src/share/vm/memory/defNewGeneration.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1822
0bfd3fb24150
child 2191
894b1d7c7e01
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_defNewGeneration.cpp.incl"
duke@435 27
duke@435 28 //
duke@435 29 // DefNewGeneration functions.
duke@435 30
duke@435 31 // Methods of protected closure types.
duke@435 32
duke@435 33 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 34 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 35 }
duke@435 36 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
duke@435 37 assert(false, "Do not call.");
duke@435 38 }
duke@435 39 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 40 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 41 }
duke@435 42
duke@435 43 DefNewGeneration::KeepAliveClosure::
duke@435 44 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 45 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 46 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 47 _rs = (CardTableRS*)rs;
duke@435 48 }
duke@435 49
coleenp@548 50 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 51 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 52
duke@435 53
duke@435 54 DefNewGeneration::FastKeepAliveClosure::
duke@435 55 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 56 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 57 _boundary = g->reserved().end();
duke@435 58 }
duke@435 59
coleenp@548 60 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 61 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 62
duke@435 63 DefNewGeneration::EvacuateFollowersClosure::
duke@435 64 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 65 ScanClosure* cur, ScanClosure* older) :
duke@435 66 _gch(gch), _level(level),
duke@435 67 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 68 {}
duke@435 69
duke@435 70 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 71 do {
duke@435 72 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 73 _scan_older);
duke@435 74 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 75 }
duke@435 76
duke@435 77 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 78 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 79 DefNewGeneration* gen,
duke@435 80 FastScanClosure* cur, FastScanClosure* older) :
duke@435 81 _gch(gch), _level(level), _gen(gen),
duke@435 82 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 83 {}
duke@435 84
duke@435 85 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 86 do {
duke@435 87 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 88 _scan_older);
duke@435 89 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 90 guarantee(_gen->promo_failure_scan_stack() == NULL
duke@435 91 || _gen->promo_failure_scan_stack()->length() == 0,
duke@435 92 "Failed to finish scan");
duke@435 93 }
duke@435 94
duke@435 95 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 96 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 97 {
duke@435 98 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 99 _boundary = _g->reserved().end();
duke@435 100 }
duke@435 101
coleenp@548 102 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 103 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 104
duke@435 105 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 106 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 107 {
duke@435 108 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 109 _boundary = _g->reserved().end();
duke@435 110 }
duke@435 111
coleenp@548 112 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 113 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 114
duke@435 115 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
duke@435 116 OopClosure(g->ref_processor()), _g(g)
duke@435 117 {
duke@435 118 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 119 _boundary = _g->reserved().end();
duke@435 120 }
duke@435 121
coleenp@548 122 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 123 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 124
coleenp@548 125 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 126 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 127
duke@435 128 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 129 size_t initial_size,
duke@435 130 int level,
duke@435 131 const char* policy)
duke@435 132 : Generation(rs, initial_size, level),
duke@435 133 _objs_with_preserved_marks(NULL),
duke@435 134 _preserved_marks_of_objs(NULL),
duke@435 135 _promo_failure_scan_stack(NULL),
duke@435 136 _promo_failure_drain_in_progress(false),
duke@435 137 _should_allocate_from_space(false)
duke@435 138 {
duke@435 139 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 140 (HeapWord*)_virtual_space.high());
duke@435 141 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 142
duke@435 143 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 144 _eden_space = new ConcEdenSpace(this);
duke@435 145 } else {
duke@435 146 _eden_space = new EdenSpace(this);
duke@435 147 }
duke@435 148 _from_space = new ContiguousSpace();
duke@435 149 _to_space = new ContiguousSpace();
duke@435 150
duke@435 151 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 152 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 153
duke@435 154 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 155 // are computed assuming the entire reserved space is committed.
duke@435 156 // These values are exported as performance counters.
duke@435 157 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 158 uintx size = _virtual_space.reserved_size();
duke@435 159 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 160 _max_eden_size = size - (2*_max_survivor_size);
duke@435 161
duke@435 162 // allocate the performance counters
duke@435 163
duke@435 164 // Generation counters -- generation 0, 3 subspaces
duke@435 165 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 166 _gc_counters = new CollectorCounters(policy, 0);
duke@435 167
duke@435 168 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 169 _gen_counters);
duke@435 170 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 171 _gen_counters);
duke@435 172 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 173 _gen_counters);
duke@435 174
jmasa@698 175 compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 176 update_counters();
duke@435 177 _next_gen = NULL;
duke@435 178 _tenuring_threshold = MaxTenuringThreshold;
duke@435 179 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 180 }
duke@435 181
jmasa@698 182 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
jmasa@698 183 bool clear_space,
jmasa@698 184 bool mangle_space) {
jmasa@698 185 uintx alignment =
jmasa@698 186 GenCollectedHeap::heap()->collector_policy()->min_alignment();
jmasa@698 187
jmasa@698 188 // If the spaces are being cleared (only done at heap initialization
jmasa@698 189 // currently), the survivor spaces need not be empty.
jmasa@698 190 // Otherwise, no care is taken for used areas in the survivor spaces
jmasa@698 191 // so check.
jmasa@698 192 assert(clear_space || (to()->is_empty() && from()->is_empty()),
jmasa@698 193 "Initialization of the survivor spaces assumes these are empty");
duke@435 194
duke@435 195 // Compute sizes
duke@435 196 uintx size = _virtual_space.committed_size();
duke@435 197 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 198 uintx eden_size = size - (2*survivor_size);
duke@435 199 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 200
duke@435 201 if (eden_size < minimum_eden_size) {
duke@435 202 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 203 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 204 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 205 uintx unaligned_survivor_size =
duke@435 206 align_size_down(maximum_survivor_size, alignment);
duke@435 207 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 208 eden_size = size - (2*survivor_size);
duke@435 209 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 210 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 211 }
duke@435 212
duke@435 213 char *eden_start = _virtual_space.low();
duke@435 214 char *from_start = eden_start + eden_size;
duke@435 215 char *to_start = from_start + survivor_size;
duke@435 216 char *to_end = to_start + survivor_size;
duke@435 217
duke@435 218 assert(to_end == _virtual_space.high(), "just checking");
duke@435 219 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 220 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 221 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 222
duke@435 223 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 224 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 225 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 226
jmasa@698 227 // A minimum eden size implies that there is a part of eden that
jmasa@698 228 // is being used and that affects the initialization of any
jmasa@698 229 // newly formed eden.
jmasa@698 230 bool live_in_eden = minimum_eden_size > 0;
jmasa@698 231
jmasa@698 232 // If not clearing the spaces, do some checking to verify that
jmasa@698 233 // the space are already mangled.
jmasa@698 234 if (!clear_space) {
jmasa@698 235 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 236 // the bottom or end of one space may have moved into another
jmasa@698 237 // a failure of the check may not correctly indicate which space
jmasa@698 238 // is not properly mangled.
jmasa@698 239 if (ZapUnusedHeapArea) {
jmasa@698 240 HeapWord* limit = (HeapWord*) _virtual_space.high();
jmasa@698 241 eden()->check_mangled_unused_area(limit);
jmasa@698 242 from()->check_mangled_unused_area(limit);
jmasa@698 243 to()->check_mangled_unused_area(limit);
jmasa@698 244 }
jmasa@698 245 }
jmasa@698 246
jmasa@698 247 // Reset the spaces for their new regions.
jmasa@698 248 eden()->initialize(edenMR,
jmasa@698 249 clear_space && !live_in_eden,
jmasa@698 250 SpaceDecorator::Mangle);
jmasa@698 251 // If clear_space and live_in_eden, we will not have cleared any
duke@435 252 // portion of eden above its top. This can cause newly
duke@435 253 // expanded space not to be mangled if using ZapUnusedHeapArea.
duke@435 254 // We explicitly do such mangling here.
jmasa@698 255 if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
duke@435 256 eden()->mangle_unused_area();
duke@435 257 }
jmasa@698 258 from()->initialize(fromMR, clear_space, mangle_space);
jmasa@698 259 to()->initialize(toMR, clear_space, mangle_space);
jmasa@698 260
jmasa@698 261 // Set next compaction spaces.
duke@435 262 eden()->set_next_compaction_space(from());
duke@435 263 // The to-space is normally empty before a compaction so need
duke@435 264 // not be considered. The exception is during promotion
duke@435 265 // failure handling when to-space can contain live objects.
duke@435 266 from()->set_next_compaction_space(NULL);
duke@435 267 }
duke@435 268
duke@435 269 void DefNewGeneration::swap_spaces() {
duke@435 270 ContiguousSpace* s = from();
duke@435 271 _from_space = to();
duke@435 272 _to_space = s;
duke@435 273 eden()->set_next_compaction_space(from());
duke@435 274 // The to-space is normally empty before a compaction so need
duke@435 275 // not be considered. The exception is during promotion
duke@435 276 // failure handling when to-space can contain live objects.
duke@435 277 from()->set_next_compaction_space(NULL);
duke@435 278
duke@435 279 if (UsePerfData) {
duke@435 280 CSpaceCounters* c = _from_counters;
duke@435 281 _from_counters = _to_counters;
duke@435 282 _to_counters = c;
duke@435 283 }
duke@435 284 }
duke@435 285
duke@435 286 bool DefNewGeneration::expand(size_t bytes) {
duke@435 287 MutexLocker x(ExpandHeap_lock);
jmasa@698 288 HeapWord* prev_high = (HeapWord*) _virtual_space.high();
duke@435 289 bool success = _virtual_space.expand_by(bytes);
jmasa@698 290 if (success && ZapUnusedHeapArea) {
jmasa@698 291 // Mangle newly committed space immediately because it
jmasa@698 292 // can be done here more simply that after the new
jmasa@698 293 // spaces have been computed.
