src/share/vm/memory/allocation.cpp

Tue, 30 Apr 2013 11:56:52 -0700

author
ccheung
date
Tue, 30 Apr 2013 11:56:52 -0700
changeset 4993
746b070f5022
parent 4967
5a9fa2ba85f0
child 5103
f9be75d21404
child 5247
7ee0d5c53c78
permissions
-rw-r--r--

8011661: Insufficient memory message says "malloc" when sometimes it should say "mmap"
Reviewed-by: coleenp, zgu, hseigel

duke@435 1 /*
dcubed@4967 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
coleenp@4037 28 #include "memory/genCollectedHeap.hpp"
coleenp@4037 29 #include "memory/metaspaceShared.hpp"
stefank@2314 30 #include "memory/resourceArea.hpp"
coleenp@4037 31 #include "memory/universe.hpp"
zgu@3900 32 #include "runtime/atomic.hpp"
stefank@2314 33 #include "runtime/os.hpp"
stefank@2314 34 #include "runtime/task.hpp"
stefank@2314 35 #include "runtime/threadCritical.hpp"
zgu@3900 36 #include "services/memTracker.hpp"
stefank@2314 37 #include "utilities/ostream.hpp"
zgu@3900 38
stefank@2314 39 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 40 # include "os_linux.inline.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 43 # include "os_solaris.inline.hpp"
stefank@2314 44 #endif
stefank@2314 45 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 46 # include "os_windows.inline.hpp"
stefank@2314 47 #endif
never@3156 48 #ifdef TARGET_OS_FAMILY_bsd
never@3156 49 # include "os_bsd.inline.hpp"
never@3156 50 #endif
duke@435 51
duke@435 52 void* StackObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
duke@435 53 void StackObj::operator delete(void* p) { ShouldNotCallThis(); };
duke@435 54 void* _ValueObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
duke@435 55 void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); };
duke@435 56
coleenp@4037 57 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
coleenp@4037 58 size_t word_size, bool read_only, TRAPS) {
coleenp@4037 59 // Klass has it's own operator new
coleenp@4037 60 return Metaspace::allocate(loader_data, word_size, read_only,
coleenp@4037 61 Metaspace::NonClassType, CHECK_NULL);
coleenp@4037 62 }
coleenp@4037 63
coleenp@4037 64 bool MetaspaceObj::is_shared() const {
coleenp@4037 65 return MetaspaceShared::is_in_shared_space(this);
coleenp@4037 66 }
coleenp@4037 67
coleenp@4037 68 bool MetaspaceObj::is_metadata() const {
coleenp@4295 69 // GC Verify checks use this in guarantees.
coleenp@4295 70 // TODO: either replace them with is_metaspace_object() or remove them.
coleenp@4295 71 // is_metaspace_object() is slower than this test. This test doesn't
coleenp@4295 72 // seem very useful for metaspace objects anymore though.
coleenp@4037 73 return !Universe::heap()->is_in_reserved(this);
coleenp@4037 74 }
coleenp@4037 75
coleenp@4295 76 bool MetaspaceObj::is_metaspace_object() const {
coleenp@4295 77 return Metaspace::contains((void*)this);
coleenp@4295 78 }
coleenp@4295 79
coleenp@4037 80 void MetaspaceObj::print_address_on(outputStream* st) const {
coleenp@4037 81 st->print(" {"INTPTR_FORMAT"}", this);
coleenp@4037 82 }
coleenp@4037 83
dcubed@4967 84
zgu@3900 85 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
duke@435 86 address res;
duke@435 87 switch (type) {
duke@435 88 case C_HEAP:
zgu@3900 89 res = (address)AllocateHeap(size, flags, CALLER_PC);
kvn@2040 90 DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
duke@435 91 break;
duke@435 92 case RESOURCE_AREA:
kvn@2043 93 // new(size) sets allocation type RESOURCE_AREA.
