src/share/vm/memory/allocation.cpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 2834
2a3da7eaf4a6
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

duke@435 1 /*
kvn@2557 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "memory/resourceArea.hpp"
stefank@2314 29 #include "runtime/os.hpp"
stefank@2314 30 #include "runtime/task.hpp"
stefank@2314 31 #include "runtime/threadCritical.hpp"
stefank@2314 32 #include "utilities/ostream.hpp"
stefank@2314 33 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 34 # include "os_linux.inline.hpp"
stefank@2314 35 #endif
stefank@2314 36 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 37 # include "os_solaris.inline.hpp"
stefank@2314 38 #endif
stefank@2314 39 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 40 # include "os_windows.inline.hpp"
stefank@2314 41 #endif
never@3156 42 #ifdef TARGET_OS_FAMILY_bsd
never@3156 43 # include "os_bsd.inline.hpp"
never@3156 44 #endif
duke@435 45
duke@435 46 void* CHeapObj::operator new(size_t size){
duke@435 47 return (void *) AllocateHeap(size, "CHeapObj-new");
duke@435 48 }
duke@435 49
zgu@2834 50 void* CHeapObj::operator new (size_t size, const std::nothrow_t& nothrow_constant) {
zgu@2834 51 char* p = (char*) os::malloc(size);
zgu@2834 52 #ifdef ASSERT
zgu@2834 53 if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
zgu@2834 54 #endif
zgu@2834 55 return p;
zgu@2834 56 }
zgu@2834 57
duke@435 58 void CHeapObj::operator delete(void* p){
duke@435 59 FreeHeap(p);
duke@435 60 }
duke@435 61
duke@435 62 void* StackObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
duke@435 63 void StackObj::operator delete(void* p) { ShouldNotCallThis(); };
duke@435 64 void* _ValueObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
duke@435 65 void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); };
duke@435 66
duke@435 67 void* ResourceObj::operator new(size_t size, allocation_type type) {
duke@435 68 address res;
duke@435 69 switch (type) {
duke@435 70 case C_HEAP:
duke@435 71 res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
kvn@2040 72 DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
duke@435 73 break;
duke@435 74 case RESOURCE_AREA:
kvn@2043 75 // new(size) sets allocation type RESOURCE_AREA.
duke@435 76 res = (address)operator new(size);
duke@435 77 break;
duke@435 78 default:
duke@435 79 ShouldNotReachHere();
duke@435 80 }
duke@435 81 return res;
duke@435 82 }
duke@435 83
duke@435 84 void ResourceObj::operator delete(void* p) {
duke@435 85 assert(((ResourceObj *)p)->allocated_on_C_heap(),
duke@435 86 "delete only allowed for C_HEAP objects");
kvn@2357 87 DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
duke@435 88 FreeHeap(p);
duke@435 89 }
duke@435 90
kvn@2040 91 #ifdef ASSERT
kvn@2040 92 void ResourceObj::set_allocation_type(address res, allocation_type type) {
kvn@2040 93 // Set allocation type in the resource object
kvn@2040 94 uintptr_t allocation = (uintptr_t)res;
kvn@2043 95 assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
kvn@2040 96 assert(type <= allocation_mask, "incorrect allocation type");
kvn@2357 97 ResourceObj* resobj = (ResourceObj *)res;
kvn@2357 98 resobj->_allocation_t[0] = ~(allocation + type);
kvn@2357 99 if (type != STACK_OR_EMBEDDED) {
kvn@2357 100 // Called from operator new() and CollectionSetChooser(),
kvn@2357 101 // set verification value.
kvn@2357 102 resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
kvn@2357 103 }
kvn@2040 104 }
kvn@2040 105
kvn@2043 106 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
kvn@2357 107 assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
kvn@2357 108 return (allocation_type)((~_allocation_t[0]) & allocation_mask);
kvn@2357 109 }
kvn@2357 110
kvn@2357 111 bool ResourceObj::is_type_set() const {
kvn@2357 112 allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
kvn@2357 113 return get_allocation_type() == type &&
kvn@2357 114 (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
kvn@2040 115 }
kvn@2040 116
kvn@2043 117 ResourceObj::ResourceObj() { // default constructor
kvn@2357 118 if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
kvn@2357 119 // Operator new() is not called for allocations
kvn@2357 120 // on stack and for embedded objects.
kvn@2040 121 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2357 122 } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
kvn@2357 123 // For some reason we got a value which resembles
kvn@2357 124 // an embedded or stack object (operator new() does not
kvn@2357 125 // set such type). Keep it since it is valid value
kvn@2357 126 // (even if it was garbage).
kvn@2357 127 // Ignore garbage in other fields.
kvn@2357 128 } else if (is_type_set()) {
kvn@2357 129 // Operator new() was called and type was set.
kvn@2357 130 assert(!allocated_on_stack(),
kvn@2357 131 err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 132 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2040 133 } else {
kvn@2357 134 // Operator new() was not called.
kvn@2357 135 // Assume that it is embedded or stack object.
kvn@2357 136 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2040 137 }
kvn@2357 138 _allocation_t[1] = 0; // Zap verification value
kvn@2040 139 }
kvn@2040 140
kvn@2043 141 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
kvn@2040 142 // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
kvn@2357 143 // Note: garbage may resembles valid value.
kvn@2357 144 assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
kvn@2357 145 err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 146 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2040 147 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2357 148 _allocation_t[1] = 0; // Zap verification value
kvn@2040 149 }
kvn@2040 150
kvn@2040 151 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
kvn@2040 152 // Used in InlineTree::ok_to_inline() for WarmCallInfo.
kvn@2357 153 assert(allocated_on_stack(),
kvn@2357 154 err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 155 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2357 156 // Keep current _allocation_t value;
kvn@2040 157 return *this;
kvn@2040 158 }
kvn@2040 159
kvn@2040 160 ResourceObj::~ResourceObj() {
kvn@2043 161 // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
kvn@2357 162 if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
kvn@2357 163 _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
kvn@2040 164 }
kvn@2040 165 }
kvn@2040 166 #endif // ASSERT
kvn@2040 167
kvn@2040 168
duke@435 169 void trace_heap_malloc(size_t size, const char* name, void* p) {
duke@435 170 // A lock is not needed here - tty uses a lock internally
kvn@2557 171 tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
duke@435 172 }
duke@435 173
duke@435 174
duke@435 175 void trace_heap_free(void* p) {
duke@435 176 // A lock is not needed here - tty uses a lock internally
duke@435 177 tty->print_cr("Heap free " INTPTR_FORMAT, p);
duke@435 178 }
duke@435 179
duke@435 180 bool warn_new_operator = false; // see vm_main
duke@435 181
duke@435 182 //--------------------------------------------------------------------------------------
duke@435 183 // ChunkPool implementation
duke@435 184
duke@435 185 // MT-safe pool of chunks to reduce malloc/free thrashing
duke@435 186 // NB: not using Mutex because pools are used before Threads are initialized
duke@435 187 class ChunkPool {
duke@435 188 Chunk* _first; // first cached Chunk; its first word points to next chunk
duke@435 189 size_t _num_chunks; // number of unused chunks in pool
duke@435 190 size_t _num_used; // number of chunks currently checked out
duke@435 191 const size_t _size; // size of each chunk (must be uniform)
duke@435 192
duke@435 193 // Our three static pools
duke@435 194 static ChunkPool* _large_pool;
duke@435 195 static ChunkPool* _medium_pool;