jmasa@698 294 HeapWord* new_high = (HeapWord*) _virtual_space.high();
jmasa@698 295 MemRegion mangle_region(prev_high, new_high);
jmasa@698 296 SpaceMangler::mangle_region(mangle_region);
jmasa@698 297 }
duke@435 298
duke@435 299 // Do not attempt an expand-to-the reserve size. The
duke@435 300 // request should properly observe the maximum size of
duke@435 301 // the generation so an expand-to-reserve should be
duke@435 302 // unnecessary. Also a second call to expand-to-reserve
duke@435 303 // value potentially can cause an undue expansion.
duke@435 304 // For example if the first expand fail for unknown reasons,
duke@435 305 // but the second succeeds and expands the heap to its maximum
duke@435 306 // value.
duke@435 307 if (GC_locker::is_active()) {
duke@435 308 if (PrintGC && Verbose) {
jmasa@698 309 gclog_or_tty->print_cr("Garbage collection disabled, "
jmasa@698 310 "expanded heap instead");
duke@435 311 }
duke@435 312 }
duke@435 313
duke@435 314 return success;
duke@435 315 }
duke@435 316
duke@435 317
duke@435 318 void DefNewGeneration::compute_new_size() {
duke@435 319 // This is called after a gc that includes the following generation
duke@435 320 // (which is required to exist.) So from-space will normally be empty.
duke@435 321 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 322 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 323 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 324 return;
duke@435 325 }
duke@435 326
duke@435 327 int next_level = level() + 1;
duke@435 328 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 329 assert(next_level < gch->_n_gens,
duke@435 330 "DefNewGeneration cannot be an oldest gen");
duke@435 331
duke@435 332 Generation* next_gen = gch->_gens[next_level];
duke@435 333 size_t old_size = next_gen->capacity();
duke@435 334 size_t new_size_before = _virtual_space.committed_size();
duke@435 335 size_t min_new_size = spec()->init_size();
duke@435 336 size_t max_new_size = reserved().byte_size();
duke@435 337 assert(min_new_size <= new_size_before &&
duke@435 338 new_size_before <= max_new_size,
duke@435 339 "just checking");
duke@435 340 // All space sizes must be multiples of Generation::GenGrain.
duke@435 341 size_t alignment = Generation::GenGrain;
duke@435 342
duke@435 343 // Compute desired new generation size based on NewRatio and
duke@435 344 // NewSizeThreadIncrease
duke@435 345 size_t desired_new_size = old_size/NewRatio;
duke@435 346 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 347 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 348 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 349
duke@435 350 // Adjust new generation size
duke@435 351 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 352 assert(desired_new_size <= max_new_size, "just checking");
duke@435 353
duke@435 354 bool changed = false;
duke@435 355 if (desired_new_size > new_size_before) {
duke@435 356 size_t change = desired_new_size - new_size_before;
duke@435 357 assert(change % alignment == 0, "just checking");
duke@435 358 if (expand(change)) {
duke@435 359 changed = true;
duke@435 360 }
duke@435 361 // If the heap failed to expand to the desired size,
duke@435 362 // "changed" will be false. If the expansion failed
duke@435 363 // (and at this point it was expected to succeed),
duke@435 364 // ignore the failure (leaving "changed" as false).
duke@435 365 }
duke@435 366 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 367 // bail out of shrinking if objects in eden
duke@435 368 size_t change = new_size_before - desired_new_size;
duke@435 369 assert(change % alignment == 0, "just checking");
duke@435 370 _virtual_space.shrink_by(change);
duke@435 371 changed = true;
duke@435 372 }
duke@435 373 if (changed) {
jmasa@698 374 // The spaces have already been mangled at this point but
jmasa@698 375 // may not have been cleared (set top = bottom) and should be.
jmasa@698 376 // Mangling was done when the heap was being expanded.
jmasa@698 377 compute_space_boundaries(eden()->used(),
jmasa@698 378 SpaceDecorator::Clear,
jmasa@698 379 SpaceDecorator::DontMangle);
jmasa@698 380 MemRegion cmr((HeapWord*)_virtual_space.low(),
jmasa@698 381 (HeapWord*)_virtual_space.high());
duke@435 382 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 383 if (Verbose && PrintGC) {
duke@435 384 size_t new_size_after = _virtual_space.committed_size();
duke@435 385 size_t eden_size_after = eden()->capacity();
duke@435 386 size_t survivor_size_after = from()->capacity();
jmasa@698 387 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
jmasa@698 388 SIZE_FORMAT "K [eden="
duke@435 389 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
jmasa@698 390 new_size_before/K, new_size_after/K,
jmasa@698 391 eden_size_after/K, survivor_size_after/K);
duke@435 392 if (WizardMode) {
duke@435 393 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 394 thread_increase_size/K, threads_count);
duke@435 395 }
duke@435 396 gclog_or_tty->cr();
duke@435 397 }
duke@435 398 }
duke@435 399 }
duke@435 400
duke@435 401 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 402 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 403 eden()->object_iterate(cl);
duke@435 404 }
duke@435 405
duke@435 406 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 407 assert(false, "NYI -- are you sure you want to call this?");
duke@435 408 }
duke@435 409
duke@435 410
duke@435 411 size_t DefNewGeneration::capacity() const {
duke@435 412 return eden()->capacity()
duke@435 413 + from()->capacity(); // to() is only used during scavenge
duke@435 414 }
duke@435 415
duke@435 416
duke@435 417 size_t DefNewGeneration::used() const {
duke@435 418 return eden()->used()
duke@435 419 + from()->used(); // to() is only used during scavenge
duke@435 420 }
duke@435 421
duke@435 422
duke@435 423 size_t DefNewGeneration::free() const {
duke@435 424 return eden()->free()
duke@435 425 + from()->free(); // to() is only used during scavenge
duke@435 426 }
duke@435 427
duke@435 428 size_t DefNewGeneration::max_capacity() const {
duke@435 429 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 430 const size_t reserved_bytes = reserved().byte_size();
duke@435 431 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 432 }
duke@435 433
duke@435 434 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 435 return eden()->free();
duke@435 436 }
duke@435 437
duke@435 438 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 439 return eden()->capacity();
duke@435 440 }
duke@435 441
duke@435 442 size_t DefNewGeneration::contiguous_available() const {
duke@435 443 return eden()->free();
duke@435 444 }
duke@435 445
duke@435 446
duke@435 447 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 448 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 449
duke@435 450 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 451 eden()->object_iterate(blk);
duke@435 452 from()->object_iterate(blk);
duke@435 453 }
duke@435 454
duke@435 455
duke@435 456 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 457 bool usedOnly) {
duke@435 458 blk->do_space(eden());
duke@435 459 blk->do_space(from());
duke@435 460 blk->do_space(to());
duke@435 461 }
duke@435 462
duke@435 463 // The last collection bailed out, we are running out of heap space,
duke@435 464 // so we try to allocate the from-space, too.
duke@435 465 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 466 HeapWord* result = NULL;
duke@435 467 if (PrintGC && Verbose) {
duke@435 468 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
duke@435 469 " will_fail: %s"
duke@435 470 " heap_lock: %s"
duke@435 471 " free: " SIZE_FORMAT,
duke@435 472 size,
duke@435 473 GenCollectedHeap::heap()->incremental_collection_will_fail() ? "true" : "false",
duke@435 474 Heap_lock->is_locked() ? "locked" : "unlocked",
duke@435 475 from()->free());
duke@435 476 }
duke@435 477 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 478 if (Heap_lock->owned_by_self() ||
duke@435 479 (SafepointSynchronize::is_at_safepoint() &&
duke@435 480 Thread::current()->is_VM_thread())) {
duke@435 481 // If the Heap_lock is not locked by this thread, this will be called
duke@435 482 // again later with the Heap_lock held.
duke@435 483 result = from()->allocate(size);
duke@435 484 } else if (PrintGC && Verbose) {
duke@435 485 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 486 }
duke@435 487 } else if (PrintGC && Verbose) {
duke@435 488 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 489 }
duke@435 490 if (PrintGC && Verbose) {
duke@435 491 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 492 }
duke@435 493 return result;
duke@435 494 }
duke@435 495
duke@435 496 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 497 bool is_tlab,
duke@435 498 bool parallel) {
duke@435 499 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 500 return allocate(size, is_tlab);
duke@435 501 }
duke@435 502
duke@435 503
duke@435 504 void DefNewGeneration::collect(bool full,
duke@435 505 bool clear_all_soft_refs,
duke@435 506 size_t size,
duke@435 507 bool is_tlab) {
duke@435 508 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 509 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 510 _next_gen = gch->next_gen(this);
duke@435 511 assert(_next_gen != NULL,
duke@435 512 "This must be the youngest gen, and not the only gen");
duke@435 513
duke@435 514 // If the next generation is too full to accomodate promotion
duke@435 515 // from this generation, pass on collection; let the next generation
duke@435 516 // do it.
duke@435 517 if (!collection_attempt_is_safe()) {
duke@435 518 gch->set_incremental_collection_will_fail();
duke@435 519 return;
duke@435 520 }
duke@435 521 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 522
duke@435 523 init_assuming_no_promotion_failure();
duke@435 524
duke@435 525 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 526 // Capture heap used before collection (for printing).
duke@435 527 size_t gch_prev_used = gch->used();
duke@435 528
duke@435 529 SpecializationStats::clear();
duke@435 530
duke@435 531 // These can be shared for all code paths
duke@435 532 IsAliveClosure is_alive(this);
duke@435 533 ScanWeakRefClosure scan_weak_ref(this);
duke@435 534
duke@435 535 age_table()->clear();
jmasa@698 536 to()->clear(SpaceDecorator::Mangle);
duke@435 537
duke@435 538 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 539
duke@435 540 assert(gch->no_allocs_since_save_marks(0),
duke@435 541 "save marks have not been newly set.");
duke@435 542
duke@435 543 // Not very pretty.
duke@435 544 CollectorPolicy* cp = gch->collector_policy();
duke@435 545
duke@435 546 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 547 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 548
duke@435 549 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 550 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 551 &fsc_with_no_gc_barrier,
duke@435 552 &fsc_with_gc_barrier);
duke@435 553
duke@435 554 assert(gch->no_allocs_since_save_marks(0),
duke@435 555 "save marks have not been newly set.");
duke@435 556
duke@435 557 gch->gen_process_strong_roots(_level,
jrose@1424 558 true, // Process younger gens, if any,
jrose@1424 559 // as strong roots.
jrose@1424 560 true, // activate StrongRootsScope
jrose@1424 561 false, // not collecting perm generation.
duke@435 562 SharedHeap::SO_AllClasses,
jrose@1424 563 &fsc_with_no_gc_barrier,
jrose@1424 564 true, // walk *all* scavengable nmethods
jrose@1424 565 &fsc_with_gc_barrier);
duke@435 566
duke@435 567 // "evacuate followers".
duke@435 568 evacuate_followers.do_void();
duke@435 569
duke@435 570 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
ysr@888 571 ReferenceProcessor* rp = ref_processor();
ysr@892 572 rp->setup_policy(clear_all_soft_refs);
ysr@888 573 rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
ysr@888 574 NULL);
duke@435 575 if (!promotion_failed()) {
duke@435 576 // Swap the survivor spaces.
jmasa@698 577 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 578 from()->clear(SpaceDecorator::Mangle);
jmasa@698 579 if (ZapUnusedHeapArea) {
jmasa@698 580 // This is now done here because of the piece-meal mangling which
jmasa@698 581 // can check for valid mangling at intermediate points in the
jmasa@698 582 // collection(s). When a minor collection fails to collect
jmasa@698 583 // sufficient space resizing of the young generation can occur
jmasa@698 584 // an redistribute the spaces in the young generation. Mangle
jmasa@698 585 // here so that unzapped regions don't get distributed to
jmasa@698 586 // other spaces.
jmasa@698 587 to()->mangle_unused_area();
jmasa@698 588 }
duke@435 589 swap_spaces();
duke@435 590
duke@435 591 assert(to()->is_empty(), "to space should be empty now");
duke@435 592
duke@435 593 // Set the desired survivor size to half the real survivor space
duke@435 594 _tenuring_threshold =
duke@435 595 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 596
jmasa@1822 597 // A successful scavenge should restart the GC time limit count which is
jmasa@1822 598 // for full GC's.
jmasa@1822 599 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
jmasa@1822 600 size_policy->reset_gc_overhead_limit_count();
duke@435 601 if (PrintGC && !PrintGCDetails) {
duke@435 602 gch->print_heap_change(gch_prev_used);
duke@435 603 }
duke@435 604 } else {
duke@435 605 assert(HandlePromotionFailure,
duke@435 606 "Should not be here unless promotion failure handling is on");
duke@435 607 assert(_promo_failure_scan_stack != NULL &&
duke@435 608 _promo_failure_scan_stack->length() == 0, "post condition");
duke@435 609
duke@435 610 // deallocate stack and it's elements
duke@435 611 delete _promo_failure_scan_stack;
duke@435 612 _promo_failure_scan_stack = NULL;
duke@435 613
duke@435 614 remove_forwarding_pointers();
duke@435 615 if (PrintGCDetails) {
ysr@1580 616 gclog_or_tty->print(" (promotion failed) ");
duke@435 617 }
duke@435 618 // Add to-space to the list of space to compact
duke@435 619 // when a promotion failure has occurred. In that
duke@435 620 // case there can be live objects in to-space
duke@435 621 // as a result of a partial evacuation of eden
duke@435 622 // and from-space.
duke@435 623 swap_spaces(); // For the sake of uniformity wrt ParNewGeneration::collect().
duke@435 624 from()->set_next_compaction_space(to());
duke@435 625 gch->set_incremental_collection_will_fail();
duke@435 626
ysr@1580 627 // Inform the next generation that a promotion failure occurred.
ysr@1580 628 _next_gen->promotion_failure_occurred();
ysr@1580 629
duke@435 630 // Reset the PromotionFailureALot counters.
duke@435 631 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 632 }
duke@435 633 // set new iteration safe limit for the survivor spaces
duke@435 634 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 635 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 636 SpecializationStats::print();
duke@435 637 update_time_of_last_gc(os::javaTimeMillis());
duke@435 638 }
duke@435 639
duke@435 640 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 641 public:
duke@435 642 void do_object(oop obj) {
duke@435 643 obj->init_mark();
duke@435 644 }
duke@435 645 };
duke@435 646
duke@435 647 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 648 _promotion_failed = false;
duke@435 649 from()->set_next_compaction_space(NULL);
duke@435 650 }
duke@435 651
duke@435 652 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 653 RemoveForwardPointerClosure rspc;
duke@435 654 eden()->object_iterate(&rspc);
duke@435 655 from()->object_iterate(&rspc);
duke@435 656 // Now restore saved marks, if any.
duke@435 657 if (_objs_with_preserved_marks != NULL) {
duke@435 658 assert(_preserved_marks_of_objs != NULL, "Both or none.");
duke@435 659 assert(_objs_with_preserved_marks->length() ==
duke@435 660 _preserved_marks_of_objs->length(), "Both or none.");
duke@435 661 for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
duke@435 662 oop obj = _objs_with_preserved_marks->at(i);
duke@435 663 markOop m = _preserved_marks_of_objs->at(i);
duke@435 664 obj->set_mark(m);
duke@435 665 }
duke@435 666 delete _objs_with_preserved_marks;
duke@435 667 delete _preserved_marks_of_objs;
duke@435 668 _objs_with_preserved_marks = NULL;
duke@435 669 _preserved_marks_of_objs = NULL;
duke@435 670 }
duke@435 671 }
duke@435 672
duke@435 673 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 674 if (m->must_be_preserved_for_promotion_failure(obj)) {
duke@435 675 if (_objs_with_preserved_marks == NULL) {
duke@435 676 assert(_preserved_marks_of_objs == NULL, "Both or none.");
duke@435 677 _objs_with_preserved_marks = new (ResourceObj::C_HEAP)
duke@435 678 GrowableArray<oop>(PreserveMarkStackSize, true);
duke@435 679 _preserved_marks_of_objs = new (ResourceObj::C_HEAP)
duke@435 680 GrowableArray<markOop>(PreserveMarkStackSize, true);
duke@435 681 }
duke@435 682 _objs_with_preserved_marks->push(obj);
duke@435 683 _preserved_marks_of_objs->push(m);
duke@435 684 }
duke@435 685 }
duke@435 686
duke@435 687 void DefNewGeneration::handle_promotion_failure(oop old) {
duke@435 688 preserve_mark_if_necessary(old, old->mark());
ysr@1580 689 if (!_promotion_failed && PrintPromotionFailure) {
ysr@1580 690 gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
ysr@1580 691 old->size());
ysr@1580 692 }
ysr@1580 693
duke@435 694 // forward to self
duke@435 695 old->forward_to(old);
duke@435 696 _promotion_failed = true;
duke@435 697
duke@435 698 push_on_promo_failure_scan_stack(old);
duke@435 699
duke@435 700 if (!_promo_failure_drain_in_progress) {
duke@435 701 // prevent recursion in copy_to_survivor_space()
duke@435 702 _promo_failure_drain_in_progress = true;
duke@435 703 drain_promo_failure_scan_stack();
duke@435 704 _promo_failure_drain_in_progress = false;
duke@435 705 }
duke@435 706 }
duke@435 707
coleenp@548 708 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 709 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 710 "shouldn't be scavenging this oop");
duke@435 711 size_t s = old->size();
duke@435 712 oop obj = NULL;
duke@435 713
duke@435 714 // Try allocating obj in to-space (unless too old)
duke@435 715 if (old->age() < tenuring_threshold()) {
duke@435 716 obj = (oop) to()->allocate(s);
duke@435 717 }
duke@435 718
duke@435 719 // Otherwise try allocating obj tenured
duke@435 720 if (obj == NULL) {
coleenp@548 721 obj = _next_gen->promote(old, s);
duke@435 722 if (obj == NULL) {
duke@435 723 if (!HandlePromotionFailure) {
duke@435 724 // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
duke@435 725 // is incorrectly set. In any case, its seriously wrong to be here!
duke@435 726 vm_exit_out_of_memory(s*wordSize, "promotion");
duke@435 727 }
duke@435 728
duke@435 729 handle_promotion_failure(old);
duke@435 730 return old;
duke@435 731 }
duke@435 732 } else {
duke@435 733 // Prefetch beyond obj
duke@435 734 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 735 Prefetch::write(obj, interval);
duke@435 736
duke@435 737 // Copy obj
duke@435 738 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 739
duke@435 740 // Increment age if obj still in new generation
duke@435 741 obj->incr_age();
duke@435 742 age_table()->add(obj, s);
duke@435 743 }
duke@435 744
duke@435 745 // Done, insert forward pointer to obj in this header
duke@435 746 old->forward_to(obj);
duke@435 747
duke@435 748 return obj;
duke@435 749 }
duke@435 750
duke@435 751 void DefNewGeneration::push_on_promo_failure_scan_stack(oop obj) {
duke@435 752 if (_promo_failure_scan_stack == NULL) {
duke@435 753 _promo_failure_scan_stack = new (ResourceObj::C_HEAP)
duke@435 754 GrowableArray<oop>(40, true);
duke@435 755 }
duke@435 756
duke@435 757 _promo_failure_scan_stack->push(obj);
duke@435 758 }
duke@435 759
duke@435 760 void DefNewGeneration::drain_promo_failure_scan_stack() {
duke@435 761 assert(_promo_failure_scan_stack != NULL, "precondition");
duke@435 762
duke@435 763 while (_promo_failure_scan_stack->length() > 0) {
duke@435 764 oop obj = _promo_failure_scan_stack->pop();
duke@435 765 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 766 }
duke@435 767 }
duke@435 768
duke@435 769 void DefNewGeneration::save_marks() {
duke@435 770 eden()->set_saved_mark();
duke@435 771 to()->set_saved_mark();
duke@435 772 from()->set_saved_mark();
duke@435 773 }
duke@435 774
duke@435 775
duke@435 776 void DefNewGeneration::reset_saved_marks() {
duke@435 777 eden()->reset_saved_mark();
duke@435 778 to()->reset_saved_mark();
duke@435 779 from()->reset_saved_mark();
duke@435 780 }
duke@435 781
duke@435 782
duke@435 783 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 784 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 785 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 786 return to()->saved_mark_at_top();
duke@435 787 }
duke@435 788
duke@435 789 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 790 \
duke@435 791 void DefNewGeneration:: \
duke@435 792 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 793 cl->set_generation(this); \
duke@435 794 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 795 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 796 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 797 cl->reset_generation(); \
duke@435 798 save_marks(); \
duke@435 799 }
duke@435 800
duke@435 801 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 802
duke@435 803 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 804
duke@435 805 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 806 size_t max_alloc_words) {
duke@435 807 if (requestor == this || _promotion_failed) return;
duke@435 808 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 809
duke@435 810 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 811 if (to_space->top() > to_space->bottom()) {
duke@435 812 trace("to_space not empty when contribute_scratch called");
duke@435 813 }
duke@435 814 */
duke@435 815
duke@435 816 ContiguousSpace* to_space = to();
duke@435 817 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 818 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 819 if (free_words >= MinFreeScratchWords) {
duke@435 820 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 821 sb->num_words = free_words;
duke@435 822 sb->next = list;
duke@435 823 list = sb;
duke@435 824 }
duke@435 825 }
duke@435 826
jmasa@698 827 void DefNewGeneration::reset_scratch() {
jmasa@698 828 // If contributing scratch in to_space, mangle all of
jmasa@698 829 // to_space if ZapUnusedHeapArea. This is needed because
jmasa@698 830 // top is not maintained while using to-space as scratch.
jmasa@698 831 if (ZapUnusedHeapArea) {
jmasa@698 832 to()->mangle_unused_area_complete();
jmasa@698 833 }
jmasa@698 834 }
jmasa@698 835
duke@435 836 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 837 if (!to()->is_empty()) {
duke@435 838 return false;
duke@435 839 }
duke@435 840 if (_next_gen == NULL) {
duke@435 841 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 842 _next_gen = gch->next_gen(this);
duke@435 843 assert(_next_gen != NULL,
duke@435 844 "This must be the youngest gen, and not the only gen");
duke@435 845 }
duke@435 846
duke@435 847 // Decide if there's enough room for a full promotion
duke@435 848 // When using extremely large edens, we effectively lose a
duke@435 849 // large amount of old space. Use the "MaxLiveObjectEvacuationRatio"
duke@435 850 // flag to reduce the minimum evacuation space requirements. If
duke@435 851 // there is not enough space to evacuate eden during a scavenge,
duke@435 852 // the VM will immediately exit with an out of memory error.
duke@435 853 // This flag has not been tested
duke@435 854 // with collectors other than simple mark & sweep.
duke@435 855 //
duke@435 856 // Note that with the addition of promotion failure handling, the
duke@435 857 // VM will not immediately exit but will undo the young generation
duke@435 858 // collection. The parameter is left here for compatibility.
duke@435 859 const double evacuation_ratio = MaxLiveObjectEvacuationRatio / 100.0;
duke@435 860
duke@435 861 // worst_case_evacuation is based on "used()". For the case where this
duke@435 862 // method is called after a collection, this is still appropriate because
duke@435 863 // the case that needs to be detected is one in which a full collection
duke@435 864 // has been done and has overflowed into the young generation. In that
duke@435 865 // case a minor collection will fail (the overflow of the full collection
duke@435 866 // means there is no space in the old generation for any promotion).
duke@435 867 size_t worst_case_evacuation = (size_t)(used() * evacuation_ratio);
duke@435 868
duke@435 869 return _next_gen->promotion_attempt_is_safe(worst_case_evacuation,
duke@435 870 HandlePromotionFailure);
duke@435 871 }
duke@435 872
duke@435 873 void DefNewGeneration::gc_epilogue(bool full) {
duke@435 874 // Check if the heap is approaching full after a collection has
duke@435 875 // been done. Generally the young generation is empty at
duke@435 876 // a minimum at the end of a collection. If it is not, then
duke@435 877 // the heap is approaching full.
duke@435 878 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 879 clear_should_allocate_from_space();
duke@435 880 if (collection_attempt_is_safe()) {
duke@435 881 gch->clear_incremental_collection_will_fail();
duke@435 882 } else {
duke@435 883 gch->set_incremental_collection_will_fail();
duke@435 884 if (full) { // we seem to be running out of space
duke@435 885 set_should_allocate_from_space();
duke@435 886 }
duke@435 887 }
duke@435 888
jmasa@698 889 if (ZapUnusedHeapArea) {
jmasa@698 890 eden()->check_mangled_unused_area_complete();
jmasa@698 891 from()->check_mangled_unused_area_complete();
jmasa@698 892 to()->check_mangled_unused_area_complete();
jmasa@698 893 }
jmasa@698 894
duke@435 895 // update the generation and space performance counters
duke@435 896 update_counters();
duke@435 897 gch->collector_policy()->counters()->update_counters();
duke@435 898 }
duke@435 899
jmasa@698 900 void DefNewGeneration::record_spaces_top() {
jmasa@698 901 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 902 eden()->set_top_for_allocations();
jmasa@698 903 to()->set_top_for_allocations();
jmasa@698 904 from()->set_top_for_allocations();
jmasa@698 905 }
jmasa@698 906
jmasa@698 907
duke@435 908 void DefNewGeneration::update_counters() {
duke@435 909 if (UsePerfData) {
duke@435 910 _eden_counters->update_all();
duke@435 911 _from_counters->update_all();
duke@435 912 _to_counters->update_all();
duke@435 913 _gen_counters->update_all();
duke@435 914 }
duke@435 915 }
duke@435 916
duke@435 917 void DefNewGeneration::verify(bool allow_dirty) {
duke@435 918 eden()->verify(allow_dirty);
duke@435 919 from()->verify(allow_dirty);
duke@435 920 to()->verify(allow_dirty);
duke@435 921 }
duke@435 922
duke@435 923 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 924 Generation::print_on(st);
duke@435 925 st->print(" eden");
duke@435 926 eden()->print_on(st);
duke@435 927 st->print(" from");
duke@435 928 from()->print_on(st);
duke@435 929 st->print(" to ");
duke@435 930 to()->print_on(st);
duke@435 931 }
duke@435 932
duke@435 933
duke@435 934 const char* DefNewGeneration::name() const {
duke@435 935 return "def new generation";
duke@435 936 }
coleenp@548 937
coleenp@548 938 // Moved from inline file as they are not called inline
coleenp@548 939 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 940 return eden();
coleenp@548 941 }
coleenp@548 942
coleenp@548 943 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 944 bool is_tlab) {
coleenp@548 945 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 946 // Most allocations are fast-path in compiled code.
coleenp@548 947 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 948 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 949 // have to use it here, as well.
coleenp@548 950 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 951 if (result != NULL) {
coleenp@548 952 return result;
coleenp@548 953 }
coleenp@548 954 do {
coleenp@548 955 HeapWord* old_limit = eden()->soft_end();
coleenp@548 956 if (old_limit < eden()->end()) {
coleenp@548 957 // Tell the next generation we reached a limit.
coleenp@548 958 HeapWord* new_limit =
coleenp@548 959 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 960 if (new_limit != NULL) {
coleenp@548 961 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 962 } else {
coleenp@548 963 assert(eden()->soft_end() == eden()->end(),
coleenp@548 964 "invalid state after allocation_limit_reached returned null");
coleenp@548 965 }
coleenp@548 966 } else {
coleenp@548 967 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 968 // there are no reasons to do an attempt to allocate
coleenp@548 969 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 970 break;
coleenp@548 971 }
coleenp@548 972 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 973 result = eden()->par_allocate(word_size);
coleenp@548 974 } while (result == NULL);
coleenp@548 975
coleenp@548 976 // If the eden is full and the last collection bailed out, we are running
coleenp@548 977 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 978 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 979 // circular dependency at compile time.
coleenp@548 980 if (result == NULL) {
coleenp@548 981 result = allocate_from_space(word_size);
coleenp@548 982 }
coleenp@548 983 return result;
coleenp@548 984 }
coleenp@548 985
coleenp@548 986 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 987 bool is_tlab) {
coleenp@548 988 return eden()->par_allocate(word_size);
coleenp@548 989 }
coleenp@548 990
coleenp@548 991 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 992 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 993 eden()->set_soft_end(eden()->end());
coleenp@548 994 }
coleenp@548 995
coleenp@548 996 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 997 return eden()->capacity();
coleenp@548 998 }
coleenp@548 999
coleenp@548 1000 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 1001 return unsafe_max_alloc_nogc();
coleenp@548 1002 }

mercurial