src/share/vm/gc_implementation/g1/concurrentMark.hpp

Mon, 12 Mar 2012 14:59:00 -0700

author
johnc
date
Mon, 12 Mar 2012 14:59:00 -0700
changeset 3666
64bf7c8270cb
parent 3464
eff609af17d7
child 3691
2a0172480595
permissions
-rw-r--r--

7147724: G1: hang in SurrogateLockerThread::manipulatePLL
Summary: Attempting to initiate a marking cycle when allocating a humongous object can, if a marking cycle is successfully initiated by another thread, result in the allocating thread spinning until the marking cycle is complete. Eliminate a deadlock between the main ConcurrentMarkThread, the SurrogateLocker thread, the VM thread, and a mutator thread waiting on the SecondaryFreeList_lock (while free regions are going to become available) by not manipulating the pending list lock during the prologue and epilogue of the cleanup pause.
Reviewed-by: brutisso, jcoomes, tonyp

ysr@777 1 /*
tonyp@3416 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
jcoomes@1746 33 typedef GenericTaskQueue<oop> CMTaskQueue;
jcoomes@1746 34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
johnc@2379 45 G1CMIsAliveClosure(G1CollectedHeap* g1) :
johnc@2379 46 _g1(g1)
johnc@2379 47 {}
johnc@2379 48
johnc@2379 49 void do_object(oop obj) {
johnc@2379 50 ShouldNotCallThis();
johnc@2379 51 }
johnc@2379 52 bool do_object_b(oop obj);
johnc@2379 53 };
johnc@2379 54
ysr@777 55 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 56 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 57
apetrusenko@984 58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 59 protected:
ysr@777 60 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 61 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 62 const int _shifter; // map to char or bit
ysr@777 63 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 64 BitMap _bm; // the bit map itself
ysr@777 65
ysr@777 66 public:
ysr@777 67 // constructor
ysr@777 68 CMBitMapRO(ReservedSpace rs, int shifter);
ysr@777 69
ysr@777 70 enum { do_yield = true };
ysr@777 71
ysr@777 72 // inquiries
ysr@777 73 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 74 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 75 // the following is one past the last word in space
ysr@777 76 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 77
ysr@777 78 // read marks
ysr@777 79
ysr@777 80 bool isMarked(HeapWord* addr) const {
ysr@777 81 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 82 "outside underlying space?");
ysr@777 83 return _bm.at(heapWordToOffset(addr));
ysr@777 84 }
ysr@777 85
ysr@777 86 // iteration
johnc@3454 87 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 88 inline bool iterate(BitMapClosure* cl);
ysr@777 89
ysr@777 90 // Return the address corresponding to the next marked bit at or after
ysr@777 91 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 92 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 93 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 94 HeapWord* limit = NULL) const;
ysr@777 95 // Return the address corresponding to the next unmarked bit at or after
ysr@777 96 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 97 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 98 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 99 HeapWord* limit = NULL) const;
ysr@777 100
ysr@777 101 // conversion utilities
ysr@777 102 // XXX Fix these so that offsets are size_t's...
ysr@777 103 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 104 return _bmStartWord + (offset << _shifter);
ysr@777 105 }
ysr@777 106 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 107 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 108 }
ysr@777 109 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 110 HeapWord* nextWord(HeapWord* addr) {
ysr@777 111 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 112 }
ysr@777 113
ysr@777 114 void mostly_disjoint_range_union(BitMap* from_bitmap,
ysr@777 115 size_t from_start_index,
ysr@777 116 HeapWord* to_start_word,
ysr@777 117 size_t word_num);
ysr@777 118
ysr@777 119 // debugging
ysr@777 120 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 121 };
ysr@777 122
ysr@777 123 class CMBitMap : public CMBitMapRO {
ysr@777 124
ysr@777 125 public:
ysr@777 126 // constructor
ysr@777 127 CMBitMap(ReservedSpace rs, int shifter) :
ysr@777 128 CMBitMapRO(rs, shifter) {}
ysr@777 129
ysr@777 130 // write marks
ysr@777 131 void mark(HeapWord* addr) {
ysr@777 132 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 133 "outside underlying space?");
tonyp@2968 134 _bm.set_bit(heapWordToOffset(addr));
ysr@777 135 }
ysr@777 136 void clear(HeapWord* addr) {
ysr@777 137 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 138 "outside underlying space?");
tonyp@2968 139 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 140 }
ysr@777 141 bool parMark(HeapWord* addr) {
ysr@777 142 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 143 "outside underlying space?");
tonyp@2968 144 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 145 }
ysr@777 146 bool parClear(HeapWord* addr) {
ysr@777 147 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 148 "outside underlying space?");
tonyp@2968 149 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 150 }
ysr@777 151 void markRange(MemRegion mr);
ysr@777 152 void clearAll();
ysr@777 153 void clearRange(MemRegion mr);
ysr@777 154
ysr@777 155 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 156 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 157 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 158 // covering from the start of the region corresponding to the first bit
ysr@777 159 // of the run to the end of the region corresponding to the last bit of
ysr@777 160 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 161 // MemRegion.
ysr@777 162 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 163 };
ysr@777 164
ysr@777 165 // Represents a marking stack used by the CM collector.
ysr@777 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
apetrusenko@984 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ysr@777 168 ConcurrentMark* _cm;
tonyp@3416 169 oop* _base; // bottom of stack
tonyp@3416 170 jint _index; // one more than last occupied index
tonyp@3416 171 jint _capacity; // max #elements
tonyp@3416 172 jint _saved_index; // value of _index saved at start of GC
ysr@777 173 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 174
ysr@777 175 bool _overflow;
ysr@777 176 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 177 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 178
ysr@777 179 public:
ysr@777 180 CMMarkStack(ConcurrentMark* cm);
ysr@777 181 ~CMMarkStack();
ysr@777 182
ysr@777 183 void allocate(size_t size);
ysr@777 184
ysr@777 185 oop pop() {
ysr@777 186 if (!isEmpty()) {
ysr@777 187 return _base[--_index] ;
ysr@777 188 }
ysr@777 189 return NULL;
ysr@777 190 }
ysr@777 191
ysr@777 192 // If overflow happens, don't do the push, and record the overflow.
ysr@777 193 // *Requires* that "ptr" is already marked.
ysr@777 194 void push(oop ptr) {
ysr@777 195 if (isFull()) {
ysr@777 196 // Record overflow.
ysr@777 197 _overflow = true;
ysr@777 198 return;
ysr@777 199 } else {
ysr@777 200 _base[_index++] = ptr;
ysr@777 201 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 202 }
ysr@777 203 }
ysr@777 204 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 205 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 206 // parallel versions of them if such concurrency was desired.
ysr@777 207 void par_push(oop ptr);
ysr@777 208
ysr@777 209 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 210 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 211 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 212 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 213
ysr@777 214 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 215 // Locking impl: concurrency is allowed only with
ysr@777 216 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 217 // locking strategy.
ysr@777 218 void par_push_arr(oop* ptr_arr, int n);
ysr@777 219
ysr@777 220 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 221 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 222 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 223 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 224 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 225 // operations, which use the same locking strategy.
ysr@777 226 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 227
ysr@777 228 // Drain the mark stack, applying the given closure to all fields of
ysr@777 229 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 230 // even if closure applications add entries to the stack.) The "bm"
ysr@777 231 // argument, if non-null, may be used to verify that only marked objects
ysr@777 232 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 233 // concurrent marker performing the drain offers to yield after
ysr@777 234 // processing each object. If a yield occurs, stops the drain operation
ysr@777 235 // and returns false. Otherwise, returns true.