duke@435 196 static ChunkPool* _small_pool;
duke@435 197
duke@435 198 // return first element or null
duke@435 199 void* get_first() {
duke@435 200 Chunk* c = _first;
duke@435 201 if (_first) {
duke@435 202 _first = _first->next();
duke@435 203 _num_chunks--;
duke@435 204 }
duke@435 205 return c;
duke@435 206 }
duke@435 207
duke@435 208 public:
duke@435 209 // All chunks in a ChunkPool has the same size
duke@435 210 ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
duke@435 211
duke@435 212 // Allocate a new chunk from the pool (might expand the pool)
duke@435 213 void* allocate(size_t bytes) {
duke@435 214 assert(bytes == _size, "bad size");
duke@435 215 void* p = NULL;
duke@435 216 { ThreadCritical tc;
duke@435 217 _num_used++;
duke@435 218 p = get_first();
duke@435 219 if (p == NULL) p = os::malloc(bytes);
duke@435 220 }
duke@435 221 if (p == NULL)
duke@435 222 vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
duke@435 223
duke@435 224 return p;
duke@435 225 }
duke@435 226
duke@435 227 // Return a chunk to the pool
duke@435 228 void free(Chunk* chunk) {
duke@435 229 assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
duke@435 230 ThreadCritical tc;
duke@435 231 _num_used--;
duke@435 232
duke@435 233 // Add chunk to list
duke@435 234 chunk->set_next(_first);
duke@435 235 _first = chunk;
duke@435 236 _num_chunks++;
duke@435 237 }
duke@435 238
duke@435 239 // Prune the pool
duke@435 240 void free_all_but(size_t n) {
duke@435 241 // if we have more than n chunks, free all of them
duke@435 242 ThreadCritical tc;
duke@435 243 if (_num_chunks > n) {
duke@435 244 // free chunks at end of queue, for better locality
duke@435 245 Chunk* cur = _first;
duke@435 246 for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
duke@435 247
duke@435 248 if (cur != NULL) {
duke@435 249 Chunk* next = cur->next();
duke@435 250 cur->set_next(NULL);
duke@435 251 cur = next;
duke@435 252
duke@435 253 // Free all remaining chunks
duke@435 254 while(cur != NULL) {
duke@435 255 next = cur->next();
duke@435 256 os::free(cur);
duke@435 257 _num_chunks--;
duke@435 258 cur = next;
duke@435 259 }
duke@435 260 }
duke@435 261 }
duke@435 262 }
duke@435 263
duke@435 264 // Accessors to preallocated pool's
duke@435 265 static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; }
duke@435 266 static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
duke@435 267 static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; }
duke@435 268
duke@435 269 static void initialize() {
duke@435 270 _large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size());
duke@435 271 _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
duke@435 272 _small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size());
duke@435 273 }
bobv@2036 274
bobv@2036 275 static void clean() {
bobv@2036 276 enum { BlocksToKeep = 5 };
bobv@2036 277 _small_pool->free_all_but(BlocksToKeep);
bobv@2036 278 _medium_pool->free_all_but(BlocksToKeep);
bobv@2036 279 _large_pool->free_all_but(BlocksToKeep);
bobv@2036 280 }
duke@435 281 };
duke@435 282
duke@435 283 ChunkPool* ChunkPool::_large_pool = NULL;
duke@435 284 ChunkPool* ChunkPool::_medium_pool = NULL;
duke@435 285 ChunkPool* ChunkPool::_small_pool = NULL;
duke@435 286
duke@435 287 void chunkpool_init() {
duke@435 288 ChunkPool::initialize();
duke@435 289 }
duke@435 290
bobv@2036 291 void
bobv@2036 292 Chunk::clean_chunk_pool() {
bobv@2036 293 ChunkPool::clean();
bobv@2036 294 }
bobv@2036 295
duke@435 296
duke@435 297 //--------------------------------------------------------------------------------------
duke@435 298 // ChunkPoolCleaner implementation
bobv@2036 299 //
duke@435 300
duke@435 301 class ChunkPoolCleaner : public PeriodicTask {
bobv@2036 302 enum { CleaningInterval = 5000 }; // cleaning interval in ms
duke@435 303
duke@435 304 public:
duke@435 305 ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
duke@435 306 void task() {
bobv@2036 307 ChunkPool::clean();
duke@435 308 }
duke@435 309 };
duke@435 310
duke@435 311 //--------------------------------------------------------------------------------------
duke@435 312 // Chunk implementation
duke@435 313
duke@435 314 void* Chunk::operator new(size_t requested_size, size_t length) {
duke@435 315 // requested_size is equal to sizeof(Chunk) but in order for the arena
duke@435 316 // allocations to come out aligned as expected the size must be aligned
duke@435 317 // to expected arean alignment.
duke@435 318 // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
duke@435 319 assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
duke@435 320 size_t bytes = ARENA_ALIGN(requested_size) + length;
duke@435 321 switch (length) {
duke@435 322 case Chunk::size: return ChunkPool::large_pool()->allocate(bytes);
duke@435 323 case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
duke@435 324 case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes);
duke@435 325 default: {
duke@435 326 void *p = os::malloc(bytes);
duke@435 327 if (p == NULL)
duke@435 328 vm_exit_out_of_memory(bytes, "Chunk::new");
duke@435 329 return p;
duke@435 330 }
duke@435 331 }
duke@435 332 }
duke@435 333
duke@435 334 void Chunk::operator delete(void* p) {
duke@435 335 Chunk* c = (Chunk*)p;
duke@435 336 switch (c->length()) {
duke@435 337 case Chunk::size: ChunkPool::large_pool()->free(c); break;
duke@435 338 case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
duke@435 339 case Chunk::init_size: ChunkPool::small_pool()->free(c); break;
duke@435 340 default: os::free(c);
duke@435 341 }
duke@435 342 }
duke@435 343
duke@435 344 Chunk::Chunk(size_t length) : _len(length) {
duke@435 345 _next = NULL; // Chain on the linked list
duke@435 346 }
duke@435 347
duke@435 348
duke@435 349 void Chunk::chop() {
duke@435 350 Chunk *k = this;
duke@435 351 while( k ) {
duke@435 352 Chunk *tmp = k->next();
duke@435 353 // clear out this chunk (to detect allocation bugs)
duke@435 354 if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
duke@435 355 delete k; // Free chunk (was malloc'd)
duke@435 356 k = tmp;
duke@435 357 }
duke@435 358 }
duke@435 359
duke@435 360 void Chunk::next_chop() {
duke@435 361 _next->chop();
duke@435 362 _next = NULL;
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 void Chunk::start_chunk_pool_cleaner_task() {
duke@435 367 #ifdef ASSERT
duke@435 368 static bool task_created = false;
duke@435 369 assert(!task_created, "should not start chuck pool cleaner twice");
duke@435 370 task_created = true;
duke@435 371 #endif
duke@435 372 ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
duke@435 373 cleaner->enroll();
duke@435 374 }
duke@435 375
duke@435 376 //------------------------------Arena------------------------------------------
duke@435 377
duke@435 378 Arena::Arena(size_t init_size) {
duke@435 379 size_t round_size = (sizeof (char *)) - 1;
duke@435 380 init_size = (init_size+round_size) & ~round_size;
duke@435 381 _first = _chunk = new (init_size) Chunk(init_size);
duke@435 382 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 383 _max = _chunk->top();
duke@435 384 set_size_in_bytes(init_size);
duke@435 385 }
duke@435 386
duke@435 387 Arena::Arena() {
duke@435 388 _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
duke@435 389 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 390 _max = _chunk->top();
duke@435 391 set_size_in_bytes(Chunk::init_size);
duke@435 392 }
duke@435 393
duke@435 394 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
duke@435 395 set_size_in_bytes(a->size_in_bytes());
duke@435 396 }
duke@435 397
duke@435 398 Arena *Arena::move_contents(Arena *copy) {
duke@435 399 copy->destruct_contents();
duke@435 400 copy->_chunk = _chunk;
duke@435 401 copy->_hwm = _hwm;
duke@435 402 copy->_max = _max;
duke@435 403 copy->_first = _first;
duke@435 404 copy->set_size_in_bytes(size_in_bytes());
duke@435 405 // Destroy original arena
duke@435 406 reset();
duke@435 407 return copy; // Return Arena with contents
duke@435 408 }
duke@435 409
duke@435 410 Arena::~Arena() {
duke@435 411 destruct_contents();
duke@435 412 }
duke@435 413
duke@435 414 // Destroy this arenas contents and reset to empty
duke@435 415 void Arena::destruct_contents() {
duke@435 416 if (UseMallocOnly && _first != NULL) {
duke@435 417 char* end = _first->next() ? _first->top() : _hwm;
duke@435 418 free_malloced_objects(_first, _first->bottom(), end, _hwm);
duke@435 419 }
duke@435 420 _first->chop();
duke@435 421 reset();
duke@435 422 }
duke@435 423
duke@435 424
duke@435 425 // Total of all Chunks in arena
duke@435 426 size_t Arena::used() const {
duke@435 427 size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
duke@435 428 register Chunk *k = _first;
duke@435 429 while( k != _chunk) { // Whilst have Chunks in a row
duke@435 430 sum += k->length(); // Total size of this Chunk
duke@435 431 k = k->next(); // Bump along to next Chunk
duke@435 432 }
duke@435 433 return sum; // Return total consumed space.
duke@435 434 }
duke@435 435
kamg@2589 436 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
kamg@2589 437 vm_exit_out_of_memory(sz, whence);
kamg@2589 438 }
duke@435 439
duke@435 440 // Grow a new Chunk
duke@435 441 void* Arena::grow( size_t x ) {
duke@435 442 // Get minimal required size. Either real big, or even bigger for giant objs
duke@435 443 size_t len = MAX2(x, (size_t) Chunk::size);
duke@435 444
duke@435 445 Chunk *k = _chunk; // Get filled-up chunk address
duke@435 446 _chunk = new (len) Chunk(len);
duke@435 447
kamg@2589 448 if (_chunk == NULL) {
kamg@2589 449 signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
kamg@2589 450 }
duke@435 451
duke@435 452 if (k) k->set_next(_chunk); // Append new chunk to end of linked list
duke@435 453 else _first = _chunk;
duke@435 454 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 455 _max = _chunk->top();
duke@435 456 set_size_in_bytes(size_in_bytes() + len);
duke@435 457 void* result = _hwm;
duke@435 458 _hwm += x;
duke@435 459 return result;
duke@435 460 }
duke@435 461
duke@435 462
duke@435 463
duke@435 464 // Reallocate storage in Arena.
duke@435 465 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
duke@435 466 assert(new_size >= 0, "bad size");
duke@435 467 if (new_size == 0) return NULL;
duke@435 468 #ifdef ASSERT
duke@435 469 if (UseMallocOnly) {
duke@435 470 // always allocate a new object (otherwise we'll free this one twice)
duke@435 471 char* copy = (char*)Amalloc(new_size);
duke@435 472 size_t n = MIN2(old_size, new_size);
duke@435 473 if (n > 0) memcpy(copy, old_ptr, n);
duke@435 474 Afree(old_ptr,old_size); // Mostly done to keep stats accurate
duke@435 475 return copy;
duke@435 476 }
duke@435 477 #endif
duke@435 478 char *c_old = (char*)old_ptr; // Handy name
duke@435 479 // Stupid fast special case
duke@435 480 if( new_size <= old_size ) { // Shrink in-place
duke@435 481 if( c_old+old_size == _hwm) // Attempt to free the excess bytes
duke@435 482 _hwm = c_old+new_size; // Adjust hwm
duke@435 483 return c_old;
duke@435 484 }
duke@435 485
duke@435 486 // make sure that new_size is legal
duke@435 487 size_t corrected_new_size = ARENA_ALIGN(new_size);
duke@435 488
duke@435 489 // See if we can resize in-place
duke@435 490 if( (c_old+old_size == _hwm) && // Adjusting recent thing
duke@435 491 (c_old+corrected_new_size <= _max) ) { // Still fits where it sits
duke@435 492 _hwm = c_old+corrected_new_size; // Adjust hwm
duke@435 493 return c_old; // Return old pointer
duke@435 494 }
duke@435 495
duke@435 496 // Oops, got to relocate guts
duke@435 497 void *new_ptr = Amalloc(new_size);
duke@435 498 memcpy( new_ptr, c_old, old_size );
duke@435 499 Afree(c_old,old_size); // Mostly done to keep stats accurate
duke@435 500 return new_ptr;
duke@435 501 }
duke@435 502
duke@435 503
duke@435 504 // Determine if pointer belongs to this Arena or not.
duke@435 505 bool Arena::contains( const void *ptr ) const {
duke@435 506 #ifdef ASSERT
duke@435 507 if (UseMallocOnly) {
duke@435 508 // really slow, but not easy to make fast
duke@435 509 if (_chunk == NULL) return false;
duke@435 510 char** bottom = (char**)_chunk->bottom();
duke@435 511 for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
duke@435 512 if (*p == ptr) return true;
duke@435 513 }
duke@435 514 for (Chunk *c = _first; c != NULL; c = c->next()) {
duke@435 515 if (c == _chunk) continue; // current chunk has been processed
duke@435 516 char** bottom = (char**)c->bottom();
duke@435 517 for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
duke@435 518 if (*p == ptr) return true;
duke@435 519 }
duke@435 520 }
duke@435 521 return false;
duke@435 522 }
duke@435 523 #endif
duke@435 524 if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
duke@435 525 return true; // Check for in this chunk
duke@435 526 for (Chunk *c = _first; c; c = c->next()) {
duke@435 527 if (c == _chunk) continue; // current chunk has been processed
duke@435 528 if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
duke@435 529 return true; // Check for every chunk in Arena
duke@435 530 }
duke@435 531 }
duke@435 532 return false; // Not in any Chunk, so not in Arena
duke@435 533 }
duke@435 534
duke@435 535
duke@435 536 #ifdef ASSERT
duke@435 537 void* Arena::malloc(size_t size) {
duke@435 538 assert(UseMallocOnly, "shouldn't call");
duke@435 539 // use malloc, but save pointer in res. area for later freeing
duke@435 540 char** save = (char**)internal_malloc_4(sizeof(char*));
duke@435 541 return (*save = (char*)os::malloc(size));
duke@435 542 }
duke@435 543
duke@435 544 // for debugging with UseMallocOnly
duke@435 545 void* Arena::internal_malloc_4(size_t x) {
duke@435 546 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
kamg@2589 547 check_for_overflow(x, "Arena::internal_malloc_4");
duke@435 548 if (_hwm + x > _max) {
duke@435 549 return grow(x);
duke@435 550 } else {
duke@435 551 char *old = _hwm;
duke@435 552 _hwm += x;
duke@435 553 return old;
duke@435 554 }
duke@435 555 }
duke@435 556 #endif
duke@435 557
duke@435 558
duke@435 559 //--------------------------------------------------------------------------------------
duke@435 560 // Non-product code
duke@435 561
duke@435 562 #ifndef PRODUCT
duke@435 563 // The global operator new should never be called since it will usually indicate
duke@435 564 // a memory leak. Use CHeapObj as the base class of such objects to make it explicit
duke@435 565 // that they're allocated on the C heap.
duke@435 566 // Commented out in product version to avoid conflicts with third-party C++ native code.
duke@435 567 // %% note this is causing a problem on solaris debug build. the global
duke@435 568 // new is being called from jdk source and causing data corruption.
duke@435 569 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
duke@435 570 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
duke@435 571 #ifdef CATCH_OPERATOR_NEW_USAGE
duke@435 572 void* operator new(size_t size){
duke@435 573 static bool warned = false;
duke@435 574 if (!warned && warn_new_operator)
duke@435 575 warning("should not call global (default) operator new");
duke@435 576 warned = true;
duke@435 577 return (void *) AllocateHeap(size, "global operator new");
duke@435 578 }
duke@435 579 #endif
duke@435 580
duke@435 581 void AllocatedObj::print() const { print_on(tty); }
duke@435 582 void AllocatedObj::print_value() const { print_value_on(tty); }
duke@435 583
duke@435 584 void AllocatedObj::print_on(outputStream* st) const {
duke@435 585 st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
duke@435 586 }
duke@435 587
duke@435 588 void AllocatedObj::print_value_on(outputStream* st) const {
duke@435 589 st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
duke@435 590 }
duke@435 591
kvn@2557 592 julong Arena::_bytes_allocated = 0;
kvn@2557 593
kvn@2557 594 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
duke@435 595
duke@435 596 AllocStats::AllocStats() {
kvn@2557 597 start_mallocs = os::num_mallocs;
kvn@2557 598 start_frees = os::num_frees;
duke@435 599 start_malloc_bytes = os::alloc_bytes;
kvn@2557 600 start_mfree_bytes = os::free_bytes;
kvn@2557 601 start_res_bytes = Arena::_bytes_allocated;
duke@435 602 }
duke@435 603
kvn@2557 604 julong AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
kvn@2557 605 julong AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
kvn@2557 606 julong AllocStats::num_frees() { return os::num_frees - start_frees; }
kvn@2557 607 julong AllocStats::free_bytes() { return os::free_bytes - start_mfree_bytes; }
kvn@2557 608 julong AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
duke@435 609 void AllocStats::print() {
kvn@2557 610 tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
kvn@2557 611 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
kvn@2557 612 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 // debugging code
duke@435 617 inline void Arena::free_all(char** start, char** end) {
duke@435 618 for (char** p = start; p < end; p++) if (*p) os::free(*p);
duke@435 619 }
duke@435 620
duke@435 621 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
duke@435 622 assert(UseMallocOnly, "should not call");
duke@435 623 // free all objects malloced since resource mark was created; resource area
duke@435 624 // contains their addresses
duke@435 625 if (chunk->next()) {
duke@435 626 // this chunk is full, and some others too
duke@435 627 for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
duke@435 628 char* top = c->top();
duke@435 629 if (c->next() == NULL) {
duke@435 630 top = hwm2; // last junk is only used up to hwm2
duke@435 631 assert(c->contains(hwm2), "bad hwm2");
duke@435 632 }
duke@435 633 free_all((char**)c->bottom(), (char**)top);
duke@435 634 }
duke@435 635 assert(chunk->contains(hwm), "bad hwm");
duke@435 636 assert(chunk->contains(max), "bad max");
duke@435 637 free_all((char**)hwm, (char**)max);
duke@435 638 } else {
duke@435 639 // this chunk was partially used
duke@435 640 assert(chunk->contains(hwm), "bad hwm");
duke@435 641 assert(chunk->contains(hwm2), "bad hwm2");
duke@435 642 free_all((char**)hwm, (char**)hwm2);
duke@435 643 }
duke@435 644 }
duke@435 645
duke@435 646
duke@435 647 ReallocMark::ReallocMark() {
duke@435 648 #ifdef ASSERT
duke@435 649 Thread *thread = ThreadLocalStorage::get_thread_slow();
duke@435 650 _nesting = thread->resource_area()->nesting();
duke@435 651 #endif
duke@435 652 }
duke@435 653
duke@435 654 void ReallocMark::check() {
duke@435 655 #ifdef ASSERT
duke@435 656 if (_nesting != Thread::current()->resource_area()->nesting()) {
duke@435 657 fatal("allocation bug: array could grow within nested ResourceMark");
duke@435 658 }
duke@435 659 #endif
duke@435 660 }
duke@435 661
duke@435 662 #endif // Non-product

mercurial