src/share/vm/gc_interface/collectedHeap.hpp

Wed, 28 Nov 2012 17:50:21 -0500

author
coleenp
date
Wed, 28 Nov 2012 17:50:21 -0500
changeset 4295
59c790074993
parent 4037
da91efe96a93
child 4904
7b835924c31c
permissions
-rw-r--r--

8003635: NPG: AsynchGetCallTrace broken by Method* virtual call
Summary: Make metaspace::contains be lock free and used to see if something is in metaspace, also compare Method* with vtbl pointer.
Reviewed-by: dholmes, sspitsyn, dcubed, jmasa

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    28 #include "gc_interface/gcCause.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "runtime/handles.hpp"
    32 #include "runtime/perfData.hpp"
    33 #include "runtime/safepoint.hpp"
    34 #include "utilities/events.hpp"
    36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    37 // is an abstract class: there may be many different kinds of heaps.  This
    38 // class defines the functions that a heap must implement, and contains
    39 // infrastructure common to all heaps.
    41 class BarrierSet;
    42 class ThreadClosure;
    43 class AdaptiveSizePolicy;
    44 class Thread;
    45 class CollectorPolicy;
    47 class GCMessage : public FormatBuffer<1024> {
    48  public:
    49   bool is_before;
    51  public:
    52   GCMessage() {}
    53 };
    55 class GCHeapLog : public EventLogBase<GCMessage> {
    56  private:
    57   void log_heap(bool before);
    59  public:
    60   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
    62   void log_heap_before() {
    63     log_heap(true);
    64   }
    65   void log_heap_after() {
    66     log_heap(false);
    67   }
    68 };
    70 //
    71 // CollectedHeap
    72 //   SharedHeap
    73 //     GenCollectedHeap
    74 //     G1CollectedHeap
    75 //   ParallelScavengeHeap
    76 //
    77 class CollectedHeap : public CHeapObj<mtInternal> {
    78   friend class VMStructs;
    79   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    81 #ifdef ASSERT
    82   static int       _fire_out_of_memory_count;
    83 #endif
    85   // Used for filler objects (static, but initialized in ctor).
    86   static size_t _filler_array_max_size;
    88   GCHeapLog* _gc_heap_log;
    90   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    91   bool _defer_initial_card_mark;
    93  protected:
    94   MemRegion _reserved;
    95   BarrierSet* _barrier_set;
    96   bool _is_gc_active;
    97   uint _n_par_threads;
    99   unsigned int _total_collections;          // ... started
   100   unsigned int _total_full_collections;     // ... started
   101   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
   102   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
   104   // Reason for current garbage collection.  Should be set to
   105   // a value reflecting no collection between collections.
   106   GCCause::Cause _gc_cause;
   107   GCCause::Cause _gc_lastcause;
   108   PerfStringVariable* _perf_gc_cause;
   109   PerfStringVariable* _perf_gc_lastcause;
   111   // Constructor
   112   CollectedHeap();
   114   // Do common initializations that must follow instance construction,
   115   // for example, those needing virtual calls.
   116   // This code could perhaps be moved into initialize() but would
   117   // be slightly more awkward because we want the latter to be a
   118   // pure virtual.
   119   void pre_initialize();
   121   // Create a new tlab. All TLAB allocations must go through this.
   122   virtual HeapWord* allocate_new_tlab(size_t size);
   124   // Accumulate statistics on all tlabs.
   125   virtual void accumulate_statistics_all_tlabs();
   127   // Reinitialize tlabs before resuming mutators.
   128   virtual void resize_all_tlabs();
   130   // Allocate from the current thread's TLAB, with broken-out slow path.
   131   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
   132   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
   134   // Allocate an uninitialized block of the given size, or returns NULL if
   135   // this is impossible.
   136   inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
   138   // Like allocate_init, but the block returned by a successful allocation
   139   // is guaranteed initialized to zeros.
   140   inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
   142   // Helper functions for (VM) allocation.
   143   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
   144   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   145                                                             HeapWord* objPtr);
   147   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);
   149   inline static void post_allocation_setup_array(KlassHandle klass,
   150                                                  HeapWord* obj, int length);
   152   // Clears an allocated object.
   153   inline static void init_obj(HeapWord* obj, size_t size);
   155   // Filler object utilities.
   156   static inline size_t filler_array_hdr_size();
   157   static inline size_t filler_array_min_size();
   159   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   160   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   162   // Fill with a single array; caller must ensure filler_array_min_size() <=
   163   // words <= filler_array_max_size().
   164   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   166   // Fill with a single object (either an int array or a java.lang.Object).
   167   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   169   // Verification functions
   170   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   171     PRODUCT_RETURN;
   172   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   173     PRODUCT_RETURN;
   174   debug_only(static void check_for_valid_allocation_state();)
   176  public:
   177   enum Name {
   178     Abstract,
   179     SharedHeap,
   180     GenCollectedHeap,
   181     ParallelScavengeHeap,
   182     G1CollectedHeap
   183   };
   185   static inline size_t filler_array_max_size() {
   186     return _filler_array_max_size;
   187   }
   189   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   191   /**
   192    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   193    * and JNI_OK on success.
   194    */
   195   virtual jint initialize() = 0;
   197   // In many heaps, there will be a need to perform some initialization activities
   198   // after the Universe is fully formed, but before general heap allocation is allowed.
   199   // This is the correct place to place such initialization methods.
   200   virtual void post_initialize() = 0;
   202   MemRegion reserved_region() const { return _reserved; }
   203   address base() const { return (address)reserved_region().start(); }
   205   // Future cleanup here. The following functions should specify bytes or
   206   // heapwords as part of their signature.
   207   virtual size_t capacity() const = 0;
   208   virtual size_t used() const = 0;
   210   // Return "true" if the part of the heap that allocates Java
   211   // objects has reached the maximal committed limit that it can
   212   // reach, without a garbage collection.
   213   virtual bool is_maximal_no_gc() const = 0;
   215   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   216   // memory that the vm could make available for storing 'normal' java objects.
   217   // This is based on the reserved address space, but should not include space
   218   // that the vm uses internally for bookkeeping or temporary storage
   219   // (e.g., in the case of the young gen, one of the survivor
   220   // spaces).
   221   virtual size_t max_capacity() const = 0;
   223   // Returns "TRUE" if "p" points into the reserved area of the heap.
   224   bool is_in_reserved(const void* p) const {
   225     return _reserved.contains(p);
   226   }
   228   bool is_in_reserved_or_null(const void* p) const {
   229     return p == NULL || is_in_reserved(p);
   230   }
   232   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   233   // Since this method can be expensive in general, we restrict its
   234   // use to assertion checking only.
   235   virtual bool is_in(const void* p) const = 0;
   237   bool is_in_or_null(const void* p) const {
   238     return p == NULL || is_in(p);
   239   }
   241   bool is_in_place(Metadata** p) {
   242     return !Universe::heap()->is_in(p);
   243   }
   244   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
   245   bool is_in_place(narrowOop* p) {
   246     oop o = oopDesc::load_decode_heap_oop_not_null(p);
   247     return Universe::heap()->is_in((const void*)o);
   248   }
   250   // Let's define some terms: a "closed" subset of a heap is one that
   251   //
   252   // 1) contains all currently-allocated objects, and
   253   //
   254   // 2) is closed under reference: no object in the closed subset
   255   //    references one outside the closed subset.
   256   //
   257   // Membership in a heap's closed subset is useful for assertions.
   258   // Clearly, the entire heap is a closed subset, so the default
   259   // implementation is to use "is_in_reserved".  But this may not be too
   260   // liberal to perform useful checking.  Also, the "is_in" predicate
   261   // defines a closed subset, but may be too expensive, since "is_in"
   262   // verifies that its argument points to an object head.  The
   263   // "closed_subset" method allows a heap to define an intermediate
   264   // predicate, allowing more precise checking than "is_in_reserved" at
   265   // lower cost than "is_in."
   267   // One important case is a heap composed of disjoint contiguous spaces,
   268   // such as the Garbage-First collector.  Such heaps have a convenient
   269   // closed subset consisting of the allocated portions of those
   270   // contiguous spaces.
   272   // Return "TRUE" iff the given pointer points into the heap's defined
   273   // closed subset (which defaults to the entire heap).
   274   virtual bool is_in_closed_subset(const void* p) const {
   275     return is_in_reserved(p);
   276   }
   278   bool is_in_closed_subset_or_null(const void* p) const {
   279     return p == NULL || is_in_closed_subset(p);
   280   }
   282 #ifdef ASSERT
   283   // Returns true if "p" is in the part of the
   284   // heap being collected.
   285   virtual bool is_in_partial_collection(const void *p) = 0;
   286 #endif
   288   // An object is scavengable if its location may move during a scavenge.
   289   // (A scavenge is a GC which is not a full GC.)
   290   virtual bool is_scavengable(const void *p) = 0;
   292   void set_gc_cause(GCCause::Cause v) {
   293      if (UsePerfData) {
   294        _gc_lastcause = _gc_cause;
   295        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   296        _perf_gc_cause->set_value(GCCause::to_string(v));
   297      }
   298     _gc_cause = v;
   299   }
   300   GCCause::Cause gc_cause() { return _gc_cause; }
   302   // Number of threads currently working on GC tasks.
   303   uint n_par_threads() { return _n_par_threads; }
   305   // May be overridden to set additional parallelism.
   306   virtual void set_par_threads(uint t) { _n_par_threads = t; };
   308   // Allocate and initialize instances of Class
   309   static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
   311   // General obj/array allocation facilities.
   312   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   313   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   314   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
   316   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   317                                                        oop obj);
   319   // Raw memory allocation facilities
   320   // The obj and array allocate methods are covers for these methods.
   321   // mem_allocate() should never be
   322   // called to allocate TLABs, only individual objects.
   323   virtual HeapWord* mem_allocate(size_t size,
   324                                  bool* gc_overhead_limit_was_exceeded) = 0;
   326   // Utilities for turning raw memory into filler objects.
   327   //
   328   // min_fill_size() is the smallest region that can be filled.
   329   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   330   // multiple objects.  fill_with_object() is for regions known to be smaller
   331   // than the largest array of integers; it uses a single object to fill the
   332   // region and has slightly less overhead.
   333   static size_t min_fill_size() {
   334     return size_t(align_object_size(oopDesc::header_size()));
   335   }
   337   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   339   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   340   static void fill_with_object(MemRegion region, bool zap = true) {
   341     fill_with_object(region.start(), region.word_size(), zap);
   342   }
   343   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   344     fill_with_object(start, pointer_delta(end, start), zap);
   345   }
   347   // Some heaps may offer a contiguous region for shared non-blocking
   348   // allocation, via inlined code (by exporting the address of the top and
   349   // end fields defining the extent of the contiguous allocation region.)
   351   // This function returns "true" iff the heap supports this kind of
   352   // allocation.  (Default is "no".)
   353   virtual bool supports_inline_contig_alloc() const {
   354     return false;
   355   }
   356   // These functions return the addresses of the fields that define the
   357   // boundaries of the contiguous allocation area.  (These fields should be
   358   // physically near to one another.)
   359   virtual HeapWord** top_addr() const {
   360     guarantee(false, "inline contiguous allocation not supported");
   361     return NULL;
   362   }
   363   virtual HeapWord** end_addr() const {
   364     guarantee(false, "inline contiguous allocation not supported");
   365     return NULL;
   366   }
   368   // Some heaps may be in an unparseable state at certain times between
   369   // collections. This may be necessary for efficient implementation of
   370   // certain allocation-related activities. Calling this function before
   371   // attempting to parse a heap ensures that the heap is in a parsable
   372   // state (provided other concurrent activity does not introduce
   373   // unparsability). It is normally expected, therefore, that this
   374   // method is invoked with the world stopped.
   375   // NOTE: if you override this method, make sure you call
   376   // super::ensure_parsability so that the non-generational
   377   // part of the work gets done. See implementation of
   378   // CollectedHeap::ensure_parsability and, for instance,
   379   // that of GenCollectedHeap::ensure_parsability().
   380   // The argument "retire_tlabs" controls whether existing TLABs
   381   // are merely filled or also retired, thus preventing further
   382   // allocation from them and necessitating allocation of new TLABs.
   383   virtual void ensure_parsability(bool retire_tlabs);
   385   // Return an estimate of the maximum allocation that could be performed
   386   // without triggering any collection or expansion activity.  In a
   387   // generational collector, for example, this is probably the largest
   388   // allocation that could be supported (without expansion) in the youngest
   389   // generation.  It is "unsafe" because no locks are taken; the result
   390   // should be treated as an approximation, not a guarantee, for use in
   391   // heuristic resizing decisions.
   392   virtual size_t unsafe_max_alloc() = 0;
   394   // Section on thread-local allocation buffers (TLABs)
   395   // If the heap supports thread-local allocation buffers, it should override
   396   // the following methods:
   397   // Returns "true" iff the heap supports thread-local allocation buffers.
   398   // The default is "no".
   399   virtual bool supports_tlab_allocation() const {
   400     return false;
   401   }
   402   // The amount of space available for thread-local allocation buffers.
   403   virtual size_t tlab_capacity(Thread *thr) const {
   404     guarantee(false, "thread-local allocation buffers not supported");
   405     return 0;
   406   }
   407   // An estimate of the maximum allocation that could be performed
   408   // for thread-local allocation buffers without triggering any
   409   // collection or expansion activity.
   410   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   411     guarantee(false, "thread-local allocation buffers not supported");
   412     return 0;
   413   }
   415   // Can a compiler initialize a new object without store barriers?
   416   // This permission only extends from the creation of a new object
   417   // via a TLAB up to the first subsequent safepoint. If such permission
   418   // is granted for this heap type, the compiler promises to call
   419   // defer_store_barrier() below on any slow path allocation of
   420   // a new object for which such initializing store barriers will
   421   // have been elided.
   422   virtual bool can_elide_tlab_store_barriers() const = 0;
   424   // If a compiler is eliding store barriers for TLAB-allocated objects,
   425   // there is probably a corresponding slow path which can produce
   426   // an object allocated anywhere.  The compiler's runtime support
   427   // promises to call this function on such a slow-path-allocated
   428   // object before performing initializations that have elided
   429   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   430   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   432   // Answers whether an initializing store to a new object currently
   433   // allocated at the given address doesn't need a store
   434   // barrier. Returns "true" if it doesn't need an initializing
   435   // store barrier; answers "false" if it does.
   436   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   438   // If a compiler is eliding store barriers for TLAB-allocated objects,
   439   // we will be informed of a slow-path allocation by a call
   440   // to new_store_pre_barrier() above. Such a call precedes the
   441   // initialization of the object itself, and no post-store-barriers will
   442   // be issued. Some heap types require that the barrier strictly follows
   443   // the initializing stores. (This is currently implemented by deferring the
   444   // barrier until the next slow-path allocation or gc-related safepoint.)
   445   // This interface answers whether a particular heap type needs the card
   446   // mark to be thus strictly sequenced after the stores.
   447   virtual bool card_mark_must_follow_store() const = 0;
   449   // If the CollectedHeap was asked to defer a store barrier above,
   450   // this informs it to flush such a deferred store barrier to the
   451   // remembered set.
   452   virtual void flush_deferred_store_barrier(JavaThread* thread);
   454   // Does this heap support heap inspection (+PrintClassHistogram?)
   455   virtual bool supports_heap_inspection() const = 0;
   457   // Perform a collection of the heap; intended for use in implementing
   458   // "System.gc".  This probably implies as full a collection as the
   459   // "CollectedHeap" supports.
   460   virtual void collect(GCCause::Cause cause) = 0;
   462   // Perform a full collection
   463   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
   465   // This interface assumes that it's being called by the
   466   // vm thread. It collects the heap assuming that the
   467   // heap lock is already held and that we are executing in
   468   // the context of the vm thread.
   469   virtual void collect_as_vm_thread(GCCause::Cause cause);
   471   // Callback from VM_CollectForMetadataAllocation operation.
   472   MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
   473                                                size_t size,
   474                                                Metaspace::MetadataType mdtype);
   476   // Returns the barrier set for this heap
   477   BarrierSet* barrier_set() { return _barrier_set; }
   479   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   480   // that it should answer "false" for the concurrent part of a concurrent
   481   // collector -- dld).
   482   bool is_gc_active() const { return _is_gc_active; }
   484   // Total number of GC collections (started)
   485   unsigned int total_collections() const { return _total_collections; }
   486   unsigned int total_full_collections() const { return _total_full_collections;}
   488   // Increment total number of GC collections (started)
   489   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   490   void increment_total_collections(bool full = false) {
   491     _total_collections++;
   492     if (full) {
   493       increment_total_full_collections();
   494     }
   495   }
   497   void increment_total_full_collections() { _total_full_collections++; }
   499   // Return the AdaptiveSizePolicy for the heap.
   500   virtual AdaptiveSizePolicy* size_policy() = 0;
   502   // Return the CollectorPolicy for the heap
   503   virtual CollectorPolicy* collector_policy() const = 0;
   505   void oop_iterate_no_header(OopClosure* cl);
   507   // Iterate over all the ref-containing fields of all objects, calling
   508   // "cl.do_oop" on each.
   509   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
   511   // Iterate over all objects, calling "cl.do_object" on each.
   512   virtual void object_iterate(ObjectClosure* cl) = 0;
   514   // Similar to object_iterate() except iterates only
   515   // over live objects.
   516   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   518   // NOTE! There is no requirement that a collector implement these
   519   // functions.
   520   //
   521   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   522   // each address in the (reserved) heap is a member of exactly
   523   // one block.  The defining characteristic of a block is that it is
   524   // possible to find its size, and thus to progress forward to the next
   525   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   526   // represent Java objects, or they might be free blocks in a
   527   // free-list-based heap (or subheap), as long as the two kinds are
   528   // distinguishable and the size of each is determinable.
   530   // Returns the address of the start of the "block" that contains the
   531   // address "addr".  We say "blocks" instead of "object" since some heaps
   532   // may not pack objects densely; a chunk may either be an object or a
   533   // non-object.
   534   virtual HeapWord* block_start(const void* addr) const = 0;
   536   // Requires "addr" to be the start of a chunk, and returns its size.
   537   // "addr + size" is required to be the start of a new chunk, or the end
   538   // of the active area of the heap.
   539   virtual size_t block_size(const HeapWord* addr) const = 0;
   541   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   542   // the block is an object.
   543   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   545   // Returns the longest time (in ms) that has elapsed since the last
   546   // time that any part of the heap was examined by a garbage collection.
   547   virtual jlong millis_since_last_gc() = 0;
   549   // Perform any cleanup actions necessary before allowing a verification.
   550   virtual void prepare_for_verify() = 0;
   552   // Generate any dumps preceding or following a full gc
   553   void pre_full_gc_dump();
   554   void post_full_gc_dump();
   556   // Print heap information on the given outputStream.
   557   virtual void print_on(outputStream* st) const = 0;
   558   // The default behavior is to call print_on() on tty.
   559   virtual void print() const {
   560     print_on(tty);
   561   }
   562   // Print more detailed heap information on the given
   563   // outputStream. The default behaviour is to call print_on(). It is
   564   // up to each subclass to override it and add any additional output
   565   // it needs.
   566   virtual void print_extended_on(outputStream* st) const {
   567     print_on(st);
   568   }
   570   // Print all GC threads (other than the VM thread)
   571   // used by this heap.
   572   virtual void print_gc_threads_on(outputStream* st) const = 0;
   573   // The default behavior is to call print_gc_threads_on() on tty.
   574   void print_gc_threads() {
   575     print_gc_threads_on(tty);
   576   }
   577   // Iterator for all GC threads (other than VM thread)
   578   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   580   // Print any relevant tracing info that flags imply.
   581   // Default implementation does nothing.
   582   virtual void print_tracing_info() const = 0;
   584   // If PrintHeapAtGC is set call the appropriate routi
   585   void print_heap_before_gc() {
   586     if (PrintHeapAtGC) {
   587       Universe::print_heap_before_gc();
   588     }
   589     if (_gc_heap_log != NULL) {
   590       _gc_heap_log->log_heap_before();
   591     }
   592   }
   593   void print_heap_after_gc() {
   594     if (PrintHeapAtGC) {
   595       Universe::print_heap_after_gc();
   596     }
   597     if (_gc_heap_log != NULL) {
   598       _gc_heap_log->log_heap_after();
   599     }
   600   }
   602   // Heap verification
   603   virtual void verify(bool silent, VerifyOption option) = 0;
   605   // Non product verification and debugging.
   606 #ifndef PRODUCT
   607   // Support for PromotionFailureALot.  Return true if it's time to cause a
   608   // promotion failure.  The no-argument version uses
   609   // this->_promotion_failure_alot_count as the counter.
   610   inline bool promotion_should_fail(volatile size_t* count);
   611   inline bool promotion_should_fail();
   613   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   614   // GC in which promotion failure ocurred.
   615   inline void reset_promotion_should_fail(volatile size_t* count);
   616   inline void reset_promotion_should_fail();
   617 #endif  // #ifndef PRODUCT
   619 #ifdef ASSERT
   620   static int fired_fake_oom() {
   621     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   622   }
   623 #endif
   625  public:
   626   // This is a convenience method that is used in cases where
   627   // the actual number of GC worker threads is not pertinent but
   628   // only whether there more than 0.  Use of this method helps
   629   // reduce the occurrence of ParallelGCThreads to uses where the
   630   // actual number may be germane.
   631   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
   633   /////////////// Unit tests ///////////////
   635   NOT_PRODUCT(static void test_is_in();)
   636 };
   638 // Class to set and reset the GC cause for a CollectedHeap.
   640 class GCCauseSetter : StackObj {
   641   CollectedHeap* _heap;
   642   GCCause::Cause _previous_cause;
   643  public:
   644   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   645     assert(SafepointSynchronize::is_at_safepoint(),
   646            "This method manipulates heap state without locking");
   647     _heap = heap;
   648     _previous_cause = _heap->gc_cause();
   649     _heap->set_gc_cause(cause);
   650   }
   652   ~GCCauseSetter() {
   653     assert(SafepointSynchronize::is_at_safepoint(),
   654           "This method manipulates heap state without locking");
   655     _heap->set_gc_cause(_previous_cause);
   656   }
   657 };
   659 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial