src/share/vm/memory/allocation.cpp

Fri, 19 Oct 2012 21:40:07 -0400

author
zgu
date
Fri, 19 Oct 2012 21:40:07 -0400
changeset 4193
716c64bda5ba
parent 4183
7b5885dadbdc
child 4295
59c790074993
permissions
-rw-r--r--

7199092: NMT: NMT needs to deal overlapped virtual memory ranges
Summary: Enhanced virtual memory tracking to track committed regions as well as reserved regions, so NMT now can generate virtual memory map.
Reviewed-by: acorn, coleenp

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
coleenp@4037 28 #include "memory/genCollectedHeap.hpp"
coleenp@4037 29 #include "memory/metaspaceShared.hpp"
stefank@2314 30 #include "memory/resourceArea.hpp"
coleenp@4037 31 #include "memory/universe.hpp"
zgu@3900 32 #include "runtime/atomic.hpp"
stefank@2314 33 #include "runtime/os.hpp"
stefank@2314 34 #include "runtime/task.hpp"
stefank@2314 35 #include "runtime/threadCritical.hpp"
zgu@3900 36 #include "services/memTracker.hpp"
stefank@2314 37 #include "utilities/ostream.hpp"
zgu@3900 38
stefank@2314 39 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 40 # include "os_linux.inline.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 43 # include "os_solaris.inline.hpp"
stefank@2314 44 #endif
stefank@2314 45 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 46 # include "os_windows.inline.hpp"
stefank@2314 47 #endif
never@3156 48 #ifdef TARGET_OS_FAMILY_bsd
never@3156 49 # include "os_bsd.inline.hpp"
never@3156 50 #endif
duke@435 51
duke@435 52 void* StackObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
duke@435 53 void StackObj::operator delete(void* p) { ShouldNotCallThis(); };
duke@435 54 void* _ValueObj::operator new(size_t size) { ShouldNotCallThis(); return 0; };
duke@435 55 void _ValueObj::operator delete(void* p) { ShouldNotCallThis(); };
duke@435 56
coleenp@4037 57 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
coleenp@4037 58 size_t word_size, bool read_only, TRAPS) {
coleenp@4037 59 // Klass has it's own operator new
coleenp@4037 60 return Metaspace::allocate(loader_data, word_size, read_only,
coleenp@4037 61 Metaspace::NonClassType, CHECK_NULL);
coleenp@4037 62 }
coleenp@4037 63
coleenp@4037 64 bool MetaspaceObj::is_shared() const {
coleenp@4037 65 return MetaspaceShared::is_in_shared_space(this);
coleenp@4037 66 }
coleenp@4037 67
coleenp@4037 68 bool MetaspaceObj::is_metadata() const {
coleenp@4037 69 // ClassLoaderDataGraph::contains((address)this); has lock inversion problems
coleenp@4037 70 return !Universe::heap()->is_in_reserved(this);
coleenp@4037 71 }
coleenp@4037 72
coleenp@4037 73 void MetaspaceObj::print_address_on(outputStream* st) const {
coleenp@4037 74 st->print(" {"INTPTR_FORMAT"}", this);
coleenp@4037 75 }
coleenp@4037 76
coleenp@4037 77
zgu@3900 78 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
duke@435 79 address res;
duke@435 80 switch (type) {
duke@435 81 case C_HEAP:
zgu@3900 82 res = (address)AllocateHeap(size, flags, CALLER_PC);
kvn@2040 83 DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
duke@435 84 break;
duke@435 85 case RESOURCE_AREA:
kvn@2043 86 // new(size) sets allocation type RESOURCE_AREA.
duke@435 87 res = (address)operator new(size);
duke@435 88 break;
duke@435 89 default:
duke@435 90 ShouldNotReachHere();
duke@435 91 }
duke@435 92 return res;
duke@435 93 }
duke@435 94
nloodin@4183 95 void* ResourceObj::operator new(size_t size, const std::nothrow_t& nothrow_constant,
nloodin@4183 96 allocation_type type, MEMFLAGS flags) {
nloodin@4183 97 //should only call this with std::nothrow, use other operator new() otherwise
nloodin@4183 98 address res;
nloodin@4183 99 switch (type) {
nloodin@4183 100 case C_HEAP:
nloodin@4183 101 res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
nloodin@4183 102 DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
nloodin@4183 103 break;
nloodin@4183 104 case RESOURCE_AREA:
nloodin@4183 105 // new(size) sets allocation type RESOURCE_AREA.
nloodin@4183 106 res = (address)operator new(size, std::nothrow);
nloodin@4183 107 break;
nloodin@4183 108 default:
nloodin@4183 109 ShouldNotReachHere();
nloodin@4183 110 }
nloodin@4183 111 return res;
nloodin@4183 112 }
nloodin@4183 113
nloodin@4183 114
duke@435 115 void ResourceObj::operator delete(void* p) {
duke@435 116 assert(((ResourceObj *)p)->allocated_on_C_heap(),
duke@435 117 "delete only allowed for C_HEAP objects");
kvn@2357 118 DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
duke@435 119 FreeHeap(p);
duke@435 120 }
duke@435 121
kvn@2040 122 #ifdef ASSERT
kvn@2040 123 void ResourceObj::set_allocation_type(address res, allocation_type type) {
kvn@2040 124 // Set allocation type in the resource object
kvn@2040 125 uintptr_t allocation = (uintptr_t)res;
kvn@2043 126 assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
kvn@2040 127 assert(type <= allocation_mask, "incorrect allocation type");
kvn@2357 128 ResourceObj* resobj = (ResourceObj *)res;
kvn@2357 129 resobj->_allocation_t[0] = ~(allocation + type);
kvn@2357 130 if (type != STACK_OR_EMBEDDED) {
kvn@2357 131 // Called from operator new() and CollectionSetChooser(),
kvn@2357 132 // set verification value.
kvn@2357 133 resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
kvn@2357 134 }
kvn@2040 135 }
kvn@2040 136
kvn@2043 137 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
kvn@2357 138 assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
kvn@2357 139 return (allocation_type)((~_allocation_t[0]) & allocation_mask);
kvn@2357 140 }
kvn@2357 141
kvn@2357 142 bool ResourceObj::is_type_set() const {
kvn@2357 143 allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
kvn@2357 144 return get_allocation_type() == type &&
kvn@2357 145 (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
kvn@2040 146 }
kvn@2040 147
kvn@2043 148 ResourceObj::ResourceObj() { // default constructor
kvn@2357 149 if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
kvn@2357 150 // Operator new() is not called for allocations
kvn@2357 151 // on stack and for embedded objects.
kvn@2040 152 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2357 153 } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
kvn@2357 154 // For some reason we got a value which resembles
kvn@2357 155 // an embedded or stack object (operator new() does not
kvn@2357 156 // set such type). Keep it since it is valid value
kvn@2357 157 // (even if it was garbage).
kvn@2357 158 // Ignore garbage in other fields.
kvn@2357 159 } else if (is_type_set()) {
kvn@2357 160 // Operator new() was called and type was set.
kvn@2357 161 assert(!allocated_on_stack(),
kvn@2357 162 err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 163 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2040 164 } else {
kvn@2357 165 // Operator new() was not called.
kvn@2357 166 // Assume that it is embedded or stack object.
kvn@2357 167 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2040 168 }
kvn@2357 169 _allocation_t[1] = 0; // Zap verification value
kvn@2040 170 }
kvn@2040 171
kvn@2043 172 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
kvn@2040 173 // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
kvn@2357 174 // Note: garbage may resembles valid value.
kvn@2357 175 assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
kvn@2357 176 err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 177 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2040 178 set_allocation_type((address)this, STACK_OR_EMBEDDED);
kvn@2357 179 _allocation_t[1] = 0; // Zap verification value
kvn@2040 180 }
kvn@2040 181
kvn@2040 182 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
kvn@2040 183 // Used in InlineTree::ok_to_inline() for WarmCallInfo.
kvn@2357 184 assert(allocated_on_stack(),
kvn@2357 185 err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
kvn@2357 186 this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
kvn@2357 187 // Keep current _allocation_t value;
kvn@2040 188 return *this;
kvn@2040 189 }
kvn@2040 190
kvn@2040 191 ResourceObj::~ResourceObj() {
kvn@2043 192 // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
kvn@2357 193 if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
kvn@2357 194 _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
kvn@2040 195 }
kvn@2040 196 }
kvn@2040 197 #endif // ASSERT
kvn@2040 198
kvn@2040 199
duke@435 200 void trace_heap_malloc(size_t size, const char* name, void* p) {
duke@435 201 // A lock is not needed here - tty uses a lock internally
kvn@2557 202 tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
duke@435 203 }
duke@435 204
duke@435 205
duke@435 206 void trace_heap_free(void* p) {
duke@435 207 // A lock is not needed here - tty uses a lock internally
duke@435 208 tty->print_cr("Heap free " INTPTR_FORMAT, p);
duke@435 209 }
duke@435 210
duke@435 211 bool warn_new_operator = false; // see vm_main
duke@435 212
duke@435 213 //--------------------------------------------------------------------------------------
duke@435 214 // ChunkPool implementation
duke@435 215
duke@435 216 // MT-safe pool of chunks to reduce malloc/free thrashing
duke@435 217 // NB: not using Mutex because pools are used before Threads are initialized
zgu@3900 218 class ChunkPool: public CHeapObj<mtInternal> {
duke@435 219 Chunk* _first; // first cached Chunk; its first word points to next chunk
duke@435 220 size_t _num_chunks; // number of unused chunks in pool
duke@435 221 size_t _num_used; // number of chunks currently checked out
duke@435 222 const size_t _size; // size of each chunk (must be uniform)
duke@435 223
duke@435 224 // Our three static pools
duke@435 225 static ChunkPool* _large_pool;
duke@435 226 static ChunkPool* _medium_pool;
duke@435 227 static ChunkPool* _small_pool;
duke@435 228
duke@435 229 // return first element or null
duke@435 230 void* get_first() {
duke@435 231 Chunk* c = _first;
duke@435 232 if (_first) {
duke@435 233 _first = _first->next();
duke@435 234 _num_chunks--;
duke@435 235 }
duke@435 236 return c;
duke@435 237 }
duke@435 238
duke@435 239 public:
duke@435 240 // All chunks in a ChunkPool has the same size
duke@435 241 ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
duke@435 242
duke@435 243 // Allocate a new chunk from the pool (might expand the pool)
zgu@3900 244 _NOINLINE_ void* allocate(size_t bytes) {
duke@435 245 assert(bytes == _size, "bad size");
duke@435 246 void* p = NULL;
zgu@3900 247 // No VM lock can be taken inside ThreadCritical lock, so os::malloc
zgu@3900 248 // should be done outside ThreadCritical lock due to NMT
duke@435 249 { ThreadCritical tc;
duke@435 250 _num_used++;
duke@435 251 p = get_first();
duke@435 252 }
zgu@3900 253 if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
duke@435 254 if (p == NULL)
duke@435 255 vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
duke@435 256
duke@435 257 return p;
duke@435 258 }
duke@435 259
duke@435 260 // Return a chunk to the pool
duke@435 261 void free(Chunk* chunk) {
duke@435 262 assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
duke@435 263 ThreadCritical tc;
duke@435 264 _num_used--;
duke@435 265
duke@435 266 // Add chunk to list
duke@435 267 chunk->set_next(_first);
duke@435 268 _first = chunk;
duke@435 269 _num_chunks++;
duke@435 270 }
duke@435 271
duke@435 272 // Prune the pool
duke@435 273 void free_all_but(size_t n) {
zgu@3900 274 Chunk* cur = NULL;
zgu@3900 275 Chunk* next;
zgu@3900 276 {
duke@435 277 // if we have more than n chunks, free all of them
duke@435 278 ThreadCritical tc;
duke@435 279 if (_num_chunks > n) {
duke@435 280 // free chunks at end of queue, for better locality
zgu@3900 281 cur = _first;
duke@435 282 for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
duke@435 283
duke@435 284 if (cur != NULL) {
zgu@3900 285 next = cur->next();
duke@435 286 cur->set_next(NULL);
duke@435 287 cur = next;
duke@435 288
zgu@3900 289 _num_chunks = n;
zgu@3900 290 }
zgu@3900 291 }
zgu@3900 292 }
zgu@3900 293
zgu@3900 294 // Free all remaining chunks, outside of ThreadCritical
zgu@3900 295 // to avoid deadlock with NMT
duke@435 296 while(cur != NULL) {
duke@435 297 next = cur->next();
zgu@3900 298 os::free(cur, mtChunk);
duke@435 299 cur = next;
duke@435 300 }
duke@435 301 }
duke@435 302
duke@435 303 // Accessors to preallocated pool's
duke@435 304 static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; }
duke@435 305 static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
duke@435 306 static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; }
duke@435 307
duke@435 308 static void initialize() {
duke@435 309 _large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size());
duke@435 310 _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
duke@435 311 _small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size());
duke@435 312 }
bobv@2036 313
bobv@2036 314 static void clean() {
bobv@2036 315 enum { BlocksToKeep = 5 };
bobv@2036 316 _small_pool->free_all_but(BlocksToKeep);
bobv@2036 317 _medium_pool->free_all_but(BlocksToKeep);
bobv@2036 318 _large_pool->free_all_but(BlocksToKeep);
bobv@2036 319 }
duke@435 320 };
duke@435 321
duke@435 322 ChunkPool* ChunkPool::_large_pool = NULL;
duke@435 323 ChunkPool* ChunkPool::_medium_pool = NULL;
duke@435 324 ChunkPool* ChunkPool::_small_pool = NULL;
duke@435 325
duke@435 326 void chunkpool_init() {
duke@435 327 ChunkPool::initialize();
duke@435 328 }
duke@435 329
bobv@2036 330 void
bobv@2036 331 Chunk::clean_chunk_pool() {
bobv@2036 332 ChunkPool::clean();
bobv@2036 333 }
bobv@2036 334
duke@435 335
duke@435 336 //--------------------------------------------------------------------------------------
duke@435 337 // ChunkPoolCleaner implementation
bobv@2036 338 //
duke@435 339
duke@435 340 class ChunkPoolCleaner : public PeriodicTask {
bobv@2036 341 enum { CleaningInterval = 5000 }; // cleaning interval in ms
duke@435 342
duke@435 343 public:
duke@435 344 ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
duke@435 345 void task() {
bobv@2036 346 ChunkPool::clean();
duke@435 347 }
duke@435 348 };
duke@435 349
duke@435 350 //--------------------------------------------------------------------------------------
duke@435 351 // Chunk implementation
duke@435 352
duke@435 353 void* Chunk::operator new(size_t requested_size, size_t length) {
duke@435 354 // requested_size is equal to sizeof(Chunk) but in order for the arena
duke@435 355 // allocations to come out aligned as expected the size must be aligned
duke@435 356 // to expected arean alignment.
duke@435 357 // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
duke@435 358 assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
duke@435 359 size_t bytes = ARENA_ALIGN(requested_size) + length;
duke@435 360 switch (length) {
duke@435 361 case Chunk::size: return ChunkPool::large_pool()->allocate(bytes);
duke@435 362 case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
duke@435 363 case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes);
duke@435 364 default: {
zgu@3900 365 void *p = os::malloc(bytes, mtChunk, CALLER_PC);
duke@435 366 if (p == NULL)
duke@435 367 vm_exit_out_of_memory(bytes, "Chunk::new");
duke@435 368 return p;
duke@435 369 }
duke@435 370 }
duke@435 371 }
duke@435 372
duke@435 373 void Chunk::operator delete(void* p) {
duke@435 374 Chunk* c = (Chunk*)p;
duke@435 375 switch (c->length()) {
duke@435 376 case Chunk::size: ChunkPool::large_pool()->free(c); break;
duke@435 377 case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
duke@435 378 case Chunk::init_size: ChunkPool::small_pool()->free(c); break;
zgu@3900 379 default: os::free(c, mtChunk);
duke@435 380 }
duke@435 381 }
duke@435 382
duke@435 383 Chunk::Chunk(size_t length) : _len(length) {
duke@435 384 _next = NULL; // Chain on the linked list
duke@435 385 }
duke@435 386
duke@435 387
duke@435 388 void Chunk::chop() {
duke@435 389 Chunk *k = this;
duke@435 390 while( k ) {
duke@435 391 Chunk *tmp = k->next();
duke@435 392 // clear out this chunk (to detect allocation bugs)
duke@435 393 if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
duke@435 394 delete k; // Free chunk (was malloc'd)
duke@435 395 k = tmp;
duke@435 396 }
duke@435 397 }
duke@435 398
duke@435 399 void Chunk::next_chop() {
duke@435 400 _next->chop();
duke@435 401 _next = NULL;
duke@435 402 }
duke@435 403
duke@435 404
duke@435 405 void Chunk::start_chunk_pool_cleaner_task() {
duke@435 406 #ifdef ASSERT
duke@435 407 static bool task_created = false;
duke@435 408 assert(!task_created, "should not start chuck pool cleaner twice");
duke@435 409 task_created = true;
duke@435 410 #endif
duke@435 411 ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
duke@435 412 cleaner->enroll();
duke@435 413 }
duke@435 414
duke@435 415 //------------------------------Arena------------------------------------------
zgu@3900 416 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
duke@435 417
duke@435 418 Arena::Arena(size_t init_size) {
duke@435 419 size_t round_size = (sizeof (char *)) - 1;
duke@435 420 init_size = (init_size+round_size) & ~round_size;
duke@435 421 _first = _chunk = new (init_size) Chunk(init_size);
duke@435 422 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 423 _max = _chunk->top();
duke@435 424 set_size_in_bytes(init_size);
zgu@3900 425 NOT_PRODUCT(Atomic::inc(&_instance_count);)
duke@435 426 }
duke@435 427
duke@435 428 Arena::Arena() {
duke@435 429 _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
duke@435 430 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 431 _max = _chunk->top();
duke@435 432 set_size_in_bytes(Chunk::init_size);
zgu@3900 433 NOT_PRODUCT(Atomic::inc(&_instance_count);)
duke@435 434 }
duke@435 435
duke@435 436 Arena *Arena::move_contents(Arena *copy) {
duke@435 437 copy->destruct_contents();
duke@435 438 copy->_chunk = _chunk;
duke@435 439 copy->_hwm = _hwm;
duke@435 440 copy->_max = _max;
duke@435 441 copy->_first = _first;
zgu@4193 442
zgu@4193 443 // workaround rare racing condition, which could double count
zgu@4193 444 // the arena size by native memory tracking
zgu@4193 445 size_t size = size_in_bytes();
zgu@4193 446 set_size_in_bytes(0);
zgu@4193 447 copy->set_size_in_bytes(size);
duke@435 448 // Destroy original arena
duke@435 449 reset();
duke@435 450 return copy; // Return Arena with contents
duke@435 451 }
duke@435 452
duke@435 453 Arena::~Arena() {
duke@435 454 destruct_contents();
zgu@3900 455 NOT_PRODUCT(Atomic::dec(&_instance_count);)
zgu@3900 456 }
zgu@3900 457
zgu@3900 458 void* Arena::operator new(size_t size) {
zgu@3900 459 assert(false, "Use dynamic memory type binding");
zgu@3900 460 return NULL;
zgu@3900 461 }
zgu@3900 462
zgu@3900 463 void* Arena::operator new (size_t size, const std::nothrow_t& nothrow_constant) {
zgu@3900 464 assert(false, "Use dynamic memory type binding");
zgu@3900 465 return NULL;
zgu@3900 466 }
zgu@3900 467
zgu@3900 468 // dynamic memory type binding
zgu@3900 469 void* Arena::operator new(size_t size, MEMFLAGS flags) {
zgu@3900 470 #ifdef ASSERT
zgu@3900 471 void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
zgu@3900 472 if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
zgu@3900 473 return p;
zgu@3900 474 #else
zgu@3900 475 return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
zgu@3900 476 #endif
zgu@3900 477 }
zgu@3900 478
zgu@3900 479 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
zgu@3900 480 #ifdef ASSERT
zgu@3900 481 void* p = os::malloc(size, flags|otArena, CALLER_PC);
zgu@3900 482 if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
zgu@3900 483 return p;
zgu@3900 484 #else
zgu@3900 485 return os::malloc(size, flags|otArena, CALLER_PC);
zgu@3900 486 #endif
zgu@3900 487 }
zgu@3900 488
zgu@3900 489 void Arena::operator delete(void* p) {
zgu@3900 490 FreeHeap(p);
duke@435 491 }
duke@435 492
duke@435 493 // Destroy this arenas contents and reset to empty
duke@435 494 void Arena::destruct_contents() {
duke@435 495 if (UseMallocOnly && _first != NULL) {
duke@435 496 char* end = _first->next() ? _first->top() : _hwm;
duke@435 497 free_malloced_objects(_first, _first->bottom(), end, _hwm);
duke@435 498 }
zgu@4193 499 // reset size before chop to avoid a rare racing condition
zgu@4193 500 // that can have total arena memory exceed total chunk memory
zgu@4193 501 set_size_in_bytes(0);
duke@435 502 _first->chop();
duke@435 503 reset();
duke@435 504 }
duke@435 505
zgu@3900 506 // This is high traffic method, but many calls actually don't
zgu@3900 507 // change the size
zgu@3900 508 void Arena::set_size_in_bytes(size_t size) {
zgu@3900 509 if (_size_in_bytes != size) {
zgu@3900 510 _size_in_bytes = size;
zgu@3900 511 MemTracker::record_arena_size((address)this, size);
zgu@3900 512 }
zgu@3900 513 }
duke@435 514
duke@435 515 // Total of all Chunks in arena
duke@435 516 size_t Arena::used() const {
duke@435 517 size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
duke@435 518 register Chunk *k = _first;
duke@435 519 while( k != _chunk) { // Whilst have Chunks in a row
duke@435 520 sum += k->length(); // Total size of this Chunk
duke@435 521 k = k->next(); // Bump along to next Chunk
duke@435 522 }
duke@435 523 return sum; // Return total consumed space.
duke@435 524 }
duke@435 525
kamg@2589 526 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
kamg@2589 527 vm_exit_out_of_memory(sz, whence);
kamg@2589 528 }
duke@435 529
duke@435 530 // Grow a new Chunk
nloodin@4183 531 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
duke@435 532 // Get minimal required size. Either real big, or even bigger for giant objs
duke@435 533 size_t len = MAX2(x, (size_t) Chunk::size);
duke@435 534
duke@435 535 Chunk *k = _chunk; // Get filled-up chunk address
duke@435 536 _chunk = new (len) Chunk(len);
duke@435 537
kamg@2589 538 if (_chunk == NULL) {
nloodin@4183 539 if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
nloodin@4183 540 signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
nloodin@4183 541 }
nloodin@4183 542 return NULL;
kamg@2589 543 }
duke@435 544 if (k) k->set_next(_chunk); // Append new chunk to end of linked list
duke@435 545 else _first = _chunk;
duke@435 546 _hwm = _chunk->bottom(); // Save the cached hwm, max
duke@435 547 _max = _chunk->top();
duke@435 548 set_size_in_bytes(size_in_bytes() + len);
duke@435 549 void* result = _hwm;
duke@435 550 _hwm += x;
duke@435 551 return result;
duke@435 552 }
duke@435 553
duke@435 554
duke@435 555
duke@435 556 // Reallocate storage in Arena.
nloodin@4183 557 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
duke@435 558 assert(new_size >= 0, "bad size");
duke@435 559 if (new_size == 0) return NULL;
duke@435 560 #ifdef ASSERT
duke@435 561 if (UseMallocOnly) {
duke@435 562 // always allocate a new object (otherwise we'll free this one twice)
nloodin@4183 563 char* copy = (char*)Amalloc(new_size, alloc_failmode);
nloodin@4183 564 if (copy == NULL) {
nloodin@4183 565 return NULL;
nloodin@4183 566 }
duke@435 567 size_t n = MIN2(old_size, new_size);
duke@435 568 if (n > 0) memcpy(copy, old_ptr, n);
duke@435 569 Afree(old_ptr,old_size); // Mostly done to keep stats accurate
duke@435 570 return copy;
duke@435 571 }
duke@435 572 #endif
duke@435 573 char *c_old = (char*)old_ptr; // Handy name
duke@435 574 // Stupid fast special case
duke@435 575 if( new_size <= old_size ) { // Shrink in-place
duke@435 576 if( c_old+old_size == _hwm) // Attempt to free the excess bytes
duke@435 577 _hwm = c_old+new_size; // Adjust hwm
duke@435 578 return c_old;
duke@435 579 }
duke@435 580
duke@435 581 // make sure that new_size is legal
duke@435 582 size_t corrected_new_size = ARENA_ALIGN(new_size);
duke@435 583
duke@435 584 // See if we can resize in-place
duke@435 585 if( (c_old+old_size == _hwm) && // Adjusting recent thing
duke@435 586 (c_old+corrected_new_size <= _max) ) { // Still fits where it sits
duke@435 587 _hwm = c_old+corrected_new_size; // Adjust hwm
duke@435 588 return c_old; // Return old pointer
duke@435 589 }
duke@435 590
duke@435 591 // Oops, got to relocate guts
nloodin@4183 592 void *new_ptr = Amalloc(new_size, alloc_failmode);
nloodin@4183 593 if (new_ptr == NULL) {
nloodin@4183 594 return NULL;
nloodin@4183 595 }
duke@435 596 memcpy( new_ptr, c_old, old_size );
duke@435 597 Afree(c_old,old_size); // Mostly done to keep stats accurate
duke@435 598 return new_ptr;
duke@435 599 }
duke@435 600
duke@435 601
duke@435 602 // Determine if pointer belongs to this Arena or not.
duke@435 603 bool Arena::contains( const void *ptr ) const {
duke@435 604 #ifdef ASSERT
duke@435 605 if (UseMallocOnly) {
duke@435 606 // really slow, but not easy to make fast
duke@435 607 if (_chunk == NULL) return false;
duke@435 608 char** bottom = (char**)_chunk->bottom();
duke@435 609 for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
duke@435 610 if (*p == ptr) return true;
duke@435 611 }
duke@435 612 for (Chunk *c = _first; c != NULL; c = c->next()) {
duke@435 613 if (c == _chunk) continue; // current chunk has been processed
duke@435 614 char** bottom = (char**)c->bottom();
duke@435 615 for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
duke@435 616 if (*p == ptr) return true;
duke@435 617 }
duke@435 618 }
duke@435 619 return false;
duke@435 620 }
duke@435 621 #endif
duke@435 622 if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
duke@435 623 return true; // Check for in this chunk
duke@435 624 for (Chunk *c = _first; c; c = c->next()) {
duke@435 625 if (c == _chunk) continue; // current chunk has been processed
duke@435 626 if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
duke@435 627 return true; // Check for every chunk in Arena
duke@435 628 }
duke@435 629 }
duke@435 630 return false; // Not in any Chunk, so not in Arena
duke@435 631 }
duke@435 632
duke@435 633
duke@435 634 #ifdef ASSERT
duke@435 635 void* Arena::malloc(size_t size) {
duke@435 636 assert(UseMallocOnly, "shouldn't call");
duke@435 637 // use malloc, but save pointer in res. area for later freeing
duke@435 638 char** save = (char**)internal_malloc_4(sizeof(char*));
zgu@3900 639 return (*save = (char*)os::malloc(size, mtChunk));
duke@435 640 }
duke@435 641
duke@435 642 // for debugging with UseMallocOnly
duke@435 643 void* Arena::internal_malloc_4(size_t x) {
duke@435 644 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
kamg@2589 645 check_for_overflow(x, "Arena::internal_malloc_4");
duke@435 646 if (_hwm + x > _max) {
duke@435 647 return grow(x);
duke@435 648 } else {
duke@435 649 char *old = _hwm;
duke@435 650 _hwm += x;
duke@435 651 return old;
duke@435 652 }
duke@435 653 }
duke@435 654 #endif
duke@435 655
duke@435 656
duke@435 657 //--------------------------------------------------------------------------------------
duke@435 658 // Non-product code
duke@435 659
duke@435 660 #ifndef PRODUCT
duke@435 661 // The global operator new should never be called since it will usually indicate
duke@435 662 // a memory leak. Use CHeapObj as the base class of such objects to make it explicit
duke@435 663 // that they're allocated on the C heap.
duke@435 664 // Commented out in product version to avoid conflicts with third-party C++ native code.
duke@435 665 // %% note this is causing a problem on solaris debug build. the global
duke@435 666 // new is being called from jdk source and causing data corruption.
duke@435 667 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
duke@435 668 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
duke@435 669 #ifdef CATCH_OPERATOR_NEW_USAGE
duke@435 670 void* operator new(size_t size){
duke@435 671 static bool warned = false;
duke@435 672 if (!warned && warn_new_operator)
duke@435 673 warning("should not call global (default) operator new");
duke@435 674 warned = true;
duke@435 675 return (void *) AllocateHeap(size, "global operator new");
duke@435 676 }
duke@435 677 #endif
duke@435 678
duke@435 679 void AllocatedObj::print() const { print_on(tty); }
duke@435 680 void AllocatedObj::print_value() const { print_value_on(tty); }
duke@435 681
duke@435 682 void AllocatedObj::print_on(outputStream* st) const {
duke@435 683 st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
duke@435 684 }
duke@435 685
duke@435 686 void AllocatedObj::print_value_on(outputStream* st) const {
duke@435 687 st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
duke@435 688 }
duke@435 689
kvn@2557 690 julong Arena::_bytes_allocated = 0;
kvn@2557 691
kvn@2557 692 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
duke@435 693
duke@435 694 AllocStats::AllocStats() {
kvn@2557 695 start_mallocs = os::num_mallocs;
kvn@2557 696 start_frees = os::num_frees;
duke@435 697 start_malloc_bytes = os::alloc_bytes;
kvn@2557 698 start_mfree_bytes = os::free_bytes;
kvn@2557 699 start_res_bytes = Arena::_bytes_allocated;
duke@435 700 }
duke@435 701
kvn@2557 702 julong AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
kvn@2557 703 julong AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
kvn@2557 704 julong AllocStats::num_frees() { return os::num_frees - start_frees; }
kvn@2557 705 julong AllocStats::free_bytes() { return os::free_bytes - start_mfree_bytes; }
kvn@2557 706 julong AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
duke@435 707 void AllocStats::print() {
kvn@2557 708 tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
kvn@2557 709 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
kvn@2557 710 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
duke@435 711 }
duke@435 712
duke@435 713
duke@435 714 // debugging code
duke@435 715 inline void Arena::free_all(char** start, char** end) {
duke@435 716 for (char** p = start; p < end; p++) if (*p) os::free(*p);
duke@435 717 }
duke@435 718
duke@435 719 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
duke@435 720 assert(UseMallocOnly, "should not call");
duke@435 721 // free all objects malloced since resource mark was created; resource area
duke@435 722 // contains their addresses
duke@435 723 if (chunk->next()) {
duke@435 724 // this chunk is full, and some others too
duke@435 725 for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
duke@435 726 char* top = c->top();
duke@435 727 if (c->next() == NULL) {
duke@435 728 top = hwm2; // last junk is only used up to hwm2
duke@435 729 assert(c->contains(hwm2), "bad hwm2");
duke@435 730 }
duke@435 731 free_all((char**)c->bottom(), (char**)top);
duke@435 732 }
duke@435 733 assert(chunk->contains(hwm), "bad hwm");
duke@435 734 assert(chunk->contains(max), "bad max");
duke@435 735 free_all((char**)hwm, (char**)max);
duke@435 736 } else {
duke@435 737 // this chunk was partially used
duke@435 738 assert(chunk->contains(hwm), "bad hwm");
duke@435 739 assert(chunk->contains(hwm2), "bad hwm2");
duke@435 740 free_all((char**)hwm, (char**)hwm2);
duke@435 741 }
duke@435 742 }
duke@435 743
duke@435 744
duke@435 745 ReallocMark::ReallocMark() {
duke@435 746 #ifdef ASSERT
duke@435 747 Thread *thread = ThreadLocalStorage::get_thread_slow();
duke@435 748 _nesting = thread->resource_area()->nesting();
duke@435 749 #endif
duke@435 750 }
duke@435 751
duke@435 752 void ReallocMark::check() {
duke@435 753 #ifdef ASSERT
duke@435 754 if (_nesting != Thread::current()->resource_area()->nesting()) {
duke@435 755 fatal("allocation bug: array could grow within nested ResourceMark");
duke@435 756 }
duke@435 757 #endif
duke@435 758 }
duke@435 759
duke@435 760 #endif // Non-product

mercurial