::_super. Return its (constant) value.
duke@435 1839 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 1840 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 1841 }
duke@435 1842 }
duke@435 1843
duke@435 1844 // Bailout case
duke@435 1845 return LoadNode::Value(phase);
duke@435 1846 }
duke@435 1847
duke@435 1848 //------------------------------Identity---------------------------------------
duke@435 1849 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 1850 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 1851 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 1852 return klass_identity_common(phase);
kvn@599 1853 }
kvn@599 1854
kvn@599 1855 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 1856 Node* x = LoadNode::Identity(phase);
duke@435 1857 if (x != this) return x;
duke@435 1858
duke@435 1859 // Take apart the address into an oop and and offset.
duke@435 1860 // Return 'this' if we cannot.
duke@435 1861 Node* adr = in(MemNode::Address);
duke@435 1862 intptr_t offset = 0;
duke@435 1863 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 1864 if (base == NULL) return this;
duke@435 1865 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 1866 if (toop == NULL) return this;
duke@435 1867
duke@435 1868 // We can fetch the klass directly through an AllocateNode.
duke@435 1869 // This works even if the klass is not constant (clone or newArray).
duke@435 1870 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 1871 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 1872 if (allocated_klass != NULL) {
duke@435 1873 return allocated_klass;
duke@435 1874 }
duke@435 1875 }
duke@435 1876
duke@435 1877 // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
duke@435 1878 // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
duke@435 1879 // See inline_native_Class_query for occurrences of these patterns.
duke@435 1880 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 1881 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 1882 //
duke@435 1883 // This improves reflective code, often making the Class
duke@435 1884 // mirror go completely dead. (Current exception: Class
duke@435 1885 // mirrors may appear in debug info, but we could clean them out by
duke@435 1886 // introducing a new debug info operator for klassOop.java_mirror).
duke@435 1887 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 1888 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 1889 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 1890 // We are loading a special hidden field from a Class mirror,
duke@435 1891 // the field which points to its Klass or arrayKlass metaobject.
duke@435 1892 if (base->is_Load()) {
duke@435 1893 Node* adr2 = base->in(MemNode::Address);
duke@435 1894 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 1895 if (tkls != NULL && !tkls->empty()
duke@435 1896 && (tkls->klass()->is_instance_klass() ||
duke@435 1897 tkls->klass()->is_array_klass())
duke@435 1898 && adr2->is_AddP()
duke@435 1899 ) {
duke@435 1900 int mirror_field = Klass::java_mirror_offset_in_bytes();
duke@435 1901 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 1902 mirror_field = in_bytes(arrayKlass::component_mirror_offset());
duke@435 1903 }
duke@435 1904 if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
duke@435 1905 return adr2->in(AddPNode::Base);
duke@435 1906 }
duke@435 1907 }
duke@435 1908 }
duke@435 1909 }
duke@435 1910
duke@435 1911 return this;
duke@435 1912 }
duke@435 1913
kvn@599 1914
kvn@599 1915 //------------------------------Value------------------------------------------
kvn@599 1916 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1917 const Type *t = klass_value_common(phase);
kvn@656 1918 if (t == Type::TOP)
kvn@656 1919 return t;
kvn@656 1920
kvn@656 1921 return t->make_narrowoop();
kvn@599 1922 }
kvn@599 1923
kvn@599 1924 //------------------------------Identity---------------------------------------
kvn@599 1925 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 1926 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 1927 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 1928 Node *x = klass_identity_common(phase);
kvn@599 1929
kvn@599 1930 const Type *t = phase->type( x );
kvn@599 1931 if( t == Type::TOP ) return x;
kvn@599 1932 if( t->isa_narrowoop()) return x;
kvn@599 1933
kvn@656 1934 return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
kvn@599 1935 }
kvn@599 1936
duke@435 1937 //------------------------------Value-----------------------------------------
duke@435 1938 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 1939 // Either input is TOP ==> the result is TOP
duke@435 1940 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1941 if( t1 == Type::TOP ) return Type::TOP;
duke@435 1942 Node *adr = in(MemNode::Address);
duke@435 1943 const Type *t2 = phase->type( adr );
duke@435 1944 if( t2 == Type::TOP ) return Type::TOP;
duke@435 1945 const TypePtr *tp = t2->is_ptr();
duke@435 1946 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 1947 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 1948 if( !tap ) return _type;
duke@435 1949 return tap->size();
duke@435 1950 }
duke@435 1951
rasbold@801 1952 //-------------------------------Ideal---------------------------------------
rasbold@801 1953 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 1954 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 1955 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 1956 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 1957
rasbold@801 1958 // Take apart the address into an oop and and offset.
rasbold@801 1959 // Return 'this' if we cannot.
rasbold@801 1960 Node* adr = in(MemNode::Address);
rasbold@801 1961 intptr_t offset = 0;
rasbold@801 1962 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 1963 if (base == NULL) return NULL;
rasbold@801 1964 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 1965 if (tary == NULL) return NULL;
rasbold@801 1966
rasbold@801 1967 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 1968 // This works even if the length is not constant (clone or newArray).
rasbold@801 1969 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 1970 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 1971 if (alloc != NULL) {
rasbold@801 1972 Node* allocated_length = alloc->Ideal_length();
rasbold@801 1973 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 1974 if (allocated_length != len) {
rasbold@801 1975 // New CastII improves on this.
rasbold@801 1976 return len;
rasbold@801 1977 }
rasbold@801 1978 }
rasbold@801 1979 }
rasbold@801 1980
rasbold@801 1981 return NULL;
rasbold@801 1982 }
rasbold@801 1983
duke@435 1984 //------------------------------Identity---------------------------------------
duke@435 1985 // Feed through the length in AllocateArray(...length...)._length.
duke@435 1986 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 1987 Node* x = LoadINode::Identity(phase);
duke@435 1988 if (x != this) return x;
duke@435 1989
duke@435 1990 // Take apart the address into an oop and and offset.
duke@435 1991 // Return 'this' if we cannot.
duke@435 1992 Node* adr = in(MemNode::Address);
duke@435 1993 intptr_t offset = 0;
duke@435 1994 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 1995 if (base == NULL) return this;
duke@435 1996 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 1997 if (tary == NULL) return this;
duke@435 1998
duke@435 1999 // We can fetch the length directly through an AllocateArrayNode.
duke@435 2000 // This works even if the length is not constant (clone or newArray).
duke@435 2001 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2002 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2003 if (alloc != NULL) {
rasbold@801 2004 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2005 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 2006 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 2007 if (allocated_length == len) {
rasbold@801 2008 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 2009 return allocated_length;
rasbold@801 2010 }
duke@435 2011 }
duke@435 2012 }
duke@435 2013
duke@435 2014 return this;
duke@435 2015
duke@435 2016 }
rasbold@801 2017
duke@435 2018 //=============================================================================
duke@435 2019 //---------------------------StoreNode::make-----------------------------------
duke@435 2020 // Polymorphic factory method:
coleenp@548 2021 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
coleenp@548 2022 Compile* C = gvn.C;
coleenp@548 2023
duke@435 2024 switch (bt) {
duke@435 2025 case T_BOOLEAN:
duke@435 2026 case T_BYTE: return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
duke@435 2027 case T_INT: return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
duke@435 2028 case T_CHAR:
duke@435 2029 case T_SHORT: return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
duke@435 2030 case T_LONG: return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
duke@435 2031 case T_FLOAT: return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
duke@435 2032 case T_DOUBLE: return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
duke@435 2033 case T_ADDRESS:
coleenp@548 2034 case T_OBJECT:
coleenp@548 2035 #ifdef _LP64
kvn@598 2036 if (adr->bottom_type()->is_ptr_to_narrowoop() ||
coleenp@548 2037 (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
coleenp@548 2038 adr->bottom_type()->isa_rawptr())) {
kvn@656 2039 val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
kvn@656 2040 return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
coleenp@548 2041 } else
coleenp@548 2042 #endif
kvn@656 2043 {
kvn@656 2044 return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
kvn@656 2045 }
duke@435 2046 }
duke@435 2047 ShouldNotReachHere();
duke@435 2048 return (StoreNode*)NULL;
duke@435 2049 }
duke@435 2050
duke@435 2051 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
duke@435 2052 bool require_atomic = true;
duke@435 2053 return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
duke@435 2054 }
duke@435 2055
duke@435 2056
duke@435 2057 //--------------------------bottom_type----------------------------------------
duke@435 2058 const Type *StoreNode::bottom_type() const {
duke@435 2059 return Type::MEMORY;
duke@435 2060 }
duke@435 2061
duke@435 2062 //------------------------------hash-------------------------------------------
duke@435 2063 uint StoreNode::hash() const {
duke@435 2064 // unroll addition of interesting fields
duke@435 2065 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2066
duke@435 2067 // Since they are not commoned, do not hash them:
duke@435 2068 return NO_HASH;
duke@435 2069 }
duke@435 2070
duke@435 2071 //------------------------------Ideal------------------------------------------
duke@435 2072 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2073 // When a store immediately follows a relevant allocation/initialization,
duke@435 2074 // try to capture it into the initialization, or hoist it above.
duke@435 2075 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2076 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2077 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2078
duke@435 2079 Node* mem = in(MemNode::Memory);
duke@435 2080 Node* address = in(MemNode::Address);
duke@435 2081
duke@435 2082 // Back-to-back stores to same address? Fold em up.
duke@435 2083 // Generally unsafe if I have intervening uses...
duke@435 2084 if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
duke@435 2085 // Looking at a dead closed cycle of memory?
duke@435 2086 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2087
duke@435 2088 assert(Opcode() == mem->Opcode() ||
duke@435 2089 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2090 "no mismatched stores, except on raw memory");
duke@435 2091
duke@435 2092 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2093 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2094 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2095 // For example, 'mem' might be the final state at a conditional return.
duke@435 2096 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2097 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2098 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2099 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2100 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2101 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2102 phase->is_IterGVN());
duke@435 2103 } else {
duke@435 2104 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2105 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2106 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2107 }
duke@435 2108 return this;
duke@435 2109 }
duke@435 2110 }
duke@435 2111
duke@435 2112 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2113 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2114 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2115 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2116 InitializeNode* init = mem->in(0)->as_Initialize();
duke@435 2117 intptr_t offset = init->can_capture_store(this, phase);
duke@435 2118 if (offset > 0) {
duke@435 2119 Node* moved = init->capture_store(this, offset, phase);
duke@435 2120 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2121 // and I need to disappear.
duke@435 2122 if (moved != NULL) {
duke@435 2123 // %%% hack to ensure that Ideal returns a new node:
duke@435 2124 mem = MergeMemNode::make(phase->C, mem);
duke@435 2125 return mem; // fold me away
duke@435 2126 }
duke@435 2127 }
duke@435 2128 }
duke@435 2129
duke@435 2130 return NULL; // No further progress
duke@435 2131 }
duke@435 2132
duke@435 2133 //------------------------------Value-----------------------------------------
duke@435 2134 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2135 // Either input is TOP ==> the result is TOP
duke@435 2136 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2137 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2138 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2139 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2140 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2141 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2142 return Type::MEMORY;
duke@435 2143 }
duke@435 2144
duke@435 2145 //------------------------------Identity---------------------------------------
duke@435 2146 // Remove redundant stores:
duke@435 2147 // Store(m, p, Load(m, p)) changes to m.
duke@435 2148 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2149 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2150 Node* mem = in(MemNode::Memory);
duke@435 2151 Node* adr = in(MemNode::Address);
duke@435 2152 Node* val = in(MemNode::ValueIn);
duke@435 2153
duke@435 2154 // Load then Store? Then the Store is useless
duke@435 2155 if (val->is_Load() &&
duke@435 2156 phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
duke@435 2157 phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
duke@435 2158 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2159 return mem;
duke@435 2160 }
duke@435 2161
duke@435 2162 // Two stores in a row of the same value?
duke@435 2163 if (mem->is_Store() &&
duke@435 2164 phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
duke@435 2165 phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
duke@435 2166 mem->Opcode() == Opcode()) {
duke@435 2167 return mem;
duke@435 2168 }
duke@435 2169
duke@435 2170 // Store of zero anywhere into a freshly-allocated object?
duke@435 2171 // Then the store is useless.
duke@435 2172 // (It must already have been captured by the InitializeNode.)
duke@435 2173 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2174 // a newly allocated object is already all-zeroes everywhere
duke@435 2175 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2176 return mem;
duke@435 2177 }
duke@435 2178
duke@435 2179 // the store may also apply to zero-bits in an earlier object
duke@435 2180 Node* prev_mem = find_previous_store(phase);
duke@435 2181 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2182 if (prev_mem != NULL) {
duke@435 2183 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2184 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2185 // prev_val and val might differ by a cast; it would be good
duke@435 2186 // to keep the more informative of the two.
duke@435 2187 return mem;
duke@435 2188 }
duke@435 2189 }
duke@435 2190 }
duke@435 2191
duke@435 2192 return this;
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------match_edge-------------------------------------
duke@435 2196 // Do we Match on this edge index or not? Match only memory & value
duke@435 2197 uint StoreNode::match_edge(uint idx) const {
duke@435 2198 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2199 }
duke@435 2200
duke@435 2201 //------------------------------cmp--------------------------------------------
duke@435 2202 // Do not common stores up together. They generally have to be split
duke@435 2203 // back up anyways, so do not bother.
duke@435 2204 uint StoreNode::cmp( const Node &n ) const {
duke@435 2205 return (&n == this); // Always fail except on self
duke@435 2206 }
duke@435 2207
duke@435 2208 //------------------------------Ideal_masked_input-----------------------------
duke@435 2209 // Check for a useless mask before a partial-word store
duke@435 2210 // (StoreB ... (AndI valIn conIa) )
duke@435 2211 // If (conIa & mask == mask) this simplifies to
duke@435 2212 // (StoreB ... (valIn) )
duke@435 2213 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2214 Node *val = in(MemNode::ValueIn);
duke@435 2215 if( val->Opcode() == Op_AndI ) {
duke@435 2216 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2217 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2218 set_req(MemNode::ValueIn, val->in(1));
duke@435 2219 return this;
duke@435 2220 }
duke@435 2221 }
duke@435 2222 return NULL;
duke@435 2223 }
duke@435 2224
duke@435 2225
duke@435 2226 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2227 // Check for useless sign-extension before a partial-word store
duke@435 2228 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2229 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2230 // (StoreB ... (valIn) )
duke@435 2231 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2232 Node *val = in(MemNode::ValueIn);
duke@435 2233 if( val->Opcode() == Op_RShiftI ) {
duke@435 2234 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2235 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2236 Node *shl = val->in(1);
duke@435 2237 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2238 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2239 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2240 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2241 return this;
duke@435 2242 }
duke@435 2243 }
duke@435 2244 }
duke@435 2245 }
duke@435 2246 return NULL;
duke@435 2247 }
duke@435 2248
duke@435 2249 //------------------------------value_never_loaded-----------------------------------
duke@435 2250 // Determine whether there are any possible loads of the value stored.
duke@435 2251 // For simplicity, we actually check if there are any loads from the
duke@435 2252 // address stored to, not just for loads of the value stored by this node.
duke@435 2253 //
duke@435 2254 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2255 Node *adr = in(Address);
duke@435 2256 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2257 if (adr_oop == NULL)
duke@435 2258 return false;
kvn@658 2259 if (!adr_oop->is_known_instance_field())
duke@435 2260 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2261 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2262 Node *use = adr->fast_out(i);
duke@435 2263 int opc = use->Opcode();
duke@435 2264 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2265 return false;
duke@435 2266 }
duke@435 2267 }
duke@435 2268 return true;
duke@435 2269 }
duke@435 2270
duke@435 2271 //=============================================================================
duke@435 2272 //------------------------------Ideal------------------------------------------
duke@435 2273 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2274 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2275 // (a left shift, then right shift) we can skip both.
duke@435 2276 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2277 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2278 if( progress != NULL ) return progress;
duke@435 2279
duke@435 2280 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2281 if( progress != NULL ) return progress;
duke@435 2282
duke@435 2283 // Finally check the default case
duke@435 2284 return StoreNode::Ideal(phase, can_reshape);
duke@435 2285 }
duke@435 2286
duke@435 2287 //=============================================================================
duke@435 2288 //------------------------------Ideal------------------------------------------
duke@435 2289 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2290 // we can skip the AND operation
duke@435 2291 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2292 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2293 if( progress != NULL ) return progress;
duke@435 2294
duke@435 2295 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2296 if( progress != NULL ) return progress;
duke@435 2297
duke@435 2298 // Finally check the default case
duke@435 2299 return StoreNode::Ideal(phase, can_reshape);
duke@435 2300 }
duke@435 2301
duke@435 2302 //=============================================================================
duke@435 2303 //------------------------------Identity---------------------------------------
duke@435 2304 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2305 // No need to card mark when storing a null ptr
duke@435 2306 Node* my_store = in(MemNode::OopStore);
duke@435 2307 if (my_store->is_Store()) {
duke@435 2308 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2309 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2310 return in(MemNode::Memory);
duke@435 2311 }
duke@435 2312 }
duke@435 2313 return this;
duke@435 2314 }
duke@435 2315
duke@435 2316 //------------------------------Value-----------------------------------------
duke@435 2317 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2318 // Either input is TOP ==> the result is TOP
kvn@478 2319 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2320 if( t == Type::TOP ) return Type::TOP;
kvn@478 2321 t = phase->type( in(MemNode::Address) );
kvn@478 2322 if( t == Type::TOP ) return Type::TOP;
kvn@478 2323 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2324 if( t == Type::TOP ) return Type::TOP;
duke@435 2325 // If extra input is TOP ==> the result is TOP
kvn@478 2326 t = phase->type( in(MemNode::OopStore) );
kvn@478 2327 if( t == Type::TOP ) return Type::TOP;
duke@435 2328
duke@435 2329 return StoreNode::Value( phase );
duke@435 2330 }
duke@435 2331
duke@435 2332
duke@435 2333 //=============================================================================
duke@435 2334 //----------------------------------SCMemProjNode------------------------------
duke@435 2335 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2336 {
duke@435 2337 return bottom_type();
duke@435 2338 }
duke@435 2339
duke@435 2340 //=============================================================================
duke@435 2341 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
duke@435 2342 init_req(MemNode::Control, c );
duke@435 2343 init_req(MemNode::Memory , mem);
duke@435 2344 init_req(MemNode::Address, adr);
duke@435 2345 init_req(MemNode::ValueIn, val);
duke@435 2346 init_req( ExpectedIn, ex );
duke@435 2347 init_class_id(Class_LoadStore);
duke@435 2348
duke@435 2349 }
duke@435 2350
duke@435 2351 //=============================================================================
duke@435 2352 //-------------------------------adr_type--------------------------------------
duke@435 2353 // Do we Match on this edge index or not? Do not match memory
duke@435 2354 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2355 Node *adr = in(3);
duke@435 2356 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2357 }
duke@435 2358
duke@435 2359 //------------------------------match_edge-------------------------------------
duke@435 2360 // Do we Match on this edge index or not? Do not match memory
duke@435 2361 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2362 return idx > 1;
duke@435 2363 }
duke@435 2364
duke@435 2365 //------------------------------Identity---------------------------------------
duke@435 2366 // Clearing a zero length array does nothing
duke@435 2367 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2368 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2369 }
duke@435 2370
duke@435 2371 //------------------------------Idealize---------------------------------------
duke@435 2372 // Clearing a short array is faster with stores
duke@435 2373 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2374 const int unit = BytesPerLong;
duke@435 2375 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2376 if (!t) return NULL;
duke@435 2377 if (!t->is_con()) return NULL;
duke@435 2378 intptr_t raw_count = t->get_con();
duke@435 2379 intptr_t size = raw_count;
duke@435 2380 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2381 // Clearing nothing uses the Identity call.
duke@435 2382 // Negative clears are possible on dead ClearArrays
duke@435 2383 // (see jck test stmt114.stmt11402.val).
duke@435 2384 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2385 intptr_t count = size / unit;
duke@435 2386 // Length too long; use fast hardware clear
duke@435 2387 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2388 Node *mem = in(1);
duke@435 2389 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2390 Node *adr = in(3);
duke@435 2391 const Type* at = phase->type(adr);
duke@435 2392 if( at==Type::TOP ) return NULL;
duke@435 2393 const TypePtr* atp = at->isa_ptr();
duke@435 2394 // adjust atp to be the correct array element address type
duke@435 2395 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2396 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2397 // Get base for derived pointer purposes
duke@435 2398 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2399 Node *base = adr->in(1);
duke@435 2400
duke@435 2401 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2402 Node *off = phase->MakeConX(BytesPerLong);
duke@435 2403 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2404 count--;
duke@435 2405 while( count-- ) {
duke@435 2406 mem = phase->transform(mem);
duke@435 2407 adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
duke@435 2408 mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2409 }
duke@435 2410 return mem;
duke@435 2411 }
duke@435 2412
duke@435 2413 //----------------------------clear_memory-------------------------------------
duke@435 2414 // Generate code to initialize object storage to zero.
duke@435 2415 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2416 intptr_t start_offset,
duke@435 2417 Node* end_offset,
duke@435 2418 PhaseGVN* phase) {
duke@435 2419 Compile* C = phase->C;
duke@435 2420 intptr_t offset = start_offset;
duke@435 2421
duke@435 2422 int unit = BytesPerLong;
duke@435 2423 if ((offset % unit) != 0) {
duke@435 2424 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2425 adr = phase->transform(adr);
duke@435 2426 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2427 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2428 mem = phase->transform(mem);
duke@435 2429 offset += BytesPerInt;
duke@435 2430 }
duke@435 2431 assert((offset % unit) == 0, "");
duke@435 2432
duke@435 2433 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2434 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2435 }
duke@435 2436
duke@435 2437 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2438 Node* start_offset,
duke@435 2439 Node* end_offset,
duke@435 2440 PhaseGVN* phase) {
never@503 2441 if (start_offset == end_offset) {
never@503 2442 // nothing to do
never@503 2443 return mem;
never@503 2444 }
never@503 2445
duke@435 2446 Compile* C = phase->C;
duke@435 2447 int unit = BytesPerLong;
duke@435 2448 Node* zbase = start_offset;
duke@435 2449 Node* zend = end_offset;
duke@435 2450
duke@435 2451 // Scale to the unit required by the CPU:
duke@435 2452 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2453 Node* shift = phase->intcon(exact_log2(unit));
duke@435 2454 zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
duke@435 2455 zend = phase->transform( new(C,3) URShiftXNode(zend, shift) );
duke@435 2456 }
duke@435 2457
duke@435 2458 Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
duke@435 2459 Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
duke@435 2460
duke@435 2461 // Bulk clear double-words
duke@435 2462 Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
duke@435 2463 mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2464 return phase->transform(mem);
duke@435 2465 }
duke@435 2466
duke@435 2467 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2468 intptr_t start_offset,
duke@435 2469 intptr_t end_offset,
duke@435 2470 PhaseGVN* phase) {
never@503 2471 if (start_offset == end_offset) {
never@503 2472 // nothing to do
never@503 2473 return mem;
never@503 2474 }
never@503 2475
duke@435 2476 Compile* C = phase->C;
duke@435 2477 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2478 intptr_t done_offset = end_offset;
duke@435 2479 if ((done_offset % BytesPerLong) != 0) {
duke@435 2480 done_offset -= BytesPerInt;
duke@435 2481 }
duke@435 2482 if (done_offset > start_offset) {
duke@435 2483 mem = clear_memory(ctl, mem, dest,
duke@435 2484 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2485 }
duke@435 2486 if (done_offset < end_offset) { // emit the final 32-bit store
duke@435 2487 Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2488 adr = phase->transform(adr);
duke@435 2489 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2490 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2491 mem = phase->transform(mem);
duke@435 2492 done_offset += BytesPerInt;
duke@435 2493 }
duke@435 2494 assert(done_offset == end_offset, "");
duke@435 2495 return mem;
duke@435 2496 }
duke@435 2497
duke@435 2498 //=============================================================================
duke@435 2499 // Do we match on this edge? No memory edges
duke@435 2500 uint StrCompNode::match_edge(uint idx) const {
duke@435 2501 return idx == 5 || idx == 6;
duke@435 2502 }
duke@435 2503
duke@435 2504 //------------------------------Ideal------------------------------------------
duke@435 2505 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2506 // control copies
duke@435 2507 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2508 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 2509 }
duke@435 2510
cfang@1116 2511 // Do we match on this edge? No memory edges
cfang@1116 2512 uint StrEqualsNode::match_edge(uint idx) const {
cfang@1116 2513 return idx == 5 || idx == 6;
cfang@1116 2514 }
cfang@1116 2515
cfang@1116 2516 //------------------------------Ideal------------------------------------------
cfang@1116 2517 // Return a node which is more "ideal" than the current node. Strip out
cfang@1116 2518 // control copies
cfang@1116 2519 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1116 2520 return remove_dead_region(phase, can_reshape) ? this : NULL;
cfang@1116 2521 }
cfang@1116 2522
cfang@1116 2523 //=============================================================================
cfang@1116 2524 // Do we match on this edge? No memory edges
cfang@1116 2525 uint StrIndexOfNode::match_edge(uint idx) const {
cfang@1116 2526 return idx == 5 || idx == 6;
cfang@1116 2527 }
cfang@1116 2528
cfang@1116 2529 //------------------------------Ideal------------------------------------------
cfang@1116 2530 // Return a node which is more "ideal" than the current node. Strip out
cfang@1116 2531 // control copies
cfang@1116 2532 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1116 2533 return remove_dead_region(phase, can_reshape) ? this : NULL;
cfang@1116 2534 }
cfang@1116 2535
rasbold@604 2536 //------------------------------Ideal------------------------------------------
rasbold@604 2537 // Return a node which is more "ideal" than the current node. Strip out
rasbold@604 2538 // control copies
rasbold@604 2539 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
rasbold@604 2540 return remove_dead_region(phase, can_reshape) ? this : NULL;
rasbold@604 2541 }
rasbold@604 2542
duke@435 2543 //=============================================================================
duke@435 2544 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2545 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2546 _adr_type(C->get_adr_type(alias_idx))
duke@435 2547 {
duke@435 2548 init_class_id(Class_MemBar);
duke@435 2549 Node* top = C->top();
duke@435 2550 init_req(TypeFunc::I_O,top);
duke@435 2551 init_req(TypeFunc::FramePtr,top);
duke@435 2552 init_req(TypeFunc::ReturnAdr,top);
duke@435 2553 if (precedent != NULL)
duke@435 2554 init_req(TypeFunc::Parms, precedent);
duke@435 2555 }
duke@435 2556
duke@435 2557 //------------------------------cmp--------------------------------------------
duke@435 2558 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2559 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2560 return (&n == this); // Always fail except on self
duke@435 2561 }
duke@435 2562
duke@435 2563 //------------------------------make-------------------------------------------
duke@435 2564 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2565 int len = Precedent + (pn == NULL? 0: 1);
duke@435 2566 switch (opcode) {
duke@435 2567 case Op_MemBarAcquire: return new(C, len) MemBarAcquireNode(C, atp, pn);
duke@435 2568 case Op_MemBarRelease: return new(C, len) MemBarReleaseNode(C, atp, pn);
duke@435 2569 case Op_MemBarVolatile: return new(C, len) MemBarVolatileNode(C, atp, pn);
duke@435 2570 case Op_MemBarCPUOrder: return new(C, len) MemBarCPUOrderNode(C, atp, pn);
duke@435 2571 case Op_Initialize: return new(C, len) InitializeNode(C, atp, pn);
duke@435 2572 default: ShouldNotReachHere(); return NULL;
duke@435 2573 }
duke@435 2574 }
duke@435 2575
duke@435 2576 //------------------------------Ideal------------------------------------------
duke@435 2577 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2578 // control copies
duke@435 2579 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@740 2580 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 2581 }
duke@435 2582
duke@435 2583 //------------------------------Value------------------------------------------
duke@435 2584 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 2585 if( !in(0) ) return Type::TOP;
duke@435 2586 if( phase->type(in(0)) == Type::TOP )
duke@435 2587 return Type::TOP;
duke@435 2588 return TypeTuple::MEMBAR;
duke@435 2589 }
duke@435 2590
duke@435 2591 //------------------------------match------------------------------------------
duke@435 2592 // Construct projections for memory.
duke@435 2593 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 2594 switch (proj->_con) {
duke@435 2595 case TypeFunc::Control:
duke@435 2596 case TypeFunc::Memory:
duke@435 2597 return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 2598 }
duke@435 2599 ShouldNotReachHere();
duke@435 2600 return NULL;
duke@435 2601 }
duke@435 2602
duke@435 2603 //===========================InitializeNode====================================
duke@435 2604 // SUMMARY:
duke@435 2605 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 2606 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 2607 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 2608 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 2609 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 2610 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 2611 //
duke@435 2612 // EXAMPLE:
duke@435 2613 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 2614 // ctl = incoming control; mem* = incoming memory
duke@435 2615 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 2616 // First allocate uninitialized memory and fill in the header:
duke@435 2617 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 2618 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 2619 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 2620 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 2621 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 2622 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 2623 // After the initialize node executes, the object is ready for service:
duke@435 2624 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 2625 // Suppose its body is immediately initialized as {1,2}:
duke@435 2626 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2627 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2628 // mem.SLICE(#short[*]) := store2
duke@435 2629 //
duke@435 2630 // DETAILS:
duke@435 2631 // An InitializeNode collects and isolates object initialization after
duke@435 2632 // an AllocateNode and before the next possible safepoint. As a
duke@435 2633 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 2634 // down past any safepoint or any publication of the allocation.
duke@435 2635 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 2636 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 2637 //
duke@435 2638 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 2639 // the new object from object header to the end of the object.
duke@435 2640 // (The object header and end are determined by the AllocateNode.)
duke@435 2641 //
duke@435 2642 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 2643 // These stores must update raw memory, and they must be to addresses
duke@435 2644 // derived from the raw address produced by AllocateNode, and with
duke@435 2645 // a constant offset. They must be ordered by increasing offset.
duke@435 2646 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 2647 // Unlike most memory operations, they are not linked in a chain,
duke@435 2648 // but are displayed in parallel as users of the rawmem output of
duke@435 2649 // the allocation.
duke@435 2650 //
duke@435 2651 // (See comments in InitializeNode::capture_store, which continue
duke@435 2652 // the example given above.)
duke@435 2653 //
duke@435 2654 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 2655 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 2656 // may also be created at that point to represent any required zeroing.
duke@435 2657 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 2658 // capturing of nearby memory operations.
duke@435 2659 //
duke@435 2660 // During macro-expansion, all captured initializations which store
twisti@1040 2661 // constant values of 32 bits or smaller are coalesced (if advantageous)
duke@435 2662 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 2663 // initialized in fewer memory operations. Memory words which are
duke@435 2664 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 2665 // by explicit stores of zero. (The code shape happens to do all
duke@435 2666 // zeroing first, then all other stores, with both sequences occurring
duke@435 2667 // in order of ascending offsets.)
duke@435 2668 //
duke@435 2669 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 2670 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 2671 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 2672 // The initialization must then be marked as 'complete' disable the
duke@435 2673 // built-in zeroing semantics and the collection of initializing stores.
duke@435 2674 //
duke@435 2675 // While an InitializeNode is incomplete, reads from the memory state
duke@435 2676 // produced by it are optimizable if they match the control edge and
duke@435 2677 // new oop address associated with the allocation/initialization.
duke@435 2678 // They return a stored value (if the offset matches) or else zero.
duke@435 2679 // A write to the memory state, if it matches control and address,
duke@435 2680 // and if it is to a constant offset, may be 'captured' by the
duke@435 2681 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 2682 // inside the initialization, to the raw oop produced by the allocation.
duke@435 2683 // Operations on addresses which are provably distinct (e.g., to
duke@435 2684 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 2685 //
duke@435 2686 // The effect of all this is to consolidate object initialization
duke@435 2687 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 2688 // single location, where it can be optimized as a unit.
duke@435 2689 //
duke@435 2690 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 2691 // will be considered for capture by an InitializeNode. This puts a
duke@435 2692 // reasonable limit on the complexity of optimized initializations.
duke@435 2693
duke@435 2694 //---------------------------InitializeNode------------------------------------
duke@435 2695 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
duke@435 2696 : _is_complete(false),
duke@435 2697 MemBarNode(C, adr_type, rawoop)
duke@435 2698 {
duke@435 2699 init_class_id(Class_Initialize);
duke@435 2700
duke@435 2701 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 2702 assert(in(RawAddress) == rawoop, "proper init");
duke@435 2703 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 2704 }
duke@435 2705
duke@435 2706 // Since this node is not matched, it will be processed by the
duke@435 2707 // register allocator. Declare that there are no constraints
duke@435 2708 // on the allocation of the RawAddress edge.
duke@435 2709 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 2710 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 2711 if (idx == InitializeNode::RawAddress)
duke@435 2712 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 2713 return RegMask::Empty;
duke@435 2714 }
duke@435 2715
duke@435 2716 Node* InitializeNode::memory(uint alias_idx) {
duke@435 2717 Node* mem = in(Memory);
duke@435 2718 if (mem->is_MergeMem()) {
duke@435 2719 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 2720 } else {
duke@435 2721 // incoming raw memory is not split
duke@435 2722 return mem;
duke@435 2723 }
duke@435 2724 }
duke@435 2725
duke@435 2726 bool InitializeNode::is_non_zero() {
duke@435 2727 if (is_complete()) return false;
duke@435 2728 remove_extra_zeroes();
duke@435 2729 return (req() > RawStores);
duke@435 2730 }
duke@435 2731
duke@435 2732 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 2733 assert(!is_complete(), "caller responsibility");
duke@435 2734 _is_complete = true;
duke@435 2735
duke@435 2736 // After this node is complete, it contains a bunch of
duke@435 2737 // raw-memory initializations. There is no need for
duke@435 2738 // it to have anything to do with non-raw memory effects.
duke@435 2739 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 2740 // after skipping the memory effects of this initialization.
duke@435 2741 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 2742 if (igvn) igvn->add_users_to_worklist(this);
duke@435 2743 }
duke@435 2744
duke@435 2745 // convenience function
duke@435 2746 // return false if the init contains any stores already
duke@435 2747 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 2748 InitializeNode* init = initialization();
duke@435 2749 if (init == NULL || init->is_complete()) return false;
duke@435 2750 init->remove_extra_zeroes();
duke@435 2751 // for now, if this allocation has already collected any inits, bail:
duke@435 2752 if (init->is_non_zero()) return false;
duke@435 2753 init->set_complete(phase);
duke@435 2754 return true;
duke@435 2755 }
duke@435 2756
duke@435 2757 void InitializeNode::remove_extra_zeroes() {
duke@435 2758 if (req() == RawStores) return;
duke@435 2759 Node* zmem = zero_memory();
duke@435 2760 uint fill = RawStores;
duke@435 2761 for (uint i = fill; i < req(); i++) {
duke@435 2762 Node* n = in(i);
duke@435 2763 if (n->is_top() || n == zmem) continue; // skip
duke@435 2764 if (fill < i) set_req(fill, n); // compact
duke@435 2765 ++fill;
duke@435 2766 }
duke@435 2767 // delete any empty spaces created:
duke@435 2768 while (fill < req()) {
duke@435 2769 del_req(fill);
duke@435 2770 }
duke@435 2771 }
duke@435 2772
duke@435 2773 // Helper for remembering which stores go with which offsets.
duke@435 2774 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 2775 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 2776 intptr_t offset = -1;
duke@435 2777 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 2778 phase, offset);
duke@435 2779 if (base == NULL) return -1; // something is dead,
duke@435 2780 if (offset < 0) return -1; // dead, dead
duke@435 2781 return offset;
duke@435 2782 }
duke@435 2783
duke@435 2784 // Helper for proving that an initialization expression is
duke@435 2785 // "simple enough" to be folded into an object initialization.
duke@435 2786 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 2787 // within the initialization without creating a vicious cycle, such as:
duke@435 2788 // { Foo p = new Foo(); p.next = p; }
duke@435 2789 // True for constants and parameters and small combinations thereof.
duke@435 2790 bool InitializeNode::detect_init_independence(Node* n,
duke@435 2791 bool st_is_pinned,
duke@435 2792 int& count) {
duke@435 2793 if (n == NULL) return true; // (can this really happen?)
duke@435 2794 if (n->is_Proj()) n = n->in(0);
duke@435 2795 if (n == this) return false; // found a cycle
duke@435 2796 if (n->is_Con()) return true;
duke@435 2797 if (n->is_Start()) return true; // params, etc., are OK
duke@435 2798 if (n->is_Root()) return true; // even better
duke@435 2799
duke@435 2800 Node* ctl = n->in(0);
duke@435 2801 if (ctl != NULL && !ctl->is_top()) {
duke@435 2802 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 2803 if (ctl == this) return false;
duke@435 2804
duke@435 2805 // If we already know that the enclosing memory op is pinned right after
duke@435 2806 // the init, then any control flow that the store has picked up
duke@435 2807 // must have preceded the init, or else be equal to the init.
duke@435 2808 // Even after loop optimizations (which might change control edges)
duke@435 2809 // a store is never pinned *before* the availability of its inputs.
kvn@554 2810 if (!MemNode::all_controls_dominate(n, this))
duke@435 2811 return false; // failed to prove a good control
duke@435 2812
duke@435 2813 }
duke@435 2814
duke@435 2815 // Check data edges for possible dependencies on 'this'.
duke@435 2816 if ((count += 1) > 20) return false; // complexity limit
duke@435 2817 for (uint i = 1; i < n->req(); i++) {
duke@435 2818 Node* m = n->in(i);
duke@435 2819 if (m == NULL || m == n || m->is_top()) continue;
duke@435 2820 uint first_i = n->find_edge(m);
duke@435 2821 if (i != first_i) continue; // process duplicate edge just once
duke@435 2822 if (!detect_init_independence(m, st_is_pinned, count)) {
duke@435 2823 return false;
duke@435 2824 }
duke@435 2825 }
duke@435 2826
duke@435 2827 return true;
duke@435 2828 }
duke@435 2829
duke@435 2830 // Here are all the checks a Store must pass before it can be moved into
duke@435 2831 // an initialization. Returns zero if a check fails.
duke@435 2832 // On success, returns the (constant) offset to which the store applies,
duke@435 2833 // within the initialized memory.
duke@435 2834 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
duke@435 2835 const int FAIL = 0;
duke@435 2836 if (st->req() != MemNode::ValueIn + 1)
duke@435 2837 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 2838 Node* ctl = st->in(MemNode::Control);
duke@435 2839 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 2840 return FAIL; // must be unconditional after the initialization
duke@435 2841 Node* mem = st->in(MemNode::Memory);
duke@435 2842 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 2843 return FAIL; // must not be preceded by other stores
duke@435 2844 Node* adr = st->in(MemNode::Address);
duke@435 2845 intptr_t offset;
duke@435 2846 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 2847 if (alloc == NULL)
duke@435 2848 return FAIL; // inscrutable address
duke@435 2849 if (alloc != allocation())
duke@435 2850 return FAIL; // wrong allocation! (store needs to float up)
duke@435 2851 Node* val = st->in(MemNode::ValueIn);
duke@435 2852 int complexity_count = 0;
duke@435 2853 if (!detect_init_independence(val, true, complexity_count))
duke@435 2854 return FAIL; // stored value must be 'simple enough'
duke@435 2855
duke@435 2856 return offset; // success
duke@435 2857 }
duke@435 2858
duke@435 2859 // Find the captured store in(i) which corresponds to the range
duke@435 2860 // [start..start+size) in the initialized object.
duke@435 2861 // If there is one, return its index i. If there isn't, return the
duke@435 2862 // negative of the index where it should be inserted.
duke@435 2863 // Return 0 if the queried range overlaps an initialization boundary
duke@435 2864 // or if dead code is encountered.
duke@435 2865 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 2866 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 2867 int size_in_bytes,
duke@435 2868 PhaseTransform* phase) {
duke@435 2869 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 2870
duke@435 2871 if (is_complete())
duke@435 2872 return FAIL; // arraycopy got here first; punt
duke@435 2873
duke@435 2874 assert(allocation() != NULL, "must be present");
duke@435 2875
duke@435 2876 // no negatives, no header fields:
coleenp@548 2877 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 2878
duke@435 2879 // after a certain size, we bail out on tracking all the stores:
duke@435 2880 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 2881 if (start >= ti_limit) return FAIL;
duke@435 2882
duke@435 2883 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 2884 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 2885
duke@435 2886 Node* st = in(i);
duke@435 2887 intptr_t st_off = get_store_offset(st, phase);
duke@435 2888 if (st_off < 0) {
duke@435 2889 if (st != zero_memory()) {
duke@435 2890 return FAIL; // bail out if there is dead garbage
duke@435 2891 }
duke@435 2892 } else if (st_off > start) {
duke@435 2893 // ...we are done, since stores are ordered
duke@435 2894 if (st_off < start + size_in_bytes) {
duke@435 2895 return FAIL; // the next store overlaps
duke@435 2896 }
duke@435 2897 return -(int)i; // not found; here is where to put it
duke@435 2898 } else if (st_off < start) {
duke@435 2899 if (size_in_bytes != 0 &&
duke@435 2900 start < st_off + MAX_STORE &&
duke@435 2901 start < st_off + st->as_Store()->memory_size()) {
duke@435 2902 return FAIL; // the previous store overlaps
duke@435 2903 }
duke@435 2904 } else {
duke@435 2905 if (size_in_bytes != 0 &&
duke@435 2906 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 2907 return FAIL; // mismatched store size
duke@435 2908 }
duke@435 2909 return i;
duke@435 2910 }
duke@435 2911
duke@435 2912 ++i;
duke@435 2913 }
duke@435 2914 }
duke@435 2915
duke@435 2916 // Look for a captured store which initializes at the offset 'start'
duke@435 2917 // with the given size. If there is no such store, and no other
duke@435 2918 // initialization interferes, then return zero_memory (the memory
duke@435 2919 // projection of the AllocateNode).
duke@435 2920 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 2921 PhaseTransform* phase) {
duke@435 2922 assert(stores_are_sane(phase), "");
duke@435 2923 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 2924 if (i == 0) {
duke@435 2925 return NULL; // something is dead
duke@435 2926 } else if (i < 0) {
duke@435 2927 return zero_memory(); // just primordial zero bits here
duke@435 2928 } else {
duke@435 2929 Node* st = in(i); // here is the store at this position
duke@435 2930 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 2931 return st;
duke@435 2932 }
duke@435 2933 }
duke@435 2934
duke@435 2935 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 2936 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 2937 PhaseTransform* phase) {
duke@435 2938 Node* addr = in(RawAddress);
duke@435 2939 if (offset != 0) {
duke@435 2940 Compile* C = phase->C;
duke@435 2941 addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
duke@435 2942 phase->MakeConX(offset)) );
duke@435 2943 }
duke@435 2944 return addr;
duke@435 2945 }
duke@435 2946
duke@435 2947 // Clone the given store, converting it into a raw store
duke@435 2948 // initializing a field or element of my new object.
duke@435 2949 // Caller is responsible for retiring the original store,
duke@435 2950 // with subsume_node or the like.
duke@435 2951 //
duke@435 2952 // From the example above InitializeNode::InitializeNode,
duke@435 2953 // here are the old stores to be captured:
duke@435 2954 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 2955 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 2956 //
duke@435 2957 // Here is the changed code; note the extra edges on init:
duke@435 2958 // alloc = (Allocate ...)
duke@435 2959 // rawoop = alloc.RawAddress
duke@435 2960 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 2961 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 2962 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 2963 // rawstore1 rawstore2)
duke@435 2964 //
duke@435 2965 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
duke@435 2966 PhaseTransform* phase) {
duke@435 2967 assert(stores_are_sane(phase), "");
duke@435 2968
duke@435 2969 if (start < 0) return NULL;
duke@435 2970 assert(can_capture_store(st, phase) == start, "sanity");
duke@435 2971
duke@435 2972 Compile* C = phase->C;
duke@435 2973 int size_in_bytes = st->memory_size();
duke@435 2974 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 2975 if (i == 0) return NULL; // bail out
duke@435 2976 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 2977 if (i > 0) {
duke@435 2978 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 2979 set_req(i, C->top()); // temporarily disconnect it
duke@435 2980 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 2981 } else {
duke@435 2982 i = -i; // no pre-existing store
duke@435 2983 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 2984 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 2985 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 2986 else
duke@435 2987 ins_req(i, C->top()); // build a new edge
duke@435 2988 }
duke@435 2989 Node* new_st = st->clone();
duke@435 2990 new_st->set_req(MemNode::Control, in(Control));
duke@435 2991 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 2992 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 2993 new_st = phase->transform(new_st);
duke@435 2994
duke@435 2995 // At this point, new_st might have swallowed a pre-existing store
duke@435 2996 // at the same offset, or perhaps new_st might have disappeared,
duke@435 2997 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 2998
duke@435 2999 // In any case, wire it in:
duke@435 3000 set_req(i, new_st);
duke@435 3001
duke@435 3002 // The caller may now kill the old guy.
duke@435 3003 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 3004 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 3005 assert(!is_complete(), "");
duke@435 3006 return new_st;
duke@435 3007 }
duke@435 3008
duke@435 3009 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 3010 intptr_t st_off, int st_size,
duke@435 3011 jlong con) {
duke@435 3012 if ((st_off & (st_size-1)) != 0)
duke@435 3013 return false; // strange store offset (assume size==2**N)
duke@435 3014 address addr = (address)tiles + st_off;
duke@435 3015 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 3016 switch (st_size) {
duke@435 3017 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 3018 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 3019 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 3020 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 3021 default: return false; // strange store size (detect size!=2**N here)
duke@435 3022 }
duke@435 3023 return true; // return success to caller
duke@435 3024 }
duke@435 3025
duke@435 3026 // Coalesce subword constants into int constants and possibly
duke@435 3027 // into long constants. The goal, if the CPU permits,
duke@435 3028 // is to initialize the object with a small number of 64-bit tiles.
duke@435 3029 // Also, convert floating-point constants to bit patterns.
duke@435 3030 // Non-constants are not relevant to this pass.
duke@435 3031 //
duke@435 3032 // In terms of the running example on InitializeNode::InitializeNode
duke@435 3033 // and InitializeNode::capture_store, here is the transformation
duke@435 3034 // of rawstore1 and rawstore2 into rawstore12:
duke@435 3035 // alloc = (Allocate ...)
duke@435 3036 // rawoop = alloc.RawAddress
duke@435 3037 // tile12 = 0x00010002
duke@435 3038 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 3039 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 3040 //
duke@435 3041 void
duke@435 3042 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 3043 Node* size_in_bytes,
duke@435 3044 PhaseGVN* phase) {
duke@435 3045 Compile* C = phase->C;
duke@435 3046
duke@435 3047 assert(stores_are_sane(phase), "");
duke@435 3048 // Note: After this pass, they are not completely sane,
duke@435 3049 // since there may be some overlaps.
duke@435 3050
duke@435 3051 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 3052
duke@435 3053 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3054 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 3055 size_limit = MIN2(size_limit, ti_limit);
duke@435 3056 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 3057 int num_tiles = size_limit / BytesPerLong;
duke@435 3058
duke@435 3059 // allocate space for the tile map:
duke@435 3060 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 3061 jlong tiles_buf[small_len];
duke@435 3062 Node* nodes_buf[small_len];
duke@435 3063 jlong inits_buf[small_len];
duke@435 3064 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 3065 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3066 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 3067 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 3068 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 3069 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3070 // tiles: exact bitwise model of all primitive constants
duke@435 3071 // nodes: last constant-storing node subsumed into the tiles model
duke@435 3072 // inits: which bytes (in each tile) are touched by any initializations
duke@435 3073
duke@435 3074 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 3075
duke@435 3076 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 3077 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3078 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3079 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3080 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3081 Node* st = in(i);
duke@435 3082 intptr_t st_off = get_store_offset(st, phase);
duke@435 3083
duke@435 3084 // Figure out the store's offset and constant value:
duke@435 3085 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3086 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3087 int st_size = st->as_Store()->memory_size();
duke@435 3088 if (st_off + st_size > size_limit) break;
duke@435 3089
duke@435 3090 // Record which bytes are touched, whether by constant or not.
duke@435 3091 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3092 continue; // skip (strange store size)
duke@435 3093
duke@435 3094 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3095 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3096 BasicType type = val->basic_type();
duke@435 3097
duke@435 3098 jlong con = 0;
duke@435 3099 switch (type) {
duke@435 3100 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3101 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3102 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3103 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3104 default: continue; //skip (odd store type)
duke@435 3105 }
duke@435 3106
duke@435 3107 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3108 st->Opcode() == Op_StoreL) {
duke@435 3109 continue; // This StoreL is already optimal.
duke@435 3110 }
duke@435 3111
duke@435 3112 // Store down the constant.
duke@435 3113 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3114
duke@435 3115 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3116
duke@435 3117 if (type == T_INT && st_size == BytesPerInt
duke@435 3118 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3119 jlong lcon = tiles[j];
duke@435 3120 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3121 st->Opcode() == Op_StoreI) {
duke@435 3122 // This StoreI is already optimal by itself.
duke@435 3123 jint* intcon = (jint*) &tiles[j];
duke@435 3124 intcon[1] = 0; // undo the store_constant()
duke@435 3125
duke@435 3126 // If the previous store is also optimal by itself, back up and
duke@435 3127 // undo the action of the previous loop iteration... if we can.
duke@435 3128 // But if we can't, just let the previous half take care of itself.
duke@435 3129 st = nodes[j];
duke@435 3130 st_off -= BytesPerInt;
duke@435 3131 con = intcon[0];
duke@435 3132 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3133 assert(st_off >= header_size, "still ignoring header");
duke@435 3134 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3135 assert(in(i-1) == zmem, "must be");
duke@435 3136 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3137 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3138 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3139 intcon[0] = 0; // undo store_constant()
duke@435 3140 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3141 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3142 --old_subword; // undo ++old_subword
duke@435 3143 }
duke@435 3144 continue; // This StoreI is already optimal.
duke@435 3145 }
duke@435 3146 }
duke@435 3147
duke@435 3148 // This store is not needed.
duke@435 3149 set_req(i, zmem);
duke@435 3150 nodes[j] = st; // record for the moment
duke@435 3151 if (st_size < BytesPerLong) // something has changed
duke@435 3152 ++old_subword; // includes int/float, but who's counting...
duke@435 3153 else ++old_long;
duke@435 3154 }
duke@435 3155
duke@435 3156 if ((old_subword + old_long) == 0)
duke@435 3157 return; // nothing more to do
duke@435 3158
duke@435 3159 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3160 // Be sure to insert them before overlapping non-constant stores.
duke@435 3161 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3162 for (int j = 0; j < num_tiles; j++) {
duke@435 3163 jlong con = tiles[j];
duke@435 3164 jlong init = inits[j];
duke@435 3165 if (con == 0) continue;
duke@435 3166 jint con0, con1; // split the constant, address-wise
duke@435 3167 jint init0, init1; // split the init map, address-wise
duke@435 3168 { union { jlong con; jint intcon[2]; } u;
duke@435 3169 u.con = con;
duke@435 3170 con0 = u.intcon[0];
duke@435 3171 con1 = u.intcon[1];
duke@435 3172 u.con = init;
duke@435 3173 init0 = u.intcon[0];
duke@435 3174 init1 = u.intcon[1];
duke@435 3175 }
duke@435 3176
duke@435 3177 Node* old = nodes[j];
duke@435 3178 assert(old != NULL, "need the prior store");
duke@435 3179 intptr_t offset = (j * BytesPerLong);
duke@435 3180
duke@435 3181 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3182
duke@435 3183 if (offset < header_size) {
duke@435 3184 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3185 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3186 split = true; // only the second word counts
duke@435 3187 // Example: int a[] = { 42 ... }
duke@435 3188 } else if (con0 == 0 && init0 == -1) {
duke@435 3189 split = true; // first word is covered by full inits
duke@435 3190 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3191 } else if (con1 == 0 && init1 == -1) {
duke@435 3192 split = true; // second word is covered by full inits
duke@435 3193 // Example: int a[] = { ... 42, foo() ... }
duke@435 3194 }
duke@435 3195
duke@435 3196 // Here's a case where init0 is neither 0 nor -1:
duke@435 3197 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3198 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3199 // In this case the tile is not split; it is (jlong)42.
duke@435 3200 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3201 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3202
duke@435 3203 Node* ctl = old->in(MemNode::Control);
duke@435 3204 Node* adr = make_raw_address(offset, phase);
duke@435 3205 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3206
duke@435 3207 // One or two coalesced stores to plop down.
duke@435 3208 Node* st[2];
duke@435 3209 intptr_t off[2];
duke@435 3210 int nst = 0;
duke@435 3211 if (!split) {
duke@435 3212 ++new_long;
duke@435 3213 off[nst] = offset;
coleenp@548 3214 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3215 phase->longcon(con), T_LONG);
duke@435 3216 } else {
duke@435 3217 // Omit either if it is a zero.
duke@435 3218 if (con0 != 0) {
duke@435 3219 ++new_int;
duke@435 3220 off[nst] = offset;
coleenp@548 3221 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3222 phase->intcon(con0), T_INT);
duke@435 3223 }
duke@435 3224 if (con1 != 0) {
duke@435 3225 ++new_int;
duke@435 3226 offset += BytesPerInt;
duke@435 3227 adr = make_raw_address(offset, phase);
duke@435 3228 off[nst] = offset;
coleenp@548 3229 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3230 phase->intcon(con1), T_INT);
duke@435 3231 }
duke@435 3232 }
duke@435 3233
duke@435 3234 // Insert second store first, then the first before the second.
duke@435 3235 // Insert each one just before any overlapping non-constant stores.
duke@435 3236 while (nst > 0) {
duke@435 3237 Node* st1 = st[--nst];
duke@435 3238 C->copy_node_notes_to(st1, old);
duke@435 3239 st1 = phase->transform(st1);
duke@435 3240 offset = off[nst];
duke@435 3241 assert(offset >= header_size, "do not smash header");
duke@435 3242 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3243 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3244 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3245 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3246 set_req(--ins_idx, st1);
duke@435 3247 else
duke@435 3248 ins_req(ins_idx, st1);
duke@435 3249 }
duke@435 3250 }
duke@435 3251
duke@435 3252 if (PrintCompilation && WizardMode)
duke@435 3253 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3254 old_subword, old_long, new_int, new_long);
duke@435 3255 if (C->log() != NULL)
duke@435 3256 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3257 old_subword, old_long, new_int, new_long);
duke@435 3258
duke@435 3259 // Clean up any remaining occurrences of zmem:
duke@435 3260 remove_extra_zeroes();
duke@435 3261 }
duke@435 3262
duke@435 3263 // Explore forward from in(start) to find the first fully initialized
duke@435 3264 // word, and return its offset. Skip groups of subword stores which
duke@435 3265 // together initialize full words. If in(start) is itself part of a
duke@435 3266 // fully initialized word, return the offset of in(start). If there
duke@435 3267 // are no following full-word stores, or if something is fishy, return
duke@435 3268 // a negative value.
duke@435 3269 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3270 int int_map = 0;
duke@435 3271 intptr_t int_map_off = 0;
duke@435 3272 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3273
duke@435 3274 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3275 Node* st = in(i);
duke@435 3276
duke@435 3277 intptr_t st_off = get_store_offset(st, phase);
duke@435 3278 if (st_off < 0) break; // return conservative answer
duke@435 3279
duke@435 3280 int st_size = st->as_Store()->memory_size();
duke@435 3281 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3282 return st_off; // we found a complete word init
duke@435 3283 }
duke@435 3284
duke@435 3285 // update the map:
duke@435 3286
duke@435 3287 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3288 if (this_int_off != int_map_off) {
duke@435 3289 // reset the map:
duke@435 3290 int_map = 0;
duke@435 3291 int_map_off = this_int_off;
duke@435 3292 }
duke@435 3293
duke@435 3294 int subword_off = st_off - this_int_off;
duke@435 3295 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3296 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3297 return this_int_off; // we found a complete word init
duke@435 3298 }
duke@435 3299
duke@435 3300 // Did this store hit or cross the word boundary?
duke@435 3301 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3302 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3303 // We passed the current int, without fully initializing it.
duke@435 3304 int_map_off = next_int_off;
duke@435 3305 int_map >>= BytesPerInt;
duke@435 3306 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3307 // We passed the current and next int.
duke@435 3308 return this_int_off + BytesPerInt;
duke@435 3309 }
duke@435 3310 }
duke@435 3311
duke@435 3312 return -1;
duke@435 3313 }
duke@435 3314
duke@435 3315
duke@435 3316 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3317 // At this point, we may perform additional optimizations.
duke@435 3318 // Linearize the stores by ascending offset, to make memory
duke@435 3319 // activity as coherent as possible.
duke@435 3320 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3321 intptr_t header_size,
duke@435 3322 Node* size_in_bytes,
duke@435 3323 PhaseGVN* phase) {
duke@435 3324 assert(!is_complete(), "not already complete");
duke@435 3325 assert(stores_are_sane(phase), "");
duke@435 3326 assert(allocation() != NULL, "must be present");
duke@435 3327
duke@435 3328 remove_extra_zeroes();
duke@435 3329
duke@435 3330 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3331 // reduce instruction count for common initialization patterns
duke@435 3332 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3333
duke@435 3334 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3335 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3336 #ifdef ASSERT
coleenp@548 3337 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3338 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3339 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3340 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3341 #endif
duke@435 3342 intptr_t zeroes_done = header_size;
duke@435 3343
duke@435 3344 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3345 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3346
duke@435 3347 if (ZeroTLAB) do_zeroing = false;
duke@435 3348 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3349
duke@435 3350 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3351 Node* st = in(i);
duke@435 3352 intptr_t st_off = get_store_offset(st, phase);
duke@435 3353 if (st_off < 0)
duke@435 3354 break; // unknown junk in the inits
duke@435 3355 if (st->in(MemNode::Memory) != zmem)
duke@435 3356 break; // complicated store chains somehow in list
duke@435 3357
duke@435 3358 int st_size = st->as_Store()->memory_size();
duke@435 3359 intptr_t next_init_off = st_off + st_size;
duke@435 3360
duke@435 3361 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3362 // See if this store needs a zero before it or under it.
duke@435 3363 intptr_t zeroes_needed = st_off;
duke@435 3364
duke@435 3365 if (st_size < BytesPerInt) {
duke@435 3366 // Look for subword stores which only partially initialize words.
duke@435 3367 // If we find some, we must lay down some word-level zeroes first,
duke@435 3368 // underneath the subword stores.
duke@435 3369 //
duke@435 3370 // Examples:
duke@435 3371 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3372 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3373 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3374 //
duke@435 3375 // Note: coalesce_subword_stores may have already done this,
duke@435 3376 // if it was prompted by constant non-zero subword initializers.
duke@435 3377 // But this case can still arise with non-constant stores.
duke@435 3378
duke@435 3379 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3380
duke@435 3381 // In the examples above:
duke@435 3382 // in(i) p q r s x y z
duke@435 3383 // st_off 12 13 14 15 12 13 14
duke@435 3384 // st_size 1 1 1 1 1 1 1
duke@435 3385 // next_full_s. 12 16 16 16 16 16 16
duke@435 3386 // z's_done 12 16 16 16 12 16 12
duke@435 3387 // z's_needed 12 16 16 16 16 16 16
duke@435 3388 // zsize 0 0 0 0 4 0 4
duke@435 3389 if (next_full_store < 0) {
duke@435 3390 // Conservative tack: Zero to end of current word.
duke@435 3391 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3392 } else {
duke@435 3393 // Zero to beginning of next fully initialized word.
duke@435 3394 // Or, don't zero at all, if we are already in that word.
duke@435 3395 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3396 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3397 zeroes_needed = next_full_store;
duke@435 3398 }
duke@435 3399 }
duke@435 3400
duke@435 3401 if (zeroes_needed > zeroes_done) {
duke@435 3402 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3403 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3404 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3405 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3406 zeroes_done, zeroes_needed,
duke@435 3407 phase);
duke@435 3408 zeroes_done = zeroes_needed;
duke@435 3409 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3410 do_zeroing = false; // leave the hole, next time
duke@435 3411 }
duke@435 3412 }
duke@435 3413
duke@435 3414 // Collect the store and move on:
duke@435 3415 st->set_req(MemNode::Memory, inits);
duke@435 3416 inits = st; // put it on the linearized chain
duke@435 3417 set_req(i, zmem); // unhook from previous position
duke@435 3418
duke@435 3419 if (zeroes_done == st_off)
duke@435 3420 zeroes_done = next_init_off;
duke@435 3421
duke@435 3422 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3423
duke@435 3424 #ifdef ASSERT
duke@435 3425 // Various order invariants. Weaker than stores_are_sane because
duke@435 3426 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3427 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3428 last_init_off = st_off;
duke@435 3429 const Type* val = NULL;
duke@435 3430 if (st_size >= BytesPerInt &&
duke@435 3431 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3432 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3433 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3434 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3435 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3436 } else {
duke@435 3437 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3438 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3439 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3440 last_init_end = next_init_off; // it's a non-tile
duke@435 3441 }
duke@435 3442 #endif //ASSERT
duke@435 3443 }
duke@435 3444
duke@435 3445 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3446 add_req(inits);
duke@435 3447
duke@435 3448 if (!ZeroTLAB) {
duke@435 3449 // If anything remains to be zeroed, zero it all now.
duke@435 3450 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3451 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3452 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3453 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3454 assert(allocation() != NULL, "");
duke@435 3455 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
duke@435 3456 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
duke@435 3457 if (zeroes_done == k->layout_helper())
duke@435 3458 zeroes_done = size_limit;
duke@435 3459 }
duke@435 3460 if (zeroes_done < size_limit) {
duke@435 3461 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3462 zeroes_done, size_in_bytes, phase);
duke@435 3463 }
duke@435 3464 }
duke@435 3465
duke@435 3466 set_complete(phase);
duke@435 3467 return rawmem;
duke@435 3468 }
duke@435 3469
duke@435 3470
duke@435 3471 #ifdef ASSERT
duke@435 3472 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 3473 if (is_complete())
duke@435 3474 return true; // stores could be anything at this point
coleenp@548 3475 assert(allocation() != NULL, "must be present");
coleenp@548 3476 intptr_t last_off = allocation()->minimum_header_size();
duke@435 3477 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 3478 Node* st = in(i);
duke@435 3479 intptr_t st_off = get_store_offset(st, phase);
duke@435 3480 if (st_off < 0) continue; // ignore dead garbage
duke@435 3481 if (last_off > st_off) {
duke@435 3482 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
duke@435 3483 this->dump(2);
duke@435 3484 assert(false, "ascending store offsets");
duke@435 3485 return false;
duke@435 3486 }
duke@435 3487 last_off = st_off + st->as_Store()->memory_size();
duke@435 3488 }
duke@435 3489 return true;
duke@435 3490 }
duke@435 3491 #endif //ASSERT
duke@435 3492
duke@435 3493
duke@435 3494
duke@435 3495
duke@435 3496 //============================MergeMemNode=====================================
duke@435 3497 //
duke@435 3498 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 3499 // contributing store or call operations. Each contributor provides the memory
duke@435 3500 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 3501 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 3502 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 3503 // to using the MergeMem as a whole.
duke@435 3504 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 3505 //
duke@435 3506 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 3507 //
duke@435 3508 // In one special case (and more cases in the future), alias categories overlap.
duke@435 3509 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 3510 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 3511 // it is exactly equivalent to that state W:
duke@435 3512 // MergeMem(<Bot>: W) <==> W
duke@435 3513 //
duke@435 3514 // Usually, the merge has more than one input. In that case, where inputs
duke@435 3515 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 3516 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 3517 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 3518 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 3519 //
duke@435 3520 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 3521 // This simply means that the merge observes out only the relevant parts of
duke@435 3522 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 3523 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 3524 //
duke@435 3525 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 3526 // and that memory slices "leak through":
duke@435 3527 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 3528 //
duke@435 3529 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 3530 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 3531 //
duke@435 3532 // In the last example, Y is not part of the combined memory state of the
duke@435 3533 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 3534 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 3535 // a precursor to state Y'.
duke@435 3536 //
duke@435 3537 //
duke@435 3538 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 3539 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 3540 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 3541 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 3542 //
duke@435 3543 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 3544 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 3545 // without the need to reach out via TLS to Compile::current.)
duke@435 3546 //
duke@435 3547 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 3548 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 3549 // containing all alias categories.
duke@435 3550 //
duke@435 3551 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 3552 //
duke@435 3553 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 3554 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 3555 // there is no particular input for that alias type. Note that the length of
duke@435 3556 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 3557 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 3558 // filled with "top" in the unused in() positions.
duke@435 3559 //
duke@435 3560 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 3561 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 3562 //
duke@435 3563 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 3564 // the type of random VM bits like TLS references.) Since it is always the
duke@435 3565 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 3566 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 3567 //
duke@435 3568 //
duke@435 3569 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 3570 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 3571 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 3572 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 3573 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 3574 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 3575 //
duke@435 3576 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 3577 // really that different from the other memory inputs. An abbreviation called
duke@435 3578 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 3579 //
duke@435 3580 //
duke@435 3581 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 3582 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 3583 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 3584 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 3585 //
duke@435 3586 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 3587 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 3588 //
duke@435 3589 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 3590 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 3591 // actually a disjoint union of memory states, rather than an overlay.
duke@435 3592 //
duke@435 3593
duke@435 3594 //------------------------------MergeMemNode-----------------------------------
duke@435 3595 Node* MergeMemNode::make_empty_memory() {
duke@435 3596 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 3597 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 3598 return empty_memory;
duke@435 3599 }
duke@435 3600
duke@435 3601 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 3602 init_class_id(Class_MergeMem);
duke@435 3603 // all inputs are nullified in Node::Node(int)
duke@435 3604 // set_input(0, NULL); // no control input
duke@435 3605
duke@435 3606 // Initialize the edges uniformly to top, for starters.
duke@435 3607 Node* empty_mem = make_empty_memory();
duke@435 3608 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 3609 init_req(i,empty_mem);
duke@435 3610 }
duke@435 3611 assert(empty_memory() == empty_mem, "");
duke@435 3612
duke@435 3613 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 3614 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 3615 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 3616 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 3617 mms.set_memory(mms.memory2());
duke@435 3618 }
duke@435 3619 assert(base_memory() == mdef->base_memory(), "");
duke@435 3620 } else {
duke@435 3621 set_base_memory(new_base);
duke@435 3622 }
duke@435 3623 }
duke@435 3624
duke@435 3625 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 3626 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 3627 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
duke@435 3628 return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
duke@435 3629 }
duke@435 3630
duke@435 3631 //------------------------------cmp--------------------------------------------
duke@435 3632 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 3633 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 3634 return (&n == this); // Always fail except on self
duke@435 3635 }
duke@435 3636
duke@435 3637 //------------------------------Identity---------------------------------------
duke@435 3638 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 3639 // Identity if this merge point does not record any interesting memory
duke@435 3640 // disambiguations.
duke@435 3641 Node* base_mem = base_memory();
duke@435 3642 Node* empty_mem = empty_memory();
duke@435 3643 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 3644 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3645 Node* mem = in(i);
duke@435 3646 if (mem != empty_mem && mem != base_mem) {
duke@435 3647 return this; // Many memory splits; no change
duke@435 3648 }
duke@435 3649 }
duke@435 3650 }
duke@435 3651 return base_mem; // No memory splits; ID on the one true input
duke@435 3652 }
duke@435 3653
duke@435 3654 //------------------------------Ideal------------------------------------------
duke@435 3655 // This method is invoked recursively on chains of MergeMem nodes
duke@435 3656 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 3657 // Remove chain'd MergeMems
duke@435 3658 //
duke@435 3659 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 3660 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 3661 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 3662 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 3663 Node *progress = NULL;
duke@435 3664
duke@435 3665
duke@435 3666 Node* old_base = base_memory();
duke@435 3667 Node* empty_mem = empty_memory();
duke@435 3668 if (old_base == empty_mem)
duke@435 3669 return NULL; // Dead memory path.
duke@435 3670
duke@435 3671 MergeMemNode* old_mbase;
duke@435 3672 if (old_base != NULL && old_base->is_MergeMem())
duke@435 3673 old_mbase = old_base->as_MergeMem();
duke@435 3674 else
duke@435 3675 old_mbase = NULL;
duke@435 3676 Node* new_base = old_base;
duke@435 3677
duke@435 3678 // simplify stacked MergeMems in base memory
duke@435 3679 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 3680
duke@435 3681 // the base memory might contribute new slices beyond my req()
duke@435 3682 if (old_mbase) grow_to_match(old_mbase);
duke@435 3683
duke@435 3684 // Look carefully at the base node if it is a phi.
duke@435 3685 PhiNode* phi_base;
duke@435 3686 if (new_base != NULL && new_base->is_Phi())
duke@435 3687 phi_base = new_base->as_Phi();
duke@435 3688 else
duke@435 3689 phi_base = NULL;
duke@435 3690
duke@435 3691 Node* phi_reg = NULL;
duke@435 3692 uint phi_len = (uint)-1;
duke@435 3693 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 3694 // do not examine phi if degraded to a copy
duke@435 3695 phi_reg = phi_base->region();
duke@435 3696 phi_len = phi_base->req();
duke@435 3697 // see if the phi is unfinished
duke@435 3698 for (uint i = 1; i < phi_len; i++) {
duke@435 3699 if (phi_base->in(i) == NULL) {
duke@435 3700 // incomplete phi; do not look at it yet!
duke@435 3701 phi_reg = NULL;
duke@435 3702 phi_len = (uint)-1;
duke@435 3703 break;
duke@435 3704 }
duke@435 3705 }
duke@435 3706 }
duke@435 3707
duke@435 3708 // Note: We do not call verify_sparse on entry, because inputs
duke@435 3709 // can normalize to the base_memory via subsume_node or similar
duke@435 3710 // mechanisms. This method repairs that damage.
duke@435 3711
duke@435 3712 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 3713
duke@435 3714 // Look at each slice.
duke@435 3715 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3716 Node* old_in = in(i);
duke@435 3717 // calculate the old memory value
duke@435 3718 Node* old_mem = old_in;
duke@435 3719 if (old_mem == empty_mem) old_mem = old_base;
duke@435 3720 assert(old_mem == memory_at(i), "");
duke@435 3721
duke@435 3722 // maybe update (reslice) the old memory value
duke@435 3723
duke@435 3724 // simplify stacked MergeMems
duke@435 3725 Node* new_mem = old_mem;
duke@435 3726 MergeMemNode* old_mmem;
duke@435 3727 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 3728 old_mmem = old_mem->as_MergeMem();
duke@435 3729 else
duke@435 3730 old_mmem = NULL;
duke@435 3731 if (old_mmem == this) {
duke@435 3732 // This can happen if loops break up and safepoints disappear.
duke@435 3733 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 3734 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 3735 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 3736 // also, we can end up with a self-loop of the mergemem.
duke@435 3737 // In general, if loops degenerate and memory effects disappear,
duke@435 3738 // a mergemem can be left looking at itself. This simply means
duke@435 3739 // that the mergemem's default should be used, since there is
duke@435 3740 // no longer any apparent effect on this slice.
duke@435 3741 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 3742 // from start. Update the input to TOP.
duke@435 3743 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 3744 }
duke@435 3745 else if (old_mmem != NULL) {
duke@435 3746 new_mem = old_mmem->memory_at(i);
duke@435 3747 }
twisti@1040 3748 // else preceding memory was not a MergeMem
duke@435 3749
duke@435 3750 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 3751 if (new_mem != NULL && new_mem != new_base &&
duke@435 3752 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 3753 if (new_mem->is_Phi()) {
duke@435 3754 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 3755 for (uint i = 1; i < phi_len; i++) {
duke@435 3756 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 3757 phi_mem = NULL;
duke@435 3758 break;
duke@435 3759 }
duke@435 3760 }
duke@435 3761 if (phi_mem != NULL) {
duke@435 3762 // equivalent phi nodes; revert to the def
duke@435 3763 new_mem = new_base;
duke@435 3764 }
duke@435 3765 }
duke@435 3766 }
duke@435 3767
duke@435 3768 // maybe store down a new value
duke@435 3769 Node* new_in = new_mem;
duke@435 3770 if (new_in == new_base) new_in = empty_mem;
duke@435 3771
duke@435 3772 if (new_in != old_in) {
duke@435 3773 // Warning: Do not combine this "if" with the previous "if"
duke@435 3774 // A memory slice might have be be rewritten even if it is semantically
duke@435 3775 // unchanged, if the base_memory value has changed.
duke@435 3776 set_req(i, new_in);
duke@435 3777 progress = this; // Report progress
duke@435 3778 }
duke@435 3779 }
duke@435 3780
duke@435 3781 if (new_base != old_base) {
duke@435 3782 set_req(Compile::AliasIdxBot, new_base);
duke@435 3783 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 3784 assert(base_memory() == new_base, "");
duke@435 3785 progress = this;
duke@435 3786 }
duke@435 3787
duke@435 3788 if( base_memory() == this ) {
duke@435 3789 // a self cycle indicates this memory path is dead
duke@435 3790 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 3791 }
duke@435 3792
duke@435 3793 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 3794 // Recursion must occur after the self cycle check above
duke@435 3795 if( base_memory()->is_MergeMem() ) {
duke@435 3796 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 3797 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 3798 if( m != NULL && (m->is_top() ||
duke@435 3799 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 3800 // propagate rollup of dead cycle to self
duke@435 3801 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 3802 }
duke@435 3803 }
duke@435 3804
duke@435 3805 if( base_memory() == empty_mem ) {
duke@435 3806 progress = this;
duke@435 3807 // Cut inputs during Parse phase only.
duke@435 3808 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 3809 if( !can_reshape ) {
duke@435 3810 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3811 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 3812 }
duke@435 3813 }
duke@435 3814 }
duke@435 3815
duke@435 3816 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 3817 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 3818 // transform should be attempted. Look for this->phi->this cycle.
duke@435 3819 uint merge_width = req();
duke@435 3820 if (merge_width > Compile::AliasIdxRaw) {
duke@435 3821 PhiNode* phi = base_memory()->as_Phi();
duke@435 3822 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 3823 if (phi->in(i) == this) {
duke@435 3824 phase->is_IterGVN()->_worklist.push(phi);
duke@435 3825 break;
duke@435 3826 }
duke@435 3827 }
duke@435 3828 }
duke@435 3829 }
duke@435 3830
kvn@499 3831 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 3832 return progress;
duke@435 3833 }
duke@435 3834
duke@435 3835 //-------------------------set_base_memory-------------------------------------
duke@435 3836 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 3837 Node* empty_mem = empty_memory();
duke@435 3838 set_req(Compile::AliasIdxBot, new_base);
duke@435 3839 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 3840 // Clear out other occurrences of new_base:
duke@435 3841 if (new_base != empty_mem) {
duke@435 3842 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 3843 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 3844 }
duke@435 3845 }
duke@435 3846 }
duke@435 3847
duke@435 3848 //------------------------------out_RegMask------------------------------------
duke@435 3849 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 3850 return RegMask::Empty;
duke@435 3851 }
duke@435 3852
duke@435 3853 //------------------------------dump_spec--------------------------------------
duke@435 3854 #ifndef PRODUCT
duke@435 3855 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 3856 st->print(" {");
duke@435 3857 Node* base_mem = base_memory();
duke@435 3858 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 3859 Node* mem = memory_at(i);
duke@435 3860 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 3861 st->print( " N%d:", mem->_idx );
duke@435 3862 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 3863 }
duke@435 3864 st->print(" }");
duke@435 3865 }
duke@435 3866 #endif // !PRODUCT
duke@435 3867
duke@435 3868
duke@435 3869 #ifdef ASSERT
duke@435 3870 static bool might_be_same(Node* a, Node* b) {
duke@435 3871 if (a == b) return true;
duke@435 3872 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 3873 // phis shift around during optimization
duke@435 3874 return true; // pretty stupid...
duke@435 3875 }
duke@435 3876
duke@435 3877 // verify a narrow slice (either incoming or outgoing)
duke@435 3878 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 3879 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 3880 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 3881 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 3882 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 3883 assert(n != NULL, "");
duke@435 3884 // Elide intervening MergeMem's
duke@435 3885 while (n->is_MergeMem()) {
duke@435 3886 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 3887 }
duke@435 3888 Compile* C = Compile::current();
duke@435 3889 const TypePtr* n_adr_type = n->adr_type();
duke@435 3890 if (n == m->empty_memory()) {
duke@435 3891 // Implicit copy of base_memory()
duke@435 3892 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 3893 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 3894 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 3895 } else {
duke@435 3896 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 3897 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 3898 bool expected_wide_mem = false;
duke@435 3899 if (n == m->base_memory()) {
duke@435 3900 expected_wide_mem = true;
duke@435 3901 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 3902 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 3903 expected_wide_mem = true;
duke@435 3904 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 3905 // memory can "leak through" calls on channels that
duke@435 3906 // are write-once. Allow this also.
duke@435 3907 expected_wide_mem = true;
duke@435 3908 }
duke@435 3909 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 3910 }
duke@435 3911 }
duke@435 3912 #else // !ASSERT
duke@435 3913 #define verify_memory_slice(m,i,n) (0) // PRODUCT version is no-op
duke@435 3914 #endif
duke@435 3915
duke@435 3916
duke@435 3917 //-----------------------------memory_at---------------------------------------
duke@435 3918 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 3919 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 3920 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 3921 "must avoid base_memory and AliasIdxTop");
duke@435 3922
duke@435 3923 // Otherwise, it is a narrow slice.
duke@435 3924 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 3925 Compile *C = Compile::current();
duke@435 3926 if (is_empty_memory(n)) {
duke@435 3927 // the array is sparse; empty slots are the "top" node
duke@435 3928 n = base_memory();
duke@435 3929 assert(Node::in_dump()
duke@435 3930 || n == NULL || n->bottom_type() == Type::TOP
duke@435 3931 || n->adr_type() == TypePtr::BOTTOM
duke@435 3932 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 3933 || Compile::current()->AliasLevel() == 0,
duke@435 3934 "must be a wide memory");
duke@435 3935 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 3936 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 3937 } else {
duke@435 3938 // make sure the stored slice is sane
duke@435 3939 #ifdef ASSERT
duke@435 3940 if (is_error_reported() || Node::in_dump()) {
duke@435 3941 } else if (might_be_same(n, base_memory())) {
duke@435 3942 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 3943 // This can arise normally from node subsumption during optimization.
duke@435 3944 } else {
duke@435 3945 verify_memory_slice(this, alias_idx, n);
duke@435 3946 }
duke@435 3947 #endif
duke@435 3948 }
duke@435 3949 return n;
duke@435 3950 }
duke@435 3951
duke@435 3952 //---------------------------set_memory_at-------------------------------------
duke@435 3953 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 3954 verify_memory_slice(this, alias_idx, n);
duke@435 3955 Node* empty_mem = empty_memory();
duke@435 3956 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 3957 uint need_req = alias_idx+1;
duke@435 3958 if (req() < need_req) {
duke@435 3959 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 3960 // grow the sparse array
duke@435 3961 do {
duke@435 3962 add_req(empty_mem);
duke@435 3963 } while (req() < need_req);
duke@435 3964 }
duke@435 3965 set_req( alias_idx, n );
duke@435 3966 }
duke@435 3967
duke@435 3968
duke@435 3969
duke@435 3970 //--------------------------iteration_setup------------------------------------
duke@435 3971 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 3972 if (other != NULL) {
duke@435 3973 grow_to_match(other);
duke@435 3974 // invariant: the finite support of mm2 is within mm->req()
duke@435 3975 #ifdef ASSERT
duke@435 3976 for (uint i = req(); i < other->req(); i++) {
duke@435 3977 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 3978 }
duke@435 3979 #endif
duke@435 3980 }
duke@435 3981 // Replace spurious copies of base_memory by top.
duke@435 3982 Node* base_mem = base_memory();
duke@435 3983 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 3984 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 3985 if (in(i) == base_mem)
duke@435 3986 set_req(i, empty_memory());
duke@435 3987 }
duke@435 3988 }
duke@435 3989 }
duke@435 3990
duke@435 3991 //---------------------------grow_to_match-------------------------------------
duke@435 3992 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 3993 Node* empty_mem = empty_memory();
duke@435 3994 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 3995 // look for the finite support of the other memory
duke@435 3996 for (uint i = other->req(); --i >= req(); ) {
duke@435 3997 if (other->in(i) != empty_mem) {
duke@435 3998 uint new_len = i+1;
duke@435 3999 while (req() < new_len) add_req(empty_mem);
duke@435 4000 break;
duke@435 4001 }
duke@435 4002 }
duke@435 4003 }
duke@435 4004
duke@435 4005 //---------------------------verify_sparse-------------------------------------
duke@435 4006 #ifndef PRODUCT
duke@435 4007 bool MergeMemNode::verify_sparse() const {
duke@435 4008 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 4009 Node* base_mem = base_memory();
duke@435 4010 // The following can happen in degenerate cases, since empty==top.
duke@435 4011 if (is_empty_memory(base_mem)) return true;
duke@435 4012 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4013 assert(in(i) != NULL, "sane slice");
duke@435 4014 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 4015 }
duke@435 4016 return true;
duke@435 4017 }
duke@435 4018
duke@435 4019 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 4020 Node* n;
duke@435 4021 n = mm->in(idx);
duke@435 4022 if (mem == n) return true; // might be empty_memory()
duke@435 4023 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 4024 if (mem == n) return true;
duke@435 4025 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 4026 if (mem == n) return true;
duke@435 4027 if (n == NULL) break;
duke@435 4028 }
duke@435 4029 return false;
duke@435 4030 }
duke@435 4031 #endif // !PRODUCT

mercurial