src/share/vm/memory/defNewGeneration.cpp

Mon, 08 Apr 2013 07:49:28 +0200

author
brutisso
date
Mon, 08 Apr 2013 07:49:28 +0200
changeset 4901
83f27710f5f7
parent 4452
a30e7b564541
child 5159
001ec9515f84
permissions
-rw-r--r--

7197666: java -d64 -version core dumps in a box with lots of memory
Summary: Allow task queues to be mmapped instead of malloced on Solaris
Reviewed-by: coleenp, jmasa, johnc, tschatzl

duke@435 1 /*
johnc@3538 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 29 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 30 #include "memory/gcLocker.inline.hpp"
stefank@2314 31 #include "memory/genCollectedHeap.hpp"
stefank@2314 32 #include "memory/genOopClosures.inline.hpp"
coleenp@4037 33 #include "memory/genRemSet.hpp"
stefank@2314 34 #include "memory/generationSpec.hpp"
stefank@2314 35 #include "memory/iterator.hpp"
stefank@2314 36 #include "memory/referencePolicy.hpp"
stefank@2314 37 #include "memory/space.inline.hpp"
stefank@2314 38 #include "oops/instanceRefKlass.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "runtime/java.hpp"
stefank@4299 41 #include "runtime/thread.inline.hpp"
stefank@2314 42 #include "utilities/copy.hpp"
stefank@2314 43 #include "utilities/stack.inline.hpp"
duke@435 44
duke@435 45 //
duke@435 46 // DefNewGeneration functions.
duke@435 47
duke@435 48 // Methods of protected closure types.
duke@435 49
duke@435 50 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 51 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 52 }
duke@435 53 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
duke@435 54 assert(false, "Do not call.");
duke@435 55 }
duke@435 56 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 57 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 58 }
duke@435 59
duke@435 60 DefNewGeneration::KeepAliveClosure::
duke@435 61 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 62 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 63 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 64 _rs = (CardTableRS*)rs;
duke@435 65 }
duke@435 66
coleenp@548 67 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 68 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 69
duke@435 70
duke@435 71 DefNewGeneration::FastKeepAliveClosure::
duke@435 72 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 73 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 74 _boundary = g->reserved().end();
duke@435 75 }
duke@435 76
coleenp@548 77 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 78 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 79
duke@435 80 DefNewGeneration::EvacuateFollowersClosure::
duke@435 81 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 82 ScanClosure* cur, ScanClosure* older) :
duke@435 83 _gch(gch), _level(level),
duke@435 84 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 85 {}
duke@435 86
duke@435 87 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 88 do {
duke@435 89 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 90 _scan_older);
duke@435 91 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 92 }
duke@435 93
duke@435 94 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 95 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 96 DefNewGeneration* gen,
duke@435 97 FastScanClosure* cur, FastScanClosure* older) :
duke@435 98 _gch(gch), _level(level), _gen(gen),
duke@435 99 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 100 {}
duke@435 101
duke@435 102 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 103 do {
duke@435 104 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 105 _scan_older);
duke@435 106 } while (!_gch->no_allocs_since_save_marks(_level));
jcoomes@2191 107 guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
duke@435 108 }
duke@435 109
duke@435 110 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
coleenp@4037 111 OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 112 {
duke@435 113 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 114 _boundary = _g->reserved().end();
duke@435 115 }
duke@435 116
coleenp@548 117 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 118 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 119
duke@435 120 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
coleenp@4037 121 OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 122 {
duke@435 123 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 124 _boundary = _g->reserved().end();
duke@435 125 }
duke@435 126
coleenp@548 127 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 128 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 129
coleenp@4037 130 void KlassScanClosure::do_klass(Klass* klass) {
coleenp@4037 131 #ifndef PRODUCT
coleenp@4037 132 if (TraceScavenge) {
coleenp@4037 133 ResourceMark rm;
coleenp@4037 134 gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
coleenp@4037 135 klass,
coleenp@4037 136 klass->external_name(),
coleenp@4037 137 klass->has_modified_oops() ? "true" : "false");
coleenp@4037 138 }
coleenp@4037 139 #endif
coleenp@4037 140
coleenp@4037 141 // If the klass has not been dirtied we know that there's
coleenp@4037 142 // no references into the young gen and we can skip it.
coleenp@4037 143 if (klass->has_modified_oops()) {
coleenp@4037 144 if (_accumulate_modified_oops) {
coleenp@4037 145 klass->accumulate_modified_oops();
coleenp@4037 146 }
coleenp@4037 147
coleenp@4037 148 // Clear this state since we're going to scavenge all the metadata.
coleenp@4037 149 klass->clear_modified_oops();
coleenp@4037 150
coleenp@4037 151 // Tell the closure which Klass is being scanned so that it can be dirtied
coleenp@4037 152 // if oops are left pointing into the young gen.
coleenp@4037 153 _scavenge_closure->set_scanned_klass(klass);
coleenp@4037 154
coleenp@4037 155 klass->oops_do(_scavenge_closure);
coleenp@4037 156
coleenp@4037 157 _scavenge_closure->set_scanned_klass(NULL);
coleenp@4037 158 }
coleenp@4037 159 }
coleenp@4037 160
duke@435 161 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
coleenp@4037 162 _g(g)
duke@435 163 {
duke@435 164 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 165 _boundary = _g->reserved().end();
duke@435 166 }
duke@435 167
coleenp@548 168 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 169 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 170
coleenp@548 171 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 172 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 173
coleenp@4037 174 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
coleenp@4037 175 KlassRemSet* klass_rem_set)
coleenp@4037 176 : _scavenge_closure(scavenge_closure),
coleenp@4037 177 _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
coleenp@4037 178
coleenp@4037 179
duke@435 180 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 181 size_t initial_size,
duke@435 182 int level,
duke@435 183 const char* policy)
duke@435 184 : Generation(rs, initial_size, level),
duke@435 185 _promo_failure_drain_in_progress(false),
duke@435 186 _should_allocate_from_space(false)
duke@435 187 {
duke@435 188 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 189 (HeapWord*)_virtual_space.high());
duke@435 190 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 191
duke@435 192 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 193 _eden_space = new ConcEdenSpace(this);
duke@435 194 } else {
duke@435 195 _eden_space = new EdenSpace(this);
duke@435 196 }
duke@435 197 _from_space = new ContiguousSpace();
duke@435 198 _to_space = new ContiguousSpace();
duke@435 199
duke@435 200 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 201 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 202
duke@435 203 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 204 // are computed assuming the entire reserved space is committed.
duke@435 205 // These values are exported as performance counters.
duke@435 206 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 207 uintx size = _virtual_space.reserved_size();
duke@435 208 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 209 _max_eden_size = size - (2*_max_survivor_size);
duke@435 210
duke@435 211 // allocate the performance counters
duke@435 212
duke@435 213 // Generation counters -- generation 0, 3 subspaces
duke@435 214 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 215 _gc_counters = new CollectorCounters(policy, 0);
duke@435 216
duke@435 217 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 218 _gen_counters);
duke@435 219 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 220 _gen_counters);
duke@435 221 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 222 _gen_counters);
duke@435 223
jmasa@698 224 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 225 update_counters();
duke@435 226 _next_gen = NULL;
duke@435 227 _tenuring_threshold = MaxTenuringThreshold;
duke@435 228 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 229 }
duke@435 230
jmasa@698 231 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
jmasa@698 232 bool clear_space,
jmasa@698 233 bool mangle_space) {
jmasa@698 234 uintx alignment =
jmasa@698 235 GenCollectedHeap::heap()->collector_policy()->min_alignment();
jmasa@698 236
jmasa@698 237 // If the spaces are being cleared (only done at heap initialization
jmasa@698 238 // currently), the survivor spaces need not be empty.
jmasa@698 239 // Otherwise, no care is taken for used areas in the survivor spaces
jmasa@698 240 // so check.
jmasa@698 241 assert(clear_space || (to()->is_empty() && from()->is_empty()),
jmasa@698 242 "Initialization of the survivor spaces assumes these are empty");
duke@435 243
duke@435 244 // Compute sizes
duke@435 245 uintx size = _virtual_space.committed_size();
duke@435 246 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 247 uintx eden_size = size - (2*survivor_size);
duke@435 248 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 249
duke@435 250 if (eden_size < minimum_eden_size) {
duke@435 251 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 252 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 253 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 254 uintx unaligned_survivor_size =
duke@435 255 align_size_down(maximum_survivor_size, alignment);
duke@435 256 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 257 eden_size = size - (2*survivor_size);
duke@435 258 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 259 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 260 }
duke@435 261
duke@435 262 char *eden_start = _virtual_space.low();
duke@435 263 char *from_start = eden_start + eden_size;
duke@435 264 char *to_start = from_start + survivor_size;
duke@435 265 char *to_end = to_start + survivor_size;
duke@435 266
duke@435 267 assert(to_end == _virtual_space.high(), "just checking");
duke@435 268 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 269 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 270 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 271
duke@435 272 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 273 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 274 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 275
jmasa@698 276 // A minimum eden size implies that there is a part of eden that
jmasa@698 277 // is being used and that affects the initialization of any
jmasa@698 278 // newly formed eden.
jmasa@698 279 bool live_in_eden = minimum_eden_size > 0;
jmasa@698 280
jmasa@698 281 // If not clearing the spaces, do some checking to verify that
jmasa@698 282 // the space are already mangled.
jmasa@698 283 if (!clear_space) {
jmasa@698 284 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 285 // the bottom or end of one space may have moved into another
jmasa@698 286 // a failure of the check may not correctly indicate which space
jmasa@698 287 // is not properly mangled.
jmasa@698 288 if (ZapUnusedHeapArea) {
jmasa@698 289 HeapWord* limit = (HeapWord*) _virtual_space.high();
jmasa@698 290 eden()->check_mangled_unused_area(limit);
jmasa@698 291 from()->check_mangled_unused_area(limit);
jmasa@698 292 to()->check_mangled_unused_area(limit);
jmasa@698 293 }
jmasa@698 294 }
jmasa@698 295
jmasa@698 296 // Reset the spaces for their new regions.
jmasa@698 297 eden()->initialize(edenMR,
jmasa@698 298 clear_space && !live_in_eden,
jmasa@698 299 SpaceDecorator::Mangle);
jmasa@698 300 // If clear_space and live_in_eden, we will not have cleared any
duke@435 301 // portion of eden above its top. This can cause newly
duke@435 302 // expanded space not to be mangled if using ZapUnusedHeapArea.
duke@435 303 // We explicitly do such mangling here.
jmasa@698 304 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
duke@435 305 eden()->mangle_unused_area();
duke@435 306 }
jmasa@698 307 from()->initialize(fromMR, clear_space, mangle_space);
jmasa@698 308 to()->initialize(toMR, clear_space, mangle_space);
jmasa@698 309
jmasa@698 310 // Set next compaction spaces.
duke@435 311 eden()->set_next_compaction_space(from());
duke@435 312 // The to-space is normally empty before a compaction so need
duke@435 313 // not be considered. The exception is during promotion
duke@435 314 // failure handling when to-space can contain live objects.
duke@435 315 from()->set_next_compaction_space(NULL);
duke@435 316 }
duke@435 317
duke@435 318 void DefNewGeneration::swap_spaces() {
duke@435 319 ContiguousSpace* s = from();
duke@435 320 _from_space = to();
duke@435 321 _to_space = s;
duke@435 322 eden()->set_next_compaction_space(from());
duke@435 323 // The to-space is normally empty before a compaction so need
duke@435 324 // not be considered. The exception is during promotion
duke@435 325 // failure handling when to-space can contain live objects.
duke@435 326 from()->set_next_compaction_space(NULL);
duke@435 327
duke@435 328 if (UsePerfData) {
duke@435 329 CSpaceCounters* c = _from_counters;
duke@435 330 _from_counters = _to_counters;
duke@435 331 _to_counters = c;
duke@435 332 }
duke@435 333 }
duke@435 334
duke@435 335 bool DefNewGeneration::expand(size_t bytes) {
duke@435 336 MutexLocker x(ExpandHeap_lock);
jmasa@698 337 HeapWord* prev_high = (HeapWord*) _virtual_space.high();
duke@435 338 bool success = _virtual_space.expand_by(bytes);
jmasa@698 339 if (success && ZapUnusedHeapArea) {
jmasa@698 340 // Mangle newly committed space immediately because it
jmasa@698 341 // can be done here more simply that after the new
jmasa@698 342 // spaces have been computed.
jmasa@698 343 HeapWord* new_high = (HeapWord*) _virtual_space.high();
jmasa@698 344 MemRegion mangle_region(prev_high, new_high);
jmasa@698 345 SpaceMangler::mangle_region(mangle_region);
jmasa@698 346 }
duke@435 347
duke@435 348 // Do not attempt an expand-to-the reserve size. The
duke@435 349 // request should properly observe the maximum size of
duke@435 350 // the generation so an expand-to-reserve should be
duke@435 351 // unnecessary. Also a second call to expand-to-reserve
duke@435 352 // value potentially can cause an undue expansion.
duke@435 353 // For example if the first expand fail for unknown reasons,
duke@435 354 // but the second succeeds and expands the heap to its maximum
duke@435 355 // value.
duke@435 356 if (GC_locker::is_active()) {
duke@435 357 if (PrintGC && Verbose) {
jmasa@698 358 gclog_or_tty->print_cr("Garbage collection disabled, "
jmasa@698 359 "expanded heap instead");
duke@435 360 }
duke@435 361 }
duke@435 362
duke@435 363 return success;
duke@435 364 }
duke@435 365
duke@435 366
duke@435 367 void DefNewGeneration::compute_new_size() {
duke@435 368 // This is called after a gc that includes the following generation
duke@435 369 // (which is required to exist.) So from-space will normally be empty.
duke@435 370 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 371 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 372 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 373 return;
duke@435 374 }
duke@435 375
duke@435 376 int next_level = level() + 1;
duke@435 377 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 378 assert(next_level < gch->_n_gens,
duke@435 379 "DefNewGeneration cannot be an oldest gen");
duke@435 380
duke@435 381 Generation* next_gen = gch->_gens[next_level];
duke@435 382 size_t old_size = next_gen->capacity();
duke@435 383 size_t new_size_before = _virtual_space.committed_size();
duke@435 384 size_t min_new_size = spec()->init_size();
duke@435 385 size_t max_new_size = reserved().byte_size();
duke@435 386 assert(min_new_size <= new_size_before &&
duke@435 387 new_size_before <= max_new_size,
duke@435 388 "just checking");
duke@435 389 // All space sizes must be multiples of Generation::GenGrain.
duke@435 390 size_t alignment = Generation::GenGrain;
duke@435 391
duke@435 392 // Compute desired new generation size based on NewRatio and
duke@435 393 // NewSizeThreadIncrease
duke@435 394 size_t desired_new_size = old_size/NewRatio;
duke@435 395 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 396 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 397 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 398
duke@435 399 // Adjust new generation size
duke@435 400 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 401 assert(desired_new_size <= max_new_size, "just checking");
duke@435 402
duke@435 403 bool changed = false;
duke@435 404 if (desired_new_size > new_size_before) {
duke@435 405 size_t change = desired_new_size - new_size_before;
duke@435 406 assert(change % alignment == 0, "just checking");
duke@435 407 if (expand(change)) {
duke@435 408 changed = true;
duke@435 409 }
duke@435 410 // If the heap failed to expand to the desired size,
duke@435 411 // "changed" will be false. If the expansion failed
duke@435 412 // (and at this point it was expected to succeed),
duke@435 413 // ignore the failure (leaving "changed" as false).
duke@435 414 }
duke@435 415 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 416 // bail out of shrinking if objects in eden
duke@435 417 size_t change = new_size_before - desired_new_size;
duke@435 418 assert(change % alignment == 0, "just checking");
duke@435 419 _virtual_space.shrink_by(change);
duke@435 420 changed = true;
duke@435 421 }
duke@435 422 if (changed) {
jmasa@698 423 // The spaces have already been mangled at this point but
jmasa@698 424 // may not have been cleared (set top = bottom) and should be.
jmasa@698 425 // Mangling was done when the heap was being expanded.
jmasa@698 426 compute_space_boundaries(eden()->used(),
jmasa@698 427 SpaceDecorator::Clear,
jmasa@698 428 SpaceDecorator::DontMangle);
jmasa@698 429 MemRegion cmr((HeapWord*)_virtual_space.low(),
jmasa@698 430 (HeapWord*)_virtual_space.high());
duke@435 431 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 432 if (Verbose && PrintGC) {
duke@435 433 size_t new_size_after = _virtual_space.committed_size();
duke@435 434 size_t eden_size_after = eden()->capacity();
duke@435 435 size_t survivor_size_after = from()->capacity();
jmasa@698 436 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
jmasa@698 437 SIZE_FORMAT "K [eden="
duke@435 438 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
jmasa@698 439 new_size_before/K, new_size_after/K,
jmasa@698 440 eden_size_after/K, survivor_size_after/K);
duke@435 441 if (WizardMode) {
duke@435 442 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 443 thread_increase_size/K, threads_count);
duke@435 444 }
duke@435 445 gclog_or_tty->cr();
duke@435 446 }
duke@435 447 }
duke@435 448 }
duke@435 449
duke@435 450 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 451 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 452 eden()->object_iterate(cl);
duke@435 453 }
duke@435 454
duke@435 455 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 456 assert(false, "NYI -- are you sure you want to call this?");
duke@435 457 }
duke@435 458
duke@435 459
duke@435 460 size_t DefNewGeneration::capacity() const {
duke@435 461 return eden()->capacity()
duke@435 462 + from()->capacity(); // to() is only used during scavenge
duke@435 463 }
duke@435 464
duke@435 465
duke@435 466 size_t DefNewGeneration::used() const {
duke@435 467 return eden()->used()
duke@435 468 + from()->used(); // to() is only used during scavenge
duke@435 469 }
duke@435 470
duke@435 471
duke@435 472 size_t DefNewGeneration::free() const {
duke@435 473 return eden()->free()
duke@435 474 + from()->free(); // to() is only used during scavenge
duke@435 475 }
duke@435 476
duke@435 477 size_t DefNewGeneration::max_capacity() const {
duke@435 478 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 479 const size_t reserved_bytes = reserved().byte_size();
duke@435 480 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 481 }
duke@435 482
duke@435 483 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 484 return eden()->free();
duke@435 485 }
duke@435 486
duke@435 487 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 488 return eden()->capacity();
duke@435 489 }
duke@435 490
duke@435 491 size_t DefNewGeneration::contiguous_available() const {
duke@435 492 return eden()->free();
duke@435 493 }
duke@435 494
duke@435 495
duke@435 496 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 497 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 498
duke@435 499 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 500 eden()->object_iterate(blk);
duke@435 501 from()->object_iterate(blk);
duke@435 502 }
duke@435 503
duke@435 504
duke@435 505 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 506 bool usedOnly) {
duke@435 507 blk->do_space(eden());
duke@435 508 blk->do_space(from());
duke@435 509 blk->do_space(to());
duke@435 510 }
duke@435 511
duke@435 512 // The last collection bailed out, we are running out of heap space,
duke@435 513 // so we try to allocate the from-space, too.
duke@435 514 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 515 HeapWord* result = NULL;
ysr@2336 516 if (Verbose && PrintGCDetails) {
duke@435 517 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
ysr@2336 518 " will_fail: %s"
ysr@2336 519 " heap_lock: %s"
ysr@2336 520 " free: " SIZE_FORMAT,
ysr@2336 521 size,
ysr@2336 522 GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
ysr@2336 523 "true" : "false",
ysr@2336 524 Heap_lock->is_locked() ? "locked" : "unlocked",
ysr@2336 525 from()->free());
ysr@2336 526 }
duke@435 527 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 528 if (Heap_lock->owned_by_self() ||
duke@435 529 (SafepointSynchronize::is_at_safepoint() &&
duke@435 530 Thread::current()->is_VM_thread())) {
duke@435 531 // If the Heap_lock is not locked by this thread, this will be called
duke@435 532 // again later with the Heap_lock held.
duke@435 533 result = from()->allocate(size);
duke@435 534 } else if (PrintGC && Verbose) {
duke@435 535 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 536 }
duke@435 537 } else if (PrintGC && Verbose) {
duke@435 538 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 539 }
duke@435 540 if (PrintGC && Verbose) {
duke@435 541 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 542 }
duke@435 543 return result;
duke@435 544 }
duke@435 545
duke@435 546 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 547 bool is_tlab,
duke@435 548 bool parallel) {
duke@435 549 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 550 return allocate(size, is_tlab);
duke@435 551 }
duke@435 552
brutisso@4452 553 void DefNewGeneration::adjust_desired_tenuring_threshold() {
brutisso@4452 554 // Set the desired survivor size to half the real survivor space
brutisso@4452 555 _tenuring_threshold =
brutisso@4452 556 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
brutisso@4452 557 }
duke@435 558
duke@435 559 void DefNewGeneration::collect(bool full,
duke@435 560 bool clear_all_soft_refs,
duke@435 561 size_t size,
duke@435 562 bool is_tlab) {
duke@435 563 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 564 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 565 _next_gen = gch->next_gen(this);
duke@435 566 assert(_next_gen != NULL,
duke@435 567 "This must be the youngest gen, and not the only gen");
duke@435 568
duke@435 569 // If the next generation is too full to accomodate promotion
duke@435 570 // from this generation, pass on collection; let the next generation
duke@435 571 // do it.
duke@435 572 if (!collection_attempt_is_safe()) {
ysr@2336 573 if (Verbose && PrintGCDetails) {
ysr@2336 574 gclog_or_tty->print(" :: Collection attempt not safe :: ");
ysr@2336 575 }
ysr@2243 576 gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
duke@435 577 return;
duke@435 578 }
duke@435 579 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 580
duke@435 581 init_assuming_no_promotion_failure();
duke@435 582
brutisso@3767 583 TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 584 // Capture heap used before collection (for printing).
duke@435 585 size_t gch_prev_used = gch->used();
duke@435 586
duke@435 587 SpecializationStats::clear();
duke@435 588
duke@435 589 // These can be shared for all code paths
duke@435 590 IsAliveClosure is_alive(this);
duke@435 591 ScanWeakRefClosure scan_weak_ref(this);
duke@435 592
duke@435 593 age_table()->clear();
jmasa@698 594 to()->clear(SpaceDecorator::Mangle);
duke@435 595
duke@435 596 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 597
duke@435 598 assert(gch->no_allocs_since_save_marks(0),
duke@435 599 "save marks have not been newly set.");
duke@435 600
duke@435 601 // Not very pretty.
duke@435 602 CollectorPolicy* cp = gch->collector_policy();
duke@435 603
duke@435 604 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 605 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 606
coleenp@4037 607 KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
coleenp@4037 608 gch->rem_set()->klass_rem_set());
coleenp@4037 609
duke@435 610 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 611 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 612 &fsc_with_no_gc_barrier,
duke@435 613 &fsc_with_gc_barrier);
duke@435 614
duke@435 615 assert(gch->no_allocs_since_save_marks(0),
duke@435 616 "save marks have not been newly set.");
duke@435 617
coleenp@4037 618 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
coleenp@4037 619
duke@435 620 gch->gen_process_strong_roots(_level,
jrose@1424 621 true, // Process younger gens, if any,
jrose@1424 622 // as strong roots.
jrose@1424 623 true, // activate StrongRootsScope
coleenp@4037 624 true, // is scavenging
coleenp@4037 625 SharedHeap::ScanningOption(so),
jrose@1424 626 &fsc_with_no_gc_barrier,
jrose@1424 627 true, // walk *all* scavengable nmethods
coleenp@4037 628 &fsc_with_gc_barrier,
coleenp@4037 629 &klass_scan_closure);
duke@435 630
duke@435 631 // "evacuate followers".
duke@435 632 evacuate_followers.do_void();
duke@435 633
duke@435 634 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ysr@888 635 ReferenceProcessor* rp = ref_processor();
ysr@892 636 rp->setup_policy(clear_all_soft_refs);
ysr@888 637 rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
ysr@888 638 NULL);
duke@435 639 if (!promotion_failed()) {
duke@435 640 // Swap the survivor spaces.
jmasa@698 641 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 642 from()->clear(SpaceDecorator::Mangle);
jmasa@698 643 if (ZapUnusedHeapArea) {
jmasa@698 644 // This is now done here because of the piece-meal mangling which
jmasa@698 645 // can check for valid mangling at intermediate points in the
jmasa@698 646 // collection(s). When a minor collection fails to collect
jmasa@698 647 // sufficient space resizing of the young generation can occur
jmasa@698 648 // an redistribute the spaces in the young generation. Mangle
jmasa@698 649 // here so that unzapped regions don't get distributed to
jmasa@698 650 // other spaces.
jmasa@698 651 to()->mangle_unused_area();
jmasa@698 652 }
duke@435 653 swap_spaces();
duke@435 654
duke@435 655 assert(to()->is_empty(), "to space should be empty now");
duke@435 656
brutisso@4452 657 adjust_desired_tenuring_threshold();
duke@435 658
jmasa@1822 659 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 660 // for full GC's.
jmasa@1822 661 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@1822 662 size_policy->reset_gc_overhead_limit_count();
duke@435 663 if (PrintGC && !PrintGCDetails) {
duke@435 664 gch->print_heap_change(gch_prev_used);
duke@435 665 }
ysr@2243 666 assert(!gch->incremental_collection_failed(), "Should be clear");
duke@435 667 } else {
jcoomes@2191 668 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 669 _promo_failure_scan_stack.clear(true); // Clear cached segments.
duke@435 670
duke@435 671 remove_forwarding_pointers();
duke@435 672 if (PrintGCDetails) {
ysr@1580 673 gclog_or_tty->print(" (promotion failed) ");
duke@435 674 }
duke@435 675 // Add to-space to the list of space to compact
duke@435 676 // when a promotion failure has occurred. In that
duke@435 677 // case there can be live objects in to-space
duke@435 678 // as a result of a partial evacuation of eden
duke@435 679 // and from-space.
jcoomes@2191 680 swap_spaces(); // For uniformity wrt ParNewGeneration.
duke@435 681 from()->set_next_compaction_space(to());
ysr@2243 682 gch->set_incremental_collection_failed();
duke@435 683
ysr@1580 684 // Inform the next generation that a promotion failure occurred.
ysr@1580 685 _next_gen->promotion_failure_occurred();
ysr@1580 686
duke@435 687 // Reset the PromotionFailureALot counters.
duke@435 688 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 689 }
duke@435 690 // set new iteration safe limit for the survivor spaces
duke@435 691 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 692 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 693 SpecializationStats::print();
johnc@3538 694
johnc@3538 695 // We need to use a monotonically non-deccreasing time in ms
johnc@3538 696 // or we will see time-warp warnings and os::javaTimeMillis()
johnc@3538 697 // does not guarantee monotonicity.
johnc@3538 698 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3538 699 update_time_of_last_gc(now);
duke@435 700 }
duke@435 701
duke@435 702 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 703 public:
duke@435 704 void do_object(oop obj) {
duke@435 705 obj->init_mark();
duke@435 706 }
duke@435 707 };
duke@435 708
duke@435 709 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 710 _promotion_failed = false;
duke@435 711 from()->set_next_compaction_space(NULL);
duke@435 712 }
duke@435 713
duke@435 714 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 715 RemoveForwardPointerClosure rspc;
duke@435 716 eden()->object_iterate(&rspc);
duke@435 717 from()->object_iterate(&rspc);
jcoomes@2191 718
duke@435 719 // Now restore saved marks, if any.
jcoomes@2191 720 assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
jcoomes@2191 721 "should be the same");
jcoomes@2191 722 while (!_objs_with_preserved_marks.is_empty()) {
jcoomes@2191 723 oop obj = _objs_with_preserved_marks.pop();
jcoomes@2191 724 markOop m = _preserved_marks_of_objs.pop();
jcoomes@2191 725 obj->set_mark(m);
duke@435 726 }
jcoomes@2191 727 _objs_with_preserved_marks.clear(true);
jcoomes@2191 728 _preserved_marks_of_objs.clear(true);
duke@435 729 }
duke@435 730
ysr@2380 731 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
ysr@2380 732 assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
ysr@2380 733 "Oversaving!");
ysr@2380 734 _objs_with_preserved_marks.push(obj);
ysr@2380 735 _preserved_marks_of_objs.push(m);
ysr@2380 736 }
ysr@2380 737
duke@435 738 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 739 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 740 preserve_mark(obj, m);
duke@435 741 }
duke@435 742 }
duke@435 743
duke@435 744 void DefNewGeneration::handle_promotion_failure(oop old) {
ysr@2380 745 if (PrintPromotionFailure && !_promotion_failed) {
ysr@1580 746 gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 747 old->size());
ysr@1580 748 }
ysr@2380 749 _promotion_failed = true;
ysr@2380 750 preserve_mark_if_necessary(old, old->mark());
duke@435 751 // forward to self
duke@435 752 old->forward_to(old);
duke@435 753
jcoomes@2191 754 _promo_failure_scan_stack.push(old);
duke@435 755
duke@435 756 if (!_promo_failure_drain_in_progress) {
duke@435 757 // prevent recursion in copy_to_survivor_space()
duke@435 758 _promo_failure_drain_in_progress = true;
duke@435 759 drain_promo_failure_scan_stack();
duke@435 760 _promo_failure_drain_in_progress = false;
duke@435 761 }
duke@435 762 }
duke@435 763
coleenp@548 764 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 765 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 766 "shouldn't be scavenging this oop");
duke@435 767 size_t s = old->size();
duke@435 768 oop obj = NULL;
duke@435 769
duke@435 770 // Try allocating obj in to-space (unless too old)
duke@435 771 if (old->age() < tenuring_threshold()) {
duke@435 772 obj = (oop) to()->allocate(s);
duke@435 773 }
duke@435 774
duke@435 775 // Otherwise try allocating obj tenured
duke@435 776 if (obj == NULL) {
coleenp@548 777 obj = _next_gen->promote(old, s);
duke@435 778 if (obj == NULL) {
duke@435 779 handle_promotion_failure(old);
duke@435 780 return old;
duke@435 781 }
duke@435 782 } else {
duke@435 783 // Prefetch beyond obj
duke@435 784 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 785 Prefetch::write(obj, interval);
duke@435 786
duke@435 787 // Copy obj
duke@435 788 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 789
duke@435 790 // Increment age if obj still in new generation
duke@435 791 obj->incr_age();
duke@435 792 age_table()->add(obj, s);
duke@435 793 }
duke@435 794
duke@435 795 // Done, insert forward pointer to obj in this header
duke@435 796 old->forward_to(obj);
duke@435 797
duke@435 798 return obj;
duke@435 799 }
duke@435 800
duke@435 801 void DefNewGeneration::drain_promo_failure_scan_stack() {
jcoomes@2191 802 while (!_promo_failure_scan_stack.is_empty()) {
jcoomes@2191 803 oop obj = _promo_failure_scan_stack.pop();
duke@435 804 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 805 }
duke@435 806 }
duke@435 807
duke@435 808 void DefNewGeneration::save_marks() {
duke@435 809 eden()->set_saved_mark();
duke@435 810 to()->set_saved_mark();
duke@435 811 from()->set_saved_mark();
duke@435 812 }
duke@435 813
duke@435 814
duke@435 815 void DefNewGeneration::reset_saved_marks() {
duke@435 816 eden()->reset_saved_mark();
duke@435 817 to()->reset_saved_mark();
duke@435 818 from()->reset_saved_mark();
duke@435 819 }
duke@435 820
duke@435 821
duke@435 822 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 823 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 824 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 825 return to()->saved_mark_at_top();
duke@435 826 }
duke@435 827
duke@435 828 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 829 \
duke@435 830 void DefNewGeneration:: \
duke@435 831 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 832 cl->set_generation(this); \
duke@435 833 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 834 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 835 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 836 cl->reset_generation(); \
duke@435 837 save_marks(); \
duke@435 838 }
duke@435 839
duke@435 840 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 841
duke@435 842 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 843
duke@435 844 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 845 size_t max_alloc_words) {
duke@435 846 if (requestor == this || _promotion_failed) return;
duke@435 847 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 848
duke@435 849 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 850 if (to_space->top() > to_space->bottom()) {
duke@435 851 trace("to_space not empty when contribute_scratch called");
duke@435 852 }
duke@435 853 */
duke@435 854
duke@435 855 ContiguousSpace* to_space = to();
duke@435 856 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 857 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 858 if (free_words >= MinFreeScratchWords) {
duke@435 859 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 860 sb->num_words = free_words;
duke@435 861 sb->next = list;
duke@435 862 list = sb;
duke@435 863 }
duke@435 864 }
duke@435 865
jmasa@698 866 void DefNewGeneration::reset_scratch() {
jmasa@698 867 // If contributing scratch in to_space, mangle all of
jmasa@698 868 // to_space if ZapUnusedHeapArea. This is needed because
jmasa@698 869 // top is not maintained while using to-space as scratch.
jmasa@698 870 if (ZapUnusedHeapArea) {
jmasa@698 871 to()->mangle_unused_area_complete();
jmasa@698 872 }
jmasa@698 873 }
jmasa@698 874
duke@435 875 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 876 if (!to()->is_empty()) {
ysr@2336 877 if (Verbose && PrintGCDetails) {
ysr@2336 878 gclog_or_tty->print(" :: to is not empty :: ");
ysr@2336 879 }
duke@435 880 return false;
duke@435 881 }
duke@435 882 if (_next_gen == NULL) {
duke@435 883 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 884 _next_gen = gch->next_gen(this);
duke@435 885 assert(_next_gen != NULL,
duke@435 886 "This must be the youngest gen, and not the only gen");
duke@435 887 }
ysr@2243 888 return _next_gen->promotion_attempt_is_safe(used());
duke@435 889 }
duke@435 890
duke@435 891 void DefNewGeneration::gc_epilogue(bool full) {
ysr@2244 892 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
ysr@2244 893
ysr@2244 894 assert(!GC_locker::is_active(), "We should not be executing here");
duke@435 895 // Check if the heap is approaching full after a collection has
duke@435 896 // been done. Generally the young generation is empty at
duke@435 897 // a minimum at the end of a collection. If it is not, then
duke@435 898 // the heap is approaching full.
duke@435 899 GenCollectedHeap* gch = GenCollectedHeap::heap();
ysr@2243 900 if (full) {
ysr@2244 901 DEBUG_ONLY(seen_incremental_collection_failed = false;)
ysr@2336 902 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
ysr@2336 903 if (Verbose && PrintGCDetails) {
ysr@2336 904 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
ysr@2336 905 GCCause::to_string(gch->gc_cause()));
ysr@2336 906 }
ysr@2243 907 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
ysr@2243 908 set_should_allocate_from_space(); // we seem to be running out of space
ysr@2243 909 } else {
ysr@2336 910 if (Verbose && PrintGCDetails) {
ysr@2336 911 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
ysr@2336 912 GCCause::to_string(gch->gc_cause()));
ysr@2336 913 }
ysr@2243 914 gch->clear_incremental_collection_failed(); // We just did a full collection
ysr@2243 915 clear_should_allocate_from_space(); // if set
ysr@2243 916 }
duke@435 917 } else {
ysr@2244 918 #ifdef ASSERT
ysr@2244 919 // It is possible that incremental_collection_failed() == true
ysr@2244 920 // here, because an attempted scavenge did not succeed. The policy
ysr@2244 921 // is normally expected to cause a full collection which should
ysr@2244 922 // clear that condition, so we should not be here twice in a row
ysr@2244 923 // with incremental_collection_failed() == true without having done
ysr@2244 924 // a full collection in between.
ysr@2244 925 if (!seen_incremental_collection_failed &&
ysr@2244 926 gch->incremental_collection_failed()) {
ysr@2336 927 if (Verbose && PrintGCDetails) {
ysr@2336 928 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
ysr@2336 929 GCCause::to_string(gch->gc_cause()));
ysr@2336 930 }
ysr@2244 931 seen_incremental_collection_failed = true;
ysr@2244 932 } else if (seen_incremental_collection_failed) {
ysr@2336 933 if (Verbose && PrintGCDetails) {
ysr@2336 934 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
ysr@2336 935 GCCause::to_string(gch->gc_cause()));
ysr@2336 936 }
ysr@2336 937 assert(gch->gc_cause() == GCCause::_scavenge_alot ||
ysr@2336 938 (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
ysr@2336 939 !gch->incremental_collection_failed(),
ysr@2295 940 "Twice in a row");
ysr@2244 941 seen_incremental_collection_failed = false;
ysr@2244 942 }
ysr@2244 943 #endif // ASSERT
duke@435 944 }
duke@435 945
jmasa@698 946 if (ZapUnusedHeapArea) {
jmasa@698 947 eden()->check_mangled_unused_area_complete();
jmasa@698 948 from()->check_mangled_unused_area_complete();
jmasa@698 949 to()->check_mangled_unused_area_complete();
jmasa@698 950 }
jmasa@698 951
jcoomes@2996 952 if (!CleanChunkPoolAsync) {
jcoomes@2996 953 Chunk::clean_chunk_pool();
jcoomes@2996 954 }
jcoomes@2996 955
duke@435 956 // update the generation and space performance counters
duke@435 957 update_counters();
duke@435 958 gch->collector_policy()->counters()->update_counters();
duke@435 959 }
duke@435 960
jmasa@698 961 void DefNewGeneration::record_spaces_top() {
jmasa@698 962 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 963 eden()->set_top_for_allocations();
jmasa@698 964 to()->set_top_for_allocations();
jmasa@698 965 from()->set_top_for_allocations();
jmasa@698 966 }
jmasa@698 967
jmasa@698 968
duke@435 969 void DefNewGeneration::update_counters() {
duke@435 970 if (UsePerfData) {
duke@435 971 _eden_counters->update_all();
duke@435 972 _from_counters->update_all();
duke@435 973 _to_counters->update_all();
duke@435 974 _gen_counters->update_all();
duke@435 975 }
duke@435 976 }
duke@435 977
brutisso@3711 978 void DefNewGeneration::verify() {
brutisso@3711 979 eden()->verify();
brutisso@3711 980 from()->verify();
brutisso@3711 981 to()->verify();
duke@435 982 }
duke@435 983
duke@435 984 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 985 Generation::print_on(st);
duke@435 986 st->print(" eden");
duke@435 987 eden()->print_on(st);
duke@435 988 st->print(" from");
duke@435 989 from()->print_on(st);
duke@435 990 st->print(" to ");
duke@435 991 to()->print_on(st);
duke@435 992 }
duke@435 993
duke@435 994
duke@435 995 const char* DefNewGeneration::name() const {
duke@435 996 return "def new generation";
duke@435 997 }
coleenp@548 998
coleenp@548 999 // Moved from inline file as they are not called inline
coleenp@548 1000 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 1001 return eden();
coleenp@548 1002 }
coleenp@548 1003
coleenp@548 1004 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 1005 bool is_tlab) {
coleenp@548 1006 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 1007 // Most allocations are fast-path in compiled code.
coleenp@548 1008 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 1009 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 1010 // have to use it here, as well.
coleenp@548 1011 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 1012 if (result != NULL) {
coleenp@548 1013 return result;
coleenp@548 1014 }
coleenp@548 1015 do {
coleenp@548 1016 HeapWord* old_limit = eden()->soft_end();
coleenp@548 1017 if (old_limit < eden()->end()) {
coleenp@548 1018 // Tell the next generation we reached a limit.
coleenp@548 1019 HeapWord* new_limit =
coleenp@548 1020 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 1021 if (new_limit != NULL) {
coleenp@548 1022 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 1023 } else {
coleenp@548 1024 assert(eden()->soft_end() == eden()->end(),
coleenp@548 1025 "invalid state after allocation_limit_reached returned null");
coleenp@548 1026 }
coleenp@548 1027 } else {
coleenp@548 1028 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 1029 // there are no reasons to do an attempt to allocate
coleenp@548 1030 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 1031 break;
coleenp@548 1032 }
coleenp@548 1033 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 1034 result = eden()->par_allocate(word_size);
coleenp@548 1035 } while (result == NULL);
coleenp@548 1036
coleenp@548 1037 // If the eden is full and the last collection bailed out, we are running
coleenp@548 1038 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 1039 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 1040 // circular dependency at compile time.
coleenp@548 1041 if (result == NULL) {
coleenp@548 1042 result = allocate_from_space(word_size);
coleenp@548 1043 }
coleenp@548 1044 return result;
coleenp@548 1045 }
coleenp@548 1046
coleenp@548 1047 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 1048 bool is_tlab) {
coleenp@548 1049 return eden()->par_allocate(word_size);
coleenp@548 1050 }
coleenp@548 1051
coleenp@548 1052 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 1053 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 1054 eden()->set_soft_end(eden()->end());
coleenp@548 1055 }
coleenp@548 1056
coleenp@548 1057 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 1058 return eden()->capacity();
coleenp@548 1059 }
coleenp@548 1060
coleenp@548 1061 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 1062 return unsafe_max_alloc_nogc();
coleenp@548 1063 }

mercurial