src/share/vm/opto/escape.cpp

Thu, 07 Oct 2010 21:40:55 -0700

author
never
date
Thu, 07 Oct 2010 21:40:55 -0700
changeset 2199
75588558f1bf
parent 2170
5867d89c129b
child 2276
e4fcbeb5a698
permissions
-rw-r--r--

6980792: Crash "exception happened outside interpreter, nmethods and vtable stubs (1)"
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
kvn@688 65 void PointsToNode::dump(bool print_state) const {
duke@435 66 NodeType nt = node_type();
kvn@688 67 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 68 if (print_state) {
kvn@688 69 EscapeState es = escape_state();
kvn@688 70 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 71 }
kvn@688 72 tty->print("[[");
duke@435 73 for (uint i = 0; i < edge_count(); i++) {
duke@435 74 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 75 }
duke@435 76 tty->print("]] ");
duke@435 77 if (_node == NULL)
duke@435 78 tty->print_cr("<null>");
duke@435 79 else
duke@435 80 _node->dump();
duke@435 81 }
duke@435 82 #endif
duke@435 83
kvn@1989 84 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 85 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 86 _processed(C->comp_arena()),
kvn@679 87 _collecting(true),
kvn@679 88 _compile(C),
kvn@1989 89 _igvn(igvn),
kvn@679 90 _node_map(C->comp_arena()) {
kvn@679 91
kvn@688 92 _phantom_object = C->top()->_idx,
kvn@688 93 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 94
kvn@688 95 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 96 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 97 _oop_null = oop_null->_idx;
kvn@688 98 assert(_oop_null < C->unique(), "should be created already");
kvn@688 99 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 100
kvn@688 101 if (UseCompressedOops) {
kvn@688 102 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 103 _noop_null = noop_null->_idx;
kvn@688 104 assert(_noop_null < C->unique(), "should be created already");
kvn@688 105 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 106 }
duke@435 107 }
duke@435 108
duke@435 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 110 PointsToNode *f = ptnode_adr(from_i);
duke@435 111 PointsToNode *t = ptnode_adr(to_i);
duke@435 112
duke@435 113 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 114 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 115 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 116 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 125 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 126 // don't add a self-referential edge, this can occur during removal of
duke@435 127 // deferred edges
duke@435 128 if (from_i != to_i)
duke@435 129 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 130 }
duke@435 131
kvn@500 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 133 const Type *adr_type = phase->type(adr);
kvn@500 134 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 137 // We are computing a raw address for a store captured by an Initialize
kvn@500 138 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 139 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 140 assert(offs != Type::OffsetBot ||
kvn@500 141 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 142 "offset must be a constant or it is initialization of array");
kvn@500 143 return offs;
kvn@500 144 }
kvn@500 145 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 146 assert(t_ptr != NULL, "must be a pointer type");
duke@435 147 return t_ptr->offset();
duke@435 148 }
duke@435 149
duke@435 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 151 PointsToNode *f = ptnode_adr(from_i);
duke@435 152 PointsToNode *t = ptnode_adr(to_i);
duke@435 153
duke@435 154 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 155 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 156 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 157 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 158 t->set_offset(offset);
duke@435 159
duke@435 160 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 164 PointsToNode *npt = ptnode_adr(ni);
duke@435 165 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 166 if (es > old_es)
duke@435 167 npt->set_escape_state(es);
duke@435 168 }
duke@435 169
kvn@500 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 171 PointsToNode::EscapeState es, bool done) {
kvn@500 172 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 173 ptadr->_node = n;
kvn@500 174 ptadr->set_node_type(nt);
kvn@500 175
kvn@500 176 // inline set_escape_state(idx, es);
kvn@500 177 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 178 if (es > old_es)
kvn@500 179 ptadr->set_escape_state(es);
kvn@500 180
kvn@500 181 if (done)
kvn@500 182 _processed.set(n->_idx);
kvn@500 183 }
kvn@500 184
kvn@1989 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 186 uint idx = n->_idx;
duke@435 187 PointsToNode::EscapeState es;
duke@435 188
kvn@500 189 // If we are still collecting or there were no non-escaping allocations
kvn@500 190 // we don't know the answer yet
kvn@679 191 if (_collecting)
duke@435 192 return PointsToNode::UnknownEscape;
duke@435 193
duke@435 194 // if the node was created after the escape computation, return
duke@435 195 // UnknownEscape
kvn@679 196 if (idx >= nodes_size())
duke@435 197 return PointsToNode::UnknownEscape;
duke@435 198
kvn@679 199 es = ptnode_adr(idx)->escape_state();
duke@435 200
duke@435 201 // if we have already computed a value, return it
kvn@895 202 if (es != PointsToNode::UnknownEscape &&
kvn@895 203 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 204 return es;
duke@435 205
kvn@679 206 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 207 if (n->uncast()->_idx >= nodes_size())
kvn@679 208 return PointsToNode::UnknownEscape;
kvn@679 209
kvn@1989 210 PointsToNode::EscapeState orig_es = es;
kvn@1989 211
duke@435 212 // compute max escape state of anything this node could point to
duke@435 213 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 214 PointsTo(ptset, n);
kvn@500 215 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 216 uint pt = i.elem;
kvn@679 217 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 218 if (pes > es)
duke@435 219 es = pes;
duke@435 220 }
kvn@1989 221 if (orig_es != es) {
kvn@1989 222 // cache the computed escape state
kvn@1989 223 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@1989 224 ptnode_adr(idx)->set_escape_state(es);
kvn@1989 225 } // orig_es could be PointsToNode::UnknownEscape
duke@435 226 return es;
duke@435 227 }
duke@435 228
kvn@1989 229 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n) {
duke@435 230 VectorSet visited(Thread::current()->resource_area());
duke@435 231 GrowableArray<uint> worklist;
duke@435 232
kvn@559 233 #ifdef ASSERT
kvn@559 234 Node *orig_n = n;
kvn@559 235 #endif
kvn@559 236
kvn@500 237 n = n->uncast();
kvn@679 238 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 239
duke@435 240 // If we have a JavaObject, return just that object
kvn@679 241 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 242 ptset.set(n->_idx);
duke@435 243 return;
duke@435 244 }
kvn@559 245 #ifdef ASSERT
kvn@679 246 if (npt->_node == NULL) {
kvn@559 247 if (orig_n != n)
kvn@559 248 orig_n->dump();
kvn@559 249 n->dump();
kvn@679 250 assert(npt->_node != NULL, "unregistered node");
kvn@559 251 }
kvn@559 252 #endif
duke@435 253 worklist.push(n->_idx);
duke@435 254 while(worklist.length() > 0) {
duke@435 255 int ni = worklist.pop();
kvn@679 256 if (visited.test_set(ni))
kvn@679 257 continue;
duke@435 258
kvn@679 259 PointsToNode* pn = ptnode_adr(ni);
kvn@679 260 // ensure that all inputs of a Phi have been processed
kvn@679 261 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 262
kvn@679 263 int edges_processed = 0;
kvn@679 264 uint e_cnt = pn->edge_count();
kvn@679 265 for (uint e = 0; e < e_cnt; e++) {
kvn@679 266 uint etgt = pn->edge_target(e);
kvn@679 267 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 268 if (et == PointsToNode::PointsToEdge) {
kvn@679 269 ptset.set(etgt);
kvn@679 270 edges_processed++;
kvn@679 271 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 272 worklist.push(etgt);
kvn@679 273 edges_processed++;
kvn@679 274 } else {
kvn@679 275 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 276 }
kvn@679 277 }
kvn@679 278 if (edges_processed == 0) {
kvn@679 279 // no deferred or pointsto edges found. Assume the value was set
kvn@679 280 // outside this method. Add the phantom object to the pointsto set.
kvn@679 281 ptset.set(_phantom_object);
duke@435 282 }
duke@435 283 }
duke@435 284 }
duke@435 285
kvn@536 286 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 287 // This method is most expensive during ConnectionGraph construction.
kvn@536 288 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 289 deferred_edges->clear();
kvn@536 290 visited->Clear();
duke@435 291
kvn@679 292 visited->set(ni);
duke@435 293 PointsToNode *ptn = ptnode_adr(ni);
duke@435 294
kvn@536 295 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 296 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 297 uint t = ptn->edge_target(i);
kvn@536 298 #ifdef ASSERT
kvn@536 299 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 300 #else
kvn@536 301 visited->set(t);
kvn@536 302 #endif
kvn@536 303 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 304 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 305 deferred_edges->append(t);
kvn@559 306 } else {
kvn@559 307 i++;
kvn@536 308 }
kvn@536 309 }
kvn@536 310 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 311 uint t = deferred_edges->at(next);
kvn@500 312 PointsToNode *ptt = ptnode_adr(t);
kvn@679 313 uint e_cnt = ptt->edge_count();
kvn@679 314 for (uint e = 0; e < e_cnt; e++) {
kvn@679 315 uint etgt = ptt->edge_target(e);
kvn@679 316 if (visited->test_set(etgt))
kvn@536 317 continue;
kvn@679 318
kvn@679 319 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 320 if (et == PointsToNode::PointsToEdge) {
kvn@679 321 add_pointsto_edge(ni, etgt);
kvn@679 322 if(etgt == _phantom_object) {
kvn@679 323 // Special case - field set outside (globally escaping).
kvn@679 324 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 325 }
kvn@679 326 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 327 deferred_edges->append(etgt);
kvn@679 328 } else {
kvn@679 329 assert(false,"invalid connection graph");
duke@435 330 }
duke@435 331 }
duke@435 332 }
duke@435 333 }
duke@435 334
duke@435 335
duke@435 336 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 337 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 338 // a pointsto edge is added if it is a JavaObject
duke@435 339
duke@435 340 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 341 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 342 PointsToNode* to = ptnode_adr(to_i);
kvn@679 343 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 344
kvn@679 345 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 346 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 347 int fi = an->edge_target(fe);
kvn@679 348 PointsToNode* pf = ptnode_adr(fi);
kvn@679 349 int po = pf->offset();
duke@435 350 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 351 if (deferred)
duke@435 352 add_deferred_edge(fi, to_i);
duke@435 353 else
duke@435 354 add_pointsto_edge(fi, to_i);
duke@435 355 }
duke@435 356 }
duke@435 357 }
duke@435 358
kvn@500 359 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 360 // whose offset matches "offset".
duke@435 361 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 362 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 363 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 364 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 365 int fi = an->edge_target(fe);
kvn@679 366 PointsToNode* pf = ptnode_adr(fi);
kvn@679 367 int po = pf->offset();
kvn@679 368 if (pf->edge_count() == 0) {
duke@435 369 // we have not seen any stores to this field, assume it was set outside this method
duke@435 370 add_pointsto_edge(fi, _phantom_object);
duke@435 371 }
duke@435 372 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 373 add_deferred_edge(from_i, fi);
duke@435 374 }
duke@435 375 }
duke@435 376 }
duke@435 377
kvn@500 378 // Helper functions
kvn@500 379
kvn@500 380 static Node* get_addp_base(Node *addp) {
kvn@500 381 assert(addp->is_AddP(), "must be AddP");
kvn@500 382 //
kvn@500 383 // AddP cases for Base and Address inputs:
kvn@500 384 // case #1. Direct object's field reference:
kvn@500 385 // Allocate
kvn@500 386 // |
kvn@500 387 // Proj #5 ( oop result )
kvn@500 388 // |
kvn@500 389 // CheckCastPP (cast to instance type)
kvn@500 390 // | |
kvn@500 391 // AddP ( base == address )
kvn@500 392 //
kvn@500 393 // case #2. Indirect object's field reference:
kvn@500 394 // Phi
kvn@500 395 // |
kvn@500 396 // CastPP (cast to instance type)
kvn@500 397 // | |
kvn@500 398 // AddP ( base == address )
kvn@500 399 //
kvn@500 400 // case #3. Raw object's field reference for Initialize node:
kvn@500 401 // Allocate
kvn@500 402 // |
kvn@500 403 // Proj #5 ( oop result )
kvn@500 404 // top |
kvn@500 405 // \ |
kvn@500 406 // AddP ( base == top )
kvn@500 407 //
kvn@500 408 // case #4. Array's element reference:
kvn@500 409 // {CheckCastPP | CastPP}
kvn@500 410 // | | |
kvn@500 411 // | AddP ( array's element offset )
kvn@500 412 // | |
kvn@500 413 // AddP ( array's offset )
kvn@500 414 //
kvn@500 415 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 416 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 417 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 418 // Allocate
kvn@500 419 // |
kvn@500 420 // Proj #5 ( oop result )
kvn@500 421 // | |
kvn@500 422 // AddP ( base == address )
kvn@500 423 //
kvn@512 424 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 425 // Raw object's field reference:
kvn@512 426 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 427 // top |
kvn@500 428 // \ |
kvn@500 429 // AddP ( base == top )
kvn@500 430 //
kvn@512 431 // case #7. Klass's field reference.
kvn@512 432 // LoadKlass
kvn@512 433 // | |
kvn@512 434 // AddP ( base == address )
kvn@512 435 //
kvn@599 436 // case #8. narrow Klass's field reference.
kvn@599 437 // LoadNKlass
kvn@599 438 // |
kvn@599 439 // DecodeN
kvn@599 440 // | |
kvn@599 441 // AddP ( base == address )
kvn@599 442 //
kvn@500 443 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 444 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 445 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 446 while (base->is_AddP()) {
kvn@1392 447 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 448 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 449 base = base->in(AddPNode::Address)->uncast();
kvn@1392 450 }
kvn@500 451 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 452 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 453 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 454 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 455 }
kvn@500 456 return base;
kvn@500 457 }
kvn@500 458
kvn@500 459 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 460 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 461
kvn@500 462 Node* addp2 = addp->raw_out(0);
kvn@500 463 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 464 addp2->in(AddPNode::Base) == n &&
kvn@500 465 addp2->in(AddPNode::Address) == addp) {
kvn@500 466
kvn@500 467 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 468 //
kvn@500 469 // Find array's offset to push it on worklist first and
kvn@500 470 // as result process an array's element offset first (pushed second)
kvn@500 471 // to avoid CastPP for the array's offset.
kvn@500 472 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 473 // the AddP (Field) points to. Which would be wrong since
kvn@500 474 // the algorithm expects the CastPP has the same point as
kvn@500 475 // as AddP's base CheckCastPP (LocalVar).
kvn@500 476 //
kvn@500 477 // ArrayAllocation
kvn@500 478 // |
kvn@500 479 // CheckCastPP
kvn@500 480 // |
kvn@500 481 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 482 // | ||
kvn@500 483 // | || Int (element index)
kvn@500 484 // | || | ConI (log(element size))
kvn@500 485 // | || | /
kvn@500 486 // | || LShift
kvn@500 487 // | || /
kvn@500 488 // | AddP (array's element offset)
kvn@500 489 // | |
kvn@500 490 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 491 // | / /
kvn@500 492 // AddP (array's offset)
kvn@500 493 // |
kvn@500 494 // Load/Store (memory operation on array's element)
kvn@500 495 //
kvn@500 496 return addp2;
kvn@500 497 }
kvn@500 498 return NULL;
duke@435 499 }
duke@435 500
duke@435 501 //
duke@435 502 // Adjust the type and inputs of an AddP which computes the
duke@435 503 // address of a field of an instance
duke@435 504 //
kvn@728 505 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 506 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 507 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 508 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 509 if (t == NULL) {
kvn@500 510 // We are computing a raw address for a store captured by an Initialize
kvn@728 511 // compute an appropriate address type (cases #3 and #5).
kvn@500 512 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 513 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 514 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 515 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 516 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 517 }
kvn@658 518 int inst_id = base_t->instance_id();
kvn@658 519 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 520 "old type must be non-instance or match new type");
kvn@728 521
kvn@728 522 // The type 't' could be subclass of 'base_t'.
kvn@728 523 // As result t->offset() could be large then base_t's size and it will
kvn@728 524 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 525 // constructor verifies correctness of the offset.
kvn@728 526 //
twisti@1040 527 // It could happened on subclass's branch (from the type profiling
kvn@728 528 // inlining) which was not eliminated during parsing since the exactness
kvn@728 529 // of the allocation type was not propagated to the subclass type check.
kvn@728 530 //
kvn@1423 531 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 532 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 533 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 534 //
kvn@728 535 // Do nothing for such AddP node and don't process its users since
kvn@728 536 // this code branch will go away.
kvn@728 537 //
kvn@728 538 if (!t->is_known_instance() &&
kvn@1423 539 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 540 return false; // bail out
kvn@728 541 }
kvn@728 542
duke@435 543 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 544 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 545 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 546 // has side effect.
duke@435 547 int alias_idx = _compile->get_alias_index(tinst);
duke@435 548 igvn->set_type(addp, tinst);
duke@435 549 // record the allocation in the node map
kvn@1536 550 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 551 set_map(addp->_idx, get_map(base->_idx));
kvn@688 552
kvn@688 553 // Set addp's Base and Address to 'base'.
kvn@688 554 Node *abase = addp->in(AddPNode::Base);
kvn@688 555 Node *adr = addp->in(AddPNode::Address);
kvn@688 556 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 557 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 558 // Skip AddP cases #3 and #5.
kvn@688 559 } else {
kvn@688 560 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 561 if (abase != base) {
kvn@688 562 igvn->hash_delete(addp);
kvn@688 563 addp->set_req(AddPNode::Base, base);
kvn@688 564 if (abase == adr) {
kvn@688 565 addp->set_req(AddPNode::Address, base);
kvn@688 566 } else {
kvn@688 567 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 568 #ifdef ASSERT
kvn@688 569 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 570 assert(adr->is_AddP() && atype != NULL &&
kvn@688 571 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 572 #endif
kvn@688 573 }
kvn@688 574 igvn->hash_insert(addp);
duke@435 575 }
duke@435 576 }
kvn@500 577 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 578 record_for_optimizer(addp);
kvn@728 579 return true;
duke@435 580 }
duke@435 581
duke@435 582 //
duke@435 583 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 584 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 585 // phi was created. Cache the last newly created phi in the node map.
duke@435 586 //
duke@435 587 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 588 Compile *C = _compile;
duke@435 589 new_created = false;
duke@435 590 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 591 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 592 if (phi_alias_idx == alias_idx) {
duke@435 593 return orig_phi;
duke@435 594 }
kvn@1286 595 // Have we recently created a Phi for this alias index?
duke@435 596 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 597 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 598 return result;
duke@435 599 }
kvn@1286 600 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 601 // for different memory slices. Search all Phis for this region.
kvn@1286 602 if (result != NULL) {
kvn@1286 603 Node* region = orig_phi->in(0);
kvn@1286 604 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 605 Node* phi = region->fast_out(i);
kvn@1286 606 if (phi->is_Phi() &&
kvn@1286 607 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 608 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 609 return phi->as_Phi();
kvn@1286 610 }
kvn@1286 611 }
kvn@1286 612 }
kvn@473 613 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 614 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 615 // Retry compilation without escape analysis.
kvn@473 616 // If this is the first failure, the sentinel string will "stick"
kvn@473 617 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 618 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 619 }
kvn@473 620 return NULL;
kvn@473 621 }
duke@435 622 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 623 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 624 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 625 C->copy_node_notes_to(result, orig_phi);
duke@435 626 igvn->set_type(result, result->bottom_type());
duke@435 627 record_for_optimizer(result);
kvn@1536 628
kvn@1536 629 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 630 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 631 set_map(orig_phi->_idx, result);
kvn@1536 632 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 633
duke@435 634 new_created = true;
duke@435 635 return result;
duke@435 636 }
duke@435 637
duke@435 638 //
duke@435 639 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 640 // specified alias index.
duke@435 641 //
duke@435 642 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 643
duke@435 644 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 645 Compile *C = _compile;
duke@435 646 bool new_phi_created;
kvn@500 647 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 648 if (!new_phi_created) {
duke@435 649 return result;
duke@435 650 }
duke@435 651
duke@435 652 GrowableArray<PhiNode *> phi_list;
duke@435 653 GrowableArray<uint> cur_input;
duke@435 654
duke@435 655 PhiNode *phi = orig_phi;
duke@435 656 uint idx = 1;
duke@435 657 bool finished = false;
duke@435 658 while(!finished) {
duke@435 659 while (idx < phi->req()) {
kvn@500 660 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 661 if (mem != NULL && mem->is_Phi()) {
kvn@500 662 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 663 if (new_phi_created) {
duke@435 664 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 665 // processing new one
duke@435 666 phi_list.push(phi);
duke@435 667 cur_input.push(idx);
duke@435 668 phi = mem->as_Phi();
kvn@500 669 result = newphi;
duke@435 670 idx = 1;
duke@435 671 continue;
duke@435 672 } else {
kvn@500 673 mem = newphi;
duke@435 674 }
duke@435 675 }
kvn@473 676 if (C->failing()) {
kvn@473 677 return NULL;
kvn@473 678 }
duke@435 679 result->set_req(idx++, mem);
duke@435 680 }
duke@435 681 #ifdef ASSERT
duke@435 682 // verify that the new Phi has an input for each input of the original
duke@435 683 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 684 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 685 #endif
kvn@500 686 // Check if all new phi's inputs have specified alias index.
kvn@500 687 // Otherwise use old phi.
duke@435 688 for (uint i = 1; i < phi->req(); i++) {
kvn@500 689 Node* in = result->in(i);
kvn@500 690 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 691 }
duke@435 692 // we have finished processing a Phi, see if there are any more to do
duke@435 693 finished = (phi_list.length() == 0 );
duke@435 694 if (!finished) {
duke@435 695 phi = phi_list.pop();
duke@435 696 idx = cur_input.pop();
kvn@500 697 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 698 prev_result->set_req(idx++, result);
kvn@500 699 result = prev_result;
duke@435 700 }
duke@435 701 }
duke@435 702 return result;
duke@435 703 }
duke@435 704
kvn@500 705
kvn@500 706 //
kvn@500 707 // The next methods are derived from methods in MemNode.
kvn@500 708 //
never@2170 709 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 710 Node *mem = mmem;
never@2170 711 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 712 // means an array I have not precisely typed yet. Do not do any
kvn@500 713 // alias stuff with it any time soon.
never@2170 714 if( toop->base() != Type::AnyPtr &&
never@2170 715 !(toop->klass() != NULL &&
never@2170 716 toop->klass()->is_java_lang_Object() &&
never@2170 717 toop->offset() == Type::OffsetBot) ) {
kvn@500 718 mem = mmem->memory_at(alias_idx);
kvn@500 719 // Update input if it is progress over what we have now
kvn@500 720 }
kvn@500 721 return mem;
kvn@500 722 }
kvn@500 723
kvn@500 724 //
kvn@1536 725 // Move memory users to their memory slices.
kvn@1536 726 //
kvn@1536 727 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 728 Compile* C = _compile;
kvn@1536 729
kvn@1536 730 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 731 assert(tp != NULL, "ptr type");
kvn@1536 732 int alias_idx = C->get_alias_index(tp);
kvn@1536 733 int general_idx = C->get_general_index(alias_idx);
kvn@1536 734
kvn@1536 735 // Move users first
kvn@1536 736 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 737 Node* use = n->fast_out(i);
kvn@1536 738 if (use->is_MergeMem()) {
kvn@1536 739 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 740 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 741 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 742 continue; // Nothing to do
kvn@1536 743 }
kvn@1536 744 // Replace previous general reference to mem node.
kvn@1536 745 uint orig_uniq = C->unique();
kvn@1536 746 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 747 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 748 mmem->set_memory_at(general_idx, m);
kvn@1536 749 --imax;
kvn@1536 750 --i;
kvn@1536 751 } else if (use->is_MemBar()) {
kvn@1536 752 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 753 if (use->req() > MemBarNode::Precedent &&
kvn@1536 754 use->in(MemBarNode::Precedent) == n) {
kvn@1536 755 // Don't move related membars.
kvn@1536 756 record_for_optimizer(use);
kvn@1536 757 continue;
kvn@1536 758 }
kvn@1536 759 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 760 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 761 alias_idx == general_idx) {
kvn@1536 762 continue; // Nothing to do
kvn@1536 763 }
kvn@1536 764 // Move to general memory slice.
kvn@1536 765 uint orig_uniq = C->unique();
kvn@1536 766 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 767 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 768 igvn->hash_delete(use);
kvn@1536 769 imax -= use->replace_edge(n, m);
kvn@1536 770 igvn->hash_insert(use);
kvn@1536 771 record_for_optimizer(use);
kvn@1536 772 --i;
kvn@1536 773 #ifdef ASSERT
kvn@1536 774 } else if (use->is_Mem()) {
kvn@1536 775 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 776 // Don't move related cardmark.
kvn@1536 777 continue;
kvn@1536 778 }
kvn@1536 779 // Memory nodes should have new memory input.
kvn@1536 780 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 781 assert(tp != NULL, "ptr type");
kvn@1536 782 int idx = C->get_alias_index(tp);
kvn@1536 783 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 784 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 785 } else if (use->is_Phi()) {
kvn@1536 786 // Phi nodes should be split and moved already.
kvn@1536 787 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 788 assert(tp != NULL, "ptr type");
kvn@1536 789 int idx = C->get_alias_index(tp);
kvn@1536 790 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 791 } else {
kvn@1536 792 use->dump();
kvn@1536 793 assert(false, "should not be here");
kvn@1536 794 #endif
kvn@1536 795 }
kvn@1536 796 }
kvn@1536 797 }
kvn@1536 798
kvn@1536 799 //
kvn@500 800 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 801 // is the specified alias index.
kvn@500 802 //
kvn@500 803 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 804 if (orig_mem == NULL)
kvn@500 805 return orig_mem;
kvn@500 806 Compile* C = phase->C;
never@2170 807 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 808 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 809 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 810 Node *prev = NULL;
kvn@500 811 Node *result = orig_mem;
kvn@500 812 while (prev != result) {
kvn@500 813 prev = result;
kvn@688 814 if (result == start_mem)
twisti@1040 815 break; // hit one of our sentinels
kvn@500 816 if (result->is_Mem()) {
kvn@688 817 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 818 if (at != Type::TOP) {
kvn@500 819 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 820 int idx = C->get_alias_index(at->is_ptr());
kvn@500 821 if (idx == alias_idx)
kvn@500 822 break;
kvn@500 823 }
kvn@688 824 result = result->in(MemNode::Memory);
kvn@500 825 }
kvn@500 826 if (!is_instance)
kvn@500 827 continue; // don't search further for non-instance types
kvn@500 828 // skip over a call which does not affect this memory slice
kvn@500 829 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 830 Node *proj_in = result->in(0);
never@2170 831 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 832 break; // hit one of our sentinels
kvn@688 833 } else if (proj_in->is_Call()) {
kvn@500 834 CallNode *call = proj_in->as_Call();
never@2170 835 if (!call->may_modify(toop, phase)) {
kvn@500 836 result = call->in(TypeFunc::Memory);
kvn@500 837 }
kvn@500 838 } else if (proj_in->is_Initialize()) {
kvn@500 839 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 840 // Stop if this is the initialization for the object instance which
kvn@500 841 // which contains this memory slice, otherwise skip over it.
never@2170 842 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 843 result = proj_in->in(TypeFunc::Memory);
kvn@500 844 }
kvn@500 845 } else if (proj_in->is_MemBar()) {
kvn@500 846 result = proj_in->in(TypeFunc::Memory);
kvn@500 847 }
kvn@500 848 } else if (result->is_MergeMem()) {
kvn@500 849 MergeMemNode *mmem = result->as_MergeMem();
never@2170 850 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 851 if (result == mmem->base_memory()) {
kvn@500 852 // Didn't find instance memory, search through general slice recursively.
kvn@500 853 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 854 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 855 if (C->failing()) {
kvn@500 856 return NULL;
kvn@500 857 }
kvn@500 858 mmem->set_memory_at(alias_idx, result);
kvn@500 859 }
kvn@500 860 } else if (result->is_Phi() &&
kvn@500 861 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 862 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 863 if (un != NULL) {
kvn@1536 864 orig_phis.append_if_missing(result->as_Phi());
kvn@500 865 result = un;
kvn@500 866 } else {
kvn@500 867 break;
kvn@500 868 }
kvn@1535 869 } else if (result->is_ClearArray()) {
never@2170 870 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
kvn@1535 871 // Can not bypass initialization of the instance
kvn@1535 872 // we are looking for.
kvn@1535 873 break;
kvn@1535 874 }
kvn@1535 875 // Otherwise skip it (the call updated 'result' value).
kvn@1019 876 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 877 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 878 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 879 if (at != Type::TOP) {
kvn@1019 880 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 881 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 882 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 883 break;
kvn@1019 884 }
kvn@1019 885 result = result->in(0)->in(MemNode::Memory);
kvn@500 886 }
kvn@500 887 }
kvn@682 888 if (result->is_Phi()) {
kvn@500 889 PhiNode *mphi = result->as_Phi();
kvn@500 890 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 891 const TypePtr *t = mphi->adr_type();
kvn@500 892 if (C->get_alias_index(t) != alias_idx) {
kvn@682 893 // Create a new Phi with the specified alias index type.
kvn@500 894 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 895 } else if (!is_instance) {
kvn@682 896 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 897 // during Phase 4 if needed.
kvn@682 898 orig_phis.append_if_missing(mphi);
kvn@500 899 }
kvn@500 900 }
kvn@500 901 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 902 return result;
kvn@500 903 }
kvn@500 904
duke@435 905 //
duke@435 906 // Convert the types of unescaped object to instance types where possible,
duke@435 907 // propagate the new type information through the graph, and update memory
duke@435 908 // edges and MergeMem inputs to reflect the new type.
duke@435 909 //
duke@435 910 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 911 // The processing is done in 4 phases:
duke@435 912 //
duke@435 913 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 914 // types for the CheckCastPP for allocations where possible.
duke@435 915 // Propagate the the new types through users as follows:
duke@435 916 // casts and Phi: push users on alloc_worklist
duke@435 917 // AddP: cast Base and Address inputs to the instance type
duke@435 918 // push any AddP users on alloc_worklist and push any memnode
duke@435 919 // users onto memnode_worklist.
duke@435 920 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 921 // search the Memory chain for a store with the appropriate type
duke@435 922 // address type. If a Phi is found, create a new version with
twisti@1040 923 // the appropriate memory slices from each of the Phi inputs.
duke@435 924 // For stores, process the users as follows:
duke@435 925 // MemNode: push on memnode_worklist
duke@435 926 // MergeMem: push on mergemem_worklist
duke@435 927 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 928 // moving the first node encountered of each instance type to the
duke@435 929 // the input corresponding to its alias index.
duke@435 930 // appropriate memory slice.
duke@435 931 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 932 //
duke@435 933 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 934 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 935 // instance type.
duke@435 936 //
duke@435 937 // We start with:
duke@435 938 //
duke@435 939 // 7 Parm #memory
duke@435 940 // 10 ConI "12"
duke@435 941 // 19 CheckCastPP "Foo"
duke@435 942 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 943 // 29 CheckCastPP "Foo"
duke@435 944 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 945 //
duke@435 946 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 947 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 948 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 949 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 950 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 951 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 952 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 953 //
duke@435 954 //
duke@435 955 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 956 // and creating a new alias index for node 30. This gives:
duke@435 957 //
duke@435 958 // 7 Parm #memory
duke@435 959 // 10 ConI "12"
duke@435 960 // 19 CheckCastPP "Foo"
duke@435 961 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 962 // 29 CheckCastPP "Foo" iid=24
duke@435 963 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 964 //
duke@435 965 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 966 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 967 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 968 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 969 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 970 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 971 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 972 //
duke@435 973 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 974 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 975 // node 80 are updated and then the memory nodes are updated with the
duke@435 976 // values computed in phase 2. This results in:
duke@435 977 //
duke@435 978 // 7 Parm #memory
duke@435 979 // 10 ConI "12"
duke@435 980 // 19 CheckCastPP "Foo"
duke@435 981 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 982 // 29 CheckCastPP "Foo" iid=24
duke@435 983 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 984 //
duke@435 985 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 986 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 987 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 988 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 989 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 990 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 991 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 992 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 993 //
duke@435 994 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 995 GrowableArray<Node *> memnode_worklist;
duke@435 996 GrowableArray<PhiNode *> orig_phis;
kvn@1536 997
kvn@1989 998 PhaseGVN *igvn = _igvn;
duke@435 999 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 1000 Arena* arena = Thread::current()->resource_area();
kvn@1536 1001 VectorSet visited(arena);
kvn@1536 1002 VectorSet ptset(arena);
duke@435 1003
kvn@500 1004
kvn@500 1005 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1006 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1007 //
kvn@679 1008 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1009 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1010 // see the comment in find_second_addp().)
kvn@679 1011 //
duke@435 1012 while (alloc_worklist.length() != 0) {
duke@435 1013 Node *n = alloc_worklist.pop();
duke@435 1014 uint ni = n->_idx;
kvn@500 1015 const TypeOopPtr* tinst = NULL;
duke@435 1016 if (n->is_Call()) {
duke@435 1017 CallNode *alloc = n->as_Call();
duke@435 1018 // copy escape information to call node
kvn@679 1019 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1020 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1021 // We have an allocation or call which returns a Java object,
kvn@500 1022 // see if it is unescaped.
kvn@500 1023 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 1024 continue;
kvn@1219 1025
kvn@1219 1026 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1027 n = alloc->result_cast();
kvn@1219 1028 if (n == NULL) { // No uses except Initialize node
kvn@1219 1029 if (alloc->is_Allocate()) {
kvn@1219 1030 // Set the scalar_replaceable flag for allocation
kvn@1219 1031 // so it could be eliminated if it has no uses.
kvn@1219 1032 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1033 }
kvn@1219 1034 continue;
kvn@474 1035 }
kvn@1219 1036 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1037 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1038 continue;
kvn@1219 1039 }
kvn@1219 1040
kvn@500 1041 // The inline code for Object.clone() casts the allocation result to
kvn@682 1042 // java.lang.Object and then to the actual type of the allocated
kvn@500 1043 // object. Detect this case and use the second cast.
kvn@682 1044 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1045 // the allocation result is cast to java.lang.Object and then
kvn@682 1046 // to the actual Array type.
kvn@500 1047 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1048 && (alloc->is_AllocateArray() ||
kvn@682 1049 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1050 Node *cast2 = NULL;
kvn@500 1051 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1052 Node *use = n->fast_out(i);
kvn@500 1053 if (use->is_CheckCastPP()) {
kvn@500 1054 cast2 = use;
kvn@500 1055 break;
kvn@500 1056 }
kvn@500 1057 }
kvn@500 1058 if (cast2 != NULL) {
kvn@500 1059 n = cast2;
kvn@500 1060 } else {
kvn@1219 1061 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1062 // (reflection allocation), the object can't be restored during
kvn@1219 1063 // deoptimization without precise type.
kvn@500 1064 continue;
kvn@500 1065 }
kvn@500 1066 }
kvn@1219 1067 if (alloc->is_Allocate()) {
kvn@1219 1068 // Set the scalar_replaceable flag for allocation
kvn@1219 1069 // so it could be eliminated.
kvn@1219 1070 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1071 }
kvn@500 1072 set_escape_state(n->_idx, es);
kvn@682 1073 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1074 // - a direct allocation (not a call returning an object)
kvn@500 1075 // - non-escaping
kvn@500 1076 // - eligible to be a unique type
kvn@500 1077 // - not determined to be ineligible by escape analysis
kvn@1536 1078 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1079 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1080 set_map(alloc->_idx, n);
duke@435 1081 set_map(n->_idx, alloc);
kvn@500 1082 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1083 if (t == NULL)
duke@435 1084 continue; // not a TypeInstPtr
kvn@682 1085 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1086 igvn->hash_delete(n);
duke@435 1087 igvn->set_type(n, tinst);
duke@435 1088 n->raise_bottom_type(tinst);
duke@435 1089 igvn->hash_insert(n);
kvn@500 1090 record_for_optimizer(n);
kvn@500 1091 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1092 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1093
kvn@598 1094 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1095 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1096 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1097 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1098 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1099 "only AddP nodes are Field edges in CG");
kvn@598 1100 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1101 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1102 if (addp2 != NULL) {
kvn@598 1103 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1104 alloc_worklist.append_if_missing(addp2);
kvn@598 1105 }
kvn@598 1106 alloc_worklist.append_if_missing(use);
kvn@598 1107 }
kvn@598 1108 }
kvn@598 1109
kvn@500 1110 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1111 // the users of the raw allocation result and push AddP users
kvn@500 1112 // on alloc_worklist.
kvn@500 1113 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1114 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1115 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1116 Node *use = raw_result->fast_out(i);
kvn@500 1117 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1118 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1119 if (addp2 != NULL) {
kvn@500 1120 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1121 alloc_worklist.append_if_missing(addp2);
kvn@500 1122 }
kvn@500 1123 alloc_worklist.append_if_missing(use);
kvn@1535 1124 } else if (use->is_MemBar()) {
kvn@500 1125 memnode_worklist.append_if_missing(use);
kvn@500 1126 }
kvn@500 1127 }
kvn@500 1128 }
duke@435 1129 } else if (n->is_AddP()) {
duke@435 1130 ptset.Clear();
kvn@1989 1131 PointsTo(ptset, get_addp_base(n));
duke@435 1132 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 1133 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1134 if (elem == _phantom_object) {
kvn@1535 1135 assert(false, "escaped allocation");
kvn@500 1136 continue; // Assume the value was set outside this method.
kvn@1535 1137 }
kvn@500 1138 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1139 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1140 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1141 } else if (n->is_Phi() ||
kvn@500 1142 n->is_CheckCastPP() ||
kvn@603 1143 n->is_EncodeP() ||
kvn@603 1144 n->is_DecodeN() ||
kvn@500 1145 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1146 if (visited.test_set(n->_idx)) {
duke@435 1147 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1148 continue; // already processed
duke@435 1149 }
duke@435 1150 ptset.Clear();
kvn@1989 1151 PointsTo(ptset, n);
duke@435 1152 if (ptset.Size() == 1) {
kvn@500 1153 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1154 if (elem == _phantom_object) {
kvn@1535 1155 assert(false, "escaped allocation");
kvn@500 1156 continue; // Assume the value was set outside this method.
kvn@1535 1157 }
kvn@500 1158 Node *val = get_map(elem); // CheckCastPP node
duke@435 1159 TypeNode *tn = n->as_Type();
kvn@500 1160 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1161 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1162 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1163
kvn@598 1164 const Type *tn_type = igvn->type(tn);
kvn@658 1165 const TypeOopPtr *tn_t;
kvn@658 1166 if (tn_type->isa_narrowoop()) {
kvn@658 1167 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1168 } else {
kvn@658 1169 tn_t = tn_type->isa_oopptr();
kvn@658 1170 }
duke@435 1171
kvn@1535 1172 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1173 if (tn_type->isa_narrowoop()) {
kvn@598 1174 tn_type = tinst->make_narrowoop();
kvn@598 1175 } else {
kvn@598 1176 tn_type = tinst;
kvn@598 1177 }
duke@435 1178 igvn->hash_delete(tn);
kvn@598 1179 igvn->set_type(tn, tn_type);
kvn@598 1180 tn->set_type(tn_type);
duke@435 1181 igvn->hash_insert(tn);
kvn@500 1182 record_for_optimizer(n);
kvn@728 1183 } else {
kvn@1535 1184 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1185 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1186 "unexpected type");
kvn@1535 1187 continue; // Skip dead path with different type
duke@435 1188 }
duke@435 1189 }
duke@435 1190 } else {
kvn@1535 1191 debug_only(n->dump();)
kvn@1535 1192 assert(false, "EA: unexpected node");
duke@435 1193 continue;
duke@435 1194 }
kvn@1535 1195 // push allocation's users on appropriate worklist
duke@435 1196 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1197 Node *use = n->fast_out(i);
duke@435 1198 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1199 // Load/store to instance's field
kvn@500 1200 memnode_worklist.append_if_missing(use);
kvn@1535 1201 } else if (use->is_MemBar()) {
kvn@500 1202 memnode_worklist.append_if_missing(use);
kvn@500 1203 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1204 Node* addp2 = find_second_addp(use, n);
kvn@500 1205 if (addp2 != NULL) {
kvn@500 1206 alloc_worklist.append_if_missing(addp2);
kvn@500 1207 }
kvn@500 1208 alloc_worklist.append_if_missing(use);
kvn@500 1209 } else if (use->is_Phi() ||
kvn@500 1210 use->is_CheckCastPP() ||
kvn@603 1211 use->is_EncodeP() ||
kvn@603 1212 use->is_DecodeN() ||
kvn@500 1213 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1214 alloc_worklist.append_if_missing(use);
kvn@1535 1215 #ifdef ASSERT
kvn@1535 1216 } else if (use->is_Mem()) {
kvn@1535 1217 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1218 } else if (use->is_MergeMem()) {
kvn@1535 1219 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1220 } else if (use->is_SafePoint()) {
kvn@1535 1221 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1222 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1223 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1224 if (m->is_MergeMem()) {
kvn@1535 1225 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1226 }
kvn@1535 1227 } else {
kvn@1535 1228 uint op = use->Opcode();
kvn@1535 1229 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1230 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1231 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1232 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1233 n->dump();
kvn@1535 1234 use->dump();
kvn@1535 1235 assert(false, "EA: missing allocation reference path");
kvn@1535 1236 }
kvn@1535 1237 #endif
duke@435 1238 }
duke@435 1239 }
duke@435 1240
duke@435 1241 }
kvn@500 1242 // New alias types were created in split_AddP().
duke@435 1243 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1244
duke@435 1245 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1246 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1247 // actually updated until phase 4.)
duke@435 1248 if (memnode_worklist.length() == 0)
duke@435 1249 return; // nothing to do
duke@435 1250
duke@435 1251 while (memnode_worklist.length() != 0) {
duke@435 1252 Node *n = memnode_worklist.pop();
kvn@500 1253 if (visited.test_set(n->_idx))
kvn@500 1254 continue;
kvn@1535 1255 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1256 // we don't need to do anything, but the users must be pushed
kvn@1535 1257 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1258 // we don't need to do anything, but the users must be pushed
kvn@1535 1259 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1260 if (n == NULL)
duke@435 1261 continue;
duke@435 1262 } else {
duke@435 1263 assert(n->is_Mem(), "memory node required.");
duke@435 1264 Node *addr = n->in(MemNode::Address);
duke@435 1265 const Type *addr_t = igvn->type(addr);
duke@435 1266 if (addr_t == Type::TOP)
duke@435 1267 continue;
duke@435 1268 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1269 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1270 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1271 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1272 if (_compile->failing()) {
kvn@473 1273 return;
kvn@473 1274 }
kvn@500 1275 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1276 // We delay the memory edge update since we need old one in
kvn@1536 1277 // MergeMem code below when instances memory slices are separated.
kvn@1536 1278 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1279 assert(pn == NULL || pn == n, "wrong node");
duke@435 1280 set_map(n->_idx, mem);
kvn@679 1281 ptnode_adr(n->_idx)->_node = n;
kvn@500 1282 }
duke@435 1283 if (n->is_Load()) {
duke@435 1284 continue; // don't push users
duke@435 1285 } else if (n->is_LoadStore()) {
duke@435 1286 // get the memory projection
duke@435 1287 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1288 Node *use = n->fast_out(i);
duke@435 1289 if (use->Opcode() == Op_SCMemProj) {
duke@435 1290 n = use;
duke@435 1291 break;
duke@435 1292 }
duke@435 1293 }
duke@435 1294 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1295 }
duke@435 1296 }
duke@435 1297 // push user on appropriate worklist
duke@435 1298 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1299 Node *use = n->fast_out(i);
kvn@1535 1300 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1301 memnode_worklist.append_if_missing(use);
duke@435 1302 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1303 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1304 continue;
kvn@500 1305 memnode_worklist.append_if_missing(use);
kvn@1535 1306 } else if (use->is_MemBar()) {
kvn@500 1307 memnode_worklist.append_if_missing(use);
kvn@1535 1308 #ifdef ASSERT
kvn@1535 1309 } else if(use->is_Mem()) {
kvn@1535 1310 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1311 } else if (use->is_MergeMem()) {
kvn@1535 1312 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1313 } else {
kvn@1535 1314 uint op = use->Opcode();
kvn@1535 1315 if (!(op == Op_StoreCM ||
kvn@1535 1316 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1317 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1318 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1319 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1320 n->dump();
kvn@1535 1321 use->dump();
kvn@1535 1322 assert(false, "EA: missing memory path");
kvn@1535 1323 }
kvn@1535 1324 #endif
duke@435 1325 }
duke@435 1326 }
duke@435 1327 }
duke@435 1328
kvn@500 1329 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1330 // Walk each memory slice moving the first node encountered of each
kvn@500 1331 // instance type to the the input corresponding to its alias index.
kvn@1535 1332 uint length = _mergemem_worklist.length();
kvn@1535 1333 for( uint next = 0; next < length; ++next ) {
kvn@1535 1334 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1335 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1336 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1337 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1338 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1339 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1340 igvn->hash_delete(nmm);
duke@435 1341 uint nslices = nmm->req();
duke@435 1342 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1343 Node* mem = nmm->in(i);
kvn@500 1344 Node* cur = NULL;
duke@435 1345 if (mem == NULL || mem->is_top())
duke@435 1346 continue;
kvn@1536 1347 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1348 // if their type became more precise since this mergemem was created.
duke@435 1349 while (mem->is_Mem()) {
duke@435 1350 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1351 if (at != Type::TOP) {
duke@435 1352 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1353 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1354 if (idx == i) {
duke@435 1355 if (cur == NULL)
duke@435 1356 cur = mem;
duke@435 1357 } else {
duke@435 1358 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1359 nmm->set_memory_at(idx, mem);
duke@435 1360 }
duke@435 1361 }
duke@435 1362 }
duke@435 1363 mem = mem->in(MemNode::Memory);
duke@435 1364 }
duke@435 1365 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1366 // Find any instance of the current type if we haven't encountered
kvn@1536 1367 // already a memory slice of the instance along the memory chain.
kvn@500 1368 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1369 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1370 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1371 if (nmm->is_empty_memory(m)) {
kvn@500 1372 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1373 if (_compile->failing()) {
kvn@500 1374 return;
kvn@500 1375 }
kvn@500 1376 nmm->set_memory_at(ni, result);
kvn@500 1377 }
kvn@500 1378 }
kvn@500 1379 }
kvn@500 1380 }
kvn@500 1381 // Find the rest of instances values
kvn@500 1382 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1383 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1384 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1385 if (result == nmm->base_memory()) {
kvn@500 1386 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1387 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1388 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1389 if (_compile->failing()) {
kvn@500 1390 return;
kvn@500 1391 }
kvn@500 1392 nmm->set_memory_at(ni, result);
kvn@500 1393 }
kvn@500 1394 }
kvn@500 1395 igvn->hash_insert(nmm);
kvn@500 1396 record_for_optimizer(nmm);
duke@435 1397 }
duke@435 1398
kvn@500 1399 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1400 // the Memory input of memnodes
duke@435 1401 // First update the inputs of any non-instance Phi's from
duke@435 1402 // which we split out an instance Phi. Note we don't have
duke@435 1403 // to recursively process Phi's encounted on the input memory
duke@435 1404 // chains as is done in split_memory_phi() since they will
duke@435 1405 // also be processed here.
kvn@682 1406 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1407 PhiNode *phi = orig_phis.at(j);
duke@435 1408 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1409 igvn->hash_delete(phi);
duke@435 1410 for (uint i = 1; i < phi->req(); i++) {
duke@435 1411 Node *mem = phi->in(i);
kvn@500 1412 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1413 if (_compile->failing()) {
kvn@500 1414 return;
kvn@500 1415 }
duke@435 1416 if (mem != new_mem) {
duke@435 1417 phi->set_req(i, new_mem);
duke@435 1418 }
duke@435 1419 }
duke@435 1420 igvn->hash_insert(phi);
duke@435 1421 record_for_optimizer(phi);
duke@435 1422 }
duke@435 1423
duke@435 1424 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1425 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@1536 1426 #ifdef ASSERT
kvn@1536 1427 visited.Clear();
kvn@1536 1428 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1429 #endif
kvn@679 1430 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1431 Node *nmem = get_map(i);
duke@435 1432 if (nmem != NULL) {
kvn@679 1433 Node *n = ptnode_adr(i)->_node;
kvn@1536 1434 assert(n != NULL, "sanity");
kvn@1536 1435 if (n->is_Mem()) {
kvn@1536 1436 #ifdef ASSERT
kvn@1536 1437 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1438 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1439 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1440 }
kvn@1536 1441 #endif
kvn@1536 1442 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1443 if (!n->is_Load()) {
kvn@1536 1444 // Move memory users of a store first.
kvn@1536 1445 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1446 }
kvn@1536 1447 // Now update memory input
duke@435 1448 igvn->hash_delete(n);
duke@435 1449 n->set_req(MemNode::Memory, nmem);
duke@435 1450 igvn->hash_insert(n);
duke@435 1451 record_for_optimizer(n);
kvn@1536 1452 } else {
kvn@1536 1453 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1454 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1455 }
duke@435 1456 }
duke@435 1457 }
kvn@1536 1458 #ifdef ASSERT
kvn@1536 1459 // Verify that memory was split correctly
kvn@1536 1460 while (old_mems.is_nonempty()) {
kvn@1536 1461 Node* old_mem = old_mems.node();
kvn@1536 1462 uint old_cnt = old_mems.index();
kvn@1536 1463 old_mems.pop();
kvn@1536 1464 assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
kvn@1536 1465 }
kvn@1536 1466 #endif
duke@435 1467 }
duke@435 1468
kvn@679 1469 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1470 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1471 // are represented by ideal Macro nodes.
kvn@679 1472 int cnt = C->macro_count();
kvn@679 1473 for( int i=0; i < cnt; i++ ) {
kvn@679 1474 Node *n = C->macro_node(i);
kvn@679 1475 if ( n->is_Allocate() )
kvn@679 1476 return true;
kvn@679 1477 if( n->is_Lock() ) {
kvn@679 1478 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1479 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1480 return true;
kvn@679 1481 }
kvn@679 1482 }
kvn@679 1483 return false;
kvn@679 1484 }
kvn@679 1485
kvn@1989 1486 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1487 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1488 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1489 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1490 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1491
kvn@1989 1492 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1493 // Perform escape analysis
kvn@1989 1494 if (congraph->compute_escape()) {
kvn@1989 1495 // There are non escaping objects.
kvn@1989 1496 C->set_congraph(congraph);
kvn@1989 1497 }
kvn@1989 1498
kvn@1989 1499 // Cleanup.
kvn@1989 1500 if (oop_null->outcnt() == 0)
kvn@1989 1501 igvn->hash_delete(oop_null);
kvn@1989 1502 if (noop_null->outcnt() == 0)
kvn@1989 1503 igvn->hash_delete(noop_null);
kvn@1989 1504 }
kvn@1989 1505
kvn@679 1506 bool ConnectionGraph::compute_escape() {
kvn@679 1507 Compile* C = _compile;
duke@435 1508
kvn@598 1509 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1510
kvn@500 1511 Unique_Node_List worklist_init;
kvn@679 1512 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1513
kvn@500 1514 // Initialize worklist
kvn@679 1515 if (C->root() != NULL) {
kvn@679 1516 worklist_init.push(C->root());
kvn@500 1517 }
kvn@500 1518
kvn@500 1519 GrowableArray<int> cg_worklist;
kvn@1989 1520 PhaseGVN* igvn = _igvn;
kvn@500 1521 bool has_allocations = false;
kvn@500 1522
kvn@500 1523 // Push all useful nodes onto CG list and set their type.
kvn@500 1524 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1525 Node* n = worklist_init.at(next);
kvn@500 1526 record_for_escape_analysis(n, igvn);
kvn@679 1527 // Only allocations and java static calls results are checked
kvn@679 1528 // for an escape status. See process_call_result() below.
kvn@679 1529 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1530 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1531 has_allocations = true;
kvn@500 1532 }
kvn@1535 1533 if(n->is_AddP()) {
kvn@1535 1534 // Collect address nodes which directly reference an allocation.
kvn@1535 1535 // Use them during stage 3 below to build initial connection graph
kvn@1535 1536 // field edges. Other field edges could be added after StoreP/LoadP
kvn@1535 1537 // nodes are processed during stage 4 below.
kvn@1535 1538 Node* base = get_addp_base(n);
kvn@1535 1539 if(base->is_Proj() && base->in(0)->is_Allocate()) {
kvn@1535 1540 cg_worklist.append(n->_idx);
kvn@1535 1541 }
kvn@1535 1542 } else if (n->is_MergeMem()) {
kvn@1535 1543 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1544 // scalar replaceable objects in split_unique_types().
kvn@1535 1545 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1546 }
kvn@500 1547 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1548 Node* m = n->fast_out(i); // Get user
kvn@500 1549 worklist_init.push(m);
kvn@500 1550 }
kvn@500 1551 }
kvn@500 1552
kvn@679 1553 if (!has_allocations) {
kvn@500 1554 _collecting = false;
kvn@679 1555 return false; // Nothing to do.
kvn@500 1556 }
kvn@500 1557
kvn@500 1558 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1559 uint delayed_size = _delayed_worklist.size();
kvn@679 1560 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1561 Node* n = _delayed_worklist.at(next);
kvn@500 1562 build_connection_graph(n, igvn);
kvn@500 1563 }
kvn@500 1564
kvn@500 1565 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1566 uint cg_length = cg_worklist.length();
kvn@679 1567 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1568 int ni = cg_worklist.at(next);
kvn@679 1569 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1570 }
kvn@500 1571
kvn@500 1572 cg_worklist.clear();
kvn@500 1573 cg_worklist.append(_phantom_object);
kvn@500 1574
kvn@500 1575 // 4. Build Connection Graph which need
kvn@500 1576 // to walk the connection graph.
kvn@679 1577 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1578 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1579 Node *n = ptn->_node;
kvn@500 1580 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1581 build_connection_graph(n, igvn);
kvn@500 1582 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1583 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1584 }
duke@435 1585 }
duke@435 1586
kvn@1535 1587 Arena* arena = Thread::current()->resource_area();
kvn@1535 1588 VectorSet ptset(arena);
kvn@536 1589 GrowableArray<uint> deferred_edges;
kvn@1535 1590 VectorSet visited(arena);
duke@435 1591
kvn@1535 1592 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1593 // escape state of nonescaping objects.
kvn@679 1594 cg_length = cg_worklist.length();
kvn@679 1595 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1596 int ni = cg_worklist.at(next);
kvn@679 1597 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1598 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1599 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1600 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1601 Node *n = ptn->_node;
duke@435 1602 if (n->is_AddP()) {
kvn@1535 1603 // Search for objects which are not scalar replaceable
kvn@1535 1604 // and adjust their escape state.
kvn@1535 1605 verify_escape_state(ni, ptset, igvn);
duke@435 1606 }
duke@435 1607 }
duke@435 1608 }
kvn@500 1609
kvn@679 1610 // 6. Propagate escape states.
kvn@679 1611 GrowableArray<int> worklist;
kvn@679 1612 bool has_non_escaping_obj = false;
kvn@679 1613
duke@435 1614 // push all GlobalEscape nodes on the worklist
kvn@679 1615 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1616 int nk = cg_worklist.at(next);
kvn@679 1617 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1618 worklist.push(nk);
duke@435 1619 }
kvn@679 1620 // mark all nodes reachable from GlobalEscape nodes
duke@435 1621 while(worklist.length() > 0) {
kvn@679 1622 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1623 uint e_cnt = ptn->edge_count();
kvn@679 1624 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1625 uint npi = ptn->edge_target(ei);
duke@435 1626 PointsToNode *np = ptnode_adr(npi);
kvn@500 1627 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1628 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1629 worklist.push(npi);
duke@435 1630 }
duke@435 1631 }
duke@435 1632 }
duke@435 1633
duke@435 1634 // push all ArgEscape nodes on the worklist
kvn@679 1635 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1636 int nk = cg_worklist.at(next);
kvn@679 1637 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1638 worklist.push(nk);
duke@435 1639 }
kvn@679 1640 // mark all nodes reachable from ArgEscape nodes
duke@435 1641 while(worklist.length() > 0) {
kvn@679 1642 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1643 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1644 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1645 uint e_cnt = ptn->edge_count();
kvn@679 1646 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1647 uint npi = ptn->edge_target(ei);
duke@435 1648 PointsToNode *np = ptnode_adr(npi);
kvn@500 1649 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1650 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1651 worklist.push(npi);
duke@435 1652 }
duke@435 1653 }
duke@435 1654 }
kvn@500 1655
kvn@679 1656 GrowableArray<Node*> alloc_worklist;
kvn@679 1657
kvn@500 1658 // push all NoEscape nodes on the worklist
kvn@679 1659 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1660 int nk = cg_worklist.at(next);
kvn@679 1661 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1662 worklist.push(nk);
kvn@500 1663 }
kvn@679 1664 // mark all nodes reachable from NoEscape nodes
kvn@500 1665 while(worklist.length() > 0) {
kvn@679 1666 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1667 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1668 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1669 Node* n = ptn->_node;
kvn@679 1670 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1671 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1672 // for processing in split_unique_types().
kvn@679 1673 alloc_worklist.append(n);
kvn@679 1674 }
kvn@679 1675 uint e_cnt = ptn->edge_count();
kvn@679 1676 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1677 uint npi = ptn->edge_target(ei);
kvn@500 1678 PointsToNode *np = ptnode_adr(npi);
kvn@500 1679 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1680 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1681 worklist.push(npi);
kvn@500 1682 }
kvn@500 1683 }
kvn@500 1684 }
kvn@500 1685
duke@435 1686 _collecting = false;
kvn@679 1687 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1688
kvn@1989 1689 #ifndef PRODUCT
kvn@1989 1690 if (PrintEscapeAnalysis) {
kvn@1989 1691 dump(); // Dump ConnectionGraph
kvn@1989 1692 }
kvn@1989 1693 #endif
kvn@1989 1694
kvn@679 1695 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1696 if ( has_scalar_replaceable_candidates &&
kvn@679 1697 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1698
kvn@679 1699 // Now use the escape information to create unique types for
kvn@679 1700 // scalar replaceable objects.
kvn@679 1701 split_unique_types(alloc_worklist);
duke@435 1702
kvn@679 1703 if (C->failing()) return false;
duke@435 1704
kvn@679 1705 C->print_method("After Escape Analysis", 2);
duke@435 1706
kvn@500 1707 #ifdef ASSERT
kvn@679 1708 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1709 tty->print("=== No allocations eliminated for ");
kvn@679 1710 C->method()->print_short_name();
kvn@500 1711 if(!EliminateAllocations) {
kvn@500 1712 tty->print(" since EliminateAllocations is off ===");
kvn@679 1713 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1714 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1715 } else if(C->AliasLevel() < 3) {
kvn@500 1716 tty->print(" since AliasLevel < 3 ===");
duke@435 1717 }
kvn@500 1718 tty->cr();
kvn@500 1719 #endif
duke@435 1720 }
kvn@679 1721 return has_non_escaping_obj;
duke@435 1722 }
duke@435 1723
kvn@1535 1724 // Search for objects which are not scalar replaceable.
kvn@1535 1725 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
kvn@1535 1726 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1727 Node* n = ptn->_node;
kvn@1535 1728 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1729 // Search for objects which are not scalar replaceable.
kvn@1535 1730 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1731 // to referenced objects.
kvn@1535 1732 // Note: currently there are no difference in compiler optimizations
kvn@1535 1733 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1734 // scalar replaceable.
kvn@1535 1735
kvn@1535 1736 Compile* C = _compile;
kvn@1535 1737
kvn@1535 1738 int offset = ptn->offset();
kvn@1535 1739 Node* base = get_addp_base(n);
kvn@1535 1740 ptset.Clear();
kvn@1989 1741 PointsTo(ptset, base);
kvn@1535 1742 int ptset_size = ptset.Size();
kvn@1535 1743
kvn@1535 1744 // Check if a oop field's initializing value is recorded and add
kvn@1535 1745 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1746 // Connection Graph does not record a default initialization by NULL
kvn@1535 1747 // captured by Initialize node.
kvn@1535 1748 //
kvn@1535 1749 // Note: it will disable scalar replacement in some cases:
kvn@1535 1750 //
kvn@1535 1751 // Point p[] = new Point[1];
kvn@1535 1752 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1753 //
kvn@1535 1754 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1755 //
kvn@1535 1756 // Point p[] = new Point[1];
kvn@1535 1757 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1758 //
kvn@1535 1759 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1760 //
kvn@1535 1761 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@1535 1762 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1763 // It does not matter if it is not Allocation node since
kvn@1535 1764 // only non-escaping allocations are scalar replaced.
kvn@1535 1765 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1766 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1767 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1768 InitializeNode* ini = alloc->initialization();
kvn@1535 1769
kvn@1535 1770 // Check only oop fields.
kvn@1535 1771 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1772 BasicType basic_field_type = T_INT;
kvn@1535 1773 if (adr_type->isa_instptr()) {
kvn@1535 1774 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1775 if (field != NULL) {
kvn@1535 1776 basic_field_type = field->layout_type();
kvn@1535 1777 } else {
kvn@1535 1778 // Ignore non field load (for example, klass load)
kvn@1535 1779 }
kvn@1535 1780 } else if (adr_type->isa_aryptr()) {
kvn@1535 1781 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1782 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1783 } else {
kvn@1535 1784 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1785 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1786 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1787 }
kvn@1535 1788 if (basic_field_type == T_OBJECT ||
kvn@1535 1789 basic_field_type == T_NARROWOOP ||
kvn@1535 1790 basic_field_type == T_ARRAY) {
kvn@1535 1791 Node* value = NULL;
kvn@1535 1792 if (ini != NULL) {
kvn@1535 1793 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1794 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1795 if (store != NULL && store->is_Store()) {
kvn@1535 1796 value = store->in(MemNode::ValueIn);
kvn@1535 1797 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1798 // Check for a store which follows allocation without branches.
kvn@1535 1799 // For example, a volatile field store is not collected
kvn@1535 1800 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1801 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1802 store = n->fast_out(i);
kvn@1535 1803 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1804 Node* ctrl = store->in(0);
kvn@1535 1805 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1806 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1807 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1808 ctrl = ctrl->in(0);
kvn@1535 1809 }
kvn@1535 1810 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1811 value = store->in(MemNode::ValueIn);
kvn@1535 1812 break;
kvn@1535 1813 }
kvn@1535 1814 }
kvn@1535 1815 }
kvn@1535 1816 }
kvn@1535 1817 }
kvn@1535 1818 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1819 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1820 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1821 add_pointsto_edge(nidx, null_idx);
kvn@1535 1822 }
kvn@1535 1823 }
kvn@1535 1824 }
kvn@1535 1825 }
kvn@1535 1826
kvn@1535 1827 // An object is not scalar replaceable if the field which may point
kvn@1535 1828 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1829 //
kvn@1535 1830 if (offset == Type::OffsetBot) {
kvn@1535 1831 uint e_cnt = ptn->edge_count();
kvn@1535 1832 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1833 uint npi = ptn->edge_target(ei);
kvn@1535 1834 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1835 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1836 }
kvn@1535 1837 }
kvn@1535 1838
kvn@1535 1839 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1840 // access its field since the field value is unknown after it.
kvn@1535 1841 //
kvn@1535 1842 bool has_LoadStore = false;
kvn@1535 1843 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1844 Node *use = n->fast_out(i);
kvn@1535 1845 if (use->is_LoadStore()) {
kvn@1535 1846 has_LoadStore = true;
kvn@1535 1847 break;
kvn@1535 1848 }
kvn@1535 1849 }
kvn@1535 1850 // An object is not scalar replaceable if the address points
kvn@1535 1851 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1852 //
kvn@1535 1853 // Or the address may point to more then one object. This may produce
kvn@1535 1854 // the false positive result (set scalar_replaceable to false)
kvn@1535 1855 // since the flow-insensitive escape analysis can't separate
kvn@1535 1856 // the case when stores overwrite the field's value from the case
kvn@1535 1857 // when stores happened on different control branches.
kvn@1535 1858 //
kvn@1535 1859 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1860 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@1535 1861 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@1535 1862 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1863 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1864 }
kvn@1535 1865 }
kvn@1535 1866 }
kvn@1535 1867
duke@435 1868 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1869
duke@435 1870 switch (call->Opcode()) {
kvn@500 1871 #ifdef ASSERT
duke@435 1872 case Op_Allocate:
duke@435 1873 case Op_AllocateArray:
duke@435 1874 case Op_Lock:
duke@435 1875 case Op_Unlock:
kvn@500 1876 assert(false, "should be done already");
duke@435 1877 break;
kvn@500 1878 #endif
kvn@1535 1879 case Op_CallLeaf:
kvn@500 1880 case Op_CallLeafNoFP:
kvn@500 1881 {
kvn@500 1882 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1883 // Adjust escape state for outgoing arguments.
kvn@500 1884 const TypeTuple * d = call->tf()->domain();
kvn@500 1885 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1886 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1887 const Type* at = d->field_at(i);
kvn@500 1888 Node *arg = call->in(i)->uncast();
kvn@500 1889 const Type *aat = phase->type(arg);
kvn@1535 1890 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1891 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1892
kvn@500 1893 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1894 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1895 #ifdef ASSERT
kvn@1535 1896 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1897 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1898 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1899 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1900 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1901 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1902 ) {
kvn@1535 1903 call->dump();
kvn@1535 1904 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1905 }
kvn@1535 1906 #endif
kvn@500 1907 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1908 if (arg->is_AddP()) {
kvn@500 1909 //
kvn@500 1910 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1911 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1912 //
kvn@500 1913 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1914 // pointer to the base (with offset) is passed as argument.
kvn@500 1915 //
kvn@500 1916 arg = get_addp_base(arg);
kvn@500 1917 }
kvn@500 1918 ptset.Clear();
kvn@1989 1919 PointsTo(ptset, arg);
kvn@500 1920 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1921 uint pt = j.elem;
kvn@500 1922 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1923 }
kvn@500 1924 }
kvn@500 1925 }
kvn@500 1926 break;
kvn@500 1927 }
duke@435 1928
duke@435 1929 case Op_CallStaticJava:
duke@435 1930 // For a static call, we know exactly what method is being called.
duke@435 1931 // Use bytecode estimator to record the call's escape affects
duke@435 1932 {
duke@435 1933 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1934 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1935 // fall-through if not a Java method or no analyzer information
kvn@500 1936 if (call_analyzer != NULL) {
duke@435 1937 const TypeTuple * d = call->tf()->domain();
duke@435 1938 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1939 bool copy_dependencies = false;
duke@435 1940 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1941 const Type* at = d->field_at(i);
duke@435 1942 int k = i - TypeFunc::Parms;
kvn@1535 1943 Node *arg = call->in(i)->uncast();
duke@435 1944
kvn@1535 1945 if (at->isa_oopptr() != NULL &&
kvn@1571 1946 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1947
kvn@500 1948 bool global_escapes = false;
kvn@500 1949 bool fields_escapes = false;
kvn@500 1950 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1951 // The argument global escapes, mark everything it could point to
kvn@500 1952 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1953 global_escapes = true;
kvn@500 1954 } else {
kvn@500 1955 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1956 // The argument itself doesn't escape, but any fields might
kvn@500 1957 fields_escapes = true;
kvn@500 1958 }
kvn@500 1959 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1960 copy_dependencies = true;
kvn@500 1961 }
duke@435 1962
kvn@500 1963 ptset.Clear();
kvn@1989 1964 PointsTo(ptset, arg);
kvn@500 1965 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1966 uint pt = j.elem;
kvn@500 1967 if (global_escapes) {
kvn@500 1968 //The argument global escapes, mark everything it could point to
duke@435 1969 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1970 } else {
kvn@500 1971 if (fields_escapes) {
kvn@500 1972 // The argument itself doesn't escape, but any fields might
kvn@500 1973 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1974 }
kvn@500 1975 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1976 }
duke@435 1977 }
duke@435 1978 }
duke@435 1979 }
kvn@500 1980 if (copy_dependencies)
kvn@679 1981 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1982 break;
duke@435 1983 }
duke@435 1984 }
duke@435 1985
duke@435 1986 default:
kvn@500 1987 // Fall-through here if not a Java method or no analyzer information
kvn@500 1988 // or some other type of call, assume the worst case: all arguments
duke@435 1989 // globally escape.
duke@435 1990 {
duke@435 1991 // adjust escape state for outgoing arguments
duke@435 1992 const TypeTuple * d = call->tf()->domain();
duke@435 1993 VectorSet ptset(Thread::current()->resource_area());
duke@435 1994 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1995 const Type* at = d->field_at(i);
duke@435 1996 if (at->isa_oopptr() != NULL) {
kvn@500 1997 Node *arg = call->in(i)->uncast();
kvn@500 1998 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1999 ptset.Clear();
kvn@1989 2000 PointsTo(ptset, arg);
duke@435 2001 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 2002 uint pt = j.elem;
duke@435 2003 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 2004 }
duke@435 2005 }
duke@435 2006 }
duke@435 2007 }
duke@435 2008 }
duke@435 2009 }
duke@435 2010 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2011 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2012 uint call_idx = call->_idx;
kvn@679 2013 uint resproj_idx = resproj->_idx;
duke@435 2014
duke@435 2015 switch (call->Opcode()) {
duke@435 2016 case Op_Allocate:
duke@435 2017 {
duke@435 2018 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2019 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2020 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2021 ciKlass* cik = kt->klass();
duke@435 2022
kvn@500 2023 PointsToNode::EscapeState es;
kvn@500 2024 uint edge_to;
kvn@1894 2025 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2026 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2027 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2028 es = PointsToNode::GlobalEscape;
kvn@500 2029 edge_to = _phantom_object; // Could not be worse
duke@435 2030 } else {
kvn@500 2031 es = PointsToNode::NoEscape;
kvn@679 2032 edge_to = call_idx;
duke@435 2033 }
kvn@679 2034 set_escape_state(call_idx, es);
kvn@679 2035 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2036 _processed.set(resproj_idx);
duke@435 2037 break;
duke@435 2038 }
duke@435 2039
duke@435 2040 case Op_AllocateArray:
duke@435 2041 {
kvn@1894 2042
kvn@1894 2043 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2044 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2045 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2046 ciKlass* cik = kt->klass();
kvn@1894 2047
kvn@1894 2048 PointsToNode::EscapeState es;
kvn@1894 2049 uint edge_to;
kvn@1894 2050 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2051 es = PointsToNode::GlobalEscape;
kvn@1894 2052 edge_to = _phantom_object;
kvn@1894 2053 } else {
kvn@1894 2054 es = PointsToNode::NoEscape;
kvn@1894 2055 edge_to = call_idx;
kvn@1894 2056 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2057 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2058 // Not scalar replaceable if the length is not constant or too big.
kvn@1894 2059 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@1894 2060 }
kvn@500 2061 }
kvn@1894 2062 set_escape_state(call_idx, es);
kvn@1894 2063 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2064 _processed.set(resproj_idx);
duke@435 2065 break;
duke@435 2066 }
duke@435 2067
duke@435 2068 case Op_CallStaticJava:
duke@435 2069 // For a static call, we know exactly what method is being called.
duke@435 2070 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2071 {
kvn@500 2072 bool done = true;
duke@435 2073 const TypeTuple *r = call->tf()->range();
duke@435 2074 const Type* ret_type = NULL;
duke@435 2075
duke@435 2076 if (r->cnt() > TypeFunc::Parms)
duke@435 2077 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2078
duke@435 2079 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2080 // _multianewarray functions return a TypeRawPtr.
kvn@500 2081 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2082 _processed.set(resproj_idx);
duke@435 2083 break; // doesn't return a pointer type
kvn@500 2084 }
duke@435 2085 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2086 const TypeTuple * d = call->tf()->domain();
duke@435 2087 if (meth == NULL) {
duke@435 2088 // not a Java method, assume global escape
kvn@679 2089 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2090 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2091 } else {
kvn@500 2092 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2093 bool copy_dependencies = false;
duke@435 2094
kvn@500 2095 if (call_analyzer->is_return_allocated()) {
kvn@500 2096 // Returns a newly allocated unescaped object, simply
kvn@500 2097 // update dependency information.
kvn@500 2098 // Mark it as NoEscape so that objects referenced by
kvn@500 2099 // it's fields will be marked as NoEscape at least.
kvn@679 2100 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2101 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2102 copy_dependencies = true;
kvn@679 2103 } else if (call_analyzer->is_return_local()) {
duke@435 2104 // determine whether any arguments are returned
kvn@679 2105 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 2106 bool ret_arg = false;
duke@435 2107 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2108 const Type* at = d->field_at(i);
duke@435 2109
duke@435 2110 if (at->isa_oopptr() != NULL) {
kvn@500 2111 Node *arg = call->in(i)->uncast();
duke@435 2112
kvn@500 2113 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2114 ret_arg = true;
kvn@679 2115 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2116 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2117 done = false;
kvn@500 2118 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2119 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2120 else
kvn@679 2121 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2122 arg_esp->_hidden_alias = true;
duke@435 2123 }
duke@435 2124 }
duke@435 2125 }
kvn@742 2126 if (done && !ret_arg) {
kvn@742 2127 // Returns unknown object.
kvn@742 2128 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2129 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2130 }
kvn@500 2131 copy_dependencies = true;
duke@435 2132 } else {
kvn@679 2133 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2134 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 2135 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2136 const Type* at = d->field_at(i);
kvn@500 2137 if (at->isa_oopptr() != NULL) {
kvn@500 2138 Node *arg = call->in(i)->uncast();
kvn@679 2139 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2140 arg_esp->_hidden_alias = true;
kvn@500 2141 }
kvn@500 2142 }
duke@435 2143 }
kvn@500 2144 if (copy_dependencies)
kvn@679 2145 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2146 }
kvn@500 2147 if (done)
kvn@679 2148 _processed.set(resproj_idx);
duke@435 2149 break;
duke@435 2150 }
duke@435 2151
duke@435 2152 default:
duke@435 2153 // Some other type of call, assume the worst case that the
duke@435 2154 // returned value, if any, globally escapes.
duke@435 2155 {
duke@435 2156 const TypeTuple *r = call->tf()->range();
duke@435 2157 if (r->cnt() > TypeFunc::Parms) {
duke@435 2158 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2159
duke@435 2160 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2161 // _multianewarray functions return a TypeRawPtr.
duke@435 2162 if (ret_type->isa_ptr() != NULL) {
kvn@679 2163 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2164 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2165 }
duke@435 2166 }
kvn@679 2167 _processed.set(resproj_idx);
duke@435 2168 }
duke@435 2169 }
duke@435 2170 }
duke@435 2171
kvn@500 2172 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2173 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2174 // or to call PointsTo() to walk the connection graph).
kvn@500 2175 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2176 if (_processed.test(n->_idx))
kvn@500 2177 return; // No need to redefine node's state.
kvn@500 2178
kvn@500 2179 if (n->is_Call()) {
kvn@500 2180 // Arguments to allocation and locking don't escape.
kvn@500 2181 if (n->is_Allocate()) {
kvn@500 2182 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2183 record_for_optimizer(n);
kvn@500 2184 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2185 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2186 // the first IGVN optimization when escape information is still available.
kvn@500 2187 record_for_optimizer(n);
kvn@500 2188 _processed.set(n->_idx);
kvn@500 2189 } else {
kvn@1535 2190 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2191 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2192 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2193
kvn@500 2194 // Check if a call returns an object.
kvn@500 2195 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2196 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2197 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2198 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2199 nt = PointsToNode::JavaObject;
kvn@1535 2200 if (!n->is_CallStaticJava()) {
kvn@1535 2201 // Since the called mathod is statically unknown assume
kvn@1535 2202 // the worst case that the returned value globally escapes.
kvn@1535 2203 es = PointsToNode::GlobalEscape;
kvn@500 2204 }
duke@435 2205 }
kvn@1535 2206 add_node(n, nt, es, false);
duke@435 2207 }
kvn@500 2208 return;
duke@435 2209 }
kvn@500 2210
kvn@500 2211 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2212 // ThreadLocal has RawPrt type.
kvn@500 2213 switch (n->Opcode()) {
kvn@500 2214 case Op_AddP:
kvn@500 2215 {
kvn@500 2216 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2217 break;
kvn@500 2218 }
kvn@500 2219 case Op_CastX2P:
kvn@500 2220 { // "Unsafe" memory access.
kvn@500 2221 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2222 break;
kvn@500 2223 }
kvn@500 2224 case Op_CastPP:
kvn@500 2225 case Op_CheckCastPP:
kvn@559 2226 case Op_EncodeP:
kvn@559 2227 case Op_DecodeN:
kvn@500 2228 {
kvn@500 2229 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2230 int ti = n->in(1)->_idx;
kvn@679 2231 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2232 if (nt == PointsToNode::UnknownType) {
kvn@500 2233 _delayed_worklist.push(n); // Process it later.
kvn@500 2234 break;
kvn@500 2235 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2236 add_pointsto_edge(n->_idx, ti);
kvn@500 2237 } else {
kvn@500 2238 add_deferred_edge(n->_idx, ti);
kvn@500 2239 }
kvn@500 2240 _processed.set(n->_idx);
kvn@500 2241 break;
kvn@500 2242 }
kvn@500 2243 case Op_ConP:
kvn@500 2244 {
kvn@500 2245 // assume all pointer constants globally escape except for null
kvn@500 2246 PointsToNode::EscapeState es;
kvn@500 2247 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2248 es = PointsToNode::NoEscape;
kvn@500 2249 else
kvn@500 2250 es = PointsToNode::GlobalEscape;
kvn@500 2251
kvn@500 2252 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2253 break;
kvn@500 2254 }
coleenp@548 2255 case Op_ConN:
coleenp@548 2256 {
coleenp@548 2257 // assume all narrow oop constants globally escape except for null
coleenp@548 2258 PointsToNode::EscapeState es;
coleenp@548 2259 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2260 es = PointsToNode::NoEscape;
coleenp@548 2261 else
coleenp@548 2262 es = PointsToNode::GlobalEscape;
coleenp@548 2263
coleenp@548 2264 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2265 break;
coleenp@548 2266 }
kvn@559 2267 case Op_CreateEx:
kvn@559 2268 {
kvn@559 2269 // assume that all exception objects globally escape
kvn@559 2270 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2271 break;
kvn@559 2272 }
kvn@500 2273 case Op_LoadKlass:
kvn@599 2274 case Op_LoadNKlass:
kvn@500 2275 {
kvn@500 2276 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2277 break;
kvn@500 2278 }
kvn@500 2279 case Op_LoadP:
coleenp@548 2280 case Op_LoadN:
kvn@500 2281 {
kvn@500 2282 const Type *t = phase->type(n);
kvn@688 2283 if (t->make_ptr() == NULL) {
kvn@500 2284 _processed.set(n->_idx);
kvn@500 2285 return;
kvn@500 2286 }
kvn@500 2287 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2288 break;
kvn@500 2289 }
kvn@500 2290 case Op_Parm:
kvn@500 2291 {
kvn@500 2292 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2293 uint con = n->as_Proj()->_con;
kvn@500 2294 if (con < TypeFunc::Parms)
kvn@500 2295 return;
kvn@500 2296 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2297 if (t->isa_ptr() == NULL)
kvn@500 2298 return;
kvn@500 2299 // We have to assume all input parameters globally escape
kvn@500 2300 // (Note: passing 'false' since _processed is already set).
kvn@500 2301 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2302 break;
kvn@500 2303 }
kvn@500 2304 case Op_Phi:
kvn@500 2305 {
kvn@688 2306 const Type *t = n->as_Phi()->type();
kvn@688 2307 if (t->make_ptr() == NULL) {
kvn@688 2308 // nothing to do if not an oop or narrow oop
kvn@500 2309 _processed.set(n->_idx);
kvn@500 2310 return;
kvn@500 2311 }
kvn@500 2312 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2313 uint i;
kvn@500 2314 for (i = 1; i < n->req() ; i++) {
kvn@500 2315 Node* in = n->in(i);
kvn@500 2316 if (in == NULL)
kvn@500 2317 continue; // ignore NULL
kvn@500 2318 in = in->uncast();
kvn@500 2319 if (in->is_top() || in == n)
kvn@500 2320 continue; // ignore top or inputs which go back this node
kvn@500 2321 int ti = in->_idx;
kvn@679 2322 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2323 if (nt == PointsToNode::UnknownType) {
kvn@500 2324 break;
kvn@500 2325 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2326 add_pointsto_edge(n->_idx, ti);
kvn@500 2327 } else {
kvn@500 2328 add_deferred_edge(n->_idx, ti);
kvn@500 2329 }
kvn@500 2330 }
kvn@500 2331 if (i >= n->req())
kvn@500 2332 _processed.set(n->_idx);
kvn@500 2333 else
kvn@500 2334 _delayed_worklist.push(n);
kvn@500 2335 break;
kvn@500 2336 }
kvn@500 2337 case Op_Proj:
kvn@500 2338 {
kvn@1535 2339 // we are only interested in the oop result projection from a call
kvn@500 2340 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2341 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2342 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2343 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2344 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2345 int ti = n->in(0)->_idx;
kvn@1535 2346 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2347 // if this is the projection from backbranch edge of Phi.
kvn@1535 2348 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2349 process_call_result(n->as_Proj(), phase);
kvn@1535 2350 }
kvn@1535 2351 if (!_processed.test(n->_idx)) {
kvn@1535 2352 // The call's result may need to be processed later if the call
kvn@1535 2353 // returns it's argument and the argument is not processed yet.
kvn@1535 2354 _delayed_worklist.push(n);
kvn@1535 2355 }
kvn@1535 2356 break;
kvn@500 2357 }
kvn@500 2358 }
kvn@1535 2359 _processed.set(n->_idx);
kvn@500 2360 break;
kvn@500 2361 }
kvn@500 2362 case Op_Return:
kvn@500 2363 {
kvn@500 2364 if( n->req() > TypeFunc::Parms &&
kvn@500 2365 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2366 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2367 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2368 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2369 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2370 if (nt == PointsToNode::UnknownType) {
kvn@500 2371 _delayed_worklist.push(n); // Process it later.
kvn@500 2372 break;
kvn@500 2373 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2374 add_pointsto_edge(n->_idx, ti);
kvn@500 2375 } else {
kvn@500 2376 add_deferred_edge(n->_idx, ti);
kvn@500 2377 }
kvn@500 2378 }
kvn@500 2379 _processed.set(n->_idx);
kvn@500 2380 break;
kvn@500 2381 }
kvn@500 2382 case Op_StoreP:
coleenp@548 2383 case Op_StoreN:
kvn@500 2384 {
kvn@500 2385 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2386 adr_type = adr_type->make_ptr();
kvn@500 2387 if (adr_type->isa_oopptr()) {
kvn@500 2388 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2389 } else {
kvn@500 2390 Node* adr = n->in(MemNode::Address);
kvn@500 2391 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2392 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2393 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2394 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2395 // We are computing a raw address for a store captured
kvn@500 2396 // by an Initialize compute an appropriate address type.
kvn@500 2397 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2398 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2399 } else {
kvn@500 2400 _processed.set(n->_idx);
kvn@500 2401 return;
kvn@500 2402 }
kvn@500 2403 }
kvn@500 2404 break;
kvn@500 2405 }
kvn@500 2406 case Op_StorePConditional:
kvn@500 2407 case Op_CompareAndSwapP:
coleenp@548 2408 case Op_CompareAndSwapN:
kvn@500 2409 {
kvn@500 2410 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2411 adr_type = adr_type->make_ptr();
kvn@500 2412 if (adr_type->isa_oopptr()) {
kvn@500 2413 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2414 } else {
kvn@500 2415 _processed.set(n->_idx);
kvn@500 2416 return;
kvn@500 2417 }
kvn@500 2418 break;
kvn@500 2419 }
kvn@1535 2420 case Op_AryEq:
kvn@1535 2421 case Op_StrComp:
kvn@1535 2422 case Op_StrEquals:
kvn@1535 2423 case Op_StrIndexOf:
kvn@1535 2424 {
kvn@1535 2425 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2426 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2427 break;
kvn@1535 2428 }
kvn@500 2429 case Op_ThreadLocal:
kvn@500 2430 {
kvn@500 2431 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2432 break;
kvn@500 2433 }
kvn@500 2434 default:
kvn@500 2435 ;
kvn@500 2436 // nothing to do
kvn@500 2437 }
kvn@500 2438 return;
duke@435 2439 }
duke@435 2440
kvn@500 2441 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2442 uint n_idx = n->_idx;
kvn@1535 2443 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2444
kvn@500 2445 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2446 // they may need more then one pass to process.
kvn@679 2447 if (_processed.test(n_idx))
kvn@500 2448 return; // No need to redefine node's state.
duke@435 2449
duke@435 2450 if (n->is_Call()) {
duke@435 2451 CallNode *call = n->as_Call();
duke@435 2452 process_call_arguments(call, phase);
kvn@679 2453 _processed.set(n_idx);
duke@435 2454 return;
duke@435 2455 }
duke@435 2456
kvn@500 2457 switch (n->Opcode()) {
duke@435 2458 case Op_AddP:
duke@435 2459 {
kvn@500 2460 Node *base = get_addp_base(n);
kvn@500 2461 // Create a field edge to this node from everything base could point to.
duke@435 2462 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2463 PointsTo(ptset, base);
duke@435 2464 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2465 uint pt = i.elem;
kvn@679 2466 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2467 }
kvn@500 2468 break;
kvn@500 2469 }
kvn@500 2470 case Op_CastX2P:
kvn@500 2471 {
kvn@500 2472 assert(false, "Op_CastX2P");
kvn@500 2473 break;
kvn@500 2474 }
kvn@500 2475 case Op_CastPP:
kvn@500 2476 case Op_CheckCastPP:
coleenp@548 2477 case Op_EncodeP:
coleenp@548 2478 case Op_DecodeN:
kvn@500 2479 {
kvn@500 2480 int ti = n->in(1)->_idx;
kvn@1535 2481 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2482 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2483 add_pointsto_edge(n_idx, ti);
kvn@500 2484 } else {
kvn@679 2485 add_deferred_edge(n_idx, ti);
kvn@500 2486 }
kvn@679 2487 _processed.set(n_idx);
kvn@500 2488 break;
kvn@500 2489 }
kvn@500 2490 case Op_ConP:
kvn@500 2491 {
kvn@500 2492 assert(false, "Op_ConP");
kvn@500 2493 break;
kvn@500 2494 }
kvn@598 2495 case Op_ConN:
kvn@598 2496 {
kvn@598 2497 assert(false, "Op_ConN");
kvn@598 2498 break;
kvn@598 2499 }
kvn@500 2500 case Op_CreateEx:
kvn@500 2501 {
kvn@500 2502 assert(false, "Op_CreateEx");
kvn@500 2503 break;
kvn@500 2504 }
kvn@500 2505 case Op_LoadKlass:
kvn@599 2506 case Op_LoadNKlass:
kvn@500 2507 {
kvn@500 2508 assert(false, "Op_LoadKlass");
kvn@500 2509 break;
kvn@500 2510 }
kvn@500 2511 case Op_LoadP:
kvn@559 2512 case Op_LoadN:
kvn@500 2513 {
kvn@500 2514 const Type *t = phase->type(n);
kvn@500 2515 #ifdef ASSERT
kvn@688 2516 if (t->make_ptr() == NULL)
kvn@500 2517 assert(false, "Op_LoadP");
kvn@500 2518 #endif
kvn@500 2519
kvn@500 2520 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2521 Node* adr_base;
kvn@500 2522 if (adr->is_AddP()) {
kvn@500 2523 adr_base = get_addp_base(adr);
kvn@500 2524 } else {
kvn@500 2525 adr_base = adr;
kvn@500 2526 }
kvn@500 2527
kvn@500 2528 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2529 // this node to each field with the same offset.
kvn@500 2530 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2531 PointsTo(ptset, adr_base);
kvn@500 2532 int offset = address_offset(adr, phase);
kvn@500 2533 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2534 uint pt = i.elem;
kvn@679 2535 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2536 }
duke@435 2537 break;
duke@435 2538 }
duke@435 2539 case Op_Parm:
duke@435 2540 {
kvn@500 2541 assert(false, "Op_Parm");
kvn@500 2542 break;
kvn@500 2543 }
kvn@500 2544 case Op_Phi:
kvn@500 2545 {
kvn@500 2546 #ifdef ASSERT
kvn@688 2547 const Type *t = n->as_Phi()->type();
kvn@688 2548 if (t->make_ptr() == NULL)
kvn@500 2549 assert(false, "Op_Phi");
kvn@500 2550 #endif
kvn@500 2551 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2552 Node* in = n->in(i);
kvn@500 2553 if (in == NULL)
kvn@500 2554 continue; // ignore NULL
kvn@500 2555 in = in->uncast();
kvn@500 2556 if (in->is_top() || in == n)
kvn@500 2557 continue; // ignore top or inputs which go back this node
kvn@500 2558 int ti = in->_idx;
kvn@742 2559 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2560 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2561 if (nt == PointsToNode::JavaObject) {
kvn@679 2562 add_pointsto_edge(n_idx, ti);
kvn@500 2563 } else {
kvn@679 2564 add_deferred_edge(n_idx, ti);
kvn@500 2565 }
duke@435 2566 }
kvn@679 2567 _processed.set(n_idx);
duke@435 2568 break;
duke@435 2569 }
kvn@500 2570 case Op_Proj:
duke@435 2571 {
kvn@1535 2572 // we are only interested in the oop result projection from a call
kvn@500 2573 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2574 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2575 "all nodes should be registered");
kvn@1535 2576 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2577 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2578 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2579 process_call_result(n->as_Proj(), phase);
kvn@1535 2580 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2581 break;
kvn@1535 2582 }
kvn@500 2583 }
kvn@1535 2584 assert(false, "Op_Proj");
duke@435 2585 break;
duke@435 2586 }
kvn@500 2587 case Op_Return:
duke@435 2588 {
kvn@500 2589 #ifdef ASSERT
kvn@500 2590 if( n->req() <= TypeFunc::Parms ||
kvn@500 2591 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2592 assert(false, "Op_Return");
kvn@500 2593 }
kvn@500 2594 #endif
kvn@500 2595 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2596 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2597 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2598 add_pointsto_edge(n_idx, ti);
kvn@500 2599 } else {
kvn@679 2600 add_deferred_edge(n_idx, ti);
kvn@500 2601 }
kvn@679 2602 _processed.set(n_idx);
duke@435 2603 break;
duke@435 2604 }
duke@435 2605 case Op_StoreP:
kvn@559 2606 case Op_StoreN:
duke@435 2607 case Op_StorePConditional:
duke@435 2608 case Op_CompareAndSwapP:
kvn@559 2609 case Op_CompareAndSwapN:
duke@435 2610 {
duke@435 2611 Node *adr = n->in(MemNode::Address);
kvn@656 2612 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2613 #ifdef ASSERT
duke@435 2614 if (!adr_type->isa_oopptr())
kvn@500 2615 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2616 #endif
duke@435 2617
kvn@500 2618 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2619 Node *adr_base = get_addp_base(adr);
kvn@500 2620 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2621 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2622 // to "val" from each field with the same offset.
duke@435 2623 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2624 PointsTo(ptset, adr_base);
duke@435 2625 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2626 uint pt = i.elem;
kvn@500 2627 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2628 }
duke@435 2629 break;
duke@435 2630 }
kvn@1535 2631 case Op_AryEq:
kvn@1535 2632 case Op_StrComp:
kvn@1535 2633 case Op_StrEquals:
kvn@1535 2634 case Op_StrIndexOf:
kvn@1535 2635 {
kvn@1535 2636 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2637 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2638 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2639 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2640 Node* adr = n->in(i)->uncast();
kvn@1535 2641 const Type *at = phase->type(adr);
kvn@1535 2642 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2643 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2644 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2645 if (adr->is_AddP()) {
kvn@1535 2646 adr = get_addp_base(adr);
kvn@1535 2647 }
kvn@1535 2648 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2649 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2650 }
kvn@1535 2651 }
kvn@1535 2652 _processed.set(n_idx);
kvn@1535 2653 break;
kvn@1535 2654 }
kvn@500 2655 case Op_ThreadLocal:
duke@435 2656 {
kvn@500 2657 assert(false, "Op_ThreadLocal");
duke@435 2658 break;
duke@435 2659 }
duke@435 2660 default:
kvn@1535 2661 // This method should be called only for EA specific nodes.
kvn@1535 2662 ShouldNotReachHere();
duke@435 2663 }
duke@435 2664 }
duke@435 2665
duke@435 2666 #ifndef PRODUCT
duke@435 2667 void ConnectionGraph::dump() {
duke@435 2668 bool first = true;
duke@435 2669
kvn@679 2670 uint size = nodes_size();
kvn@500 2671 for (uint ni = 0; ni < size; ni++) {
kvn@679 2672 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2673 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2674
kvn@500 2675 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2676 continue;
kvn@1989 2677 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 2678 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2679 if (first) {
kvn@500 2680 tty->cr();
kvn@500 2681 tty->print("======== Connection graph for ");
kvn@679 2682 _compile->method()->print_short_name();
kvn@500 2683 tty->cr();
kvn@500 2684 first = false;
kvn@500 2685 }
kvn@500 2686 tty->print("%6d ", ni);
kvn@500 2687 ptn->dump();
kvn@500 2688 // Print all locals which reference this allocation
kvn@500 2689 for (uint li = ni; li < size; li++) {
kvn@679 2690 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2691 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2692 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2693 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2694 ptnode_adr(li)->dump(false);
duke@435 2695 }
duke@435 2696 }
kvn@500 2697 if (Verbose) {
kvn@500 2698 // Print all fields which reference this allocation
kvn@500 2699 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2700 uint ei = ptn->edge_target(i);
kvn@688 2701 ptnode_adr(ei)->dump(false);
kvn@500 2702 }
kvn@500 2703 }
kvn@500 2704 tty->cr();
duke@435 2705 }
duke@435 2706 }
duke@435 2707 }
duke@435 2708 #endif

mercurial