src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Fri, 23 Sep 2011 16:07:49 -0400

author
tonyp
date
Fri, 23 Sep 2011 16:07:49 -0400
changeset 3176
8229bd737950
parent 3175
4dfb2df418f2
child 3209
074f0252cc13
permissions
-rw-r--r--

7075646: G1: fix inconsistencies in the monitoring data
Summary: Fixed a few inconsistencies in the monitoring data, in particular when reported from jstat.
Reviewed-by: jmasa, brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 protected:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   virtual size_t default_init_heap_size() {
   110     // Pick some reasonable default.
   111     return 8*M;
   112   }
   114   double _cur_collection_start_sec;
   115   size_t _cur_collection_pause_used_at_start_bytes;
   116   size_t _cur_collection_pause_used_regions_at_start;
   117   size_t _prev_collection_pause_used_at_end_bytes;
   118   double _cur_collection_par_time_ms;
   119   double _cur_satb_drain_time_ms;
   120   double _cur_clear_ct_time_ms;
   121   bool   _satb_drain_time_set;
   122   double _cur_ref_proc_time_ms;
   123   double _cur_ref_enq_time_ms;
   125 #ifndef PRODUCT
   126   // Card Table Count Cache stats
   127   double _min_clear_cc_time_ms;         // min
   128   double _max_clear_cc_time_ms;         // max
   129   double _cur_clear_cc_time_ms;         // clearing time during current pause
   130   double _cum_clear_cc_time_ms;         // cummulative clearing time
   131   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   132 #endif
   134   // Statistics for recent GC pauses.  See below for how indexed.
   135   TruncatedSeq* _recent_rs_scan_times_ms;
   137   // These exclude marking times.
   138   TruncatedSeq* _recent_pause_times_ms;
   139   TruncatedSeq* _recent_gc_times_ms;
   141   TruncatedSeq* _recent_CS_bytes_used_before;
   142   TruncatedSeq* _recent_CS_bytes_surviving;
   144   TruncatedSeq* _recent_rs_sizes;
   146   TruncatedSeq* _concurrent_mark_remark_times_ms;
   147   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   149   Summary*           _summary;
   151   NumberSeq* _all_pause_times_ms;
   152   NumberSeq* _all_full_gc_times_ms;
   153   double _stop_world_start;
   154   NumberSeq* _all_stop_world_times_ms;
   155   NumberSeq* _all_yield_times_ms;
   157   size_t     _region_num_young;
   158   size_t     _region_num_tenured;
   159   size_t     _prev_region_num_young;
   160   size_t     _prev_region_num_tenured;
   162   NumberSeq* _all_mod_union_times_ms;
   164   int        _aux_num;
   165   NumberSeq* _all_aux_times_ms;
   166   double*    _cur_aux_start_times_ms;
   167   double*    _cur_aux_times_ms;
   168   bool*      _cur_aux_times_set;
   170   double* _par_last_gc_worker_start_times_ms;
   171   double* _par_last_ext_root_scan_times_ms;
   172   double* _par_last_mark_stack_scan_times_ms;
   173   double* _par_last_update_rs_times_ms;
   174   double* _par_last_update_rs_processed_buffers;
   175   double* _par_last_scan_rs_times_ms;
   176   double* _par_last_obj_copy_times_ms;
   177   double* _par_last_termination_times_ms;
   178   double* _par_last_termination_attempts;
   179   double* _par_last_gc_worker_end_times_ms;
   180   double* _par_last_gc_worker_times_ms;
   182   // indicates whether we are in full young or partially young GC mode
   183   bool _full_young_gcs;
   185   // if true, then it tries to dynamically adjust the length of the
   186   // young list
   187   bool _adaptive_young_list_length;
   188   size_t _young_list_target_length;
   189   size_t _young_list_fixed_length;
   190   size_t _prev_eden_capacity; // used for logging
   192   // The max number of regions we can extend the eden by while the GC
   193   // locker is active. This should be >= _young_list_target_length;
   194   size_t _young_list_max_length;
   196   size_t _young_cset_length;
   197   bool   _last_young_gc_full;
   199   unsigned              _full_young_pause_num;
   200   unsigned              _partial_young_pause_num;
   202   bool                  _during_marking;
   203   bool                  _in_marking_window;
   204   bool                  _in_marking_window_im;
   206   SurvRateGroup*        _short_lived_surv_rate_group;
   207   SurvRateGroup*        _survivor_surv_rate_group;
   208   // add here any more surv rate groups
   210   double                _gc_overhead_perc;
   212   double _reserve_factor;
   213   size_t _reserve_regions;
   215   bool during_marking() {
   216     return _during_marking;
   217   }
   219   // <NEW PREDICTION>
   221 private:
   222   enum PredictionConstants {
   223     TruncatedSeqLength = 10
   224   };
   226   TruncatedSeq* _alloc_rate_ms_seq;
   227   double        _prev_collection_pause_end_ms;
   229   TruncatedSeq* _pending_card_diff_seq;
   230   TruncatedSeq* _rs_length_diff_seq;
   231   TruncatedSeq* _cost_per_card_ms_seq;
   232   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   233   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   234   TruncatedSeq* _cost_per_entry_ms_seq;
   235   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   236   TruncatedSeq* _cost_per_byte_ms_seq;
   237   TruncatedSeq* _constant_other_time_ms_seq;
   238   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   239   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   241   TruncatedSeq* _pending_cards_seq;
   242   TruncatedSeq* _scanned_cards_seq;
   243   TruncatedSeq* _rs_lengths_seq;
   245   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   247   TruncatedSeq* _young_gc_eff_seq;
   249   TruncatedSeq* _max_conc_overhead_seq;
   251   bool   _using_new_ratio_calculations;
   252   size_t _min_desired_young_length; // as set on the command line or default calculations
   253   size_t _max_desired_young_length; // as set on the command line or default calculations
   255   size_t _recorded_young_regions;
   256   size_t _recorded_non_young_regions;
   257   size_t _recorded_region_num;
   259   size_t _free_regions_at_end_of_collection;
   261   size_t _recorded_rs_lengths;
   262   size_t _max_rs_lengths;
   264   size_t _recorded_marked_bytes;
   265   size_t _recorded_young_bytes;
   267   size_t _predicted_pending_cards;
   268   size_t _predicted_cards_scanned;
   269   size_t _predicted_rs_lengths;
   270   size_t _predicted_bytes_to_copy;
   272   double _predicted_survival_ratio;
   273   double _predicted_rs_update_time_ms;
   274   double _predicted_rs_scan_time_ms;
   275   double _predicted_object_copy_time_ms;
   276   double _predicted_constant_other_time_ms;
   277   double _predicted_young_other_time_ms;
   278   double _predicted_non_young_other_time_ms;
   279   double _predicted_pause_time_ms;
   281   double _vtime_diff_ms;
   283   double _recorded_young_free_cset_time_ms;
   284   double _recorded_non_young_free_cset_time_ms;
   286   double _sigma;
   287   double _expensive_region_limit_ms;
   289   size_t _rs_lengths_prediction;
   291   size_t _known_garbage_bytes;
   292   double _known_garbage_ratio;
   294   double sigma() {
   295     return _sigma;
   296   }
   298   // A function that prevents us putting too much stock in small sample
   299   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   300   // of samples.  5 or more samples yields one; fewer scales linearly from
   301   // 2.0 at 1 sample to 1.0 at 5.
   302   double confidence_factor(int samples) {
   303     if (samples > 4) return 1.0;
   304     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   305   }
   307   double get_new_neg_prediction(TruncatedSeq* seq) {
   308     return seq->davg() - sigma() * seq->dsd();
   309   }
   311 #ifndef PRODUCT
   312   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   313 #endif // PRODUCT
   315   void adjust_concurrent_refinement(double update_rs_time,
   316                                     double update_rs_processed_buffers,
   317                                     double goal_ms);
   319 protected:
   320   double _pause_time_target_ms;
   321   double _recorded_young_cset_choice_time_ms;
   322   double _recorded_non_young_cset_choice_time_ms;
   323   bool   _within_target;
   324   size_t _pending_cards;
   325   size_t _max_pending_cards;
   327 public:
   329   void set_region_short_lived(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   331   }
   333   void set_region_survivors(HeapRegion* hr) {
   334     hr->install_surv_rate_group(_survivor_surv_rate_group);
   335   }
   337 #ifndef PRODUCT
   338   bool verify_young_ages();
   339 #endif // PRODUCT
   341   double get_new_prediction(TruncatedSeq* seq) {
   342     return MAX2(seq->davg() + sigma() * seq->dsd(),
   343                 seq->davg() * confidence_factor(seq->num()));
   344   }
   346   size_t young_cset_length() {
   347     return _young_cset_length;
   348   }
   350   void record_max_rs_lengths(size_t rs_lengths) {
   351     _max_rs_lengths = rs_lengths;
   352   }
   354   size_t predict_pending_card_diff() {
   355     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   356     if (prediction < 0.00001)
   357       return 0;
   358     else
   359       return (size_t) prediction;
   360   }
   362   size_t predict_pending_cards() {
   363     size_t max_pending_card_num = _g1->max_pending_card_num();
   364     size_t diff = predict_pending_card_diff();
   365     size_t prediction;
   366     if (diff > max_pending_card_num)
   367       prediction = max_pending_card_num;
   368     else
   369       prediction = max_pending_card_num - diff;
   371     return prediction;
   372   }
   374   size_t predict_rs_length_diff() {
   375     return (size_t) get_new_prediction(_rs_length_diff_seq);
   376   }
   378   double predict_alloc_rate_ms() {
   379     return get_new_prediction(_alloc_rate_ms_seq);
   380   }
   382   double predict_cost_per_card_ms() {
   383     return get_new_prediction(_cost_per_card_ms_seq);
   384   }
   386   double predict_rs_update_time_ms(size_t pending_cards) {
   387     return (double) pending_cards * predict_cost_per_card_ms();
   388   }
   390   double predict_fully_young_cards_per_entry_ratio() {
   391     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   392   }
   394   double predict_partially_young_cards_per_entry_ratio() {
   395     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   396       return predict_fully_young_cards_per_entry_ratio();
   397     else
   398       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   399   }
   401   size_t predict_young_card_num(size_t rs_length) {
   402     return (size_t) ((double) rs_length *
   403                      predict_fully_young_cards_per_entry_ratio());
   404   }
   406   size_t predict_non_young_card_num(size_t rs_length) {
   407     return (size_t) ((double) rs_length *
   408                      predict_partially_young_cards_per_entry_ratio());
   409   }
   411   double predict_rs_scan_time_ms(size_t card_num) {
   412     if (full_young_gcs())
   413       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   414     else
   415       return predict_partially_young_rs_scan_time_ms(card_num);
   416   }
   418   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   419     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   420       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   421     else
   422       return (double) card_num *
   423         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   424   }
   426   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   427     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   428       return 1.1 * (double) bytes_to_copy *
   429         get_new_prediction(_cost_per_byte_ms_seq);
   430     else
   431       return (double) bytes_to_copy *
   432         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   433   }
   435   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   436     if (_in_marking_window && !_in_marking_window_im)
   437       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   438     else
   439       return (double) bytes_to_copy *
   440         get_new_prediction(_cost_per_byte_ms_seq);
   441   }
   443   double predict_constant_other_time_ms() {
   444     return get_new_prediction(_constant_other_time_ms_seq);
   445   }
   447   double predict_young_other_time_ms(size_t young_num) {
   448     return
   449       (double) young_num *
   450       get_new_prediction(_young_other_cost_per_region_ms_seq);
   451   }
   453   double predict_non_young_other_time_ms(size_t non_young_num) {
   454     return
   455       (double) non_young_num *
   456       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   457   }
   459   void check_if_region_is_too_expensive(double predicted_time_ms);
   461   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   462   double predict_base_elapsed_time_ms(size_t pending_cards);
   463   double predict_base_elapsed_time_ms(size_t pending_cards,
   464                                       size_t scanned_cards);
   465   size_t predict_bytes_to_copy(HeapRegion* hr);
   466   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   468   void start_recording_regions();
   469   void record_cset_region_info(HeapRegion* hr, bool young);
   470   void record_non_young_cset_region(HeapRegion* hr);
   472   void set_recorded_young_regions(size_t n_regions);
   473   void set_recorded_young_bytes(size_t bytes);
   474   void set_recorded_rs_lengths(size_t rs_lengths);
   475   void set_predicted_bytes_to_copy(size_t bytes);
   477   void end_recording_regions();
   479   void record_vtime_diff_ms(double vtime_diff_ms) {
   480     _vtime_diff_ms = vtime_diff_ms;
   481   }
   483   void record_young_free_cset_time_ms(double time_ms) {
   484     _recorded_young_free_cset_time_ms = time_ms;
   485   }
   487   void record_non_young_free_cset_time_ms(double time_ms) {
   488     _recorded_non_young_free_cset_time_ms = time_ms;
   489   }
   491   double predict_young_gc_eff() {
   492     return get_new_neg_prediction(_young_gc_eff_seq);
   493   }
   495   double predict_survivor_regions_evac_time();
   497   // </NEW PREDICTION>
   499   void cset_regions_freed() {
   500     bool propagate = _last_young_gc_full && !_in_marking_window;
   501     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   502     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   503     // also call it on any more surv rate groups
   504   }
   506   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   507     _known_garbage_bytes = known_garbage_bytes;
   508     size_t heap_bytes = _g1->capacity();
   509     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   510   }
   512   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   513     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   515     _known_garbage_bytes -= known_garbage_bytes;
   516     size_t heap_bytes = _g1->capacity();
   517     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   518   }
   520   G1MMUTracker* mmu_tracker() {
   521     return _mmu_tracker;
   522   }
   524   double max_pause_time_ms() {
   525     return _mmu_tracker->max_gc_time() * 1000.0;
   526   }
   528   double predict_remark_time_ms() {
   529     return get_new_prediction(_concurrent_mark_remark_times_ms);
   530   }
   532   double predict_cleanup_time_ms() {
   533     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   534   }
   536   // Returns an estimate of the survival rate of the region at yg-age
   537   // "yg_age".
   538   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   539     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   540     if (seq->num() == 0)
   541       gclog_or_tty->print("BARF! age is %d", age);
   542     guarantee( seq->num() > 0, "invariant" );
   543     double pred = get_new_prediction(seq);
   544     if (pred > 1.0)
   545       pred = 1.0;
   546     return pred;
   547   }
   549   double predict_yg_surv_rate(int age) {
   550     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   551   }
   553   double accum_yg_surv_rate_pred(int age) {
   554     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   555   }
   557 protected:
   558   void print_stats(int level, const char* str, double value);
   559   void print_stats(int level, const char* str, int value);
   561   void print_par_stats(int level, const char* str, double* data);
   562   void print_par_sizes(int level, const char* str, double* data);
   564   void check_other_times(int level,
   565                          NumberSeq* other_times_ms,
   566                          NumberSeq* calc_other_times_ms) const;
   568   void print_summary (PauseSummary* stats) const;
   570   void print_summary (int level, const char* str, NumberSeq* seq) const;
   571   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   573   double avg_value (double* data);
   574   double max_value (double* data);
   575   double sum_of_values (double* data);
   576   double max_sum (double* data1, double* data2);
   578   int _last_satb_drain_processed_buffers;
   579   int _last_update_rs_processed_buffers;
   580   double _last_pause_time_ms;
   582   size_t _bytes_in_collection_set_before_gc;
   583   size_t _bytes_copied_during_gc;
   585   // Used to count used bytes in CS.
   586   friend class CountCSClosure;
   588   // Statistics kept per GC stoppage, pause or full.
   589   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   591   // We track markings.
   592   int _num_markings;
   593   double _mark_thread_startup_sec;       // Time at startup of marking thread
   595   // Add a new GC of the given duration and end time to the record.
   596   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   598   // The head of the list (via "next_in_collection_set()") representing the
   599   // current collection set. Set from the incrementally built collection
   600   // set at the start of the pause.
   601   HeapRegion* _collection_set;
   603   // The number of regions in the collection set. Set from the incrementally
   604   // built collection set at the start of an evacuation pause.
   605   size_t _collection_set_size;
   607   // The number of bytes in the collection set before the pause. Set from
   608   // the incrementally built collection set at the start of an evacuation
   609   // pause.
   610   size_t _collection_set_bytes_used_before;
   612   // The associated information that is maintained while the incremental
   613   // collection set is being built with young regions. Used to populate
   614   // the recorded info for the evacuation pause.
   616   enum CSetBuildType {
   617     Active,             // We are actively building the collection set
   618     Inactive            // We are not actively building the collection set
   619   };
   621   CSetBuildType _inc_cset_build_state;
   623   // The head of the incrementally built collection set.
   624   HeapRegion* _inc_cset_head;
   626   // The tail of the incrementally built collection set.
   627   HeapRegion* _inc_cset_tail;
   629   // The number of regions in the incrementally built collection set.
   630   // Used to set _collection_set_size at the start of an evacuation
   631   // pause.
   632   size_t _inc_cset_size;
   634   // Used as the index in the surving young words structure
   635   // which tracks the amount of space, for each young region,
   636   // that survives the pause.
   637   size_t _inc_cset_young_index;
   639   // The number of bytes in the incrementally built collection set.
   640   // Used to set _collection_set_bytes_used_before at the start of
   641   // an evacuation pause.
   642   size_t _inc_cset_bytes_used_before;
   644   // Used to record the highest end of heap region in collection set
   645   HeapWord* _inc_cset_max_finger;
   647   // The number of recorded used bytes in the young regions
   648   // of the collection set. This is the sum of the used() bytes
   649   // of retired young regions in the collection set.
   650   size_t _inc_cset_recorded_young_bytes;
   652   // The RSet lengths recorded for regions in the collection set
   653   // (updated by the periodic sampling of the regions in the
   654   // young list/collection set).
   655   size_t _inc_cset_recorded_rs_lengths;
   657   // The predicted elapsed time it will take to collect the regions
   658   // in the collection set (updated by the periodic sampling of the
   659   // regions in the young list/collection set).
   660   double _inc_cset_predicted_elapsed_time_ms;
   662   // The predicted bytes to copy for the regions in the collection
   663   // set (updated by the periodic sampling of the regions in the
   664   // young list/collection set).
   665   size_t _inc_cset_predicted_bytes_to_copy;
   667   // Info about marking.
   668   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   670   // The number of collection pauses at the end of the last mark.
   671   size_t _n_pauses_at_mark_end;
   673   // Stash a pointer to the g1 heap.
   674   G1CollectedHeap* _g1;
   676   // The average time in ms per collection pause, averaged over recent pauses.
   677   double recent_avg_time_for_pauses_ms();
   679   // The average time in ms for RS scanning, per pause, averaged
   680   // over recent pauses. (Note the RS scanning time for a pause
   681   // is itself an average of the RS scanning time for each worker
   682   // thread.)
   683   double recent_avg_time_for_rs_scan_ms();
   685   // The number of "recent" GCs recorded in the number sequences
   686   int number_of_recent_gcs();
   688   // The average survival ratio, computed by the total number of bytes
   689   // suriviving / total number of bytes before collection over the last
   690   // several recent pauses.
   691   double recent_avg_survival_fraction();
   692   // The survival fraction of the most recent pause; if there have been no
   693   // pauses, returns 1.0.
   694   double last_survival_fraction();
   696   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   697   // one that may be higher than "recent_avg_survival_fraction".
   698   // This is conservative in several ways:
   699   //   If there have been few pauses, it will assume a potential high
   700   //     variance, and err on the side of caution.
   701   //   It puts a lower bound (currently 0.1) on the value it will return.
   702   //   To try to detect phase changes, if the most recent pause ("latest") has a
   703   //     higher-than average ("avg") survival rate, it returns that rate.
   704   // "work" version is a utility function; young is restricted to young regions.
   705   double conservative_avg_survival_fraction_work(double avg,
   706                                                  double latest);
   708   // The arguments are the two sequences that keep track of the number of bytes
   709   //   surviving and the total number of bytes before collection, resp.,
   710   //   over the last evereal recent pauses
   711   // Returns the survival rate for the category in the most recent pause.
   712   // If there have been no pauses, returns 1.0.
   713   double last_survival_fraction_work(TruncatedSeq* surviving,
   714                                      TruncatedSeq* before);
   716   // The arguments are the two sequences that keep track of the number of bytes
   717   //   surviving and the total number of bytes before collection, resp.,
   718   //   over the last several recent pauses
   719   // Returns the average survival ration over the last several recent pauses
   720   // If there have been no pauses, return 1.0
   721   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   722                                            TruncatedSeq* before);
   724   double conservative_avg_survival_fraction() {
   725     double avg = recent_avg_survival_fraction();
   726     double latest = last_survival_fraction();
   727     return conservative_avg_survival_fraction_work(avg, latest);
   728   }
   730   // The ratio of gc time to elapsed time, computed over recent pauses.
   731   double _recent_avg_pause_time_ratio;
   733   double recent_avg_pause_time_ratio() {
   734     return _recent_avg_pause_time_ratio;
   735   }
   737   // Number of pauses between concurrent marking.
   738   size_t _pauses_btwn_concurrent_mark;
   740   size_t _n_marks_since_last_pause;
   742   // At the end of a pause we check the heap occupancy and we decide
   743   // whether we will start a marking cycle during the next pause. If
   744   // we decide that we want to do that, we will set this parameter to
   745   // true. So, this parameter will stay true between the end of a
   746   // pause and the beginning of a subsequent pause (not necessarily
   747   // the next one, see the comments on the next field) when we decide
   748   // that we will indeed start a marking cycle and do the initial-mark
   749   // work.
   750   volatile bool _initiate_conc_mark_if_possible;
   752   // If initiate_conc_mark_if_possible() is set at the beginning of a
   753   // pause, it is a suggestion that the pause should start a marking
   754   // cycle by doing the initial-mark work. However, it is possible
   755   // that the concurrent marking thread is still finishing up the
   756   // previous marking cycle (e.g., clearing the next marking
   757   // bitmap). If that is the case we cannot start a new cycle and
   758   // we'll have to wait for the concurrent marking thread to finish
   759   // what it is doing. In this case we will postpone the marking cycle
   760   // initiation decision for the next pause. When we eventually decide
   761   // to start a cycle, we will set _during_initial_mark_pause which
   762   // will stay true until the end of the initial-mark pause and it's
   763   // the condition that indicates that a pause is doing the
   764   // initial-mark work.
   765   volatile bool _during_initial_mark_pause;
   767   bool _should_revert_to_full_young_gcs;
   768   bool _last_full_young_gc;
   770   // This set of variables tracks the collector efficiency, in order to
   771   // determine whether we should initiate a new marking.
   772   double _cur_mark_stop_world_time_ms;
   773   double _mark_remark_start_sec;
   774   double _mark_cleanup_start_sec;
   775   double _mark_closure_time_ms;
   777   // Update the young list target length either by setting it to the
   778   // desired fixed value or by calculating it using G1's pause
   779   // prediction model. If no rs_lengths parameter is passed, predict
   780   // the RS lengths using the prediction model, otherwise use the
   781   // given rs_lengths as the prediction.
   782   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   784   // Calculate and return the minimum desired young list target
   785   // length. This is the minimum desired young list length according
   786   // to the user's inputs.
   787   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   789   // Calculate and return the maximum desired young list target
   790   // length. This is the maximum desired young list length according
   791   // to the user's inputs.
   792   size_t calculate_young_list_desired_max_length();
   794   // Calculate and return the maximum young list target length that
   795   // can fit into the pause time goal. The parameters are: rs_lengths
   796   // represent the prediction of how large the young RSet lengths will
   797   // be, base_min_length is the alreay existing number of regions in
   798   // the young list, min_length and max_length are the desired min and
   799   // max young list length according to the user's inputs.
   800   size_t calculate_young_list_target_length(size_t rs_lengths,
   801                                             size_t base_min_length,
   802                                             size_t desired_min_length,
   803                                             size_t desired_max_length);
   805   // Check whether a given young length (young_length) fits into the
   806   // given target pause time and whether the prediction for the amount
   807   // of objects to be copied for the given length will fit into the
   808   // given free space (expressed by base_free_regions).  It is used by
   809   // calculate_young_list_target_length().
   810   bool predict_will_fit(size_t young_length, double base_time_ms,
   811                         size_t base_free_regions, double target_pause_time_ms);
   813 public:
   815   G1CollectorPolicy();
   817   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   819   virtual CollectorPolicy::Name kind() {
   820     return CollectorPolicy::G1CollectorPolicyKind;
   821   }
   823   // Check the current value of the young list RSet lengths and
   824   // compare it against the last prediction. If the current value is
   825   // higher, recalculate the young list target length prediction.
   826   void revise_young_list_target_length_if_necessary();
   828   size_t bytes_in_collection_set() {
   829     return _bytes_in_collection_set_before_gc;
   830   }
   832   unsigned calc_gc_alloc_time_stamp() {
   833     return _all_pause_times_ms->num() + 1;
   834   }
   836   // This should be called after the heap is resized.
   837   void record_new_heap_size(size_t new_number_of_regions);
   839 protected:
   841   // Count the number of bytes used in the CS.
   842   void count_CS_bytes_used();
   844   // Together these do the base cleanup-recording work.  Subclasses might
   845   // want to put something between them.
   846   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   847                                                 size_t max_live_bytes);
   848   void record_concurrent_mark_cleanup_end_work2();
   850   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   852 public:
   854   virtual void init();
   856   // Create jstat counters for the policy.
   857   virtual void initialize_gc_policy_counters();
   859   virtual HeapWord* mem_allocate_work(size_t size,
   860                                       bool is_tlab,
   861                                       bool* gc_overhead_limit_was_exceeded);
   863   // This method controls how a collector handles one or more
   864   // of its generations being fully allocated.
   865   virtual HeapWord* satisfy_failed_allocation(size_t size,
   866                                               bool is_tlab);
   868   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   870   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   872   // The number of collection pauses so far.
   873   long n_pauses() const { return _n_pauses; }
   875   // Update the heuristic info to record a collection pause of the given
   876   // start time, where the given number of bytes were used at the start.
   877   // This may involve changing the desired size of a collection set.
   879   virtual void record_stop_world_start();
   881   virtual void record_collection_pause_start(double start_time_sec,
   882                                              size_t start_used);
   884   // Must currently be called while the world is stopped.
   885   void record_concurrent_mark_init_end(double
   886                                            mark_init_elapsed_time_ms);
   888   void record_mark_closure_time(double mark_closure_time_ms);
   890   virtual void record_concurrent_mark_remark_start();
   891   virtual void record_concurrent_mark_remark_end();
   893   virtual void record_concurrent_mark_cleanup_start();
   894   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   895                                                   size_t max_live_bytes);
   896   virtual void record_concurrent_mark_cleanup_completed();
   898   virtual void record_concurrent_pause();
   899   virtual void record_concurrent_pause_end();
   901   virtual void record_collection_pause_end();
   902   void print_heap_transition();
   904   // Record the fact that a full collection occurred.
   905   virtual void record_full_collection_start();
   906   virtual void record_full_collection_end();
   908   void record_gc_worker_start_time(int worker_i, double ms) {
   909     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   910   }
   912   void record_ext_root_scan_time(int worker_i, double ms) {
   913     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   914   }
   916   void record_mark_stack_scan_time(int worker_i, double ms) {
   917     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   918   }
   920   void record_satb_drain_time(double ms) {
   921     _cur_satb_drain_time_ms = ms;
   922     _satb_drain_time_set    = true;
   923   }
   925   void record_satb_drain_processed_buffers (int processed_buffers) {
   926     _last_satb_drain_processed_buffers = processed_buffers;
   927   }
   929   void record_mod_union_time(double ms) {
   930     _all_mod_union_times_ms->add(ms);
   931   }
   933   void record_update_rs_time(int thread, double ms) {
   934     _par_last_update_rs_times_ms[thread] = ms;
   935   }
   937   void record_update_rs_processed_buffers (int thread,
   938                                            double processed_buffers) {
   939     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   940   }
   942   void record_scan_rs_time(int thread, double ms) {
   943     _par_last_scan_rs_times_ms[thread] = ms;
   944   }
   946   void reset_obj_copy_time(int thread) {
   947     _par_last_obj_copy_times_ms[thread] = 0.0;
   948   }
   950   void reset_obj_copy_time() {
   951     reset_obj_copy_time(0);
   952   }
   954   void record_obj_copy_time(int thread, double ms) {
   955     _par_last_obj_copy_times_ms[thread] += ms;
   956   }
   958   void record_termination(int thread, double ms, size_t attempts) {
   959     _par_last_termination_times_ms[thread] = ms;
   960     _par_last_termination_attempts[thread] = (double) attempts;
   961   }
   963   void record_gc_worker_end_time(int worker_i, double ms) {
   964     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   965   }
   967   void record_pause_time_ms(double ms) {
   968     _last_pause_time_ms = ms;
   969   }
   971   void record_clear_ct_time(double ms) {
   972     _cur_clear_ct_time_ms = ms;
   973   }
   975   void record_par_time(double ms) {
   976     _cur_collection_par_time_ms = ms;
   977   }
   979   void record_aux_start_time(int i) {
   980     guarantee(i < _aux_num, "should be within range");
   981     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   982   }
   984   void record_aux_end_time(int i) {
   985     guarantee(i < _aux_num, "should be within range");
   986     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   987     _cur_aux_times_set[i] = true;
   988     _cur_aux_times_ms[i] += ms;
   989   }
   991   void record_ref_proc_time(double ms) {
   992     _cur_ref_proc_time_ms = ms;
   993   }
   995   void record_ref_enq_time(double ms) {
   996     _cur_ref_enq_time_ms = ms;
   997   }
   999 #ifndef PRODUCT
  1000   void record_cc_clear_time(double ms) {
  1001     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
  1002       _min_clear_cc_time_ms = ms;
  1003     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
  1004       _max_clear_cc_time_ms = ms;
  1005     _cur_clear_cc_time_ms = ms;
  1006     _cum_clear_cc_time_ms += ms;
  1007     _num_cc_clears++;
  1009 #endif
  1011   // Record how much space we copied during a GC. This is typically
  1012   // called when a GC alloc region is being retired.
  1013   void record_bytes_copied_during_gc(size_t bytes) {
  1014     _bytes_copied_during_gc += bytes;
  1017   // The amount of space we copied during a GC.
  1018   size_t bytes_copied_during_gc() {
  1019     return _bytes_copied_during_gc;
  1022   // Choose a new collection set.  Marks the chosen regions as being
  1023   // "in_collection_set", and links them together.  The head and number of
  1024   // the collection set are available via access methods.
  1025   virtual void choose_collection_set(double target_pause_time_ms) = 0;
  1027   // The head of the list (via "next_in_collection_set()") representing the
  1028   // current collection set.
  1029   HeapRegion* collection_set() { return _collection_set; }
  1031   void clear_collection_set() { _collection_set = NULL; }
  1033   // The number of elements in the current collection set.
  1034   size_t collection_set_size() { return _collection_set_size; }
  1036   // Add "hr" to the CS.
  1037   void add_to_collection_set(HeapRegion* hr);
  1039   // Incremental CSet Support
  1041   // The head of the incrementally built collection set.
  1042   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1044   // The tail of the incrementally built collection set.
  1045   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1047   // The number of elements in the incrementally built collection set.
  1048   size_t inc_cset_size() { return _inc_cset_size; }
  1050   // Initialize incremental collection set info.
  1051   void start_incremental_cset_building();
  1053   void clear_incremental_cset() {
  1054     _inc_cset_head = NULL;
  1055     _inc_cset_tail = NULL;
  1058   // Stop adding regions to the incremental collection set
  1059   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1061   // Add/remove information about hr to the aggregated information
  1062   // for the incrementally built collection set.
  1063   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1064   void remove_from_incremental_cset_info(HeapRegion* hr);
  1066   // Update information about hr in the aggregated information for
  1067   // the incrementally built collection set.
  1068   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1070 private:
  1071   // Update the incremental cset information when adding a region
  1072   // (should not be called directly).
  1073   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1075 public:
  1076   // Add hr to the LHS of the incremental collection set.
  1077   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1079   // Add hr to the RHS of the incremental collection set.
  1080   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1082 #ifndef PRODUCT
  1083   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1084 #endif // !PRODUCT
  1086   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1087   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1088   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1090   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1091   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1092   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1094   // This sets the initiate_conc_mark_if_possible() flag to start a
  1095   // new cycle, as long as we are not already in one. It's best if it
  1096   // is called during a safepoint when the test whether a cycle is in
  1097   // progress or not is stable.
  1098   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
  1100   // This is called at the very beginning of an evacuation pause (it
  1101   // has to be the first thing that the pause does). If
  1102   // initiate_conc_mark_if_possible() is true, and the concurrent
  1103   // marking thread has completed its work during the previous cycle,
  1104   // it will set during_initial_mark_pause() to so that the pause does
  1105   // the initial-mark work and start a marking cycle.
  1106   void decide_on_conc_mark_initiation();
  1108   // If an expansion would be appropriate, because recent GC overhead had
  1109   // exceeded the desired limit, return an amount to expand by.
  1110   virtual size_t expansion_amount();
  1112   // note start of mark thread
  1113   void note_start_of_mark_thread();
  1115   // The marked bytes of the "r" has changed; reclassify it's desirability
  1116   // for marking.  Also asserts that "r" is eligible for a CS.
  1117   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1119 #ifndef PRODUCT
  1120   // Check any appropriate marked bytes info, asserting false if
  1121   // something's wrong, else returning "true".
  1122   virtual bool assertMarkedBytesDataOK() = 0;
  1123 #endif
  1125   // Print tracing information.
  1126   void print_tracing_info() const;
  1128   // Print stats on young survival ratio
  1129   void print_yg_surv_rate_info() const;
  1131   void finished_recalculating_age_indexes(bool is_survivors) {
  1132     if (is_survivors) {
  1133       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1134     } else {
  1135       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1137     // do that for any other surv rate groups
  1140   bool is_young_list_full() {
  1141     size_t young_list_length = _g1->young_list()->length();
  1142     size_t young_list_target_length = _young_list_target_length;
  1143     return young_list_length >= young_list_target_length;
  1146   bool can_expand_young_list() {
  1147     size_t young_list_length = _g1->young_list()->length();
  1148     size_t young_list_max_length = _young_list_max_length;
  1149     return young_list_length < young_list_max_length;
  1152   size_t young_list_max_length() {
  1153     return _young_list_max_length;
  1156   void update_region_num(bool young);
  1158   bool full_young_gcs() {
  1159     return _full_young_gcs;
  1161   void set_full_young_gcs(bool full_young_gcs) {
  1162     _full_young_gcs = full_young_gcs;
  1165   bool adaptive_young_list_length() {
  1166     return _adaptive_young_list_length;
  1168   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1169     _adaptive_young_list_length = adaptive_young_list_length;
  1172   inline double get_gc_eff_factor() {
  1173     double ratio = _known_garbage_ratio;
  1175     double square = ratio * ratio;
  1176     // square = square * square;
  1177     double ret = square * 9.0 + 1.0;
  1178 #if 0
  1179     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1180 #endif // 0
  1181     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1182     return ret;
  1185   //
  1186   // Survivor regions policy.
  1187   //
  1188 protected:
  1190   // Current tenuring threshold, set to 0 if the collector reaches the
  1191   // maximum amount of suvivors regions.
  1192   int _tenuring_threshold;
  1194   // The limit on the number of regions allocated for survivors.
  1195   size_t _max_survivor_regions;
  1197   // For reporting purposes.
  1198   size_t _eden_bytes_before_gc;
  1199   size_t _survivor_bytes_before_gc;
  1200   size_t _capacity_before_gc;
  1202   // The amount of survor regions after a collection.
  1203   size_t _recorded_survivor_regions;
  1204   // List of survivor regions.
  1205   HeapRegion* _recorded_survivor_head;
  1206   HeapRegion* _recorded_survivor_tail;
  1208   ageTable _survivors_age_table;
  1210 public:
  1212   inline GCAllocPurpose
  1213     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1214       if (age < _tenuring_threshold && src_region->is_young()) {
  1215         return GCAllocForSurvived;
  1216       } else {
  1217         return GCAllocForTenured;
  1221   inline bool track_object_age(GCAllocPurpose purpose) {
  1222     return purpose == GCAllocForSurvived;
  1225   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1227   size_t max_regions(int purpose);
  1229   // The limit on regions for a particular purpose is reached.
  1230   void note_alloc_region_limit_reached(int purpose) {
  1231     if (purpose == GCAllocForSurvived) {
  1232       _tenuring_threshold = 0;
  1236   void note_start_adding_survivor_regions() {
  1237     _survivor_surv_rate_group->start_adding_regions();
  1240   void note_stop_adding_survivor_regions() {
  1241     _survivor_surv_rate_group->stop_adding_regions();
  1244   void record_survivor_regions(size_t      regions,
  1245                                HeapRegion* head,
  1246                                HeapRegion* tail) {
  1247     _recorded_survivor_regions = regions;
  1248     _recorded_survivor_head    = head;
  1249     _recorded_survivor_tail    = tail;
  1252   size_t recorded_survivor_regions() {
  1253     return _recorded_survivor_regions;
  1256   void record_thread_age_table(ageTable* age_table)
  1258     _survivors_age_table.merge_par(age_table);
  1261   void update_max_gc_locker_expansion();
  1263   // Calculates survivor space parameters.
  1264   void update_survivors_policy();
  1266 };
  1268 // This encapsulates a particular strategy for a g1 Collector.
  1269 //
  1270 //      Start a concurrent mark when our heap size is n bytes
  1271 //            greater then our heap size was at the last concurrent
  1272 //            mark.  Where n is a function of the CMSTriggerRatio
  1273 //            and the MinHeapFreeRatio.
  1274 //
  1275 //      Start a g1 collection pause when we have allocated the
  1276 //            average number of bytes currently being freed in
  1277 //            a collection, but only if it is at least one region
  1278 //            full
  1279 //
  1280 //      Resize Heap based on desired
  1281 //      allocation space, where desired allocation space is
  1282 //      a function of survival rate and desired future to size.
  1283 //
  1284 //      Choose collection set by first picking all older regions
  1285 //      which have a survival rate which beats our projected young
  1286 //      survival rate.  Then fill out the number of needed regions
  1287 //      with young regions.
  1289 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1290   CollectionSetChooser* _collectionSetChooser;
  1292   virtual void choose_collection_set(double target_pause_time_ms);
  1293   virtual void record_collection_pause_start(double start_time_sec,
  1294                                              size_t start_used);
  1295   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1296                                                   size_t max_live_bytes);
  1297   virtual void record_full_collection_end();
  1299 public:
  1300   G1CollectorPolicy_BestRegionsFirst() {
  1301     _collectionSetChooser = new CollectionSetChooser();
  1303   void record_collection_pause_end();
  1304   // This is not needed any more, after the CSet choosing code was
  1305   // changed to use the pause prediction work. But let's leave the
  1306   // hook in just in case.
  1307   void note_change_in_marked_bytes(HeapRegion* r) { }
  1308 #ifndef PRODUCT
  1309   bool assertMarkedBytesDataOK();
  1310 #endif
  1311 };
  1313 // This should move to some place more general...
  1315 // If we have "n" measurements, and we've kept track of their "sum" and the
  1316 // "sum_of_squares" of the measurements, this returns the variance of the
  1317 // sequence.
  1318 inline double variance(int n, double sum_of_squares, double sum) {
  1319   double n_d = (double)n;
  1320   double avg = sum/n_d;
  1321   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1324 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial