src/share/vm/memory/defNewGeneration.cpp

Fri, 17 May 2013 11:57:05 +0200

author
ehelin
date
Fri, 17 May 2013 11:57:05 +0200
changeset 5159
001ec9515f84
parent 4452
a30e7b564541
child 5237
f2110083203d
permissions
-rw-r--r--

8014277: Remove ObjectClosure as base class for BoolObjectClosure
Reviewed-by: brutisso, tschatzl

duke@435 1 /*
johnc@3538 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 29 #include "memory/defNewGeneration.inline.hpp"
stefank@2314 30 #include "memory/gcLocker.inline.hpp"
stefank@2314 31 #include "memory/genCollectedHeap.hpp"
stefank@2314 32 #include "memory/genOopClosures.inline.hpp"
coleenp@4037 33 #include "memory/genRemSet.hpp"
stefank@2314 34 #include "memory/generationSpec.hpp"
stefank@2314 35 #include "memory/iterator.hpp"
stefank@2314 36 #include "memory/referencePolicy.hpp"
stefank@2314 37 #include "memory/space.inline.hpp"
stefank@2314 38 #include "oops/instanceRefKlass.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "runtime/java.hpp"
stefank@4299 41 #include "runtime/thread.inline.hpp"
stefank@2314 42 #include "utilities/copy.hpp"
stefank@2314 43 #include "utilities/stack.inline.hpp"
duke@435 44
duke@435 45 //
duke@435 46 // DefNewGeneration functions.
duke@435 47
duke@435 48 // Methods of protected closure types.
duke@435 49
duke@435 50 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 51 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 52 }
duke@435 53 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 54 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 55 }
duke@435 56
duke@435 57 DefNewGeneration::KeepAliveClosure::
duke@435 58 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 59 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 60 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 61 _rs = (CardTableRS*)rs;
duke@435 62 }
duke@435 63
coleenp@548 64 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 65 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 66
duke@435 67
duke@435 68 DefNewGeneration::FastKeepAliveClosure::
duke@435 69 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 70 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 71 _boundary = g->reserved().end();
duke@435 72 }
duke@435 73
coleenp@548 74 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 75 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 76
duke@435 77 DefNewGeneration::EvacuateFollowersClosure::
duke@435 78 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 79 ScanClosure* cur, ScanClosure* older) :
duke@435 80 _gch(gch), _level(level),
duke@435 81 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 82 {}
duke@435 83
duke@435 84 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 85 do {
duke@435 86 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 87 _scan_older);
duke@435 88 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 89 }
duke@435 90
duke@435 91 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 92 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 93 DefNewGeneration* gen,
duke@435 94 FastScanClosure* cur, FastScanClosure* older) :
duke@435 95 _gch(gch), _level(level), _gen(gen),
duke@435 96 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 97 {}
duke@435 98
duke@435 99 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 100 do {
duke@435 101 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 102 _scan_older);
duke@435 103 } while (!_gch->no_allocs_since_save_marks(_level));
jcoomes@2191 104 guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
duke@435 105 }
duke@435 106
duke@435 107 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
coleenp@4037 108 OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 109 {
duke@435 110 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 111 _boundary = _g->reserved().end();
duke@435 112 }
duke@435 113
coleenp@548 114 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 115 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 116
duke@435 117 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
coleenp@4037 118 OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 119 {
duke@435 120 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 121 _boundary = _g->reserved().end();
duke@435 122 }
duke@435 123
coleenp@548 124 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 125 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 126
coleenp@4037 127 void KlassScanClosure::do_klass(Klass* klass) {
coleenp@4037 128 #ifndef PRODUCT
coleenp@4037 129 if (TraceScavenge) {
coleenp@4037 130 ResourceMark rm;
coleenp@4037 131 gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
coleenp@4037 132 klass,
coleenp@4037 133 klass->external_name(),
coleenp@4037 134 klass->has_modified_oops() ? "true" : "false");
coleenp@4037 135 }
coleenp@4037 136 #endif
coleenp@4037 137
coleenp@4037 138 // If the klass has not been dirtied we know that there's
coleenp@4037 139 // no references into the young gen and we can skip it.
coleenp@4037 140 if (klass->has_modified_oops()) {
coleenp@4037 141 if (_accumulate_modified_oops) {
coleenp@4037 142 klass->accumulate_modified_oops();
coleenp@4037 143 }
coleenp@4037 144
coleenp@4037 145 // Clear this state since we're going to scavenge all the metadata.
coleenp@4037 146 klass->clear_modified_oops();
coleenp@4037 147
coleenp@4037 148 // Tell the closure which Klass is being scanned so that it can be dirtied
coleenp@4037 149 // if oops are left pointing into the young gen.
coleenp@4037 150 _scavenge_closure->set_scanned_klass(klass);
coleenp@4037 151
coleenp@4037 152 klass->oops_do(_scavenge_closure);
coleenp@4037 153
coleenp@4037 154 _scavenge_closure->set_scanned_klass(NULL);
coleenp@4037 155 }
coleenp@4037 156 }
coleenp@4037 157
duke@435 158 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
coleenp@4037 159 _g(g)
duke@435 160 {
duke@435 161 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 162 _boundary = _g->reserved().end();
duke@435 163 }
duke@435 164
coleenp@548 165 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 166 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 167
coleenp@548 168 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 169 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 170
coleenp@4037 171 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
coleenp@4037 172 KlassRemSet* klass_rem_set)
coleenp@4037 173 : _scavenge_closure(scavenge_closure),
coleenp@4037 174 _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
coleenp@4037 175
coleenp@4037 176
duke@435 177 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 178 size_t initial_size,
duke@435 179 int level,
duke@435 180 const char* policy)
duke@435 181 : Generation(rs, initial_size, level),
duke@435 182 _promo_failure_drain_in_progress(false),
duke@435 183 _should_allocate_from_space(false)
duke@435 184 {
duke@435 185 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 186 (HeapWord*)_virtual_space.high());
duke@435 187 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 188
duke@435 189 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 190 _eden_space = new ConcEdenSpace(this);
duke@435 191 } else {
duke@435 192 _eden_space = new EdenSpace(this);
duke@435 193 }
duke@435 194 _from_space = new ContiguousSpace();
duke@435 195 _to_space = new ContiguousSpace();
duke@435 196
duke@435 197 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 198 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 199
duke@435 200 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 201 // are computed assuming the entire reserved space is committed.
duke@435 202 // These values are exported as performance counters.
duke@435 203 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 204 uintx size = _virtual_space.reserved_size();
duke@435 205 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 206 _max_eden_size = size - (2*_max_survivor_size);
duke@435 207
duke@435 208 // allocate the performance counters
duke@435 209
duke@435 210 // Generation counters -- generation 0, 3 subspaces
duke@435 211 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 212 _gc_counters = new CollectorCounters(policy, 0);
duke@435 213
duke@435 214 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 215 _gen_counters);
duke@435 216 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 217 _gen_counters);
duke@435 218 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 219 _gen_counters);
duke@435 220
jmasa@698 221 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 222 update_counters();
duke@435 223 _next_gen = NULL;
duke@435 224 _tenuring_threshold = MaxTenuringThreshold;
duke@435 225 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 226 }
duke@435 227
jmasa@698 228 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
jmasa@698 229 bool clear_space,
jmasa@698 230 bool mangle_space) {
jmasa@698 231 uintx alignment =
jmasa@698 232 GenCollectedHeap::heap()->collector_policy()->min_alignment();
jmasa@698 233
jmasa@698 234 // If the spaces are being cleared (only done at heap initialization
jmasa@698 235 // currently), the survivor spaces need not be empty.
jmasa@698 236 // Otherwise, no care is taken for used areas in the survivor spaces
jmasa@698 237 // so check.
jmasa@698 238 assert(clear_space || (to()->is_empty() && from()->is_empty()),
jmasa@698 239 "Initialization of the survivor spaces assumes these are empty");
duke@435 240
duke@435 241 // Compute sizes
duke@435 242 uintx size = _virtual_space.committed_size();
duke@435 243 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 244 uintx eden_size = size - (2*survivor_size);
duke@435 245 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 246
duke@435 247 if (eden_size < minimum_eden_size) {
duke@435 248 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 249 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 250 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 251 uintx unaligned_survivor_size =
duke@435 252 align_size_down(maximum_survivor_size, alignment);
duke@435 253 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 254 eden_size = size - (2*survivor_size);
duke@435 255 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 256 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 257 }
duke@435 258
duke@435 259 char *eden_start = _virtual_space.low();
duke@435 260 char *from_start = eden_start + eden_size;
duke@435 261 char *to_start = from_start + survivor_size;
duke@435 262 char *to_end = to_start + survivor_size;
duke@435 263
duke@435 264 assert(to_end == _virtual_space.high(), "just checking");
duke@435 265 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 266 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 267 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 268
duke@435 269 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 270 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 271 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 272
jmasa@698 273 // A minimum eden size implies that there is a part of eden that
jmasa@698 274 // is being used and that affects the initialization of any
jmasa@698 275 // newly formed eden.
jmasa@698 276 bool live_in_eden = minimum_eden_size > 0;
jmasa@698 277
jmasa@698 278 // If not clearing the spaces, do some checking to verify that
jmasa@698 279 // the space are already mangled.
jmasa@698 280 if (!clear_space) {
jmasa@698 281 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 282 // the bottom or end of one space may have moved into another
jmasa@698 283 // a failure of the check may not correctly indicate which space
jmasa@698 284 // is not properly mangled.
jmasa@698 285 if (ZapUnusedHeapArea) {
jmasa@698 286 HeapWord* limit = (HeapWord*) _virtual_space.high();
jmasa@698 287 eden()->check_mangled_unused_area(limit);
jmasa@698 288 from()->check_mangled_unused_area(limit);
jmasa@698 289 to()->check_mangled_unused_area(limit);
jmasa@698 290 }
jmasa@698 291 }
jmasa@698 292
jmasa@698 293 // Reset the spaces for their new regions.
jmasa@698 294 eden()->initialize(edenMR,
jmasa@698 295 clear_space && !live_in_eden,
jmasa@698 296 SpaceDecorator::Mangle);
jmasa@698 297 // If clear_space and live_in_eden, we will not have cleared any
duke@435 298 // portion of eden above its top. This can cause newly
duke@435 299 // expanded space not to be mangled if using ZapUnusedHeapArea.
duke@435 300 // We explicitly do such mangling here.
jmasa@698 301 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
duke@435 302 eden()->mangle_unused_area();
duke@435 303 }
jmasa@698 304 from()->initialize(fromMR, clear_space, mangle_space);
jmasa@698 305 to()->initialize(toMR, clear_space, mangle_space);
jmasa@698 306
jmasa@698 307 // Set next compaction spaces.
duke@435 308 eden()->set_next_compaction_space(from());
duke@435 309 // The to-space is normally empty before a compaction so need
duke@435 310 // not be considered. The exception is during promotion
duke@435 311 // failure handling when to-space can contain live objects.
duke@435 312 from()->set_next_compaction_space(NULL);
duke@435 313 }
duke@435 314
duke@435 315 void DefNewGeneration::swap_spaces() {
duke@435 316 ContiguousSpace* s = from();
duke@435 317 _from_space = to();
duke@435 318 _to_space = s;
duke@435 319 eden()->set_next_compaction_space(from());
duke@435 320 // The to-space is normally empty before a compaction so need
duke@435 321 // not be considered. The exception is during promotion
duke@435 322 // failure handling when to-space can contain live objects.
duke@435 323 from()->set_next_compaction_space(NULL);
duke@435 324
duke@435 325 if (UsePerfData) {
duke@435 326 CSpaceCounters* c = _from_counters;
duke@435 327 _from_counters = _to_counters;
duke@435 328 _to_counters = c;
duke@435 329 }
duke@435 330 }
duke@435 331
duke@435 332 bool DefNewGeneration::expand(size_t bytes) {
duke@435 333 MutexLocker x(ExpandHeap_lock);
jmasa@698 334 HeapWord* prev_high = (HeapWord*) _virtual_space.high();
duke@435 335 bool success = _virtual_space.expand_by(bytes);
jmasa@698 336 if (success && ZapUnusedHeapArea) {
jmasa@698 337 // Mangle newly committed space immediately because it
jmasa@698 338 // can be done here more simply that after the new
jmasa@698 339 // spaces have been computed.
jmasa@698 340 HeapWord* new_high = (HeapWord*) _virtual_space.high();
jmasa@698 341 MemRegion mangle_region(prev_high, new_high);
jmasa@698 342 SpaceMangler::mangle_region(mangle_region);
jmasa@698 343 }
duke@435 344
duke@435 345 // Do not attempt an expand-to-the reserve size. The
duke@435 346 // request should properly observe the maximum size of
duke@435 347 // the generation so an expand-to-reserve should be
duke@435 348 // unnecessary. Also a second call to expand-to-reserve
duke@435 349 // value potentially can cause an undue expansion.
duke@435 350 // For example if the first expand fail for unknown reasons,
duke@435 351 // but the second succeeds and expands the heap to its maximum
duke@435 352 // value.
duke@435 353 if (GC_locker::is_active()) {
duke@435 354 if (PrintGC && Verbose) {
jmasa@698 355 gclog_or_tty->print_cr("Garbage collection disabled, "
jmasa@698 356 "expanded heap instead");
duke@435 357 }
duke@435 358 }
duke@435 359
duke@435 360 return success;
duke@435 361 }
duke@435 362
duke@435 363
duke@435 364 void DefNewGeneration::compute_new_size() {
duke@435 365 // This is called after a gc that includes the following generation
duke@435 366 // (which is required to exist.) So from-space will normally be empty.
duke@435 367 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 368 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 369 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 370 return;
duke@435 371 }
duke@435 372
duke@435 373 int next_level = level() + 1;
duke@435 374 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 375 assert(next_level < gch->_n_gens,
duke@435 376 "DefNewGeneration cannot be an oldest gen");
duke@435 377
duke@435 378 Generation* next_gen = gch->_gens[next_level];
duke@435 379 size_t old_size = next_gen->capacity();
duke@435 380 size_t new_size_before = _virtual_space.committed_size();
duke@435 381 size_t min_new_size = spec()->init_size();
duke@435 382 size_t max_new_size = reserved().byte_size();
duke@435 383 assert(min_new_size <= new_size_before &&
duke@435 384 new_size_before <= max_new_size,
duke@435 385 "just checking");
duke@435 386 // All space sizes must be multiples of Generation::GenGrain.
duke@435 387 size_t alignment = Generation::GenGrain;
duke@435 388
duke@435 389 // Compute desired new generation size based on NewRatio and
duke@435 390 // NewSizeThreadIncrease
duke@435 391 size_t desired_new_size = old_size/NewRatio;
duke@435 392 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 393 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 394 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 395
duke@435 396 // Adjust new generation size
duke@435 397 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 398 assert(desired_new_size <= max_new_size, "just checking");
duke@435 399
duke@435 400 bool changed = false;
duke@435 401 if (desired_new_size > new_size_before) {
duke@435 402 size_t change = desired_new_size - new_size_before;
duke@435 403 assert(change % alignment == 0, "just checking");
duke@435 404 if (expand(change)) {
duke@435 405 changed = true;
duke@435 406 }
duke@435 407 // If the heap failed to expand to the desired size,
duke@435 408 // "changed" will be false. If the expansion failed
duke@435 409 // (and at this point it was expected to succeed),
duke@435 410 // ignore the failure (leaving "changed" as false).
duke@435 411 }
duke@435 412 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 413 // bail out of shrinking if objects in eden
duke@435 414 size_t change = new_size_before - desired_new_size;
duke@435 415 assert(change % alignment == 0, "just checking");
duke@435 416 _virtual_space.shrink_by(change);
duke@435 417 changed = true;
duke@435 418 }
duke@435 419 if (changed) {
jmasa@698 420 // The spaces have already been mangled at this point but
jmasa@698 421 // may not have been cleared (set top = bottom) and should be.
jmasa@698 422 // Mangling was done when the heap was being expanded.
jmasa@698 423 compute_space_boundaries(eden()->used(),
jmasa@698 424 SpaceDecorator::Clear,
jmasa@698 425 SpaceDecorator::DontMangle);
jmasa@698 426 MemRegion cmr((HeapWord*)_virtual_space.low(),
jmasa@698 427 (HeapWord*)_virtual_space.high());
duke@435 428 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 429 if (Verbose && PrintGC) {
duke@435 430 size_t new_size_after = _virtual_space.committed_size();
duke@435 431 size_t eden_size_after = eden()->capacity();
duke@435 432 size_t survivor_size_after = from()->capacity();
jmasa@698 433 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
jmasa@698 434 SIZE_FORMAT "K [eden="
duke@435 435 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
jmasa@698 436 new_size_before/K, new_size_after/K,
jmasa@698 437 eden_size_after/K, survivor_size_after/K);
duke@435 438 if (WizardMode) {
duke@435 439 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 440 thread_increase_size/K, threads_count);
duke@435 441 }
duke@435 442 gclog_or_tty->cr();
duke@435 443 }
duke@435 444 }
duke@435 445 }
duke@435 446
duke@435 447 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 448 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 449 eden()->object_iterate(cl);
duke@435 450 }
duke@435 451
duke@435 452 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 453 assert(false, "NYI -- are you sure you want to call this?");
duke@435 454 }
duke@435 455
duke@435 456
duke@435 457 size_t DefNewGeneration::capacity() const {
duke@435 458 return eden()->capacity()
duke@435 459 + from()->capacity(); // to() is only used during scavenge
duke@435 460 }
duke@435 461
duke@435 462
duke@435 463 size_t DefNewGeneration::used() const {
duke@435 464 return eden()->used()
duke@435 465 + from()->used(); // to() is only used during scavenge
duke@435 466 }
duke@435 467
duke@435 468
duke@435 469 size_t DefNewGeneration::free() const {
duke@435 470 return eden()->free()
duke@435 471 + from()->free(); // to() is only used during scavenge
duke@435 472 }
duke@435 473
duke@435 474 size_t DefNewGeneration::max_capacity() const {
duke@435 475 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 476 const size_t reserved_bytes = reserved().byte_size();
duke@435 477 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 478 }
duke@435 479
duke@435 480 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 481 return eden()->free();
duke@435 482 }
duke@435 483
duke@435 484 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 485 return eden()->capacity();
duke@435 486 }
duke@435 487
duke@435 488 size_t DefNewGeneration::contiguous_available() const {
duke@435 489 return eden()->free();
duke@435 490 }
duke@435 491
duke@435 492
duke@435 493 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 494 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 495
duke@435 496 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 497 eden()->object_iterate(blk);
duke@435 498 from()->object_iterate(blk);
duke@435 499 }
duke@435 500
duke@435 501
duke@435 502 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 503 bool usedOnly) {
duke@435 504 blk->do_space(eden());
duke@435 505 blk->do_space(from());
duke@435 506 blk->do_space(to());
duke@435 507 }
duke@435 508
duke@435 509 // The last collection bailed out, we are running out of heap space,
duke@435 510 // so we try to allocate the from-space, too.
duke@435 511 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 512 HeapWord* result = NULL;
ysr@2336 513 if (Verbose && PrintGCDetails) {
duke@435 514 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
ysr@2336 515 " will_fail: %s"
ysr@2336 516 " heap_lock: %s"
ysr@2336 517 " free: " SIZE_FORMAT,
ysr@2336 518 size,
ysr@2336 519 GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
ysr@2336 520 "true" : "false",
ysr@2336 521 Heap_lock->is_locked() ? "locked" : "unlocked",
ysr@2336 522 from()->free());
ysr@2336 523 }
duke@435 524 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 525 if (Heap_lock->owned_by_self() ||
duke@435 526 (SafepointSynchronize::is_at_safepoint() &&
duke@435 527 Thread::current()->is_VM_thread())) {
duke@435 528 // If the Heap_lock is not locked by this thread, this will be called
duke@435 529 // again later with the Heap_lock held.
duke@435 530 result = from()->allocate(size);
duke@435 531 } else if (PrintGC && Verbose) {
duke@435 532 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 533 }
duke@435 534 } else if (PrintGC && Verbose) {
duke@435 535 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 536 }
duke@435 537 if (PrintGC && Verbose) {
duke@435 538 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 539 }
duke@435 540 return result;
duke@435 541 }
duke@435 542
duke@435 543 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 544 bool is_tlab,
duke@435 545 bool parallel) {
duke@435 546 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 547 return allocate(size, is_tlab);
duke@435 548 }
duke@435 549
brutisso@4452 550 void DefNewGeneration::adjust_desired_tenuring_threshold() {
brutisso@4452 551 // Set the desired survivor size to half the real survivor space
brutisso@4452 552 _tenuring_threshold =
brutisso@4452 553 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
brutisso@4452 554 }
duke@435 555
duke@435 556 void DefNewGeneration::collect(bool full,
duke@435 557 bool clear_all_soft_refs,
duke@435 558 size_t size,
duke@435 559 bool is_tlab) {
duke@435 560 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 561 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 562 _next_gen = gch->next_gen(this);
duke@435 563 assert(_next_gen != NULL,
duke@435 564 "This must be the youngest gen, and not the only gen");
duke@435 565
duke@435 566 // If the next generation is too full to accomodate promotion
duke@435 567 // from this generation, pass on collection; let the next generation
duke@435 568 // do it.
duke@435 569 if (!collection_attempt_is_safe()) {
ysr@2336 570 if (Verbose && PrintGCDetails) {
ysr@2336 571 gclog_or_tty->print(" :: Collection attempt not safe :: ");
ysr@2336 572 }
ysr@2243 573 gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
duke@435 574 return;
duke@435 575 }
duke@435 576 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 577
duke@435 578 init_assuming_no_promotion_failure();
duke@435 579
brutisso@3767 580 TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 581 // Capture heap used before collection (for printing).
duke@435 582 size_t gch_prev_used = gch->used();
duke@435 583
duke@435 584 SpecializationStats::clear();
duke@435 585
duke@435 586 // These can be shared for all code paths
duke@435 587 IsAliveClosure is_alive(this);
duke@435 588 ScanWeakRefClosure scan_weak_ref(this);
duke@435 589
duke@435 590 age_table()->clear();
jmasa@698 591 to()->clear(SpaceDecorator::Mangle);
duke@435 592
duke@435 593 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 594
duke@435 595 assert(gch->no_allocs_since_save_marks(0),
duke@435 596 "save marks have not been newly set.");
duke@435 597
duke@435 598 // Not very pretty.
duke@435 599 CollectorPolicy* cp = gch->collector_policy();
duke@435 600
duke@435 601 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 602 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 603
coleenp@4037 604 KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
coleenp@4037 605 gch->rem_set()->klass_rem_set());
coleenp@4037 606
duke@435 607 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 608 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 609 &fsc_with_no_gc_barrier,
duke@435 610 &fsc_with_gc_barrier);
duke@435 611
duke@435 612 assert(gch->no_allocs_since_save_marks(0),
duke@435 613 "save marks have not been newly set.");
duke@435 614
coleenp@4037 615 int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
coleenp@4037 616
duke@435 617 gch->gen_process_strong_roots(_level,
jrose@1424 618 true, // Process younger gens, if any,
jrose@1424 619 // as strong roots.
jrose@1424 620 true, // activate StrongRootsScope
coleenp@4037 621 true, // is scavenging
coleenp@4037 622 SharedHeap::ScanningOption(so),
jrose@1424 623 &fsc_with_no_gc_barrier,
jrose@1424 624 true, // walk *all* scavengable nmethods
coleenp@4037 625 &fsc_with_gc_barrier,
coleenp@4037 626 &klass_scan_closure);
duke@435 627
duke@435 628 // "evacuate followers".
duke@435 629 evacuate_followers.do_void();
duke@435 630
duke@435 631 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ysr@888 632 ReferenceProcessor* rp = ref_processor();
ysr@892 633 rp->setup_policy(clear_all_soft_refs);
ysr@888 634 rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
ysr@888 635 NULL);
duke@435 636 if (!promotion_failed()) {
duke@435 637 // Swap the survivor spaces.
jmasa@698 638 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 639 from()->clear(SpaceDecorator::Mangle);
jmasa@698 640 if (ZapUnusedHeapArea) {
jmasa@698 641 // This is now done here because of the piece-meal mangling which
jmasa@698 642 // can check for valid mangling at intermediate points in the
jmasa@698 643 // collection(s). When a minor collection fails to collect
jmasa@698 644 // sufficient space resizing of the young generation can occur
jmasa@698 645 // an redistribute the spaces in the young generation. Mangle
jmasa@698 646 // here so that unzapped regions don't get distributed to
jmasa@698 647 // other spaces.
jmasa@698 648 to()->mangle_unused_area();
jmasa@698 649 }
duke@435 650 swap_spaces();
duke@435 651
duke@435 652 assert(to()->is_empty(), "to space should be empty now");
duke@435 653
brutisso@4452 654 adjust_desired_tenuring_threshold();
duke@435 655
jmasa@1822 656 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 657 // for full GC's.
jmasa@1822 658 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@1822 659 size_policy->reset_gc_overhead_limit_count();
duke@435 660 if (PrintGC && !PrintGCDetails) {
duke@435 661 gch->print_heap_change(gch_prev_used);
duke@435 662 }
ysr@2243 663 assert(!gch->incremental_collection_failed(), "Should be clear");
duke@435 664 } else {
jcoomes@2191 665 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 666 _promo_failure_scan_stack.clear(true); // Clear cached segments.
duke@435 667
duke@435 668 remove_forwarding_pointers();
duke@435 669 if (PrintGCDetails) {
ysr@1580 670 gclog_or_tty->print(" (promotion failed) ");
duke@435 671 }
duke@435 672 // Add to-space to the list of space to compact
duke@435 673 // when a promotion failure has occurred. In that
duke@435 674 // case there can be live objects in to-space
duke@435 675 // as a result of a partial evacuation of eden
duke@435 676 // and from-space.
jcoomes@2191 677 swap_spaces(); // For uniformity wrt ParNewGeneration.
duke@435 678 from()->set_next_compaction_space(to());
ysr@2243 679 gch->set_incremental_collection_failed();
duke@435 680
ysr@1580 681 // Inform the next generation that a promotion failure occurred.
ysr@1580 682 _next_gen->promotion_failure_occurred();
ysr@1580 683
duke@435 684 // Reset the PromotionFailureALot counters.
duke@435 685 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 686 }
duke@435 687 // set new iteration safe limit for the survivor spaces
duke@435 688 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 689 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 690 SpecializationStats::print();
johnc@3538 691
johnc@3538 692 // We need to use a monotonically non-deccreasing time in ms
johnc@3538 693 // or we will see time-warp warnings and os::javaTimeMillis()
johnc@3538 694 // does not guarantee monotonicity.
johnc@3538 695 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
johnc@3538 696 update_time_of_last_gc(now);
duke@435 697 }
duke@435 698
duke@435 699 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 700 public:
duke@435 701 void do_object(oop obj) {
duke@435 702 obj->init_mark();
duke@435 703 }
duke@435 704 };
duke@435 705
duke@435 706 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 707 _promotion_failed = false;
duke@435 708 from()->set_next_compaction_space(NULL);
duke@435 709 }
duke@435 710
duke@435 711 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 712 RemoveForwardPointerClosure rspc;
duke@435 713 eden()->object_iterate(&rspc);
duke@435 714 from()->object_iterate(&rspc);
jcoomes@2191 715
duke@435 716 // Now restore saved marks, if any.
jcoomes@2191 717 assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
jcoomes@2191 718 "should be the same");
jcoomes@2191 719 while (!_objs_with_preserved_marks.is_empty()) {
jcoomes@2191 720 oop obj = _objs_with_preserved_marks.pop();
jcoomes@2191 721 markOop m = _preserved_marks_of_objs.pop();
jcoomes@2191 722 obj->set_mark(m);
duke@435 723 }
jcoomes@2191 724 _objs_with_preserved_marks.clear(true);
jcoomes@2191 725 _preserved_marks_of_objs.clear(true);
duke@435 726 }
duke@435 727
ysr@2380 728 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
ysr@2380 729 assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
ysr@2380 730 "Oversaving!");
ysr@2380 731 _objs_with_preserved_marks.push(obj);
ysr@2380 732 _preserved_marks_of_objs.push(m);
ysr@2380 733 }
ysr@2380 734
duke@435 735 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 736 if (m->must_be_preserved_for_promotion_failure(obj)) {
ysr@2380 737 preserve_mark(obj, m);
duke@435 738 }
duke@435 739 }
duke@435 740
duke@435 741 void DefNewGeneration::handle_promotion_failure(oop old) {
ysr@2380 742 if (PrintPromotionFailure && !_promotion_failed) {
ysr@1580 743 gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 744 old->size());
ysr@1580 745 }
ysr@2380 746 _promotion_failed = true;
ysr@2380 747 preserve_mark_if_necessary(old, old->mark());
duke@435 748 // forward to self
duke@435 749 old->forward_to(old);
duke@435 750
jcoomes@2191 751 _promo_failure_scan_stack.push(old);
duke@435 752
duke@435 753 if (!_promo_failure_drain_in_progress) {
duke@435 754 // prevent recursion in copy_to_survivor_space()
duke@435 755 _promo_failure_drain_in_progress = true;
duke@435 756 drain_promo_failure_scan_stack();
duke@435 757 _promo_failure_drain_in_progress = false;
duke@435 758 }
duke@435 759 }
duke@435 760
coleenp@548 761 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 762 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 763 "shouldn't be scavenging this oop");
duke@435 764 size_t s = old->size();
duke@435 765 oop obj = NULL;
duke@435 766
duke@435 767 // Try allocating obj in to-space (unless too old)
duke@435 768 if (old->age() < tenuring_threshold()) {
duke@435 769 obj = (oop) to()->allocate(s);
duke@435 770 }
duke@435 771
duke@435 772 // Otherwise try allocating obj tenured
duke@435 773 if (obj == NULL) {
coleenp@548 774 obj = _next_gen->promote(old, s);
duke@435 775 if (obj == NULL) {
duke@435 776 handle_promotion_failure(old);
duke@435 777 return old;
duke@435 778 }
duke@435 779 } else {
duke@435 780 // Prefetch beyond obj
duke@435 781 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 782 Prefetch::write(obj, interval);
duke@435 783
duke@435 784 // Copy obj
duke@435 785 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 786
duke@435 787 // Increment age if obj still in new generation
duke@435 788 obj->incr_age();
duke@435 789 age_table()->add(obj, s);
duke@435 790 }
duke@435 791
duke@435 792 // Done, insert forward pointer to obj in this header
duke@435 793 old->forward_to(obj);
duke@435 794
duke@435 795 return obj;
duke@435 796 }
duke@435 797
duke@435 798 void DefNewGeneration::drain_promo_failure_scan_stack() {
jcoomes@2191 799 while (!_promo_failure_scan_stack.is_empty()) {
jcoomes@2191 800 oop obj = _promo_failure_scan_stack.pop();
duke@435 801 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 802 }
duke@435 803 }
duke@435 804
duke@435 805 void DefNewGeneration::save_marks() {
duke@435 806 eden()->set_saved_mark();
duke@435 807 to()->set_saved_mark();
duke@435 808 from()->set_saved_mark();
duke@435 809 }
duke@435 810
duke@435 811
duke@435 812 void DefNewGeneration::reset_saved_marks() {
duke@435 813 eden()->reset_saved_mark();
duke@435 814 to()->reset_saved_mark();
duke@435 815 from()->reset_saved_mark();
duke@435 816 }
duke@435 817
duke@435 818
duke@435 819 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 820 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 821 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 822 return to()->saved_mark_at_top();
duke@435 823 }
duke@435 824
duke@435 825 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 826 \
duke@435 827 void DefNewGeneration:: \
duke@435 828 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 829 cl->set_generation(this); \
duke@435 830 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 831 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 832 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 833 cl->reset_generation(); \
duke@435 834 save_marks(); \
duke@435 835 }
duke@435 836
duke@435 837 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 838
duke@435 839 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 840
duke@435 841 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 842 size_t max_alloc_words) {
duke@435 843 if (requestor == this || _promotion_failed) return;
duke@435 844 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 845
duke@435 846 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 847 if (to_space->top() > to_space->bottom()) {
duke@435 848 trace("to_space not empty when contribute_scratch called");
duke@435 849 }
duke@435 850 */
duke@435 851
duke@435 852 ContiguousSpace* to_space = to();
duke@435 853 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 854 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 855 if (free_words >= MinFreeScratchWords) {
duke@435 856 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 857 sb->num_words = free_words;
duke@435 858 sb->next = list;
duke@435 859 list = sb;
duke@435 860 }
duke@435 861 }
duke@435 862
jmasa@698 863 void DefNewGeneration::reset_scratch() {
jmasa@698 864 // If contributing scratch in to_space, mangle all of
jmasa@698 865 // to_space if ZapUnusedHeapArea. This is needed because
jmasa@698 866 // top is not maintained while using to-space as scratch.
jmasa@698 867 if (ZapUnusedHeapArea) {
jmasa@698 868 to()->mangle_unused_area_complete();
jmasa@698 869 }
jmasa@698 870 }
jmasa@698 871
duke@435 872 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 873 if (!to()->is_empty()) {
ysr@2336 874 if (Verbose && PrintGCDetails) {
ysr@2336 875 gclog_or_tty->print(" :: to is not empty :: ");
ysr@2336 876 }
duke@435 877 return false;
duke@435 878 }
duke@435 879 if (_next_gen == NULL) {
duke@435 880 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 881 _next_gen = gch->next_gen(this);
duke@435 882 assert(_next_gen != NULL,
duke@435 883 "This must be the youngest gen, and not the only gen");
duke@435 884 }
ysr@2243 885 return _next_gen->promotion_attempt_is_safe(used());
duke@435 886 }
duke@435 887
duke@435 888 void DefNewGeneration::gc_epilogue(bool full) {
ysr@2244 889 DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
ysr@2244 890
ysr@2244 891 assert(!GC_locker::is_active(), "We should not be executing here");
duke@435 892 // Check if the heap is approaching full after a collection has
duke@435 893 // been done. Generally the young generation is empty at
duke@435 894 // a minimum at the end of a collection. If it is not, then
duke@435 895 // the heap is approaching full.
duke@435 896 GenCollectedHeap* gch = GenCollectedHeap::heap();
ysr@2243 897 if (full) {
ysr@2244 898 DEBUG_ONLY(seen_incremental_collection_failed = false;)
ysr@2336 899 if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
ysr@2336 900 if (Verbose && PrintGCDetails) {
ysr@2336 901 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
ysr@2336 902 GCCause::to_string(gch->gc_cause()));
ysr@2336 903 }
ysr@2243 904 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
ysr@2243 905 set_should_allocate_from_space(); // we seem to be running out of space
ysr@2243 906 } else {
ysr@2336 907 if (Verbose && PrintGCDetails) {
ysr@2336 908 gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
ysr@2336 909 GCCause::to_string(gch->gc_cause()));
ysr@2336 910 }
ysr@2243 911 gch->clear_incremental_collection_failed(); // We just did a full collection
ysr@2243 912 clear_should_allocate_from_space(); // if set
ysr@2243 913 }
duke@435 914 } else {
ysr@2244 915 #ifdef ASSERT
ysr@2244 916 // It is possible that incremental_collection_failed() == true
ysr@2244 917 // here, because an attempted scavenge did not succeed. The policy
ysr@2244 918 // is normally expected to cause a full collection which should
ysr@2244 919 // clear that condition, so we should not be here twice in a row
ysr@2244 920 // with incremental_collection_failed() == true without having done
ysr@2244 921 // a full collection in between.
ysr@2244 922 if (!seen_incremental_collection_failed &&
ysr@2244 923 gch->incremental_collection_failed()) {
ysr@2336 924 if (Verbose && PrintGCDetails) {
ysr@2336 925 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
ysr@2336 926 GCCause::to_string(gch->gc_cause()));
ysr@2336 927 }
ysr@2244 928 seen_incremental_collection_failed = true;
ysr@2244 929 } else if (seen_incremental_collection_failed) {
ysr@2336 930 if (Verbose && PrintGCDetails) {
ysr@2336 931 gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
ysr@2336 932 GCCause::to_string(gch->gc_cause()));
ysr@2336 933 }
ysr@2336 934 assert(gch->gc_cause() == GCCause::_scavenge_alot ||
ysr@2336 935 (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
ysr@2336 936 !gch->incremental_collection_failed(),
ysr@2295 937 "Twice in a row");
ysr@2244 938 seen_incremental_collection_failed = false;
ysr@2244 939 }
ysr@2244 940 #endif // ASSERT
duke@435 941 }
duke@435 942
jmasa@698 943 if (ZapUnusedHeapArea) {
jmasa@698 944 eden()->check_mangled_unused_area_complete();
jmasa@698 945 from()->check_mangled_unused_area_complete();
jmasa@698 946 to()->check_mangled_unused_area_complete();
jmasa@698 947 }
jmasa@698 948
jcoomes@2996 949 if (!CleanChunkPoolAsync) {
jcoomes@2996 950 Chunk::clean_chunk_pool();
jcoomes@2996 951 }
jcoomes@2996 952
duke@435 953 // update the generation and space performance counters
duke@435 954 update_counters();
duke@435 955 gch->collector_policy()->counters()->update_counters();
duke@435 956 }
duke@435 957
jmasa@698 958 void DefNewGeneration::record_spaces_top() {
jmasa@698 959 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 960 eden()->set_top_for_allocations();
jmasa@698 961 to()->set_top_for_allocations();
jmasa@698 962 from()->set_top_for_allocations();
jmasa@698 963 }
jmasa@698 964
jmasa@698 965
duke@435 966 void DefNewGeneration::update_counters() {
duke@435 967 if (UsePerfData) {
duke@435 968 _eden_counters->update_all();
duke@435 969 _from_counters->update_all();
duke@435 970 _to_counters->update_all();
duke@435 971 _gen_counters->update_all();
duke@435 972 }
duke@435 973 }
duke@435 974
brutisso@3711 975 void DefNewGeneration::verify() {
brutisso@3711 976 eden()->verify();
brutisso@3711 977 from()->verify();
brutisso@3711 978 to()->verify();
duke@435 979 }
duke@435 980
duke@435 981 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 982 Generation::print_on(st);
duke@435 983 st->print(" eden");
duke@435 984 eden()->print_on(st);
duke@435 985 st->print(" from");
duke@435 986 from()->print_on(st);
duke@435 987 st->print(" to ");
duke@435 988 to()->print_on(st);
duke@435 989 }
duke@435 990
duke@435 991
duke@435 992 const char* DefNewGeneration::name() const {
duke@435 993 return "def new generation";
duke@435 994 }
coleenp@548 995
coleenp@548 996 // Moved from inline file as they are not called inline
coleenp@548 997 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 998 return eden();
coleenp@548 999 }
coleenp@548 1000
coleenp@548 1001 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 1002 bool is_tlab) {
coleenp@548 1003 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 1004 // Most allocations are fast-path in compiled code.
coleenp@548 1005 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 1006 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 1007 // have to use it here, as well.
coleenp@548 1008 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 1009 if (result != NULL) {
coleenp@548 1010 return result;
coleenp@548 1011 }
coleenp@548 1012 do {
coleenp@548 1013 HeapWord* old_limit = eden()->soft_end();
coleenp@548 1014 if (old_limit < eden()->end()) {
coleenp@548 1015 // Tell the next generation we reached a limit.
coleenp@548 1016 HeapWord* new_limit =
coleenp@548 1017 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 1018 if (new_limit != NULL) {
coleenp@548 1019 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 1020 } else {
coleenp@548 1021 assert(eden()->soft_end() == eden()->end(),
coleenp@548 1022 "invalid state after allocation_limit_reached returned null");
coleenp@548 1023 }
coleenp@548 1024 } else {
coleenp@548 1025 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 1026 // there are no reasons to do an attempt to allocate
coleenp@548 1027 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 1028 break;
coleenp@548 1029 }
coleenp@548 1030 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 1031 result = eden()->par_allocate(word_size);
coleenp@548 1032 } while (result == NULL);
coleenp@548 1033
coleenp@548 1034 // If the eden is full and the last collection bailed out, we are running
coleenp@548 1035 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 1036 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 1037 // circular dependency at compile time.
coleenp@548 1038 if (result == NULL) {
coleenp@548 1039 result = allocate_from_space(word_size);
coleenp@548 1040 }
coleenp@548 1041 return result;
coleenp@548 1042 }
coleenp@548 1043
coleenp@548 1044 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 1045 bool is_tlab) {
coleenp@548 1046 return eden()->par_allocate(word_size);
coleenp@548 1047 }
coleenp@548 1048
coleenp@548 1049 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 1050 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 1051 eden()->set_soft_end(eden()->end());
coleenp@548 1052 }
coleenp@548 1053
coleenp@548 1054 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 1055 return eden()->capacity();
coleenp@548 1056 }
coleenp@548 1057
coleenp@548 1058 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 1059 return unsafe_max_alloc_nogc();
coleenp@548 1060 }

mercurial