duke@435 94 res = (address)operator new(size);
duke@435 95 break;
duke@435 96 default:
duke@435 97 ShouldNotReachHere();
duke@435 98 }
duke@435 99 return res;
duke@435 100 }
duke@435 101
nloodin@4183 102 void* ResourceObj::operator new(size_t size, const std::nothrow_t& nothrow_constant,
nloodin@4183 103 allocation_type type, MEMFLAGS flags) {
nloodin@4183 104 //should only call this with std::nothrow, use other operator new() otherwise
nloodin@4183 105 address res;
nloodin@4183 106 switch (type) {
nloodin@4183 107 case C_HEAP:
nloodin@4183 108 res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
nloodin@4183 109 DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
nloodin@4183 110 break;
nloodin@4183 111 case RESOURCE_AREA:
nloodin@4183 112 // new(size) sets allocation type RESOURCE_AREA.
nloodin@4183 113 res = (address)operator new(size, std::nothrow);
nloodin@4183 114 break;
nloodin@4183 115 default:
nloodin@4183 116 ShouldNotReachHere();
nloodin@4183 117 }
nloodin@4183 118 return res;
nloodin@4183 119 }
nloodin@4183 120
nloodin@4183 121
duke@435 122 void ResourceObj::operator delete(void* p) {
duke@435 123 assert(((ResourceObj *)p)->allocated_on_C_heap(),
duke@435 124 "delete only allowed for C_HEAP objects");
kvn@2357 125 DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
duke@435 126 FreeHeap(p);
duke@435 127 }
duke@435 128
kvn@2040 129 #ifdef ASSERT
kvn@2040 130 void ResourceObj::set_allocation_type(address res, allocation_type type) {
kvn@2040 131 // Set allocation type in the resource object
kvn@2040 132 uintptr_t allocation = (uintptr_t)res;
kvn@2043 133 assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
kvn@2040 134 assert(type <= allocation_mask, "incorrect allocation type");
kvn@2357 135 ResourceObj* resobj = (ResourceObj *)res;
kvn@2357 136 resobj->_allocation_t[0] = ~(allocation + type);
kvn@2357 137 if (type != STACK_OR_EMBEDDED) {
kvn@2357 138 // Called from operator new() and CollectionSetChooser(),
kvn@2357 139 // set verification value.
kvn@2357 140 resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
kvn@2357 141 }
kvn@2040 142 }
kvn@2040 143
kvn@2043 144 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
kvn@2357 145 assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
kvn@2357 146 return (allocation_type)((~_allocation_t[0]) & allocation_mask);
kvn@2357 147 }
kvn@2357 148
kvn@2357 149 bool ResourceObj::is_type_set() const {
kvn@2357 150 allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
kvn@2357 151 return get_allocation_type() == type &&
kvn@2357 152 (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
kvn@2040 153 }
kvn@2040 154
kvn@2043 155 ResourceObj::ResourceObj() { // default constructor
kvn@2357 156 if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
kvn@2357 157 // Operator new() is not called for allocations
kvn@2357 158 // on stack and for embedded objects.
kvn@2040 159 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2357 160 } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
kvn@2357 161 // For some reason we got a value which resembles
kvn@2357 162 // an embedded or stack object (operator new() does not
kvn@2357 163 // set such type). Keep it since it is valid value
kvn@2357 164 // (even if it was garbage).
kvn@2357 165 // Ignore garbage in other fields.
kvn@2357 166 } else if (is_type_set()) {
kvn@2357 167 // Operator new() was called and type was set.
kvn@2357 168 assert(!allocated_on_stack(),
kvn@2357 169 err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 170 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2040 171 } else {
kvn@2357 172 // Operator new() was not called.
kvn@2357 173 // Assume that it is embedded or stack object.
kvn@2357 174 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2040 175 }
kvn@2357 176 _allocation_t[1] = 0; // Zap verification value
kvn@2040 177 }
kvn@2040 178
kvn@2043 179 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
kvn@2040 180 // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
kvn@2357 181 // Note: garbage may resembles valid value.
kvn@2357 182 assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
kvn@2357 183 err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 184 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2040 185 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2357 186 _allocation_t[1] = 0; // Zap verification value
kvn@2040 187 }
kvn@2040 188
kvn@2040 189 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
kvn@2040 190 // Used in InlineTree::ok_to_inline() for WarmCallInfo.
kvn@2357 191 assert(allocated_on_stack(),
kvn@2357 192 err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 193 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2357 194 // Keep current _allocation_t value;
kvn@2040 195 return *this;
kvn@2040 196 }
kvn@2040 197
kvn@2040 198 ResourceObj::~ResourceObj() {
kvn@2043 199 // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
kvn@2357 200 if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
kvn@2357 201 _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
kvn@2040 202 }
kvn@2040 203 }
kvn@2040 204 #endif // ASSERT
kvn@2040 205
kvn@2040 206
duke@435 207 void trace_heap_malloc(size_t size, const char* name, void* p) {
duke@435 208 // A lock is not needed here - tty uses a lock internally
kvn@2557 209 tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
duke@435 210 }
duke@435 211
duke@435 212
duke@435 213 void trace_heap_free(void* p) {
duke@435 214 // A lock is not needed here - tty uses a lock internally
duke@435 215 tty->print_cr("Heap free " INTPTR_FORMAT, p);
duke@435 216 }
duke@435 217
duke@435 218 bool warn_new_operator = false; // see vm_main
duke@435 219
duke@435 220 //--------------------------------------------------------------------------------------
duke@435 221 // ChunkPool implementation
duke@435 222
duke@435 223 // MT-safe pool of chunks to reduce malloc/free thrashing
duke@435 224 // NB: not using Mutex because pools are used before Threads are initialized
zgu@3900 225 class ChunkPool: public CHeapObj<mtInternal> {
duke@435 226 Chunk* _first; // first cached Chunk; its first word points to next chunk
duke@435 227 size_t _num_chunks; // number of unused chunks in pool
duke@435 228 size_t _num_used; // number of chunks currently checked out
duke@435 229 const size_t _size; // size of each chunk (must be uniform)
duke@435 230
duke@435 231 // Our three static pools
duke@435 232 static ChunkPool* _large_pool;
duke@435 233 static ChunkPool* _medium_pool;
duke@435 234 static ChunkPool* _small_pool;
duke@435 235
duke@435 236 // return first element or null
duke@435 237 void* get_first() {
duke@435 238 Chunk* c = _first;
duke@435 239 if (_first) {
duke@435 240 _first = _first->next();
duke@435 241 _num_chunks--;
duke@435 242 }
duke@435 243 return c;
duke@435 244 }
duke@435 245
duke@435 246 public:
duke@435 247 // All chunks in a ChunkPool has the same size
duke@435 248 ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
duke@435 249
duke@435 250 // Allocate a new chunk from the pool (might expand the pool)
zgu@3900 251 _NOINLINE_ void* allocate(size_t bytes) {
duke@435 252 assert(bytes == _size, "bad size");
duke@435 253 void* p = NULL;
zgu@3900 254 // No VM lock can be taken inside ThreadCritical lock, so os::malloc
zgu@3900 255 // should be done outside ThreadCritical lock due to NMT
duke@435 256 { ThreadCritical tc;
duke@435 257 _num_used++;
duke@435 258 p = get_first();
duke@435 259 }
zgu@3900 260 if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
duke@435 261 if (p == NULL)
ccheung@4993 262 vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
duke@435 263
duke@435 264 return p;
duke@435 265 }
duke@435 266
duke@435 267 // Return a chunk to the pool
duke@435 268 void free(Chunk* chunk) {
duke@435 269 assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
duke@435 270 ThreadCritical tc;
duke@435 271 _num_used--;
duke@435 272
duke@435 273 // Add chunk to list
duke@435 274 chunk->set_next(_first);
duke@435 275 _first = chunk;
duke@435 276 _num_chunks++;
duke@435 277 }
duke@435 278
duke@435 279 // Prune the pool
duke@435 280 void free_all_but(size_t n) {
zgu@3900 281 Chunk* cur = NULL;
zgu@3900 282 Chunk* next;
zgu@3900 283 {
