src/share/vm/opto/type.cpp

Mon, 28 May 2018 10:33:52 +0800

author
aoqi
date
Mon, 28 May 2018 10:33:52 +0800
changeset 9041
95a08233f46c
parent 8886
fbb8f75498f4
parent 8604
04d83ba48607
child 9448
73d689add964
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "ci/ciTypeFlow.hpp"
    28 #include "classfile/symbolTable.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "libadt/dict.hpp"
    32 #include "memory/gcLocker.hpp"
    33 #include "memory/oopFactory.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/instanceKlass.hpp"
    36 #include "oops/instanceMirrorKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    46 // Portions of code courtesy of Clifford Click
    48 // Optimization - Graph Style
    50 // Dictionary of types shared among compilations.
    51 Dict* Type::_shared_type_dict = NULL;
    53 // Array which maps compiler types to Basic Types
    54 Type::TypeInfo Type::_type_info[Type::lastype] = {
    55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
    56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
    57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
    58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
    59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
    60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
    61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
    62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
    63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
    64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
    66 #ifdef SPARC
    67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
    69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    71 #elif defined(MIPS64)
    72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    76 #elif defined(PPC64)
    77   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
    78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
    79   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
    80   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
    81 #else // all other
    82   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
    83   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
    84   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
    85   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
    86 #endif
    87   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
    88   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
    89   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
    90   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
    91   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
    92   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
    93   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
    94   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
    95   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
    96   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
    97   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
    98   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
    99   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
   100   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
   101   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
   102   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
   103   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
   104   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
   105 };
   107 // Map ideal registers (machine types) to ideal types
   108 const Type *Type::mreg2type[_last_machine_leaf];
   110 // Map basic types to canonical Type* pointers.
   111 const Type* Type::     _const_basic_type[T_CONFLICT+1];
   113 // Map basic types to constant-zero Types.
   114 const Type* Type::            _zero_type[T_CONFLICT+1];
   116 // Map basic types to array-body alias types.
   117 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   119 //=============================================================================
   120 // Convenience common pre-built types.
   121 const Type *Type::ABIO;         // State-of-machine only
   122 const Type *Type::BOTTOM;       // All values
   123 const Type *Type::CONTROL;      // Control only
   124 const Type *Type::DOUBLE;       // All doubles
   125 const Type *Type::FLOAT;        // All floats
   126 const Type *Type::HALF;         // Placeholder half of doublewide type
   127 const Type *Type::MEMORY;       // Abstract store only
   128 const Type *Type::RETURN_ADDRESS;
   129 const Type *Type::TOP;          // No values in set
   131 //------------------------------get_const_type---------------------------
   132 const Type* Type::get_const_type(ciType* type) {
   133   if (type == NULL) {
   134     return NULL;
   135   } else if (type->is_primitive_type()) {
   136     return get_const_basic_type(type->basic_type());
   137   } else {
   138     return TypeOopPtr::make_from_klass(type->as_klass());
   139   }
   140 }
   142 //---------------------------array_element_basic_type---------------------------------
   143 // Mapping to the array element's basic type.
   144 BasicType Type::array_element_basic_type() const {
   145   BasicType bt = basic_type();
   146   if (bt == T_INT) {
   147     if (this == TypeInt::INT)   return T_INT;
   148     if (this == TypeInt::CHAR)  return T_CHAR;
   149     if (this == TypeInt::BYTE)  return T_BYTE;
   150     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   151     if (this == TypeInt::SHORT) return T_SHORT;
   152     return T_VOID;
   153   }
   154   return bt;
   155 }
   157 // For two instance arrays of same dimension, return the base element types.
   158 // Otherwise or if the arrays have different dimensions, return NULL.
   159 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
   160                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
   162   if (e1) *e1 = NULL;
   163   if (e2) *e2 = NULL;
   164   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
   165   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
   167   if (a1tap != NULL && a2tap != NULL) {
   168     // Handle multidimensional arrays
   169     const TypePtr* a1tp = a1tap->elem()->make_ptr();
   170     const TypePtr* a2tp = a2tap->elem()->make_ptr();
   171     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
   172       a1tap = a1tp->is_aryptr();
   173       a2tap = a2tp->is_aryptr();
   174       a1tp = a1tap->elem()->make_ptr();
   175       a2tp = a2tap->elem()->make_ptr();
   176     }
   177     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
   178       if (e1) *e1 = a1tp->is_instptr();
   179       if (e2) *e2 = a2tp->is_instptr();
   180     }
   181   }
   182 }
   184 //---------------------------get_typeflow_type---------------------------------
   185 // Import a type produced by ciTypeFlow.
   186 const Type* Type::get_typeflow_type(ciType* type) {
   187   switch (type->basic_type()) {
   189   case ciTypeFlow::StateVector::T_BOTTOM:
   190     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   191     return Type::BOTTOM;
   193   case ciTypeFlow::StateVector::T_TOP:
   194     assert(type == ciTypeFlow::StateVector::top_type(), "");
   195     return Type::TOP;
   197   case ciTypeFlow::StateVector::T_NULL:
   198     assert(type == ciTypeFlow::StateVector::null_type(), "");
   199     return TypePtr::NULL_PTR;
   201   case ciTypeFlow::StateVector::T_LONG2:
   202     // The ciTypeFlow pass pushes a long, then the half.
   203     // We do the same.
   204     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   205     return TypeInt::TOP;
   207   case ciTypeFlow::StateVector::T_DOUBLE2:
   208     // The ciTypeFlow pass pushes double, then the half.
   209     // Our convention is the same.
   210     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   211     return Type::TOP;
   213   case T_ADDRESS:
   214     assert(type->is_return_address(), "");
   215     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   217   default:
   218     // make sure we did not mix up the cases:
   219     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   220     assert(type != ciTypeFlow::StateVector::top_type(), "");
   221     assert(type != ciTypeFlow::StateVector::null_type(), "");
   222     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   223     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   224     assert(!type->is_return_address(), "");
   226     return Type::get_const_type(type);
   227   }
   228 }
   231 //-----------------------make_from_constant------------------------------------
   232 const Type* Type::make_from_constant(ciConstant constant,
   233                                      bool require_constant, bool is_autobox_cache) {
   234   switch (constant.basic_type()) {
   235   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
   236   case T_CHAR:     return TypeInt::make(constant.as_char());
   237   case T_BYTE:     return TypeInt::make(constant.as_byte());
   238   case T_SHORT:    return TypeInt::make(constant.as_short());
   239   case T_INT:      return TypeInt::make(constant.as_int());
   240   case T_LONG:     return TypeLong::make(constant.as_long());
   241   case T_FLOAT:    return TypeF::make(constant.as_float());
   242   case T_DOUBLE:   return TypeD::make(constant.as_double());
   243   case T_ARRAY:
   244   case T_OBJECT:
   245     {
   246       // cases:
   247       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
   248       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
   249       // An oop is not scavengable if it is in the perm gen.
   250       ciObject* oop_constant = constant.as_object();
   251       if (oop_constant->is_null_object()) {
   252         return Type::get_zero_type(T_OBJECT);
   253       } else if (require_constant || oop_constant->should_be_constant()) {
   254         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
   255       }
   256     }
   257   }
   258   // Fall through to failure
   259   return NULL;
   260 }
   263 //------------------------------make-------------------------------------------
   264 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   265 // and look for an existing copy in the type dictionary.
   266 const Type *Type::make( enum TYPES t ) {
   267   return (new Type(t))->hashcons();
   268 }
   270 //------------------------------cmp--------------------------------------------
   271 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   272   if( t1->_base != t2->_base )
   273     return 1;                   // Missed badly
   274   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   275   return !t1->eq(t2);           // Return ZERO if equal
   276 }
   278 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
   279   if (!include_speculative) {
   280     return remove_speculative();
   281   }
   282   return this;
   283 }
   285 //------------------------------hash-------------------------------------------
   286 int Type::uhash( const Type *const t ) {
   287   return t->hash();
   288 }
   290 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   292 //--------------------------Initialize_shared----------------------------------
   293 void Type::Initialize_shared(Compile* current) {
   294   // This method does not need to be locked because the first system
   295   // compilations (stub compilations) occur serially.  If they are
   296   // changed to proceed in parallel, then this section will need
   297   // locking.
   299   Arena* save = current->type_arena();
   300   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
   302   current->set_type_arena(shared_type_arena);
   303   _shared_type_dict =
   304     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   305                                   shared_type_arena, 128 );
   306   current->set_type_dict(_shared_type_dict);
   308   // Make shared pre-built types.
   309   CONTROL = make(Control);      // Control only
   310   TOP     = make(Top);          // No values in set
   311   MEMORY  = make(Memory);       // Abstract store only
   312   ABIO    = make(Abio);         // State-of-machine only
   313   RETURN_ADDRESS=make(Return_Address);
   314   FLOAT   = make(FloatBot);     // All floats
   315   DOUBLE  = make(DoubleBot);    // All doubles
   316   BOTTOM  = make(Bottom);       // Everything
   317   HALF    = make(Half);         // Placeholder half of doublewide type
   319   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   320   TypeF::ONE  = TypeF::make(1.0); // Float 1
   322   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   323   TypeD::ONE  = TypeD::make(1.0); // Double 1
   325   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   326   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   327   TypeInt::ONE     = TypeInt::make( 1);  //  1
   328   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   329   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   330   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   331   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   332   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   333   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   334   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   335   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   336   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   337   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   338   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   339   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   340   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   341   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   342   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   343   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
   344   // CmpL is overloaded both as the bytecode computation returning
   345   // a trinary (-1,0,+1) integer result AND as an efficient long
   346   // compare returning optimizer ideal-type flags.
   347   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   348   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   349   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   350   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   351   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   353   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   354   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   355   TypeLong::ONE     = TypeLong::make( 1);        //  1
   356   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   357   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   358   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   359   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   360   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
   362   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   363   fboth[0] = Type::CONTROL;
   364   fboth[1] = Type::CONTROL;
   365   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   367   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   368   ffalse[0] = Type::CONTROL;
   369   ffalse[1] = Type::TOP;
   370   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   372   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   373   fneither[0] = Type::TOP;
   374   fneither[1] = Type::TOP;
   375   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   377   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   378   ftrue[0] = Type::TOP;
   379   ftrue[1] = Type::CONTROL;
   380   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   382   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   383   floop[0] = Type::CONTROL;
   384   floop[1] = TypeInt::INT;
   385   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   387   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   388   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   389   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   391   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   392   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   394   const Type **fmembar = TypeTuple::fields(0);
   395   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   397   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   398   fsc[0] = TypeInt::CC;
   399   fsc[1] = Type::MEMORY;
   400   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   402   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   403   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   404   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   405   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   406                                            false, 0, oopDesc::mark_offset_in_bytes());
   407   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   408                                            false, 0, oopDesc::klass_offset_in_bytes());
   409   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
   411   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
   413   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   414   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   416   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
   418   mreg2type[Op_Node] = Type::BOTTOM;
   419   mreg2type[Op_Set ] = 0;
   420   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   421   mreg2type[Op_RegI] = TypeInt::INT;
   422   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   423   mreg2type[Op_RegF] = Type::FLOAT;
   424   mreg2type[Op_RegD] = Type::DOUBLE;
   425   mreg2type[Op_RegL] = TypeLong::LONG;
   426   mreg2type[Op_RegFlags] = TypeInt::CC;
   428   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   430   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   432 #ifdef _LP64
   433   if (UseCompressedOops) {
   434     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
   435     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   436   } else
   437 #endif
   438   {
   439     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   440     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   441   }
   442   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   443   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   444   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   445   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   446   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   447   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   448   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   450   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   451   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   452   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   453   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   454   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   455   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   456   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   457   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   458   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   459   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   460   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   461   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   463   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   464   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   466   const Type **fi2c = TypeTuple::fields(2);
   467   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
   468   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   469   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   471   const Type **intpair = TypeTuple::fields(2);
   472   intpair[0] = TypeInt::INT;
   473   intpair[1] = TypeInt::INT;
   474   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   476   const Type **longpair = TypeTuple::fields(2);
   477   longpair[0] = TypeLong::LONG;
   478   longpair[1] = TypeLong::LONG;
   479   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   481   const Type **intccpair = TypeTuple::fields(2);
   482   intccpair[0] = TypeInt::INT;
   483   intccpair[1] = TypeInt::CC;
   484   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
   486   const Type **longccpair = TypeTuple::fields(2);
   487   longccpair[0] = TypeLong::LONG;
   488   longccpair[1] = TypeInt::CC;
   489   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
   491   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
   492   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
   493   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
   494   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
   495   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
   496   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
   497   _const_basic_type[T_INT]         = TypeInt::INT;
   498   _const_basic_type[T_LONG]        = TypeLong::LONG;
   499   _const_basic_type[T_FLOAT]       = Type::FLOAT;
   500   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
   501   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
   502   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   503   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
   504   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   505   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
   507   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
   508   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
   509   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
   510   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
   511   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
   512   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
   513   _zero_type[T_INT]         = TypeInt::ZERO;
   514   _zero_type[T_LONG]        = TypeLong::ZERO;
   515   _zero_type[T_FLOAT]       = TypeF::ZERO;
   516   _zero_type[T_DOUBLE]      = TypeD::ZERO;
   517   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
   518   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
   519   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
   520   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
   522   // get_zero_type() should not happen for T_CONFLICT
   523   _zero_type[T_CONFLICT]= NULL;
   525   // Vector predefined types, it needs initialized _const_basic_type[].
   526   if (Matcher::vector_size_supported(T_BYTE,4)) {
   527     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   528   }
   529   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   530     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   531   }
   532   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   533     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   534   }
   535   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   536     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   537   }
   538   mreg2type[Op_VecS] = TypeVect::VECTS;
   539   mreg2type[Op_VecD] = TypeVect::VECTD;
   540   mreg2type[Op_VecX] = TypeVect::VECTX;
   541   mreg2type[Op_VecY] = TypeVect::VECTY;
   543   // Restore working type arena.
   544   current->set_type_arena(save);
   545   current->set_type_dict(NULL);
   546 }
   548 //------------------------------Initialize-------------------------------------
   549 void Type::Initialize(Compile* current) {
   550   assert(current->type_arena() != NULL, "must have created type arena");
   552   if (_shared_type_dict == NULL) {
   553     Initialize_shared(current);
   554   }
   556   Arena* type_arena = current->type_arena();
   558   // Create the hash-cons'ing dictionary with top-level storage allocation
   559   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   560   current->set_type_dict(tdic);
   562   // Transfer the shared types.
   563   DictI i(_shared_type_dict);
   564   for( ; i.test(); ++i ) {
   565     Type* t = (Type*)i._value;
   566     tdic->Insert(t,t);  // New Type, insert into Type table
   567   }
   568 }
   570 //------------------------------hashcons---------------------------------------
   571 // Do the hash-cons trick.  If the Type already exists in the type table,
   572 // delete the current Type and return the existing Type.  Otherwise stick the
   573 // current Type in the Type table.
   574 const Type *Type::hashcons(void) {
   575   debug_only(base());           // Check the assertion in Type::base().
   576   // Look up the Type in the Type dictionary
   577   Dict *tdic = type_dict();
   578   Type* old = (Type*)(tdic->Insert(this, this, false));
   579   if( old ) {                   // Pre-existing Type?
   580     if( old != this )           // Yes, this guy is not the pre-existing?
   581       delete this;              // Yes, Nuke this guy
   582     assert( old->_dual, "" );
   583     return old;                 // Return pre-existing
   584   }
   586   // Every type has a dual (to make my lattice symmetric).
   587   // Since we just discovered a new Type, compute its dual right now.
   588   assert( !_dual, "" );         // No dual yet
   589   _dual = xdual();              // Compute the dual
   590   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   591     _dual = this;
   592     return this;
   593   }
   594   assert( !_dual->_dual, "" );  // No reverse dual yet
   595   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   596   // New Type, insert into Type table
   597   tdic->Insert((void*)_dual,(void*)_dual);
   598   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   599 #ifdef ASSERT
   600   Type *dual_dual = (Type*)_dual->xdual();
   601   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   602   delete dual_dual;
   603 #endif
   604   return this;                  // Return new Type
   605 }
   607 //------------------------------eq---------------------------------------------
   608 // Structural equality check for Type representations
   609 bool Type::eq( const Type * ) const {
   610   return true;                  // Nothing else can go wrong
   611 }
   613 //------------------------------hash-------------------------------------------
   614 // Type-specific hashing function.
   615 int Type::hash(void) const {
   616   return _base;
   617 }
   619 //------------------------------is_finite--------------------------------------
   620 // Has a finite value
   621 bool Type::is_finite() const {
   622   return false;
   623 }
   625 //------------------------------is_nan-----------------------------------------
   626 // Is not a number (NaN)
   627 bool Type::is_nan()    const {
   628   return false;
   629 }
   631 //----------------------interface_vs_oop---------------------------------------
   632 #ifdef ASSERT
   633 bool Type::interface_vs_oop_helper(const Type *t) const {
   634   bool result = false;
   636   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   637   const TypePtr*    t_ptr =    t->make_ptr();
   638   if( this_ptr == NULL || t_ptr == NULL )
   639     return result;
   641   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   642   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   643   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   644     bool this_interface = this_inst->klass()->is_interface();
   645     bool    t_interface =    t_inst->klass()->is_interface();
   646     result = this_interface ^ t_interface;
   647   }
   649   return result;
   650 }
   652 bool Type::interface_vs_oop(const Type *t) const {
   653   if (interface_vs_oop_helper(t)) {
   654     return true;
   655   }
   656   // Now check the speculative parts as well
   657   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
   658   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
   659   if (this_spec != NULL && t_spec != NULL) {
   660     if (this_spec->interface_vs_oop_helper(t_spec)) {
   661       return true;
   662     }
   663     return false;
   664   }
   665   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
   666     return true;
   667   }
   668   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
   669     return true;
   670   }
   671   return false;
   672 }
   674 #endif
   676 //------------------------------meet-------------------------------------------
   677 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   678 // commutative and the lattice is symmetric.
   679 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
   680   if (isa_narrowoop() && t->isa_narrowoop()) {
   681     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   682     return result->make_narrowoop();
   683   }
   684   if (isa_narrowklass() && t->isa_narrowklass()) {
   685     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
   686     return result->make_narrowklass();
   687   }
   689   const Type *this_t = maybe_remove_speculative(include_speculative);
   690   t = t->maybe_remove_speculative(include_speculative);
   692   const Type *mt = this_t->xmeet(t);
   693   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   694   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
   695 #ifdef ASSERT
   696   assert(mt == t->xmeet(this_t), "meet not commutative");
   697   const Type* dual_join = mt->_dual;
   698   const Type *t2t    = dual_join->xmeet(t->_dual);
   699   const Type *t2this = dual_join->xmeet(this_t->_dual);
   701   // Interface meet Oop is Not Symmetric:
   702   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   703   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   705   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
   706     tty->print_cr("=== Meet Not Symmetric ===");
   707     tty->print("t   =                   ");              t->dump(); tty->cr();
   708     tty->print("this=                   ");         this_t->dump(); tty->cr();
   709     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
   711     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
   712     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
   713     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
   715     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
   716     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
   718     fatal("meet not symmetric" );
   719   }
   720 #endif
   721   return mt;
   722 }
   724 //------------------------------xmeet------------------------------------------
   725 // Compute the MEET of two types.  It returns a new Type object.
   726 const Type *Type::xmeet( const Type *t ) const {
   727   // Perform a fast test for common case; meeting the same types together.
   728   if( this == t ) return this;  // Meeting same type-rep?
   730   // Meeting TOP with anything?
   731   if( _base == Top ) return t;
   733   // Meeting BOTTOM with anything?
   734   if( _base == Bottom ) return BOTTOM;
   736   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   737   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   738   switch (t->base()) {  // Switch on original type
   740   // Cut in half the number of cases I must handle.  Only need cases for when
   741   // the given enum "t->type" is less than or equal to the local enum "type".
   742   case FloatCon:
   743   case DoubleCon:
   744   case Int:
   745   case Long:
   746     return t->xmeet(this);
   748   case OopPtr:
   749     return t->xmeet(this);
   751   case InstPtr:
   752     return t->xmeet(this);
   754   case MetadataPtr:
   755   case KlassPtr:
   756     return t->xmeet(this);
   758   case AryPtr:
   759     return t->xmeet(this);
   761   case NarrowOop:
   762     return t->xmeet(this);
   764   case NarrowKlass:
   765     return t->xmeet(this);
   767   case Bad:                     // Type check
   768   default:                      // Bogus type not in lattice
   769     typerr(t);
   770     return Type::BOTTOM;
   772   case Bottom:                  // Ye Olde Default
   773     return t;
   775   case FloatTop:
   776     if( _base == FloatTop ) return this;
   777   case FloatBot:                // Float
   778     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   779     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   780     typerr(t);
   781     return Type::BOTTOM;
   783   case DoubleTop:
   784     if( _base == DoubleTop ) return this;
   785   case DoubleBot:               // Double
   786     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   787     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   788     typerr(t);
   789     return Type::BOTTOM;
   791   // These next few cases must match exactly or it is a compile-time error.
   792   case Control:                 // Control of code
   793   case Abio:                    // State of world outside of program
   794   case Memory:
   795     if( _base == t->_base )  return this;
   796     typerr(t);
   797     return Type::BOTTOM;
   799   case Top:                     // Top of the lattice
   800     return this;
   801   }
   803   // The type is unchanged
   804   return this;
   805 }
   807 //-----------------------------filter------------------------------------------
   808 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
   809   const Type* ft = join_helper(kills, include_speculative);
   810   if (ft->empty())
   811     return Type::TOP;           // Canonical empty value
   812   return ft;
   813 }
   815 //------------------------------xdual------------------------------------------
   816 // Compute dual right now.
   817 const Type::TYPES Type::dual_type[Type::lastype] = {
   818   Bad,          // Bad
   819   Control,      // Control
   820   Bottom,       // Top
   821   Bad,          // Int - handled in v-call
   822   Bad,          // Long - handled in v-call
   823   Half,         // Half
   824   Bad,          // NarrowOop - handled in v-call
   825   Bad,          // NarrowKlass - handled in v-call
   827   Bad,          // Tuple - handled in v-call
   828   Bad,          // Array - handled in v-call
   829   Bad,          // VectorS - handled in v-call
   830   Bad,          // VectorD - handled in v-call
   831   Bad,          // VectorX - handled in v-call
   832   Bad,          // VectorY - handled in v-call
   834   Bad,          // AnyPtr - handled in v-call
   835   Bad,          // RawPtr - handled in v-call
   836   Bad,          // OopPtr - handled in v-call
   837   Bad,          // InstPtr - handled in v-call
   838   Bad,          // AryPtr - handled in v-call
   840   Bad,          //  MetadataPtr - handled in v-call
   841   Bad,          // KlassPtr - handled in v-call
   843   Bad,          // Function - handled in v-call
   844   Abio,         // Abio
   845   Return_Address,// Return_Address
   846   Memory,       // Memory
   847   FloatBot,     // FloatTop
   848   FloatCon,     // FloatCon
   849   FloatTop,     // FloatBot
   850   DoubleBot,    // DoubleTop
   851   DoubleCon,    // DoubleCon
   852   DoubleTop,    // DoubleBot
   853   Top           // Bottom
   854 };
   856 const Type *Type::xdual() const {
   857   // Note: the base() accessor asserts the sanity of _base.
   858   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
   859   return new Type(_type_info[_base].dual_type);
   860 }
   862 //------------------------------has_memory-------------------------------------
   863 bool Type::has_memory() const {
   864   Type::TYPES tx = base();
   865   if (tx == Memory) return true;
   866   if (tx == Tuple) {
   867     const TypeTuple *t = is_tuple();
   868     for (uint i=0; i < t->cnt(); i++) {
   869       tx = t->field_at(i)->base();
   870       if (tx == Memory)  return true;
   871     }
   872   }
   873   return false;
   874 }
   876 #ifndef PRODUCT
   877 //------------------------------dump2------------------------------------------
   878 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   879   st->print("%s", _type_info[_base].msg);
   880 }
   882 //------------------------------dump-------------------------------------------
   883 void Type::dump_on(outputStream *st) const {
   884   ResourceMark rm;
   885   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   886   dump2(d,1, st);
   887   if (is_ptr_to_narrowoop()) {
   888     st->print(" [narrow]");
   889   } else if (is_ptr_to_narrowklass()) {
   890     st->print(" [narrowklass]");
   891   }
   892 }
   893 #endif
   895 //------------------------------singleton--------------------------------------
   896 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   897 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   898 bool Type::singleton(void) const {
   899   return _base == Top || _base == Half;
   900 }
   902 //------------------------------empty------------------------------------------
   903 // TRUE if Type is a type with no values, FALSE otherwise.
   904 bool Type::empty(void) const {
   905   switch (_base) {
   906   case DoubleTop:
   907   case FloatTop:
   908   case Top:
   909     return true;
   911   case Half:
   912   case Abio:
   913   case Return_Address:
   914   case Memory:
   915   case Bottom:
   916   case FloatBot:
   917   case DoubleBot:
   918     return false;  // never a singleton, therefore never empty
   919   }
   921   ShouldNotReachHere();
   922   return false;
   923 }
   925 //------------------------------dump_stats-------------------------------------
   926 // Dump collected statistics to stderr
   927 #ifndef PRODUCT
   928 void Type::dump_stats() {
   929   tty->print("Types made: %d\n", type_dict()->Size());
   930 }
   931 #endif
   933 //------------------------------typerr-----------------------------------------
   934 void Type::typerr( const Type *t ) const {
   935 #ifndef PRODUCT
   936   tty->print("\nError mixing types: ");
   937   dump();
   938   tty->print(" and ");
   939   t->dump();
   940   tty->print("\n");
   941 #endif
   942   ShouldNotReachHere();
   943 }
   946 //=============================================================================
   947 // Convenience common pre-built types.
   948 const TypeF *TypeF::ZERO;       // Floating point zero
   949 const TypeF *TypeF::ONE;        // Floating point one
   951 //------------------------------make-------------------------------------------
   952 // Create a float constant
   953 const TypeF *TypeF::make(float f) {
   954   return (TypeF*)(new TypeF(f))->hashcons();
   955 }
   957 //------------------------------meet-------------------------------------------
   958 // Compute the MEET of two types.  It returns a new Type object.
   959 const Type *TypeF::xmeet( const Type *t ) const {
   960   // Perform a fast test for common case; meeting the same types together.
   961   if( this == t ) return this;  // Meeting same type-rep?
   963   // Current "this->_base" is FloatCon
   964   switch (t->base()) {          // Switch on original type
   965   case AnyPtr:                  // Mixing with oops happens when javac
   966   case RawPtr:                  // reuses local variables
   967   case OopPtr:
   968   case InstPtr:
   969   case AryPtr:
   970   case MetadataPtr:
   971   case KlassPtr:
   972   case NarrowOop:
   973   case NarrowKlass:
   974   case Int:
   975   case Long:
   976   case DoubleTop:
   977   case DoubleCon:
   978   case DoubleBot:
   979   case Bottom:                  // Ye Olde Default
   980     return Type::BOTTOM;
   982   case FloatBot:
   983     return t;
   985   default:                      // All else is a mistake
   986     typerr(t);
   988   case FloatCon:                // Float-constant vs Float-constant?
   989     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   990                                 // must compare bitwise as positive zero, negative zero and NaN have
   991                                 // all the same representation in C++
   992       return FLOAT;             // Return generic float
   993                                 // Equal constants
   994   case Top:
   995   case FloatTop:
   996     break;                      // Return the float constant
   997   }
   998   return this;                  // Return the float constant
   999 }
  1001 //------------------------------xdual------------------------------------------
  1002 // Dual: symmetric
  1003 const Type *TypeF::xdual() const {
  1004   return this;
  1007 //------------------------------eq---------------------------------------------
  1008 // Structural equality check for Type representations
  1009 bool TypeF::eq(const Type *t) const {
  1010   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1011   // as different to be consistent with C1 and the interpreter.
  1012   return (jint_cast(_f) == jint_cast(t->getf()));
  1015 //------------------------------hash-------------------------------------------
  1016 // Type-specific hashing function.
  1017 int TypeF::hash(void) const {
  1018   return *(int*)(&_f);
  1021 //------------------------------is_finite--------------------------------------
  1022 // Has a finite value
  1023 bool TypeF::is_finite() const {
  1024   return g_isfinite(getf()) != 0;
  1027 //------------------------------is_nan-----------------------------------------
  1028 // Is not a number (NaN)
  1029 bool TypeF::is_nan()    const {
  1030   return g_isnan(getf()) != 0;
  1033 //------------------------------dump2------------------------------------------
  1034 // Dump float constant Type
  1035 #ifndef PRODUCT
  1036 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  1037   Type::dump2(d,depth, st);
  1038   st->print("%f", _f);
  1040 #endif
  1042 //------------------------------singleton--------------------------------------
  1043 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1044 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1045 // or a single symbol.
  1046 bool TypeF::singleton(void) const {
  1047   return true;                  // Always a singleton
  1050 bool TypeF::empty(void) const {
  1051   return false;                 // always exactly a singleton
  1054 //=============================================================================
  1055 // Convenience common pre-built types.
  1056 const TypeD *TypeD::ZERO;       // Floating point zero
  1057 const TypeD *TypeD::ONE;        // Floating point one
  1059 //------------------------------make-------------------------------------------
  1060 const TypeD *TypeD::make(double d) {
  1061   return (TypeD*)(new TypeD(d))->hashcons();
  1064 //------------------------------meet-------------------------------------------
  1065 // Compute the MEET of two types.  It returns a new Type object.
  1066 const Type *TypeD::xmeet( const Type *t ) const {
  1067   // Perform a fast test for common case; meeting the same types together.
  1068   if( this == t ) return this;  // Meeting same type-rep?
  1070   // Current "this->_base" is DoubleCon
  1071   switch (t->base()) {          // Switch on original type
  1072   case AnyPtr:                  // Mixing with oops happens when javac
  1073   case RawPtr:                  // reuses local variables
  1074   case OopPtr:
  1075   case InstPtr:
  1076   case AryPtr:
  1077   case MetadataPtr:
  1078   case KlassPtr:
  1079   case NarrowOop:
  1080   case NarrowKlass:
  1081   case Int:
  1082   case Long:
  1083   case FloatTop:
  1084   case FloatCon:
  1085   case FloatBot:
  1086   case Bottom:                  // Ye Olde Default
  1087     return Type::BOTTOM;
  1089   case DoubleBot:
  1090     return t;
  1092   default:                      // All else is a mistake
  1093     typerr(t);
  1095   case DoubleCon:               // Double-constant vs Double-constant?
  1096     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1097       return DOUBLE;            // Return generic double
  1098   case Top:
  1099   case DoubleTop:
  1100     break;
  1102   return this;                  // Return the double constant
  1105 //------------------------------xdual------------------------------------------
  1106 // Dual: symmetric
  1107 const Type *TypeD::xdual() const {
  1108   return this;
  1111 //------------------------------eq---------------------------------------------
  1112 // Structural equality check for Type representations
  1113 bool TypeD::eq(const Type *t) const {
  1114   // Bitwise comparison to distinguish between +/-0. These values must be treated
  1115   // as different to be consistent with C1 and the interpreter.
  1116   return (jlong_cast(_d) == jlong_cast(t->getd()));
  1119 //------------------------------hash-------------------------------------------
  1120 // Type-specific hashing function.
  1121 int TypeD::hash(void) const {
  1122   return *(int*)(&_d);
  1125 //------------------------------is_finite--------------------------------------
  1126 // Has a finite value
  1127 bool TypeD::is_finite() const {
  1128   return g_isfinite(getd()) != 0;
  1131 //------------------------------is_nan-----------------------------------------
  1132 // Is not a number (NaN)
  1133 bool TypeD::is_nan()    const {
  1134   return g_isnan(getd()) != 0;
  1137 //------------------------------dump2------------------------------------------
  1138 // Dump double constant Type
  1139 #ifndef PRODUCT
  1140 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1141   Type::dump2(d,depth,st);
  1142   st->print("%f", _d);
  1144 #endif
  1146 //------------------------------singleton--------------------------------------
  1147 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1148 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1149 // or a single symbol.
  1150 bool TypeD::singleton(void) const {
  1151   return true;                  // Always a singleton
  1154 bool TypeD::empty(void) const {
  1155   return false;                 // always exactly a singleton
  1158 //=============================================================================
  1159 // Convience common pre-built types.
  1160 const TypeInt *TypeInt::MINUS_1;// -1
  1161 const TypeInt *TypeInt::ZERO;   // 0
  1162 const TypeInt *TypeInt::ONE;    // 1
  1163 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1164 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1165 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1166 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1167 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1168 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1169 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1170 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1171 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1172 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1173 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1174 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1175 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1176 const TypeInt *TypeInt::INT;    // 32-bit integers
  1177 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1178 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
  1180 //------------------------------TypeInt----------------------------------------
  1181 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1184 //------------------------------make-------------------------------------------
  1185 const TypeInt *TypeInt::make( jint lo ) {
  1186   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1189 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1190   // Certain normalizations keep us sane when comparing types.
  1191   // The 'SMALLINT' covers constants and also CC and its relatives.
  1192   if (lo <= hi) {
  1193     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1194     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1195   } else {
  1196     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1197     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1199   return w;
  1202 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1203   w = normalize_int_widen(lo, hi, w);
  1204   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1207 //------------------------------meet-------------------------------------------
  1208 // Compute the MEET of two types.  It returns a new Type representation object
  1209 // with reference count equal to the number of Types pointing at it.
  1210 // Caller should wrap a Types around it.
  1211 const Type *TypeInt::xmeet( const Type *t ) const {
  1212   // Perform a fast test for common case; meeting the same types together.
  1213   if( this == t ) return this;  // Meeting same type?
  1215   // Currently "this->_base" is a TypeInt
  1216   switch (t->base()) {          // Switch on original type
  1217   case AnyPtr:                  // Mixing with oops happens when javac
  1218   case RawPtr:                  // reuses local variables
  1219   case OopPtr:
  1220   case InstPtr:
  1221   case AryPtr:
  1222   case MetadataPtr:
  1223   case KlassPtr:
  1224   case NarrowOop:
  1225   case NarrowKlass:
  1226   case Long:
  1227   case FloatTop:
  1228   case FloatCon:
  1229   case FloatBot:
  1230   case DoubleTop:
  1231   case DoubleCon:
  1232   case DoubleBot:
  1233   case Bottom:                  // Ye Olde Default
  1234     return Type::BOTTOM;
  1235   default:                      // All else is a mistake
  1236     typerr(t);
  1237   case Top:                     // No change
  1238     return this;
  1239   case Int:                     // Int vs Int?
  1240     break;
  1243   // Expand covered set
  1244   const TypeInt *r = t->is_int();
  1245   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1248 //------------------------------xdual------------------------------------------
  1249 // Dual: reverse hi & lo; flip widen
  1250 const Type *TypeInt::xdual() const {
  1251   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1252   return new TypeInt(_hi,_lo,w);
  1255 //------------------------------widen------------------------------------------
  1256 // Only happens for optimistic top-down optimizations.
  1257 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1258   // Coming from TOP or such; no widening
  1259   if( old->base() != Int ) return this;
  1260   const TypeInt *ot = old->is_int();
  1262   // If new guy is equal to old guy, no widening
  1263   if( _lo == ot->_lo && _hi == ot->_hi )
  1264     return old;
  1266   // If new guy contains old, then we widened
  1267   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1268     // New contains old
  1269     // If new guy is already wider than old, no widening
  1270     if( _widen > ot->_widen ) return this;
  1271     // If old guy was a constant, do not bother
  1272     if (ot->_lo == ot->_hi)  return this;
  1273     // Now widen new guy.
  1274     // Check for widening too far
  1275     if (_widen == WidenMax) {
  1276       int max = max_jint;
  1277       int min = min_jint;
  1278       if (limit->isa_int()) {
  1279         max = limit->is_int()->_hi;
  1280         min = limit->is_int()->_lo;
  1282       if (min < _lo && _hi < max) {
  1283         // If neither endpoint is extremal yet, push out the endpoint
  1284         // which is closer to its respective limit.
  1285         if (_lo >= 0 ||                 // easy common case
  1286             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1287           // Try to widen to an unsigned range type of 31 bits:
  1288           return make(_lo, max, WidenMax);
  1289         } else {
  1290           return make(min, _hi, WidenMax);
  1293       return TypeInt::INT;
  1295     // Returned widened new guy
  1296     return make(_lo,_hi,_widen+1);
  1299   // If old guy contains new, then we probably widened too far & dropped to
  1300   // bottom.  Return the wider fellow.
  1301   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1302     return old;
  1304   //fatal("Integer value range is not subset");
  1305   //return this;
  1306   return TypeInt::INT;
  1309 //------------------------------narrow---------------------------------------
  1310 // Only happens for pessimistic optimizations.
  1311 const Type *TypeInt::narrow( const Type *old ) const {
  1312   if (_lo >= _hi)  return this;   // already narrow enough
  1313   if (old == NULL)  return this;
  1314   const TypeInt* ot = old->isa_int();
  1315   if (ot == NULL)  return this;
  1316   jint olo = ot->_lo;
  1317   jint ohi = ot->_hi;
  1319   // If new guy is equal to old guy, no narrowing
  1320   if (_lo == olo && _hi == ohi)  return old;
  1322   // If old guy was maximum range, allow the narrowing
  1323   if (olo == min_jint && ohi == max_jint)  return this;
  1325   if (_lo < olo || _hi > ohi)
  1326     return this;                // doesn't narrow; pretty wierd
  1328   // The new type narrows the old type, so look for a "death march".
  1329   // See comments on PhaseTransform::saturate.
  1330   juint nrange = _hi - _lo;
  1331   juint orange = ohi - olo;
  1332   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1333     // Use the new type only if the range shrinks a lot.
  1334     // We do not want the optimizer computing 2^31 point by point.
  1335     return old;
  1338   return this;
  1341 //-----------------------------filter------------------------------------------
  1342 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
  1343   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
  1344   if (ft == NULL || ft->empty())
  1345     return Type::TOP;           // Canonical empty value
  1346   if (ft->_widen < this->_widen) {
  1347     // Do not allow the value of kill->_widen to affect the outcome.
  1348     // The widen bits must be allowed to run freely through the graph.
  1349     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1351   return ft;
  1354 //------------------------------eq---------------------------------------------
  1355 // Structural equality check for Type representations
  1356 bool TypeInt::eq( const Type *t ) const {
  1357   const TypeInt *r = t->is_int(); // Handy access
  1358   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1361 //------------------------------hash-------------------------------------------
  1362 // Type-specific hashing function.
  1363 int TypeInt::hash(void) const {
  1364   return _lo+_hi+_widen+(int)Type::Int;
  1367 //------------------------------is_finite--------------------------------------
  1368 // Has a finite value
  1369 bool TypeInt::is_finite() const {
  1370   return true;
  1373 //------------------------------dump2------------------------------------------
  1374 // Dump TypeInt
  1375 #ifndef PRODUCT
  1376 static const char* intname(char* buf, jint n) {
  1377   if (n == min_jint)
  1378     return "min";
  1379   else if (n < min_jint + 10000)
  1380     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1381   else if (n == max_jint)
  1382     return "max";
  1383   else if (n > max_jint - 10000)
  1384     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1385   else
  1386     sprintf(buf, INT32_FORMAT, n);
  1387   return buf;
  1390 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1391   char buf[40], buf2[40];
  1392   if (_lo == min_jint && _hi == max_jint)
  1393     st->print("int");
  1394   else if (is_con())
  1395     st->print("int:%s", intname(buf, get_con()));
  1396   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1397     st->print("bool");
  1398   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1399     st->print("byte");
  1400   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1401     st->print("char");
  1402   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1403     st->print("short");
  1404   else if (_hi == max_jint)
  1405     st->print("int:>=%s", intname(buf, _lo));
  1406   else if (_lo == min_jint)
  1407     st->print("int:<=%s", intname(buf, _hi));
  1408   else
  1409     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1411   if (_widen != 0 && this != TypeInt::INT)
  1412     st->print(":%.*s", _widen, "wwww");
  1414 #endif
  1416 //------------------------------singleton--------------------------------------
  1417 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1418 // constants.
  1419 bool TypeInt::singleton(void) const {
  1420   return _lo >= _hi;
  1423 bool TypeInt::empty(void) const {
  1424   return _lo > _hi;
  1427 //=============================================================================
  1428 // Convenience common pre-built types.
  1429 const TypeLong *TypeLong::MINUS_1;// -1
  1430 const TypeLong *TypeLong::ZERO; // 0
  1431 const TypeLong *TypeLong::ONE;  // 1
  1432 const TypeLong *TypeLong::POS;  // >=0
  1433 const TypeLong *TypeLong::LONG; // 64-bit integers
  1434 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1435 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1436 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
  1438 //------------------------------TypeLong---------------------------------------
  1439 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1442 //------------------------------make-------------------------------------------
  1443 const TypeLong *TypeLong::make( jlong lo ) {
  1444   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1447 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1448   // Certain normalizations keep us sane when comparing types.
  1449   // The 'SMALLINT' covers constants.
  1450   if (lo <= hi) {
  1451     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1452     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1453   } else {
  1454     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1455     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1457   return w;
  1460 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1461   w = normalize_long_widen(lo, hi, w);
  1462   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1466 //------------------------------meet-------------------------------------------
  1467 // Compute the MEET of two types.  It returns a new Type representation object
  1468 // with reference count equal to the number of Types pointing at it.
  1469 // Caller should wrap a Types around it.
  1470 const Type *TypeLong::xmeet( const Type *t ) const {
  1471   // Perform a fast test for common case; meeting the same types together.
  1472   if( this == t ) return this;  // Meeting same type?
  1474   // Currently "this->_base" is a TypeLong
  1475   switch (t->base()) {          // Switch on original type
  1476   case AnyPtr:                  // Mixing with oops happens when javac
  1477   case RawPtr:                  // reuses local variables
  1478   case OopPtr:
  1479   case InstPtr:
  1480   case AryPtr:
  1481   case MetadataPtr:
  1482   case KlassPtr:
  1483   case NarrowOop:
  1484   case NarrowKlass:
  1485   case Int:
  1486   case FloatTop:
  1487   case FloatCon:
  1488   case FloatBot:
  1489   case DoubleTop:
  1490   case DoubleCon:
  1491   case DoubleBot:
  1492   case Bottom:                  // Ye Olde Default
  1493     return Type::BOTTOM;
  1494   default:                      // All else is a mistake
  1495     typerr(t);
  1496   case Top:                     // No change
  1497     return this;
  1498   case Long:                    // Long vs Long?
  1499     break;
  1502   // Expand covered set
  1503   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1504   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1507 //------------------------------xdual------------------------------------------
  1508 // Dual: reverse hi & lo; flip widen
  1509 const Type *TypeLong::xdual() const {
  1510   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1511   return new TypeLong(_hi,_lo,w);
  1514 //------------------------------widen------------------------------------------
  1515 // Only happens for optimistic top-down optimizations.
  1516 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1517   // Coming from TOP or such; no widening
  1518   if( old->base() != Long ) return this;
  1519   const TypeLong *ot = old->is_long();
  1521   // If new guy is equal to old guy, no widening
  1522   if( _lo == ot->_lo && _hi == ot->_hi )
  1523     return old;
  1525   // If new guy contains old, then we widened
  1526   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1527     // New contains old
  1528     // If new guy is already wider than old, no widening
  1529     if( _widen > ot->_widen ) return this;
  1530     // If old guy was a constant, do not bother
  1531     if (ot->_lo == ot->_hi)  return this;
  1532     // Now widen new guy.
  1533     // Check for widening too far
  1534     if (_widen == WidenMax) {
  1535       jlong max = max_jlong;
  1536       jlong min = min_jlong;
  1537       if (limit->isa_long()) {
  1538         max = limit->is_long()->_hi;
  1539         min = limit->is_long()->_lo;
  1541       if (min < _lo && _hi < max) {
  1542         // If neither endpoint is extremal yet, push out the endpoint
  1543         // which is closer to its respective limit.
  1544         if (_lo >= 0 ||                 // easy common case
  1545             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1546           // Try to widen to an unsigned range type of 32/63 bits:
  1547           if (max >= max_juint && _hi < max_juint)
  1548             return make(_lo, max_juint, WidenMax);
  1549           else
  1550             return make(_lo, max, WidenMax);
  1551         } else {
  1552           return make(min, _hi, WidenMax);
  1555       return TypeLong::LONG;
  1557     // Returned widened new guy
  1558     return make(_lo,_hi,_widen+1);
  1561   // If old guy contains new, then we probably widened too far & dropped to
  1562   // bottom.  Return the wider fellow.
  1563   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1564     return old;
  1566   //  fatal("Long value range is not subset");
  1567   // return this;
  1568   return TypeLong::LONG;
  1571 //------------------------------narrow----------------------------------------
  1572 // Only happens for pessimistic optimizations.
  1573 const Type *TypeLong::narrow( const Type *old ) const {
  1574   if (_lo >= _hi)  return this;   // already narrow enough
  1575   if (old == NULL)  return this;
  1576   const TypeLong* ot = old->isa_long();
  1577   if (ot == NULL)  return this;
  1578   jlong olo = ot->_lo;
  1579   jlong ohi = ot->_hi;
  1581   // If new guy is equal to old guy, no narrowing
  1582   if (_lo == olo && _hi == ohi)  return old;
  1584   // If old guy was maximum range, allow the narrowing
  1585   if (olo == min_jlong && ohi == max_jlong)  return this;
  1587   if (_lo < olo || _hi > ohi)
  1588     return this;                // doesn't narrow; pretty wierd
  1590   // The new type narrows the old type, so look for a "death march".
  1591   // See comments on PhaseTransform::saturate.
  1592   julong nrange = _hi - _lo;
  1593   julong orange = ohi - olo;
  1594   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1595     // Use the new type only if the range shrinks a lot.
  1596     // We do not want the optimizer computing 2^31 point by point.
  1597     return old;
  1600   return this;
  1603 //-----------------------------filter------------------------------------------
  1604 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
  1605   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
  1606   if (ft == NULL || ft->empty())
  1607     return Type::TOP;           // Canonical empty value
  1608   if (ft->_widen < this->_widen) {
  1609     // Do not allow the value of kill->_widen to affect the outcome.
  1610     // The widen bits must be allowed to run freely through the graph.
  1611     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1613   return ft;
  1616 //------------------------------eq---------------------------------------------
  1617 // Structural equality check for Type representations
  1618 bool TypeLong::eq( const Type *t ) const {
  1619   const TypeLong *r = t->is_long(); // Handy access
  1620   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1623 //------------------------------hash-------------------------------------------
  1624 // Type-specific hashing function.
  1625 int TypeLong::hash(void) const {
  1626   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1629 //------------------------------is_finite--------------------------------------
  1630 // Has a finite value
  1631 bool TypeLong::is_finite() const {
  1632   return true;
  1635 //------------------------------dump2------------------------------------------
  1636 // Dump TypeLong
  1637 #ifndef PRODUCT
  1638 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1639   if (n > x) {
  1640     if (n >= x + 10000)  return NULL;
  1641     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  1642   } else if (n < x) {
  1643     if (n <= x - 10000)  return NULL;
  1644     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  1645   } else {
  1646     return xname;
  1648   return buf;
  1651 static const char* longname(char* buf, jlong n) {
  1652   const char* str;
  1653   if (n == min_jlong)
  1654     return "min";
  1655   else if (n < min_jlong + 10000)
  1656     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  1657   else if (n == max_jlong)
  1658     return "max";
  1659   else if (n > max_jlong - 10000)
  1660     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  1661   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1662     return str;
  1663   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1664     return str;
  1665   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1666     return str;
  1667   else
  1668     sprintf(buf, JLONG_FORMAT, n);
  1669   return buf;
  1672 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1673   char buf[80], buf2[80];
  1674   if (_lo == min_jlong && _hi == max_jlong)
  1675     st->print("long");
  1676   else if (is_con())
  1677     st->print("long:%s", longname(buf, get_con()));
  1678   else if (_hi == max_jlong)
  1679     st->print("long:>=%s", longname(buf, _lo));
  1680   else if (_lo == min_jlong)
  1681     st->print("long:<=%s", longname(buf, _hi));
  1682   else
  1683     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1685   if (_widen != 0 && this != TypeLong::LONG)
  1686     st->print(":%.*s", _widen, "wwww");
  1688 #endif
  1690 //------------------------------singleton--------------------------------------
  1691 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1692 // constants
  1693 bool TypeLong::singleton(void) const {
  1694   return _lo >= _hi;
  1697 bool TypeLong::empty(void) const {
  1698   return _lo > _hi;
  1701 //=============================================================================
  1702 // Convenience common pre-built types.
  1703 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1704 const TypeTuple *TypeTuple::IFFALSE;
  1705 const TypeTuple *TypeTuple::IFTRUE;
  1706 const TypeTuple *TypeTuple::IFNEITHER;
  1707 const TypeTuple *TypeTuple::LOOPBODY;
  1708 const TypeTuple *TypeTuple::MEMBAR;
  1709 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1710 const TypeTuple *TypeTuple::START_I2C;
  1711 const TypeTuple *TypeTuple::INT_PAIR;
  1712 const TypeTuple *TypeTuple::LONG_PAIR;
  1713 const TypeTuple *TypeTuple::INT_CC_PAIR;
  1714 const TypeTuple *TypeTuple::LONG_CC_PAIR;
  1717 //------------------------------make-------------------------------------------
  1718 // Make a TypeTuple from the range of a method signature
  1719 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1720   ciType* return_type = sig->return_type();
  1721   uint total_fields = TypeFunc::Parms + return_type->size();
  1722   const Type **field_array = fields(total_fields);
  1723   switch (return_type->basic_type()) {
  1724   case T_LONG:
  1725     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1726     field_array[TypeFunc::Parms+1] = Type::HALF;
  1727     break;
  1728   case T_DOUBLE:
  1729     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1730     field_array[TypeFunc::Parms+1] = Type::HALF;
  1731     break;
  1732   case T_OBJECT:
  1733   case T_ARRAY:
  1734   case T_BOOLEAN:
  1735   case T_CHAR:
  1736   case T_FLOAT:
  1737   case T_BYTE:
  1738   case T_SHORT:
  1739   case T_INT:
  1740     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1741     break;
  1742   case T_VOID:
  1743     break;
  1744   default:
  1745     ShouldNotReachHere();
  1747   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1750 // Make a TypeTuple from the domain of a method signature
  1751 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1752   uint total_fields = TypeFunc::Parms + sig->size();
  1754   uint pos = TypeFunc::Parms;
  1755   const Type **field_array;
  1756   if (recv != NULL) {
  1757     total_fields++;
  1758     field_array = fields(total_fields);
  1759     // Use get_const_type here because it respects UseUniqueSubclasses:
  1760     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
  1761   } else {
  1762     field_array = fields(total_fields);
  1765   int i = 0;
  1766   while (pos < total_fields) {
  1767     ciType* type = sig->type_at(i);
  1769     switch (type->basic_type()) {
  1770     case T_LONG:
  1771       field_array[pos++] = TypeLong::LONG;
  1772       field_array[pos++] = Type::HALF;
  1773       break;
  1774     case T_DOUBLE:
  1775       field_array[pos++] = Type::DOUBLE;
  1776       field_array[pos++] = Type::HALF;
  1777       break;
  1778     case T_OBJECT:
  1779     case T_ARRAY:
  1780     case T_FLOAT:
  1781     case T_INT:
  1782       field_array[pos++] = get_const_type(type);
  1783       break;
  1784     case T_BOOLEAN:
  1785     case T_CHAR:
  1786     case T_BYTE:
  1787     case T_SHORT:
  1788       field_array[pos++] = TypeInt::INT;
  1789       break;
  1790     default:
  1791       ShouldNotReachHere();
  1793     i++;
  1795   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1798 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1799   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1802 //------------------------------fields-----------------------------------------
  1803 // Subroutine call type with space allocated for argument types
  1804 const Type **TypeTuple::fields( uint arg_cnt ) {
  1805   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1806   flds[TypeFunc::Control  ] = Type::CONTROL;
  1807   flds[TypeFunc::I_O      ] = Type::ABIO;
  1808   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1809   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1810   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1812   return flds;
  1815 //------------------------------meet-------------------------------------------
  1816 // Compute the MEET of two types.  It returns a new Type object.
  1817 const Type *TypeTuple::xmeet( const Type *t ) const {
  1818   // Perform a fast test for common case; meeting the same types together.
  1819   if( this == t ) return this;  // Meeting same type-rep?
  1821   // Current "this->_base" is Tuple
  1822   switch (t->base()) {          // switch on original type
  1824   case Bottom:                  // Ye Olde Default
  1825     return t;
  1827   default:                      // All else is a mistake
  1828     typerr(t);
  1830   case Tuple: {                 // Meeting 2 signatures?
  1831     const TypeTuple *x = t->is_tuple();
  1832     assert( _cnt == x->_cnt, "" );
  1833     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1834     for( uint i=0; i<_cnt; i++ )
  1835       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1836     return TypeTuple::make(_cnt,fields);
  1838   case Top:
  1839     break;
  1841   return this;                  // Return the double constant
  1844 //------------------------------xdual------------------------------------------
  1845 // Dual: compute field-by-field dual
  1846 const Type *TypeTuple::xdual() const {
  1847   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1848   for( uint i=0; i<_cnt; i++ )
  1849     fields[i] = _fields[i]->dual();
  1850   return new TypeTuple(_cnt,fields);
  1853 //------------------------------eq---------------------------------------------
  1854 // Structural equality check for Type representations
  1855 bool TypeTuple::eq( const Type *t ) const {
  1856   const TypeTuple *s = (const TypeTuple *)t;
  1857   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1858   for (uint i = 0; i < _cnt; i++)
  1859     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1860       return false;             // Missed
  1861   return true;
  1864 //------------------------------hash-------------------------------------------
  1865 // Type-specific hashing function.
  1866 int TypeTuple::hash(void) const {
  1867   intptr_t sum = _cnt;
  1868   for( uint i=0; i<_cnt; i++ )
  1869     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1870   return sum;
  1873 //------------------------------dump2------------------------------------------
  1874 // Dump signature Type
  1875 #ifndef PRODUCT
  1876 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1877   st->print("{");
  1878   if( !depth || d[this] ) {     // Check for recursive print
  1879     st->print("...}");
  1880     return;
  1882   d.Insert((void*)this, (void*)this);   // Stop recursion
  1883   if( _cnt ) {
  1884     uint i;
  1885     for( i=0; i<_cnt-1; i++ ) {
  1886       st->print("%d:", i);
  1887       _fields[i]->dump2(d, depth-1, st);
  1888       st->print(", ");
  1890     st->print("%d:", i);
  1891     _fields[i]->dump2(d, depth-1, st);
  1893   st->print("}");
  1895 #endif
  1897 //------------------------------singleton--------------------------------------
  1898 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1899 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1900 // or a single symbol.
  1901 bool TypeTuple::singleton(void) const {
  1902   return false;                 // Never a singleton
  1905 bool TypeTuple::empty(void) const {
  1906   for( uint i=0; i<_cnt; i++ ) {
  1907     if (_fields[i]->empty())  return true;
  1909   return false;
  1912 //=============================================================================
  1913 // Convenience common pre-built types.
  1915 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1916   // Certain normalizations keep us sane when comparing types.
  1917   // We do not want arrayOop variables to differ only by the wideness
  1918   // of their index types.  Pick minimum wideness, since that is the
  1919   // forced wideness of small ranges anyway.
  1920   if (size->_widen != Type::WidenMin)
  1921     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1922   else
  1923     return size;
  1926 //------------------------------make-------------------------------------------
  1927 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  1928   if (UseCompressedOops && elem->isa_oopptr()) {
  1929     elem = elem->make_narrowoop();
  1931   size = normalize_array_size(size);
  1932   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
  1935 //------------------------------meet-------------------------------------------
  1936 // Compute the MEET of two types.  It returns a new Type object.
  1937 const Type *TypeAry::xmeet( const Type *t ) const {
  1938   // Perform a fast test for common case; meeting the same types together.
  1939   if( this == t ) return this;  // Meeting same type-rep?
  1941   // Current "this->_base" is Ary
  1942   switch (t->base()) {          // switch on original type
  1944   case Bottom:                  // Ye Olde Default
  1945     return t;
  1947   default:                      // All else is a mistake
  1948     typerr(t);
  1950   case Array: {                 // Meeting 2 arrays?
  1951     const TypeAry *a = t->is_ary();
  1952     return TypeAry::make(_elem->meet_speculative(a->_elem),
  1953                          _size->xmeet(a->_size)->is_int(),
  1954                          _stable & a->_stable);
  1956   case Top:
  1957     break;
  1959   return this;                  // Return the double constant
  1962 //------------------------------xdual------------------------------------------
  1963 // Dual: compute field-by-field dual
  1964 const Type *TypeAry::xdual() const {
  1965   const TypeInt* size_dual = _size->dual()->is_int();
  1966   size_dual = normalize_array_size(size_dual);
  1967   return new TypeAry(_elem->dual(), size_dual, !_stable);
  1970 //------------------------------eq---------------------------------------------
  1971 // Structural equality check for Type representations
  1972 bool TypeAry::eq( const Type *t ) const {
  1973   const TypeAry *a = (const TypeAry*)t;
  1974   return _elem == a->_elem &&
  1975     _stable == a->_stable &&
  1976     _size == a->_size;
  1979 //------------------------------hash-------------------------------------------
  1980 // Type-specific hashing function.
  1981 int TypeAry::hash(void) const {
  1982   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
  1985 /**
  1986  * Return same type without a speculative part in the element
  1987  */
  1988 const Type* TypeAry::remove_speculative() const {
  1989   return make(_elem->remove_speculative(), _size, _stable);
  1992 //----------------------interface_vs_oop---------------------------------------
  1993 #ifdef ASSERT
  1994 bool TypeAry::interface_vs_oop(const Type *t) const {
  1995   const TypeAry* t_ary = t->is_ary();
  1996   if (t_ary) {
  1997     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
  1998     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
  1999     if(this_ptr != NULL && t_ptr != NULL) {
  2000       return this_ptr->interface_vs_oop(t_ptr);
  2003   return false;
  2005 #endif
  2007 //------------------------------dump2------------------------------------------
  2008 #ifndef PRODUCT
  2009 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  2010   if (_stable)  st->print("stable:");
  2011   _elem->dump2(d, depth, st);
  2012   st->print("[");
  2013   _size->dump2(d, depth, st);
  2014   st->print("]");
  2016 #endif
  2018 //------------------------------singleton--------------------------------------
  2019 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2020 // constants (Ldi nodes).  Singletons are integer, float or double constants
  2021 // or a single symbol.
  2022 bool TypeAry::singleton(void) const {
  2023   return false;                 // Never a singleton
  2026 bool TypeAry::empty(void) const {
  2027   return _elem->empty() || _size->empty();
  2030 //--------------------------ary_must_be_exact----------------------------------
  2031 bool TypeAry::ary_must_be_exact() const {
  2032   if (!UseExactTypes)       return false;
  2033   // This logic looks at the element type of an array, and returns true
  2034   // if the element type is either a primitive or a final instance class.
  2035   // In such cases, an array built on this ary must have no subclasses.
  2036   if (_elem == BOTTOM)      return false;  // general array not exact
  2037   if (_elem == TOP   )      return false;  // inverted general array not exact
  2038   const TypeOopPtr*  toop = NULL;
  2039   if (UseCompressedOops && _elem->isa_narrowoop()) {
  2040     toop = _elem->make_ptr()->isa_oopptr();
  2041   } else {
  2042     toop = _elem->isa_oopptr();
  2044   if (!toop)                return true;   // a primitive type, like int
  2045   ciKlass* tklass = toop->klass();
  2046   if (tklass == NULL)       return false;  // unloaded class
  2047   if (!tklass->is_loaded()) return false;  // unloaded class
  2048   const TypeInstPtr* tinst;
  2049   if (_elem->isa_narrowoop())
  2050     tinst = _elem->make_ptr()->isa_instptr();
  2051   else
  2052     tinst = _elem->isa_instptr();
  2053   if (tinst)
  2054     return tklass->as_instance_klass()->is_final();
  2055   const TypeAryPtr*  tap;
  2056   if (_elem->isa_narrowoop())
  2057     tap = _elem->make_ptr()->isa_aryptr();
  2058   else
  2059     tap = _elem->isa_aryptr();
  2060   if (tap)
  2061     return tap->ary()->ary_must_be_exact();
  2062   return false;
  2065 //==============================TypeVect=======================================
  2066 // Convenience common pre-built types.
  2067 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  2068 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  2069 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  2070 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  2072 //------------------------------make-------------------------------------------
  2073 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  2074   BasicType elem_bt = elem->array_element_basic_type();
  2075   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  2076   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  2077   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  2078   int size = length * type2aelembytes(elem_bt);
  2079   switch (Matcher::vector_ideal_reg(size)) {
  2080   case Op_VecS:
  2081     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  2082   case Op_RegL:
  2083   case Op_VecD:
  2084   case Op_RegD:
  2085     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  2086   case Op_VecX:
  2087     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  2088   case Op_VecY:
  2089     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  2091  ShouldNotReachHere();
  2092   return NULL;
  2095 //------------------------------meet-------------------------------------------
  2096 // Compute the MEET of two types.  It returns a new Type object.
  2097 const Type *TypeVect::xmeet( const Type *t ) const {
  2098   // Perform a fast test for common case; meeting the same types together.
  2099   if( this == t ) return this;  // Meeting same type-rep?
  2101   // Current "this->_base" is Vector
  2102   switch (t->base()) {          // switch on original type
  2104   case Bottom:                  // Ye Olde Default
  2105     return t;
  2107   default:                      // All else is a mistake
  2108     typerr(t);
  2110   case VectorS:
  2111   case VectorD:
  2112   case VectorX:
  2113   case VectorY: {                // Meeting 2 vectors?
  2114     const TypeVect* v = t->is_vect();
  2115     assert(  base() == v->base(), "");
  2116     assert(length() == v->length(), "");
  2117     assert(element_basic_type() == v->element_basic_type(), "");
  2118     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2120   case Top:
  2121     break;
  2123   return this;
  2126 //------------------------------xdual------------------------------------------
  2127 // Dual: compute field-by-field dual
  2128 const Type *TypeVect::xdual() const {
  2129   return new TypeVect(base(), _elem->dual(), _length);
  2132 //------------------------------eq---------------------------------------------
  2133 // Structural equality check for Type representations
  2134 bool TypeVect::eq(const Type *t) const {
  2135   const TypeVect *v = t->is_vect();
  2136   return (_elem == v->_elem) && (_length == v->_length);
  2139 //------------------------------hash-------------------------------------------
  2140 // Type-specific hashing function.
  2141 int TypeVect::hash(void) const {
  2142   return (intptr_t)_elem + (intptr_t)_length;
  2145 //------------------------------singleton--------------------------------------
  2146 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2147 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2148 // constant value (when vector is created with Replicate code).
  2149 bool TypeVect::singleton(void) const {
  2150 // There is no Con node for vectors yet.
  2151 //  return _elem->singleton();
  2152   return false;
  2155 bool TypeVect::empty(void) const {
  2156   return _elem->empty();
  2159 //------------------------------dump2------------------------------------------
  2160 #ifndef PRODUCT
  2161 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2162   switch (base()) {
  2163   case VectorS:
  2164     st->print("vectors["); break;
  2165   case VectorD:
  2166     st->print("vectord["); break;
  2167   case VectorX:
  2168     st->print("vectorx["); break;
  2169   case VectorY:
  2170     st->print("vectory["); break;
  2171   default:
  2172     ShouldNotReachHere();
  2174   st->print("%d]:{", _length);
  2175   _elem->dump2(d, depth, st);
  2176   st->print("}");
  2178 #endif
  2181 //=============================================================================
  2182 // Convenience common pre-built types.
  2183 const TypePtr *TypePtr::NULL_PTR;
  2184 const TypePtr *TypePtr::NOTNULL;
  2185 const TypePtr *TypePtr::BOTTOM;
  2187 //------------------------------meet-------------------------------------------
  2188 // Meet over the PTR enum
  2189 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2190   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2191   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2192   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2193   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2194   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2195   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2196   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2197 };
  2199 //------------------------------make-------------------------------------------
  2200 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2201   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2204 //------------------------------cast_to_ptr_type-------------------------------
  2205 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2206   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2207   if( ptr == _ptr ) return this;
  2208   return make(_base, ptr, _offset);
  2211 //------------------------------get_con----------------------------------------
  2212 intptr_t TypePtr::get_con() const {
  2213   assert( _ptr == Null, "" );
  2214   return _offset;
  2217 //------------------------------meet-------------------------------------------
  2218 // Compute the MEET of two types.  It returns a new Type object.
  2219 const Type *TypePtr::xmeet( const Type *t ) const {
  2220   // Perform a fast test for common case; meeting the same types together.
  2221   if( this == t ) return this;  // Meeting same type-rep?
  2223   // Current "this->_base" is AnyPtr
  2224   switch (t->base()) {          // switch on original type
  2225   case Int:                     // Mixing ints & oops happens when javac
  2226   case Long:                    // reuses local variables
  2227   case FloatTop:
  2228   case FloatCon:
  2229   case FloatBot:
  2230   case DoubleTop:
  2231   case DoubleCon:
  2232   case DoubleBot:
  2233   case NarrowOop:
  2234   case NarrowKlass:
  2235   case Bottom:                  // Ye Olde Default
  2236     return Type::BOTTOM;
  2237   case Top:
  2238     return this;
  2240   case AnyPtr: {                // Meeting to AnyPtrs
  2241     const TypePtr *tp = t->is_ptr();
  2242     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2244   case RawPtr:                  // For these, flip the call around to cut down
  2245   case OopPtr:
  2246   case InstPtr:                 // on the cases I have to handle.
  2247   case AryPtr:
  2248   case MetadataPtr:
  2249   case KlassPtr:
  2250     return t->xmeet(this);      // Call in reverse direction
  2251   default:                      // All else is a mistake
  2252     typerr(t);
  2255   return this;
  2258 //------------------------------meet_offset------------------------------------
  2259 int TypePtr::meet_offset( int offset ) const {
  2260   // Either is 'TOP' offset?  Return the other offset!
  2261   if( _offset == OffsetTop ) return offset;
  2262   if( offset == OffsetTop ) return _offset;
  2263   // If either is different, return 'BOTTOM' offset
  2264   if( _offset != offset ) return OffsetBot;
  2265   return _offset;
  2268 //------------------------------dual_offset------------------------------------
  2269 int TypePtr::dual_offset( ) const {
  2270   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2271   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2272   return _offset;               // Map everything else into self
  2275 //------------------------------xdual------------------------------------------
  2276 // Dual: compute field-by-field dual
  2277 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2278   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2279 };
  2280 const Type *TypePtr::xdual() const {
  2281   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2284 //------------------------------xadd_offset------------------------------------
  2285 int TypePtr::xadd_offset( intptr_t offset ) const {
  2286   // Adding to 'TOP' offset?  Return 'TOP'!
  2287   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2288   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2289   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2290   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2291   offset += (intptr_t)_offset;
  2292   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2294   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2295   // It is possible to construct a negative offset during PhaseCCP
  2297   return (int)offset;        // Sum valid offsets
  2300 //------------------------------add_offset-------------------------------------
  2301 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2302   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2305 //------------------------------eq---------------------------------------------
  2306 // Structural equality check for Type representations
  2307 bool TypePtr::eq( const Type *t ) const {
  2308   const TypePtr *a = (const TypePtr*)t;
  2309   return _ptr == a->ptr() && _offset == a->offset();
  2312 //------------------------------hash-------------------------------------------
  2313 // Type-specific hashing function.
  2314 int TypePtr::hash(void) const {
  2315   return _ptr + _offset;
  2318 //------------------------------dump2------------------------------------------
  2319 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2320   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2321 };
  2323 #ifndef PRODUCT
  2324 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2325   if( _ptr == Null ) st->print("NULL");
  2326   else st->print("%s *", ptr_msg[_ptr]);
  2327   if( _offset == OffsetTop ) st->print("+top");
  2328   else if( _offset == OffsetBot ) st->print("+bot");
  2329   else if( _offset ) st->print("+%d", _offset);
  2331 #endif
  2333 //------------------------------singleton--------------------------------------
  2334 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2335 // constants
  2336 bool TypePtr::singleton(void) const {
  2337   // TopPTR, Null, AnyNull, Constant are all singletons
  2338   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2341 bool TypePtr::empty(void) const {
  2342   return (_offset == OffsetTop) || above_centerline(_ptr);
  2345 //=============================================================================
  2346 // Convenience common pre-built types.
  2347 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2348 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2350 //------------------------------make-------------------------------------------
  2351 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2352   assert( ptr != Constant, "what is the constant?" );
  2353   assert( ptr != Null, "Use TypePtr for NULL" );
  2354   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2357 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2358   assert( bits, "Use TypePtr for NULL" );
  2359   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2362 //------------------------------cast_to_ptr_type-------------------------------
  2363 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2364   assert( ptr != Constant, "what is the constant?" );
  2365   assert( ptr != Null, "Use TypePtr for NULL" );
  2366   assert( _bits==0, "Why cast a constant address?");
  2367   if( ptr == _ptr ) return this;
  2368   return make(ptr);
  2371 //------------------------------get_con----------------------------------------
  2372 intptr_t TypeRawPtr::get_con() const {
  2373   assert( _ptr == Null || _ptr == Constant, "" );
  2374   return (intptr_t)_bits;
  2377 //------------------------------meet-------------------------------------------
  2378 // Compute the MEET of two types.  It returns a new Type object.
  2379 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2380   // Perform a fast test for common case; meeting the same types together.
  2381   if( this == t ) return this;  // Meeting same type-rep?
  2383   // Current "this->_base" is RawPtr
  2384   switch( t->base() ) {         // switch on original type
  2385   case Bottom:                  // Ye Olde Default
  2386     return t;
  2387   case Top:
  2388     return this;
  2389   case AnyPtr:                  // Meeting to AnyPtrs
  2390     break;
  2391   case RawPtr: {                // might be top, bot, any/not or constant
  2392     enum PTR tptr = t->is_ptr()->ptr();
  2393     enum PTR ptr = meet_ptr( tptr );
  2394     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2395       if( tptr == Constant && _ptr != Constant)  return t;
  2396       if( _ptr == Constant && tptr != Constant)  return this;
  2397       ptr = NotNull;            // Fall down in lattice
  2399     return make( ptr );
  2402   case OopPtr:
  2403   case InstPtr:
  2404   case AryPtr:
  2405   case MetadataPtr:
  2406   case KlassPtr:
  2407     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2408   default:                      // All else is a mistake
  2409     typerr(t);
  2412   // Found an AnyPtr type vs self-RawPtr type
  2413   const TypePtr *tp = t->is_ptr();
  2414   switch (tp->ptr()) {
  2415   case TypePtr::TopPTR:  return this;
  2416   case TypePtr::BotPTR:  return t;
  2417   case TypePtr::Null:
  2418     if( _ptr == TypePtr::TopPTR ) return t;
  2419     return TypeRawPtr::BOTTOM;
  2420   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2421   case TypePtr::AnyNull:
  2422     if( _ptr == TypePtr::Constant) return this;
  2423     return make( meet_ptr(TypePtr::AnyNull) );
  2424   default: ShouldNotReachHere();
  2426   return this;
  2429 //------------------------------xdual------------------------------------------
  2430 // Dual: compute field-by-field dual
  2431 const Type *TypeRawPtr::xdual() const {
  2432   return new TypeRawPtr( dual_ptr(), _bits );
  2435 //------------------------------add_offset-------------------------------------
  2436 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2437   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2438   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2439   if( offset == 0 ) return this; // No change
  2440   switch (_ptr) {
  2441   case TypePtr::TopPTR:
  2442   case TypePtr::BotPTR:
  2443   case TypePtr::NotNull:
  2444     return this;
  2445   case TypePtr::Null:
  2446   case TypePtr::Constant: {
  2447     address bits = _bits+offset;
  2448     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2449     return make( bits );
  2451   default:  ShouldNotReachHere();
  2453   return NULL;                  // Lint noise
  2456 //------------------------------eq---------------------------------------------
  2457 // Structural equality check for Type representations
  2458 bool TypeRawPtr::eq( const Type *t ) const {
  2459   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2460   return _bits == a->_bits && TypePtr::eq(t);
  2463 //------------------------------hash-------------------------------------------
  2464 // Type-specific hashing function.
  2465 int TypeRawPtr::hash(void) const {
  2466   return (intptr_t)_bits + TypePtr::hash();
  2469 //------------------------------dump2------------------------------------------
  2470 #ifndef PRODUCT
  2471 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2472   if( _ptr == Constant )
  2473     st->print(INTPTR_FORMAT, _bits);
  2474   else
  2475     st->print("rawptr:%s", ptr_msg[_ptr]);
  2477 #endif
  2479 //=============================================================================
  2480 // Convenience common pre-built type.
  2481 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2483 //------------------------------TypeOopPtr-------------------------------------
  2484 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  2485   : TypePtr(t, ptr, offset),
  2486     _const_oop(o), _klass(k),
  2487     _klass_is_exact(xk),
  2488     _is_ptr_to_narrowoop(false),
  2489     _is_ptr_to_narrowklass(false),
  2490     _is_ptr_to_boxed_value(false),
  2491     _instance_id(instance_id),
  2492     _speculative(speculative),
  2493     _inline_depth(inline_depth){
  2494   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
  2495       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
  2496     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  2498 #ifdef _LP64
  2499   if (_offset != 0) {
  2500     if (_offset == oopDesc::klass_offset_in_bytes()) {
  2501       _is_ptr_to_narrowklass = UseCompressedClassPointers;
  2502     } else if (klass() == NULL) {
  2503       // Array with unknown body type
  2504       assert(this->isa_aryptr(), "only arrays without klass");
  2505       _is_ptr_to_narrowoop = UseCompressedOops;
  2506     } else if (this->isa_aryptr()) {
  2507       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
  2508                              _offset != arrayOopDesc::length_offset_in_bytes());
  2509     } else if (klass()->is_instance_klass()) {
  2510       ciInstanceKlass* ik = klass()->as_instance_klass();
  2511       ciField* field = NULL;
  2512       if (this->isa_klassptr()) {
  2513         // Perm objects don't use compressed references
  2514       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2515         // unsafe access
  2516         _is_ptr_to_narrowoop = UseCompressedOops;
  2517       } else { // exclude unsafe ops
  2518         assert(this->isa_instptr(), "must be an instance ptr.");
  2520         if (klass() == ciEnv::current()->Class_klass() &&
  2521             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2522              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2523           // Special hidden fields from the Class.
  2524           assert(this->isa_instptr(), "must be an instance ptr.");
  2525           _is_ptr_to_narrowoop = false;
  2526         } else if (klass() == ciEnv::current()->Class_klass() &&
  2527                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
  2528           // Static fields
  2529           assert(o != NULL, "must be constant");
  2530           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2531           ciField* field = k->get_field_by_offset(_offset, true);
  2532           assert(field != NULL, "missing field");
  2533           BasicType basic_elem_type = field->layout_type();
  2534           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2535                                                        basic_elem_type == T_ARRAY);
  2536         } else {
  2537           // Instance fields which contains a compressed oop references.
  2538           field = ik->get_field_by_offset(_offset, false);
  2539           if (field != NULL) {
  2540             BasicType basic_elem_type = field->layout_type();
  2541             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
  2542                                                          basic_elem_type == T_ARRAY);
  2543           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2544             // Compile::find_alias_type() cast exactness on all types to verify
  2545             // that it does not affect alias type.
  2546             _is_ptr_to_narrowoop = UseCompressedOops;
  2547           } else {
  2548             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2549             _is_ptr_to_narrowoop = UseCompressedOops;
  2555 #endif
  2558 //------------------------------make-------------------------------------------
  2559 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2560                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  2561   assert(ptr != Constant, "no constant generic pointers");
  2562   ciKlass*  k = Compile::current()->env()->Object_klass();
  2563   bool      xk = false;
  2564   ciObject* o = NULL;
  2565   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
  2569 //------------------------------cast_to_ptr_type-------------------------------
  2570 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2571   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2572   if( ptr == _ptr ) return this;
  2573   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
  2576 //-----------------------------cast_to_instance_id----------------------------
  2577 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2578   // There are no instances of a general oop.
  2579   // Return self unchanged.
  2580   return this;
  2583 //-----------------------------cast_to_exactness-------------------------------
  2584 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2585   // There is no such thing as an exact general oop.
  2586   // Return self unchanged.
  2587   return this;
  2591 //------------------------------as_klass_type----------------------------------
  2592 // Return the klass type corresponding to this instance or array type.
  2593 // It is the type that is loaded from an object of this type.
  2594 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2595   ciKlass* k = klass();
  2596   bool    xk = klass_is_exact();
  2597   if (k == NULL)
  2598     return TypeKlassPtr::OBJECT;
  2599   else
  2600     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2603 const Type *TypeOopPtr::xmeet(const Type *t) const {
  2604   const Type* res = xmeet_helper(t);
  2605   if (res->isa_oopptr() == NULL) {
  2606     return res;
  2609   const TypeOopPtr* res_oopptr = res->is_oopptr();
  2610   if (res_oopptr->speculative() != NULL) {
  2611     // type->speculative() == NULL means that speculation is no better
  2612     // than type, i.e. type->speculative() == type. So there are 2
  2613     // ways to represent the fact that we have no useful speculative
  2614     // data and we should use a single one to be able to test for
  2615     // equality between types. Check whether type->speculative() ==
  2616     // type and set speculative to NULL if it is the case.
  2617     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
  2618       return res_oopptr->remove_speculative();
  2622   return res;
  2625 //------------------------------meet-------------------------------------------
  2626 // Compute the MEET of two types.  It returns a new Type object.
  2627 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  2628   // Perform a fast test for common case; meeting the same types together.
  2629   if( this == t ) return this;  // Meeting same type-rep?
  2631   // Current "this->_base" is OopPtr
  2632   switch (t->base()) {          // switch on original type
  2634   case Int:                     // Mixing ints & oops happens when javac
  2635   case Long:                    // reuses local variables
  2636   case FloatTop:
  2637   case FloatCon:
  2638   case FloatBot:
  2639   case DoubleTop:
  2640   case DoubleCon:
  2641   case DoubleBot:
  2642   case NarrowOop:
  2643   case NarrowKlass:
  2644   case Bottom:                  // Ye Olde Default
  2645     return Type::BOTTOM;
  2646   case Top:
  2647     return this;
  2649   default:                      // All else is a mistake
  2650     typerr(t);
  2652   case RawPtr:
  2653   case MetadataPtr:
  2654   case KlassPtr:
  2655     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2657   case AnyPtr: {
  2658     // Found an AnyPtr type vs self-OopPtr type
  2659     const TypePtr *tp = t->is_ptr();
  2660     int offset = meet_offset(tp->offset());
  2661     PTR ptr = meet_ptr(tp->ptr());
  2662     switch (tp->ptr()) {
  2663     case Null:
  2664       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2665       // else fall through:
  2666     case TopPTR:
  2667     case AnyNull: {
  2668       int instance_id = meet_instance_id(InstanceTop);
  2669       const TypeOopPtr* speculative = _speculative;
  2670       return make(ptr, offset, instance_id, speculative, _inline_depth);
  2672     case BotPTR:
  2673     case NotNull:
  2674       return TypePtr::make(AnyPtr, ptr, offset);
  2675     default: typerr(t);
  2679   case OopPtr: {                 // Meeting to other OopPtrs
  2680     const TypeOopPtr *tp = t->is_oopptr();
  2681     int instance_id = meet_instance_id(tp->instance_id());
  2682     const TypeOopPtr* speculative = xmeet_speculative(tp);
  2683     int depth = meet_inline_depth(tp->inline_depth());
  2684     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
  2687   case InstPtr:                  // For these, flip the call around to cut down
  2688   case AryPtr:
  2689     return t->xmeet(this);      // Call in reverse direction
  2691   } // End of switch
  2692   return this;                  // Return the double constant
  2696 //------------------------------xdual------------------------------------------
  2697 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2698 const Type *TypeOopPtr::xdual() const {
  2699   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  2700   assert(const_oop() == NULL,             "no constants here");
  2701   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  2704 //--------------------------make_from_klass_common-----------------------------
  2705 // Computes the element-type given a klass.
  2706 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2707   if (klass->is_instance_klass()) {
  2708     Compile* C = Compile::current();
  2709     Dependencies* deps = C->dependencies();
  2710     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2711     // Element is an instance
  2712     bool klass_is_exact = false;
  2713     if (klass->is_loaded()) {
  2714       // Try to set klass_is_exact.
  2715       ciInstanceKlass* ik = klass->as_instance_klass();
  2716       klass_is_exact = ik->is_final();
  2717       if (!klass_is_exact && klass_change
  2718           && deps != NULL && UseUniqueSubclasses) {
  2719         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2720         if (sub != NULL) {
  2721           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2722           klass = ik = sub;
  2723           klass_is_exact = sub->is_final();
  2726       if (!klass_is_exact && try_for_exact
  2727           && deps != NULL && UseExactTypes) {
  2728         if (!ik->is_interface() && !ik->has_subklass()) {
  2729           // Add a dependence; if concrete subclass added we need to recompile
  2730           deps->assert_leaf_type(ik);
  2731           klass_is_exact = true;
  2735     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2736   } else if (klass->is_obj_array_klass()) {
  2737     // Element is an object array. Recursively call ourself.
  2738     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2739     bool xk = etype->klass_is_exact();
  2740     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2741     // We used to pass NotNull in here, asserting that the sub-arrays
  2742     // are all not-null.  This is not true in generally, as code can
  2743     // slam NULLs down in the subarrays.
  2744     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2745     return arr;
  2746   } else if (klass->is_type_array_klass()) {
  2747     // Element is an typeArray
  2748     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2749     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2750     // We used to pass NotNull in here, asserting that the array pointer
  2751     // is not-null. That was not true in general.
  2752     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2753     return arr;
  2754   } else {
  2755     ShouldNotReachHere();
  2756     return NULL;
  2760 //------------------------------make_from_constant-----------------------------
  2761 // Make a java pointer from an oop constant
  2762 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
  2763                                                  bool require_constant,
  2764                                                  bool is_autobox_cache) {
  2765   assert(!o->is_null_object(), "null object not yet handled here.");
  2766   ciKlass* klass = o->klass();
  2767   if (klass->is_instance_klass()) {
  2768     // Element is an instance
  2769     if (require_constant) {
  2770       if (!o->can_be_constant())  return NULL;
  2771     } else if (!o->should_be_constant()) {
  2772       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2774     return TypeInstPtr::make(o);
  2775   } else if (klass->is_obj_array_klass()) {
  2776     // Element is an object array. Recursively call ourself.
  2777     const TypeOopPtr *etype =
  2778       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2779     if (is_autobox_cache) {
  2780       // The pointers in the autobox arrays are always non-null.
  2781       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  2783     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2784     // We used to pass NotNull in here, asserting that the sub-arrays
  2785     // are all not-null.  This is not true in generally, as code can
  2786     // slam NULLs down in the subarrays.
  2787     if (require_constant) {
  2788       if (!o->can_be_constant())  return NULL;
  2789     } else if (!o->should_be_constant()) {
  2790       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2792     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
  2793     return arr;
  2794   } else if (klass->is_type_array_klass()) {
  2795     // Element is an typeArray
  2796     const Type* etype =
  2797       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
  2798     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2799     // We used to pass NotNull in here, asserting that the array pointer
  2800     // is not-null. That was not true in general.
  2801     if (require_constant) {
  2802       if (!o->can_be_constant())  return NULL;
  2803     } else if (!o->should_be_constant()) {
  2804       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2806     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2807     return arr;
  2810   fatal("unhandled object type");
  2811   return NULL;
  2814 //------------------------------get_con----------------------------------------
  2815 intptr_t TypeOopPtr::get_con() const {
  2816   assert( _ptr == Null || _ptr == Constant, "" );
  2817   assert( _offset >= 0, "" );
  2819   if (_offset != 0) {
  2820     // After being ported to the compiler interface, the compiler no longer
  2821     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2822     // to a handle at compile time.  This handle is embedded in the generated
  2823     // code and dereferenced at the time the nmethod is made.  Until that time,
  2824     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2825     // have access to the addresses!).  This does not seem to currently happen,
  2826     // but this assertion here is to help prevent its occurence.
  2827     tty->print_cr("Found oop constant with non-zero offset");
  2828     ShouldNotReachHere();
  2831   return (intptr_t)const_oop()->constant_encoding();
  2835 //-----------------------------filter------------------------------------------
  2836 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2837 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
  2839   const Type* ft = join_helper(kills, include_speculative);
  2840   const TypeInstPtr* ftip = ft->isa_instptr();
  2841   const TypeInstPtr* ktip = kills->isa_instptr();
  2843   if (ft->empty()) {
  2844     // Check for evil case of 'this' being a class and 'kills' expecting an
  2845     // interface.  This can happen because the bytecodes do not contain
  2846     // enough type info to distinguish a Java-level interface variable
  2847     // from a Java-level object variable.  If we meet 2 classes which
  2848     // both implement interface I, but their meet is at 'j/l/O' which
  2849     // doesn't implement I, we have no way to tell if the result should
  2850     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2851     // into a Phi which "knows" it's an Interface type we'll have to
  2852     // uplift the type.
  2853     if (!empty()) {
  2854       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2855         return kills;           // Uplift to interface
  2857       // Also check for evil cases of 'this' being a class array
  2858       // and 'kills' expecting an array of interfaces.
  2859       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
  2860       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
  2861         return kills;           // Uplift to array of interface
  2865     return Type::TOP;           // Canonical empty value
  2868   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2869   // the join should report back the class.  However, if we have a J/L/Object
  2870   // class-typed Phi and an interface flows in, it's possible that the meet &
  2871   // join report an interface back out.  This isn't possible but happens
  2872   // because the type system doesn't interact well with interfaces.
  2873   if (ftip != NULL && ktip != NULL &&
  2874       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2875       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2876     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2877     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2878     return ktip->cast_to_ptr_type(ftip->ptr());
  2881   return ft;
  2884 //------------------------------eq---------------------------------------------
  2885 // Structural equality check for Type representations
  2886 bool TypeOopPtr::eq( const Type *t ) const {
  2887   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2888   if (_klass_is_exact != a->_klass_is_exact ||
  2889       _instance_id != a->_instance_id ||
  2890       !eq_speculative(a) ||
  2891       _inline_depth != a->_inline_depth)  return false;
  2892   ciObject* one = const_oop();
  2893   ciObject* two = a->const_oop();
  2894   if (one == NULL || two == NULL) {
  2895     return (one == two) && TypePtr::eq(t);
  2896   } else {
  2897     return one->equals(two) && TypePtr::eq(t);
  2901 //------------------------------hash-------------------------------------------
  2902 // Type-specific hashing function.
  2903 int TypeOopPtr::hash(void) const {
  2904   return
  2905     (const_oop() ? const_oop()->hash() : 0) +
  2906     _klass_is_exact +
  2907     _instance_id +
  2908     hash_speculative() +
  2909     _inline_depth +
  2910     TypePtr::hash();
  2913 //------------------------------dump2------------------------------------------
  2914 #ifndef PRODUCT
  2915 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2916   st->print("oopptr:%s", ptr_msg[_ptr]);
  2917   if( _klass_is_exact ) st->print(":exact");
  2918   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2919   switch( _offset ) {
  2920   case OffsetTop: st->print("+top"); break;
  2921   case OffsetBot: st->print("+any"); break;
  2922   case         0: break;
  2923   default:        st->print("+%d",_offset); break;
  2925   if (_instance_id == InstanceTop)
  2926     st->print(",iid=top");
  2927   else if (_instance_id != InstanceBot)
  2928     st->print(",iid=%d",_instance_id);
  2930   dump_inline_depth(st);
  2931   dump_speculative(st);
  2934 /**
  2935  *dump the speculative part of the type
  2936  */
  2937 void TypeOopPtr::dump_speculative(outputStream *st) const {
  2938   if (_speculative != NULL) {
  2939     st->print(" (speculative=");
  2940     _speculative->dump_on(st);
  2941     st->print(")");
  2945 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
  2946   if (_inline_depth != InlineDepthBottom) {
  2947     if (_inline_depth == InlineDepthTop) {
  2948       st->print(" (inline_depth=InlineDepthTop)");
  2949     } else {
  2950       st->print(" (inline_depth=%d)", _inline_depth);
  2954 #endif
  2956 //------------------------------singleton--------------------------------------
  2957 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2958 // constants
  2959 bool TypeOopPtr::singleton(void) const {
  2960   // detune optimizer to not generate constant oop + constant offset as a constant!
  2961   // TopPTR, Null, AnyNull, Constant are all singletons
  2962   return (_offset == 0) && !below_centerline(_ptr);
  2965 //------------------------------add_offset-------------------------------------
  2966 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  2967   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  2970 /**
  2971  * Return same type without a speculative part
  2972  */
  2973 const Type* TypeOopPtr::remove_speculative() const {
  2974   if (_speculative == NULL) {
  2975     return this;
  2977   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  2978   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
  2981 /**
  2982  * Return same type but with a different inline depth (used for speculation)
  2984  * @param depth  depth to meet with
  2985  */
  2986 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
  2987   if (!UseInlineDepthForSpeculativeTypes) {
  2988     return this;
  2990   return make(_ptr, _offset, _instance_id, _speculative, depth);
  2993 /**
  2994  * Check whether new profiling would improve speculative type
  2996  * @param   exact_kls    class from profiling
  2997  * @param   inline_depth inlining depth of profile point
  2999  * @return  true if type profile is valuable
  3000  */
  3001 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
  3002   // no way to improve an already exact type
  3003   if (klass_is_exact()) {
  3004     return false;
  3006   // no profiling?
  3007   if (exact_kls == NULL) {
  3008     return false;
  3010   // no speculative type or non exact speculative type?
  3011   if (speculative_type() == NULL) {
  3012     return true;
  3014   // If the node already has an exact speculative type keep it,
  3015   // unless it was provided by profiling that is at a deeper
  3016   // inlining level. Profiling at a higher inlining depth is
  3017   // expected to be less accurate.
  3018   if (_speculative->inline_depth() == InlineDepthBottom) {
  3019     return false;
  3021   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
  3022   return inline_depth < _speculative->inline_depth();
  3025 //------------------------------meet_instance_id--------------------------------
  3026 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  3027   // Either is 'TOP' instance?  Return the other instance!
  3028   if( _instance_id == InstanceTop ) return  instance_id;
  3029   if(  instance_id == InstanceTop ) return _instance_id;
  3030   // If either is different, return 'BOTTOM' instance
  3031   if( _instance_id != instance_id ) return InstanceBot;
  3032   return _instance_id;
  3035 //------------------------------dual_instance_id--------------------------------
  3036 int TypeOopPtr::dual_instance_id( ) const {
  3037   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  3038   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  3039   return _instance_id;              // Map everything else into self
  3042 /**
  3043  * meet of the speculative parts of 2 types
  3045  * @param other  type to meet with
  3046  */
  3047 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
  3048   bool this_has_spec = (_speculative != NULL);
  3049   bool other_has_spec = (other->speculative() != NULL);
  3051   if (!this_has_spec && !other_has_spec) {
  3052     return NULL;
  3055   // If we are at a point where control flow meets and one branch has
  3056   // a speculative type and the other has not, we meet the speculative
  3057   // type of one branch with the actual type of the other. If the
  3058   // actual type is exact and the speculative is as well, then the
  3059   // result is a speculative type which is exact and we can continue
  3060   // speculation further.
  3061   const TypeOopPtr* this_spec = _speculative;
  3062   const TypeOopPtr* other_spec = other->speculative();
  3064   if (!this_has_spec) {
  3065     this_spec = this;
  3068   if (!other_has_spec) {
  3069     other_spec = other;
  3072   return this_spec->meet_speculative(other_spec)->is_oopptr();
  3075 /**
  3076  * dual of the speculative part of the type
  3077  */
  3078 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  3079   if (_speculative == NULL) {
  3080     return NULL;
  3082   return _speculative->dual()->is_oopptr();
  3085 /**
  3086  * add offset to the speculative part of the type
  3088  * @param offset  offset to add
  3089  */
  3090 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  3091   if (_speculative == NULL) {
  3092     return NULL;
  3094   return _speculative->add_offset(offset)->is_oopptr();
  3097 /**
  3098  * Are the speculative parts of 2 types equal?
  3100  * @param other  type to compare this one to
  3101  */
  3102 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  3103   if (_speculative == NULL || other->speculative() == NULL) {
  3104     return _speculative == other->speculative();
  3107   if (_speculative->base() != other->speculative()->base()) {
  3108     return false;
  3111   return _speculative->eq(other->speculative());
  3114 /**
  3115  * Hash of the speculative part of the type
  3116  */
  3117 int TypeOopPtr::hash_speculative() const {
  3118   if (_speculative == NULL) {
  3119     return 0;
  3122   return _speculative->hash();
  3125 /**
  3126  * dual of the inline depth for this type (used for speculation)
  3127  */
  3128 int TypeOopPtr::dual_inline_depth() const {
  3129   return -inline_depth();
  3132 /**
  3133  * meet of 2 inline depth (used for speculation)
  3135  * @param depth  depth to meet with
  3136  */
  3137 int TypeOopPtr::meet_inline_depth(int depth) const {
  3138   return MAX2(inline_depth(), depth);
  3141 //=============================================================================
  3142 // Convenience common pre-built types.
  3143 const TypeInstPtr *TypeInstPtr::NOTNULL;
  3144 const TypeInstPtr *TypeInstPtr::BOTTOM;
  3145 const TypeInstPtr *TypeInstPtr::MIRROR;
  3146 const TypeInstPtr *TypeInstPtr::MARK;
  3147 const TypeInstPtr *TypeInstPtr::KLASS;
  3149 //------------------------------TypeInstPtr-------------------------------------
  3150 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
  3151   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
  3152    assert(k != NULL &&
  3153           (k->is_loaded() || o == NULL),
  3154           "cannot have constants with non-loaded klass");
  3155 };
  3157 //------------------------------make-------------------------------------------
  3158 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  3159                                      ciKlass* k,
  3160                                      bool xk,
  3161                                      ciObject* o,
  3162                                      int offset,
  3163                                      int instance_id,
  3164                                      const TypeOopPtr* speculative,
  3165                                      int inline_depth) {
  3166   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  3167   // Either const_oop() is NULL or else ptr is Constant
  3168   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  3169           "constant pointers must have a value supplied" );
  3170   // Ptr is never Null
  3171   assert( ptr != Null, "NULL pointers are not typed" );
  3173   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3174   if (!UseExactTypes)  xk = false;
  3175   if (ptr == Constant) {
  3176     // Note:  This case includes meta-object constants, such as methods.
  3177     xk = true;
  3178   } else if (k->is_loaded()) {
  3179     ciInstanceKlass* ik = k->as_instance_klass();
  3180     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  3181     if (xk && ik->is_interface())  xk = false;  // no exact interface
  3184   // Now hash this baby
  3185   TypeInstPtr *result =
  3186     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
  3188   return result;
  3191 /**
  3192  *  Create constant type for a constant boxed value
  3193  */
  3194 const Type* TypeInstPtr::get_const_boxed_value() const {
  3195   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  3196   assert((const_oop() != NULL), "should be called only for constant object");
  3197   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  3198   BasicType bt = constant.basic_type();
  3199   switch (bt) {
  3200     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  3201     case T_INT:      return TypeInt::make(constant.as_int());
  3202     case T_CHAR:     return TypeInt::make(constant.as_char());
  3203     case T_BYTE:     return TypeInt::make(constant.as_byte());
  3204     case T_SHORT:    return TypeInt::make(constant.as_short());
  3205     case T_FLOAT:    return TypeF::make(constant.as_float());
  3206     case T_DOUBLE:   return TypeD::make(constant.as_double());
  3207     case T_LONG:     return TypeLong::make(constant.as_long());
  3208     default:         break;
  3210   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  3211   return NULL;
  3214 //------------------------------cast_to_ptr_type-------------------------------
  3215 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  3216   if( ptr == _ptr ) return this;
  3217   // Reconstruct _sig info here since not a problem with later lazy
  3218   // construction, _sig will show up on demand.
  3219   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3223 //-----------------------------cast_to_exactness-------------------------------
  3224 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  3225   if( klass_is_exact == _klass_is_exact ) return this;
  3226   if (!UseExactTypes)  return this;
  3227   if (!_klass->is_loaded())  return this;
  3228   ciInstanceKlass* ik = _klass->as_instance_klass();
  3229   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  3230   if( ik->is_interface() )              return this;  // cannot set xk
  3231   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
  3234 //-----------------------------cast_to_instance_id----------------------------
  3235 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  3236   if( instance_id == _instance_id ) return this;
  3237   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
  3240 //------------------------------xmeet_unloaded---------------------------------
  3241 // Compute the MEET of two InstPtrs when at least one is unloaded.
  3242 // Assume classes are different since called after check for same name/class-loader
  3243 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  3244     int off = meet_offset(tinst->offset());
  3245     PTR ptr = meet_ptr(tinst->ptr());
  3246     int instance_id = meet_instance_id(tinst->instance_id());
  3247     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3248     int depth = meet_inline_depth(tinst->inline_depth());
  3250     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  3251     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  3252     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3253       //
  3254       // Meet unloaded class with java/lang/Object
  3255       //
  3256       // Meet
  3257       //          |                     Unloaded Class
  3258       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  3259       //  ===================================================================
  3260       //   TOP    | ..........................Unloaded......................|
  3261       //  AnyNull |  U-AN    |................Unloaded......................|
  3262       // Constant | ... O-NN .................................. |   O-BOT   |
  3263       //  NotNull | ... O-NN .................................. |   O-BOT   |
  3264       //  BOTTOM  | ........................Object-BOTTOM ..................|
  3265       //
  3266       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  3267       //
  3268       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  3269       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
  3270       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  3271       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  3272         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  3273         else                                      { return TypeInstPtr::NOTNULL; }
  3275       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  3277       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  3280     // Both are unloaded, not the same class, not Object
  3281     // Or meet unloaded with a different loaded class, not java/lang/Object
  3282     if( ptr != TypePtr::BotPTR ) {
  3283       return TypeInstPtr::NOTNULL;
  3285     return TypeInstPtr::BOTTOM;
  3289 //------------------------------meet-------------------------------------------
  3290 // Compute the MEET of two types.  It returns a new Type object.
  3291 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  3292   // Perform a fast test for common case; meeting the same types together.
  3293   if( this == t ) return this;  // Meeting same type-rep?
  3295   // Current "this->_base" is Pointer
  3296   switch (t->base()) {          // switch on original type
  3298   case Int:                     // Mixing ints & oops happens when javac
  3299   case Long:                    // reuses local variables
  3300   case FloatTop:
  3301   case FloatCon:
  3302   case FloatBot:
  3303   case DoubleTop:
  3304   case DoubleCon:
  3305   case DoubleBot:
  3306   case NarrowOop:
  3307   case NarrowKlass:
  3308   case Bottom:                  // Ye Olde Default
  3309     return Type::BOTTOM;
  3310   case Top:
  3311     return this;
  3313   default:                      // All else is a mistake
  3314     typerr(t);
  3316   case MetadataPtr:
  3317   case KlassPtr:
  3318   case RawPtr: return TypePtr::BOTTOM;
  3320   case AryPtr: {                // All arrays inherit from Object class
  3321     const TypeAryPtr *tp = t->is_aryptr();
  3322     int offset = meet_offset(tp->offset());
  3323     PTR ptr = meet_ptr(tp->ptr());
  3324     int instance_id = meet_instance_id(tp->instance_id());
  3325     const TypeOopPtr* speculative = xmeet_speculative(tp);
  3326     int depth = meet_inline_depth(tp->inline_depth());
  3327     switch (ptr) {
  3328     case TopPTR:
  3329     case AnyNull:                // Fall 'down' to dual of object klass
  3330       // For instances when a subclass meets a superclass we fall
  3331       // below the centerline when the superclass is exact. We need to
  3332       // do the same here.
  3333       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3334         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3335       } else {
  3336         // cannot subclass, so the meet has to fall badly below the centerline
  3337         ptr = NotNull;
  3338         instance_id = InstanceBot;
  3339         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3341     case Constant:
  3342     case NotNull:
  3343     case BotPTR:                // Fall down to object klass
  3344       // LCA is object_klass, but if we subclass from the top we can do better
  3345       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  3346         // If 'this' (InstPtr) is above the centerline and it is Object class
  3347         // then we can subclass in the Java class hierarchy.
  3348         // For instances when a subclass meets a superclass we fall
  3349         // below the centerline when the superclass is exact. We need
  3350         // to do the same here.
  3351         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
  3352           // that is, tp's array type is a subtype of my klass
  3353           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3354                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
  3357       // The other case cannot happen, since I cannot be a subtype of an array.
  3358       // The meet falls down to Object class below centerline.
  3359       if( ptr == Constant )
  3360          ptr = NotNull;
  3361       instance_id = InstanceBot;
  3362       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
  3363     default: typerr(t);
  3367   case OopPtr: {                // Meeting to OopPtrs
  3368     // Found a OopPtr type vs self-InstPtr type
  3369     const TypeOopPtr *tp = t->is_oopptr();
  3370     int offset = meet_offset(tp->offset());
  3371     PTR ptr = meet_ptr(tp->ptr());
  3372     switch (tp->ptr()) {
  3373     case TopPTR:
  3374     case AnyNull: {
  3375       int instance_id = meet_instance_id(InstanceTop);
  3376       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3377       int depth = meet_inline_depth(tp->inline_depth());
  3378       return make(ptr, klass(), klass_is_exact(),
  3379                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
  3381     case NotNull:
  3382     case BotPTR: {
  3383       int instance_id = meet_instance_id(tp->instance_id());
  3384       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3385       int depth = meet_inline_depth(tp->inline_depth());
  3386       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3388     default: typerr(t);
  3392   case AnyPtr: {                // Meeting to AnyPtrs
  3393     // Found an AnyPtr type vs self-InstPtr type
  3394     const TypePtr *tp = t->is_ptr();
  3395     int offset = meet_offset(tp->offset());
  3396     PTR ptr = meet_ptr(tp->ptr());
  3397     switch (tp->ptr()) {
  3398     case Null:
  3399       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3400       // else fall through to AnyNull
  3401     case TopPTR:
  3402     case AnyNull: {
  3403       int instance_id = meet_instance_id(InstanceTop);
  3404       const TypeOopPtr* speculative = _speculative;
  3405       return make(ptr, klass(), klass_is_exact(),
  3406                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
  3408     case NotNull:
  3409     case BotPTR:
  3410       return TypePtr::make(AnyPtr, ptr, offset);
  3411     default: typerr(t);
  3415   /*
  3416                  A-top         }
  3417                /   |   \       }  Tops
  3418            B-top A-any C-top   }
  3419               | /  |  \ |      }  Any-nulls
  3420            B-any   |   C-any   }
  3421               |    |    |
  3422            B-con A-con C-con   } constants; not comparable across classes
  3423               |    |    |
  3424            B-not   |   C-not   }
  3425               | \  |  / |      }  not-nulls
  3426            B-bot A-not C-bot   }
  3427                \   |   /       }  Bottoms
  3428                  A-bot         }
  3429   */
  3431   case InstPtr: {                // Meeting 2 Oops?
  3432     // Found an InstPtr sub-type vs self-InstPtr type
  3433     const TypeInstPtr *tinst = t->is_instptr();
  3434     int off = meet_offset( tinst->offset() );
  3435     PTR ptr = meet_ptr( tinst->ptr() );
  3436     int instance_id = meet_instance_id(tinst->instance_id());
  3437     const TypeOopPtr* speculative = xmeet_speculative(tinst);
  3438     int depth = meet_inline_depth(tinst->inline_depth());
  3440     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3441     // If we have constants, then we created oops so classes are loaded
  3442     // and we can handle the constants further down.  This case handles
  3443     // both-not-loaded or both-loaded classes
  3444     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3445       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
  3448     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3449     ciKlass* tinst_klass = tinst->klass();
  3450     ciKlass* this_klass  = this->klass();
  3451     bool tinst_xk = tinst->klass_is_exact();
  3452     bool this_xk  = this->klass_is_exact();
  3453     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3454       // One of these classes has not been loaded
  3455       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3456 #ifndef PRODUCT
  3457       if( PrintOpto && Verbose ) {
  3458         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3459         tty->print("  this == "); this->dump(); tty->cr();
  3460         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3462 #endif
  3463       return unloaded_meet;
  3466     // Handle mixing oops and interfaces first.
  3467     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
  3468                                         tinst_klass == ciEnv::current()->Object_klass())) {
  3469       ciKlass *tmp = tinst_klass; // Swap interface around
  3470       tinst_klass = this_klass;
  3471       this_klass = tmp;
  3472       bool tmp2 = tinst_xk;
  3473       tinst_xk = this_xk;
  3474       this_xk = tmp2;
  3476     if (tinst_klass->is_interface() &&
  3477         !(this_klass->is_interface() ||
  3478           // Treat java/lang/Object as an honorary interface,
  3479           // because we need a bottom for the interface hierarchy.
  3480           this_klass == ciEnv::current()->Object_klass())) {
  3481       // Oop meets interface!
  3483       // See if the oop subtypes (implements) interface.
  3484       ciKlass *k;
  3485       bool xk;
  3486       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3487         // Oop indeed subtypes.  Now keep oop or interface depending
  3488         // on whether we are both above the centerline or either is
  3489         // below the centerline.  If we are on the centerline
  3490         // (e.g., Constant vs. AnyNull interface), use the constant.
  3491         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3492         // If we are keeping this_klass, keep its exactness too.
  3493         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3494       } else {                  // Does not implement, fall to Object
  3495         // Oop does not implement interface, so mixing falls to Object
  3496         // just like the verifier does (if both are above the
  3497         // centerline fall to interface)
  3498         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3499         xk = above_centerline(ptr) ? tinst_xk : false;
  3500         // Watch out for Constant vs. AnyNull interface.
  3501         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3502         instance_id = InstanceBot;
  3504       ciObject* o = NULL;  // the Constant value, if any
  3505       if (ptr == Constant) {
  3506         // Find out which constant.
  3507         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3509       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
  3512     // Either oop vs oop or interface vs interface or interface vs Object
  3514     // !!! Here's how the symmetry requirement breaks down into invariants:
  3515     // If we split one up & one down AND they subtype, take the down man.
  3516     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3517     // If both are up and they subtype, take the subtype class.
  3518     // If both are up and they do NOT subtype, "fall hard".
  3519     // If both are down and they subtype, take the supertype class.
  3520     // If both are down and they do NOT subtype, "fall hard".
  3521     // Constants treated as down.
  3523     // Now, reorder the above list; observe that both-down+subtype is also
  3524     // "fall hard"; "fall hard" becomes the default case:
  3525     // If we split one up & one down AND they subtype, take the down man.
  3526     // If both are up and they subtype, take the subtype class.
  3528     // If both are down and they subtype, "fall hard".
  3529     // If both are down and they do NOT subtype, "fall hard".
  3530     // If both are up and they do NOT subtype, "fall hard".
  3531     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3533     // If a proper subtype is exact, and we return it, we return it exactly.
  3534     // If a proper supertype is exact, there can be no subtyping relationship!
  3535     // If both types are equal to the subtype, exactness is and-ed below the
  3536     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3538     // Check for subtyping:
  3539     ciKlass *subtype = NULL;
  3540     bool subtype_exact = false;
  3541     if( tinst_klass->equals(this_klass) ) {
  3542       subtype = this_klass;
  3543       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3544     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3545       subtype = this_klass;     // Pick subtyping class
  3546       subtype_exact = this_xk;
  3547     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3548       subtype = tinst_klass;    // Pick subtyping class
  3549       subtype_exact = tinst_xk;
  3552     if( subtype ) {
  3553       if( above_centerline(ptr) ) { // both are up?
  3554         this_klass = tinst_klass = subtype;
  3555         this_xk = tinst_xk = subtype_exact;
  3556       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3557         this_klass = tinst_klass; // tinst is down; keep down man
  3558         this_xk = tinst_xk;
  3559       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3560         tinst_klass = this_klass; // this is down; keep down man
  3561         tinst_xk = this_xk;
  3562       } else {
  3563         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3567     // Check for classes now being equal
  3568     if (tinst_klass->equals(this_klass)) {
  3569       // If the klasses are equal, the constants may still differ.  Fall to
  3570       // NotNull if they do (neither constant is NULL; that is a special case
  3571       // handled elsewhere).
  3572       ciObject* o = NULL;             // Assume not constant when done
  3573       ciObject* this_oop  = const_oop();
  3574       ciObject* tinst_oop = tinst->const_oop();
  3575       if( ptr == Constant ) {
  3576         if (this_oop != NULL && tinst_oop != NULL &&
  3577             this_oop->equals(tinst_oop) )
  3578           o = this_oop;
  3579         else if (above_centerline(this ->_ptr))
  3580           o = tinst_oop;
  3581         else if (above_centerline(tinst ->_ptr))
  3582           o = this_oop;
  3583         else
  3584           ptr = NotNull;
  3586       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
  3587     } // Else classes are not equal
  3589     // Since klasses are different, we require a LCA in the Java
  3590     // class hierarchy - which means we have to fall to at least NotNull.
  3591     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3592       ptr = NotNull;
  3593     instance_id = InstanceBot;
  3595     // Now we find the LCA of Java classes
  3596     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3597     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
  3598   } // End of case InstPtr
  3600   } // End of switch
  3601   return this;                  // Return the double constant
  3605 //------------------------java_mirror_type--------------------------------------
  3606 ciType* TypeInstPtr::java_mirror_type() const {
  3607   // must be a singleton type
  3608   if( const_oop() == NULL )  return NULL;
  3610   // must be of type java.lang.Class
  3611   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3613   return const_oop()->as_instance()->java_mirror_type();
  3617 //------------------------------xdual------------------------------------------
  3618 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3619 // inheritance mechanism.
  3620 const Type *TypeInstPtr::xdual() const {
  3621   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
  3624 //------------------------------eq---------------------------------------------
  3625 // Structural equality check for Type representations
  3626 bool TypeInstPtr::eq( const Type *t ) const {
  3627   const TypeInstPtr *p = t->is_instptr();
  3628   return
  3629     klass()->equals(p->klass()) &&
  3630     TypeOopPtr::eq(p);          // Check sub-type stuff
  3633 //------------------------------hash-------------------------------------------
  3634 // Type-specific hashing function.
  3635 int TypeInstPtr::hash(void) const {
  3636   int hash = klass()->hash() + TypeOopPtr::hash();
  3637   return hash;
  3640 //------------------------------dump2------------------------------------------
  3641 // Dump oop Type
  3642 #ifndef PRODUCT
  3643 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3644   // Print the name of the klass.
  3645   klass()->print_name_on(st);
  3647   switch( _ptr ) {
  3648   case Constant:
  3649     // TO DO: Make CI print the hex address of the underlying oop.
  3650     if (WizardMode || Verbose) {
  3651       const_oop()->print_oop(st);
  3653   case BotPTR:
  3654     if (!WizardMode && !Verbose) {
  3655       if( _klass_is_exact ) st->print(":exact");
  3656       break;
  3658   case TopPTR:
  3659   case AnyNull:
  3660   case NotNull:
  3661     st->print(":%s", ptr_msg[_ptr]);
  3662     if( _klass_is_exact ) st->print(":exact");
  3663     break;
  3666   if( _offset ) {               // Dump offset, if any
  3667     if( _offset == OffsetBot )      st->print("+any");
  3668     else if( _offset == OffsetTop ) st->print("+unknown");
  3669     else st->print("+%d", _offset);
  3672   st->print(" *");
  3673   if (_instance_id == InstanceTop)
  3674     st->print(",iid=top");
  3675   else if (_instance_id != InstanceBot)
  3676     st->print(",iid=%d",_instance_id);
  3678   dump_inline_depth(st);
  3679   dump_speculative(st);
  3681 #endif
  3683 //------------------------------add_offset-------------------------------------
  3684 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  3685   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
  3688 const Type *TypeInstPtr::remove_speculative() const {
  3689   if (_speculative == NULL) {
  3690     return this;
  3692   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  3693   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
  3696 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
  3697   if (!UseInlineDepthForSpeculativeTypes) {
  3698     return this;
  3700   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
  3703 //=============================================================================
  3704 // Convenience common pre-built types.
  3705 const TypeAryPtr *TypeAryPtr::RANGE;
  3706 const TypeAryPtr *TypeAryPtr::OOPS;
  3707 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3708 const TypeAryPtr *TypeAryPtr::BYTES;
  3709 const TypeAryPtr *TypeAryPtr::SHORTS;
  3710 const TypeAryPtr *TypeAryPtr::CHARS;
  3711 const TypeAryPtr *TypeAryPtr::INTS;
  3712 const TypeAryPtr *TypeAryPtr::LONGS;
  3713 const TypeAryPtr *TypeAryPtr::FLOATS;
  3714 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3716 //------------------------------make-------------------------------------------
  3717 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
  3718   assert(!(k == NULL && ary->_elem->isa_int()),
  3719          "integral arrays must be pre-equipped with a class");
  3720   if (!xk)  xk = ary->ary_must_be_exact();
  3721   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3722   if (!UseExactTypes)  xk = (ptr == Constant);
  3723   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
  3726 //------------------------------make-------------------------------------------
  3727 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
  3728   assert(!(k == NULL && ary->_elem->isa_int()),
  3729          "integral arrays must be pre-equipped with a class");
  3730   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3731   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3732   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3733   if (!UseExactTypes)  xk = (ptr == Constant);
  3734   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
  3737 //------------------------------cast_to_ptr_type-------------------------------
  3738 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3739   if( ptr == _ptr ) return this;
  3740   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3744 //-----------------------------cast_to_exactness-------------------------------
  3745 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3746   if( klass_is_exact == _klass_is_exact ) return this;
  3747   if (!UseExactTypes)  return this;
  3748   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3749   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
  3752 //-----------------------------cast_to_instance_id----------------------------
  3753 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3754   if( instance_id == _instance_id ) return this;
  3755   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
  3758 //-----------------------------narrow_size_type-------------------------------
  3759 // Local cache for arrayOopDesc::max_array_length(etype),
  3760 // which is kind of slow (and cached elsewhere by other users).
  3761 static jint max_array_length_cache[T_CONFLICT+1];
  3762 static jint max_array_length(BasicType etype) {
  3763   jint& cache = max_array_length_cache[etype];
  3764   jint res = cache;
  3765   if (res == 0) {
  3766     switch (etype) {
  3767     case T_NARROWOOP:
  3768       etype = T_OBJECT;
  3769       break;
  3770     case T_NARROWKLASS:
  3771     case T_CONFLICT:
  3772     case T_ILLEGAL:
  3773     case T_VOID:
  3774       etype = T_BYTE;           // will produce conservatively high value
  3776     cache = res = arrayOopDesc::max_array_length(etype);
  3778   return res;
  3781 // Narrow the given size type to the index range for the given array base type.
  3782 // Return NULL if the resulting int type becomes empty.
  3783 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3784   jint hi = size->_hi;
  3785   jint lo = size->_lo;
  3786   jint min_lo = 0;
  3787   jint max_hi = max_array_length(elem()->basic_type());
  3788   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3789   bool chg = false;
  3790   if (lo < min_lo) {
  3791     lo = min_lo;
  3792     if (size->is_con()) {
  3793       hi = lo;
  3795     chg = true;
  3797   if (hi > max_hi) {
  3798     hi = max_hi;
  3799     if (size->is_con()) {
  3800       lo = hi;
  3802     chg = true;
  3804   // Negative length arrays will produce weird intermediate dead fast-path code
  3805   if (lo > hi)
  3806     return TypeInt::ZERO;
  3807   if (!chg)
  3808     return size;
  3809   return TypeInt::make(lo, hi, Type::WidenMin);
  3812 //-------------------------------cast_to_size----------------------------------
  3813 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3814   assert(new_size != NULL, "");
  3815   new_size = narrow_size_type(new_size);
  3816   if (new_size == size())  return this;
  3817   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  3818   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
  3822 //------------------------------cast_to_stable---------------------------------
  3823 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  3824   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
  3825     return this;
  3827   const Type* elem = this->elem();
  3828   const TypePtr* elem_ptr = elem->make_ptr();
  3830   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
  3831     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
  3832     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  3835   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
  3837   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3840 //-----------------------------stable_dimension--------------------------------
  3841 int TypeAryPtr::stable_dimension() const {
  3842   if (!is_stable())  return 0;
  3843   int dim = 1;
  3844   const TypePtr* elem_ptr = elem()->make_ptr();
  3845   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
  3846     dim += elem_ptr->is_aryptr()->stable_dimension();
  3847   return dim;
  3850 //------------------------------eq---------------------------------------------
  3851 // Structural equality check for Type representations
  3852 bool TypeAryPtr::eq( const Type *t ) const {
  3853   const TypeAryPtr *p = t->is_aryptr();
  3854   return
  3855     _ary == p->_ary &&  // Check array
  3856     TypeOopPtr::eq(p);  // Check sub-parts
  3859 //------------------------------hash-------------------------------------------
  3860 // Type-specific hashing function.
  3861 int TypeAryPtr::hash(void) const {
  3862   return (intptr_t)_ary + TypeOopPtr::hash();
  3865 //------------------------------meet-------------------------------------------
  3866 // Compute the MEET of two types.  It returns a new Type object.
  3867 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  3868   // Perform a fast test for common case; meeting the same types together.
  3869   if( this == t ) return this;  // Meeting same type-rep?
  3870   // Current "this->_base" is Pointer
  3871   switch (t->base()) {          // switch on original type
  3873   // Mixing ints & oops happens when javac reuses local variables
  3874   case Int:
  3875   case Long:
  3876   case FloatTop:
  3877   case FloatCon:
  3878   case FloatBot:
  3879   case DoubleTop:
  3880   case DoubleCon:
  3881   case DoubleBot:
  3882   case NarrowOop:
  3883   case NarrowKlass:
  3884   case Bottom:                  // Ye Olde Default
  3885     return Type::BOTTOM;
  3886   case Top:
  3887     return this;
  3889   default:                      // All else is a mistake
  3890     typerr(t);
  3892   case OopPtr: {                // Meeting to OopPtrs
  3893     // Found a OopPtr type vs self-AryPtr type
  3894     const TypeOopPtr *tp = t->is_oopptr();
  3895     int offset = meet_offset(tp->offset());
  3896     PTR ptr = meet_ptr(tp->ptr());
  3897     int depth = meet_inline_depth(tp->inline_depth());
  3898     switch (tp->ptr()) {
  3899     case TopPTR:
  3900     case AnyNull: {
  3901       int instance_id = meet_instance_id(InstanceTop);
  3902       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3903       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3904                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  3906     case BotPTR:
  3907     case NotNull: {
  3908       int instance_id = meet_instance_id(tp->instance_id());
  3909       const TypeOopPtr* speculative = xmeet_speculative(tp);
  3910       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
  3912     default: ShouldNotReachHere();
  3916   case AnyPtr: {                // Meeting two AnyPtrs
  3917     // Found an AnyPtr type vs self-AryPtr type
  3918     const TypePtr *tp = t->is_ptr();
  3919     int offset = meet_offset(tp->offset());
  3920     PTR ptr = meet_ptr(tp->ptr());
  3921     switch (tp->ptr()) {
  3922     case TopPTR:
  3923       return this;
  3924     case BotPTR:
  3925     case NotNull:
  3926       return TypePtr::make(AnyPtr, ptr, offset);
  3927     case Null:
  3928       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3929       // else fall through to AnyNull
  3930     case AnyNull: {
  3931       int instance_id = meet_instance_id(InstanceTop);
  3932       const TypeOopPtr* speculative = _speculative;
  3933       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3934                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
  3936     default: ShouldNotReachHere();
  3940   case MetadataPtr:
  3941   case KlassPtr:
  3942   case RawPtr: return TypePtr::BOTTOM;
  3944   case AryPtr: {                // Meeting 2 references?
  3945     const TypeAryPtr *tap = t->is_aryptr();
  3946     int off = meet_offset(tap->offset());
  3947     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
  3948     PTR ptr = meet_ptr(tap->ptr());
  3949     int instance_id = meet_instance_id(tap->instance_id());
  3950     const TypeOopPtr* speculative = xmeet_speculative(tap);
  3951     int depth = meet_inline_depth(tap->inline_depth());
  3952     ciKlass* lazy_klass = NULL;
  3953     if (tary->_elem->isa_int()) {
  3954       // Integral array element types have irrelevant lattice relations.
  3955       // It is the klass that determines array layout, not the element type.
  3956       if (_klass == NULL)
  3957         lazy_klass = tap->_klass;
  3958       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3959         lazy_klass = _klass;
  3960       } else {
  3961         // Something like byte[int+] meets char[int+].
  3962         // This must fall to bottom, not (int[-128..65535])[int+].
  3963         instance_id = InstanceBot;
  3964         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3966     } else // Non integral arrays.
  3967       // Must fall to bottom if exact klasses in upper lattice
  3968       // are not equal or super klass is exact.
  3969       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
  3970           // meet with top[] and bottom[] are processed further down:
  3971           tap->_klass != NULL  && this->_klass != NULL   &&
  3972           // both are exact and not equal:
  3973           ((tap->_klass_is_exact && this->_klass_is_exact) ||
  3974            // 'tap'  is exact and super or unrelated:
  3975            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3976            // 'this' is exact and super or unrelated:
  3977            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3978       if (above_centerline(ptr)) {
  3979         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
  3981       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
  3984     bool xk = false;
  3985     switch (tap->ptr()) {
  3986     case AnyNull:
  3987     case TopPTR:
  3988       // Compute new klass on demand, do not use tap->_klass
  3989       if (below_centerline(this->_ptr)) {
  3990         xk = this->_klass_is_exact;
  3991       } else {
  3992         xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3994       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
  3995     case Constant: {
  3996       ciObject* o = const_oop();
  3997       if( _ptr == Constant ) {
  3998         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3999           xk = (klass() == tap->klass());
  4000           ptr = NotNull;
  4001           o = NULL;
  4002           instance_id = InstanceBot;
  4003         } else {
  4004           xk = true;
  4006       } else if(above_centerline(_ptr)) {
  4007         o = tap->const_oop();
  4008         xk = true;
  4009       } else {
  4010         // Only precise for identical arrays
  4011         xk = this->_klass_is_exact && (klass() == tap->klass());
  4013       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4015     case NotNull:
  4016     case BotPTR:
  4017       // Compute new klass on demand, do not use tap->_klass
  4018       if (above_centerline(this->_ptr))
  4019             xk = tap->_klass_is_exact;
  4020       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  4021               (klass() == tap->klass()); // Only precise for identical arrays
  4022       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
  4023     default: ShouldNotReachHere();
  4027   // All arrays inherit from Object class
  4028   case InstPtr: {
  4029     const TypeInstPtr *tp = t->is_instptr();
  4030     int offset = meet_offset(tp->offset());
  4031     PTR ptr = meet_ptr(tp->ptr());
  4032     int instance_id = meet_instance_id(tp->instance_id());
  4033     const TypeOopPtr* speculative = xmeet_speculative(tp);
  4034     int depth = meet_inline_depth(tp->inline_depth());
  4035     switch (ptr) {
  4036     case TopPTR:
  4037     case AnyNull:                // Fall 'down' to dual of object klass
  4038       // For instances when a subclass meets a superclass we fall
  4039       // below the centerline when the superclass is exact. We need to
  4040       // do the same here.
  4041       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4042         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4043       } else {
  4044         // cannot subclass, so the meet has to fall badly below the centerline
  4045         ptr = NotNull;
  4046         instance_id = InstanceBot;
  4047         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4049     case Constant:
  4050     case NotNull:
  4051     case BotPTR:                // Fall down to object klass
  4052       // LCA is object_klass, but if we subclass from the top we can do better
  4053       if (above_centerline(tp->ptr())) {
  4054         // If 'tp'  is above the centerline and it is Object class
  4055         // then we can subclass in the Java class hierarchy.
  4056         // For instances when a subclass meets a superclass we fall
  4057         // below the centerline when the superclass is exact. We need
  4058         // to do the same here.
  4059         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
  4060           // that is, my array type is a subtype of 'tp' klass
  4061           return make(ptr, (ptr == Constant ? const_oop() : NULL),
  4062                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
  4065       // The other case cannot happen, since t cannot be a subtype of an array.
  4066       // The meet falls down to Object class below centerline.
  4067       if( ptr == Constant )
  4068          ptr = NotNull;
  4069       instance_id = InstanceBot;
  4070       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
  4071     default: typerr(t);
  4075   return this;                  // Lint noise
  4078 //------------------------------xdual------------------------------------------
  4079 // Dual: compute field-by-field dual
  4080 const Type *TypeAryPtr::xdual() const {
  4081   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
  4084 //----------------------interface_vs_oop---------------------------------------
  4085 #ifdef ASSERT
  4086 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  4087   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  4088   if (t_aryptr) {
  4089     return _ary->interface_vs_oop(t_aryptr->_ary);
  4091   return false;
  4093 #endif
  4095 //------------------------------dump2------------------------------------------
  4096 #ifndef PRODUCT
  4097 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4098   _ary->dump2(d,depth,st);
  4099   switch( _ptr ) {
  4100   case Constant:
  4101     const_oop()->print(st);
  4102     break;
  4103   case BotPTR:
  4104     if (!WizardMode && !Verbose) {
  4105       if( _klass_is_exact ) st->print(":exact");
  4106       break;
  4108   case TopPTR:
  4109   case AnyNull:
  4110   case NotNull:
  4111     st->print(":%s", ptr_msg[_ptr]);
  4112     if( _klass_is_exact ) st->print(":exact");
  4113     break;
  4116   if( _offset != 0 ) {
  4117     int header_size = objArrayOopDesc::header_size() * wordSize;
  4118     if( _offset == OffsetTop )       st->print("+undefined");
  4119     else if( _offset == OffsetBot )  st->print("+any");
  4120     else if( _offset < header_size ) st->print("+%d", _offset);
  4121     else {
  4122       BasicType basic_elem_type = elem()->basic_type();
  4123       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4124       int elem_size = type2aelembytes(basic_elem_type);
  4125       st->print("[%d]", (_offset - array_base)/elem_size);
  4128   st->print(" *");
  4129   if (_instance_id == InstanceTop)
  4130     st->print(",iid=top");
  4131   else if (_instance_id != InstanceBot)
  4132     st->print(",iid=%d",_instance_id);
  4134   dump_inline_depth(st);
  4135   dump_speculative(st);
  4137 #endif
  4139 bool TypeAryPtr::empty(void) const {
  4140   if (_ary->empty())       return true;
  4141   return TypeOopPtr::empty();
  4144 //------------------------------add_offset-------------------------------------
  4145 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  4146   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
  4149 const Type *TypeAryPtr::remove_speculative() const {
  4150   if (_speculative == NULL) {
  4151     return this;
  4153   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
  4154   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
  4157 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
  4158   if (!UseInlineDepthForSpeculativeTypes) {
  4159     return this;
  4161   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
  4164 //=============================================================================
  4166 //------------------------------hash-------------------------------------------
  4167 // Type-specific hashing function.
  4168 int TypeNarrowPtr::hash(void) const {
  4169   return _ptrtype->hash() + 7;
  4172 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  4173   return _ptrtype->singleton();
  4176 bool TypeNarrowPtr::empty(void) const {
  4177   return _ptrtype->empty();
  4180 intptr_t TypeNarrowPtr::get_con() const {
  4181   return _ptrtype->get_con();
  4184 bool TypeNarrowPtr::eq( const Type *t ) const {
  4185   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  4186   if (tc != NULL) {
  4187     if (_ptrtype->base() != tc->_ptrtype->base()) {
  4188       return false;
  4190     return tc->_ptrtype->eq(_ptrtype);
  4192   return false;
  4195 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  4196   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  4197   return make_same_narrowptr(odual);
  4201 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4202   if (isa_same_narrowptr(kills)) {
  4203     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
  4204     if (ft->empty())
  4205       return Type::TOP;           // Canonical empty value
  4206     if (ft->isa_ptr()) {
  4207       return make_hash_same_narrowptr(ft->isa_ptr());
  4209     return ft;
  4210   } else if (kills->isa_ptr()) {
  4211     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
  4212     if (ft->empty())
  4213       return Type::TOP;           // Canonical empty value
  4214     return ft;
  4215   } else {
  4216     return Type::TOP;
  4220 //------------------------------xmeet------------------------------------------
  4221 // Compute the MEET of two types.  It returns a new Type object.
  4222 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  4223   // Perform a fast test for common case; meeting the same types together.
  4224   if( this == t ) return this;  // Meeting same type-rep?
  4226   if (t->base() == base()) {
  4227     const Type* result = _ptrtype->xmeet(t->make_ptr());
  4228     if (result->isa_ptr()) {
  4229       return make_hash_same_narrowptr(result->is_ptr());
  4231     return result;
  4234   // Current "this->_base" is NarrowKlass or NarrowOop
  4235   switch (t->base()) {          // switch on original type
  4237   case Int:                     // Mixing ints & oops happens when javac
  4238   case Long:                    // reuses local variables
  4239   case FloatTop:
  4240   case FloatCon:
  4241   case FloatBot:
  4242   case DoubleTop:
  4243   case DoubleCon:
  4244   case DoubleBot:
  4245   case AnyPtr:
  4246   case RawPtr:
  4247   case OopPtr:
  4248   case InstPtr:
  4249   case AryPtr:
  4250   case MetadataPtr:
  4251   case KlassPtr:
  4252   case NarrowOop:
  4253   case NarrowKlass:
  4255   case Bottom:                  // Ye Olde Default
  4256     return Type::BOTTOM;
  4257   case Top:
  4258     return this;
  4260   default:                      // All else is a mistake
  4261     typerr(t);
  4263   } // End of switch
  4265   return this;
  4268 #ifndef PRODUCT
  4269 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4270   _ptrtype->dump2(d, depth, st);
  4272 #endif
  4274 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  4275 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  4278 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  4279   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  4283 #ifndef PRODUCT
  4284 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  4285   st->print("narrowoop: ");
  4286   TypeNarrowPtr::dump2(d, depth, st);
  4288 #endif
  4290 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
  4292 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  4293   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
  4296 #ifndef PRODUCT
  4297 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  4298   st->print("narrowklass: ");
  4299   TypeNarrowPtr::dump2(d, depth, st);
  4301 #endif
  4304 //------------------------------eq---------------------------------------------
  4305 // Structural equality check for Type representations
  4306 bool TypeMetadataPtr::eq( const Type *t ) const {
  4307   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  4308   ciMetadata* one = metadata();
  4309   ciMetadata* two = a->metadata();
  4310   if (one == NULL || two == NULL) {
  4311     return (one == two) && TypePtr::eq(t);
  4312   } else {
  4313     return one->equals(two) && TypePtr::eq(t);
  4317 //------------------------------hash-------------------------------------------
  4318 // Type-specific hashing function.
  4319 int TypeMetadataPtr::hash(void) const {
  4320   return
  4321     (metadata() ? metadata()->hash() : 0) +
  4322     TypePtr::hash();
  4325 //------------------------------singleton--------------------------------------
  4326 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4327 // constants
  4328 bool TypeMetadataPtr::singleton(void) const {
  4329   // detune optimizer to not generate constant metadta + constant offset as a constant!
  4330   // TopPTR, Null, AnyNull, Constant are all singletons
  4331   return (_offset == 0) && !below_centerline(_ptr);
  4334 //------------------------------add_offset-------------------------------------
  4335 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  4336   return make( _ptr, _metadata, xadd_offset(offset));
  4339 //-----------------------------filter------------------------------------------
  4340 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4341 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4342   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
  4343   if (ft == NULL || ft->empty())
  4344     return Type::TOP;           // Canonical empty value
  4345   return ft;
  4348  //------------------------------get_con----------------------------------------
  4349 intptr_t TypeMetadataPtr::get_con() const {
  4350   assert( _ptr == Null || _ptr == Constant, "" );
  4351   assert( _offset >= 0, "" );
  4353   if (_offset != 0) {
  4354     // After being ported to the compiler interface, the compiler no longer
  4355     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4356     // to a handle at compile time.  This handle is embedded in the generated
  4357     // code and dereferenced at the time the nmethod is made.  Until that time,
  4358     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4359     // have access to the addresses!).  This does not seem to currently happen,
  4360     // but this assertion here is to help prevent its occurence.
  4361     tty->print_cr("Found oop constant with non-zero offset");
  4362     ShouldNotReachHere();
  4365   return (intptr_t)metadata()->constant_encoding();
  4368 //------------------------------cast_to_ptr_type-------------------------------
  4369 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  4370   if( ptr == _ptr ) return this;
  4371   return make(ptr, metadata(), _offset);
  4374 //------------------------------meet-------------------------------------------
  4375 // Compute the MEET of two types.  It returns a new Type object.
  4376 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  4377   // Perform a fast test for common case; meeting the same types together.
  4378   if( this == t ) return this;  // Meeting same type-rep?
  4380   // Current "this->_base" is OopPtr
  4381   switch (t->base()) {          // switch on original type
  4383   case Int:                     // Mixing ints & oops happens when javac
  4384   case Long:                    // reuses local variables
  4385   case FloatTop:
  4386   case FloatCon:
  4387   case FloatBot:
  4388   case DoubleTop:
  4389   case DoubleCon:
  4390   case DoubleBot:
  4391   case NarrowOop:
  4392   case NarrowKlass:
  4393   case Bottom:                  // Ye Olde Default
  4394     return Type::BOTTOM;
  4395   case Top:
  4396     return this;
  4398   default:                      // All else is a mistake
  4399     typerr(t);
  4401   case AnyPtr: {
  4402     // Found an AnyPtr type vs self-OopPtr type
  4403     const TypePtr *tp = t->is_ptr();
  4404     int offset = meet_offset(tp->offset());
  4405     PTR ptr = meet_ptr(tp->ptr());
  4406     switch (tp->ptr()) {
  4407     case Null:
  4408       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  4409       // else fall through:
  4410     case TopPTR:
  4411     case AnyNull: {
  4412       return make(ptr, _metadata, offset);
  4414     case BotPTR:
  4415     case NotNull:
  4416       return TypePtr::make(AnyPtr, ptr, offset);
  4417     default: typerr(t);
  4421   case RawPtr:
  4422   case KlassPtr:
  4423   case OopPtr:
  4424   case InstPtr:
  4425   case AryPtr:
  4426     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  4428   case MetadataPtr: {
  4429     const TypeMetadataPtr *tp = t->is_metadataptr();
  4430     int offset = meet_offset(tp->offset());
  4431     PTR tptr = tp->ptr();
  4432     PTR ptr = meet_ptr(tptr);
  4433     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
  4434     if (tptr == TopPTR || _ptr == TopPTR ||
  4435         metadata()->equals(tp->metadata())) {
  4436       return make(ptr, md, offset);
  4438     // metadata is different
  4439     if( ptr == Constant ) {  // Cannot be equal constants, so...
  4440       if( tptr == Constant && _ptr != Constant)  return t;
  4441       if( _ptr == Constant && tptr != Constant)  return this;
  4442       ptr = NotNull;            // Fall down in lattice
  4444     return make(ptr, NULL, offset);
  4445     break;
  4447   } // End of switch
  4448   return this;                  // Return the double constant
  4452 //------------------------------xdual------------------------------------------
  4453 // Dual of a pure metadata pointer.
  4454 const Type *TypeMetadataPtr::xdual() const {
  4455   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
  4458 //------------------------------dump2------------------------------------------
  4459 #ifndef PRODUCT
  4460 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  4461   st->print("metadataptr:%s", ptr_msg[_ptr]);
  4462   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  4463   switch( _offset ) {
  4464   case OffsetTop: st->print("+top"); break;
  4465   case OffsetBot: st->print("+any"); break;
  4466   case         0: break;
  4467   default:        st->print("+%d",_offset); break;
  4470 #endif
  4473 //=============================================================================
  4474 // Convenience common pre-built type.
  4475 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
  4477 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  4478   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
  4481 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  4482   return make(Constant, m, 0);
  4484 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  4485   return make(Constant, m, 0);
  4488 //------------------------------make-------------------------------------------
  4489 // Create a meta data constant
  4490 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  4491   assert(m == NULL || !m->is_klass(), "wrong type");
  4492   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
  4496 //=============================================================================
  4497 // Convenience common pre-built types.
  4499 // Not-null object klass or below
  4500 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  4501 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  4503 //------------------------------TypeKlassPtr-----------------------------------
  4504 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  4505   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
  4508 //------------------------------make-------------------------------------------
  4509 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  4510 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  4511   assert( k != NULL, "Expect a non-NULL klass");
  4512   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  4513   TypeKlassPtr *r =
  4514     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  4516   return r;
  4519 //------------------------------eq---------------------------------------------
  4520 // Structural equality check for Type representations
  4521 bool TypeKlassPtr::eq( const Type *t ) const {
  4522   const TypeKlassPtr *p = t->is_klassptr();
  4523   return
  4524     klass()->equals(p->klass()) &&
  4525     TypePtr::eq(p);
  4528 //------------------------------hash-------------------------------------------
  4529 // Type-specific hashing function.
  4530 int TypeKlassPtr::hash(void) const {
  4531   return klass()->hash() + TypePtr::hash();
  4534 //------------------------------singleton--------------------------------------
  4535 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4536 // constants
  4537 bool TypeKlassPtr::singleton(void) const {
  4538   // detune optimizer to not generate constant klass + constant offset as a constant!
  4539   // TopPTR, Null, AnyNull, Constant are all singletons
  4540   return (_offset == 0) && !below_centerline(_ptr);
  4543 // Do not allow interface-vs.-noninterface joins to collapse to top.
  4544 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
  4545   // logic here mirrors the one from TypeOopPtr::filter. See comments
  4546   // there.
  4547   const Type* ft = join_helper(kills, include_speculative);
  4548   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  4549   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  4551   if (ft->empty()) {
  4552     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  4553       return kills;             // Uplift to interface
  4555     return Type::TOP;           // Canonical empty value
  4558   // Interface klass type could be exact in opposite to interface type,
  4559   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  4560   if (ftkp != NULL && ktkp != NULL &&
  4561       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  4562       !ftkp->klass_is_exact() && // Keep exact interface klass
  4563       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  4564     return ktkp->cast_to_ptr_type(ftkp->ptr());
  4567   return ft;
  4570 //----------------------compute_klass------------------------------------------
  4571 // Compute the defining klass for this class
  4572 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  4573   // Compute _klass based on element type.
  4574   ciKlass* k_ary = NULL;
  4575   const TypeInstPtr *tinst;
  4576   const TypeAryPtr *tary;
  4577   const Type* el = elem();
  4578   if (el->isa_narrowoop()) {
  4579     el = el->make_ptr();
  4582   // Get element klass
  4583   if ((tinst = el->isa_instptr()) != NULL) {
  4584     // Compute array klass from element klass
  4585     k_ary = ciObjArrayKlass::make(tinst->klass());
  4586   } else if ((tary = el->isa_aryptr()) != NULL) {
  4587     // Compute array klass from element klass
  4588     ciKlass* k_elem = tary->klass();
  4589     // If element type is something like bottom[], k_elem will be null.
  4590     if (k_elem != NULL)
  4591       k_ary = ciObjArrayKlass::make(k_elem);
  4592   } else if ((el->base() == Type::Top) ||
  4593              (el->base() == Type::Bottom)) {
  4594     // element type of Bottom occurs from meet of basic type
  4595     // and object; Top occurs when doing join on Bottom.
  4596     // Leave k_ary at NULL.
  4597   } else {
  4598     // Cannot compute array klass directly from basic type,
  4599     // since subtypes of TypeInt all have basic type T_INT.
  4600 #ifdef ASSERT
  4601     if (verify && el->isa_int()) {
  4602       // Check simple cases when verifying klass.
  4603       BasicType bt = T_ILLEGAL;
  4604       if (el == TypeInt::BYTE) {
  4605         bt = T_BYTE;
  4606       } else if (el == TypeInt::SHORT) {
  4607         bt = T_SHORT;
  4608       } else if (el == TypeInt::CHAR) {
  4609         bt = T_CHAR;
  4610       } else if (el == TypeInt::INT) {
  4611         bt = T_INT;
  4612       } else {
  4613         return _klass; // just return specified klass
  4615       return ciTypeArrayKlass::make(bt);
  4617 #endif
  4618     assert(!el->isa_int(),
  4619            "integral arrays must be pre-equipped with a class");
  4620     // Compute array klass directly from basic type
  4621     k_ary = ciTypeArrayKlass::make(el->basic_type());
  4623   return k_ary;
  4626 //------------------------------klass------------------------------------------
  4627 // Return the defining klass for this class
  4628 ciKlass* TypeAryPtr::klass() const {
  4629   if( _klass ) return _klass;   // Return cached value, if possible
  4631   // Oops, need to compute _klass and cache it
  4632   ciKlass* k_ary = compute_klass();
  4634   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  4635     // The _klass field acts as a cache of the underlying
  4636     // ciKlass for this array type.  In order to set the field,
  4637     // we need to cast away const-ness.
  4638     //
  4639     // IMPORTANT NOTE: we *never* set the _klass field for the
  4640     // type TypeAryPtr::OOPS.  This Type is shared between all
  4641     // active compilations.  However, the ciKlass which represents
  4642     // this Type is *not* shared between compilations, so caching
  4643     // this value would result in fetching a dangling pointer.
  4644     //
  4645     // Recomputing the underlying ciKlass for each request is
  4646     // a bit less efficient than caching, but calls to
  4647     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  4648     ((TypeAryPtr*)this)->_klass = k_ary;
  4649     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  4650         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  4651       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  4654   return k_ary;
  4658 //------------------------------add_offset-------------------------------------
  4659 // Access internals of klass object
  4660 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  4661   return make( _ptr, klass(), xadd_offset(offset) );
  4664 //------------------------------cast_to_ptr_type-------------------------------
  4665 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  4666   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  4667   if( ptr == _ptr ) return this;
  4668   return make(ptr, _klass, _offset);
  4672 //-----------------------------cast_to_exactness-------------------------------
  4673 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  4674   if( klass_is_exact == _klass_is_exact ) return this;
  4675   if (!UseExactTypes)  return this;
  4676   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  4680 //-----------------------------as_instance_type--------------------------------
  4681 // Corresponding type for an instance of the given class.
  4682 // It will be NotNull, and exact if and only if the klass type is exact.
  4683 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  4684   ciKlass* k = klass();
  4685   bool    xk = klass_is_exact();
  4686   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  4687   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  4688   guarantee(toop != NULL, "need type for given klass");
  4689   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  4690   return toop->cast_to_exactness(xk)->is_oopptr();
  4694 //------------------------------xmeet------------------------------------------
  4695 // Compute the MEET of two types, return a new Type object.
  4696 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  4697   // Perform a fast test for common case; meeting the same types together.
  4698   if( this == t ) return this;  // Meeting same type-rep?
  4700   // Current "this->_base" is Pointer
  4701   switch (t->base()) {          // switch on original type
  4703   case Int:                     // Mixing ints & oops happens when javac
  4704   case Long:                    // reuses local variables
  4705   case FloatTop:
  4706   case FloatCon:
  4707   case FloatBot:
  4708   case DoubleTop:
  4709   case DoubleCon:
  4710   case DoubleBot:
  4711   case NarrowOop:
  4712   case NarrowKlass:
  4713   case Bottom:                  // Ye Olde Default
  4714     return Type::BOTTOM;
  4715   case Top:
  4716     return this;
  4718   default:                      // All else is a mistake
  4719     typerr(t);
  4721   case AnyPtr: {                // Meeting to AnyPtrs
  4722     // Found an AnyPtr type vs self-KlassPtr type
  4723     const TypePtr *tp = t->is_ptr();
  4724     int offset = meet_offset(tp->offset());
  4725     PTR ptr = meet_ptr(tp->ptr());
  4726     switch (tp->ptr()) {
  4727     case TopPTR:
  4728       return this;
  4729     case Null:
  4730       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4731     case AnyNull:
  4732       return make( ptr, klass(), offset );
  4733     case BotPTR:
  4734     case NotNull:
  4735       return TypePtr::make(AnyPtr, ptr, offset);
  4736     default: typerr(t);
  4740   case RawPtr:
  4741   case MetadataPtr:
  4742   case OopPtr:
  4743   case AryPtr:                  // Meet with AryPtr
  4744   case InstPtr:                 // Meet with InstPtr
  4745     return TypePtr::BOTTOM;
  4747   //
  4748   //             A-top         }
  4749   //           /   |   \       }  Tops
  4750   //       B-top A-any C-top   }
  4751   //          | /  |  \ |      }  Any-nulls
  4752   //       B-any   |   C-any   }
  4753   //          |    |    |
  4754   //       B-con A-con C-con   } constants; not comparable across classes
  4755   //          |    |    |
  4756   //       B-not   |   C-not   }
  4757   //          | \  |  / |      }  not-nulls
  4758   //       B-bot A-not C-bot   }
  4759   //           \   |   /       }  Bottoms
  4760   //             A-bot         }
  4761   //
  4763   case KlassPtr: {  // Meet two KlassPtr types
  4764     const TypeKlassPtr *tkls = t->is_klassptr();
  4765     int  off     = meet_offset(tkls->offset());
  4766     PTR  ptr     = meet_ptr(tkls->ptr());
  4768     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4769     // If we have constants, then we created oops so classes are loaded
  4770     // and we can handle the constants further down.  This case handles
  4771     // not-loaded classes
  4772     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4773       return make( ptr, klass(), off );
  4776     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4777     ciKlass* tkls_klass = tkls->klass();
  4778     ciKlass* this_klass = this->klass();
  4779     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4780     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4782     // If 'this' type is above the centerline and is a superclass of the
  4783     // other, we can treat 'this' as having the same type as the other.
  4784     if ((above_centerline(this->ptr())) &&
  4785         tkls_klass->is_subtype_of(this_klass)) {
  4786       this_klass = tkls_klass;
  4788     // If 'tinst' type is above the centerline and is a superclass of the
  4789     // other, we can treat 'tinst' as having the same type as the other.
  4790     if ((above_centerline(tkls->ptr())) &&
  4791         this_klass->is_subtype_of(tkls_klass)) {
  4792       tkls_klass = this_klass;
  4795     // Check for classes now being equal
  4796     if (tkls_klass->equals(this_klass)) {
  4797       // If the klasses are equal, the constants may still differ.  Fall to
  4798       // NotNull if they do (neither constant is NULL; that is a special case
  4799       // handled elsewhere).
  4800       if( ptr == Constant ) {
  4801         if (this->_ptr == Constant && tkls->_ptr == Constant &&
  4802             this->klass()->equals(tkls->klass()));
  4803         else if (above_centerline(this->ptr()));
  4804         else if (above_centerline(tkls->ptr()));
  4805         else
  4806           ptr = NotNull;
  4808       return make( ptr, this_klass, off );
  4809     } // Else classes are not equal
  4811     // Since klasses are different, we require the LCA in the Java
  4812     // class hierarchy - which means we have to fall to at least NotNull.
  4813     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4814       ptr = NotNull;
  4815     // Now we find the LCA of Java classes
  4816     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4817     return   make( ptr, k, off );
  4818   } // End of case KlassPtr
  4820   } // End of switch
  4821   return this;                  // Return the double constant
  4824 //------------------------------xdual------------------------------------------
  4825 // Dual: compute field-by-field dual
  4826 const Type    *TypeKlassPtr::xdual() const {
  4827   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4830 //------------------------------get_con----------------------------------------
  4831 intptr_t TypeKlassPtr::get_con() const {
  4832   assert( _ptr == Null || _ptr == Constant, "" );
  4833   assert( _offset >= 0, "" );
  4835   if (_offset != 0) {
  4836     // After being ported to the compiler interface, the compiler no longer
  4837     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  4838     // to a handle at compile time.  This handle is embedded in the generated
  4839     // code and dereferenced at the time the nmethod is made.  Until that time,
  4840     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  4841     // have access to the addresses!).  This does not seem to currently happen,
  4842     // but this assertion here is to help prevent its occurence.
  4843     tty->print_cr("Found oop constant with non-zero offset");
  4844     ShouldNotReachHere();
  4847   return (intptr_t)klass()->constant_encoding();
  4849 //------------------------------dump2------------------------------------------
  4850 // Dump Klass Type
  4851 #ifndef PRODUCT
  4852 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4853   switch( _ptr ) {
  4854   case Constant:
  4855     st->print("precise ");
  4856   case NotNull:
  4858       const char *name = klass()->name()->as_utf8();
  4859       if( name ) {
  4860         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4861       } else {
  4862         ShouldNotReachHere();
  4865   case BotPTR:
  4866     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4867   case TopPTR:
  4868   case AnyNull:
  4869     st->print(":%s", ptr_msg[_ptr]);
  4870     if( _klass_is_exact ) st->print(":exact");
  4871     break;
  4874   if( _offset ) {               // Dump offset, if any
  4875     if( _offset == OffsetBot )      { st->print("+any"); }
  4876     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4877     else                            { st->print("+%d", _offset); }
  4880   st->print(" *");
  4882 #endif
  4886 //=============================================================================
  4887 // Convenience common pre-built types.
  4889 //------------------------------make-------------------------------------------
  4890 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4891   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4894 //------------------------------make-------------------------------------------
  4895 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4896   Compile* C = Compile::current();
  4897   const TypeFunc* tf = C->last_tf(method); // check cache
  4898   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4899   const TypeTuple *domain;
  4900   if (method->is_static()) {
  4901     domain = TypeTuple::make_domain(NULL, method->signature());
  4902   } else {
  4903     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4905   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4906   tf = TypeFunc::make(domain, range);
  4907   C->set_last_tf(method, tf);  // fill cache
  4908   return tf;
  4911 //------------------------------meet-------------------------------------------
  4912 // Compute the MEET of two types.  It returns a new Type object.
  4913 const Type *TypeFunc::xmeet( const Type *t ) const {
  4914   // Perform a fast test for common case; meeting the same types together.
  4915   if( this == t ) return this;  // Meeting same type-rep?
  4917   // Current "this->_base" is Func
  4918   switch (t->base()) {          // switch on original type
  4920   case Bottom:                  // Ye Olde Default
  4921     return t;
  4923   default:                      // All else is a mistake
  4924     typerr(t);
  4926   case Top:
  4927     break;
  4929   return this;                  // Return the double constant
  4932 //------------------------------xdual------------------------------------------
  4933 // Dual: compute field-by-field dual
  4934 const Type *TypeFunc::xdual() const {
  4935   return this;
  4938 //------------------------------eq---------------------------------------------
  4939 // Structural equality check for Type representations
  4940 bool TypeFunc::eq( const Type *t ) const {
  4941   const TypeFunc *a = (const TypeFunc*)t;
  4942   return _domain == a->_domain &&
  4943     _range == a->_range;
  4946 //------------------------------hash-------------------------------------------
  4947 // Type-specific hashing function.
  4948 int TypeFunc::hash(void) const {
  4949   return (intptr_t)_domain + (intptr_t)_range;
  4952 //------------------------------dump2------------------------------------------
  4953 // Dump Function Type
  4954 #ifndef PRODUCT
  4955 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4956   if( _range->_cnt <= Parms )
  4957     st->print("void");
  4958   else {
  4959     uint i;
  4960     for (i = Parms; i < _range->_cnt-1; i++) {
  4961       _range->field_at(i)->dump2(d,depth,st);
  4962       st->print("/");
  4964     _range->field_at(i)->dump2(d,depth,st);
  4966   st->print(" ");
  4967   st->print("( ");
  4968   if( !depth || d[this] ) {     // Check for recursive dump
  4969     st->print("...)");
  4970     return;
  4972   d.Insert((void*)this,(void*)this);    // Stop recursion
  4973   if (Parms < _domain->_cnt)
  4974     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4975   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4976     st->print(", ");
  4977     _domain->field_at(i)->dump2(d,depth-1,st);
  4979   st->print(" )");
  4981 #endif
  4983 //------------------------------singleton--------------------------------------
  4984 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4985 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4986 // or a single symbol.
  4987 bool TypeFunc::singleton(void) const {
  4988   return false;                 // Never a singleton
  4991 bool TypeFunc::empty(void) const {
  4992   return false;                 // Never empty
  4996 BasicType TypeFunc::return_type() const{
  4997   if (range()->cnt() == TypeFunc::Parms) {
  4998     return T_VOID;
  5000   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial