src/share/vm/memory/defNewGeneration.cpp

Sat, 23 Oct 2010 23:03:49 -0700

author
ysr
date
Sat, 23 Oct 2010 23:03:49 -0700
changeset 2243
a7214d79fcf1
parent 2191
894b1d7c7e01
child 2244
c766bae6c14d
permissions
-rw-r--r--

6896603: CMS/GCH: collection_attempt_is_safe() ergo should use more recent data
Summary: Deprecated HandlePromotionFailure, removing the ability to turn off that feature, did away with one epoch look-ahead when deciding if a scavenge is likely to fail, relying on current data.
Reviewed-by: jmasa, johnc, poonam

duke@435 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_defNewGeneration.cpp.incl"
duke@435 27
duke@435 28 //
duke@435 29 // DefNewGeneration functions.
duke@435 30
duke@435 31 // Methods of protected closure types.
duke@435 32
duke@435 33 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 34 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 35 }
duke@435 36 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
duke@435 37 assert(false, "Do not call.");
duke@435 38 }
duke@435 39 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 40 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 41 }
duke@435 42
duke@435 43 DefNewGeneration::KeepAliveClosure::
duke@435 44 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 45 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 46 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 47 _rs = (CardTableRS*)rs;
duke@435 48 }
duke@435 49
coleenp@548 50 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 51 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 52
duke@435 53
duke@435 54 DefNewGeneration::FastKeepAliveClosure::
duke@435 55 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 56 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 57 _boundary = g->reserved().end();
duke@435 58 }
duke@435 59
coleenp@548 60 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 61 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 62
duke@435 63 DefNewGeneration::EvacuateFollowersClosure::
duke@435 64 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 65 ScanClosure* cur, ScanClosure* older) :
duke@435 66 _gch(gch), _level(level),
duke@435 67 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 68 {}
duke@435 69
duke@435 70 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 71 do {
duke@435 72 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 73 _scan_older);
duke@435 74 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 75 }
duke@435 76
duke@435 77 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 78 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 79 DefNewGeneration* gen,
duke@435 80 FastScanClosure* cur, FastScanClosure* older) :
duke@435 81 _gch(gch), _level(level), _gen(gen),
duke@435 82 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 83 {}
duke@435 84
duke@435 85 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 86 do {
duke@435 87 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 88 _scan_older);
duke@435 89 } while (!_gch->no_allocs_since_save_marks(_level));
jcoomes@2191 90 guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
duke@435 91 }
duke@435 92
duke@435 93 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 94 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 95 {
duke@435 96 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 97 _boundary = _g->reserved().end();
duke@435 98 }
duke@435 99
coleenp@548 100 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 101 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 102
duke@435 103 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 104 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 105 {
duke@435 106 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 107 _boundary = _g->reserved().end();
duke@435 108 }
duke@435 109
coleenp@548 110 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 111 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 112
duke@435 113 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
duke@435 114 OopClosure(g->ref_processor()), _g(g)
duke@435 115 {
duke@435 116 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 117 _boundary = _g->reserved().end();
duke@435 118 }
duke@435 119
coleenp@548 120 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 121 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 122
coleenp@548 123 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 124 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 125
duke@435 126 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 127 size_t initial_size,
duke@435 128 int level,
duke@435 129 const char* policy)
duke@435 130 : Generation(rs, initial_size, level),
duke@435 131 _promo_failure_drain_in_progress(false),
duke@435 132 _should_allocate_from_space(false)
duke@435 133 {
duke@435 134 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 135 (HeapWord*)_virtual_space.high());
duke@435 136 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 137
duke@435 138 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 139 _eden_space = new ConcEdenSpace(this);
duke@435 140 } else {
duke@435 141 _eden_space = new EdenSpace(this);
duke@435 142 }
duke@435 143 _from_space = new ContiguousSpace();
duke@435 144 _to_space = new ContiguousSpace();
duke@435 145
duke@435 146 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 147 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 148
duke@435 149 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 150 // are computed assuming the entire reserved space is committed.
duke@435 151 // These values are exported as performance counters.
duke@435 152 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 153 uintx size = _virtual_space.reserved_size();
duke@435 154 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 155 _max_eden_size = size - (2*_max_survivor_size);
duke@435 156
duke@435 157 // allocate the performance counters
duke@435 158
duke@435 159 // Generation counters -- generation 0, 3 subspaces
duke@435 160 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 161 _gc_counters = new CollectorCounters(policy, 0);
duke@435 162
duke@435 163 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 164 _gen_counters);
duke@435 165 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 166 _gen_counters);
duke@435 167 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 168 _gen_counters);
duke@435 169
jmasa@698 170 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 171 update_counters();
duke@435 172 _next_gen = NULL;
duke@435 173 _tenuring_threshold = MaxTenuringThreshold;
duke@435 174 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 175 }
duke@435 176
jmasa@698 177 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
jmasa@698 178 bool clear_space,
jmasa@698 179 bool mangle_space) {
jmasa@698 180 uintx alignment =
jmasa@698 181 GenCollectedHeap::heap()->collector_policy()->min_alignment();
jmasa@698 182
jmasa@698 183 // If the spaces are being cleared (only done at heap initialization
jmasa@698 184 // currently), the survivor spaces need not be empty.
jmasa@698 185 // Otherwise, no care is taken for used areas in the survivor spaces
jmasa@698 186 // so check.
jmasa@698 187 assert(clear_space || (to()->is_empty() && from()->is_empty()),
jmasa@698 188 "Initialization of the survivor spaces assumes these are empty");
duke@435 189
duke@435 190 // Compute sizes
duke@435 191 uintx size = _virtual_space.committed_size();
duke@435 192 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 193 uintx eden_size = size - (2*survivor_size);
duke@435 194 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 195
duke@435 196 if (eden_size < minimum_eden_size) {
duke@435 197 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 198 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 199 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 200 uintx unaligned_survivor_size =
duke@435 201 align_size_down(maximum_survivor_size, alignment);
duke@435 202 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 203 eden_size = size - (2*survivor_size);
duke@435 204 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 205 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 206 }
duke@435 207
duke@435 208 char *eden_start = _virtual_space.low();
duke@435 209 char *from_start = eden_start + eden_size;
duke@435 210 char *to_start = from_start + survivor_size;
duke@435 211 char *to_end = to_start + survivor_size;
duke@435 212
duke@435 213 assert(to_end == _virtual_space.high(), "just checking");
duke@435 214 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 215 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 216 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 217
duke@435 218 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 219 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 220 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 221
jmasa@698 222 // A minimum eden size implies that there is a part of eden that
jmasa@698 223 // is being used and that affects the initialization of any
jmasa@698 224 // newly formed eden.
jmasa@698 225 bool live_in_eden = minimum_eden_size > 0;
jmasa@698 226
jmasa@698 227 // If not clearing the spaces, do some checking to verify that
jmasa@698 228 // the space are already mangled.
jmasa@698 229 if (!clear_space) {
jmasa@698 230 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 231 // the bottom or end of one space may have moved into another
jmasa@698 232 // a failure of the check may not correctly indicate which space
jmasa@698 233 // is not properly mangled.
jmasa@698 234 if (ZapUnusedHeapArea) {
jmasa@698 235 HeapWord* limit = (HeapWord*) _virtual_space.high();
jmasa@698 236 eden()->check_mangled_unused_area(limit);
jmasa@698 237 from()->check_mangled_unused_area(limit);
jmasa@698 238 to()->check_mangled_unused_area(limit);
jmasa@698 239 }
jmasa@698 240 }
jmasa@698 241
jmasa@698 242 // Reset the spaces for their new regions.
jmasa@698 243 eden()->initialize(edenMR,
jmasa@698 244 clear_space && !live_in_eden,
jmasa@698 245 SpaceDecorator::Mangle);
jmasa@698 246 // If clear_space and live_in_eden, we will not have cleared any
duke@435 247 // portion of eden above its top. This can cause newly
duke@435 248 // expanded space not to be mangled if using ZapUnusedHeapArea.
duke@435 249 // We explicitly do such mangling here.
jmasa@698 250 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
duke@435 251 eden()->mangle_unused_area();
duke@435 252 }
jmasa@698 253 from()->initialize(fromMR, clear_space, mangle_space);
jmasa@698 254 to()->initialize(toMR, clear_space, mangle_space);
jmasa@698 255
jmasa@698 256 // Set next compaction spaces.
duke@435 257 eden()->set_next_compaction_space(from());
duke@435 258 // The to-space is normally empty before a compaction so need
duke@435 259 // not be considered. The exception is during promotion
duke@435 260 // failure handling when to-space can contain live objects.
duke@435 261 from()->set_next_compaction_space(NULL);
duke@435 262 }
duke@435 263
duke@435 264 void DefNewGeneration::swap_spaces() {
duke@435 265 ContiguousSpace* s = from();
duke@435 266 _from_space = to();
duke@435 267 _to_space = s;
duke@435 268 eden()->set_next_compaction_space(from());
duke@435 269 // The to-space is normally empty before a compaction so need
duke@435 270 // not be considered. The exception is during promotion
duke@435 271 // failure handling when to-space can contain live objects.
duke@435 272 from()->set_next_compaction_space(NULL);
duke@435 273
duke@435 274 if (UsePerfData) {
duke@435 275 CSpaceCounters* c = _from_counters;
duke@435 276 _from_counters = _to_counters;
duke@435 277 _to_counters = c;
duke@435 278 }
duke@435 279 }
duke@435 280
duke@435 281 bool DefNewGeneration::expand(size_t bytes) {
duke@435 282 MutexLocker x(ExpandHeap_lock);
jmasa@698 283 HeapWord* prev_high = (HeapWord*) _virtual_space.high();
duke@435 284 bool success = _virtual_space.expand_by(bytes);
jmasa@698 285 if (success && ZapUnusedHeapArea) {
jmasa@698 286 // Mangle newly committed space immediately because it
jmasa@698 287 // can be done here more simply that after the new
jmasa@698 288 // spaces have been computed.
jmasa@698 289 HeapWord* new_high = (HeapWord*) _virtual_space.high();
jmasa@698 290 MemRegion mangle_region(prev_high, new_high);
jmasa@698 291 SpaceMangler::mangle_region(mangle_region);
jmasa@698 292 }
duke@435 293
duke@435 294 // Do not attempt an expand-to-the reserve size. The
duke@435 295 // request should properly observe the maximum size of
duke@435 296 // the generation so an expand-to-reserve should be
duke@435 297 // unnecessary. Also a second call to expand-to-reserve
duke@435 298 // value potentially can cause an undue expansion.
duke@435 299 // For example if the first expand fail for unknown reasons,
duke@435 300 // but the second succeeds and expands the heap to its maximum
duke@435 301 // value.
duke@435 302 if (GC_locker::is_active()) {
duke@435 303 if (PrintGC && Verbose) {
jmasa@698 304 gclog_or_tty->print_cr("Garbage collection disabled, "
jmasa@698 305 "expanded heap instead");
duke@435 306 }
duke@435 307 }
duke@435 308
duke@435 309 return success;
duke@435 310 }
duke@435 311
duke@435 312
duke@435 313 void DefNewGeneration::compute_new_size() {
duke@435 314 // This is called after a gc that includes the following generation
duke@435 315 // (which is required to exist.) So from-space will normally be empty.
duke@435 316 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 317 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 318 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 319 return;
duke@435 320 }
duke@435 321
duke@435 322 int next_level = level() + 1;
duke@435 323 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 324 assert(next_level < gch->_n_gens,
duke@435 325 "DefNewGeneration cannot be an oldest gen");
duke@435 326
duke@435 327 Generation* next_gen = gch->_gens[next_level];
duke@435 328 size_t old_size = next_gen->capacity();
duke@435 329 size_t new_size_before = _virtual_space.committed_size();
duke@435 330 size_t min_new_size = spec()->init_size();
duke@435 331 size_t max_new_size = reserved().byte_size();
duke@435 332 assert(min_new_size <= new_size_before &&
duke@435 333 new_size_before <= max_new_size,
duke@435 334 "just checking");
duke@435 335 // All space sizes must be multiples of Generation::GenGrain.
duke@435 336 size_t alignment = Generation::GenGrain;
duke@435 337
duke@435 338 // Compute desired new generation size based on NewRatio and
duke@435 339 // NewSizeThreadIncrease
duke@435 340 size_t desired_new_size = old_size/NewRatio;
duke@435 341 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 342 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 343 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 344
duke@435 345 // Adjust new generation size
duke@435 346 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 347 assert(desired_new_size <= max_new_size, "just checking");
duke@435 348
duke@435 349 bool changed = false;
duke@435 350 if (desired_new_size > new_size_before) {
duke@435 351 size_t change = desired_new_size - new_size_before;
duke@435 352 assert(change % alignment == 0, "just checking");
duke@435 353 if (expand(change)) {
duke@435 354 changed = true;
duke@435 355 }
duke@435 356 // If the heap failed to expand to the desired size,
duke@435 357 // "changed" will be false. If the expansion failed
duke@435 358 // (and at this point it was expected to succeed),
duke@435 359 // ignore the failure (leaving "changed" as false).
duke@435 360 }
duke@435 361 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 362 // bail out of shrinking if objects in eden
duke@435 363 size_t change = new_size_before - desired_new_size;
duke@435 364 assert(change % alignment == 0, "just checking");
duke@435 365 _virtual_space.shrink_by(change);
duke@435 366 changed = true;
duke@435 367 }
duke@435 368 if (changed) {
jmasa@698 369 // The spaces have already been mangled at this point but
jmasa@698 370 // may not have been cleared (set top = bottom) and should be.
jmasa@698 371 // Mangling was done when the heap was being expanded.
jmasa@698 372 compute_space_boundaries(eden()->used(),
jmasa@698 373 SpaceDecorator::Clear,
jmasa@698 374 SpaceDecorator::DontMangle);
jmasa@698 375 MemRegion cmr((HeapWord*)_virtual_space.low(),
jmasa@698 376 (HeapWord*)_virtual_space.high());
duke@435 377 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 378 if (Verbose && PrintGC) {
duke@435 379 size_t new_size_after = _virtual_space.committed_size();
duke@435 380 size_t eden_size_after = eden()->capacity();
duke@435 381 size_t survivor_size_after = from()->capacity();
jmasa@698 382 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
jmasa@698 383 SIZE_FORMAT "K [eden="
duke@435 384 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
jmasa@698 385 new_size_before/K, new_size_after/K,
jmasa@698 386 eden_size_after/K, survivor_size_after/K);
duke@435 387 if (WizardMode) {
duke@435 388 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 389 thread_increase_size/K, threads_count);
duke@435 390 }
duke@435 391 gclog_or_tty->cr();
duke@435 392 }
duke@435 393 }
duke@435 394 }
duke@435 395
duke@435 396 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 397 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 398 eden()->object_iterate(cl);
duke@435 399 }
duke@435 400
duke@435 401 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 402 assert(false, "NYI -- are you sure you want to call this?");
duke@435 403 }
duke@435 404
duke@435 405
duke@435 406 size_t DefNewGeneration::capacity() const {
duke@435 407 return eden()->capacity()
duke@435 408 + from()->capacity(); // to() is only used during scavenge
duke@435 409 }
duke@435 410
duke@435 411
duke@435 412 size_t DefNewGeneration::used() const {
duke@435 413 return eden()->used()
duke@435 414 + from()->used(); // to() is only used during scavenge
duke@435 415 }
duke@435 416
duke@435 417
duke@435 418 size_t DefNewGeneration::free() const {
duke@435 419 return eden()->free()
duke@435 420 + from()->free(); // to() is only used during scavenge
duke@435 421 }
duke@435 422
duke@435 423 size_t DefNewGeneration::max_capacity() const {
duke@435 424 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 425 const size_t reserved_bytes = reserved().byte_size();
duke@435 426 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 427 }
duke@435 428
duke@435 429 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 430 return eden()->free();
duke@435 431 }
duke@435 432
duke@435 433 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 434 return eden()->capacity();
duke@435 435 }
duke@435 436
duke@435 437 size_t DefNewGeneration::contiguous_available() const {
duke@435 438 return eden()->free();
duke@435 439 }
duke@435 440
duke@435 441
duke@435 442 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 443 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 444
duke@435 445 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 446 eden()->object_iterate(blk);
duke@435 447 from()->object_iterate(blk);
duke@435 448 }
duke@435 449
duke@435 450
duke@435 451 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 452 bool usedOnly) {
duke@435 453 blk->do_space(eden());
duke@435 454 blk->do_space(from());
duke@435 455 blk->do_space(to());
duke@435 456 }
duke@435 457
duke@435 458 // The last collection bailed out, we are running out of heap space,
duke@435 459 // so we try to allocate the from-space, too.
duke@435 460 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 461 HeapWord* result = NULL;
duke@435 462 if (PrintGC && Verbose) {
duke@435 463 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
duke@435 464 " will_fail: %s"
duke@435 465 " heap_lock: %s"
duke@435 466 " free: " SIZE_FORMAT,
duke@435 467 size,
duke@435 468 GenCollectedHeap::heap()->incremental_collection_will_fail() ? "true" : "false",
duke@435 469 Heap_lock->is_locked() ? "locked" : "unlocked",
duke@435 470 from()->free());
duke@435 471 }
duke@435 472 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 473 if (Heap_lock->owned_by_self() ||
duke@435 474 (SafepointSynchronize::is_at_safepoint() &&
duke@435 475 Thread::current()->is_VM_thread())) {
duke@435 476 // If the Heap_lock is not locked by this thread, this will be called
duke@435 477 // again later with the Heap_lock held.
duke@435 478 result = from()->allocate(size);
duke@435 479 } else if (PrintGC && Verbose) {
duke@435 480 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 481 }
duke@435 482 } else if (PrintGC && Verbose) {
duke@435 483 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 484 }
duke@435 485 if (PrintGC && Verbose) {
duke@435 486 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 487 }
duke@435 488 return result;
duke@435 489 }
duke@435 490
duke@435 491 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 492 bool is_tlab,
duke@435 493 bool parallel) {
duke@435 494 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 495 return allocate(size, is_tlab);
duke@435 496 }
duke@435 497
duke@435 498
duke@435 499 void DefNewGeneration::collect(bool full,
duke@435 500 bool clear_all_soft_refs,
duke@435 501 size_t size,
duke@435 502 bool is_tlab) {
duke@435 503 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 504 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 505 _next_gen = gch->next_gen(this);
duke@435 506 assert(_next_gen != NULL,
duke@435 507 "This must be the youngest gen, and not the only gen");
duke@435 508
duke@435 509 // If the next generation is too full to accomodate promotion
duke@435 510 // from this generation, pass on collection; let the next generation
duke@435 511 // do it.
duke@435 512 if (!collection_attempt_is_safe()) {
ysr@2243 513 gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
duke@435 514 return;
duke@435 515 }
duke@435 516 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 517
duke@435 518 init_assuming_no_promotion_failure();
duke@435 519
duke@435 520 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 521 // Capture heap used before collection (for printing).
duke@435 522 size_t gch_prev_used = gch->used();
duke@435 523
duke@435 524 SpecializationStats::clear();
duke@435 525
duke@435 526 // These can be shared for all code paths
duke@435 527 IsAliveClosure is_alive(this);
duke@435 528 ScanWeakRefClosure scan_weak_ref(this);
duke@435 529
duke@435 530 age_table()->clear();
jmasa@698 531 to()->clear(SpaceDecorator::Mangle);
duke@435 532
duke@435 533 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 534
duke@435 535 assert(gch->no_allocs_since_save_marks(0),
duke@435 536 "save marks have not been newly set.");
duke@435 537
duke@435 538 // Not very pretty.
duke@435 539 CollectorPolicy* cp = gch->collector_policy();
duke@435 540
duke@435 541 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 542 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 543
duke@435 544 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 545 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 546 &fsc_with_no_gc_barrier,
duke@435 547 &fsc_with_gc_barrier);
duke@435 548
duke@435 549 assert(gch->no_allocs_since_save_marks(0),
duke@435 550 "save marks have not been newly set.");
duke@435 551
duke@435 552 gch->gen_process_strong_roots(_level,
jrose@1424 553 true, // Process younger gens, if any,
jrose@1424 554 // as strong roots.
jrose@1424 555 true, // activate StrongRootsScope
jrose@1424 556 false, // not collecting perm generation.
duke@435 557 SharedHeap::SO_AllClasses,
jrose@1424 558 &fsc_with_no_gc_barrier,
jrose@1424 559 true, // walk *all* scavengable nmethods
jrose@1424 560 &fsc_with_gc_barrier);
duke@435 561
duke@435 562 // "evacuate followers".
duke@435 563 evacuate_followers.do_void();
duke@435 564
duke@435 565 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ysr@888 566 ReferenceProcessor* rp = ref_processor();
ysr@892 567 rp->setup_policy(clear_all_soft_refs);
ysr@888 568 rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
ysr@888 569 NULL);
duke@435 570 if (!promotion_failed()) {
duke@435 571 // Swap the survivor spaces.
jmasa@698 572 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 573 from()->clear(SpaceDecorator::Mangle);
jmasa@698 574 if (ZapUnusedHeapArea) {
jmasa@698 575 // This is now done here because of the piece-meal mangling which
jmasa@698 576 // can check for valid mangling at intermediate points in the
jmasa@698 577 // collection(s). When a minor collection fails to collect
jmasa@698 578 // sufficient space resizing of the young generation can occur
jmasa@698 579 // an redistribute the spaces in the young generation. Mangle
jmasa@698 580 // here so that unzapped regions don't get distributed to
jmasa@698 581 // other spaces.
jmasa@698 582 to()->mangle_unused_area();
jmasa@698 583 }
duke@435 584 swap_spaces();
duke@435 585
duke@435 586 assert(to()->is_empty(), "to space should be empty now");
duke@435 587
duke@435 588 // Set the desired survivor size to half the real survivor space
duke@435 589 _tenuring_threshold =
duke@435 590 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 591
jmasa@1822 592 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 593 // for full GC's.
jmasa@1822 594 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@1822 595 size_policy->reset_gc_overhead_limit_count();
duke@435 596 if (PrintGC && !PrintGCDetails) {
duke@435 597 gch->print_heap_change(gch_prev_used);
duke@435 598 }
ysr@2243 599 assert(!gch->incremental_collection_failed(), "Should be clear");
duke@435 600 } else {
jcoomes@2191 601 assert(_promo_failure_scan_stack.is_empty(), "post condition");
jcoomes@2191 602 _promo_failure_scan_stack.clear(true); // Clear cached segments.
duke@435 603
duke@435 604 remove_forwarding_pointers();
duke@435 605 if (PrintGCDetails) {
ysr@1580 606 gclog_or_tty->print(" (promotion failed) ");
duke@435 607 }
duke@435 608 // Add to-space to the list of space to compact
duke@435 609 // when a promotion failure has occurred. In that
duke@435 610 // case there can be live objects in to-space
duke@435 611 // as a result of a partial evacuation of eden
duke@435 612 // and from-space.
jcoomes@2191 613 swap_spaces(); // For uniformity wrt ParNewGeneration.
duke@435 614 from()->set_next_compaction_space(to());
ysr@2243 615 gch->set_incremental_collection_failed();
duke@435 616
ysr@1580 617 // Inform the next generation that a promotion failure occurred.
ysr@1580 618 _next_gen->promotion_failure_occurred();
ysr@1580 619
duke@435 620 // Reset the PromotionFailureALot counters.
duke@435 621 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 622 }
duke@435 623 // set new iteration safe limit for the survivor spaces
duke@435 624 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 625 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 626 SpecializationStats::print();
duke@435 627 update_time_of_last_gc(os::javaTimeMillis());
duke@435 628 }
duke@435 629
duke@435 630 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 631 public:
duke@435 632 void do_object(oop obj) {
duke@435 633 obj->init_mark();
duke@435 634 }
duke@435 635 };
duke@435 636
duke@435 637 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 638 _promotion_failed = false;
duke@435 639 from()->set_next_compaction_space(NULL);
duke@435 640 }
duke@435 641
duke@435 642 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 643 RemoveForwardPointerClosure rspc;
duke@435 644 eden()->object_iterate(&rspc);
duke@435 645 from()->object_iterate(&rspc);
jcoomes@2191 646
duke@435 647 // Now restore saved marks, if any.
jcoomes@2191 648 assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
jcoomes@2191 649 "should be the same");
jcoomes@2191 650 while (!_objs_with_preserved_marks.is_empty()) {
jcoomes@2191 651 oop obj = _objs_with_preserved_marks.pop();
jcoomes@2191 652 markOop m = _preserved_marks_of_objs.pop();
jcoomes@2191 653 obj->set_mark(m);
duke@435 654 }
jcoomes@2191 655 _objs_with_preserved_marks.clear(true);
jcoomes@2191 656 _preserved_marks_of_objs.clear(true);
duke@435 657 }
duke@435 658
duke@435 659 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 660 if (m->must_be_preserved_for_promotion_failure(obj)) {
jcoomes@2191 661 _objs_with_preserved_marks.push(obj);
jcoomes@2191 662 _preserved_marks_of_objs.push(m);
duke@435 663 }
duke@435 664 }
duke@435 665
duke@435 666 void DefNewGeneration::handle_promotion_failure(oop old) {
duke@435 667 preserve_mark_if_necessary(old, old->mark());
ysr@1580 668 if (!_promotion_failed && PrintPromotionFailure) {
ysr@1580 669 gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 670 old->size());
ysr@1580 671 }
ysr@1580 672
duke@435 673 // forward to self
duke@435 674 old->forward_to(old);
duke@435 675 _promotion_failed = true;
duke@435 676
jcoomes@2191 677 _promo_failure_scan_stack.push(old);
duke@435 678
duke@435 679 if (!_promo_failure_drain_in_progress) {
duke@435 680 // prevent recursion in copy_to_survivor_space()
duke@435 681 _promo_failure_drain_in_progress = true;
duke@435 682 drain_promo_failure_scan_stack();
duke@435 683 _promo_failure_drain_in_progress = false;
duke@435 684 }
duke@435 685 }
duke@435 686
coleenp@548 687 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 688 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 689 "shouldn't be scavenging this oop");
duke@435 690 size_t s = old->size();
duke@435 691 oop obj = NULL;
duke@435 692
duke@435 693 // Try allocating obj in to-space (unless too old)
duke@435 694 if (old->age() < tenuring_threshold()) {
duke@435 695 obj = (oop) to()->allocate(s);
duke@435 696 }
duke@435 697
duke@435 698 // Otherwise try allocating obj tenured
duke@435 699 if (obj == NULL) {
coleenp@548 700 obj = _next_gen->promote(old, s);
duke@435 701 if (obj == NULL) {
duke@435 702 handle_promotion_failure(old);
duke@435 703 return old;
duke@435 704 }
duke@435 705 } else {
duke@435 706 // Prefetch beyond obj
duke@435 707 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 708 Prefetch::write(obj, interval);
duke@435 709
duke@435 710 // Copy obj
duke@435 711 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 712
duke@435 713 // Increment age if obj still in new generation
duke@435 714 obj->incr_age();
duke@435 715 age_table()->add(obj, s);
duke@435 716 }
duke@435 717
duke@435 718 // Done, insert forward pointer to obj in this header
duke@435 719 old->forward_to(obj);
duke@435 720
duke@435 721 return obj;
duke@435 722 }
duke@435 723
duke@435 724 void DefNewGeneration::drain_promo_failure_scan_stack() {
jcoomes@2191 725 while (!_promo_failure_scan_stack.is_empty()) {
jcoomes@2191 726 oop obj = _promo_failure_scan_stack.pop();
duke@435 727 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 728 }
duke@435 729 }
duke@435 730
duke@435 731 void DefNewGeneration::save_marks() {
duke@435 732 eden()->set_saved_mark();
duke@435 733 to()->set_saved_mark();
duke@435 734 from()->set_saved_mark();
duke@435 735 }
duke@435 736
duke@435 737
duke@435 738 void DefNewGeneration::reset_saved_marks() {
duke@435 739 eden()->reset_saved_mark();
duke@435 740 to()->reset_saved_mark();
duke@435 741 from()->reset_saved_mark();
duke@435 742 }
duke@435 743
duke@435 744
duke@435 745 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 746 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 747 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 748 return to()->saved_mark_at_top();
duke@435 749 }
duke@435 750
duke@435 751 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 752 \
duke@435 753 void DefNewGeneration:: \
duke@435 754 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 755 cl->set_generation(this); \
duke@435 756 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 757 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 758 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 759 cl->reset_generation(); \
duke@435 760 save_marks(); \
duke@435 761 }
duke@435 762
duke@435 763 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 764
duke@435 765 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 766
duke@435 767 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 768 size_t max_alloc_words) {
duke@435 769 if (requestor == this || _promotion_failed) return;
duke@435 770 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 771
duke@435 772 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 773 if (to_space->top() > to_space->bottom()) {
duke@435 774 trace("to_space not empty when contribute_scratch called");
duke@435 775 }
duke@435 776 */
duke@435 777
duke@435 778 ContiguousSpace* to_space = to();
duke@435 779 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 780 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 781 if (free_words >= MinFreeScratchWords) {
duke@435 782 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 783 sb->num_words = free_words;
duke@435 784 sb->next = list;
duke@435 785 list = sb;
duke@435 786 }
duke@435 787 }
duke@435 788
jmasa@698 789 void DefNewGeneration::reset_scratch() {
jmasa@698 790 // If contributing scratch in to_space, mangle all of
jmasa@698 791 // to_space if ZapUnusedHeapArea. This is needed because
jmasa@698 792 // top is not maintained while using to-space as scratch.
jmasa@698 793 if (ZapUnusedHeapArea) {
jmasa@698 794 to()->mangle_unused_area_complete();
jmasa@698 795 }
jmasa@698 796 }
jmasa@698 797
duke@435 798 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 799 if (!to()->is_empty()) {
duke@435 800 return false;
duke@435 801 }
duke@435 802 if (_next_gen == NULL) {
duke@435 803 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 804 _next_gen = gch->next_gen(this);
duke@435 805 assert(_next_gen != NULL,
duke@435 806 "This must be the youngest gen, and not the only gen");
duke@435 807 }
ysr@2243 808 return _next_gen->promotion_attempt_is_safe(used());
duke@435 809 }
duke@435 810
duke@435 811 void DefNewGeneration::gc_epilogue(bool full) {
duke@435 812 // Check if the heap is approaching full after a collection has
duke@435 813 // been done. Generally the young generation is empty at
duke@435 814 // a minimum at the end of a collection. If it is not, then
duke@435 815 // the heap is approaching full.
duke@435 816 GenCollectedHeap* gch = GenCollectedHeap::heap();
ysr@2243 817 if (full) {
ysr@2243 818 assert(!GC_locker::is_active(), "We should not be executing here");
ysr@2243 819 if (!collection_attempt_is_safe()) {
ysr@2243 820 gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
ysr@2243 821 set_should_allocate_from_space(); // we seem to be running out of space
ysr@2243 822 } else {
ysr@2243 823 gch->clear_incremental_collection_failed(); // We just did a full collection
ysr@2243 824 clear_should_allocate_from_space(); // if set
ysr@2243 825 }
duke@435 826 } else {
ysr@2243 827 assert(!gch->incremental_collection_failed(), "Error");
duke@435 828 }
duke@435 829
jmasa@698 830 if (ZapUnusedHeapArea) {
jmasa@698 831 eden()->check_mangled_unused_area_complete();
jmasa@698 832 from()->check_mangled_unused_area_complete();
jmasa@698 833 to()->check_mangled_unused_area_complete();
jmasa@698 834 }
jmasa@698 835
duke@435 836 // update the generation and space performance counters
duke@435 837 update_counters();
duke@435 838 gch->collector_policy()->counters()->update_counters();
duke@435 839 }
duke@435 840
jmasa@698 841 void DefNewGeneration::record_spaces_top() {
jmasa@698 842 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 843 eden()->set_top_for_allocations();
jmasa@698 844 to()->set_top_for_allocations();
jmasa@698 845 from()->set_top_for_allocations();
jmasa@698 846 }
jmasa@698 847
jmasa@698 848
duke@435 849 void DefNewGeneration::update_counters() {
duke@435 850 if (UsePerfData) {
duke@435 851 _eden_counters->update_all();
duke@435 852 _from_counters->update_all();
duke@435 853 _to_counters->update_all();
duke@435 854 _gen_counters->update_all();
duke@435 855 }
duke@435 856 }
duke@435 857
duke@435 858 void DefNewGeneration::verify(bool allow_dirty) {
duke@435 859 eden()->verify(allow_dirty);
duke@435 860 from()->verify(allow_dirty);
duke@435 861 to()->verify(allow_dirty);
duke@435 862 }
duke@435 863
duke@435 864 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 865 Generation::print_on(st);
duke@435 866 st->print(" eden");
duke@435 867 eden()->print_on(st);
duke@435 868 st->print(" from");
duke@435 869 from()->print_on(st);
duke@435 870 st->print(" to ");
duke@435 871 to()->print_on(st);
duke@435 872 }
duke@435 873
duke@435 874
duke@435 875 const char* DefNewGeneration::name() const {
duke@435 876 return "def new generation";
duke@435 877 }
coleenp@548 878
coleenp@548 879 // Moved from inline file as they are not called inline
coleenp@548 880 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 881 return eden();
coleenp@548 882 }
coleenp@548 883
coleenp@548 884 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 885 bool is_tlab) {
coleenp@548 886 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 887 // Most allocations are fast-path in compiled code.
coleenp@548 888 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 889 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 890 // have to use it here, as well.
coleenp@548 891 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 892 if (result != NULL) {
coleenp@548 893 return result;
coleenp@548 894 }
coleenp@548 895 do {
coleenp@548 896 HeapWord* old_limit = eden()->soft_end();
coleenp@548 897 if (old_limit < eden()->end()) {
coleenp@548 898 // Tell the next generation we reached a limit.
coleenp@548 899 HeapWord* new_limit =
coleenp@548 900 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 901 if (new_limit != NULL) {
coleenp@548 902 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 903 } else {
coleenp@548 904 assert(eden()->soft_end() == eden()->end(),
coleenp@548 905 "invalid state after allocation_limit_reached returned null");
coleenp@548 906 }
coleenp@548 907 } else {
coleenp@548 908 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 909 // there are no reasons to do an attempt to allocate
coleenp@548 910 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 911 break;
coleenp@548 912 }
coleenp@548 913 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 914 result = eden()->par_allocate(word_size);
coleenp@548 915 } while (result == NULL);
coleenp@548 916
coleenp@548 917 // If the eden is full and the last collection bailed out, we are running
coleenp@548 918 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 919 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 920 // circular dependency at compile time.
coleenp@548 921 if (result == NULL) {
coleenp@548 922 result = allocate_from_space(word_size);
coleenp@548 923 }
coleenp@548 924 return result;
coleenp@548 925 }
coleenp@548 926
coleenp@548 927 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 928 bool is_tlab) {
coleenp@548 929 return eden()->par_allocate(word_size);
coleenp@548 930 }
coleenp@548 931
coleenp@548 932 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 933 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 934 eden()->set_soft_end(eden()->end());
coleenp@548 935 }
coleenp@548 936
coleenp@548 937 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 938 return eden()->capacity();
coleenp@548 939 }
coleenp@548 940
coleenp@548 941 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 942 return unsafe_max_alloc_nogc();
coleenp@548 943 }

mercurial