duke@435 284 // if we have more than n chunks, free all of them
duke@435 285 ThreadCritical tc;
duke@435 286 if (_num_chunks > n) {
duke@435 287 // free chunks at end of queue, for better locality
zgu@3900 288 cur = _first;
duke@435 289 for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
duke@435 290
duke@435 291 if (cur != NULL) {
zgu@3900 292 next = cur->next();
duke@435 293 cur->set_next(NULL);
duke@435 294 cur = next;
duke@435 295
zgu@3900 296 _num_chunks = n;
zgu@3900 297 }
zgu@3900 298 }
zgu@3900 299 }
zgu@3900 300
zgu@3900 301 // Free all remaining chunks, outside of ThreadCritical
zgu@3900 302 // to avoid deadlock with NMT
duke@435 303 while(cur != NULL) {
duke@435 304 next = cur->next();
zgu@3900 305 os::free(cur, mtChunk);
duke@435 306 cur = next;
duke@435 307 }
duke@435 308 }
duke@435 309
duke@435 310 // Accessors to preallocated pool's
duke@435 311 static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; }
duke@435 312 static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
duke@435 313 static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; }
duke@435 314
duke@435 315 static void initialize() {
duke@435 316 _large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size());
duke@435 317 _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
duke@435 318 _small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size());
duke@435 319 }
bobv@2036 320
bobv@2036 321 static void clean() {
bobv@2036 322 enum { BlocksToKeep = 5 };
bobv@2036 323 _small_pool->free_all_but(BlocksToKeep);
bobv@2036 324 _medium_pool->free_all_but(BlocksToKeep);
bobv@2036 325 _large_pool->free_all_but(BlocksToKeep);
bobv@2036 326 }
duke@435 327 };
duke@435 328
duke@435 329 ChunkPool* ChunkPool::_large_pool = NULL;
duke@435 330 ChunkPool* ChunkPool::_medium_pool = NULL;
duke@435 331 ChunkPool* ChunkPool::_small_pool = NULL;
duke@435 332
duke@435 333 void chunkpool_init() {
duke@435 334 ChunkPool::initialize();
duke@435 335 }
duke@435 336
bobv@2036 337 void
bobv@2036 338 Chunk::clean_chunk_pool() {
bobv@2036 339 ChunkPool::clean();
bobv@2036 340 }
bobv@2036 341
duke@435 342
duke@435 343 //--------------------------------------------------------------------------------------
duke@435 344 // ChunkPoolCleaner implementation
bobv@2036 345 //
duke@435 346
duke@435 347 class ChunkPoolCleaner : public PeriodicTask {
bobv@2036 348 enum { CleaningInterval = 5000 }; // cleaning interval in ms
duke@435 349
duke@435 350 public:
duke@435 351 ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
duke@435 352 void task() {
bobv@2036 353 ChunkPool::clean();
duke@435 354 }
duke@435 355 };
duke@435 356
duke@435 357 //--------------------------------------------------------------------------------------
duke@435 358 // Chunk implementation
duke@435 359
duke@435 360 void* Chunk::operator new(size_t requested_size, size_t length) {
duke@435 361 // requested_size is equal to sizeof(Chunk) but in order for the arena
duke@435 362 // allocations to come out aligned as expected the size must be aligned
dcubed@4967 363 // to expected arean alignment.
duke@435 364 // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
duke@435 365 assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
duke@435 366 size_t bytes = ARENA_ALIGN(requested_size) + length;
duke@435 367 switch (length) {
duke@435 368 case Chunk::size: return ChunkPool::large_pool()->allocate(bytes);
duke@435 369 case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
duke@435 370 case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes);
duke@435 371 default: {
zgu@3900 372 void *p = os::malloc(bytes, mtChunk, CALLER_PC);
duke@435 373 if (p == NULL)
ccheung@4993 374 vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
duke@435 375 return p;
duke@435 376 }
duke@435 377 }
duke@435 378 }
duke@435 379
duke@435 380 void Chunk::operator delete(void* p) {
duke@435 381 Chunk* c = (Chunk*)p;
duke@435 382 switch (c->length()) {
duke@435 383 case Chunk::size: ChunkPool::large_pool()->free(c); break;
duke@435 384 case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
duke@435 385 case Chunk::init_size: ChunkPool::small_pool()->free(c); break;
zgu@3900 386 default: os::free(c, mtChunk);
duke@435 387 }
duke@435 388 }
duke@435 389
duke@435 390 Chunk::Chunk(size_t length) : _len(length) {
duke@435 391 _next = NULL; // Chain on the linked list
duke@435 392 }
duke@435 393
duke@435 394
duke@435 395 void Chunk::chop() {
duke@435 396 Chunk *k = this;
duke@435 397 while( k ) {
duke@435 398 Chunk *tmp = k->next();
duke@435 399 // clear out this chunk (to detect allocation bugs)
duke@435 400 if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
duke@435 401 delete k; // Free chunk (was malloc'd)
duke@435 402 k = tmp;
duke@435 403 }
duke@435 404 }
duke@435 405
duke@435 406 void Chunk::next_chop() {
duke@435 407 _next->chop();
duke@435 408 _next = NULL;
duke@435 409 }
duke@435 410
duke@435 411
duke@435 412 void Chunk::start_chunk_pool_cleaner_task() {
duke@435 413 #ifdef ASSERT
duke@435 414 static bool task_created = false;
duke@435 415 assert(!task_created, "should not start chuck pool cleaner twice");
duke@435 416 task_created = true;
duke@435 417 #endif
duke@435 418 ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
duke@435 419 cleaner->enroll();
duke@435 420 }
duke@435 421
duke@435 422 //------------------------------Arena------------------------------------------
zgu@3900 423 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
duke@435 424
duke@435 425 Arena::Arena(size_t init_size) {
duke@435 426 size_t round_size = (sizeof (char *)) - 1;
duke@435 427 init_size = (init_size+round_size) & ~round_size;
duke@435 428 _first = _chunk = new (init_size) Chunk(init_size);
duke@435 429 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 430 _max = _chunk->top();
duke@435 431 set_size_in_bytes(init_size);
zgu@3900 432 NOT_PRODUCT(Atomic::inc(&_instance_count);)
duke@435 433 }
duke@435 434
duke@435 435 Arena::Arena() {
duke@435 436 _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
duke@435 437 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 438 _max = _chunk->top();
duke@435 439 set_size_in_bytes(Chunk::init_size);
zgu@3900 440 NOT_PRODUCT(Atomic::inc(&_instance_count);)
duke@435 441 }
duke@435 442
duke@435 443 Arena *Arena::move_contents(Arena *copy) {
duke@435 444 copy->destruct_contents();
duke@435 445 copy->_chunk = _chunk;
duke@435 446 copy->_hwm = _hwm;
duke@435 447 copy->_max = _max;
duke@435 448 copy->_first = _first;
zgu@4193 449
zgu@4193 450 // workaround rare racing condition, which could double count
zgu@4193 451 // the arena size by native memory tracking
zgu@4193 452 size_t size = size_in_bytes();
zgu@4193 453 set_size_in_bytes(0);
zgu@4193 454 copy->set_size_in_bytes(size);
duke@435 455 // Destroy original arena
duke@435 456 reset();
duke@435 457 return copy; // Return Arena with contents
duke@435 458 }
duke@435 459
duke@435 460 Arena::~Arena() {
duke@435 461 destruct_contents();
zgu@3900 462 NOT_PRODUCT(Atomic::dec(&_instance_count);)
zgu@3900 463 }
zgu@3900 464
zgu@3900 465 void* Arena::operator new(size_t size) {
zgu@3900 466 assert(false, "Use dynamic memory type binding");
zgu@3900 467 return NULL;
zgu@3900 468 }
zgu@3900 469
zgu@3900 470 void* Arena::operator new (size_t size, const std::nothrow_t& nothrow_constant) {
zgu@3900 471 assert(false, "Use dynamic memory type binding");
zgu@3900 472 return NULL;
zgu@3900 473 }
zgu@3900 474
zgu@3900 475 // dynamic memory type binding
zgu@3900 476 void* Arena::operator new(size_t size, MEMFLAGS flags) {
zgu@3900 477 #ifdef ASSERT
zgu@3900 478 void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
zgu@3900 479 if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
zgu@3900 480 return p;
zgu@3900 481 #else
zgu@3900 482 return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
zgu@3900 483 #endif
zgu@3900 484 }
zgu@3900 485
zgu@3900 486 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
zgu@3900 487 #ifdef ASSERT
zgu@3900 488 void* p = os::malloc(size, flags|otArena, CALLER_PC);
zgu@3900 489 if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
zgu@3900 490 return p;
zgu@3900 491 #else
zgu@3900 492 return os::malloc(size, flags|otArena, CALLER_PC);
zgu@3900 493 #endif
zgu@3900 494 }
zgu@3900 495
zgu@3900 496 void Arena::operator delete(void* p) {
zgu@3900 497 FreeHeap(p);
duke@435 498 }
duke@435 499
duke@435 500 // Destroy this arenas contents and reset to empty
duke@435 501 void Arena::destruct_contents() {
duke@435 502 if (UseMallocOnly && _first != NULL) {
duke@435 503 char* end = _first->next() ? _first->top() : _hwm;
duke@435 504 free_malloced_objects(_first, _first->bottom(), end, _hwm);
duke@435 505 }
zgu@4193 506 // reset size before chop to avoid a rare racing condition
zgu@4193 507 // that can have total arena memory exceed total chunk memory
zgu@4193 508 set_size_in_bytes(0);
duke@435 509 _first->chop();
duke@435 510 reset();
duke@435 511 }
duke@435 512
zgu@3900 513 // This is high traffic method, but many calls actually don't
zgu@3900 514 // change the size
zgu@3900 515 void Arena::set_size_in_bytes(size_t size) {
zgu@3900 516 if (_size_in_bytes != size) {
zgu@3900 517 _size_in_bytes = size;
zgu@3900 518 MemTracker::record_arena_size((address)this, size);
zgu@3900 519 }
zgu@3900 520 }
duke@435 521
duke@435 522 // Total of all Chunks in arena
duke@435 523 size_t Arena::used() const {
duke@435 524 size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
duke@435 525 register Chunk *k = _first;
duke@435 526 while( k != _chunk) { // Whilst have Chunks in a row
duke@435 527 sum += k->length(); // Total size of this Chunk
duke@435 528 k = k->next(); // Bump along to next Chunk
duke@435 529 }
duke@435 530 return sum; // Return total consumed space.
duke@435 531 }
duke@435 532
kamg@2589 533 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
ccheung@4993 534 vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
kamg@2589 535 }
duke@435 536
duke@435 537 // Grow a new Chunk
nloodin@4183 538 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
duke@435 539 // Get minimal required size. Either real big, or even bigger for giant objs
duke@435 540 size_t len = MAX2(x, (size_t) Chunk::size);
duke@435 541
duke@435 542 Chunk *k = _chunk; // Get filled-up chunk address
duke@435 543 _chunk = new (len) Chunk(len);
duke@435 544
kamg@2589 545 if (_chunk == NULL) {
nloodin@4183 546 if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
nloodin@4183 547 signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
nloodin@4183 548 }
nloodin@4183 549 return NULL;
kamg@2589 550 }
duke@435 551 if (k) k->set_next(_chunk); // Append new chunk to end of linked list
duke@435 552 else _first = _chunk;
duke@435 553 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 554 _max = _chunk->top();
duke@435 555 set_size_in_bytes(size_in_bytes() + len);
duke@435 556 void* result = _hwm;
duke@435 557 _hwm += x;
duke@435 558 return result;
duke@435 559 }
duke@435 560
duke@435 561
duke@435 562
duke@435 563 // Reallocate storage in Arena.
nloodin@4183 564 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
duke@435 565 assert(new_size >= 0, "bad size");
duke@435 566 if (new_size == 0) return NULL;
duke@435 567 #ifdef ASSERT
duke@435 568 if (UseMallocOnly) {
duke@435 569 // always allocate a new object (otherwise we'll free this one twice)
nloodin@4183 570 char* copy = (char*)Amalloc(new_size, alloc_failmode);
nloodin@4183 571 if (copy == NULL) {
nloodin@4183 572 return NULL;
nloodin@4183 573 }
duke@435 574 size_t n = MIN2(old_size, new_size);
duke@435 575 if (n > 0) memcpy(copy, old_ptr, n);
duke@435 576 Afree(old_ptr,old_size); // Mostly done to keep stats accurate
duke@435 577 return copy;
duke@435 578 }
duke@435 579 #endif
duke@435 580 char *c_old = (char*)old_ptr; // Handy name
duke@435 581 // Stupid fast special case
duke@435 582 if( new_size <= old_size ) { // Shrink in-place
duke@435 583 if( c_old+old_size == _hwm) // Attempt to free the excess bytes
duke@435 584 _hwm = c_old+new_size; // Adjust hwm
duke@435 585 return c_old;
duke@435 586 }
duke@435 587
duke@435 588 // make sure that new_size is legal
duke@435 589 size_t corrected_new_size = ARENA_ALIGN(new_size);
duke@435 590
duke@435 591 // See if we can resize in-place
duke@435 592 if( (c_old+old_size == _hwm) && // Adjusting recent thing
duke@435 593 (c_old+corrected_new_size <= _max) ) { // Still fits where it sits
duke@435 594 _hwm = c_old+corrected_new_size; // Adjust hwm
duke@435 595 return c_old; // Return old pointer
duke@435 596 }
duke@435 597
duke@435 598 // Oops, got to relocate guts
nloodin@4183 599 void *new_ptr = Amalloc(new_size, alloc_failmode);
nloodin@4183 600 if (new_ptr == NULL) {
nloodin@4183 601 return NULL;
nloodin@4183 602 }
duke@435 603 memcpy( new_ptr, c_old, old_size );
duke@435 604 Afree(c_old,old_size); // Mostly done to keep stats accurate
duke@435 605 return new_ptr;
duke@435 606 }
duke@435 607
duke@435 608
duke@435 609 // Determine if pointer belongs to this Arena or not.
duke@435 610 bool Arena::contains( const void *ptr ) const {
duke@435 611 #ifdef ASSERT
duke@435 612 if (UseMallocOnly) {
duke@435 613 // really slow, but not easy to make fast
duke@435 614 if (_chunk == NULL) return false;
duke@435 615 char** bottom = (char**)_chunk->bottom();
duke@435 616 for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
duke@435 617 if (*p == ptr) return true;
duke@435 618 }
duke@435 619 for (Chunk *c = _first; c != NULL; c = c->next()) {
duke@435 620 if (c == _chunk) continue; // current chunk has been processed
duke@435 621 char** bottom = (char**)c->bottom();
duke@435 622 for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
duke@435 623 if (*p == ptr) return true;
duke@435 624 }
duke@435 625 }
duke@435 626 return false;
duke@435 627 }
duke@435 628 #endif
duke@435 629 if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
duke@435 630 return true; // Check for in this chunk
duke@435 631 for (Chunk *c = _first; c; c = c->next()) {
duke@435 632 if (c == _chunk) continue; // current chunk has been processed
duke@435 633 if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
duke@435 634 return true; // Check for every chunk in Arena
duke@435 635 }
duke@435 636 }
duke@435 637 return false; // Not in any Chunk, so not in Arena
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 #ifdef ASSERT
duke@435 642 void* Arena::malloc(size_t size) {
duke@435 643 assert(UseMallocOnly, "shouldn't call");
duke@435 644 // use malloc, but save pointer in res. area for later freeing
duke@435 645 char** save = (char**)internal_malloc_4(sizeof(char*));
zgu@3900 646 return (*save = (char*)os::malloc(size, mtChunk));
duke@435 647 }
duke@435 648
duke@435 649 // for debugging with UseMallocOnly
duke@435 650 void* Arena::internal_malloc_4(size_t x) {
duke@435 651 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
kamg@2589 652 check_for_overflow(x, "Arena::internal_malloc_4");
duke@435 653 if (_hwm + x > _max) {
duke@435 654 return grow(x);
duke@435 655 } else {
duke@435 656 char *old = _hwm;
duke@435 657 _hwm += x;
duke@435 658 return old;
duke@435 659 }
duke@435 660 }
duke@435 661 #endif
duke@435 662
duke@435 663
duke@435 664 //--------------------------------------------------------------------------------------
duke@435 665 // Non-product code
duke@435 666
duke@435 667 #ifndef PRODUCT
duke@435 668 // The global operator new should never be called since it will usually indicate
duke@435 669 // a memory leak. Use CHeapObj as the base class of such objects to make it explicit
duke@435 670 // that they're allocated on the C heap.
duke@435 671 // Commented out in product version to avoid conflicts with third-party C++ native code.
dcubed@4967 672 // %% note this is causing a problem on solaris debug build. the global
dcubed@4967 673 // new is being called from jdk source and causing data corruption.
dcubed@4967 674 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
dcubed@4967 675 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
dcubed@4967 676 #ifdef CATCH_OPERATOR_NEW_USAGE
duke@435 677 void* operator new(size_t size){
dcubed@4967 678 static bool warned = false;
dcubed@4967 679 if (!warned && warn_new_operator)
dcubed@4967 680 warning("should not call global (default) operator new");
dcubed@4967 681 warned = true;
dcubed@4967 682 return (void *) AllocateHeap(size, "global operator new");
duke@435 683 }
dcubed@4967 684 #endif
duke@435 685
duke@435 686 void AllocatedObj::print() const { print_on(tty); }
duke@435 687 void AllocatedObj::print_value() const { print_value_on(tty); }
duke@435 688
duke@435 689 void AllocatedObj::print_on(outputStream* st) const {
duke@435 690 st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
duke@435 691 }
duke@435 692
duke@435 693 void AllocatedObj::print_value_on(outputStream* st) const {
duke@435 694 st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
duke@435 695 }
duke@435 696
kvn@2557 697 julong Arena::_bytes_allocated = 0;
kvn@2557 698
kvn@2557 699 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
duke@435 700
duke@435 701 AllocStats::AllocStats() {
kvn@2557 702 start_mallocs = os::num_mallocs;
kvn@2557 703 start_frees = os::num_frees;
duke@435 704 start_malloc_bytes = os::alloc_bytes;
kvn@2557 705 start_mfree_bytes = os::free_bytes;
kvn@2557 706 start_res_bytes = Arena::_bytes_allocated;
duke@435 707 }
duke@435 708
kvn@2557 709 julong AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
kvn@2557 710 julong AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
kvn@2557 711 julong AllocStats::num_frees() { return os::num_frees - start_frees; }
kvn@2557 712 julong AllocStats::free_bytes() { return os::free_bytes - start_mfree_bytes; }
kvn@2557 713 julong AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
duke@435 714 void AllocStats::print() {
kvn@2557 715 tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
kvn@2557 716 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
kvn@2557 717 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
duke@435 718 }
duke@435 719
duke@435 720
duke@435 721 // debugging code
duke@435 722 inline void Arena::free_all(char** start, char** end) {
duke@435 723 for (char** p = start; p < end; p++) if (*p) os::free(*p);
duke@435 724 }
duke@435 725
duke@435 726 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
duke@435 727 assert(UseMallocOnly, "should not call");
duke@435 728 // free all objects malloced since resource mark was created; resource area
duke@435 729 // contains their addresses
duke@435 730 if (chunk->next()) {
duke@435 731 // this chunk is full, and some others too
duke@435 732 for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
duke@435 733 char* top = c->top();
duke@435 734 if (c->next() == NULL) {
duke@435 735 top = hwm2; // last junk is only used up to hwm2
duke@435 736 assert(c->contains(hwm2), "bad hwm2");
duke@435 737 }
duke@435 738 free_all((char**)c->bottom(), (char**)top);
duke@435 739 }
duke@435 740 assert(chunk->contains(hwm), "bad hwm");
duke@435 741 assert(chunk->contains(max), "bad max");
duke@435 742 free_all((char**)hwm, (char**)max);
duke@435 743 } else {
duke@435 744 // this chunk was partially used
duke@435 745 assert(chunk->contains(hwm), "bad hwm");
duke@435 746 assert(chunk->contains(hwm2), "bad hwm2");
duke@435 747 free_all((char**)hwm, (char**)hwm2);
duke@435 748 }
duke@435 749 }
duke@435 750
duke@435 751
duke@435 752 ReallocMark::ReallocMark() {
duke@435 753 #ifdef ASSERT
duke@435 754 Thread *thread = ThreadLocalStorage::get_thread_slow();
duke@435 755 _nesting = thread->resource_area()->nesting();
duke@435 756 #endif
duke@435 757 }
duke@435 758
duke@435 759 void ReallocMark::check() {
duke@435 760 #ifdef ASSERT
duke@435 761 if (_nesting != Thread::current()->resource_area()->nesting()) {
duke@435 762 fatal("allocation bug: array could grow within nested ResourceMark");
duke@435 763 }
duke@435 764 #endif
duke@435 765 }
duke@435 766
duke@435 767 #endif // Non-product

mercurial