src/share/vm/memory/defNewGeneration.cpp

Tue, 15 May 2012 10:25:06 +0200

author
brutisso
date
Tue, 15 May 2012 10:25:06 +0200
changeset 3767
9d679effd28c
parent 3711
b632e80fc9dc
child 4037
da91efe96a93
permissions
-rw-r--r--

7166894: Add gc cause to GC logging for all collectors
Reviewed-by: mgerdin, johnc

duke@435 1 /*
johnc@3538 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 29 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 30 #include "memory/gcLocker.inline.hpp"
stefank@2314 31 #include "memory/genCollectedHeap.hpp"
stefank@2314 32 #include "memory/genOopClosures.inline.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/iterator.hpp"
stefank@2314 35 #include "memory/referencePolicy.hpp"
stefank@2314 36 #include "memory/space.inline.hpp"
stefank@2314 37 #include "oops/instanceRefKlass.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@2314 40 #include "utilities/copy.hpp"
stefank@2314 41 #include "utilities/stack.inline.hpp"
stefank@2314 42 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 43 # include "thread_linux.inline.hpp"
stefank@2314 44 #endif
stefank@2314 45 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 46 # include "thread_solaris.inline.hpp"
stefank@2314 47 #endif
stefank@2314 48 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 49 # include "thread_windows.inline.hpp"
stefank@2314 50 #endif
never@3156 51 #ifdef TARGET_OS_FAMILY_bsd
never@3156 52 # include "thread_bsd.inline.hpp"
never@3156 53 #endif
duke@435 54
duke@435 55 //
duke@435 56 // DefNewGeneration functions.
duke@435 57
duke@435 58 // Methods of protected closure types.
duke@435 59
duke@435 60 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 61 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 62 }
duke@435 63 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
duke@435 64 assert(false, "Do not call.");
duke@435 65 }
duke@435 66 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 67 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 68 }
duke@435 69
duke@435 70 DefNewGeneration::KeepAliveClosure::
duke@435 71 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 72 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 73 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 74 _rs = (CardTableRS*)rs;
duke@435 75 }
duke@435 76
coleenp@548 77 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 78 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 79
duke@435 80
duke@435 81 DefNewGeneration::FastKeepAliveClosure::
duke@435 82 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 83 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 84 _boundary = g->reserved().end();
duke@435 85 }
duke@435 86
coleenp@548 87 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 88 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 89
duke@435 90 DefNewGeneration::EvacuateFollowersClosure::
duke@435 91 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 92 ScanClosure* cur, ScanClosure* older) :
duke@435 93 _gch(gch), _level(level),
duke@435 94 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 95 {}
duke@435 96
duke@435 97 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 98 do {
duke@435 99 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 100 _scan_older);
duke@435 101 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 102 }
duke@435 103
duke@435 104 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 105 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 106 DefNewGeneration* gen,
duke@435 107 FastScanClosure* cur, FastScanClosure* older) :
duke@435 108 _gch(gch), _level(level), _gen(gen),
duke@435 109 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 110 {}
duke@435 111
duke@435 112 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 113 do {
duke@435 114 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 115 _scan_older);
duke@435 116 } while (!_gch->no_allocs_since_save_marks(_level));
jcoomes@2191 117 guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
duke@435 118 }
duke@435 119
duke@435 120 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 121 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 122 {
duke@435 123 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 124 _boundary = _g->reserved().end();
duke@435 125 }
duke@435 126
coleenp@548 127 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 128 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 129
duke@435 130 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 131 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 132 {
duke@435 133 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 134 _boundary = _g->reserved().end();
duke@435 135 }
duke@435 136
coleenp@548 137 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 138 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 139
duke@435 140 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
duke@435 141 OopClosure(g->ref_processor()), _g(g)
duke@435 142 {
duke@435 143 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 144 _boundary = _g->reserved().end();
duke@435 145 }
duke@435 146
coleenp@548 147 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 148 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 149
coleenp@548 150 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 151 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 152
duke@435 153 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 154 size_t initial_size,
duke@435 155 int level,
duke@435 156 const char* policy)
duke@435 157 : Generation(rs, initial_size, level),
duke@435 158 _promo_failure_drain_in_progress(false),
duke@435 159 _should_allocate_from_space(false)
duke@435 160 {
duke@435 161 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 162 (HeapWord*)_virtual_space.high());
duke@435 163 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 164
duke@435 165 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 166 _eden_space = new ConcEdenSpace(this);
duke@435 167 } else {
duke@435 168 _eden_space = new EdenSpace(this);
duke@435 169 }
duke@435 170 _from_space = new ContiguousSpace();
duke@435 171 _to_space = new ContiguousSpace();
duke@435 172
duke@435 173 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 174 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 175
duke@435 176 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 177 // are computed assuming the entire reserved space is committed.
duke@435 178 // These values are exported as performance counters.
duke@435 179 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 180 uintx size = _virtual_space.reserved_size();
duke@435 181 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 182 _max_eden_size = size - (2*_max_survivor_size);
duke@435 183
duke@435 184 // allocate the performance counters
duke@435 185
duke@435 186 // Generation counters -- generation 0, 3 subspaces
duke@435 187 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 188 _gc_counters = new CollectorCounters(policy, 0);
duke@435 189
duke@435 190 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 191 _gen_counters);
duke@435 192 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 193 _gen_counters);
duke@435 194 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 195 _gen_counters);
duke@435 196
jmasa@698 197 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 198 update_counters();
duke@435 199 _next_gen = NULL;
duke@435 200 _tenuring_threshold = MaxTenuringThreshold;
duke@435 201 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 202 }
duke@435 203
jmasa@698 204 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
jmasa@698 205 bool clear_space,
jmasa@698 206 bool mangle_space) {
jmasa@698 207 uintx alignment =
jmasa@698 208 GenCollectedHeap::heap()->collector_policy()->min_alignment();
jmasa@698 209
jmasa@698 210 // If the spaces are being cleared (only done at heap initialization
jmasa@698 211 // currently), the survivor spaces need not be empty.
jmasa@698 212 // Otherwise, no care is taken for used areas in the survivor spaces
jmasa@698 213 // so check.
jmasa@698 214 assert(clear_space || (to()->is_empty() && from()->is_empty()),
jmasa@698 215 "Initialization of the survivor spaces assumes these are empty");
duke@435 216
duke@435 217 // Compute sizes
duke@435 218 uintx size = _virtual_space.committed_size();
duke@435 219 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 220 uintx eden_size = size - (2*survivor_size);
duke@435 221 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 222
duke@435 223 if (eden_size < minimum_eden_size) {
duke@435 224 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 225 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 226 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 227 uintx unaligned_survivor_size =
duke@435 228 align_size_down(maximum_survivor_size, alignment);
duke@435 229 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 230 eden_size = size - (2*survivor_size);
duke@435 231 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 232 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 233 }
duke@435 234
duke@435 235 char *eden_start = _virtual_space.low();
duke@435 236 char *from_start = eden_start + eden_size;
duke@435 237 char *to_start = from_start + survivor_size;
duke@435 238 char *to_end = to_start + survivor_size;
duke@435 239
duke@435 240 assert(to_end == _virtual_space.high(), "just checking");
duke@435 241 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 242 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 243 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 244
duke@435 245 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 246 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 247 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 248
jmasa@698 249 // A minimum eden size implies that there is a part of eden that
jmasa@698 250 // is being used and that affects the initialization of any
jmasa@698 251 // newly formed eden.
jmasa@698 252 bool live_in_eden = minimum_eden_size > 0;
jmasa@698 253
jmasa@698 254 // If not clearing the spaces, do some checking to verify that
jmasa@698 255 // the space are already mangled.
jmasa@698 256 if (!clear_space) {
jmasa@698 257 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 258 // the bottom or end of one space may have moved into another
jmasa@698 259 // a failure of the check may not correctly indicate which space
jmasa@698 260 // is not properly mangled.
jmasa@698 261 if (ZapUnusedHeapArea) {
jmasa@698 262 HeapWord* limit = (HeapWord*) _virtual_space.high();
jmasa@698 263 eden()->check_mangled_unused_area(limit);
jmasa@698 264 from()->check_mangled_unused_area(limit);
jmasa@698 265 to()->check_mangled_unused_area(limit);
jmasa@698 266 }
jmasa@698 267 }
jmasa@698 268
jmasa@698 269 // Reset the spaces for their new regions.
jmasa@698 270 eden()->initialize(edenMR,
jmasa@698 271 clear_space && !live_in_eden,
jmasa@698 272 SpaceDecorator::Mangle);
jmasa@698 273 // If clear_space and live_in_eden, we will not have cleared any
duke@435 274 // portion of eden above its top. This can cause newly
duke@435 275 // expanded space not to be mangled if using ZapUnusedHeapArea.
duke@435 276 // We explicitly do such mangling here.
jmasa@698 277 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
duke@435 278 eden()->mangle_unused_area();
duke@435 279 }
jmasa@698 280 from()->initialize(fromMR, clear_space, mangle_space);
jmasa@698 281 to()->initialize(toMR, clear_space, mangle_space);
jmasa@698 282
jmasa@698 283 // Set next compaction spaces.
duke@435 284 eden()->set_next_compaction_space(from());
duke@435 285 // The to-space is normally empty before a compaction so need
duke@435 286 // not be considered. The exception is during promotion
duke@435 287 // failure handling when to-space can contain live objects.
duke@435 288 from()->set_next_compaction_space(NULL);
duke@435 289 }
duke@435 290
duke@435 291 void DefNewGeneration::swap_spaces() {
duke@435 292 ContiguousSpace* s = from();
duke@435 293 _from_space = to();
duke@435 294 _to_space = s;
duke@435 295 eden()->set_next_compaction_space(from());
duke@435 296 // The to-space is normally empty before a compaction so need
duke@435 297 // not be considered. The exception is during promotion
duke@435 298 // failure handling when to-space can contain live objects.
duke@435 299 from()->set_next_compaction_space(NULL);
duke@435 300
duke@435 301 if (UsePerfData) {
duke@435 302 CSpaceCounters* c = _from_counters;
duke@435 303 _from_counters = _to_counters;
duke@435 304 _to_counters = c;
duke@435 305 }
duke@435 306 }
duke@435 307
duke@435 308 bool DefNewGeneration::expand(size_t bytes) {
duke@435 309 MutexLocker x(ExpandHeap_lock);
jmasa@698 310 HeapWord* prev_high = (HeapWord*) _virtual_space.high();
duke@435 311 bool success = _virtual_space.expand_by(bytes);
jmasa@698 312 if (success && ZapUnusedHeapArea) {
jmasa@698 313 // Mangle newly committed space immediately because it
jmasa@698 314 // can be done here more simply that after the new
jmasa@698 315 // spaces have been computed.
jmasa@698 316 HeapWord* new_high = (HeapWord*) _virtual_space.high();
jmasa@698 317 MemRegion mangle_region(prev_high, new_high);
jmasa@698 318 SpaceMangler::mangle_region(mangle_region);
jmasa@698 319 }
duke@435 320
duke@435 321 // Do not attempt an expand-to-the reserve size. The
duke@435 322 // request should properly observe the maximum size of
duke@435 323 // the generation so an expand-to-reserve should be
duke@435 324 // unnecessary. Also a second call to expand-to-reserve
duke@435 325 // value potentially can cause an undue expansion.
duke@435 326 // For example if the first expand fail for unknown reasons,
duke@435 327 // but the second succeeds and expands the heap to its maximum
duke@435 328 // value.
duke@435 329 if (GC_locker::is_active()) {
duke@435 330 if (PrintGC && Verbose) {
jmasa@698 331 gclog_or_tty->print_cr("Garbage collection disabled, "
jmasa@698 332 "expanded heap instead");
duke@435 333 }
duke@435 334 }
duke@435 335
duke@435 336 return success;
duke@435 337 }
duke@435 338
duke@435 339
duke@435 340 void DefNewGeneration::compute_new_size() {
duke@435 341 // This is called after a gc that includes the following generation
duke@435 342 // (which is required to exist.) So from-space will normally be empty.
duke@435 343 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 344 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 345 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 346 return;
duke@435 347 }
duke@435 348
duke@435 349 int next_level = level() + 1;
duke@435 350 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 351 assert(next_level < gch->_n_gens,
duke@435 352 "DefNewGeneration cannot be an oldest gen");
duke@435 353
duke@435 354 Generation* next_gen = gch->_gens[next_level];
duke@435 355 size_t old_size = next_gen->capacity();
duke@435 356 size_t new_size_before = _virtual_space.committed_size();
duke@435 357 size_t min_new_size = spec()->init_size();
duke@435 358 size_t max_new_size = reserved().byte_size();
duke@435 359 assert(min_new_size <= new_size_before &&
duke@435 360 new_size_before <= max_new_size,
duke@435 361 "just checking");
duke@435 362 // All space sizes must be multiples of Generation::GenGrain.
duke@435 363 size_t alignment = Generation::GenGrain;
duke@435 364
duke@435 365 // Compute desired new generation size based on NewRatio and
duke@435 366 // NewSizeThreadIncrease
duke@435 367 size_t desired_new_size = old_size/NewRatio;
duke@435 368 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 369 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 370 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 371
duke@435 372 // Adjust new generation size
duke@435 373 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 374 assert(desired_new_size <= max_new_size, "just checking");
duke@435 375
duke@435 376 bool changed = false;
duke@435 377 if (desired_new_size > new_size_before) {
duke@435 378 size_t change = desired_new_size - new_size_before;
duke@435 379 assert(change % alignment == 0, "just checking");
duke@435 380 if (expand(change)) {
duke@435 381 changed = true;
duke@435 382 }
duke@435 383 // If the heap failed to expand to the desired size,
duke@435 384 // "changed" will be false. If the expansion failed
duke@435 385 // (and at this point it was expected to succeed),
duke@435 386 // ignore the failure (leaving "changed" as false).
duke@435 387 }
duke@435 388 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 389 // bail out of shrinking if objects in eden
duke@435 390 size_t change = new_size_before - desired_new_size;
duke@435 391 assert(change % alignment == 0, "just checking");
duke@435 392 _virtual_space.shrink_by(change);
duke@435 393 changed = true;
duke@435 394 }
duke@435 395 if (changed) {
jmasa@698 396 // The spaces have already been mangled at this point but
jmasa@698 397 // may not have been cleared (set top = bottom) and should be.
jmasa@698 398 // Mangling was done when the heap was being expanded.
jmasa@698 399 compute_space_boundaries(eden()->used(),
jmasa@698 400 SpaceDecorator::Clear,
jmasa@698 401 SpaceDecorator::DontMangle);
jmasa@698 402 MemRegion cmr((HeapWord*)_virtual_space.low(),
jmasa@698 403 (HeapWord*)_virtual_space.high());
duke@435 404 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 405 if (Verbose && PrintGC) {
duke@435 406 size_t new_size_after = _virtual_space.committed_size();
duke@435 407 size_t eden_size_after = eden()->capacity();
duke@435 408 size_t survivor_size_after = from()->capacity();
jmasa@698 409 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
jmasa@698 410 SIZE_FORMAT "K [eden="
duke@435 411 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
jmasa@698 412 new_size_before/K, new_size_after/K,
jmasa@698 413 eden_size_after/K, survivor_size_after/K);
duke@435 414 if (WizardMode) {
duke@435 415 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 416 thread_increase_size/K, threads_count);
duke@435 417 }
duke@435 418 gclog_or_tty->cr();
duke@435 419 }
duke@435 420 }
duke@435 421 }
duke@435 422
duke@435 423 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 424 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 425 eden()->object_iterate(cl);
duke@435 426 }
duke@435 427
duke@435 428 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 429 assert(false, "NYI -- are you sure you want to call this?");
duke@435 430 }
duke@435 431
duke@435 432
duke@435 433 size_t DefNewGeneration::capacity() const {
duke@435 434 return eden()->capacity()
duke@435 435 + from()->capacity(); // to() is only used during scavenge
duke@435 436 }
duke@435 437
duke@435 438
duke@435 439 size_t DefNewGeneration::used() const {
duke@435 440 return eden()->used()
duke@435 441 + from()->used(); // to() is only used during scavenge
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 size_t DefNewGeneration::free() const {
duke@435 446 return eden()->free()
duke@435 447 + from()->free(); // to() is only used during scavenge
duke@435 448 }
duke@435 449
duke@435 450 size_t DefNewGeneration::max_capacity() const {
duke@435 451 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 452 const size_t reserved_bytes = reserved().byte_size();
duke@435 453 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 454 }
duke@435 455
duke@435 456 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 457 return eden()->free();
duke@435 458 }
duke@435 459
duke@435 460 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 461 return eden()->capacity();
duke@435 462 }
duke@435 463
duke@435 464 size_t DefNewGeneration::contiguous_available() const {
duke@435 465 return eden()->free();
duke@435 466 }
duke@435 467
duke@435 468
duke@435 469 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 470 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 471
duke@435 472 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 473 eden()->object_iterate(blk);
duke@435 474 from()->object_iterate(blk);
duke@435 475 }
duke@435 476
duke@435 477
duke@435 478 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 479 bool usedOnly) {
duke@435 480 blk->do_space(eden());
duke@435 481 blk->do_space(from());
duke@435 482 blk->do_space(to());
duke@435 483 }
duke@435 484
duke@435 485 // The last collection bailed out, we are running out of heap space,
duke@435 486 // so we try to allocate the from-space, too.
duke@435 487 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 488 HeapWord* result = NULL;
ysr@2336 489 if (Verbose && PrintGCDetails) {
duke@435 490 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
ysr@2336 491 " will_fail: %s"
ysr@2336 492 " heap_lock: %s"
ysr@2336 493 " free: " SIZE_FORMAT,
ysr@2336 494 size,
ysr@2336 495 GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
ysr@2336 496 "true" : "false",
ysr@2336 497 Heap_lock->is_locked() ? "locked" : "unlocked",
ysr@2336 498 from()->free());
ysr@2336 499 }
duke@435 500 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 501 if (Heap_lock->owned_by_self() ||
duke@435 502 (SafepointSynchronize::is_at_safepoint() &&
duke@435 503 Thread::current()->is_VM_thread())) {
duke@435 504 // If the Heap_lock is not locked by this thread, this will be called
duke@435 505 // again later with the Heap_lock held.
duke@435 506 result = from()->allocate(size);
duke@435 507 } else if (PrintGC && Verbose) {
duke@435 508 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 509 }
duke@435 510 } else if (PrintGC && Verbose) {
duke@435 511 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 512 }
duke@435 513 if (PrintGC && Verbose) {
duke@435 514 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 515 }
duke@435 516 return result;
duke@435 517 }
duke@435 518
duke@435 519 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 520 bool is_tlab,
duke@435 521 bool parallel) {
duke@435 522 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 523 return allocate(size, is_tlab);
duke@435 524 }
duke@435 525
duke@435 526
duke@435 527 void DefNewGeneration::collect(bool full,
duke@435 528 bool clear_all_soft_refs,
duke@435 529 size_t size,
duke@435 530 bool is_tlab) {
duke@435 531 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 532 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 533 _next_gen = gch->next_gen(this);
duke@435 534 assert(_next_gen != NULL,
duke@435 535 "This must be the youngest gen, and not the only gen");
duke@435 536
duke@435 537 // If the next generation is too full to accomodate promotion
duke@435 538 // from this generation, pass on collection; let the next generation
duke@435 539 // do it.
duke@435 540 if (!collection_attempt_is_safe()) {
ysr@2336 541 if (Verbose && PrintGCDetails) {
ysr@2336 542 gclog_or_tty->print(" :: Collection attempt not safe :: ");
ysr@2336 543 }
ysr@2243 544 gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
duke@435 545 return;
duke@435 546 }
duke@435 547 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 548
duke@435 549 init_assuming_no_promotion_failure();
duke@435 550
brutisso@3767 551 TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 552 // Capture heap used before collection (for printing).
duke@435 553 size_t gch_prev_used = gch->used();
duke@435 554
duke@435 555 SpecializationStats::clear();
duke@435 556
duke@435 557 // These can be shared for all code paths
duke@435 558 IsAliveClosure is_alive(this);
duke@435 559 ScanWeakRefClosure scan_weak_ref(this);
duke@435 560
duke@435 561 age_table()->clear();
jmasa@698 562 to()->clear(SpaceDecorator::Mangle);
duke@435 563
duke@435 564 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 565
duke@435 566 assert(gch->no_allocs_since_save_marks(0),
duke@435 567 "save marks have not been newly set.");
duke@435 568
duke@435 569 // Not very pretty.
duke@435 570 CollectorPolicy* cp = gch->collector_policy();
duke@435 571
duke@435 572 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 573 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 574
duke@435 575 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 576 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 577 &fsc_with_no_gc_barrier,
duke@435 578 &fsc_with_gc_barrier);
duke@435 579
duke@435 580 assert(gch->no_allocs_since_save_marks(0),
duke@435 581 "save marks have not been newly set.");
duke@435 582
duke@435 583 gch->gen_process_strong_roots(_level,
jrose@1424 584 true, // Process younger gens, if any,
jrose@1424 585 // as strong roots.
jrose@1424 586 true, // activate StrongRootsScope
jrose@1424 587 false, // not collecting perm generation.
duke@435 588 SharedHeap::SO_AllClasses,
jrose@1424 589 &fsc_with_no_gc_barrier,
jrose@1424 590 true, // walk *all* scavengable nmethods
jrose@1424 591 &fsc_with_gc_barrier);
duke@435 592
duke@435 593 // "evacuate followers".
duke@435 594 evacuate_followers.do_void();
duke@435 595
duke@435 596 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ysr@888 597 ReferenceProcessor* rp = ref_processor();
ysr@892 598 rp->setup_policy(clear_all_soft_refs);
ysr@888 599 rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
ysr@888 600 NULL);
duke@435 601 if (!promotion_failed()) {
duke@435 602 // Swap the survivor spaces.
jmasa@698 603 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 604 from()->clear(SpaceDecorator::Mangle);
jmasa@698 605 if (ZapUnusedHeapArea) {
jmasa@698 606 // This is now done here because of the piece-meal mangling which
jmasa@698 607 // can check for valid mangling at intermediate points in the
jmasa@698 608 // collection(s). When a minor collection fails to collect
jmasa@698 609 // sufficient space resizing of the young generation can occur
jmasa@698 610 // an redistribute the spaces in the young generation. Mangle
jmasa@698 611 // here so that unzapped regions don't get distributed to
jmasa@698 612 // other spaces.
jmasa@698 613 to()->mangle_unused_area();
jmasa@698 614 }
duke@435 615 swap_spaces();
duke@435 616
duke@435 617 assert(to()->is_empty(), "to space should be empty now");
duke@435 618
duke@435 619 // Set the desired survivor size to half the real survivor space
duke@435 620 _tenuring_threshold =
duke@435 621 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 622
jmasa@1822 623 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 624 // for full GC's.
jmasa@1822 625 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@1822 626 size_policy->reset_gc_overhead_limit_count();
duke@435 627 if (PrintGC && !PrintGCDetails) {
duke@435 628 gch->print_heap_change(gch_prev_used);
duke@435 629 }
ysr@2243 630 assert(!gch->incremental_collection_failed(), "Should be clear");
duke@435 631 } else {
jcoomes@2191 632 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 633 _promo_failure_scan_stack.clear(true); // Clear cached segments.
duke@435 634
duke@435 635 remove_forwarding_pointers();
duke@435 636 if (PrintGCDetails) {
ysr@1580 637 gclog_or_tty->print(" (promotion failed) ");
duke@435 638 }
duke@435 639 // Add to-space to the list of space to compact
duke@435 640 // when a promotion failure has occurred. In that
duke@435 641 // case there can be live objects in to-space
duke@435 642 // as a result of a partial evacuation of eden
duke@435 643 // and from-space.
jcoomes@2191 644 swap_spaces(); // For uniformity wrt ParNewGeneration.
duke@435 645 from()->set_next_compaction_space(to());
ysr@2243 646 gch->set_incremental_collection_failed();
duke@435 647
ysr@1580 648 // Inform the next generation that a promotion failure occurred.
ysr@1580 649 _next_gen->promotion_failure_occurred();
ysr@1580 650
duke@435 651 // Reset the PromotionFailureALot counters.
duke@435 652 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 653 }
duke@435 654 // set new iteration safe limit for the survivor spaces
duke@435 655 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 656 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 657 SpecializationStats::print();
johnc@3538 658
johnc@3538 659 // We need to use a monotonically non-deccreasing time in ms
johnc@3538 660 // or we will see time-warp warnings and os::javaTimeMillis()
johnc@3538 661 // does not guarantee monotonicity.
johnc@3538 662 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3538 663 update_time_of_last_gc(now);
duke@435 664 }
duke@435 665
duke@435 666 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 667 public:
duke@435 668 void do_object(oop obj) {
duke@435 669 obj->init_mark();
duke@435 670 }
duke@435 671 };
duke@435 672
duke@435 673 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 674 _promotion_failed = false;
duke@435 675 from()->set_next_compaction_space(NULL);
duke@435 676 }
duke@435 677
duke@435 678 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 679 RemoveForwardPointerClosure rspc;
duke@435 680 eden()->object_iterate(&rspc);
duke@435 681 from()->object_iterate(&rspc);
jcoomes@2191 682
duke@435 683 // Now restore saved marks, if any.
jcoomes@2191 684 assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
jcoomes@2191 685 "should be the same");
jcoomes@2191 686 while (!_objs_with_preserved_marks.is_empty()) {
jcoomes@2191 687 oop obj = _objs_with_preserved_marks.pop();
jcoomes@2191 688 markOop m = _preserved_marks_of_objs.pop();
jcoomes@2191 689 obj->set_mark(m);
duke@435 690 }
jcoomes@2191 691 _objs_with_preserved_marks.clear(true);
jcoomes@2191 692 _preserved_marks_of_objs.clear(true);
duke@435 693 }
duke@435 694
ysr@2380 695 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
ysr@2380 696 assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
ysr@2380 697 "Oversaving!");
ysr@2380 698 _objs_with_preserved_marks.push(obj);
ysr@2380 699 _preserved_marks_of_objs.push(m);
ysr@2380 700 }
ysr@2380 701
duke@435 702 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 703 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 704 preserve_mark(obj, m);
duke@435 705 }
duke@435 706 }
duke@435 707
duke@435 708 void DefNewGeneration::handle_promotion_failure(oop old) {
ysr@2380 709 if (PrintPromotionFailure && !_promotion_failed) {
ysr@1580 710 gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 711 old->size());
ysr@1580 712 }
ysr@2380 713 _promotion_failed = true;
ysr@2380 714 preserve_mark_if_necessary(old, old->mark());
duke@435 715 // forward to self
duke@435 716 old->forward_to(old);
duke@435 717
jcoomes@2191 718 _promo_failure_scan_stack.push(old);
duke@435 719
duke@435 720 if (!_promo_failure_drain_in_progress) {
duke@435 721 // prevent recursion in copy_to_survivor_space()
duke@435 722 _promo_failure_drain_in_progress = true;
duke@435 723 drain_promo_failure_scan_stack();
duke@435 724 _promo_failure_drain_in_progress = false;
duke@435 725 }
duke@435 726 }
duke@435 727
coleenp@548 728 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 729 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 730 "shouldn't be scavenging this oop");
duke@435 731 size_t s = old->size();
duke@435 732 oop obj = NULL;
duke@435 733
duke@435 734 // Try allocating obj in to-space (unless too old)
duke@435 735 if (old->age() < tenuring_threshold()) {
duke@435 736 obj = (oop) to()->allocate(s);
duke@435 737 }
duke@435 738
duke@435 739 // Otherwise try allocating obj tenured
duke@435 740 if (obj == NULL) {
coleenp@548 741 obj = _next_gen->promote(old, s);
duke@435 742 if (obj == NULL) {
duke@435 743 handle_promotion_failure(old);
duke@435 744 return old;
duke@435 745 }
duke@435 746 } else {
duke@435 747 // Prefetch beyond obj
duke@435 748 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 749 Prefetch::write(obj, interval);
duke@435 750
duke@435 751 // Copy obj
duke@435 752 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 753
duke@435 754 // Increment age if obj still in new generation
duke@435 755 obj->incr_age();
duke@435 756 age_table()->add(obj, s);
duke@435 757 }
duke@435 758
duke@435 759 // Done, insert forward pointer to obj in this header
duke@435 760 old->forward_to(obj);
duke@435 761
duke@435 762 return obj;
duke@435 763 }
duke@435 764
duke@435 765 void DefNewGeneration::drain_promo_failure_scan_stack() {
jcoomes@2191 766 while (!_promo_failure_scan_stack.is_empty()) {
jcoomes@2191 767 oop obj = _promo_failure_scan_stack.pop();
duke@435 768 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 769 }
duke@435 770 }
duke@435 771
duke@435 772 void DefNewGeneration::save_marks() {
duke@435 773 eden()->set_saved_mark();
duke@435 774 to()->set_saved_mark();
duke@435 775 from()->set_saved_mark();
duke@435 776 }
duke@435 777
duke@435 778
duke@435 779 void DefNewGeneration::reset_saved_marks() {
duke@435 780 eden()->reset_saved_mark();
duke@435 781 to()->reset_saved_mark();
duke@435 782 from()->reset_saved_mark();
duke@435 783 }
duke@435 784
duke@435 785
duke@435 786 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 787 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 788 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 789 return to()->saved_mark_at_top();
duke@435 790 }
duke@435 791
duke@435 792 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 793 \
duke@435 794 void DefNewGeneration:: \
duke@435 795 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 796 cl->set_generation(this); \
duke@435 797 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 798 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 799 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 800 cl->reset_generation(); \
duke@435 801 save_marks(); \
duke@435 802 }
duke@435 803
duke@435 804 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 805
duke@435 806 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 807
duke@435 808 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 809 size_t max_alloc_words) {
duke@435 810 if (requestor == this || _promotion_failed) return;
duke@435 811 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 812
duke@435 813 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 814 if (to_space->top() > to_space->bottom()) {
duke@435 815 trace("to_space not empty when contribute_scratch called");
duke@435 816 }
duke@435 817 */
duke@435 818
duke@435 819 ContiguousSpace* to_space = to();
duke@435 820 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 821 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 822 if (free_words >= MinFreeScratchWords) {
duke@435 823 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 824 sb->num_words = free_words;
duke@435 825 sb->next = list;
duke@435 826 list = sb;
duke@435 827 }
duke@435 828 }
duke@435 829
jmasa@698 830 void DefNewGeneration::reset_scratch() {
jmasa@698 831 // If contributing scratch in to_space, mangle all of
jmasa@698 832 // to_space if ZapUnusedHeapArea. This is needed because
jmasa@698 833 // top is not maintained while using to-space as scratch.
jmasa@698 834 if (ZapUnusedHeapArea) {
jmasa@698 835 to()->mangle_unused_area_complete();
jmasa@698 836 }
jmasa@698 837 }
jmasa@698 838
duke@435 839 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 840 if (!to()->is_empty()) {
ysr@2336 841 if (Verbose && PrintGCDetails) {
ysr@2336 842 gclog_or_tty->print(" :: to is not empty :: ");
ysr@2336 843 }
duke@435 844 return false;
duke@435 845 }
duke@435 846 if (_next_gen == NULL) {
duke@435 847 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 848 _next_gen = gch->next_gen(this);
duke@435 849 assert(_next_gen != NULL,
duke@435 850 "This must be the youngest gen, and not the only gen");
duke@435 851 }
ysr@2243 852 return _next_gen->promotion_attempt_is_safe(used());
duke@435 853 }
duke@435 854
duke@435 855 void DefNewGeneration::gc_epilogue(bool full) {
ysr@2244 856 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
ysr@2244 857
ysr@2244 858 assert(!GC_locker::is_active(), "We should not be executing here");
duke@435 859 // Check if the heap is approaching full after a collection has
duke@435 860 // been done. Generally the young generation is empty at
duke@435 861 // a minimum at the end of a collection. If it is not, then
duke@435 862 // the heap is approaching full.
duke@435 863 GenCollectedHeap* gch = GenCollectedHeap::heap();
ysr@2243 864 if (full) {
ysr@2244 865 DEBUG_ONLY(seen_incremental_collection_failed = false;)
ysr@2336 866 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
ysr@2336 867 if (Verbose && PrintGCDetails) {
ysr@2336 868 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
ysr@2336 869 GCCause::to_string(gch->gc_cause()));
ysr@2336 870 }
ysr@2243 871 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
ysr@2243 872 set_should_allocate_from_space(); // we seem to be running out of space
ysr@2243 873 } else {
ysr@2336 874 if (Verbose && PrintGCDetails) {
ysr@2336 875 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
ysr@2336 876 GCCause::to_string(gch->gc_cause()));
ysr@2336 877 }
ysr@2243 878 gch->clear_incremental_collection_failed(); // We just did a full collection
ysr@2243 879 clear_should_allocate_from_space(); // if set
ysr@2243 880 }
duke@435 881 } else {
ysr@2244 882 #ifdef ASSERT
ysr@2244 883 // It is possible that incremental_collection_failed() == true
ysr@2244 884 // here, because an attempted scavenge did not succeed. The policy
ysr@2244 885 // is normally expected to cause a full collection which should
ysr@2244 886 // clear that condition, so we should not be here twice in a row
ysr@2244 887 // with incremental_collection_failed() == true without having done
ysr@2244 888 // a full collection in between.
ysr@2244 889 if (!seen_incremental_collection_failed &&
ysr@2244 890 gch->incremental_collection_failed()) {
ysr@2336 891 if (Verbose && PrintGCDetails) {
ysr@2336 892 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
ysr@2336 893 GCCause::to_string(gch->gc_cause()));
ysr@2336 894 }
ysr@2244 895 seen_incremental_collection_failed = true;
ysr@2244 896 } else if (seen_incremental_collection_failed) {
ysr@2336 897 if (Verbose && PrintGCDetails) {
ysr@2336 898 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
ysr@2336 899 GCCause::to_string(gch->gc_cause()));
ysr@2336 900 }
ysr@2336 901 assert(gch->gc_cause() == GCCause::_scavenge_alot ||
ysr@2336 902 (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
ysr@2336 903 !gch->incremental_collection_failed(),
ysr@2295 904 "Twice in a row");
ysr@2244 905 seen_incremental_collection_failed = false;
ysr@2244 906 }
ysr@2244 907 #endif // ASSERT
duke@435 908 }
duke@435 909
jmasa@698 910 if (ZapUnusedHeapArea) {
jmasa@698 911 eden()->check_mangled_unused_area_complete();
jmasa@698 912 from()->check_mangled_unused_area_complete();
jmasa@698 913 to()->check_mangled_unused_area_complete();
jmasa@698 914 }
jmasa@698 915
jcoomes@2996 916 if (!CleanChunkPoolAsync) {
jcoomes@2996 917 Chunk::clean_chunk_pool();
jcoomes@2996 918 }
jcoomes@2996 919
duke@435 920 // update the generation and space performance counters
duke@435 921 update_counters();
duke@435 922 gch->collector_policy()->counters()->update_counters();
duke@435 923 }
duke@435 924
jmasa@698 925 void DefNewGeneration::record_spaces_top() {
jmasa@698 926 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 927 eden()->set_top_for_allocations();
jmasa@698 928 to()->set_top_for_allocations();
jmasa@698 929 from()->set_top_for_allocations();
jmasa@698 930 }
jmasa@698 931
jmasa@698 932
duke@435 933 void DefNewGeneration::update_counters() {
duke@435 934 if (UsePerfData) {
duke@435 935 _eden_counters->update_all();
duke@435 936 _from_counters->update_all();
duke@435 937 _to_counters->update_all();
duke@435 938 _gen_counters->update_all();
duke@435 939 }
duke@435 940 }
duke@435 941
brutisso@3711 942 void DefNewGeneration::verify() {
brutisso@3711 943 eden()->verify();
brutisso@3711 944 from()->verify();
brutisso@3711 945 to()->verify();
duke@435 946 }
duke@435 947
duke@435 948 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 949 Generation::print_on(st);
duke@435 950 st->print(" eden");
duke@435 951 eden()->print_on(st);
duke@435 952 st->print(" from");
duke@435 953 from()->print_on(st);
duke@435 954 st->print(" to ");
duke@435 955 to()->print_on(st);
duke@435 956 }
duke@435 957
duke@435 958
duke@435 959 const char* DefNewGeneration::name() const {
duke@435 960 return "def new generation";
duke@435 961 }
coleenp@548 962
coleenp@548 963 // Moved from inline file as they are not called inline
coleenp@548 964 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 965 return eden();
coleenp@548 966 }
coleenp@548 967
coleenp@548 968 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 969 bool is_tlab) {
coleenp@548 970 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 971 // Most allocations are fast-path in compiled code.
coleenp@548 972 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 973 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 974 // have to use it here, as well.
coleenp@548 975 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 976 if (result != NULL) {
coleenp@548 977 return result;
coleenp@548 978 }
coleenp@548 979 do {
coleenp@548 980 HeapWord* old_limit = eden()->soft_end();
coleenp@548 981 if (old_limit < eden()->end()) {
coleenp@548 982 // Tell the next generation we reached a limit.
coleenp@548 983 HeapWord* new_limit =
coleenp@548 984 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 985 if (new_limit != NULL) {
coleenp@548 986 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 987 } else {
coleenp@548 988 assert(eden()->soft_end() == eden()->end(),
coleenp@548 989 "invalid state after allocation_limit_reached returned null");
coleenp@548 990 }
coleenp@548 991 } else {
coleenp@548 992 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 993 // there are no reasons to do an attempt to allocate
coleenp@548 994 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 995 break;
coleenp@548 996 }
coleenp@548 997 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 998 result = eden()->par_allocate(word_size);
coleenp@548 999 } while (result == NULL);
coleenp@548 1000
coleenp@548 1001 // If the eden is full and the last collection bailed out, we are running
coleenp@548 1002 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 1003 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 1004 // circular dependency at compile time.
coleenp@548 1005 if (result == NULL) {
coleenp@548 1006 result = allocate_from_space(word_size);
coleenp@548 1007 }
coleenp@548 1008 return result;
coleenp@548 1009 }
coleenp@548 1010
coleenp@548 1011 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 1012 bool is_tlab) {
coleenp@548 1013 return eden()->par_allocate(word_size);
coleenp@548 1014 }
coleenp@548 1015
coleenp@548 1016 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 1017 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 1018 eden()->set_soft_end(eden()->end());
coleenp@548 1019 }
coleenp@548 1020
coleenp@548 1021 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 1022 return eden()->capacity();
coleenp@548 1023 }
coleenp@548 1024
coleenp@548 1025 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 1026 return unsafe_max_alloc_nogc();
coleenp@548 1027 }

mercurial