ysr@777 236 template<class OopClosureClass>
ysr@777 237 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 238
ysr@777 239 bool isEmpty() { return _index == 0; }
ysr@777 240 bool isFull() { return _index == _capacity; }
ysr@777 241 int maxElems() { return _capacity; }
ysr@777 242
ysr@777 243 bool overflow() { return _overflow; }
ysr@777 244 void clear_overflow() { _overflow = false; }
ysr@777 245
ysr@777 246 int size() { return _index; }
ysr@777 247
ysr@777 248 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 249
tonyp@3416 250 // Record the current index.
tonyp@3416 251 void note_start_of_gc();
tonyp@3416 252
tonyp@3416 253 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 254 void note_end_of_gc();
tonyp@3416 255
ysr@777 256 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 257 // the call above.
ysr@777 258 void oops_do(OopClosure* f);
ysr@777 259 };
ysr@777 260
apetrusenko@984 261 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
ysr@777 262 MemRegion* _base;
ysr@777 263 jint _capacity;
ysr@777 264 jint _index;
ysr@777 265 jint _oops_do_bound;
ysr@777 266 bool _overflow;
ysr@777 267 public:
ysr@777 268 CMRegionStack();
ysr@777 269 ~CMRegionStack();
ysr@777 270 void allocate(size_t size);
ysr@777 271
ysr@777 272 // This is lock-free; assumes that it will only be called in parallel
ysr@777 273 // with other "push" operations (no pops).
johnc@2190 274 void push_lock_free(MemRegion mr);
tonyp@1793 275
ysr@777 276 // Lock-free; assumes that it will only be called in parallel
ysr@777 277 // with other "pop" operations (no pushes).
johnc@2190 278 MemRegion pop_lock_free();
johnc@2190 279
johnc@2190 280 #if 0
johnc@2190 281 // The routines that manipulate the region stack with a lock are
johnc@2190 282 // not currently used. They should be retained, however, as a
johnc@2190 283 // diagnostic aid.
tonyp@1793 284
tonyp@1793 285 // These two are the implementations that use a lock. They can be
tonyp@1793 286 // called concurrently with each other but they should not be called
tonyp@1793 287 // concurrently with the lock-free versions (push() / pop()).
tonyp@1793 288 void push_with_lock(MemRegion mr);
tonyp@1793 289 MemRegion pop_with_lock();
johnc@2190 290 #endif
ysr@777 291
ysr@777 292 bool isEmpty() { return _index == 0; }
ysr@777 293 bool isFull() { return _index == _capacity; }
ysr@777 294
ysr@777 295 bool overflow() { return _overflow; }
ysr@777 296 void clear_overflow() { _overflow = false; }
ysr@777 297
ysr@777 298 int size() { return _index; }
ysr@777 299
ysr@777 300 // It iterates over the entries in the region stack and it
ysr@777 301 // invalidates (i.e. assigns MemRegion()) the ones that point to
ysr@777 302 // regions in the collection set.
ysr@777 303 bool invalidate_entries_into_cset();
ysr@777 304
ysr@777 305 // This gives an upper bound up to which the iteration in
ysr@777 306 // invalidate_entries_into_cset() will reach. This prevents
ysr@777 307 // newly-added entries to be unnecessarily scanned.
ysr@777 308 void set_oops_do_bound() {
ysr@777 309 _oops_do_bound = _index;
ysr@777 310 }
ysr@777 311
ysr@777 312 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 313 };
ysr@777 314
tonyp@2848 315 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 316 private:
tonyp@2848 317 #ifndef PRODUCT
tonyp@2848 318 uintx _num_remaining;
tonyp@2848 319 bool _force;
tonyp@2848 320 #endif // !defined(PRODUCT)
tonyp@2848 321
tonyp@2848 322 public:
tonyp@2848 323 void init() PRODUCT_RETURN;
tonyp@2848 324 void update() PRODUCT_RETURN;
tonyp@2848 325 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 326 };
tonyp@2848 327
ysr@777 328 // this will enable a variety of different statistics per GC task
ysr@777 329 #define _MARKING_STATS_ 0
ysr@777 330 // this will enable the higher verbose levels
ysr@777 331 #define _MARKING_VERBOSE_ 0
ysr@777 332
ysr@777 333 #if _MARKING_STATS_
ysr@777 334 #define statsOnly(statement) \
ysr@777 335 do { \
ysr@777 336 statement ; \
ysr@777 337 } while (0)
ysr@777 338 #else // _MARKING_STATS_
ysr@777 339 #define statsOnly(statement) \
ysr@777 340 do { \
ysr@777 341 } while (0)
ysr@777 342 #endif // _MARKING_STATS_
ysr@777 343
ysr@777 344 typedef enum {
ysr@777 345 no_verbose = 0, // verbose turned off
ysr@777 346 stats_verbose, // only prints stats at the end of marking
ysr@777 347 low_verbose, // low verbose, mostly per region and per major event
ysr@777 348 medium_verbose, // a bit more detailed than low
ysr@777 349 high_verbose // per object verbose
ysr@777 350 } CMVerboseLevel;
ysr@777 351
tonyp@3464 352 class YoungList;
tonyp@3464 353
tonyp@3464 354 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 355 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 356 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 357 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 358 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 359 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 360 // each object once during marking. So, as long as we finish this scan
tonyp@3464 361 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 362 // root regions without having to mark them or do anything else to them.
tonyp@3464 363 //
tonyp@3464 364 // Currently, we only support root region scanning once (at the start
tonyp@3464 365 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 366 // regions populated during the initial-mark pause.
tonyp@3464 367 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 368 private:
tonyp@3464 369 YoungList* _young_list;
tonyp@3464 370 ConcurrentMark* _cm;
tonyp@3464 371
tonyp@3464 372 volatile bool _scan_in_progress;
tonyp@3464 373 volatile bool _should_abort;
tonyp@3464 374 HeapRegion* volatile _next_survivor;
tonyp@3464 375
tonyp@3464 376 public:
tonyp@3464 377 CMRootRegions();
tonyp@3464 378 // We actually do most of the initialization in this method.
tonyp@3464 379 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 380
tonyp@3464 381 // Reset the claiming / scanning of the root regions.
tonyp@3464 382 void prepare_for_scan();
tonyp@3464 383
tonyp@3464 384 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 385 void abort() { _should_abort = true; }
tonyp@3464 386
tonyp@3464 387 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 388 // false otherwise.
tonyp@3464 389 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 390
tonyp@3464 391 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 392 // all have been claimed.
tonyp@3464 393 HeapRegion* claim_next();
tonyp@3464 394
tonyp@3464 395 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 396 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 397 // have been claimed.
tonyp@3464 398 void scan_finished();
tonyp@3464 399
tonyp@3464 400 // If CM threads are still scanning root regions, wait until they
tonyp@3464 401 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 402 bool wait_until_scan_finished();
tonyp@3464 403 };
ysr@777 404
ysr@777 405 class ConcurrentMarkThread;
ysr@777 406
tonyp@3464 407 class ConcurrentMark : public CHeapObj {
ysr@777 408 friend class ConcurrentMarkThread;
ysr@777 409 friend class CMTask;
ysr@777 410 friend class CMBitMapClosure;
johnc@3296 411 friend class CSetMarkOopClosure;
ysr@777 412 friend class CMGlobalObjectClosure;
ysr@777 413 friend class CMRemarkTask;
ysr@777 414 friend class CMConcurrentMarkingTask;
ysr@777 415 friend class G1ParNoteEndTask;
ysr@777 416 friend class CalcLiveObjectsClosure;
johnc@3175 417 friend class G1CMRefProcTaskProxy;
johnc@3175 418 friend class G1CMRefProcTaskExecutor;
johnc@2494 419 friend class G1CMParKeepAliveAndDrainClosure;
johnc@2494 420 friend class G1CMParDrainMarkingStackClosure;
ysr@777 421
ysr@777 422 protected:
ysr@777 423 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 424 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 425 uint _parallel_marking_threads; // the number of marking
jmasa@3294 426 // threads we're use
jmasa@3357 427 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 428 // threads we'll ever use
ysr@777 429 double _sleep_factor; // how much we have to sleep, with
ysr@777 430 // respect to the work we just did, to
ysr@777 431 // meet the marking overhead goal
ysr@777 432 double _marking_task_overhead; // marking target overhead for
ysr@777 433 // a single task
ysr@777 434
ysr@777 435 // same as the two above, but for the cleanup task
ysr@777 436 double _cleanup_sleep_factor;
ysr@777 437 double _cleanup_task_overhead;
ysr@777 438
tonyp@2472 439 FreeRegionList _cleanup_list;
ysr@777 440
brutisso@3455 441 // Concurrent marking support structures
ysr@777 442 CMBitMap _markBitMap1;
ysr@777 443 CMBitMap _markBitMap2;
ysr@777 444 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 445 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 446 bool _at_least_one_mark_complete;
ysr@777 447
ysr@777 448 BitMap _region_bm;
ysr@777 449 BitMap _card_bm;
ysr@777 450
ysr@777 451 // Heap bounds
ysr@777 452 HeapWord* _heap_start;
ysr@777 453 HeapWord* _heap_end;
ysr@777 454
tonyp@3464 455 // Root region tracking and claiming.
tonyp@3464 456 CMRootRegions _root_regions;
tonyp@3464 457
ysr@777 458 // For gray objects
ysr@777 459 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 460 CMRegionStack _regionStack; // Grey regions behind global finger.
ysr@777 461 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 462 // always points to the end of the
ysr@777 463 // last claimed region
ysr@777 464
ysr@777 465 // marking tasks
jmasa@3357 466 uint _max_task_num; // maximum task number
jmasa@3357 467 uint _active_tasks; // task num currently active
ysr@777 468 CMTask** _tasks; // task queue array (max_task_num len)
ysr@777 469 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 470 ParallelTaskTerminator _terminator; // for termination
ysr@777 471
ysr@777 472 // Two sync barriers that are used to synchronise tasks when an
ysr@777 473 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 474 // the first one to ensure that they have all stopped manipulating
ysr@777 475 // the global data structures. After they exit it, they re-initialise
ysr@777 476 // their data structures and task 0 re-initialises the global data
ysr@777 477 // structures. Then, they enter the second sync barrier. This
ysr@777 478 // ensure, that no task starts doing work before all data
ysr@777 479 // structures (local and global) have been re-initialised. When they
ysr@777 480 // exit it, they are free to start working again.
ysr@777 481 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 482 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 483
ysr@777 484 // this is set by any task, when an overflow on the global data
ysr@777 485 // structures is detected.
ysr@777 486 volatile bool _has_overflown;
ysr@777 487 // true: marking is concurrent, false: we're in remark
ysr@777 488 volatile bool _concurrent;
ysr@777 489 // set at the end of a Full GC so that marking aborts
ysr@777 490 volatile bool _has_aborted;
johnc@2190 491
ysr@777 492 // used when remark aborts due to an overflow to indicate that
ysr@777 493 // another concurrent marking phase should start
ysr@777 494 volatile bool _restart_for_overflow;
ysr@777 495
ysr@777 496 // This is true from the very start of concurrent marking until the
ysr@777 497 // point when all the tasks complete their work. It is really used
ysr@777 498 // to determine the points between the end of concurrent marking and
ysr@777 499 // time of remark.
ysr@777 500 volatile bool _concurrent_marking_in_progress;
ysr@777 501
ysr@777 502 // verbose level
ysr@777 503 CMVerboseLevel _verbose_level;
ysr@777 504
ysr@777 505 // These two fields are used to implement the optimisation that
ysr@777 506 // avoids pushing objects on the global/region stack if there are
ysr@777 507 // no collection set regions above the lowest finger.
ysr@777 508
ysr@777 509 // This is the lowest finger (among the global and local fingers),
ysr@777 510 // which is calculated before a new collection set is chosen.
ysr@777 511 HeapWord* _min_finger;
ysr@777 512 // If this flag is true, objects/regions that are marked below the
ysr@777 513 // finger should be pushed on the stack(s). If this is flag is
ysr@777 514 // false, it is safe not to push them on the stack(s).
ysr@777 515 bool _should_gray_objects;
ysr@777 516
ysr@777 517 // All of these times are in ms.
ysr@777 518 NumberSeq _init_times;
ysr@777 519 NumberSeq _remark_times;
ysr@777 520 NumberSeq _remark_mark_times;
ysr@777 521 NumberSeq _remark_weak_ref_times;
ysr@777 522 NumberSeq _cleanup_times;
ysr@777 523 double _total_counting_time;
ysr@777 524 double _total_rs_scrub_time;
ysr@777 525
ysr@777 526 double* _accum_task_vtime; // accumulated task vtime
ysr@777 527
jmasa@3294 528 FlexibleWorkGang* _parallel_workers;
ysr@777 529
tonyp@2848 530 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 531 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 532
ysr@777 533 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 534
ysr@777 535 void swapMarkBitMaps();
ysr@777 536
ysr@777 537 // It resets the global marking data structures, as well as the
ysr@777 538 // task local ones; should be called during initial mark.
ysr@777 539 void reset();
ysr@777 540 // It resets all the marking data structures.
tonyp@2848 541 void clear_marking_state(bool clear_overflow = true);
ysr@777 542
ysr@777 543 // It should be called to indicate which phase we're in (concurrent
ysr@777 544 // mark or remark) and how many threads are currently active.
jmasa@3357 545 void set_phase(uint active_tasks, bool concurrent);
ysr@777 546 // We do this after we're done with marking so that the marking data
ysr@777 547 // structures are initialised to a sensible and predictable state.
ysr@777 548 void set_non_marking_state();
ysr@777 549
ysr@777 550 // prints all gathered CM-related statistics
ysr@777 551 void print_stats();
ysr@777 552
tonyp@2472 553 bool cleanup_list_is_empty() {
tonyp@2472 554 return _cleanup_list.is_empty();
tonyp@2472 555 }
tonyp@2472 556
ysr@777 557 // accessor methods
jmasa@3357 558 uint parallel_marking_threads() { return _parallel_marking_threads; }
jmasa@3357 559 uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
ysr@777 560 double sleep_factor() { return _sleep_factor; }
ysr@777 561 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 562 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 563 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 564
ysr@777 565 HeapWord* finger() { return _finger; }
ysr@777 566 bool concurrent() { return _concurrent; }
jmasa@3357 567 uint active_tasks() { return _active_tasks; }
ysr@777 568 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 569
ysr@777 570 // It claims the next available region to be scanned by a marking
ysr@777 571 // task. It might return NULL if the next region is empty or we have
ysr@777 572 // run out of regions. In the latter case, out_of_regions()
ysr@777 573 // determines whether we've really run out of regions or the task
ysr@777 574 // should call claim_region() again. This might seem a bit
ysr@777 575 // awkward. Originally, the code was written so that claim_region()
ysr@777 576 // either successfully returned with a non-empty region or there
ysr@777 577 // were no more regions to be claimed. The problem with this was
ysr@777 578 // that, in certain circumstances, it iterated over large chunks of
ysr@777 579 // the heap finding only empty regions and, while it was working, it
ysr@777 580 // was preventing the calling task to call its regular clock
ysr@777 581 // method. So, this way, each task will spend very little time in
ysr@777 582 // claim_region() and is allowed to call the regular clock method
ysr@777 583 // frequently.
ysr@777 584 HeapRegion* claim_region(int task);
ysr@777 585
ysr@777 586 // It determines whether we've run out of regions to scan.
ysr@777 587 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 588
ysr@777 589 // Returns the task with the given id
ysr@777 590 CMTask* task(int id) {
tonyp@1458 591 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 592 "task id not within active bounds");
ysr@777 593 return _tasks[id];
ysr@777 594 }
ysr@777 595
ysr@777 596 // Returns the task queue with the given id
ysr@777 597 CMTaskQueue* task_queue(int id) {
tonyp@1458 598 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 599 "task queue id not within active bounds");
ysr@777 600 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 601 }
ysr@777 602
ysr@777 603 // Returns the task queue set
ysr@777 604 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 605
ysr@777 606 // Access / manipulation of the overflow flag which is set to
ysr@777 607 // indicate that the global stack or region stack has overflown
ysr@777 608 bool has_overflown() { return _has_overflown; }
ysr@777 609 void set_has_overflown() { _has_overflown = true; }
ysr@777 610 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 611 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 612
ysr@777 613 bool has_aborted() { return _has_aborted; }
ysr@777 614
ysr@777 615 // Methods to enter the two overflow sync barriers
ysr@777 616 void enter_first_sync_barrier(int task_num);
ysr@777 617 void enter_second_sync_barrier(int task_num);
ysr@777 618
tonyp@2848 619 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 620 return &_force_overflow_conc;
tonyp@2848 621 }
tonyp@2848 622
tonyp@2848 623 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 624 return &_force_overflow_stw;
tonyp@2848 625 }
tonyp@2848 626
tonyp@2848 627 ForceOverflowSettings* force_overflow() {
tonyp@2848 628 if (concurrent()) {
tonyp@2848 629 return force_overflow_conc();
tonyp@2848 630 } else {
tonyp@2848 631 return force_overflow_stw();
tonyp@2848 632 }
tonyp@2848 633 }
tonyp@2848 634
johnc@3463 635 // Live Data Counting data structures...
johnc@3463 636 // These data structures are initialized at the start of
johnc@3463 637 // marking. They are written to while marking is active.
johnc@3463 638 // They are aggregated during remark; the aggregated values
johnc@3463 639 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 640 // the total live bytes, which are then subsequently updated
johnc@3463 641 // during cleanup.
johnc@3463 642
johnc@3463 643 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 644 // is used to record the cards spanned by the live objects
johnc@3463 645 // marked by that task/worker.
johnc@3463 646 BitMap* _count_card_bitmaps;
johnc@3463 647
johnc@3463 648 // Used to record the number of marked live bytes
johnc@3463 649 // (for each region, by worker thread).
johnc@3463 650 size_t** _count_marked_bytes;
johnc@3463 651
johnc@3463 652 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 653 // the card bitmaps.
johnc@3463 654 intptr_t _heap_bottom_card_num;
johnc@3463 655
ysr@777 656 public:
ysr@777 657 // Manipulation of the global mark stack.
ysr@777 658 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 659 // two below are Mutex-based. This is OK since the first one is only
ysr@777 660 // called during evacuation pauses and doesn't compete with the
ysr@777 661 // other two (which are called by the marking tasks during
ysr@777 662 // concurrent marking or remark).
ysr@777 663 bool mark_stack_push(oop p) {
ysr@777 664 _markStack.par_push(p);
ysr@777 665 if (_markStack.overflow()) {
ysr@777 666 set_has_overflown();
ysr@777 667 return false;
ysr@777 668 }
ysr@777 669 return true;
ysr@777 670 }
ysr@777 671 bool mark_stack_push(oop* arr, int n) {
ysr@777 672 _markStack.par_push_arr(arr, n);
ysr@777 673 if (_markStack.overflow()) {
ysr@777 674 set_has_overflown();
ysr@777 675 return false;
ysr@777 676 }
ysr@777 677 return true;
ysr@777 678 }
ysr@777 679 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 680 _markStack.par_pop_arr(arr, max, n);
ysr@777 681 }
tonyp@2973 682 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 683 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 684 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 685 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 686
johnc@2190 687 // (Lock-free) Manipulation of the region stack
johnc@2190 688 bool region_stack_push_lock_free(MemRegion mr) {
tonyp@1793 689 // Currently we only call the lock-free version during evacuation
tonyp@1793 690 // pauses.
tonyp@1793 691 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
tonyp@1793 692
johnc@2190 693 _regionStack.push_lock_free(mr);
ysr@777 694 if (_regionStack.overflow()) {
ysr@777 695 set_has_overflown();
ysr@777 696 return false;
ysr@777 697 }
ysr@777 698 return true;
ysr@777 699 }
johnc@2190 700
johnc@2190 701 // Lock-free version of region-stack pop. Should only be
johnc@2190 702 // called in tandem with other lock-free pops.
johnc@2190 703 MemRegion region_stack_pop_lock_free() {
johnc@2190 704 return _regionStack.pop_lock_free();
johnc@2190 705 }
johnc@2190 706
tonyp@1793 707 #if 0
johnc@2190 708 // The routines that manipulate the region stack with a lock are
johnc@2190 709 // not currently used. They should be retained, however, as a
johnc@2190 710 // diagnostic aid.
tonyp@1793 711
tonyp@1793 712 bool region_stack_push_with_lock(MemRegion mr) {
tonyp@1793 713 // Currently we only call the lock-based version during either
tonyp@1793 714 // concurrent marking or remark.
tonyp@1793 715 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 716 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 717
tonyp@1793 718 _regionStack.push_with_lock(mr);
tonyp@1793 719 if (_regionStack.overflow()) {
tonyp@1793 720 set_has_overflown();
tonyp@1793 721 return false;
tonyp@1793 722 }
tonyp@1793 723 return true;
tonyp@1793 724 }
johnc@2190 725
tonyp@1793 726 MemRegion region_stack_pop_with_lock() {
tonyp@1793 727 // Currently we only call the lock-based version during either
tonyp@1793 728 // concurrent marking or remark.
tonyp@1793 729 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 730 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 731
tonyp@1793 732 return _regionStack.pop_with_lock();
tonyp@1793 733 }
johnc@2190 734 #endif
tonyp@1793 735
ysr@777 736 int region_stack_size() { return _regionStack.size(); }
ysr@777 737 bool region_stack_overflow() { return _regionStack.overflow(); }
ysr@777 738 bool region_stack_empty() { return _regionStack.isEmpty(); }
ysr@777 739
johnc@2190 740 // Iterate over any regions that were aborted while draining the
johnc@2190 741 // region stack (any such regions are saved in the corresponding
johnc@2190 742 // CMTask) and invalidate (i.e. assign to the empty MemRegion())
johnc@2190 743 // any regions that point into the collection set.
johnc@2190 744 bool invalidate_aborted_regions_in_cset();
johnc@2190 745
johnc@2190 746 // Returns true if there are any aborted memory regions.
johnc@2190 747 bool has_aborted_regions();
johnc@2190 748
tonyp@3464 749 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 750
ysr@777 751 bool concurrent_marking_in_progress() {
ysr@777 752 return _concurrent_marking_in_progress;
ysr@777 753 }
ysr@777 754 void set_concurrent_marking_in_progress() {
ysr@777 755 _concurrent_marking_in_progress = true;
ysr@777 756 }
ysr@777 757 void clear_concurrent_marking_in_progress() {
ysr@777 758 _concurrent_marking_in_progress = false;
ysr@777 759 }
ysr@777 760
ysr@777 761 void update_accum_task_vtime(int i, double vtime) {
ysr@777 762 _accum_task_vtime[i] += vtime;
ysr@777 763 }
ysr@777 764
ysr@777 765 double all_task_accum_vtime() {
ysr@777 766 double ret = 0.0;
ysr@777 767 for (int i = 0; i < (int)_max_task_num; ++i)
ysr@777 768 ret += _accum_task_vtime[i];
ysr@777 769 return ret;
ysr@777 770 }
ysr@777 771
ysr@777 772 // Attempts to steal an object from the task queues of other tasks
ysr@777 773 bool try_stealing(int task_num, int* hash_seed, oop& obj) {
ysr@777 774 return _task_queues->steal(task_num, hash_seed, obj);
ysr@777 775 }
ysr@777 776
ysr@777 777 // It grays an object by first marking it. Then, if it's behind the
ysr@777 778 // global finger, it also pushes it on the global stack.
ysr@777 779 void deal_with_reference(oop obj);
ysr@777 780
ysr@777 781 ConcurrentMark(ReservedSpace rs, int max_regions);
ysr@777 782 ~ConcurrentMark();
johnc@3463 783
ysr@777 784 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 785
ysr@777 786 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 787 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 788
jmasa@3294 789 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 790 // phase based on the number of GC threads being used in a STW
jmasa@3294 791 // phase.
jmasa@3357 792 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 793
jmasa@3294 794 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 795 uint calc_parallel_marking_threads();
jmasa@3294 796
ysr@777 797 // The following three are interaction between CM and
ysr@777 798 // G1CollectedHeap
ysr@777 799
ysr@777 800 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 801 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 802 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 803 // it from the given object because it might be in an inconsistent
tonyp@3464 804 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 805 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 806 // the from-space image when the to-space image might be
tonyp@3464 807 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 808 // contains the object and it's passed optionally from callers who
tonyp@3464 809 // might already have it (no point in recalculating it).
tonyp@3464 810 inline void grayRoot(oop obj, size_t word_size,
tonyp@3464 811 uint worker_id, HeapRegion* hr = NULL);
tonyp@3416 812
ysr@777 813 // It's used during evacuation pauses to gray a region, if
ysr@777 814 // necessary, and it's MT-safe. It assumes that the caller has
ysr@777 815 // marked any objects on that region. If _should_gray_objects is
ysr@777 816 // true and we're still doing concurrent marking, the region is
ysr@777 817 // pushed on the region stack, if it is located below the global
ysr@777 818 // finger, otherwise we do nothing.
ysr@777 819 void grayRegionIfNecessary(MemRegion mr);
tonyp@3416 820
ysr@777 821 // It's used during evacuation pauses to mark and, if necessary,
ysr@777 822 // gray a single object and it's MT-safe. It assumes the caller did
ysr@777 823 // not mark the object. If _should_gray_objects is true and we're
ysr@777 824 // still doing concurrent marking, the objects is pushed on the
ysr@777 825 // global stack, if it is located below the global finger, otherwise
ysr@777 826 // we do nothing.
ysr@777 827 void markAndGrayObjectIfNecessary(oop p);
ysr@777 828
tonyp@1823 829 // It iterates over the heap and for each object it comes across it
tonyp@1823 830 // will dump the contents of its reference fields, as well as
tonyp@1823 831 // liveness information for the object and its referents. The dump
tonyp@1823 832 // will be written to a file with the following name:
johnc@2969 833 // G1PrintReachableBaseFile + "." + str.
johnc@2969 834 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 835 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 836 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 837 // each object / referent.
johnc@2969 838 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 839 // only the live ones. In the dump the following symbols / breviations
johnc@2969 840 // are used:
tonyp@1823 841 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 842 // > : an implicitly live object (over tams)
tonyp@1823 843 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 844 // NOT : a reference field whose referent is not live
tonyp@1823 845 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 846 // implicitly live (it should be one or the other, not both)
tonyp@1823 847 void print_reachable(const char* str,
johnc@2969 848 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 849
ysr@777 850 // Clear the next marking bitmap (will be called concurrently).
ysr@777 851 void clearNextBitmap();
ysr@777 852
ysr@777 853 // These two do the work that needs to be done before and after the
ysr@777 854 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 855 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 856 // young collection), then it's nice to be able to easily share the
ysr@777 857 // pre/post code. It might be the case that we can put everything in
ysr@777 858 // the post method. TP
ysr@777 859 void checkpointRootsInitialPre();
ysr@777 860 void checkpointRootsInitialPost();
ysr@777 861
tonyp@3464 862 // Scan all the root regions and mark everything reachable from
tonyp@3464 863 // them.
tonyp@3464 864 void scanRootRegions();
tonyp@3464 865
tonyp@3464 866 // Scan a single root region and mark everything reachable from it.
tonyp@3464 867 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 868
ysr@777 869 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 870 void markFromRoots();
ysr@777 871
ysr@777 872 // Process all unprocessed SATB buffers. It is called at the
ysr@777 873 // beginning of an evacuation pause.
ysr@777 874 void drainAllSATBBuffers();
ysr@777 875
ysr@777 876 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 877 void checkpointRootsFinalWork();
ysr@777 878 void cleanup();
ysr@777 879 void completeCleanup();
ysr@777 880
ysr@777 881 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 882 // this carefully!
tonyp@3416 883 inline void markPrev(oop p);
johnc@3463 884
tonyp@3416 885 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 886 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 887 // read-only, so use this carefully!
tonyp@3416 888 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 889 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 890 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 891
tonyp@3416 892 // Notify data structures that a GC has started.
tonyp@3416 893 void note_start_of_gc() {
tonyp@3416 894 _markStack.note_start_of_gc();
ysr@777 895 }
tonyp@3416 896
tonyp@3416 897 // Notify data structures that a GC is finished.
tonyp@3416 898 void note_end_of_gc() {
tonyp@3416 899 _markStack.note_end_of_gc();
tonyp@3416 900 }
tonyp@3416 901
ysr@777 902 // Iterate over the oops in the mark stack and all local queues. It
ysr@777 903 // also calls invalidate_entries_into_cset() on the region stack.
ysr@777 904 void oops_do(OopClosure* f);
tonyp@3416 905
tonyp@3416 906 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 907 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 908 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 909 // decide which of the above data structures to verify. If marking
tonyp@3416 910 // is not in progress, it's a no-op.
tonyp@3416 911 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 912 bool verify_enqueued_buffers,
tonyp@3416 913 bool verify_thread_buffers,
tonyp@3416 914 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 915
ysr@777 916 // It is called at the end of an evacuation pause during marking so
ysr@777 917 // that CM is notified of where the new end of the heap is. It
ysr@777 918 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 919 // unless the force parameter is true.
ysr@777 920 void update_g1_committed(bool force = false);
ysr@777 921
ysr@777 922 void complete_marking_in_collection_set();
ysr@777 923
ysr@777 924 // It indicates that a new collection set is being chosen.
ysr@777 925 void newCSet();
johnc@2910 926
ysr@777 927 // It registers a collection set heap region with CM. This is used
ysr@777 928 // to determine whether any heap regions are located above the finger.
ysr@777 929 void registerCSetRegion(HeapRegion* hr);
ysr@777 930
johnc@2910 931 // Resets the region fields of any active CMTask whose region fields
johnc@2910 932 // are in the collection set (i.e. the region currently claimed by
johnc@2910 933 // the CMTask will be evacuated and may be used, subsequently, as
johnc@2910 934 // an alloc region). When this happens the region fields in the CMTask
johnc@2910 935 // are stale and, hence, should be cleared causing the worker thread
johnc@2910 936 // to claim a new region.
johnc@2910 937 void reset_active_task_region_fields_in_cset();
johnc@2910 938
johnc@1829 939 // Registers the maximum region-end associated with a set of
johnc@1829 940 // regions with CM. Again this is used to determine whether any
johnc@1829 941 // heap regions are located above the finger.
johnc@1829 942 void register_collection_set_finger(HeapWord* max_finger) {
johnc@1829 943 // max_finger is the highest heap region end of the regions currently
johnc@1829 944 // contained in the collection set. If this value is larger than
johnc@1829 945 // _min_finger then we need to gray objects.
johnc@1829 946 // This routine is like registerCSetRegion but for an entire
johnc@1829 947 // collection of regions.
tonyp@2973 948 if (max_finger > _min_finger) {
johnc@1829 949 _should_gray_objects = true;
tonyp@2973 950 }
johnc@1829 951 }
johnc@1829 952
ysr@777 953 // Returns "true" if at least one mark has been completed.
ysr@777 954 bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
ysr@777 955
ysr@777 956 bool isMarked(oop p) const {
ysr@777 957 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 958 HeapWord* addr = (HeapWord*)p;
ysr@777 959 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 960 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 961
ysr@777 962 return _nextMarkBitMap->isMarked(addr);
ysr@777 963 }
ysr@777 964
ysr@777 965 inline bool not_yet_marked(oop p) const;
ysr@777 966
ysr@777 967 // XXX Debug code
ysr@777 968 bool containing_card_is_marked(void* p);
ysr@777 969 bool containing_cards_are_marked(void* start, void* last);
ysr@777 970
ysr@777 971 bool isPrevMarked(oop p) const {
ysr@777 972 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 973 HeapWord* addr = (HeapWord*)p;
ysr@777 974 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 975 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 976
ysr@777 977 return _prevMarkBitMap->isMarked(addr);
ysr@777 978 }
ysr@777 979
jmasa@3357 980 inline bool do_yield_check(uint worker_i = 0);
ysr@777 981 inline bool should_yield();
ysr@777 982
ysr@777 983 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 984 void abort();
ysr@777 985
ysr@777 986 // This prints the global/local fingers. It is used for debugging.
ysr@777 987 NOT_PRODUCT(void print_finger();)
ysr@777 988
ysr@777 989 void print_summary_info();
ysr@777 990
tonyp@1454 991 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 992
ysr@777 993 // The following indicate whether a given verbose level has been
ysr@777 994 // set. Notice that anything above stats is conditional to
ysr@777 995 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 996 bool verbose_stats() {
tonyp@2973 997 return _verbose_level >= stats_verbose;
tonyp@2973 998 }
tonyp@2973 999 bool verbose_low() {
tonyp@2973 1000 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 1001 }
tonyp@2973 1002 bool verbose_medium() {
tonyp@2973 1003 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 1004 }
tonyp@2973 1005 bool verbose_high() {
tonyp@2973 1006 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 1007 }
johnc@3463 1008
johnc@3463 1009 // Counting data structure accessors
johnc@3463 1010
johnc@3463 1011 // Returns the card number of the bottom of the G1 heap.
johnc@3463 1012 // Used in biasing indices into accounting card bitmaps.
johnc@3463 1013 intptr_t heap_bottom_card_num() const {
johnc@3463 1014 return _heap_bottom_card_num;
johnc@3463 1015 }
johnc@3463 1016
johnc@3463 1017 // Returns the card bitmap for a given task or worker id.
johnc@3463 1018 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@3463 1019 assert(0 <= worker_id && worker_id < _max_task_num, "oob");
johnc@3463 1020 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 1021 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 1022 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 1023 return task_card_bm;
johnc@3463 1024 }
johnc@3463 1025
johnc@3463 1026 // Returns the array containing the marked bytes for each region,
johnc@3463 1027 // for the given worker or task id.
johnc@3463 1028 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@3463 1029 assert(0 <= worker_id && worker_id < _max_task_num, "oob");
johnc@3463 1030 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 1031 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 1032 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 1033 return marked_bytes_array;
johnc@3463 1034 }
johnc@3463 1035
johnc@3463 1036 // Returns the index in the liveness accounting card table bitmap
johnc@3463 1037 // for the given address
johnc@3463 1038 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 1039
johnc@3463 1040 // Counts the size of the given memory region in the the given
johnc@3463 1041 // marked_bytes array slot for the given HeapRegion.
johnc@3463 1042 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 1043 // cards that are spanned by the memory region.
johnc@3463 1044 inline void count_region(MemRegion mr, HeapRegion* hr,
johnc@3463 1045 size_t* marked_bytes_array,
johnc@3463 1046 BitMap* task_card_bm);
johnc@3463 1047
johnc@3463 1048 // Counts the given memory region in the task/worker counting
johnc@3463 1049 // data structures for the given worker id.
tonyp@3464 1050 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 1051
tonyp@3464 1052 // Counts the given memory region in the task/worker counting
tonyp@3464 1053 // data structures for the given worker id.
johnc@3463 1054 inline void count_region(MemRegion mr, uint worker_id);
johnc@3463 1055
johnc@3463 1056 // Counts the given object in the given task/worker counting
johnc@3463 1057 // data structures.
johnc@3463 1058 inline void count_object(oop obj, HeapRegion* hr,
johnc@3463 1059 size_t* marked_bytes_array,
johnc@3463 1060 BitMap* task_card_bm);
johnc@3463 1061
johnc@3463 1062 // Counts the given object in the task/worker counting data
johnc@3463 1063 // structures for the given worker id.
johnc@3463 1064 inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 1065
johnc@3463 1066 // Attempts to mark the given object and, if successful, counts
johnc@3463 1067 // the object in the given task/worker counting structures.
johnc@3463 1068 inline bool par_mark_and_count(oop obj, HeapRegion* hr,
johnc@3463 1069 size_t* marked_bytes_array,
johnc@3463 1070 BitMap* task_card_bm);
johnc@3463 1071
johnc@3463 1072 // Attempts to mark the given object and, if successful, counts
johnc@3463 1073 // the object in the task/worker counting structures for the
johnc@3463 1074 // given worker id.
tonyp@3464 1075 inline bool par_mark_and_count(oop obj, size_t word_size,
tonyp@3464 1076 HeapRegion* hr, uint worker_id);
tonyp@3464 1077
tonyp@3464 1078 // Attempts to mark the given object and, if successful, counts
tonyp@3464 1079 // the object in the task/worker counting structures for the
tonyp@3464 1080 // given worker id.
johnc@3463 1081 inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 1082
johnc@3463 1083 // Similar to the above routine but we don't know the heap region that
johnc@3463 1084 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 1085 inline bool par_mark_and_count(oop obj, uint worker_id);
johnc@3463 1086
johnc@3463 1087 // Similar to the above routine but there are times when we cannot
johnc@3463 1088 // safely calculate the size of obj due to races and we, therefore,
johnc@3463 1089 // pass the size in as a parameter. It is the caller's reponsibility
johnc@3463 1090 // to ensure that the size passed in for obj is valid.
johnc@3463 1091 inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
johnc@3463 1092
johnc@3463 1093 // Unconditionally mark the given object, and unconditinally count
johnc@3463 1094 // the object in the counting structures for worker id 0.
johnc@3463 1095 // Should *not* be called from parallel code.
johnc@3463 1096 inline bool mark_and_count(oop obj, HeapRegion* hr);
johnc@3463 1097
johnc@3463 1098 // Similar to the above routine but we don't know the heap region that
johnc@3463 1099 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 1100 // Should *not* be called from parallel code.
johnc@3463 1101 inline bool mark_and_count(oop obj);
johnc@3463 1102
johnc@3463 1103 protected:
johnc@3463 1104 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 1105 // counting data.
johnc@3463 1106 void clear_all_count_data();
johnc@3463 1107
johnc@3463 1108 // Aggregates the counting data for each worker/task
johnc@3463 1109 // that was constructed while marking. Also sets
johnc@3463 1110 // the amount of marked bytes for each region and
johnc@3463 1111 // the top at concurrent mark count.
johnc@3463 1112 void aggregate_count_data();
johnc@3463 1113
johnc@3463 1114 // Verification routine
johnc@3463 1115 void verify_count_data();
ysr@777 1116 };
ysr@777 1117
ysr@777 1118 // A class representing a marking task.
ysr@777 1119 class CMTask : public TerminatorTerminator {
ysr@777 1120 private:
ysr@777 1121 enum PrivateConstants {
ysr@777 1122 // the regular clock call is called once the scanned words reaches
ysr@777 1123 // this limit
ysr@777 1124 words_scanned_period = 12*1024,
ysr@777 1125 // the regular clock call is called once the number of visited
ysr@777 1126 // references reaches this limit
ysr@777 1127 refs_reached_period = 384,
ysr@777 1128 // initial value for the hash seed, used in the work stealing code
ysr@777 1129 init_hash_seed = 17,
ysr@777 1130 // how many entries will be transferred between global stack and
ysr@777 1131 // local queues
ysr@777 1132 global_stack_transfer_size = 16
ysr@777 1133 };
ysr@777 1134
ysr@777 1135 int _task_id;
ysr@777 1136 G1CollectedHeap* _g1h;
ysr@777 1137 ConcurrentMark* _cm;
ysr@777 1138 CMBitMap* _nextMarkBitMap;
ysr@777 1139 // the task queue of this task
ysr@777 1140 CMTaskQueue* _task_queue;
ysr@1280 1141 private:
ysr@777 1142 // the task queue set---needed for stealing
ysr@777 1143 CMTaskQueueSet* _task_queues;
ysr@777 1144 // indicates whether the task has been claimed---this is only for
ysr@777 1145 // debugging purposes
ysr@777 1146 bool _claimed;
ysr@777 1147
ysr@777 1148 // number of calls to this task
ysr@777 1149 int _calls;
ysr@777 1150
ysr@777 1151 // when the virtual timer reaches this time, the marking step should
ysr@777 1152 // exit
ysr@777 1153 double _time_target_ms;
ysr@777 1154 // the start time of the current marking step
ysr@777 1155 double _start_time_ms;
ysr@777 1156
ysr@777 1157 // the oop closure used for iterations over oops
tonyp@2968 1158 G1CMOopClosure* _cm_oop_closure;
ysr@777 1159
ysr@777 1160 // the region this task is scanning, NULL if we're not scanning any
ysr@777 1161 HeapRegion* _curr_region;
ysr@777 1162 // the local finger of this task, NULL if we're not scanning a region
ysr@777 1163 HeapWord* _finger;
ysr@777 1164 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 1165 HeapWord* _region_limit;
ysr@777 1166
ysr@777 1167 // This is used only when we scan regions popped from the region
ysr@777 1168 // stack. It records what the last object on such a region we
ysr@777 1169 // scanned was. It is used to ensure that, if we abort region
ysr@777 1170 // iteration, we do not rescan the first part of the region. This
ysr@777 1171 // should be NULL when we're not scanning a region from the region
ysr@777 1172 // stack.
ysr@777 1173 HeapWord* _region_finger;
ysr@777 1174
johnc@2190 1175 // If we abort while scanning a region we record the remaining
johnc@2190 1176 // unscanned portion and check this field when marking restarts.
johnc@2190 1177 // This avoids having to push on the region stack while other
johnc@2190 1178 // marking threads may still be popping regions.
johnc@2190 1179 // If we were to push the unscanned portion directly to the
johnc@2190 1180 // region stack then we would need to using locking versions
johnc@2190 1181 // of the push and pop operations.
johnc@2190 1182 MemRegion _aborted_region;
johnc@2190 1183
ysr@777 1184 // the number of words this task has scanned
ysr@777 1185 size_t _words_scanned;
ysr@777 1186 // When _words_scanned reaches this limit, the regular clock is
ysr@777 1187 // called. Notice that this might be decreased under certain
ysr@777 1188 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1189 // operation).
ysr@777 1190 size_t _words_scanned_limit;
ysr@777 1191 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 1192 // before it was decreased).
ysr@777 1193 size_t _real_words_scanned_limit;
ysr@777 1194
ysr@777 1195 // the number of references this task has visited
ysr@777 1196 size_t _refs_reached;
ysr@777 1197 // When _refs_reached reaches this limit, the regular clock is
ysr@777 1198 // called. Notice this this might be decreased under certain
ysr@777 1199 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1200 // operation).
ysr@777 1201 size_t _refs_reached_limit;
ysr@777 1202 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1203 // it was decreased).
ysr@777 1204 size_t _real_refs_reached_limit;
ysr@777 1205
ysr@777 1206 // used by the work stealing stuff
ysr@777 1207 int _hash_seed;
ysr@777 1208 // if this is true, then the task has aborted for some reason
ysr@777 1209 bool _has_aborted;
ysr@777 1210 // set when the task aborts because it has met its time quota
johnc@2494 1211 bool _has_timed_out;
ysr@777 1212 // true when we're draining SATB buffers; this avoids the task
ysr@777 1213 // aborting due to SATB buffers being available (as we're already
ysr@777 1214 // dealing with them)
ysr@777 1215 bool _draining_satb_buffers;
ysr@777 1216
ysr@777 1217 // number sequence of past step times
ysr@777 1218 NumberSeq _step_times_ms;
ysr@777 1219 // elapsed time of this task
ysr@777 1220 double _elapsed_time_ms;
ysr@777 1221 // termination time of this task
ysr@777 1222 double _termination_time_ms;
ysr@777 1223 // when this task got into the termination protocol
ysr@777 1224 double _termination_start_time_ms;
ysr@777 1225
ysr@777 1226 // true when the task is during a concurrent phase, false when it is
ysr@777 1227 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1228 // check all the things that we have to check during the concurrent
ysr@777 1229 // phase, i.e. SATB buffer availability...)
ysr@777 1230 bool _concurrent;
ysr@777 1231
ysr@777 1232 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1233
johnc@3463 1234 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1235 // and card bitmap into the actual task saves having to go through
johnc@3463 1236 // the ConcurrentMark object.
johnc@3463 1237 size_t* _marked_bytes_array;
johnc@3463 1238 BitMap* _card_bm;
johnc@3463 1239
ysr@777 1240 // LOTS of statistics related with this task
ysr@777 1241 #if _MARKING_STATS_
ysr@777 1242 NumberSeq _all_clock_intervals_ms;
ysr@777 1243 double _interval_start_time_ms;
ysr@777 1244
ysr@777 1245 int _aborted;
ysr@777 1246 int _aborted_overflow;
ysr@777 1247 int _aborted_cm_aborted;
ysr@777 1248 int _aborted_yield;
ysr@777 1249 int _aborted_timed_out;
ysr@777 1250 int _aborted_satb;
ysr@777 1251 int _aborted_termination;
ysr@777 1252
ysr@777 1253 int _steal_attempts;
ysr@777 1254 int _steals;
ysr@777 1255
ysr@777 1256 int _clock_due_to_marking;
ysr@777 1257 int _clock_due_to_scanning;
ysr@777 1258
ysr@777 1259 int _local_pushes;
ysr@777 1260 int _local_pops;
ysr@777 1261 int _local_max_size;
ysr@777 1262 int _objs_scanned;
ysr@777 1263
ysr@777 1264 int _global_pushes;
ysr@777 1265 int _global_pops;
ysr@777 1266 int _global_max_size;
ysr@777 1267
ysr@777 1268 int _global_transfers_to;
ysr@777 1269 int _global_transfers_from;
ysr@777 1270
ysr@777 1271 int _region_stack_pops;
ysr@777 1272
ysr@777 1273 int _regions_claimed;
ysr@777 1274 int _objs_found_on_bitmap;
ysr@777 1275
ysr@777 1276 int _satb_buffers_processed;
ysr@777 1277 #endif // _MARKING_STATS_
ysr@777 1278
ysr@777 1279 // it updates the local fields after this task has claimed
ysr@777 1280 // a new region to scan
ysr@777 1281 void setup_for_region(HeapRegion* hr);
ysr@777 1282 // it brings up-to-date the limit of the region
ysr@777 1283 void update_region_limit();
ysr@777 1284
ysr@777 1285 // called when either the words scanned or the refs visited limit
ysr@777 1286 // has been reached
ysr@777 1287 void reached_limit();
ysr@777 1288 // recalculates the words scanned and refs visited limits
ysr@777 1289 void recalculate_limits();
ysr@777 1290 // decreases the words scanned and refs visited limits when we reach
ysr@777 1291 // an expensive operation
ysr@777 1292 void decrease_limits();
ysr@777 1293 // it checks whether the words scanned or refs visited reached their
ysr@777 1294 // respective limit and calls reached_limit() if they have
ysr@777 1295 void check_limits() {
ysr@777 1296 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1297 _refs_reached >= _refs_reached_limit) {
ysr@777 1298 reached_limit();
tonyp@2973 1299 }
ysr@777 1300 }
ysr@777 1301 // this is supposed to be called regularly during a marking step as
ysr@777 1302 // it checks a bunch of conditions that might cause the marking step
ysr@777 1303 // to abort
ysr@777 1304 void regular_clock_call();
ysr@777 1305 bool concurrent() { return _concurrent; }
ysr@777 1306
ysr@777 1307 public:
ysr@777 1308 // It resets the task; it should be called right at the beginning of
ysr@777 1309 // a marking phase.
ysr@777 1310 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1311 // it clears all the fields that correspond to a claimed region.
ysr@777 1312 void clear_region_fields();
ysr@777 1313
ysr@777 1314 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1315
ysr@777 1316 // The main method of this class which performs a marking step
ysr@777 1317 // trying not to exceed the given duration. However, it might exit
ysr@777 1318 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1319 // available for processing).
johnc@2494 1320 void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
ysr@777 1321
ysr@777 1322 // These two calls start and stop the timer
ysr@777 1323 void record_start_time() {
ysr@777 1324 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1325 }
ysr@777 1326 void record_end_time() {
ysr@777 1327 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1328 }
ysr@777 1329
ysr@777 1330 // returns the task ID
ysr@777 1331 int task_id() { return _task_id; }
ysr@777 1332
ysr@777 1333 // From TerminatorTerminator. It determines whether this task should
ysr@777 1334 // exit the termination protocol after it's entered it.
ysr@777 1335 virtual bool should_exit_termination();
ysr@777 1336
johnc@2910 1337 // Resets the local region fields after a task has finished scanning a
johnc@2910 1338 // region; or when they have become stale as a result of the region
johnc@2910 1339 // being evacuated.
johnc@2910 1340 void giveup_current_region();
johnc@2910 1341
ysr@777 1342 HeapWord* finger() { return _finger; }
ysr@777 1343
ysr@777 1344 bool has_aborted() { return _has_aborted; }
ysr@777 1345 void set_has_aborted() { _has_aborted = true; }
ysr@777 1346 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1347 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1348 bool claimed() { return _claimed; }
ysr@777 1349
johnc@2190 1350 // Support routines for the partially scanned region that may be
johnc@2190 1351 // recorded as a result of aborting while draining the CMRegionStack
johnc@2190 1352 MemRegion aborted_region() { return _aborted_region; }
johnc@2190 1353 void set_aborted_region(MemRegion mr)
johnc@2190 1354 { _aborted_region = mr; }
johnc@2190 1355
johnc@2190 1356 // Clears any recorded partially scanned region
johnc@2190 1357 void clear_aborted_region() { set_aborted_region(MemRegion()); }
johnc@2190 1358
tonyp@2968 1359 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1360
ysr@777 1361 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1362 // on the local queue
tonyp@2968 1363 inline void deal_with_reference(oop obj);
ysr@777 1364
ysr@777 1365 // It scans an object and visits its children.
tonyp@2968 1366 void scan_object(oop obj);
ysr@777 1367
ysr@777 1368 // It pushes an object on the local queue.
tonyp@2968 1369 inline void push(oop obj);
ysr@777 1370
ysr@777 1371 // These two move entries to/from the global stack.
ysr@777 1372 void move_entries_to_global_stack();
ysr@777 1373 void get_entries_from_global_stack();
ysr@777 1374
ysr@777 1375 // It pops and scans objects from the local queue. If partially is
ysr@777 1376 // true, then it stops when the queue size is of a given limit. If
ysr@777 1377 // partially is false, then it stops when the queue is empty.
ysr@777 1378 void drain_local_queue(bool partially);
ysr@777 1379 // It moves entries from the global stack to the local queue and
ysr@777 1380 // drains the local queue. If partially is true, then it stops when
ysr@777 1381 // both the global stack and the local queue reach a given size. If
ysr@777 1382 // partially if false, it tries to empty them totally.
ysr@777 1383 void drain_global_stack(bool partially);
ysr@777 1384 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1385 // buffers are available.
ysr@777 1386 void drain_satb_buffers();
tonyp@3416 1387
ysr@777 1388 // It keeps popping regions from the region stack and processing
ysr@777 1389 // them until the region stack is empty.
ysr@777 1390 void drain_region_stack(BitMapClosure* closure);
ysr@777 1391
ysr@777 1392 // moves the local finger to a new location
ysr@777 1393 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1394 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1395 _finger = new_finger;
ysr@777 1396 }
ysr@777 1397
ysr@777 1398 // moves the region finger to a new location
ysr@777 1399 inline void move_region_finger_to(HeapWord* new_finger) {
tonyp@1458 1400 assert(new_finger < _cm->finger(), "invariant");
ysr@777 1401 _region_finger = new_finger;
ysr@777 1402 }
ysr@777 1403
ysr@777 1404 CMTask(int task_num, ConcurrentMark *cm,
johnc@3463 1405 size_t* marked_bytes, BitMap* card_bm,
ysr@777 1406 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1407
ysr@777 1408 // it prints statistics associated with this task
ysr@777 1409 void print_stats();
ysr@777 1410
ysr@777 1411 #if _MARKING_STATS_
ysr@777 1412 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1413 #endif // _MARKING_STATS_
ysr@777 1414 };
stefank@2314 1415
tonyp@2717 1416 // Class that's used to to print out per-region liveness
tonyp@2717 1417 // information. It's currently used at the end of marking and also
tonyp@2717 1418 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1419 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1420 private:
tonyp@2717 1421 outputStream* _out;
tonyp@2717 1422
tonyp@2717 1423 // Accumulators for these values.
tonyp@2717 1424 size_t _total_used_bytes;
tonyp@2717 1425 size_t _total_capacity_bytes;
tonyp@2717 1426 size_t _total_prev_live_bytes;
tonyp@2717 1427 size_t _total_next_live_bytes;
tonyp@2717 1428
tonyp@2717 1429 // These are set up when we come across a "stars humongous" region
tonyp@2717 1430 // (as this is where most of this information is stored, not in the
tonyp@2717 1431 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1432 // region in a given humongous region series we deduce the right
tonyp@2717 1433 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1434 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1435 // the last region in the series.
tonyp@2717 1436 size_t _hum_used_bytes;
tonyp@2717 1437 size_t _hum_capacity_bytes;
tonyp@2717 1438 size_t _hum_prev_live_bytes;
tonyp@2717 1439 size_t _hum_next_live_bytes;
tonyp@2717 1440
tonyp@2717 1441 static double perc(size_t val, size_t total) {
tonyp@2717 1442 if (total == 0) {
tonyp@2717 1443 return 0.0;
tonyp@2717 1444 } else {
tonyp@2717 1445 return 100.0 * ((double) val / (double) total);
tonyp@2717 1446 }
tonyp@2717 1447 }
tonyp@2717 1448
tonyp@2717 1449 static double bytes_to_mb(size_t val) {
tonyp@2717 1450 return (double) val / (double) M;
tonyp@2717 1451 }
tonyp@2717 1452
tonyp@2717 1453 // See the .cpp file.
tonyp@2717 1454 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1455 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1456 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1457
tonyp@2717 1458 public:
tonyp@2717 1459 // The header and footer are printed in the constructor and
tonyp@2717 1460 // destructor respectively.
tonyp@2717 1461 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1462 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1463 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1464 };
tonyp@2717 1465
stefank@2314 1466 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial