src/share/vm/utilities/globalDefinitions.hpp

Wed, 15 Apr 2020 11:49:55 +0800

author
aoqi
date
Wed, 15 Apr 2020 11:49:55 +0800
changeset 9852
70aa912cebe5
parent 9703
2fdf635bcf28
parent 9840
9efdbe72ed1d
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

Merge

duke@435 1 /*
kevinw@8368 2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
aoqi@1 25 /*
aoqi@1 26 * This file has been modified by Loongson Technology in 2015. These
aoqi@1 27 * modifications are Copyright (c) 2015 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
stefank@2314 31 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 32 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 33
dcubed@3202 34 #ifndef __STDC_FORMAT_MACROS
never@3156 35 #define __STDC_FORMAT_MACROS
dcubed@3202 36 #endif
never@3156 37
stefank@2314 38 #ifdef TARGET_COMPILER_gcc
stefank@2314 39 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 40 #endif
stefank@2314 41 #ifdef TARGET_COMPILER_visCPP
stefank@2314 42 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 45 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 46 #endif
goetz@6461 47 #ifdef TARGET_COMPILER_xlc
goetz@6461 48 # include "utilities/globalDefinitions_xlc.hpp"
goetz@6461 49 #endif
stefank@2314 50
drchase@6680 51 #ifndef PRAGMA_DIAG_PUSH
drchase@6680 52 #define PRAGMA_DIAG_PUSH
drchase@6680 53 #endif
drchase@6680 54 #ifndef PRAGMA_DIAG_POP
drchase@6680 55 #define PRAGMA_DIAG_POP
drchase@6680 56 #endif
drchase@6680 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
drchase@6680 59 #endif
drchase@6680 60 #ifndef PRAGMA_FORMAT_IGNORED
drchase@6680 61 #define PRAGMA_FORMAT_IGNORED
drchase@6680 62 #endif
drchase@6680 63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
drchase@6680 65 #endif
drchase@6680 66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
drchase@6680 68 #endif
drchase@6680 69 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 70 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 71 #endif
drchase@6680 72 #ifndef ATTRIBUTE_PRINTF
drchase@6680 73 #define ATTRIBUTE_PRINTF(fmt, vargs)
drchase@6680 74 #endif
drchase@6680 75
drchase@6680 76
stefank@2314 77 #include "utilities/macros.hpp"
stefank@2314 78
duke@435 79 // This file holds all globally used constants & types, class (forward)
duke@435 80 // declarations and a few frequently used utility functions.
duke@435 81
duke@435 82 //----------------------------------------------------------------------------------------------------
duke@435 83 // Constants
duke@435 84
duke@435 85 const int LogBytesPerShort = 1;
duke@435 86 const int LogBytesPerInt = 2;
duke@435 87 #ifdef _LP64
duke@435 88 const int LogBytesPerWord = 3;
duke@435 89 #else
duke@435 90 const int LogBytesPerWord = 2;
duke@435 91 #endif
duke@435 92 const int LogBytesPerLong = 3;
duke@435 93
duke@435 94 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 95 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 96 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 97 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 98
duke@435 99 const int LogBitsPerByte = 3;
duke@435 100 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 101 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 102 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 103 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 104
duke@435 105 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 106 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 107 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 108 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 109 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 110
duke@435 111 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 112 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 113
duke@435 114 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 115
coleenp@548 116 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 117 extern int heapOopSize; // Oop within a java object
duke@435 118 const int wordSize = sizeof(char*);
duke@435 119 const int longSize = sizeof(jlong);
duke@435 120 const int jintSize = sizeof(jint);
duke@435 121 const int size_tSize = sizeof(size_t);
duke@435 122
coleenp@548 123 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 124
coleenp@548 125 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 126 extern int LogBitsPerHeapOop;
coleenp@548 127 extern int BytesPerHeapOop;
coleenp@548 128 extern int BitsPerHeapOop;
duke@435 129
kvn@1926 130 // Oop encoding heap max
kvn@1926 131 extern uint64_t OopEncodingHeapMax;
kvn@1926 132
duke@435 133 const int BitsPerJavaInteger = 32;
twisti@994 134 const int BitsPerJavaLong = 64;
duke@435 135 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 136
coleenp@548 137 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 138 const int jintAsStringSize = 12;
coleenp@548 139
duke@435 140 // In fact this should be
duke@435 141 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 142 // see os::set_memory_serialize_page()
duke@435 143 #ifdef _LP64
duke@435 144 const int SerializePageShiftCount = 4;
duke@435 145 #else
duke@435 146 const int SerializePageShiftCount = 3;
duke@435 147 #endif
duke@435 148
duke@435 149 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 150 // pointer into the heap. We require that object sizes be measured in
duke@435 151 // units of heap words, so that that
duke@435 152 // HeapWord* hw;
duke@435 153 // hw += oop(hw)->foo();
duke@435 154 // works, where foo is a method (like size or scavenge) that returns the
duke@435 155 // object size.
duke@435 156 class HeapWord {
duke@435 157 friend class VMStructs;
jmasa@698 158 private:
duke@435 159 char* i;
jmasa@796 160 #ifndef PRODUCT
jmasa@698 161 public:
jmasa@698 162 char* value() { return i; }
jmasa@698 163 #endif
duke@435 164 };
duke@435 165
coleenp@4037 166 // Analogous opaque struct for metadata allocated from
coleenp@4037 167 // metaspaces.
coleenp@4037 168 class MetaWord {
coleenp@4037 169 friend class VMStructs;
coleenp@4037 170 private:
coleenp@4037 171 char* i;
coleenp@4037 172 };
coleenp@4037 173
duke@435 174 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 175 const int HeapWordSize = sizeof(HeapWord);
duke@435 176 #ifdef _LP64
coleenp@548 177 const int LogHeapWordSize = 3;
duke@435 178 #else
coleenp@548 179 const int LogHeapWordSize = 2;
duke@435 180 #endif
coleenp@548 181 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 182 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 183
duke@435 184 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 185 // for the same application running in 64bit. See bug 4967770.
duke@435 186 // The minimum alignment to a heap word size is done. Other
duke@435 187 // parts of the memory system may required additional alignment
duke@435 188 // and are responsible for those alignments.
duke@435 189 #ifdef _LP64
duke@435 190 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 191 #else
duke@435 192 #define ScaleForWordSize(x) (x)
duke@435 193 #endif
duke@435 194
duke@435 195 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 196 // bytes.
duke@435 197 inline size_t heap_word_size(size_t byte_size) {
duke@435 198 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 199 }
duke@435 200
duke@435 201
duke@435 202 const size_t K = 1024;
duke@435 203 const size_t M = K*K;
duke@435 204 const size_t G = M*K;
duke@435 205 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 206
duke@435 207 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 208 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 209
duke@435 210 // Constants for converting from a base unit to milli-base units. For
duke@435 211 // example from seconds to milliseconds and microseconds
duke@435 212
duke@435 213 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 214 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 215 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 216
johnc@3339 217 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 218 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 219
shade@9667 220 // Proper units routines try to maintain at least three significant digits.
shade@9667 221 // In worst case, it would print five significant digits with lower prefix.
shade@9667 222 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
shade@9667 223 // and therefore we need to be careful.
shade@9667 224
duke@435 225 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 226 #ifdef _LP64
shade@9667 227 if (s >= 100*G) {
brutisso@3766 228 return "G";
brutisso@3766 229 }
brutisso@3766 230 #endif
shade@9667 231 if (s >= 100*M) {
duke@435 232 return "M";
shade@9667 233 } else if (s >= 100*K) {
duke@435 234 return "K";
duke@435 235 } else {
duke@435 236 return "B";
duke@435 237 }
duke@435 238 }
duke@435 239
brutisso@3762 240 template <class T>
brutisso@3762 241 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 242 #ifdef _LP64
shade@9667 243 if (s >= 100*G) {
brutisso@3766 244 return (T)(s/G);
brutisso@3766 245 }
brutisso@3766 246 #endif
shade@9667 247 if (s >= 100*M) {
brutisso@3762 248 return (T)(s/M);
shade@9667 249 } else if (s >= 100*K) {
brutisso@3762 250 return (T)(s/K);
duke@435 251 } else {
duke@435 252 return s;
duke@435 253 }
duke@435 254 }
duke@435 255
duke@435 256 //----------------------------------------------------------------------------------------------------
duke@435 257 // VM type definitions
duke@435 258
duke@435 259 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 260 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 261
duke@435 262 typedef intptr_t intx;
duke@435 263 typedef uintptr_t uintx;
duke@435 264
duke@435 265 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 266 const intx max_intx = (uintx)min_intx - 1;
duke@435 267 const uintx max_uintx = (uintx)-1;
duke@435 268
duke@435 269 // Table of values:
duke@435 270 // sizeof intx 4 8
duke@435 271 // min_intx 0x80000000 0x8000000000000000
duke@435 272 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 273 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 274
duke@435 275 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 276
duke@435 277
duke@435 278 //----------------------------------------------------------------------------------------------------
duke@435 279 // Java type definitions
duke@435 280
duke@435 281 // All kinds of 'plain' byte addresses
duke@435 282 typedef signed char s_char;
duke@435 283 typedef unsigned char u_char;
duke@435 284 typedef u_char* address;
duke@435 285 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 286 // except for some implementations of a C++
duke@435 287 // linkage pointer to function. Should never
duke@435 288 // need one of those to be placed in this
duke@435 289 // type anyway.
duke@435 290
duke@435 291 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 292 // Where portable means keep ANSI C++ compilers quiet
duke@435 293
duke@435 294 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 295 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 296
duke@435 297 // Utility functions to "portably" make cast to/from function pointers.
duke@435 298
duke@435 299 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 300 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 301 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 302
duke@435 303 // Pointer subtraction.
duke@435 304 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 305 // the range we might need to find differences from one end of the heap
duke@435 306 // to the other.
duke@435 307 // A typical use might be:
duke@435 308 // if (pointer_delta(end(), top()) >= size) {
duke@435 309 // // enough room for an object of size
duke@435 310 // ...
duke@435 311 // and then additions like
duke@435 312 // ... top() + size ...
duke@435 313 // are safe because we know that top() is at least size below end().
duke@435 314 inline size_t pointer_delta(const void* left,
duke@435 315 const void* right,
duke@435 316 size_t element_size) {
duke@435 317 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 318 }
duke@435 319 // A version specialized for HeapWord*'s.
duke@435 320 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 321 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 322 }
coleenp@4037 323 // A version specialized for MetaWord*'s.
coleenp@4037 324 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 325 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 326 }
duke@435 327
duke@435 328 //
duke@435 329 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 330 // directly without at best a warning. This macro accomplishes it silently
duke@435 331 // In every case that is present at this point the value be cast is a pointer
duke@435 332 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 333 // that linkage and a picky compiler would not complain. In other cases because
duke@435 334 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 335 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 336 // picky enough to catch these instances (which are few). It is possible that
duke@435 337 // using templates could fix these for all cases. This use of templates is likely
duke@435 338 // so far from the middle of the road that it is likely to be problematic in
duke@435 339 // many C++ compilers.
duke@435 340 //
dholmes@9677 341 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
duke@435 342 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 343
duke@435 344 // Unsigned byte types for os and stream.hpp
duke@435 345
duke@435 346 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 347 // the .class file format. See JVM book chapter 4.
duke@435 348
duke@435 349 typedef jubyte u1;
duke@435 350 typedef jushort u2;
duke@435 351 typedef juint u4;
duke@435 352 typedef julong u8;
duke@435 353
duke@435 354 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 355 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 356 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 357 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 358
phh@3427 359 typedef jbyte s1;
phh@3427 360 typedef jshort s2;
phh@3427 361 typedef jint s4;
phh@3427 362 typedef jlong s8;
phh@3427 363
duke@435 364 //----------------------------------------------------------------------------------------------------
duke@435 365 // JVM spec restrictions
duke@435 366
duke@435 367 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 368
tschatzl@5862 369 // Default ProtectionDomainCacheSize values
tschatzl@5862 370
tschatzl@5862 371 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
duke@435 372
duke@435 373 //----------------------------------------------------------------------------------------------------
hseigel@4958 374 // Default and minimum StringTableSize values
hseigel@4277 375
hseigel@4958 376 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
tschatzl@5862 377 const int minimumStringTableSize = 1009;
hseigel@4277 378
kevinw@5850 379 const int defaultSymbolTableSize = 20011;
kevinw@5850 380 const int minimumSymbolTableSize = 1009;
kevinw@5850 381
hseigel@4277 382
hseigel@4277 383 //----------------------------------------------------------------------------------------------------
duke@435 384 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 385 //
duke@435 386 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 387
duke@435 388 #define HOTSWAP
duke@435 389
duke@435 390 //----------------------------------------------------------------------------------------------------
duke@435 391 // Object alignment, in units of HeapWords.
duke@435 392 //
duke@435 393 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 394 // reference fields can be naturally aligned.
duke@435 395
kvn@1926 396 extern int MinObjAlignment;
kvn@1926 397 extern int MinObjAlignmentInBytes;
kvn@1926 398 extern int MinObjAlignmentInBytesMask;
duke@435 399
kvn@1926 400 extern int LogMinObjAlignment;
kvn@1926 401 extern int LogMinObjAlignmentInBytes;
coleenp@548 402
roland@4159 403 const int LogKlassAlignmentInBytes = 3;
roland@4159 404 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@4159 405 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@4159 406 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@4159 407
roland@4159 408 // Klass encoding metaspace max size
roland@4159 409 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@4159 410
duke@435 411 // Machine dependent stuff
duke@435 412
kvn@6429 413 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
kvn@6429 414 // Include Restricted Transactional Memory lock eliding optimization
kvn@6429 415 #define INCLUDE_RTM_OPT 1
kvn@6429 416 #define RTM_OPT_ONLY(code) code
kvn@6429 417 #else
kvn@6429 418 #define INCLUDE_RTM_OPT 0
kvn@6429 419 #define RTM_OPT_ONLY(code)
kvn@6429 420 #endif
kvn@6429 421 // States of Restricted Transactional Memory usage.
kvn@6429 422 enum RTMState {
kvn@6429 423 NoRTM = 0x2, // Don't use RTM
kvn@6429 424 UseRTM = 0x1, // Use RTM
kvn@6429 425 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
kvn@6429 426 };
kvn@6429 427
stefank@2314 428 #ifdef TARGET_ARCH_x86
stefank@2314 429 # include "globalDefinitions_x86.hpp"
stefank@2314 430 #endif
stefank@2314 431 #ifdef TARGET_ARCH_sparc
stefank@2314 432 # include "globalDefinitions_sparc.hpp"
stefank@2314 433 #endif
stefank@2314 434 #ifdef TARGET_ARCH_zero
stefank@2314 435 # include "globalDefinitions_zero.hpp"
stefank@2314 436 #endif
bobv@2508 437 #ifdef TARGET_ARCH_arm
bobv@2508 438 # include "globalDefinitions_arm.hpp"
bobv@2508 439 #endif
bobv@2508 440 #ifdef TARGET_ARCH_ppc
bobv@2508 441 # include "globalDefinitions_ppc.hpp"
bobv@2508 442 #endif
aoqi@1 443 #ifdef TARGET_ARCH_mips
aoqi@1 444 # include "globalDefinitions_mips.hpp"
aoqi@1 445 #endif
stefank@2314 446
jprovino@5188 447 /*
jprovino@5402 448 * If a platform does not support native stack walking
jprovino@5188 449 * the platform specific globalDefinitions (above)
jprovino@5402 450 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
jprovino@5188 451 */
jprovino@5402 452 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
jprovino@5402 453 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
jprovino@5188 454 #endif
duke@435 455
goetz@6502 456 // To assure the IRIW property on processors that are not multiple copy
goetz@6502 457 // atomic, sync instructions must be issued between volatile reads to
goetz@6502 458 // assure their ordering, instead of after volatile stores.
goetz@6502 459 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
goetz@6502 460 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
goetz@6502 461 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
goetz@6502 462 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
goetz@6502 463 #else
goetz@6502 464 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
goetz@6502 465 #endif
goetz@6502 466
duke@435 467 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 468 // Note: this value must be a power of 2
duke@435 469
duke@435 470 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 471
duke@435 472 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 473 // for use in places like enum definitions that require compile-time constant
duke@435 474 // expressions and a function for all other places so as to get type checking.
duke@435 475
duke@435 476 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 477
stefank@5578 478 inline bool is_size_aligned(size_t size, size_t alignment) {
stefank@5578 479 return align_size_up_(size, alignment) == size;
stefank@5578 480 }
stefank@5578 481
stefank@5578 482 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
stefank@5578 483 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
stefank@5578 484 }
stefank@5578 485
duke@435 486 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 487 return align_size_up_(size, alignment);
duke@435 488 }
duke@435 489
duke@435 490 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 491
duke@435 492 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 493 return align_size_down_(size, alignment);
duke@435 494 }
duke@435 495
stefank@5515 496 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
stefank@5515 497
stefank@5578 498 inline void* align_ptr_up(void* ptr, size_t alignment) {
stefank@5578 499 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 500 }
stefank@5578 501
stefank@5578 502 inline void* align_ptr_down(void* ptr, size_t alignment) {
stefank@5578 503 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
stefank@5578 504 }
stefank@5578 505
duke@435 506 // Align objects by rounding up their size, in HeapWord units.
duke@435 507
duke@435 508 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 509
duke@435 510 inline intptr_t align_object_size(intptr_t size) {
duke@435 511 return align_size_up(size, MinObjAlignment);
duke@435 512 }
duke@435 513
kvn@1926 514 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 515 return addr == align_object_size(addr);
kvn@1926 516 }
kvn@1926 517
duke@435 518 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 519
duke@435 520 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 521 return align_size_up(offset, HeapWordsPerLong);
duke@435 522 }
duke@435 523
stefank@5515 524 inline void* align_pointer_up(const void* addr, size_t size) {
stefank@5515 525 return (void*) align_size_up_((uintptr_t)addr, size);
stefank@5515 526 }
stefank@5515 527
jwilhelm@6083 528 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
jwilhelm@6083 529
jwilhelm@6083 530 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
jwilhelm@6083 531 size_t aligned_size = align_size_down_(size, alignment);
jwilhelm@6083 532 return aligned_size > 0 ? aligned_size : alignment;
jwilhelm@6083 533 }
jwilhelm@6083 534
mikael@4889 535 // Clamp an address to be within a specific page
mikael@4889 536 // 1. If addr is on the page it is returned as is
mikael@4889 537 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4889 538 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4889 539 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4889 540 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4889 541 // address is in the specified page, just return it as is
mikael@4889 542 return addr;
mikael@4889 543 } else if (addr > page_address) {
mikael@4889 544 // address is above specified page, return start of next page
mikael@4889 545 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4889 546 } else {
mikael@4889 547 // address is below specified page, return start of page
mikael@4889 548 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4889 549 }
mikael@4889 550 }
mikael@4889 551
mikael@4889 552
jcoomes@2020 553 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 554 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 555
duke@435 556
duke@435 557 //----------------------------------------------------------------------------------------------------
duke@435 558 // Utility macros for compilers
duke@435 559 // used to silence compiler warnings
duke@435 560
duke@435 561 #define Unused_Variable(var) var
duke@435 562
duke@435 563
duke@435 564 //----------------------------------------------------------------------------------------------------
duke@435 565 // Miscellaneous
duke@435 566
duke@435 567 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 568 // All fabs() callers should call this function instead, which will implicitly
duke@435 569 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 570 // doesn't exist in early versions of Solaris 8.
duke@435 571 inline double fabsd(double value) {
duke@435 572 return fabs(value);
duke@435 573 }
duke@435 574
thartmann@7001 575 //----------------------------------------------------------------------------------------------------
thartmann@7001 576 // Special casts
thartmann@7001 577 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@7001 578 typedef union {
thartmann@7001 579 jfloat f;
thartmann@7001 580 jint i;
thartmann@7001 581 } FloatIntConv;
thartmann@7001 582
thartmann@7001 583 typedef union {
thartmann@7001 584 jdouble d;
thartmann@7001 585 jlong l;
thartmann@7001 586 julong ul;
thartmann@7001 587 } DoubleLongConv;
thartmann@7001 588
thartmann@7001 589 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@7001 590 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@7001 591
thartmann@7001 592 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@7001 593 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@7001 594 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@7001 595
duke@435 596 inline jint low (jlong value) { return jint(value); }
duke@435 597 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 598
duke@435 599 // the fancy casts are a hopefully portable way
duke@435 600 // to do unsigned 32 to 64 bit type conversion
duke@435 601 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 602 *value |= (jlong)(julong)(juint)low; }
duke@435 603
duke@435 604 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 605 *value |= (jlong)high << 32; }
duke@435 606
duke@435 607 inline jlong jlong_from(jint h, jint l) {
duke@435 608 jlong result = 0; // initialization to avoid warning
duke@435 609 set_high(&result, h);
duke@435 610 set_low(&result, l);
duke@435 611 return result;
duke@435 612 }
duke@435 613
duke@435 614 union jlong_accessor {
duke@435 615 jint words[2];
duke@435 616 jlong long_value;
duke@435 617 };
duke@435 618
coleenp@548 619 void basic_types_init(); // cannot define here; uses assert
duke@435 620
duke@435 621
duke@435 622 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 623 enum BasicType {
roland@4159 624 T_BOOLEAN = 4,
roland@4159 625 T_CHAR = 5,
roland@4159 626 T_FLOAT = 6,
roland@4159 627 T_DOUBLE = 7,
roland@4159 628 T_BYTE = 8,
roland@4159 629 T_SHORT = 9,
roland@4159 630 T_INT = 10,
roland@4159 631 T_LONG = 11,
roland@4159 632 T_OBJECT = 12,
roland@4159 633 T_ARRAY = 13,
roland@4159 634 T_VOID = 14,
roland@4159 635 T_ADDRESS = 15,
roland@4159 636 T_NARROWOOP = 16,
roland@4159 637 T_METADATA = 17,
roland@4159 638 T_NARROWKLASS = 18,
roland@4159 639 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@4159 640 T_ILLEGAL = 99
duke@435 641 };
duke@435 642
kvn@464 643 inline bool is_java_primitive(BasicType t) {
kvn@464 644 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 645 }
kvn@464 646
jrose@1145 647 inline bool is_subword_type(BasicType t) {
jrose@1145 648 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 649 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 650 }
jrose@1145 651
jrose@1145 652 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 653 return (t == T_BYTE || t == T_SHORT);
jrose@1145 654 }
jrose@1145 655
vlivanov@9840 656 inline bool is_reference_type(BasicType t) {
vlivanov@9840 657 return (t == T_OBJECT || t == T_ARRAY);
vlivanov@9840 658 }
vlivanov@9840 659
duke@435 660 // Convert a char from a classfile signature to a BasicType
duke@435 661 inline BasicType char2type(char c) {
duke@435 662 switch( c ) {
duke@435 663 case 'B': return T_BYTE;
duke@435 664 case 'C': return T_CHAR;
duke@435 665 case 'D': return T_DOUBLE;
duke@435 666 case 'F': return T_FLOAT;
duke@435 667 case 'I': return T_INT;
duke@435 668 case 'J': return T_LONG;
duke@435 669 case 'S': return T_SHORT;
duke@435 670 case 'Z': return T_BOOLEAN;
duke@435 671 case 'V': return T_VOID;
duke@435 672 case 'L': return T_OBJECT;
duke@435 673 case '[': return T_ARRAY;
duke@435 674 }
duke@435 675 return T_ILLEGAL;
duke@435 676 }
duke@435 677
duke@435 678 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 679 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 680 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 681 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 682 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 683 extern BasicType name2type(const char* name);
duke@435 684
duke@435 685 // Auxilary math routines
duke@435 686 // least common multiple
duke@435 687 extern size_t lcm(size_t a, size_t b);
duke@435 688
duke@435 689
duke@435 690 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 691 enum BasicTypeSize {
roland@4159 692 T_BOOLEAN_size = 1,
roland@4159 693 T_CHAR_size = 1,
roland@4159 694 T_FLOAT_size = 1,
roland@4159 695 T_DOUBLE_size = 2,
roland@4159 696 T_BYTE_size = 1,
roland@4159 697 T_SHORT_size = 1,
roland@4159 698 T_INT_size = 1,
roland@4159 699 T_LONG_size = 2,
roland@4159 700 T_OBJECT_size = 1,
roland@4159 701 T_ARRAY_size = 1,
roland@4159 702 T_NARROWOOP_size = 1,
roland@4159 703 T_NARROWKLASS_size = 1,
roland@4159 704 T_VOID_size = 0
duke@435 705 };
duke@435 706
duke@435 707
duke@435 708 // maps a BasicType to its instance field storage type:
duke@435 709 // all sub-word integral types are widened to T_INT
duke@435 710 extern BasicType type2field[T_CONFLICT+1];
duke@435 711 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 712
duke@435 713
duke@435 714 // size in bytes
duke@435 715 enum ArrayElementSize {
roland@4159 716 T_BOOLEAN_aelem_bytes = 1,
roland@4159 717 T_CHAR_aelem_bytes = 2,
roland@4159 718 T_FLOAT_aelem_bytes = 4,
roland@4159 719 T_DOUBLE_aelem_bytes = 8,
roland@4159 720 T_BYTE_aelem_bytes = 1,
roland@4159 721 T_SHORT_aelem_bytes = 2,
roland@4159 722 T_INT_aelem_bytes = 4,
roland@4159 723 T_LONG_aelem_bytes = 8,
duke@435 724 #ifdef _LP64
roland@4159 725 T_OBJECT_aelem_bytes = 8,
roland@4159 726 T_ARRAY_aelem_bytes = 8,
duke@435 727 #else
roland@4159 728 T_OBJECT_aelem_bytes = 4,
roland@4159 729 T_ARRAY_aelem_bytes = 4,
duke@435 730 #endif
roland@4159 731 T_NARROWOOP_aelem_bytes = 4,
roland@4159 732 T_NARROWKLASS_aelem_bytes = 4,
roland@4159 733 T_VOID_aelem_bytes = 0
duke@435 734 };
duke@435 735
kvn@464 736 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 737 #ifdef ASSERT
kvn@464 738 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 739 #else
never@2118 740 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 741 #endif
duke@435 742
duke@435 743
duke@435 744 // JavaValue serves as a container for arbitrary Java values.
duke@435 745
duke@435 746 class JavaValue {
duke@435 747
duke@435 748 public:
duke@435 749 typedef union JavaCallValue {
duke@435 750 jfloat f;
duke@435 751 jdouble d;
duke@435 752 jint i;
duke@435 753 jlong l;
duke@435 754 jobject h;
duke@435 755 } JavaCallValue;
duke@435 756
duke@435 757 private:
duke@435 758 BasicType _type;
duke@435 759 JavaCallValue _value;
duke@435 760
duke@435 761 public:
duke@435 762 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 763
duke@435 764 JavaValue(jfloat value) {
duke@435 765 _type = T_FLOAT;
duke@435 766 _value.f = value;
duke@435 767 }
duke@435 768
duke@435 769 JavaValue(jdouble value) {
duke@435 770 _type = T_DOUBLE;
duke@435 771 _value.d = value;
duke@435 772 }
duke@435 773
duke@435 774 jfloat get_jfloat() const { return _value.f; }
duke@435 775 jdouble get_jdouble() const { return _value.d; }
duke@435 776 jint get_jint() const { return _value.i; }
duke@435 777 jlong get_jlong() const { return _value.l; }
duke@435 778 jobject get_jobject() const { return _value.h; }
duke@435 779 JavaCallValue* get_value_addr() { return &_value; }
duke@435 780 BasicType get_type() const { return _type; }
duke@435 781
duke@435 782 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 783 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 784 void set_jint(jint i) { _value.i = i;}
duke@435 785 void set_jlong(jlong l) { _value.l = l;}
duke@435 786 void set_jobject(jobject h) { _value.h = h;}
duke@435 787 void set_type(BasicType t) { _type = t; }
duke@435 788
duke@435 789 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 790 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 791 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 792 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 793
duke@435 794 };
duke@435 795
duke@435 796
duke@435 797 #define STACK_BIAS 0
duke@435 798 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 799 // in order to extend the reach of the stack pointer.
duke@435 800 #if defined(SPARC) && defined(_LP64)
duke@435 801 #undef STACK_BIAS
duke@435 802 #define STACK_BIAS 0x7ff
duke@435 803 #endif
duke@435 804
duke@435 805
duke@435 806 // TosState describes the top-of-stack state before and after the execution of
duke@435 807 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 808 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 809 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 810 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 811 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 812 // state when it comes to machine representation but is used separately for (oop)
duke@435 813 // type specific operations (e.g. verification code).
duke@435 814
duke@435 815 enum TosState { // describes the tos cache contents
duke@435 816 btos = 0, // byte, bool tos cached
kevinw@8368 817 ztos = 1, // byte, bool tos cached
kevinw@8368 818 ctos = 2, // char tos cached
kevinw@8368 819 stos = 3, // short tos cached
kevinw@8368 820 itos = 4, // int tos cached
kevinw@8368 821 ltos = 5, // long tos cached
kevinw@8368 822 ftos = 6, // float tos cached
kevinw@8368 823 dtos = 7, // double tos cached
kevinw@8368 824 atos = 8, // object cached
kevinw@8368 825 vtos = 9, // tos not cached
duke@435 826 number_of_states,
duke@435 827 ilgl // illegal state: should not occur
duke@435 828 };
duke@435 829
duke@435 830
duke@435 831 inline TosState as_TosState(BasicType type) {
duke@435 832 switch (type) {
duke@435 833 case T_BYTE : return btos;
kevinw@8368 834 case T_BOOLEAN: return ztos;
duke@435 835 case T_CHAR : return ctos;
duke@435 836 case T_SHORT : return stos;
duke@435 837 case T_INT : return itos;
duke@435 838 case T_LONG : return ltos;
duke@435 839 case T_FLOAT : return ftos;
duke@435 840 case T_DOUBLE : return dtos;
duke@435 841 case T_VOID : return vtos;
duke@435 842 case T_ARRAY : // fall through
duke@435 843 case T_OBJECT : return atos;
duke@435 844 }
duke@435 845 return ilgl;
duke@435 846 }
duke@435 847
jrose@1161 848 inline BasicType as_BasicType(TosState state) {
jrose@1161 849 switch (state) {
jrose@1161 850 case btos : return T_BYTE;
kevinw@8368 851 case ztos : return T_BOOLEAN;
jrose@1161 852 case ctos : return T_CHAR;
jrose@1161 853 case stos : return T_SHORT;
jrose@1161 854 case itos : return T_INT;
jrose@1161 855 case ltos : return T_LONG;
jrose@1161 856 case ftos : return T_FLOAT;
jrose@1161 857 case dtos : return T_DOUBLE;
jrose@1161 858 case atos : return T_OBJECT;
jrose@1161 859 case vtos : return T_VOID;
jrose@1161 860 }
jrose@1161 861 return T_ILLEGAL;
jrose@1161 862 }
jrose@1161 863
duke@435 864
duke@435 865 // Helper function to convert BasicType info into TosState
duke@435 866 // Note: Cannot define here as it uses global constant at the time being.
duke@435 867 TosState as_TosState(BasicType type);
duke@435 868
duke@435 869
duke@435 870 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 871 // information is needed by the safepoint code.
duke@435 872 //
duke@435 873 // There are 4 essential states:
duke@435 874 //
duke@435 875 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 876 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 877 // _thread_in_vm : Executing in the vm
duke@435 878 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 879 //
duke@435 880 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 881 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 882 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 883 //
duke@435 884 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 885 //
duke@435 886 enum JavaThreadState {
duke@435 887 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 888 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 889 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 890 _thread_in_native = 4, // running in native code
duke@435 891 _thread_in_native_trans = 5, // corresponding transition state
duke@435 892 _thread_in_vm = 6, // running in VM
duke@435 893 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 894 _thread_in_Java = 8, // running in Java or in stub code
duke@435 895 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 896 _thread_blocked = 10, // blocked in vm
duke@435 897 _thread_blocked_trans = 11, // corresponding transition state
duke@435 898 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 899 };
duke@435 900
duke@435 901
duke@435 902 // Handy constants for deciding which compiler mode to use.
duke@435 903 enum MethodCompilation {
duke@435 904 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 905 InvalidOSREntryBci = -2
duke@435 906 };
duke@435 907
duke@435 908 // Enumeration to distinguish tiers of compilation
duke@435 909 enum CompLevel {
iveresov@2138 910 CompLevel_any = -1,
iveresov@2138 911 CompLevel_all = -1,
iveresov@2138 912 CompLevel_none = 0, // Interpreter
iveresov@2138 913 CompLevel_simple = 1, // C1
iveresov@2138 914 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 915 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 916 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 917
twisti@2729 918 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 919 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 920 #elif defined(COMPILER1)
iveresov@2138 921 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 922 #else
iveresov@2138 923 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 924 #endif
iveresov@2138 925
iveresov@2138 926 #if defined(TIERED)
iveresov@2138 927 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 928 #elif defined(COMPILER1)
iveresov@2138 929 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 930 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 931 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 932 #else
iveresov@2138 933 CompLevel_initial_compile = CompLevel_none
iveresov@2138 934 #endif
duke@435 935 };
duke@435 936
iveresov@2138 937 inline bool is_c1_compile(int comp_level) {
iveresov@2138 938 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 939 }
iveresov@2138 940
iveresov@2138 941 inline bool is_c2_compile(int comp_level) {
duke@435 942 return comp_level == CompLevel_full_optimization;
duke@435 943 }
iveresov@2138 944
duke@435 945 inline bool is_highest_tier_compile(int comp_level) {
duke@435 946 return comp_level == CompLevel_highest_tier;
duke@435 947 }
duke@435 948
iignatyev@4908 949 inline bool is_compile(int comp_level) {
iignatyev@4908 950 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4908 951 }
iignatyev@4908 952
duke@435 953 //----------------------------------------------------------------------------------------------------
duke@435 954 // 'Forward' declarations of frequently used classes
duke@435 955 // (in order to reduce interface dependencies & reduce
duke@435 956 // number of unnecessary compilations after changes)
duke@435 957
duke@435 958 class symbolTable;
duke@435 959 class ClassFileStream;
duke@435 960
duke@435 961 class Event;
duke@435 962
duke@435 963 class Thread;
duke@435 964 class VMThread;
duke@435 965 class JavaThread;
duke@435 966 class Threads;
duke@435 967
duke@435 968 class VM_Operation;
duke@435 969 class VMOperationQueue;
duke@435 970
duke@435 971 class CodeBlob;
duke@435 972 class nmethod;
duke@435 973 class OSRAdapter;
duke@435 974 class I2CAdapter;
duke@435 975 class C2IAdapter;
duke@435 976 class CompiledIC;
duke@435 977 class relocInfo;
duke@435 978 class ScopeDesc;
duke@435 979 class PcDesc;
duke@435 980
duke@435 981 class Recompiler;
duke@435 982 class Recompilee;
duke@435 983 class RecompilationPolicy;
duke@435 984 class RFrame;
duke@435 985 class CompiledRFrame;
duke@435 986 class InterpretedRFrame;
duke@435 987
duke@435 988 class frame;
duke@435 989
duke@435 990 class vframe;
duke@435 991 class javaVFrame;
duke@435 992 class interpretedVFrame;
duke@435 993 class compiledVFrame;
duke@435 994 class deoptimizedVFrame;
duke@435 995 class externalVFrame;
duke@435 996 class entryVFrame;
duke@435 997
duke@435 998 class RegisterMap;
duke@435 999
duke@435 1000 class Mutex;
duke@435 1001 class Monitor;
duke@435 1002 class BasicLock;
duke@435 1003 class BasicObjectLock;
duke@435 1004
duke@435 1005 class PeriodicTask;
duke@435 1006
duke@435 1007 class JavaCallWrapper;
duke@435 1008
duke@435 1009 class oopDesc;
coleenp@4037 1010 class metaDataOopDesc;
duke@435 1011
duke@435 1012 class NativeCall;
duke@435 1013
duke@435 1014 class zone;
duke@435 1015
duke@435 1016 class StubQueue;
duke@435 1017
duke@435 1018 class outputStream;
duke@435 1019
duke@435 1020 class ResourceArea;
duke@435 1021
duke@435 1022 class DebugInformationRecorder;
duke@435 1023 class ScopeValue;
duke@435 1024 class CompressedStream;
duke@435 1025 class DebugInfoReadStream;
duke@435 1026 class DebugInfoWriteStream;
duke@435 1027 class LocationValue;
duke@435 1028 class ConstantValue;
duke@435 1029 class IllegalValue;
duke@435 1030
duke@435 1031 class PrivilegedElement;
duke@435 1032 class MonitorArray;
duke@435 1033
duke@435 1034 class MonitorInfo;
duke@435 1035
duke@435 1036 class OffsetClosure;
duke@435 1037 class OopMapCache;
duke@435 1038 class InterpreterOopMap;
duke@435 1039 class OopMapCacheEntry;
duke@435 1040 class OSThread;
duke@435 1041
duke@435 1042 typedef int (*OSThreadStartFunc)(void*);
duke@435 1043
duke@435 1044 class Space;
duke@435 1045
duke@435 1046 class JavaValue;
duke@435 1047 class methodHandle;
duke@435 1048 class JavaCallArguments;
duke@435 1049
duke@435 1050 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 1051
duke@435 1052 extern void basic_fatal(const char* msg);
duke@435 1053
duke@435 1054
duke@435 1055 //----------------------------------------------------------------------------------------------------
duke@435 1056 // Special constants for debugging
duke@435 1057
duke@435 1058 const jint badInt = -3; // generic "bad int" value
kevinw@9325 1059 const intptr_t badAddressVal = -2; // generic "bad address" value
kevinw@9325 1060 const intptr_t badOopVal = -1; // generic "bad oop" value
duke@435 1061 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 1062 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 1063 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 1064 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 1065 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 1066 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 1067 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 1068 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 1069 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 1070 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 1071
duke@435 1072
duke@435 1073 // (These must be implemented as #defines because C++ compilers are
duke@435 1074 // not obligated to inline non-integral constants!)
duke@435 1075 #define badAddress ((address)::badAddressVal)
hseigel@5784 1076 #define badOop (cast_to_oop(::badOopVal))
duke@435 1077 #define badHeapWord (::badHeapWordVal)
hseigel@5784 1078 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
duke@435 1079
jcoomes@1746 1080 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 1081 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 1082
duke@435 1083 //----------------------------------------------------------------------------------------------------
duke@435 1084 // Utility functions for bitfield manipulations
duke@435 1085
duke@435 1086 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 1087 const intptr_t NoBits = 0; // no bits set in a word
duke@435 1088 const jlong NoLongBits = 0; // no bits set in a long
duke@435 1089 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 1090
duke@435 1091 // get a word with the n.th or the right-most or left-most n bits set
duke@435 1092 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 1093 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 1094 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 1095 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 1096
duke@435 1097 // bit-operations using a mask m
duke@435 1098 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 1099 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 1100 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 1101 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 1102 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 1103
duke@435 1104 // bit-operations using the n.th bit
duke@435 1105 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 1106 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 1107 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 1108
duke@435 1109 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 1110 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 1111 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 1112 }
duke@435 1113
duke@435 1114
duke@435 1115 //----------------------------------------------------------------------------------------------------
duke@435 1116 // Utility functions for integers
duke@435 1117
duke@435 1118 // Avoid use of global min/max macros which may cause unwanted double
duke@435 1119 // evaluation of arguments.
duke@435 1120 #ifdef max
duke@435 1121 #undef max
duke@435 1122 #endif
duke@435 1123
duke@435 1124 #ifdef min
duke@435 1125 #undef min
duke@435 1126 #endif
duke@435 1127
duke@435 1128 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 1129 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 1130
duke@435 1131 // It is necessary to use templates here. Having normal overloaded
duke@435 1132 // functions does not work because it is necessary to provide both 32-
duke@435 1133 // and 64-bit overloaded functions, which does not work, and having
duke@435 1134 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 1135 // will be even more error-prone than macros.
duke@435 1136 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 1137 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 1138 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 1139 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1140 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1141 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1142
duke@435 1143 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1144
duke@435 1145 // true if x is a power of 2, false otherwise
duke@435 1146 inline bool is_power_of_2(intptr_t x) {
duke@435 1147 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1148 }
duke@435 1149
duke@435 1150 // long version of is_power_of_2
duke@435 1151 inline bool is_power_of_2_long(jlong x) {
duke@435 1152 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1153 }
duke@435 1154
duke@435 1155 //* largest i such that 2^i <= x
duke@435 1156 // A negative value of 'x' will return '31'
roland@9613 1157 inline int log2_intptr(uintptr_t x) {
duke@435 1158 int i = -1;
duke@435 1159 uintptr_t p = 1;
roland@9613 1160 while (p != 0 && p <= x) {
duke@435 1161 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1162 i++; p *= 2;
duke@435 1163 }
duke@435 1164 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1165 // (if p = 0 then overflow occurred and i = 31)
duke@435 1166 return i;
duke@435 1167 }
duke@435 1168
duke@435 1169 //* largest i such that 2^i <= x
roland@9614 1170 inline int log2_long(julong x) {
duke@435 1171 int i = -1;
duke@435 1172 julong p = 1;
roland@9613 1173 while (p != 0 && p <= x) {
duke@435 1174 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1175 i++; p *= 2;
duke@435 1176 }
duke@435 1177 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1178 // (if p = 0 then overflow occurred and i = 63)
duke@435 1179 return i;
duke@435 1180 }
duke@435 1181
roland@9613 1182 inline int log2_intptr(intptr_t x) {
roland@9613 1183 return log2_intptr((uintptr_t)x);
roland@9613 1184 }
roland@9613 1185
roland@9614 1186 inline int log2_int(int x) {
roland@9613 1187 return log2_intptr((uintptr_t)x);
roland@9613 1188 }
roland@9613 1189
roland@9614 1190 inline int log2_jint(jint x) {
roland@9613 1191 return log2_intptr((uintptr_t)x);
roland@9613 1192 }
roland@9613 1193
roland@9614 1194 inline int log2_uint(uint x) {
roland@9614 1195 return log2_intptr((uintptr_t)x);
roland@9614 1196 }
roland@9614 1197
roland@9614 1198 // A negative value of 'x' will return '63'
roland@9614 1199 inline int log2_jlong(jlong x) {
roland@9614 1200 return log2_long((julong)x);
roland@9613 1201 }
roland@9613 1202
duke@435 1203 //* the argument must be exactly a power of 2
duke@435 1204 inline int exact_log2(intptr_t x) {
duke@435 1205 #ifdef ASSERT
duke@435 1206 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1207 #endif
duke@435 1208 return log2_intptr(x);
duke@435 1209 }
duke@435 1210
twisti@1003 1211 //* the argument must be exactly a power of 2
twisti@1003 1212 inline int exact_log2_long(jlong x) {
twisti@1003 1213 #ifdef ASSERT
twisti@1003 1214 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1215 #endif
twisti@1003 1216 return log2_long(x);
twisti@1003 1217 }
twisti@1003 1218
duke@435 1219
duke@435 1220 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1221 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1222 #ifdef ASSERT
duke@435 1223 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1224 #endif
duke@435 1225 const uintx m = s - 1;
duke@435 1226 return mask_bits(x + m, ~m);
duke@435 1227 }
duke@435 1228
duke@435 1229 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1230 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1231 #ifdef ASSERT
duke@435 1232 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1233 #endif
duke@435 1234 const uintx m = s - 1;
duke@435 1235 return mask_bits(x, ~m);
duke@435 1236 }
duke@435 1237
duke@435 1238
duke@435 1239 inline bool is_odd (intx x) { return x & 1; }
duke@435 1240 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1241
roland@9613 1242 // abs methods which cannot overflow and so are well-defined across
roland@9613 1243 // the entire domain of integer types.
roland@9613 1244 static inline unsigned int uabs(unsigned int n) {
roland@9613 1245 union {
roland@9613 1246 unsigned int result;
roland@9613 1247 int value;
roland@9613 1248 };
roland@9613 1249 result = n;
roland@9613 1250 if (value < 0) result = 0-result;
roland@9613 1251 return result;
roland@9613 1252 }
roland@9619 1253 static inline julong uabs(julong n) {
roland@9613 1254 union {
roland@9619 1255 julong result;
roland@9619 1256 jlong value;
roland@9613 1257 };
roland@9613 1258 result = n;
roland@9613 1259 if (value < 0) result = 0-result;
roland@9613 1260 return result;
roland@9613 1261 }
roland@9619 1262 static inline julong uabs(jlong n) { return uabs((julong)n); }
roland@9613 1263 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
roland@9613 1264
duke@435 1265 // "to" should be greater than "from."
duke@435 1266 inline intx byte_size(void* from, void* to) {
duke@435 1267 return (address)to - (address)from;
duke@435 1268 }
duke@435 1269
duke@435 1270 //----------------------------------------------------------------------------------------------------
duke@435 1271 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1272
duke@435 1273 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1274 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1275
duke@435 1276 // Given sequence of four bytes, build into a 32-bit word
duke@435 1277 // following the conventions used in class files.
duke@435 1278 // On the 386, this could be realized with a simple address cast.
duke@435 1279 //
duke@435 1280
duke@435 1281 // This routine takes eight bytes:
duke@435 1282 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1283 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1284 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1285 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1286 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1287 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1288 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1289 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1290 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1291 }
duke@435 1292
duke@435 1293 // This routine takes four bytes:
duke@435 1294 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1295 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1296 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1297 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1298 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1299 }
duke@435 1300
duke@435 1301 // And this one works if the four bytes are contiguous in memory:
duke@435 1302 inline u4 build_u4_from( u1* p ) {
duke@435 1303 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1304 }
duke@435 1305
duke@435 1306 // Ditto for two-byte ints:
duke@435 1307 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1308 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1309 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1310 }
duke@435 1311
duke@435 1312 // And this one works if the two bytes are contiguous in memory:
duke@435 1313 inline u2 build_u2_from( u1* p ) {
duke@435 1314 return build_u2_from( p[0], p[1] );
duke@435 1315 }
duke@435 1316
duke@435 1317 // Ditto for floats:
duke@435 1318 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1319 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1320 return *(jfloat*)&u;
duke@435 1321 }
duke@435 1322
duke@435 1323 inline jfloat build_float_from( u1* p ) {
duke@435 1324 u4 u = build_u4_from( p );
duke@435 1325 return *(jfloat*)&u;
duke@435 1326 }
duke@435 1327
duke@435 1328
duke@435 1329 // now (64-bit) longs
duke@435 1330
duke@435 1331 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1332 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1333 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1334 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1335 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1336 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1337 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1338 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1339 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1340 }
duke@435 1341
duke@435 1342 inline jlong build_long_from( u1* p ) {
duke@435 1343 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1344 }
duke@435 1345
duke@435 1346
duke@435 1347 // Doubles, too!
duke@435 1348 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1349 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1350 return *(jdouble*)&u;
duke@435 1351 }
duke@435 1352
duke@435 1353 inline jdouble build_double_from( u1* p ) {
duke@435 1354 jlong u = build_long_from( p );
duke@435 1355 return *(jdouble*)&u;
duke@435 1356 }
duke@435 1357
duke@435 1358
duke@435 1359 // Portable routines to go the other way:
duke@435 1360
duke@435 1361 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1362 c1 = u1(x >> 8);
duke@435 1363 c2 = u1(x);
duke@435 1364 }
duke@435 1365
duke@435 1366 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1367 explode_short_to( x, p[0], p[1]);
duke@435 1368 }
duke@435 1369
duke@435 1370 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1371 c1 = u1(x >> 24);
duke@435 1372 c2 = u1(x >> 16);
duke@435 1373 c3 = u1(x >> 8);
duke@435 1374 c4 = u1(x);
duke@435 1375 }
duke@435 1376
duke@435 1377 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1378 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1379 }
duke@435 1380
duke@435 1381
duke@435 1382 // Pack and extract shorts to/from ints:
duke@435 1383
duke@435 1384 inline int extract_low_short_from_int(jint x) {
duke@435 1385 return x & 0xffff;
duke@435 1386 }
duke@435 1387
duke@435 1388 inline int extract_high_short_from_int(jint x) {
duke@435 1389 return (x >> 16) & 0xffff;
duke@435 1390 }
duke@435 1391
duke@435 1392 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1393 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1394 }
duke@435 1395
drchase@6680 1396 // Convert pointer to intptr_t, for use in printing pointers.
drchase@6680 1397 inline intptr_t p2i(const void * p) {
drchase@6680 1398 return (intptr_t) p;
drchase@6680 1399 }
drchase@6680 1400
duke@435 1401 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1402 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1403 // doesn't provide appropriate definitions, they should be provided in
never@3156 1404 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1405
tonyp@2643 1406 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1407
duke@435 1408 // Format 32-bit quantities.
never@3156 1409 #define INT32_FORMAT "%" PRId32
never@3156 1410 #define UINT32_FORMAT "%" PRIu32
never@3156 1411 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1412 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1413
never@3156 1414 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1415
duke@435 1416 // Format 64-bit quantities.
never@3156 1417 #define INT64_FORMAT "%" PRId64
never@3156 1418 #define UINT64_FORMAT "%" PRIu64
drchase@6680 1419 #define UINT64_FORMAT_X "%" PRIx64
never@3156 1420 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1421 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1422
never@3156 1423 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1424
hseigel@4465 1425 // Format jlong, if necessary
hseigel@4465 1426 #ifndef JLONG_FORMAT
hseigel@4465 1427 #define JLONG_FORMAT INT64_FORMAT
hseigel@4465 1428 #endif
hseigel@4465 1429 #ifndef JULONG_FORMAT
hseigel@4465 1430 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4465 1431 #endif
hseigel@4465 1432
never@3156 1433 // Format pointers which change size between 32- and 64-bit.
duke@435 1434 #ifdef _LP64
never@3156 1435 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1436 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1437 #else // !_LP64
never@3156 1438 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1439 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1440 #endif // _LP64
duke@435 1441
drchase@6680 1442 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
drchase@6680 1443
drchase@6680 1444 #define SSIZE_FORMAT "%" PRIdPTR
drchase@6680 1445 #define SIZE_FORMAT "%" PRIuPTR
drchase@6680 1446 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
drchase@6680 1447 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
drchase@6680 1448 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
drchase@6680 1449 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
never@3156 1450
never@3156 1451 #define INTX_FORMAT "%" PRIdPTR
never@3156 1452 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1453 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1454 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1455
duke@435 1456
duke@435 1457 // Enable zap-a-lot if in debug version.
duke@435 1458
duke@435 1459 # ifdef ASSERT
duke@435 1460 # ifdef COMPILER2
duke@435 1461 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1462 #endif /* COMPILER2 */
duke@435 1463 # endif /* ASSERT */
duke@435 1464
duke@435 1465 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1466
aph@9610 1467 //----------------------------------------------------------------------------------------------------
aph@9610 1468 // Sum and product which can never overflow: they wrap, just like the
aph@9610 1469 // Java operations. Note that we don't intend these to be used for
aph@9610 1470 // general-purpose arithmetic: their purpose is to emulate Java
aph@9610 1471 // operations.
aph@9610 1472
aph@9610 1473 // The goal of this code to avoid undefined or implementation-defined
aph@9610 1474 // behaviour. The use of an lvalue to reference cast is explicitly
aph@9610 1475 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
aph@9610 1476 // 15 in C++03]
aph@9610 1477 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
aph@9610 1478 inline TYPE NAME (TYPE in1, TYPE in2) { \
aph@9610 1479 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
aph@9610 1480 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
aph@9610 1481 return reinterpret_cast<TYPE&>(ures); \
aph@9610 1482 }
aph@9610 1483
aph@9610 1484 JAVA_INTEGER_OP(+, java_add, jint, juint)
aph@9610 1485 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
aph@9610 1486 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
aph@9610 1487 JAVA_INTEGER_OP(+, java_add, jlong, julong)
aph@9610 1488 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
aph@9610 1489 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
aph@9610 1490
aph@9610 1491 #undef JAVA_INTEGER_OP
aph@9610 1492
coleenp@4295 1493 // Dereference vptr
coleenp@4295 1494 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@4295 1495 // word. If there are exceptions, this function needs to be made compiler
coleenp@4295 1496 // specific.
coleenp@6678 1497 static inline void* dereference_vptr(const void* addr) {
coleenp@4295 1498 return *(void**)addr;
coleenp@4295 1499 }
coleenp@4295 1500
mikael@4889 1501 #ifndef PRODUCT
mikael@4889 1502
mikael@4889 1503 // For unit testing only
mikael@4889 1504 class GlobalDefinitions {
mikael@4889 1505 public:
mikael@4889 1506 static void test_globals();
shade@9667 1507 static void test_proper_unit();
mikael@4889 1508 };
mikael@4889 1509
mikael@4889 1510 #endif // PRODUCT
mikael@4889 1511
stefank@2314 1512 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial