src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp

Wed, 12 Mar 2014 15:22:45 +0100

author
mgerdin
date
Wed, 12 Mar 2014 15:22:45 +0100
changeset 6979
5255b195f828
parent 6978
30c99d8e0f02
child 6980
6c523f5d5440
permissions
-rw-r--r--

8038404: Move object_iterate_mem from Space to CMS since it is only ever used by CMS
Reviewed-by: brutisso, tschatzl, stefank

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
stefank@2314 27 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
stefank@2314 28 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 30 #include "gc_implementation/shared/liveRange.hpp"
stefank@2314 31 #include "gc_implementation/shared/spaceDecorator.hpp"
coleenp@4037 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/allocation.inline.hpp"
stefank@2314 34 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 35 #include "memory/resourceArea.hpp"
goetz@6912 36 #include "memory/space.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "runtime/globals.hpp"
stefank@2314 40 #include "runtime/handles.inline.hpp"
stefank@2314 41 #include "runtime/init.hpp"
stefank@2314 42 #include "runtime/java.hpp"
goetz@6911 43 #include "runtime/orderAccess.inline.hpp"
stefank@2314 44 #include "runtime/vmThread.hpp"
stefank@2314 45 #include "utilities/copy.hpp"
duke@435 46
duke@435 47 /////////////////////////////////////////////////////////////////////////
duke@435 48 //// CompactibleFreeListSpace
duke@435 49 /////////////////////////////////////////////////////////////////////////
duke@435 50
duke@435 51 // highest ranked free list lock rank
duke@435 52 int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
duke@435 53
kvn@1926 54 // Defaults are 0 so things will break badly if incorrectly initialized.
ysr@3264 55 size_t CompactibleFreeListSpace::IndexSetStart = 0;
ysr@3264 56 size_t CompactibleFreeListSpace::IndexSetStride = 0;
kvn@1926 57
kvn@1926 58 size_t MinChunkSize = 0;
kvn@1926 59
kvn@1926 60 void CompactibleFreeListSpace::set_cms_values() {
kvn@1926 61 // Set CMS global values
kvn@1926 62 assert(MinChunkSize == 0, "already set");
brutisso@3807 63
brutisso@3807 64 // MinChunkSize should be a multiple of MinObjAlignment and be large enough
brutisso@3807 65 // for chunks to contain a FreeChunk.
brutisso@3807 66 size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes);
brutisso@3807 67 MinChunkSize = min_chunk_size_in_bytes / BytesPerWord;
kvn@1926 68
kvn@1926 69 assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
ysr@3264 70 IndexSetStart = MinChunkSize;
kvn@1926 71 IndexSetStride = MinObjAlignment;
kvn@1926 72 }
kvn@1926 73
duke@435 74 // Constructor
duke@435 75 CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
duke@435 76 MemRegion mr, bool use_adaptive_freelists,
jmasa@3730 77 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
duke@435 78 _dictionaryChoice(dictionaryChoice),
duke@435 79 _adaptive_freelists(use_adaptive_freelists),
duke@435 80 _bt(bs, mr),
duke@435 81 // free list locks are in the range of values taken by _lockRank
duke@435 82 // This range currently is [_leaf+2, _leaf+3]
duke@435 83 // Note: this requires that CFLspace c'tors
duke@435 84 // are called serially in the order in which the locks are
duke@435 85 // are acquired in the program text. This is true today.
duke@435 86 _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true),
duke@435 87 _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1
duke@435 88 "CompactibleFreeListSpace._dict_par_lock", true),
duke@435 89 _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 90 CMSRescanMultiple),
duke@435 91 _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 92 CMSConcMarkMultiple),
duke@435 93 _collector(NULL)
duke@435 94 {
jmasa@3730 95 assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
jmasa@4196 96 "FreeChunk is larger than expected");
duke@435 97 _bt.set_space(this);
jmasa@698 98 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 99 // We have all of "mr", all of which we place in the dictionary
duke@435 100 // as one big chunk. We'll need to decide here which of several
duke@435 101 // possible alternative dictionary implementations to use. For
duke@435 102 // now the choice is easy, since we have only one working
duke@435 103 // implementation, namely, the simple binary tree (splaying
duke@435 104 // temporarily disabled).
duke@435 105 switch (dictionaryChoice) {
jmasa@4196 106 case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
jmasa@4488 107 _dictionary = new AFLBinaryTreeDictionary(mr);
jmasa@4196 108 break;
jmasa@3730 109 case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
jmasa@3730 110 case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
duke@435 111 default:
duke@435 112 warning("dictionaryChoice: selected option not understood; using"
duke@435 113 " default BinaryTreeDictionary implementation instead.");
duke@435 114 }
duke@435 115 assert(_dictionary != NULL, "CMS dictionary initialization");
duke@435 116 // The indexed free lists are initially all empty and are lazily
duke@435 117 // filled in on demand. Initialize the array elements to NULL.
duke@435 118 initializeIndexedFreeListArray();
duke@435 119
duke@435 120 // Not using adaptive free lists assumes that allocation is first
duke@435 121 // from the linAB's. Also a cms perm gen which can be compacted
duke@435 122 // has to have the klass's klassKlass allocated at a lower
duke@435 123 // address in the heap than the klass so that the klassKlass is
duke@435 124 // moved to its new location before the klass is moved.
duke@435 125 // Set the _refillSize for the linear allocation blocks
duke@435 126 if (!use_adaptive_freelists) {
jmasa@4488 127 FreeChunk* fc = _dictionary->get_chunk(mr.word_size(),
jmasa@4488 128 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 129 // The small linAB initially has all the space and will allocate
duke@435 130 // a chunk of any size.
duke@435 131 HeapWord* addr = (HeapWord*) fc;
duke@435 132 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 133 1024*SmallForLinearAlloc, fc->size());
duke@435 134 // Note that _unallocated_block is not updated here.
duke@435 135 // Allocations from the linear allocation block should
duke@435 136 // update it.
duke@435 137 } else {
duke@435 138 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc,
duke@435 139 SmallForLinearAlloc);
duke@435 140 }
duke@435 141 // CMSIndexedFreeListReplenish should be at least 1
duke@435 142 CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish);
duke@435 143 _promoInfo.setSpace(this);
duke@435 144 if (UseCMSBestFit) {
duke@435 145 _fitStrategy = FreeBlockBestFitFirst;
duke@435 146 } else {
duke@435 147 _fitStrategy = FreeBlockStrategyNone;
duke@435 148 }
ysr@3220 149 check_free_list_consistency();
duke@435 150
duke@435 151 // Initialize locks for parallel case.
jmasa@2188 152
jmasa@2188 153 if (CollectedHeap::use_parallel_gc_threads()) {
duke@435 154 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 155 _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1
duke@435 156 "a freelist par lock",
duke@435 157 true);
duke@435 158 DEBUG_ONLY(
duke@435 159 _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]);
duke@435 160 )
duke@435 161 }
duke@435 162 _dictionary->set_par_lock(&_parDictionaryAllocLock);
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166 // Like CompactibleSpace forward() but always calls cross_threshold() to
duke@435 167 // update the block offset table. Removed initialize_threshold call because
duke@435 168 // CFLS does not use a block offset array for contiguous spaces.
duke@435 169 HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size,
duke@435 170 CompactPoint* cp, HeapWord* compact_top) {
duke@435 171 // q is alive
duke@435 172 // First check if we should switch compaction space
duke@435 173 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 174 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 175 assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size),
duke@435 176 "virtual adjustObjectSize_v() method is not correct");
duke@435 177 size_t adjusted_size = adjustObjectSize(size);
duke@435 178 assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0,
duke@435 179 "no small fragments allowed");
duke@435 180 assert(minimum_free_block_size() == MinChunkSize,
duke@435 181 "for de-virtualized reference below");
duke@435 182 // Can't leave a nonzero size, residual fragment smaller than MinChunkSize
duke@435 183 if (adjusted_size + MinChunkSize > compaction_max_size &&
duke@435 184 adjusted_size != compaction_max_size) {
duke@435 185 do {
duke@435 186 // switch to next compaction space
duke@435 187 cp->space->set_compaction_top(compact_top);
duke@435 188 cp->space = cp->space->next_compaction_space();
duke@435 189 if (cp->space == NULL) {
duke@435 190 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 191 assert(cp->gen != NULL, "compaction must succeed");
duke@435 192 cp->space = cp->gen->first_compaction_space();
duke@435 193 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 194 }
duke@435 195 compact_top = cp->space->bottom();
duke@435 196 cp->space->set_compaction_top(compact_top);
duke@435 197 // The correct adjusted_size may not be the same as that for this method
duke@435 198 // (i.e., cp->space may no longer be "this" so adjust the size again.
duke@435 199 // Use the virtual method which is not used above to save the virtual
duke@435 200 // dispatch.
duke@435 201 adjusted_size = cp->space->adjust_object_size_v(size);
duke@435 202 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 203 assert(cp->space->minimum_free_block_size() == 0, "just checking");
duke@435 204 } while (adjusted_size > compaction_max_size);
duke@435 205 }
duke@435 206
duke@435 207 // store the forwarding pointer into the mark word
duke@435 208 if ((HeapWord*)q != compact_top) {
duke@435 209 q->forward_to(oop(compact_top));
duke@435 210 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 211 } else {
duke@435 212 // if the object isn't moving we can just set the mark to the default
duke@435 213 // mark and handle it specially later on.
duke@435 214 q->init_mark();
duke@435 215 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 216 }
duke@435 217
duke@435 218 compact_top += adjusted_size;
duke@435 219
duke@435 220 // we need to update the offset table so that the beginnings of objects can be
duke@435 221 // found during scavenge. Note that we are updating the offset table based on
duke@435 222 // where the object will be once the compaction phase finishes.
duke@435 223
duke@435 224 // Always call cross_threshold(). A contiguous space can only call it when
duke@435 225 // the compaction_top exceeds the current threshold but not for an
duke@435 226 // non-contiguous space.
duke@435 227 cp->threshold =
duke@435 228 cp->space->cross_threshold(compact_top - adjusted_size, compact_top);
duke@435 229 return compact_top;
duke@435 230 }
duke@435 231
duke@435 232 // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt
duke@435 233 // and use of single_block instead of alloc_block. The name here is not really
duke@435 234 // appropriate - maybe a more general name could be invented for both the
duke@435 235 // contiguous and noncontiguous spaces.
duke@435 236
duke@435 237 HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 238 _bt.single_block(start, the_end);
duke@435 239 return end();
duke@435 240 }
duke@435 241
duke@435 242 // Initialize them to NULL.
duke@435 243 void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
duke@435 244 for (size_t i = 0; i < IndexSetSize; i++) {
duke@435 245 // Note that on platforms where objects are double word aligned,
duke@435 246 // the odd array elements are not used. It is convenient, however,
duke@435 247 // to map directly from the object size to the array element.
duke@435 248 _indexedFreeList[i].reset(IndexSetSize);
duke@435 249 _indexedFreeList[i].set_size(i);
duke@435 250 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 251 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 252 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 253 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 void CompactibleFreeListSpace::resetIndexedFreeListArray() {
ysr@3264 258 for (size_t i = 1; i < IndexSetSize; i++) {
duke@435 259 assert(_indexedFreeList[i].size() == (size_t) i,
duke@435 260 "Indexed free list sizes are incorrect");
duke@435 261 _indexedFreeList[i].reset(IndexSetSize);
duke@435 262 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 263 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 264 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 265 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 266 }
duke@435 267 }
duke@435 268
duke@435 269 void CompactibleFreeListSpace::reset(MemRegion mr) {
duke@435 270 resetIndexedFreeListArray();
duke@435 271 dictionary()->reset();
duke@435 272 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 273 assert(end() == mr.end(), "We are compacting to the bottom of CMS gen");
duke@435 274 // Everything's allocated until proven otherwise.
duke@435 275 _bt.set_unallocated_block(end());
duke@435 276 }
duke@435 277 if (!mr.is_empty()) {
duke@435 278 assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
duke@435 279 _bt.single_block(mr.start(), mr.word_size());
duke@435 280 FreeChunk* fc = (FreeChunk*) mr.start();
jmasa@3732 281 fc->set_size(mr.word_size());
duke@435 282 if (mr.word_size() >= IndexSetSize ) {
duke@435 283 returnChunkToDictionary(fc);
duke@435 284 } else {
duke@435 285 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
jmasa@3732 286 _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
duke@435 287 }
brutisso@5163 288 coalBirth(mr.word_size());
duke@435 289 }
duke@435 290 _promoInfo.reset();
duke@435 291 _smallLinearAllocBlock._ptr = NULL;
duke@435 292 _smallLinearAllocBlock._word_size = 0;
duke@435 293 }
duke@435 294
duke@435 295 void CompactibleFreeListSpace::reset_after_compaction() {
duke@435 296 // Reset the space to the new reality - one free chunk.
duke@435 297 MemRegion mr(compaction_top(), end());
duke@435 298 reset(mr);
duke@435 299 // Now refill the linear allocation block(s) if possible.
duke@435 300 if (_adaptive_freelists) {
duke@435 301 refillLinearAllocBlocksIfNeeded();
duke@435 302 } else {
duke@435 303 // Place as much of mr in the linAB as we can get,
duke@435 304 // provided it was big enough to go into the dictionary.
jmasa@3732 305 FreeChunk* fc = dictionary()->find_largest_dict();
duke@435 306 if (fc != NULL) {
duke@435 307 assert(fc->size() == mr.word_size(),
duke@435 308 "Why was the chunk broken up?");
duke@435 309 removeChunkFromDictionary(fc);
duke@435 310 HeapWord* addr = (HeapWord*) fc;
duke@435 311 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 312 1024*SmallForLinearAlloc, fc->size());
duke@435 313 // Note that _unallocated_block is not updated here.
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317
duke@435 318 // Walks the entire dictionary, returning a coterminal
duke@435 319 // chunk, if it exists. Use with caution since it involves
duke@435 320 // a potentially complete walk of a potentially large tree.
duke@435 321 FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
duke@435 322
duke@435 323 assert_lock_strong(&_freelistLock);
duke@435 324
duke@435 325 return dictionary()->find_chunk_ends_at(end());
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 #ifndef PRODUCT
duke@435 330 void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
duke@435 331 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 332 _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
duke@435 333 }
duke@435 334 }
duke@435 335
duke@435 336 size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
duke@435 337 size_t sum = 0;
duke@435 338 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 339 sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
duke@435 340 }
duke@435 341 return sum;
duke@435 342 }
duke@435 343
duke@435 344 size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
duke@435 345 size_t count = 0;
ysr@3264 346 for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
duke@435 347 debug_only(
duke@435 348 ssize_t total_list_count = 0;
duke@435 349 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 350 fc = fc->next()) {
duke@435 351 total_list_count++;
duke@435 352 }
duke@435 353 assert(total_list_count == _indexedFreeList[i].count(),
duke@435 354 "Count in list is incorrect");
duke@435 355 )
duke@435 356 count += _indexedFreeList[i].count();
duke@435 357 }
duke@435 358 return count;
duke@435 359 }
duke@435 360
duke@435 361 size_t CompactibleFreeListSpace::totalCount() {
duke@435 362 size_t num = totalCountInIndexedFreeLists();
jmasa@3732 363 num += dictionary()->total_count();
duke@435 364 if (_smallLinearAllocBlock._word_size != 0) {
duke@435 365 num++;
duke@435 366 }
duke@435 367 return num;
duke@435 368 }
duke@435 369 #endif
duke@435 370
duke@435 371 bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
duke@435 372 FreeChunk* fc = (FreeChunk*) p;
jmasa@3732 373 return fc->is_free();
duke@435 374 }
duke@435 375
duke@435 376 size_t CompactibleFreeListSpace::used() const {
duke@435 377 return capacity() - free();
duke@435 378 }
duke@435 379
duke@435 380 size_t CompactibleFreeListSpace::free() const {
duke@435 381 // "MT-safe, but not MT-precise"(TM), if you will: i.e.
duke@435 382 // if you do this while the structures are in flux you
duke@435 383 // may get an approximate answer only; for instance
duke@435 384 // because there is concurrent allocation either
duke@435 385 // directly by mutators or for promotion during a GC.
duke@435 386 // It's "MT-safe", however, in the sense that you are guaranteed
duke@435 387 // not to crash and burn, for instance, because of walking
duke@435 388 // pointers that could disappear as you were walking them.
duke@435 389 // The approximation is because the various components
duke@435 390 // that are read below are not read atomically (and
duke@435 391 // further the computation of totalSizeInIndexedFreeLists()
duke@435 392 // is itself a non-atomic computation. The normal use of
duke@435 393 // this is during a resize operation at the end of GC
duke@435 394 // and at that time you are guaranteed to get the
duke@435 395 // correct actual value. However, for instance, this is
duke@435 396 // also read completely asynchronously by the "perf-sampler"
duke@435 397 // that supports jvmstat, and you are apt to see the values
duke@435 398 // flicker in such cases.
duke@435 399 assert(_dictionary != NULL, "No _dictionary?");
jmasa@3732 400 return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
duke@435 401 totalSizeInIndexedFreeLists() +
duke@435 402 _smallLinearAllocBlock._word_size) * HeapWordSize;
duke@435 403 }
duke@435 404
duke@435 405 size_t CompactibleFreeListSpace::max_alloc_in_words() const {
duke@435 406 assert(_dictionary != NULL, "No _dictionary?");
duke@435 407 assert_locked();
jmasa@3732 408 size_t res = _dictionary->max_chunk_size();
duke@435 409 res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
duke@435 410 (size_t) SmallForLinearAlloc - 1));
duke@435 411 // XXX the following could potentially be pretty slow;
duke@435 412 // should one, pesimally for the rare cases when res
duke@435 413 // caclulated above is less than IndexSetSize,
duke@435 414 // just return res calculated above? My reasoning was that
duke@435 415 // those cases will be so rare that the extra time spent doesn't
duke@435 416 // really matter....
duke@435 417 // Note: do not change the loop test i >= res + IndexSetStride
duke@435 418 // to i > res below, because i is unsigned and res may be zero.
duke@435 419 for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride;
duke@435 420 i -= IndexSetStride) {
duke@435 421 if (_indexedFreeList[i].head() != NULL) {
duke@435 422 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 423 return i;
duke@435 424 }
duke@435 425 }
duke@435 426 return res;
duke@435 427 }
duke@435 428
ysr@2071 429 void LinearAllocBlock::print_on(outputStream* st) const {
ysr@2071 430 st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT
ysr@2071 431 ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT,
drchase@6680 432 p2i(_ptr), _word_size, _refillSize, _allocation_size_limit);
ysr@2071 433 }
ysr@2071 434
ysr@2071 435 void CompactibleFreeListSpace::print_on(outputStream* st) const {
ysr@2071 436 st->print_cr("COMPACTIBLE FREELIST SPACE");
ysr@2071 437 st->print_cr(" Space:");
ysr@2071 438 Space::print_on(st);
ysr@2071 439
ysr@2071 440 st->print_cr("promoInfo:");
ysr@2071 441 _promoInfo.print_on(st);
ysr@2071 442
ysr@2071 443 st->print_cr("_smallLinearAllocBlock");
ysr@2071 444 _smallLinearAllocBlock.print_on(st);
ysr@2071 445
ysr@2071 446 // dump_memory_block(_smallLinearAllocBlock->_ptr, 128);
ysr@2071 447
ysr@2071 448 st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s",
ysr@2071 449 _fitStrategy?"true":"false", _adaptive_freelists?"true":"false");
ysr@2071 450 }
ysr@2071 451
ysr@1580 452 void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st)
ysr@1580 453 const {
ysr@1580 454 reportIndexedFreeListStatistics();
ysr@1580 455 gclog_or_tty->print_cr("Layout of Indexed Freelists");
ysr@1580 456 gclog_or_tty->print_cr("---------------------------");
jmasa@4196 457 AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size");
ysr@1580 458 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
ysr@1580 459 _indexedFreeList[i].print_on(gclog_or_tty);
ysr@1580 460 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
ysr@1580 461 fc = fc->next()) {
ysr@1580 462 gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
drchase@6680 463 p2i(fc), p2i((HeapWord*)fc + i),
ysr@1580 464 fc->cantCoalesce() ? "\t CC" : "");
ysr@1580 465 }
ysr@1580 466 }
ysr@1580 467 }
ysr@1580 468
ysr@1580 469 void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st)
ysr@1580 470 const {
ysr@1580 471 _promoInfo.print_on(st);
ysr@1580 472 }
ysr@1580 473
ysr@1580 474 void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
ysr@1580 475 const {
jmasa@3732 476 _dictionary->report_statistics();
ysr@1580 477 st->print_cr("Layout of Freelists in Tree");
ysr@1580 478 st->print_cr("---------------------------");
ysr@1580 479 _dictionary->print_free_lists(st);
ysr@1580 480 }
ysr@1580 481
ysr@1580 482 class BlkPrintingClosure: public BlkClosure {
ysr@1580 483 const CMSCollector* _collector;
ysr@1580 484 const CompactibleFreeListSpace* _sp;
ysr@1580 485 const CMSBitMap* _live_bit_map;
ysr@1580 486 const bool _post_remark;
ysr@1580 487 outputStream* _st;
ysr@1580 488 public:
ysr@1580 489 BlkPrintingClosure(const CMSCollector* collector,
ysr@1580 490 const CompactibleFreeListSpace* sp,
ysr@1580 491 const CMSBitMap* live_bit_map,
ysr@1580 492 outputStream* st):
ysr@1580 493 _collector(collector),
ysr@1580 494 _sp(sp),
ysr@1580 495 _live_bit_map(live_bit_map),
ysr@1580 496 _post_remark(collector->abstract_state() > CMSCollector::FinalMarking),
ysr@1580 497 _st(st) { }
ysr@1580 498 size_t do_blk(HeapWord* addr);
ysr@1580 499 };
ysr@1580 500
ysr@1580 501 size_t BlkPrintingClosure::do_blk(HeapWord* addr) {
ysr@1580 502 size_t sz = _sp->block_size_no_stall(addr, _collector);
ysr@1580 503 assert(sz != 0, "Should always be able to compute a size");
ysr@1580 504 if (_sp->block_is_obj(addr)) {
ysr@1580 505 const bool dead = _post_remark && !_live_bit_map->isMarked(addr);
ysr@1580 506 _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s",
drchase@6680 507 p2i(addr),
ysr@1580 508 dead ? "dead" : "live",
ysr@1580 509 sz,
ysr@1580 510 (!dead && CMSPrintObjectsInDump) ? ":" : ".");
ysr@1580 511 if (CMSPrintObjectsInDump && !dead) {
ysr@1580 512 oop(addr)->print_on(_st);
ysr@1580 513 _st->print_cr("--------------------------------------");
ysr@1580 514 }
ysr@1580 515 } else { // free block
ysr@1580 516 _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s",
drchase@6680 517 p2i(addr), sz, CMSPrintChunksInDump ? ":" : ".");
ysr@1580 518 if (CMSPrintChunksInDump) {
ysr@1580 519 ((FreeChunk*)addr)->print_on(_st);
ysr@1580 520 _st->print_cr("--------------------------------------");
ysr@1580 521 }
ysr@1580 522 }
ysr@1580 523 return sz;
ysr@1580 524 }
ysr@1580 525
ysr@1580 526 void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
ysr@1580 527 outputStream* st) {
ysr@1580 528 st->print_cr("\n=========================");
ysr@1580 529 st->print_cr("Block layout in CMS Heap:");
ysr@1580 530 st->print_cr("=========================");
ysr@1580 531 BlkPrintingClosure bpcl(c, this, c->markBitMap(), st);
ysr@1580 532 blk_iterate(&bpcl);
ysr@1580 533
ysr@1580 534 st->print_cr("\n=======================================");
ysr@1580 535 st->print_cr("Order & Layout of Promotion Info Blocks");
ysr@1580 536 st->print_cr("=======================================");
ysr@1580 537 print_promo_info_blocks(st);
ysr@1580 538
ysr@1580 539 st->print_cr("\n===========================");
ysr@1580 540 st->print_cr("Order of Indexed Free Lists");
ysr@1580 541 st->print_cr("=========================");
ysr@1580 542 print_indexed_free_lists(st);
ysr@1580 543
ysr@1580 544 st->print_cr("\n=================================");
ysr@1580 545 st->print_cr("Order of Free Lists in Dictionary");
ysr@1580 546 st->print_cr("=================================");
ysr@1580 547 print_dictionary_free_lists(st);
ysr@1580 548 }
ysr@1580 549
ysr@1580 550
duke@435 551 void CompactibleFreeListSpace::reportFreeListStatistics() const {
duke@435 552 assert_lock_strong(&_freelistLock);
duke@435 553 assert(PrintFLSStatistics != 0, "Reporting error");
jmasa@3732 554 _dictionary->report_statistics();
duke@435 555 if (PrintFLSStatistics > 1) {
duke@435 556 reportIndexedFreeListStatistics();
jmasa@3732 557 size_t total_size = totalSizeInIndexedFreeLists() +
jmasa@3732 558 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
hseigel@4465 559 gclog_or_tty->print(" free=" SIZE_FORMAT " frag=%1.4f\n", total_size, flsFrag());
duke@435 560 }
duke@435 561 }
duke@435 562
duke@435 563 void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
duke@435 564 assert_lock_strong(&_freelistLock);
duke@435 565 gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
duke@435 566 "--------------------------------\n");
jmasa@3732 567 size_t total_size = totalSizeInIndexedFreeLists();
jmasa@3732 568 size_t free_blocks = numFreeBlocksInIndexedFreeLists();
drchase@6680 569 gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
drchase@6680 570 gclog_or_tty->print("Max Chunk Size: " SIZE_FORMAT "\n", maxChunkSizeInIndexedFreeLists());
drchase@6680 571 gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
jmasa@3732 572 if (free_blocks != 0) {
drchase@6680 573 gclog_or_tty->print("Av. Block Size: " SIZE_FORMAT "\n", total_size/free_blocks);
duke@435 574 }
duke@435 575 }
duke@435 576
duke@435 577 size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const {
duke@435 578 size_t res = 0;
duke@435 579 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 580 debug_only(
duke@435 581 ssize_t recount = 0;
duke@435 582 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 583 fc = fc->next()) {
duke@435 584 recount += 1;
duke@435 585 }
duke@435 586 assert(recount == _indexedFreeList[i].count(),
duke@435 587 "Incorrect count in list");
duke@435 588 )
duke@435 589 res += _indexedFreeList[i].count();
duke@435 590 }
duke@435 591 return res;
duke@435 592 }
duke@435 593
duke@435 594 size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const {
duke@435 595 for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
duke@435 596 if (_indexedFreeList[i].head() != NULL) {
duke@435 597 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 598 return (size_t)i;
duke@435 599 }
duke@435 600 }
duke@435 601 return 0;
duke@435 602 }
duke@435 603
duke@435 604 void CompactibleFreeListSpace::set_end(HeapWord* value) {
duke@435 605 HeapWord* prevEnd = end();
duke@435 606 assert(prevEnd != value, "unnecessary set_end call");
ysr@2071 607 assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 608 "New end is below unallocated block");
duke@435 609 _end = value;
duke@435 610 if (prevEnd != NULL) {
duke@435 611 // Resize the underlying block offset table.
duke@435 612 _bt.resize(pointer_delta(value, bottom()));
ysr@1580 613 if (value <= prevEnd) {
ysr@2071 614 assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 615 "New end is below unallocated block");
ysr@1580 616 } else {
ysr@1580 617 // Now, take this new chunk and add it to the free blocks.
ysr@1580 618 // Note that the BOT has not yet been updated for this block.
ysr@1580 619 size_t newFcSize = pointer_delta(value, prevEnd);
ysr@1580 620 // XXX This is REALLY UGLY and should be fixed up. XXX
ysr@1580 621 if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) {
ysr@1580 622 // Mark the boundary of the new block in BOT
ysr@1580 623 _bt.mark_block(prevEnd, value);
ysr@1580 624 // put it all in the linAB
ysr@1580 625 if (ParallelGCThreads == 0) {
ysr@1580 626 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 627 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 628 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 629 } else { // ParallelGCThreads > 0
ysr@1580 630 MutexLockerEx x(parDictionaryAllocLock(),
ysr@1580 631 Mutex::_no_safepoint_check_flag);
ysr@1580 632 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 633 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 634 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 635 }
ysr@1580 636 // Births of chunks put into a LinAB are not recorded. Births
ysr@1580 637 // of chunks as they are allocated out of a LinAB are.
ysr@1580 638 } else {
ysr@1580 639 // Add the block to the free lists, if possible coalescing it
ysr@1580 640 // with the last free block, and update the BOT and census data.
ysr@1580 641 addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize);
duke@435 642 }
duke@435 643 }
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647 class FreeListSpace_DCTOC : public Filtering_DCTOC {
duke@435 648 CompactibleFreeListSpace* _cfls;
duke@435 649 CMSCollector* _collector;
duke@435 650 protected:
duke@435 651 // Override.
duke@435 652 #define walk_mem_region_with_cl_DECL(ClosureType) \
duke@435 653 virtual void walk_mem_region_with_cl(MemRegion mr, \
duke@435 654 HeapWord* bottom, HeapWord* top, \
duke@435 655 ClosureType* cl); \
duke@435 656 void walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 657 HeapWord* bottom, HeapWord* top, \
duke@435 658 ClosureType* cl); \
duke@435 659 void walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 660 HeapWord* bottom, HeapWord* top, \
duke@435 661 ClosureType* cl)
coleenp@4037 662 walk_mem_region_with_cl_DECL(ExtendedOopClosure);
duke@435 663 walk_mem_region_with_cl_DECL(FilteringClosure);
duke@435 664
duke@435 665 public:
duke@435 666 FreeListSpace_DCTOC(CompactibleFreeListSpace* sp,
duke@435 667 CMSCollector* collector,
coleenp@4037 668 ExtendedOopClosure* cl,
duke@435 669 CardTableModRefBS::PrecisionStyle precision,
duke@435 670 HeapWord* boundary) :
duke@435 671 Filtering_DCTOC(sp, cl, precision, boundary),
duke@435 672 _cfls(sp), _collector(collector) {}
duke@435 673 };
duke@435 674
duke@435 675 // We de-virtualize the block-related calls below, since we know that our
duke@435 676 // space is a CompactibleFreeListSpace.
jmasa@3294 677
duke@435 678 #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 679 void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 680 HeapWord* bottom, \
duke@435 681 HeapWord* top, \
duke@435 682 ClosureType* cl) { \
jmasa@3294 683 bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
jmasa@3294 684 if (is_par) { \
jmasa@3294 685 assert(SharedHeap::heap()->n_par_threads() == \
jmasa@3294 686 SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
duke@435 687 walk_mem_region_with_cl_par(mr, bottom, top, cl); \
duke@435 688 } else { \
duke@435 689 walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
duke@435 690 } \
duke@435 691 } \
duke@435 692 void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 693 HeapWord* bottom, \
duke@435 694 HeapWord* top, \
duke@435 695 ClosureType* cl) { \
duke@435 696 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 697 back too far. */ \
duke@435 698 HeapWord* mr_start = mr.start(); \
duke@435 699 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 700 HeapWord* next = bottom + bot_size; \
duke@435 701 while (next < mr_start) { \
duke@435 702 bottom = next; \
duke@435 703 bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 704 next = bottom + bot_size; \
duke@435 705 } \
duke@435 706 \
duke@435 707 while (bottom < top) { \
duke@435 708 if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \
duke@435 709 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 710 oop(bottom)) && \
duke@435 711 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 712 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 713 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 714 } else { \
duke@435 715 bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 716 } \
duke@435 717 } \
duke@435 718 } \
duke@435 719 void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 720 HeapWord* bottom, \
duke@435 721 HeapWord* top, \
duke@435 722 ClosureType* cl) { \
duke@435 723 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 724 back too far. */ \
duke@435 725 HeapWord* mr_start = mr.start(); \
duke@435 726 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 727 HeapWord* next = bottom + bot_size; \
duke@435 728 while (next < mr_start) { \
duke@435 729 bottom = next; \
duke@435 730 bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 731 next = bottom + bot_size; \
duke@435 732 } \
duke@435 733 \
duke@435 734 while (bottom < top) { \
duke@435 735 if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \
duke@435 736 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 737 oop(bottom)) && \
duke@435 738 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 739 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 740 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 741 } else { \
duke@435 742 bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 743 } \
duke@435 744 } \
duke@435 745 }
duke@435 746
duke@435 747 // (There are only two of these, rather than N, because the split is due
duke@435 748 // only to the introduction of the FilteringClosure, a local part of the
duke@435 749 // impl of this abstraction.)
coleenp@4037 750 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
duke@435 751 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 752
duke@435 753 DirtyCardToOopClosure*
coleenp@4037 754 CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 755 CardTableModRefBS::PrecisionStyle precision,
duke@435 756 HeapWord* boundary) {
duke@435 757 return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary);
duke@435 758 }
duke@435 759
duke@435 760
duke@435 761 // Note on locking for the space iteration functions:
duke@435 762 // since the collector's iteration activities are concurrent with
duke@435 763 // allocation activities by mutators, absent a suitable mutual exclusion
duke@435 764 // mechanism the iterators may go awry. For instace a block being iterated
duke@435 765 // may suddenly be allocated or divided up and part of it allocated and
duke@435 766 // so on.
duke@435 767
duke@435 768 // Apply the given closure to each block in the space.
duke@435 769 void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) {
duke@435 770 assert_lock_strong(freelistLock());
duke@435 771 HeapWord *cur, *limit;
duke@435 772 for (cur = bottom(), limit = end(); cur < limit;
duke@435 773 cur += cl->do_blk_careful(cur));
duke@435 774 }
duke@435 775
duke@435 776 // Apply the given closure to each block in the space.
duke@435 777 void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) {
duke@435 778 assert_lock_strong(freelistLock());
duke@435 779 HeapWord *cur, *limit;
duke@435 780 for (cur = bottom(), limit = end(); cur < limit;
duke@435 781 cur += cl->do_blk(cur));
duke@435 782 }
duke@435 783
duke@435 784 // Apply the given closure to each oop in the space.
coleenp@4037 785 void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
duke@435 786 assert_lock_strong(freelistLock());
duke@435 787 HeapWord *cur, *limit;
duke@435 788 size_t curSize;
duke@435 789 for (cur = bottom(), limit = end(); cur < limit;
duke@435 790 cur += curSize) {
duke@435 791 curSize = block_size(cur);
duke@435 792 if (block_is_obj(cur)) {
duke@435 793 oop(cur)->oop_iterate(cl);
duke@435 794 }
duke@435 795 }
duke@435 796 }
duke@435 797
duke@435 798 // NOTE: In the following methods, in order to safely be able to
duke@435 799 // apply the closure to an object, we need to be sure that the
duke@435 800 // object has been initialized. We are guaranteed that an object
duke@435 801 // is initialized if we are holding the Heap_lock with the
duke@435 802 // world stopped.
duke@435 803 void CompactibleFreeListSpace::verify_objects_initialized() const {
duke@435 804 if (is_init_completed()) {
duke@435 805 assert_locked_or_safepoint(Heap_lock);
duke@435 806 if (Universe::is_fully_initialized()) {
duke@435 807 guarantee(SafepointSynchronize::is_at_safepoint(),
duke@435 808 "Required for objects to be initialized");
duke@435 809 }
duke@435 810 } // else make a concession at vm start-up
duke@435 811 }
duke@435 812
duke@435 813 // Apply the given closure to each object in the space
duke@435 814 void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) {
duke@435 815 assert_lock_strong(freelistLock());
duke@435 816 NOT_PRODUCT(verify_objects_initialized());
duke@435 817 HeapWord *cur, *limit;
duke@435 818 size_t curSize;
duke@435 819 for (cur = bottom(), limit = end(); cur < limit;
duke@435 820 cur += curSize) {
duke@435 821 curSize = block_size(cur);
duke@435 822 if (block_is_obj(cur)) {
duke@435 823 blk->do_object(oop(cur));
duke@435 824 }
duke@435 825 }
duke@435 826 }
duke@435 827
jmasa@952 828 // Apply the given closure to each live object in the space
jmasa@952 829 // The usage of CompactibleFreeListSpace
jmasa@952 830 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 831 // objects in the space with references to objects that are no longer
jmasa@952 832 // valid. For example, an object may reference another object
jmasa@952 833 // that has already been sweep up (collected). This method uses
jmasa@952 834 // obj_is_alive() to determine whether it is safe to apply the closure to
jmasa@952 835 // an object. See obj_is_alive() for details on how liveness of an
jmasa@952 836 // object is decided.
jmasa@952 837
jmasa@952 838 void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 839 assert_lock_strong(freelistLock());
jmasa@952 840 NOT_PRODUCT(verify_objects_initialized());
jmasa@952 841 HeapWord *cur, *limit;
jmasa@952 842 size_t curSize;
jmasa@952 843 for (cur = bottom(), limit = end(); cur < limit;
jmasa@952 844 cur += curSize) {
jmasa@952 845 curSize = block_size(cur);
jmasa@952 846 if (block_is_obj(cur) && obj_is_alive(cur)) {
jmasa@952 847 blk->do_object(oop(cur));
jmasa@952 848 }
jmasa@952 849 }
jmasa@952 850 }
jmasa@952 851
duke@435 852 void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
duke@435 853 UpwardsObjectClosure* cl) {
ysr@1580 854 assert_locked(freelistLock());
duke@435 855 NOT_PRODUCT(verify_objects_initialized());
mgerdin@6979 856 assert(!mr.is_empty(), "Should be non-empty");
mgerdin@6979 857 // We use MemRegion(bottom(), end()) rather than used_region() below
mgerdin@6979 858 // because the two are not necessarily equal for some kinds of
mgerdin@6979 859 // spaces, in particular, certain kinds of free list spaces.
mgerdin@6979 860 // We could use the more complicated but more precise:
mgerdin@6979 861 // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
mgerdin@6979 862 // but the slight imprecision seems acceptable in the assertion check.
mgerdin@6979 863 assert(MemRegion(bottom(), end()).contains(mr),
mgerdin@6979 864 "Should be within used space");
mgerdin@6979 865 HeapWord* prev = cl->previous(); // max address from last time
mgerdin@6979 866 if (prev >= mr.end()) { // nothing to do
mgerdin@6979 867 return;
mgerdin@6979 868 }
mgerdin@6979 869 // This assert will not work when we go from cms space to perm
mgerdin@6979 870 // space, and use same closure. Easy fix deferred for later. XXX YSR
mgerdin@6979 871 // assert(prev == NULL || contains(prev), "Should be within space");
mgerdin@6979 872
mgerdin@6979 873 bool last_was_obj_array = false;
mgerdin@6979 874 HeapWord *blk_start_addr, *region_start_addr;
mgerdin@6979 875 if (prev > mr.start()) {
mgerdin@6979 876 region_start_addr = prev;
mgerdin@6979 877 blk_start_addr = prev;
mgerdin@6979 878 // The previous invocation may have pushed "prev" beyond the
mgerdin@6979 879 // last allocated block yet there may be still be blocks
mgerdin@6979 880 // in this region due to a particular coalescing policy.
mgerdin@6979 881 // Relax the assertion so that the case where the unallocated
mgerdin@6979 882 // block is maintained and "prev" is beyond the unallocated
mgerdin@6979 883 // block does not cause the assertion to fire.
mgerdin@6979 884 assert((BlockOffsetArrayUseUnallocatedBlock &&
mgerdin@6979 885 (!is_in(prev))) ||
mgerdin@6979 886 (blk_start_addr == block_start(region_start_addr)), "invariant");
mgerdin@6979 887 } else {
mgerdin@6979 888 region_start_addr = mr.start();
mgerdin@6979 889 blk_start_addr = block_start(region_start_addr);
mgerdin@6979 890 }
mgerdin@6979 891 HeapWord* region_end_addr = mr.end();
mgerdin@6979 892 MemRegion derived_mr(region_start_addr, region_end_addr);
mgerdin@6979 893 while (blk_start_addr < region_end_addr) {
mgerdin@6979 894 const size_t size = block_size(blk_start_addr);
mgerdin@6979 895 if (block_is_obj(blk_start_addr)) {
mgerdin@6979 896 last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
mgerdin@6979 897 } else {
mgerdin@6979 898 last_was_obj_array = false;
mgerdin@6979 899 }
mgerdin@6979 900 blk_start_addr += size;
mgerdin@6979 901 }
mgerdin@6979 902 if (!last_was_obj_array) {
mgerdin@6979 903 assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
mgerdin@6979 904 "Should be within (closed) used space");
mgerdin@6979 905 assert(blk_start_addr > prev, "Invariant");
mgerdin@6979 906 cl->set_previous(blk_start_addr); // min address for next time
mgerdin@6979 907 }
duke@435 908 }
duke@435 909
duke@435 910 // Callers of this iterator beware: The closure application should
duke@435 911 // be robust in the face of uninitialized objects and should (always)
duke@435 912 // return a correct size so that the next addr + size below gives us a
duke@435 913 // valid block boundary. [See for instance,
duke@435 914 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 915 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 916 HeapWord*
duke@435 917 CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 918 assert_lock_strong(freelistLock());
duke@435 919 HeapWord *addr, *last;
duke@435 920 size_t size;
duke@435 921 for (addr = bottom(), last = end();
duke@435 922 addr < last; addr += size) {
duke@435 923 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 924 if (fc->is_free()) {
duke@435 925 // Since we hold the free list lock, which protects direct
duke@435 926 // allocation in this generation by mutators, a free object
duke@435 927 // will remain free throughout this iteration code.
duke@435 928 size = fc->size();
duke@435 929 } else {
duke@435 930 // Note that the object need not necessarily be initialized,
duke@435 931 // because (for instance) the free list lock does NOT protect
duke@435 932 // object initialization. The closure application below must
duke@435 933 // therefore be correct in the face of uninitialized objects.
duke@435 934 size = cl->do_object_careful(oop(addr));
duke@435 935 if (size == 0) {
duke@435 936 // An unparsable object found. Signal early termination.
duke@435 937 return addr;
duke@435 938 }
duke@435 939 }
duke@435 940 }
duke@435 941 return NULL;
duke@435 942 }
duke@435 943
duke@435 944 // Callers of this iterator beware: The closure application should
duke@435 945 // be robust in the face of uninitialized objects and should (always)
duke@435 946 // return a correct size so that the next addr + size below gives us a
duke@435 947 // valid block boundary. [See for instance,
duke@435 948 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 949 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 950 HeapWord*
duke@435 951 CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
duke@435 952 ObjectClosureCareful* cl) {
duke@435 953 assert_lock_strong(freelistLock());
duke@435 954 // Can't use used_region() below because it may not necessarily
duke@435 955 // be the same as [bottom(),end()); although we could
duke@435 956 // use [used_region().start(),round_to(used_region().end(),CardSize)),
duke@435 957 // that appears too cumbersome, so we just do the simpler check
duke@435 958 // in the assertion below.
duke@435 959 assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr),
duke@435 960 "mr should be non-empty and within used space");
duke@435 961 HeapWord *addr, *end;
duke@435 962 size_t size;
duke@435 963 for (addr = block_start_careful(mr.start()), end = mr.end();
duke@435 964 addr < end; addr += size) {
duke@435 965 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 966 if (fc->is_free()) {
duke@435 967 // Since we hold the free list lock, which protects direct
duke@435 968 // allocation in this generation by mutators, a free object
duke@435 969 // will remain free throughout this iteration code.
duke@435 970 size = fc->size();
duke@435 971 } else {
duke@435 972 // Note that the object need not necessarily be initialized,
duke@435 973 // because (for instance) the free list lock does NOT protect
duke@435 974 // object initialization. The closure application below must
duke@435 975 // therefore be correct in the face of uninitialized objects.
duke@435 976 size = cl->do_object_careful_m(oop(addr), mr);
duke@435 977 if (size == 0) {
duke@435 978 // An unparsable object found. Signal early termination.
duke@435 979 return addr;
duke@435 980 }
duke@435 981 }
duke@435 982 }
duke@435 983 return NULL;
duke@435 984 }
duke@435 985
duke@435 986
ysr@777 987 HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const {
duke@435 988 NOT_PRODUCT(verify_objects_initialized());
duke@435 989 return _bt.block_start(p);
duke@435 990 }
duke@435 991
duke@435 992 HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const {
duke@435 993 return _bt.block_start_careful(p);
duke@435 994 }
duke@435 995
duke@435 996 size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const {
duke@435 997 NOT_PRODUCT(verify_objects_initialized());
duke@435 998 // This must be volatile, or else there is a danger that the compiler
duke@435 999 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 1000 // the value read the first time in a register.
duke@435 1001 while (true) {
duke@435 1002 // We must do this until we get a consistent view of the object.
coleenp@622 1003 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1004 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1005 size_t res = fc->size();
goetz@6493 1006
goetz@6493 1007 // Bugfix for systems with weak memory model (PPC64/IA64). The
goetz@6493 1008 // block's free bit was set and we have read the size of the
goetz@6493 1009 // block. Acquire and check the free bit again. If the block is
goetz@6493 1010 // still free, the read size is correct.
goetz@6493 1011 OrderAccess::acquire();
goetz@6493 1012
coleenp@622 1013 // If the object is still a free chunk, return the size, else it
coleenp@622 1014 // has been allocated so try again.
coleenp@622 1015 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1016 assert(res != 0, "Block size should not be 0");
duke@435 1017 return res;
duke@435 1018 }
coleenp@622 1019 } else {
coleenp@622 1020 // must read from what 'p' points to in each loop.
coleenp@4037 1021 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
coleenp@622 1022 if (k != NULL) {
coleenp@4037 1023 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1024 oop o = (oop)p;
coleenp@622 1025 assert(o->is_oop(true /* ignore mark word */), "Should be an oop.");
goetz@6493 1026
goetz@6493 1027 // Bugfix for systems with weak memory model (PPC64/IA64).
goetz@6493 1028 // The object o may be an array. Acquire to make sure that the array
goetz@6493 1029 // size (third word) is consistent.
goetz@6493 1030 OrderAccess::acquire();
goetz@6493 1031
coleenp@4037 1032 size_t res = o->size_given_klass(k);
coleenp@622 1033 res = adjustObjectSize(res);
coleenp@622 1034 assert(res != 0, "Block size should not be 0");
coleenp@622 1035 return res;
coleenp@622 1036 }
duke@435 1037 }
duke@435 1038 }
duke@435 1039 }
duke@435 1040
coleenp@4037 1041 // TODO: Now that is_parsable is gone, we should combine these two functions.
duke@435 1042 // A variant of the above that uses the Printezis bits for
duke@435 1043 // unparsable but allocated objects. This avoids any possible
duke@435 1044 // stalls waiting for mutators to initialize objects, and is
duke@435 1045 // thus potentially faster than the variant above. However,
duke@435 1046 // this variant may return a zero size for a block that is
duke@435 1047 // under mutation and for which a consistent size cannot be
duke@435 1048 // inferred without stalling; see CMSCollector::block_size_if_printezis_bits().
duke@435 1049 size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p,
duke@435 1050 const CMSCollector* c)
duke@435 1051 const {
duke@435 1052 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1053 // This must be volatile, or else there is a danger that the compiler
duke@435 1054 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 1055 // the value read the first time in a register.
duke@435 1056 DEBUG_ONLY(uint loops = 0;)
duke@435 1057 while (true) {
duke@435 1058 // We must do this until we get a consistent view of the object.
coleenp@622 1059 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1060 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1061 size_t res = fc->size();
goetz@6493 1062
goetz@6493 1063 // Bugfix for systems with weak memory model (PPC64/IA64). The
goetz@6493 1064 // free bit of the block was set and we have read the size of
goetz@6493 1065 // the block. Acquire and check the free bit again. If the
goetz@6493 1066 // block is still free, the read size is correct.
goetz@6493 1067 OrderAccess::acquire();
goetz@6493 1068
coleenp@622 1069 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1070 assert(res != 0, "Block size should not be 0");
duke@435 1071 assert(loops == 0, "Should be 0");
duke@435 1072 return res;
duke@435 1073 }
duke@435 1074 } else {
coleenp@622 1075 // must read from what 'p' points to in each loop.
coleenp@4037 1076 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
ysr@2533 1077 // We trust the size of any object that has a non-NULL
ysr@2533 1078 // klass and (for those in the perm gen) is parsable
ysr@2533 1079 // -- irrespective of its conc_safe-ty.
coleenp@4037 1080 if (k != NULL) {
coleenp@4037 1081 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1082 oop o = (oop)p;
coleenp@622 1083 assert(o->is_oop(), "Should be an oop");
goetz@6493 1084
goetz@6493 1085 // Bugfix for systems with weak memory model (PPC64/IA64).
goetz@6493 1086 // The object o may be an array. Acquire to make sure that the array
goetz@6493 1087 // size (third word) is consistent.
goetz@6493 1088 OrderAccess::acquire();
goetz@6493 1089
coleenp@4037 1090 size_t res = o->size_given_klass(k);
coleenp@622 1091 res = adjustObjectSize(res);
coleenp@622 1092 assert(res != 0, "Block size should not be 0");
coleenp@622 1093 return res;
coleenp@622 1094 } else {
ysr@2533 1095 // May return 0 if P-bits not present.
coleenp@622 1096 return c->block_size_if_printezis_bits(p);
coleenp@622 1097 }
duke@435 1098 }
duke@435 1099 assert(loops == 0, "Can loop at most once");
duke@435 1100 DEBUG_ONLY(loops++;)
duke@435 1101 }
duke@435 1102 }
duke@435 1103
duke@435 1104 size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
duke@435 1105 NOT_PRODUCT(verify_objects_initialized());
duke@435 1106 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1107 FreeChunk* fc = (FreeChunk*)p;
jmasa@3732 1108 if (fc->is_free()) {
duke@435 1109 return fc->size();
duke@435 1110 } else {
duke@435 1111 // Ignore mark word because this may be a recently promoted
duke@435 1112 // object whose mark word is used to chain together grey
duke@435 1113 // objects (the last one would have a null value).
duke@435 1114 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1115 return adjustObjectSize(oop(p)->size());
duke@435 1116 }
duke@435 1117 }
duke@435 1118
duke@435 1119 // This implementation assumes that the property of "being an object" is
duke@435 1120 // stable. But being a free chunk may not be (because of parallel
duke@435 1121 // promotion.)
duke@435 1122 bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const {
duke@435 1123 FreeChunk* fc = (FreeChunk*)p;
duke@435 1124 assert(is_in_reserved(p), "Should be in space");
duke@435 1125 // When doing a mark-sweep-compact of the CMS generation, this
duke@435 1126 // assertion may fail because prepare_for_compaction() uses
duke@435 1127 // space that is garbage to maintain information on ranges of
duke@435 1128 // live objects so that these live ranges can be moved as a whole.
duke@435 1129 // Comment out this assertion until that problem can be solved
duke@435 1130 // (i.e., that the block start calculation may look at objects
duke@435 1131 // at address below "p" in finding the object that contains "p"
duke@435 1132 // and those objects (if garbage) may have been modified to hold
duke@435 1133 // live range information.
jmasa@2188 1134 // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p,
jmasa@2188 1135 // "Should be a block boundary");
coleenp@622 1136 if (FreeChunk::indicatesFreeChunk(p)) return false;
coleenp@4037 1137 Klass* k = oop(p)->klass_or_null();
duke@435 1138 if (k != NULL) {
duke@435 1139 // Ignore mark word because it may have been used to
duke@435 1140 // chain together promoted objects (the last one
duke@435 1141 // would have a null value).
duke@435 1142 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1143 return true;
duke@435 1144 } else {
duke@435 1145 return false; // Was not an object at the start of collection.
duke@435 1146 }
duke@435 1147 }
duke@435 1148
duke@435 1149 // Check if the object is alive. This fact is checked either by consulting
duke@435 1150 // the main marking bitmap in the sweeping phase or, if it's a permanent
duke@435 1151 // generation and we're not in the sweeping phase, by checking the
duke@435 1152 // perm_gen_verify_bit_map where we store the "deadness" information if
duke@435 1153 // we did not sweep the perm gen in the most recent previous GC cycle.
duke@435 1154 bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const {
ysr@2301 1155 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
ysr@2301 1156 "Else races are possible");
ysr@2293 1157 assert(block_is_obj(p), "The address should point to an object");
duke@435 1158
duke@435 1159 // If we're sweeping, we use object liveness information from the main bit map
duke@435 1160 // for both perm gen and old gen.
duke@435 1161 // We don't need to lock the bitmap (live_map or dead_map below), because
duke@435 1162 // EITHER we are in the middle of the sweeping phase, and the
duke@435 1163 // main marking bit map (live_map below) is locked,
duke@435 1164 // OR we're in other phases and perm_gen_verify_bit_map (dead_map below)
duke@435 1165 // is stable, because it's mutated only in the sweeping phase.
ysr@2293 1166 // NOTE: This method is also used by jmap where, if class unloading is
ysr@2293 1167 // off, the results can return "false" for legitimate perm objects,
ysr@2293 1168 // when we are not in the midst of a sweeping phase, which can result
ysr@2293 1169 // in jmap not reporting certain perm gen objects. This will be moot
ysr@2293 1170 // if/when the perm gen goes away in the future.
duke@435 1171 if (_collector->abstract_state() == CMSCollector::Sweeping) {
duke@435 1172 CMSBitMap* live_map = _collector->markBitMap();
ysr@2293 1173 return live_map->par_isMarked((HeapWord*) p);
duke@435 1174 }
duke@435 1175 return true;
duke@435 1176 }
duke@435 1177
duke@435 1178 bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
duke@435 1179 FreeChunk* fc = (FreeChunk*)p;
duke@435 1180 assert(is_in_reserved(p), "Should be in space");
duke@435 1181 assert(_bt.block_start(p) == p, "Should be a block boundary");
jmasa@3732 1182 if (!fc->is_free()) {
duke@435 1183 // Ignore mark word because it may have been used to
duke@435 1184 // chain together promoted objects (the last one
duke@435 1185 // would have a null value).
duke@435 1186 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1187 return true;
duke@435 1188 }
duke@435 1189 return false;
duke@435 1190 }
duke@435 1191
duke@435 1192 // "MT-safe but not guaranteed MT-precise" (TM); you may get an
duke@435 1193 // approximate answer if you don't hold the freelistlock when you call this.
duke@435 1194 size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const {
duke@435 1195 size_t size = 0;
duke@435 1196 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 1197 debug_only(
duke@435 1198 // We may be calling here without the lock in which case we
duke@435 1199 // won't do this modest sanity check.
duke@435 1200 if (freelistLock()->owned_by_self()) {
duke@435 1201 size_t total_list_size = 0;
duke@435 1202 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 1203 fc = fc->next()) {
duke@435 1204 total_list_size += i;
duke@435 1205 }
duke@435 1206 assert(total_list_size == i * _indexedFreeList[i].count(),
duke@435 1207 "Count in list is incorrect");
duke@435 1208 }
duke@435 1209 )
duke@435 1210 size += i * _indexedFreeList[i].count();
duke@435 1211 }
duke@435 1212 return size;
duke@435 1213 }
duke@435 1214
duke@435 1215 HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) {
duke@435 1216 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
duke@435 1217 return allocate(size);
duke@435 1218 }
duke@435 1219
duke@435 1220 HeapWord*
duke@435 1221 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) {
duke@435 1222 return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size);
duke@435 1223 }
duke@435 1224
duke@435 1225 HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
duke@435 1226 assert_lock_strong(freelistLock());
duke@435 1227 HeapWord* res = NULL;
duke@435 1228 assert(size == adjustObjectSize(size),
duke@435 1229 "use adjustObjectSize() before calling into allocate()");
duke@435 1230
duke@435 1231 if (_adaptive_freelists) {
duke@435 1232 res = allocate_adaptive_freelists(size);
duke@435 1233 } else { // non-adaptive free lists
duke@435 1234 res = allocate_non_adaptive_freelists(size);
duke@435 1235 }
duke@435 1236
duke@435 1237 if (res != NULL) {
duke@435 1238 // check that res does lie in this space!
duke@435 1239 assert(is_in_reserved(res), "Not in this space!");
duke@435 1240 assert(is_aligned((void*)res), "alignment check");
duke@435 1241
duke@435 1242 FreeChunk* fc = (FreeChunk*)res;
duke@435 1243 fc->markNotFree();
jmasa@3732 1244 assert(!fc->is_free(), "shouldn't be marked free");
coleenp@622 1245 assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
duke@435 1246 // Verify that the block offset table shows this to
duke@435 1247 // be a single block, but not one which is unallocated.
duke@435 1248 _bt.verify_single_block(res, size);
duke@435 1249 _bt.verify_not_unallocated(res, size);
duke@435 1250 // mangle a just allocated object with a distinct pattern.
duke@435 1251 debug_only(fc->mangleAllocated(size));
duke@435 1252 }
duke@435 1253
duke@435 1254 return res;
duke@435 1255 }
duke@435 1256
duke@435 1257 HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) {
duke@435 1258 HeapWord* res = NULL;
duke@435 1259 // try and use linear allocation for smaller blocks
duke@435 1260 if (size < _smallLinearAllocBlock._allocation_size_limit) {
duke@435 1261 // if successful, the following also adjusts block offset table
duke@435 1262 res = getChunkFromSmallLinearAllocBlock(size);
duke@435 1263 }
duke@435 1264 // Else triage to indexed lists for smaller sizes
duke@435 1265 if (res == NULL) {
duke@435 1266 if (size < SmallForDictionary) {
duke@435 1267 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1268 } else {
duke@435 1269 // else get it from the big dictionary; if even this doesn't
duke@435 1270 // work we are out of luck.
duke@435 1271 res = (HeapWord*)getChunkFromDictionaryExact(size);
duke@435 1272 }
duke@435 1273 }
duke@435 1274
duke@435 1275 return res;
duke@435 1276 }
duke@435 1277
duke@435 1278 HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) {
duke@435 1279 assert_lock_strong(freelistLock());
duke@435 1280 HeapWord* res = NULL;
duke@435 1281 assert(size == adjustObjectSize(size),
duke@435 1282 "use adjustObjectSize() before calling into allocate()");
duke@435 1283
duke@435 1284 // Strategy
duke@435 1285 // if small
duke@435 1286 // exact size from small object indexed list if small
duke@435 1287 // small or large linear allocation block (linAB) as appropriate
duke@435 1288 // take from lists of greater sized chunks
duke@435 1289 // else
duke@435 1290 // dictionary
duke@435 1291 // small or large linear allocation block if it has the space
duke@435 1292 // Try allocating exact size from indexTable first
duke@435 1293 if (size < IndexSetSize) {
duke@435 1294 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1295 if(res != NULL) {
duke@435 1296 assert(res != (HeapWord*)_indexedFreeList[size].head(),
duke@435 1297 "Not removed from free list");
duke@435 1298 // no block offset table adjustment is necessary on blocks in
duke@435 1299 // the indexed lists.
duke@435 1300
duke@435 1301 // Try allocating from the small LinAB
duke@435 1302 } else if (size < _smallLinearAllocBlock._allocation_size_limit &&
duke@435 1303 (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) {
duke@435 1304 // if successful, the above also adjusts block offset table
duke@435 1305 // Note that this call will refill the LinAB to
duke@435 1306 // satisfy the request. This is different that
duke@435 1307 // evm.
duke@435 1308 // Don't record chunk off a LinAB? smallSplitBirth(size);
duke@435 1309 } else {
duke@435 1310 // Raid the exact free lists larger than size, even if they are not
duke@435 1311 // overpopulated.
duke@435 1312 res = (HeapWord*) getChunkFromGreater(size);
duke@435 1313 }
duke@435 1314 } else {
duke@435 1315 // Big objects get allocated directly from the dictionary.
duke@435 1316 res = (HeapWord*) getChunkFromDictionaryExact(size);
duke@435 1317 if (res == NULL) {
duke@435 1318 // Try hard not to fail since an allocation failure will likely
duke@435 1319 // trigger a synchronous GC. Try to get the space from the
duke@435 1320 // allocation blocks.
duke@435 1321 res = getChunkFromSmallLinearAllocBlockRemainder(size);
duke@435 1322 }
duke@435 1323 }
duke@435 1324
duke@435 1325 return res;
duke@435 1326 }
duke@435 1327
duke@435 1328 // A worst-case estimate of the space required (in HeapWords) to expand the heap
duke@435 1329 // when promoting obj.
duke@435 1330 size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const {
duke@435 1331 // Depending on the object size, expansion may require refilling either a
duke@435 1332 // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize
duke@435 1333 // is added because the dictionary may over-allocate to avoid fragmentation.
duke@435 1334 size_t space = obj_size;
duke@435 1335 if (!_adaptive_freelists) {
duke@435 1336 space = MAX2(space, _smallLinearAllocBlock._refillSize);
duke@435 1337 }
duke@435 1338 space += _promoInfo.refillSize() + 2 * MinChunkSize;
duke@435 1339 return space;
duke@435 1340 }
duke@435 1341
duke@435 1342 FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
duke@435 1343 FreeChunk* ret;
duke@435 1344
duke@435 1345 assert(numWords >= MinChunkSize, "Size is less than minimum");
duke@435 1346 assert(linearAllocationWouldFail() || bestFitFirst(),
duke@435 1347 "Should not be here");
duke@435 1348
duke@435 1349 size_t i;
duke@435 1350 size_t currSize = numWords + MinChunkSize;
duke@435 1351 assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
duke@435 1352 for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 1353 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
duke@435 1354 if (fl->head()) {
duke@435 1355 ret = getFromListGreater(fl, numWords);
jmasa@3732 1356 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1357 return ret;
duke@435 1358 }
duke@435 1359 }
duke@435 1360
duke@435 1361 currSize = MAX2((size_t)SmallForDictionary,
duke@435 1362 (size_t)(numWords + MinChunkSize));
duke@435 1363
duke@435 1364 /* Try to get a chunk that satisfies request, while avoiding
duke@435 1365 fragmentation that can't be handled. */
duke@435 1366 {
jmasa@3732 1367 ret = dictionary()->get_chunk(currSize);
duke@435 1368 if (ret != NULL) {
duke@435 1369 assert(ret->size() - numWords >= MinChunkSize,
duke@435 1370 "Chunk is too small");
duke@435 1371 _bt.allocated((HeapWord*)ret, ret->size());
duke@435 1372 /* Carve returned chunk. */
duke@435 1373 (void) splitChunkAndReturnRemainder(ret, numWords);
duke@435 1374 /* Label this as no longer a free chunk. */
jmasa@3732 1375 assert(ret->is_free(), "This chunk should be free");
jmasa@3732 1376 ret->link_prev(NULL);
duke@435 1377 }
jmasa@3732 1378 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1379 return ret;
duke@435 1380 }
duke@435 1381 ShouldNotReachHere();
duke@435 1382 }
duke@435 1383
ysr@3220 1384 bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
duke@435 1385 assert(fc->size() < IndexSetSize, "Size of chunk is too large");
jmasa@3732 1386 return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
duke@435 1387 }
duke@435 1388
ysr@3220 1389 bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
ysr@3220 1390 assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) ||
ysr@3220 1391 (_smallLinearAllocBlock._word_size == fc->size()),
ysr@3220 1392 "Linear allocation block shows incorrect size");
ysr@3220 1393 return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) &&
ysr@3220 1394 (_smallLinearAllocBlock._word_size == fc->size()));
ysr@3220 1395 }
ysr@3220 1396
ysr@3220 1397 // Check if the purported free chunk is present either as a linear
ysr@3220 1398 // allocation block, the size-indexed table of (smaller) free blocks,
ysr@3220 1399 // or the larger free blocks kept in the binary tree dictionary.
jmasa@3732 1400 bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
ysr@3220 1401 if (verify_chunk_is_linear_alloc_block(fc)) {
ysr@3220 1402 return true;
ysr@3220 1403 } else if (fc->size() < IndexSetSize) {
ysr@3220 1404 return verifyChunkInIndexedFreeLists(fc);
ysr@3220 1405 } else {
jmasa@3732 1406 return dictionary()->verify_chunk_in_free_list(fc);
duke@435 1407 }
duke@435 1408 }
duke@435 1409
duke@435 1410 #ifndef PRODUCT
duke@435 1411 void CompactibleFreeListSpace::assert_locked() const {
duke@435 1412 CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock());
duke@435 1413 }
ysr@1580 1414
ysr@1580 1415 void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const {
ysr@1580 1416 CMSLockVerifier::assert_locked(lock);
ysr@1580 1417 }
duke@435 1418 #endif
duke@435 1419
duke@435 1420 FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
duke@435 1421 // In the parallel case, the main thread holds the free list lock
duke@435 1422 // on behalf the parallel threads.
duke@435 1423 FreeChunk* fc;
duke@435 1424 {
duke@435 1425 // If GC is parallel, this might be called by several threads.
duke@435 1426 // This should be rare enough that the locking overhead won't affect
duke@435 1427 // the sequential code.
duke@435 1428 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 1429 Mutex::_no_safepoint_check_flag);
duke@435 1430 fc = getChunkFromDictionary(size);
duke@435 1431 }
duke@435 1432 if (fc != NULL) {
duke@435 1433 fc->dontCoalesce();
jmasa@3732 1434 assert(fc->is_free(), "Should be free, but not coalescable");
duke@435 1435 // Verify that the block offset table shows this to
duke@435 1436 // be a single block, but not one which is unallocated.
duke@435 1437 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1438 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 1439 }
duke@435 1440 return fc;
duke@435 1441 }
duke@435 1442
coleenp@548 1443 oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) {
duke@435 1444 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1445 assert_locked();
duke@435 1446
duke@435 1447 // if we are tracking promotions, then first ensure space for
duke@435 1448 // promotion (including spooling space for saving header if necessary).
duke@435 1449 // then allocate and copy, then track promoted info if needed.
duke@435 1450 // When tracking (see PromotionInfo::track()), the mark word may
duke@435 1451 // be displaced and in this case restoration of the mark word
duke@435 1452 // occurs in the (oop_since_save_marks_)iterate phase.
duke@435 1453 if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) {
duke@435 1454 return NULL;
duke@435 1455 }
duke@435 1456 // Call the allocate(size_t, bool) form directly to avoid the
duke@435 1457 // additional call through the allocate(size_t) form. Having
duke@435 1458 // the compile inline the call is problematic because allocate(size_t)
duke@435 1459 // is a virtual method.
duke@435 1460 HeapWord* res = allocate(adjustObjectSize(obj_size));
duke@435 1461 if (res != NULL) {
duke@435 1462 Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size);
duke@435 1463 // if we should be tracking promotions, do so.
duke@435 1464 if (_promoInfo.tracking()) {
duke@435 1465 _promoInfo.track((PromotedObject*)res);
duke@435 1466 }
duke@435 1467 }
duke@435 1468 return oop(res);
duke@435 1469 }
duke@435 1470
duke@435 1471 HeapWord*
duke@435 1472 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) {
duke@435 1473 assert_locked();
duke@435 1474 assert(size >= MinChunkSize, "minimum chunk size");
duke@435 1475 assert(size < _smallLinearAllocBlock._allocation_size_limit,
duke@435 1476 "maximum from smallLinearAllocBlock");
duke@435 1477 return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size);
duke@435 1478 }
duke@435 1479
duke@435 1480 HeapWord*
duke@435 1481 CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
duke@435 1482 size_t size) {
duke@435 1483 assert_locked();
duke@435 1484 assert(size >= MinChunkSize, "too small");
duke@435 1485 HeapWord* res = NULL;
duke@435 1486 // Try to do linear allocation from blk, making sure that
duke@435 1487 if (blk->_word_size == 0) {
duke@435 1488 // We have probably been unable to fill this either in the prologue or
duke@435 1489 // when it was exhausted at the last linear allocation. Bail out until
duke@435 1490 // next time.
duke@435 1491 assert(blk->_ptr == NULL, "consistency check");
duke@435 1492 return NULL;
duke@435 1493 }
duke@435 1494 assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check");
duke@435 1495 res = getChunkFromLinearAllocBlockRemainder(blk, size);
duke@435 1496 if (res != NULL) return res;
duke@435 1497
duke@435 1498 // about to exhaust this linear allocation block
duke@435 1499 if (blk->_word_size == size) { // exactly satisfied
duke@435 1500 res = blk->_ptr;
duke@435 1501 _bt.allocated(res, blk->_word_size);
duke@435 1502 } else if (size + MinChunkSize <= blk->_refillSize) {
ysr@1580 1503 size_t sz = blk->_word_size;
duke@435 1504 // Update _unallocated_block if the size is such that chunk would be
duke@435 1505 // returned to the indexed free list. All other chunks in the indexed
duke@435 1506 // free lists are allocated from the dictionary so that _unallocated_block
duke@435 1507 // has already been adjusted for them. Do it here so that the cost
duke@435 1508 // for all chunks added back to the indexed free lists.
ysr@1580 1509 if (sz < SmallForDictionary) {
ysr@1580 1510 _bt.allocated(blk->_ptr, sz);
duke@435 1511 }
duke@435 1512 // Return the chunk that isn't big enough, and then refill below.
ysr@1580 1513 addChunkToFreeLists(blk->_ptr, sz);
jmasa@3732 1514 split_birth(sz);
duke@435 1515 // Don't keep statistics on adding back chunk from a LinAB.
duke@435 1516 } else {
duke@435 1517 // A refilled block would not satisfy the request.
duke@435 1518 return NULL;
duke@435 1519 }
duke@435 1520
duke@435 1521 blk->_ptr = NULL; blk->_word_size = 0;
duke@435 1522 refillLinearAllocBlock(blk);
duke@435 1523 assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
duke@435 1524 "block was replenished");
duke@435 1525 if (res != NULL) {
jmasa@3732 1526 split_birth(size);
duke@435 1527 repairLinearAllocBlock(blk);
duke@435 1528 } else if (blk->_ptr != NULL) {
duke@435 1529 res = blk->_ptr;
duke@435 1530 size_t blk_size = blk->_word_size;
duke@435 1531 blk->_word_size -= size;
duke@435 1532 blk->_ptr += size;
jmasa@3732 1533 split_birth(size);
duke@435 1534 repairLinearAllocBlock(blk);
duke@435 1535 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1536 // view of the BOT and free blocks.
duke@435 1537 // Above must occur before BOT is updated below.
ysr@2071 1538 OrderAccess::storestore();
duke@435 1539 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1540 }
duke@435 1541 return res;
duke@435 1542 }
duke@435 1543
duke@435 1544 HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
duke@435 1545 LinearAllocBlock* blk,
duke@435 1546 size_t size) {
duke@435 1547 assert_locked();
duke@435 1548 assert(size >= MinChunkSize, "too small");
duke@435 1549
duke@435 1550 HeapWord* res = NULL;
duke@435 1551 // This is the common case. Keep it simple.
duke@435 1552 if (blk->_word_size >= size + MinChunkSize) {
duke@435 1553 assert(blk->_ptr != NULL, "consistency check");
duke@435 1554 res = blk->_ptr;
duke@435 1555 // Note that the BOT is up-to-date for the linAB before allocation. It
duke@435 1556 // indicates the start of the linAB. The split_block() updates the
duke@435 1557 // BOT for the linAB after the allocation (indicates the start of the
duke@435 1558 // next chunk to be allocated).
duke@435 1559 size_t blk_size = blk->_word_size;
duke@435 1560 blk->_word_size -= size;
duke@435 1561 blk->_ptr += size;
jmasa@3732 1562 split_birth(size);
duke@435 1563 repairLinearAllocBlock(blk);
duke@435 1564 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1565 // view of the BOT and free blocks.
duke@435 1566 // Above must occur before BOT is updated below.
ysr@2071 1567 OrderAccess::storestore();
duke@435 1568 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1569 _bt.allocated(res, size);
duke@435 1570 }
duke@435 1571 return res;
duke@435 1572 }
duke@435 1573
duke@435 1574 FreeChunk*
duke@435 1575 CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
duke@435 1576 assert_locked();
duke@435 1577 assert(size < SmallForDictionary, "just checking");
duke@435 1578 FreeChunk* res;
jmasa@3732 1579 res = _indexedFreeList[size].get_chunk_at_head();
duke@435 1580 if (res == NULL) {
duke@435 1581 res = getChunkFromIndexedFreeListHelper(size);
duke@435 1582 }
duke@435 1583 _bt.verify_not_unallocated((HeapWord*) res, size);
ysr@1580 1584 assert(res == NULL || res->size() == size, "Incorrect block size");
duke@435 1585 return res;
duke@435 1586 }
duke@435 1587
duke@435 1588 FreeChunk*
ysr@1580 1589 CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
ysr@1580 1590 bool replenish) {
duke@435 1591 assert_locked();
duke@435 1592 FreeChunk* fc = NULL;
duke@435 1593 if (size < SmallForDictionary) {
duke@435 1594 assert(_indexedFreeList[size].head() == NULL ||
duke@435 1595 _indexedFreeList[size].surplus() <= 0,
duke@435 1596 "List for this size should be empty or under populated");
duke@435 1597 // Try best fit in exact lists before replenishing the list
duke@435 1598 if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) {
duke@435 1599 // Replenish list.
duke@435 1600 //
duke@435 1601 // Things tried that failed.
duke@435 1602 // Tried allocating out of the two LinAB's first before
duke@435 1603 // replenishing lists.
duke@435 1604 // Tried small linAB of size 256 (size in indexed list)
duke@435 1605 // and replenishing indexed lists from the small linAB.
duke@435 1606 //
duke@435 1607 FreeChunk* newFc = NULL;
ysr@1580 1608 const size_t replenish_size = CMSIndexedFreeListReplenish * size;
duke@435 1609 if (replenish_size < SmallForDictionary) {
duke@435 1610 // Do not replenish from an underpopulated size.
duke@435 1611 if (_indexedFreeList[replenish_size].surplus() > 0 &&
duke@435 1612 _indexedFreeList[replenish_size].head() != NULL) {
jmasa@3732 1613 newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
ysr@1580 1614 } else if (bestFitFirst()) {
duke@435 1615 newFc = bestFitSmall(replenish_size);
duke@435 1616 }
duke@435 1617 }
ysr@1580 1618 if (newFc == NULL && replenish_size > size) {
ysr@1580 1619 assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant");
ysr@1580 1620 newFc = getChunkFromIndexedFreeListHelper(replenish_size, false);
ysr@1580 1621 }
ysr@1580 1622 // Note: The stats update re split-death of block obtained above
ysr@1580 1623 // will be recorded below precisely when we know we are going to
ysr@1580 1624 // be actually splitting it into more than one pieces below.
duke@435 1625 if (newFc != NULL) {
ysr@1580 1626 if (replenish || CMSReplenishIntermediate) {
ysr@1580 1627 // Replenish this list and return one block to caller.
ysr@1580 1628 size_t i;
ysr@1580 1629 FreeChunk *curFc, *nextFc;
ysr@1580 1630 size_t num_blk = newFc->size() / size;
ysr@1580 1631 assert(num_blk >= 1, "Smaller than requested?");
ysr@1580 1632 assert(newFc->size() % size == 0, "Should be integral multiple of request");
ysr@1580 1633 if (num_blk > 1) {
ysr@1580 1634 // we are sure we will be splitting the block just obtained
ysr@1580 1635 // into multiple pieces; record the split-death of the original
ysr@1580 1636 splitDeath(replenish_size);
ysr@1580 1637 }
ysr@1580 1638 // carve up and link blocks 0, ..., num_blk - 2
ysr@1580 1639 // The last chunk is not added to the lists but is returned as the
ysr@1580 1640 // free chunk.
ysr@1580 1641 for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size),
ysr@1580 1642 i = 0;
ysr@1580 1643 i < (num_blk - 1);
ysr@1580 1644 curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
ysr@1580 1645 i++) {
jmasa@3732 1646 curFc->set_size(size);
ysr@1580 1647 // Don't record this as a return in order to try and
ysr@1580 1648 // determine the "returns" from a GC.
ysr@1580 1649 _bt.verify_not_unallocated((HeapWord*) fc, size);
jmasa@3732 1650 _indexedFreeList[size].return_chunk_at_tail(curFc, false);
ysr@1580 1651 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1652 split_birth(size);
ysr@1580 1653 // Don't record the initial population of the indexed list
ysr@1580 1654 // as a split birth.
ysr@1580 1655 }
ysr@1580 1656
ysr@1580 1657 // check that the arithmetic was OK above
ysr@1580 1658 assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
ysr@1580 1659 "inconsistency in carving newFc");
jmasa@3732 1660 curFc->set_size(size);
duke@435 1661 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1662 split_birth(size);
ysr@1580 1663 fc = curFc;
ysr@1580 1664 } else {
ysr@1580 1665 // Return entire block to caller
ysr@1580 1666 fc = newFc;
duke@435 1667 }
duke@435 1668 }
duke@435 1669 }
duke@435 1670 } else {
duke@435 1671 // Get a free chunk from the free chunk dictionary to be returned to
duke@435 1672 // replenish the indexed free list.
duke@435 1673 fc = getChunkFromDictionaryExact(size);
duke@435 1674 }
jmasa@3732 1675 // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
duke@435 1676 return fc;
duke@435 1677 }
duke@435 1678
duke@435 1679 FreeChunk*
duke@435 1680 CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
duke@435 1681 assert_locked();
jmasa@4488 1682 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1683 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1684 if (fc == NULL) {
duke@435 1685 return NULL;
duke@435 1686 }
duke@435 1687 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1688 if (fc->size() >= size + MinChunkSize) {
duke@435 1689 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1690 }
duke@435 1691 assert(fc->size() >= size, "chunk too small");
duke@435 1692 assert(fc->size() < size + MinChunkSize, "chunk too big");
duke@435 1693 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1694 return fc;
duke@435 1695 }
duke@435 1696
duke@435 1697 FreeChunk*
duke@435 1698 CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
duke@435 1699 assert_locked();
jmasa@4488 1700 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1701 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1702 if (fc == NULL) {
duke@435 1703 return fc;
duke@435 1704 }
duke@435 1705 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1706 if (fc->size() == size) {
duke@435 1707 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1708 return fc;
duke@435 1709 }
jmasa@3732 1710 assert(fc->size() > size, "get_chunk() guarantee");
duke@435 1711 if (fc->size() < size + MinChunkSize) {
duke@435 1712 // Return the chunk to the dictionary and go get a bigger one.
duke@435 1713 returnChunkToDictionary(fc);
jmasa@4488 1714 fc = _dictionary->get_chunk(size + MinChunkSize,
jmasa@4488 1715 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1716 if (fc == NULL) {
duke@435 1717 return NULL;
duke@435 1718 }
duke@435 1719 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1720 }
duke@435 1721 assert(fc->size() >= size + MinChunkSize, "tautology");
duke@435 1722 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1723 assert(fc->size() == size, "chunk is wrong size");
duke@435 1724 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1725 return fc;
duke@435 1726 }
duke@435 1727
duke@435 1728 void
duke@435 1729 CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
duke@435 1730 assert_locked();
duke@435 1731
duke@435 1732 size_t size = chunk->size();
duke@435 1733 _bt.verify_single_block((HeapWord*)chunk, size);
duke@435 1734 // adjust _unallocated_block downward, as necessary
duke@435 1735 _bt.freed((HeapWord*)chunk, size);
jmasa@3732 1736 _dictionary->return_chunk(chunk);
ysr@1580 1737 #ifndef PRODUCT
ysr@1580 1738 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
goetz@6337 1739 TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >* tc = TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::as_TreeChunk(chunk);
goetz@6337 1740 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* tl = tc->list();
jmasa@4196 1741 tl->verify_stats();
ysr@1580 1742 }
ysr@1580 1743 #endif // PRODUCT
duke@435 1744 }
duke@435 1745
duke@435 1746 void
duke@435 1747 CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
duke@435 1748 assert_locked();
duke@435 1749 size_t size = fc->size();
duke@435 1750 _bt.verify_single_block((HeapWord*) fc, size);
duke@435 1751 _bt.verify_not_unallocated((HeapWord*) fc, size);
duke@435 1752 if (_adaptive_freelists) {
jmasa@3732 1753 _indexedFreeList[size].return_chunk_at_tail(fc);
duke@435 1754 } else {
jmasa@3732 1755 _indexedFreeList[size].return_chunk_at_head(fc);
duke@435 1756 }
ysr@1580 1757 #ifndef PRODUCT
ysr@1580 1758 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
ysr@1580 1759 _indexedFreeList[size].verify_stats();
ysr@1580 1760 }
ysr@1580 1761 #endif // PRODUCT
duke@435 1762 }
duke@435 1763
duke@435 1764 // Add chunk to end of last block -- if it's the largest
duke@435 1765 // block -- and update BOT and census data. We would
duke@435 1766 // of course have preferred to coalesce it with the
duke@435 1767 // last block, but it's currently less expensive to find the
duke@435 1768 // largest block than it is to find the last.
duke@435 1769 void
duke@435 1770 CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
duke@435 1771 HeapWord* chunk, size_t size) {
duke@435 1772 // check that the chunk does lie in this space!
duke@435 1773 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1774 // One of the parallel gc task threads may be here
duke@435 1775 // whilst others are allocating.
duke@435 1776 Mutex* lock = NULL;
duke@435 1777 if (ParallelGCThreads != 0) {
duke@435 1778 lock = &_parDictionaryAllocLock;
duke@435 1779 }
duke@435 1780 FreeChunk* ec;
duke@435 1781 {
duke@435 1782 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
jmasa@3732 1783 ec = dictionary()->find_largest_dict(); // get largest block
jmasa@4196 1784 if (ec != NULL && ec->end() == (uintptr_t*) chunk) {
duke@435 1785 // It's a coterminal block - we can coalesce.
duke@435 1786 size_t old_size = ec->size();
duke@435 1787 coalDeath(old_size);
duke@435 1788 removeChunkFromDictionary(ec);
duke@435 1789 size += old_size;
duke@435 1790 } else {
duke@435 1791 ec = (FreeChunk*)chunk;
duke@435 1792 }
duke@435 1793 }
jmasa@3732 1794 ec->set_size(size);
duke@435 1795 debug_only(ec->mangleFreed(size));
brutisso@5166 1796 if (size < SmallForDictionary && ParallelGCThreads != 0) {
duke@435 1797 lock = _indexedFreeListParLocks[size];
duke@435 1798 }
duke@435 1799 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
duke@435 1800 addChunkAndRepairOffsetTable((HeapWord*)ec, size, true);
duke@435 1801 // record the birth under the lock since the recording involves
duke@435 1802 // manipulation of the list on which the chunk lives and
duke@435 1803 // if the chunk is allocated and is the last on the list,
duke@435 1804 // the list can go away.
duke@435 1805 coalBirth(size);
duke@435 1806 }
duke@435 1807
duke@435 1808 void
duke@435 1809 CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
duke@435 1810 size_t size) {
duke@435 1811 // check that the chunk does lie in this space!
duke@435 1812 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1813 assert_locked();
duke@435 1814 _bt.verify_single_block(chunk, size);
duke@435 1815
duke@435 1816 FreeChunk* fc = (FreeChunk*) chunk;
jmasa@3732 1817 fc->set_size(size);
duke@435 1818 debug_only(fc->mangleFreed(size));
duke@435 1819 if (size < SmallForDictionary) {
duke@435 1820 returnChunkToFreeList(fc);
duke@435 1821 } else {
duke@435 1822 returnChunkToDictionary(fc);
duke@435 1823 }
duke@435 1824 }
duke@435 1825
duke@435 1826 void
duke@435 1827 CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk,
duke@435 1828 size_t size, bool coalesced) {
duke@435 1829 assert_locked();
duke@435 1830 assert(chunk != NULL, "null chunk");
duke@435 1831 if (coalesced) {
duke@435 1832 // repair BOT
duke@435 1833 _bt.single_block(chunk, size);
duke@435 1834 }
duke@435 1835 addChunkToFreeLists(chunk, size);
duke@435 1836 }
duke@435 1837
duke@435 1838 // We _must_ find the purported chunk on our free lists;
duke@435 1839 // we assert if we don't.
duke@435 1840 void
duke@435 1841 CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) {
duke@435 1842 size_t size = fc->size();
duke@435 1843 assert_locked();
duke@435 1844 debug_only(verifyFreeLists());
duke@435 1845 if (size < SmallForDictionary) {
duke@435 1846 removeChunkFromIndexedFreeList(fc);
duke@435 1847 } else {
duke@435 1848 removeChunkFromDictionary(fc);
duke@435 1849 }
duke@435 1850 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1851 debug_only(verifyFreeLists());
duke@435 1852 }
duke@435 1853
duke@435 1854 void
duke@435 1855 CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
duke@435 1856 size_t size = fc->size();
duke@435 1857 assert_locked();
duke@435 1858 assert(fc != NULL, "null chunk");
duke@435 1859 _bt.verify_single_block((HeapWord*)fc, size);
jmasa@3732 1860 _dictionary->remove_chunk(fc);
duke@435 1861 // adjust _unallocated_block upward, as necessary
duke@435 1862 _bt.allocated((HeapWord*)fc, size);
duke@435 1863 }
duke@435 1864
duke@435 1865 void
duke@435 1866 CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
duke@435 1867 assert_locked();
duke@435 1868 size_t size = fc->size();
duke@435 1869 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1870 NOT_PRODUCT(
duke@435 1871 if (FLSVerifyIndexTable) {
duke@435 1872 verifyIndexedFreeList(size);
duke@435 1873 }
duke@435 1874 )
jmasa@3732 1875 _indexedFreeList[size].remove_chunk(fc);
duke@435 1876 NOT_PRODUCT(
duke@435 1877 if (FLSVerifyIndexTable) {
duke@435 1878 verifyIndexedFreeList(size);
duke@435 1879 }
duke@435 1880 )
duke@435 1881 }
duke@435 1882
duke@435 1883 FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
duke@435 1884 /* A hint is the next larger size that has a surplus.
duke@435 1885 Start search at a size large enough to guarantee that
duke@435 1886 the excess is >= MIN_CHUNK. */
duke@435 1887 size_t start = align_object_size(numWords + MinChunkSize);
duke@435 1888 if (start < IndexSetSize) {
jmasa@4196 1889 AdaptiveFreeList<FreeChunk>* it = _indexedFreeList;
duke@435 1890 size_t hint = _indexedFreeList[start].hint();
duke@435 1891 while (hint < IndexSetSize) {
duke@435 1892 assert(hint % MinObjAlignment == 0, "hint should be aligned");
jmasa@4196 1893 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[hint];
duke@435 1894 if (fl->surplus() > 0 && fl->head() != NULL) {
duke@435 1895 // Found a list with surplus, reset original hint
duke@435 1896 // and split out a free chunk which is returned.
duke@435 1897 _indexedFreeList[start].set_hint(hint);
duke@435 1898 FreeChunk* res = getFromListGreater(fl, numWords);
jmasa@3732 1899 assert(res == NULL || res->is_free(),
duke@435 1900 "Should be returning a free chunk");
duke@435 1901 return res;
duke@435 1902 }
duke@435 1903 hint = fl->hint(); /* keep looking */
duke@435 1904 }
duke@435 1905 /* None found. */
duke@435 1906 it[start].set_hint(IndexSetSize);
duke@435 1907 }
duke@435 1908 return NULL;
duke@435 1909 }
duke@435 1910
duke@435 1911 /* Requires fl->size >= numWords + MinChunkSize */
jmasa@4196 1912 FreeChunk* CompactibleFreeListSpace::getFromListGreater(AdaptiveFreeList<FreeChunk>* fl,
duke@435 1913 size_t numWords) {
duke@435 1914 FreeChunk *curr = fl->head();
duke@435 1915 size_t oldNumWords = curr->size();
duke@435 1916 assert(numWords >= MinChunkSize, "Word size is too small");
duke@435 1917 assert(curr != NULL, "List is empty");
duke@435 1918 assert(oldNumWords >= numWords + MinChunkSize,
duke@435 1919 "Size of chunks in the list is too small");
duke@435 1920
jmasa@3732 1921 fl->remove_chunk(curr);
duke@435 1922 // recorded indirectly by splitChunkAndReturnRemainder -
duke@435 1923 // smallSplit(oldNumWords, numWords);
duke@435 1924 FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
duke@435 1925 // Does anything have to be done for the remainder in terms of
duke@435 1926 // fixing the card table?
jmasa@3732 1927 assert(new_chunk == NULL || new_chunk->is_free(),
duke@435 1928 "Should be returning a free chunk");
duke@435 1929 return new_chunk;
duke@435 1930 }
duke@435 1931
duke@435 1932 FreeChunk*
duke@435 1933 CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
duke@435 1934 size_t new_size) {
duke@435 1935 assert_locked();
duke@435 1936 size_t size = chunk->size();
duke@435 1937 assert(size > new_size, "Split from a smaller block?");
duke@435 1938 assert(is_aligned(chunk), "alignment problem");
duke@435 1939 assert(size == adjustObjectSize(size), "alignment problem");
duke@435 1940 size_t rem_size = size - new_size;
duke@435 1941 assert(rem_size == adjustObjectSize(rem_size), "alignment problem");
duke@435 1942 assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
duke@435 1943 FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
duke@435 1944 assert(is_aligned(ffc), "alignment problem");
jmasa@3732 1945 ffc->set_size(rem_size);
jmasa@3732 1946 ffc->link_next(NULL);
jmasa@3732 1947 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
duke@435 1948 // Above must occur before BOT is updated below.
duke@435 1949 // adjust block offset table
ysr@2071 1950 OrderAccess::storestore();
jmasa@3732 1951 assert(chunk->is_free() && ffc->is_free(), "Error");
duke@435 1952 _bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
duke@435 1953 if (rem_size < SmallForDictionary) {
duke@435 1954 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
duke@435 1955 if (is_par) _indexedFreeListParLocks[rem_size]->lock();
jmasa@3294 1956 assert(!is_par ||
jmasa@3294 1957 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 1958 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 1959 returnChunkToFreeList(ffc);
duke@435 1960 split(size, rem_size);
duke@435 1961 if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
duke@435 1962 } else {
duke@435 1963 returnChunkToDictionary(ffc);
duke@435 1964 split(size ,rem_size);
duke@435 1965 }
jmasa@3732 1966 chunk->set_size(new_size);
duke@435 1967 return chunk;
duke@435 1968 }
duke@435 1969
duke@435 1970 void
duke@435 1971 CompactibleFreeListSpace::sweep_completed() {
duke@435 1972 // Now that space is probably plentiful, refill linear
duke@435 1973 // allocation blocks as needed.
duke@435 1974 refillLinearAllocBlocksIfNeeded();
duke@435 1975 }
duke@435 1976
duke@435 1977 void
duke@435 1978 CompactibleFreeListSpace::gc_prologue() {
duke@435 1979 assert_locked();
duke@435 1980 if (PrintFLSStatistics != 0) {
duke@435 1981 gclog_or_tty->print("Before GC:\n");
duke@435 1982 reportFreeListStatistics();
duke@435 1983 }
duke@435 1984 refillLinearAllocBlocksIfNeeded();
duke@435 1985 }
duke@435 1986
duke@435 1987 void
duke@435 1988 CompactibleFreeListSpace::gc_epilogue() {
duke@435 1989 assert_locked();
duke@435 1990 if (PrintGCDetails && Verbose && !_adaptive_freelists) {
duke@435 1991 if (_smallLinearAllocBlock._word_size == 0)
duke@435 1992 warning("CompactibleFreeListSpace(epilogue):: Linear allocation failure");
duke@435 1993 }
duke@435 1994 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1995 _promoInfo.stopTrackingPromotions();
duke@435 1996 repairLinearAllocationBlocks();
duke@435 1997 // Print Space's stats
duke@435 1998 if (PrintFLSStatistics != 0) {
duke@435 1999 gclog_or_tty->print("After GC:\n");
duke@435 2000 reportFreeListStatistics();
duke@435 2001 }
duke@435 2002 }
duke@435 2003
duke@435 2004 // Iteration support, mostly delegated from a CMS generation
duke@435 2005
duke@435 2006 void CompactibleFreeListSpace::save_marks() {
ysr@2825 2007 assert(Thread::current()->is_VM_thread(),
ysr@2825 2008 "Global variable should only be set when single-threaded");
ysr@2825 2009 // Mark the "end" of the used space at the time of this call;
duke@435 2010 // note, however, that promoted objects from this point
duke@435 2011 // on are tracked in the _promoInfo below.
ysr@2071 2012 set_saved_mark_word(unallocated_block());
ysr@2825 2013 #ifdef ASSERT
ysr@2825 2014 // Check the sanity of save_marks() etc.
ysr@2825 2015 MemRegion ur = used_region();
ysr@2825 2016 MemRegion urasm = used_region_at_save_marks();
ysr@2825 2017 assert(ur.contains(urasm),
ysr@2825 2018 err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
ysr@2825 2019 " should contain [" PTR_FORMAT "," PTR_FORMAT ")",
drchase@6680 2020 p2i(ur.start()), p2i(ur.end()), p2i(urasm.start()), p2i(urasm.end())));
ysr@2825 2021 #endif
duke@435 2022 // inform allocator that promotions should be tracked.
duke@435 2023 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 2024 _promoInfo.startTrackingPromotions();
duke@435 2025 }
duke@435 2026
duke@435 2027 bool CompactibleFreeListSpace::no_allocs_since_save_marks() {
duke@435 2028 assert(_promoInfo.tracking(), "No preceding save_marks?");
ysr@2132 2029 assert(SharedHeap::heap()->n_par_threads() == 0,
ysr@2132 2030 "Shouldn't be called if using parallel gc.");
duke@435 2031 return _promoInfo.noPromotions();
duke@435 2032 }
duke@435 2033
duke@435 2034 #define CFLS_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 2035 \
duke@435 2036 void CompactibleFreeListSpace:: \
duke@435 2037 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 2038 assert(SharedHeap::heap()->n_par_threads() == 0, \
duke@435 2039 "Shouldn't be called (yet) during parallel part of gc."); \
duke@435 2040 _promoInfo.promoted_oops_iterate##nv_suffix(blk); \
duke@435 2041 /* \
duke@435 2042 * This also restores any displaced headers and removes the elements from \
duke@435 2043 * the iteration set as they are processed, so that we have a clean slate \
duke@435 2044 * at the end of the iteration. Note, thus, that if new objects are \
duke@435 2045 * promoted as a result of the iteration they are iterated over as well. \
duke@435 2046 */ \
duke@435 2047 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency"); \
duke@435 2048 }
duke@435 2049
duke@435 2050 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 2051
ysr@447 2052 bool CompactibleFreeListSpace::linearAllocationWouldFail() const {
duke@435 2053 return _smallLinearAllocBlock._word_size == 0;
duke@435 2054 }
duke@435 2055
duke@435 2056 void CompactibleFreeListSpace::repairLinearAllocationBlocks() {
duke@435 2057 // Fix up linear allocation blocks to look like free blocks
duke@435 2058 repairLinearAllocBlock(&_smallLinearAllocBlock);
duke@435 2059 }
duke@435 2060
duke@435 2061 void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2062 assert_locked();
duke@435 2063 if (blk->_ptr != NULL) {
duke@435 2064 assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
duke@435 2065 "Minimum block size requirement");
duke@435 2066 FreeChunk* fc = (FreeChunk*)(blk->_ptr);
jmasa@3732 2067 fc->set_size(blk->_word_size);
jmasa@3732 2068 fc->link_prev(NULL); // mark as free
duke@435 2069 fc->dontCoalesce();
jmasa@3732 2070 assert(fc->is_free(), "just marked it free");
duke@435 2071 assert(fc->cantCoalesce(), "just marked it uncoalescable");
duke@435 2072 }
duke@435 2073 }
duke@435 2074
duke@435 2075 void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() {
duke@435 2076 assert_locked();
duke@435 2077 if (_smallLinearAllocBlock._ptr == NULL) {
duke@435 2078 assert(_smallLinearAllocBlock._word_size == 0,
duke@435 2079 "Size of linAB should be zero if the ptr is NULL");
duke@435 2080 // Reset the linAB refill and allocation size limit.
duke@435 2081 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc);
duke@435 2082 }
duke@435 2083 refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock);
duke@435 2084 }
duke@435 2085
duke@435 2086 void
duke@435 2087 CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) {
duke@435 2088 assert_locked();
duke@435 2089 assert((blk->_ptr == NULL && blk->_word_size == 0) ||
duke@435 2090 (blk->_ptr != NULL && blk->_word_size >= MinChunkSize),
duke@435 2091 "blk invariant");
duke@435 2092 if (blk->_ptr == NULL) {
duke@435 2093 refillLinearAllocBlock(blk);
duke@435 2094 }
duke@435 2095 if (PrintMiscellaneous && Verbose) {
duke@435 2096 if (blk->_word_size == 0) {
duke@435 2097 warning("CompactibleFreeListSpace(prologue):: Linear allocation failure");
duke@435 2098 }
duke@435 2099 }
duke@435 2100 }
duke@435 2101
duke@435 2102 void
duke@435 2103 CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2104 assert_locked();
duke@435 2105 assert(blk->_word_size == 0 && blk->_ptr == NULL,
duke@435 2106 "linear allocation block should be empty");
duke@435 2107 FreeChunk* fc;
duke@435 2108 if (blk->_refillSize < SmallForDictionary &&
duke@435 2109 (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) {
duke@435 2110 // A linAB's strategy might be to use small sizes to reduce
duke@435 2111 // fragmentation but still get the benefits of allocation from a
duke@435 2112 // linAB.
duke@435 2113 } else {
duke@435 2114 fc = getChunkFromDictionary(blk->_refillSize);
duke@435 2115 }
duke@435 2116 if (fc != NULL) {
duke@435 2117 blk->_ptr = (HeapWord*)fc;
duke@435 2118 blk->_word_size = fc->size();
duke@435 2119 fc->dontCoalesce(); // to prevent sweeper from sweeping us up
duke@435 2120 }
duke@435 2121 }
duke@435 2122
ysr@447 2123 // Support for concurrent collection policy decisions.
ysr@447 2124 bool CompactibleFreeListSpace::should_concurrent_collect() const {
ysr@447 2125 // In the future we might want to add in frgamentation stats --
ysr@447 2126 // including erosion of the "mountain" into this decision as well.
ysr@447 2127 return !adaptive_freelists() && linearAllocationWouldFail();
ysr@447 2128 }
ysr@447 2129
duke@435 2130 // Support for compaction
duke@435 2131
duke@435 2132 void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 2133 SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
duke@435 2134 // prepare_for_compaction() uses the space between live objects
duke@435 2135 // so that later phase can skip dead space quickly. So verification
duke@435 2136 // of the free lists doesn't work after.
duke@435 2137 }
duke@435 2138
duke@435 2139 #define obj_size(q) adjustObjectSize(oop(q)->size())
duke@435 2140 #define adjust_obj_size(s) adjustObjectSize(s)
duke@435 2141
duke@435 2142 void CompactibleFreeListSpace::adjust_pointers() {
duke@435 2143 // In other versions of adjust_pointers(), a bail out
duke@435 2144 // based on the amount of live data in the generation
duke@435 2145 // (i.e., if 0, bail out) may be used.
duke@435 2146 // Cannot test used() == 0 here because the free lists have already
duke@435 2147 // been mangled by the compaction.
duke@435 2148
duke@435 2149 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 2150 // See note about verification in prepare_for_compaction().
duke@435 2151 }
duke@435 2152
duke@435 2153 void CompactibleFreeListSpace::compact() {
duke@435 2154 SCAN_AND_COMPACT(obj_size);
duke@435 2155 }
duke@435 2156
duke@435 2157 // fragmentation_metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]
duke@435 2158 // where fbs is free block sizes
duke@435 2159 double CompactibleFreeListSpace::flsFrag() const {
duke@435 2160 size_t itabFree = totalSizeInIndexedFreeLists();
duke@435 2161 double frag = 0.0;
duke@435 2162 size_t i;
duke@435 2163
duke@435 2164 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 2165 double sz = i;
duke@435 2166 frag += _indexedFreeList[i].count() * (sz * sz);
duke@435 2167 }
duke@435 2168
duke@435 2169 double totFree = itabFree +
jmasa@3732 2170 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
duke@435 2171 if (totFree > 0) {
duke@435 2172 frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
duke@435 2173 (totFree * totFree));
duke@435 2174 frag = (double)1.0 - frag;
duke@435 2175 } else {
duke@435 2176 assert(frag == 0.0, "Follows from totFree == 0");
duke@435 2177 }
duke@435 2178 return frag;
duke@435 2179 }
duke@435 2180
duke@435 2181 void CompactibleFreeListSpace::beginSweepFLCensus(
duke@435 2182 float inter_sweep_current,
ysr@1580 2183 float inter_sweep_estimate,
ysr@1580 2184 float intra_sweep_estimate) {
duke@435 2185 assert_locked();
duke@435 2186 size_t i;
duke@435 2187 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2188 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
ysr@1580 2189 if (PrintFLSStatistics > 1) {
drchase@6680 2190 gclog_or_tty->print("size[" SIZE_FORMAT "] : ", i);
ysr@1580 2191 }
ysr@1580 2192 fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
jmasa@3732 2193 fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
jmasa@3732 2194 fl->set_before_sweep(fl->count());
jmasa@3732 2195 fl->set_bfr_surp(fl->surplus());
duke@435 2196 }
jmasa@3732 2197 _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
duke@435 2198 inter_sweep_current,
ysr@1580 2199 inter_sweep_estimate,
ysr@1580 2200 intra_sweep_estimate);
duke@435 2201 }
duke@435 2202
duke@435 2203 void CompactibleFreeListSpace::setFLSurplus() {
duke@435 2204 assert_locked();
duke@435 2205 size_t i;
duke@435 2206 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2207 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2208 fl->set_surplus(fl->count() -
ysr@1580 2209 (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
duke@435 2210 }
duke@435 2211 }
duke@435 2212
duke@435 2213 void CompactibleFreeListSpace::setFLHints() {
duke@435 2214 assert_locked();
duke@435 2215 size_t i;
duke@435 2216 size_t h = IndexSetSize;
duke@435 2217 for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
jmasa@4196 2218 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2219 fl->set_hint(h);
duke@435 2220 if (fl->surplus() > 0) {
duke@435 2221 h = i;
duke@435 2222 }
duke@435 2223 }
duke@435 2224 }
duke@435 2225
duke@435 2226 void CompactibleFreeListSpace::clearFLCensus() {
duke@435 2227 assert_locked();
ysr@3264 2228 size_t i;
duke@435 2229 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2230 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2231 fl->set_prev_sweep(fl->count());
jmasa@3732 2232 fl->set_coal_births(0);
jmasa@3732 2233 fl->set_coal_deaths(0);
jmasa@3732 2234 fl->set_split_births(0);
jmasa@3732 2235 fl->set_split_deaths(0);
duke@435 2236 }
duke@435 2237 }
duke@435 2238
ysr@447 2239 void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
ysr@1580 2240 if (PrintFLSStatistics > 0) {
jmasa@3732 2241 HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
ysr@1580 2242 gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
drchase@6680 2243 p2i(largestAddr));
ysr@1580 2244 }
duke@435 2245 setFLSurplus();
duke@435 2246 setFLHints();
duke@435 2247 if (PrintGC && PrintFLSCensus > 0) {
ysr@447 2248 printFLCensus(sweep_count);
duke@435 2249 }
duke@435 2250 clearFLCensus();
duke@435 2251 assert_locked();
jmasa@3732 2252 _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
duke@435 2253 }
duke@435 2254
duke@435 2255 bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
duke@435 2256 if (size < SmallForDictionary) {
jmasa@4196 2257 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2258 return (fl->coal_desired() < 0) ||
jmasa@3732 2259 ((int)fl->count() > fl->coal_desired());
duke@435 2260 } else {
jmasa@3732 2261 return dictionary()->coal_dict_over_populated(size);
duke@435 2262 }
duke@435 2263 }
duke@435 2264
duke@435 2265 void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
duke@435 2266 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2267 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2268 fl->increment_coal_births();
duke@435 2269 fl->increment_surplus();
duke@435 2270 }
duke@435 2271
duke@435 2272 void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
duke@435 2273 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2274 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2275 fl->increment_coal_deaths();
duke@435 2276 fl->decrement_surplus();
duke@435 2277 }
duke@435 2278
duke@435 2279 void CompactibleFreeListSpace::coalBirth(size_t size) {
duke@435 2280 if (size < SmallForDictionary) {
duke@435 2281 smallCoalBirth(size);
duke@435 2282 } else {
jmasa@4196 2283 dictionary()->dict_census_update(size,
duke@435 2284 false /* split */,
duke@435 2285 true /* birth */);
duke@435 2286 }
duke@435 2287 }
duke@435 2288
duke@435 2289 void CompactibleFreeListSpace::coalDeath(size_t size) {
duke@435 2290 if(size < SmallForDictionary) {
duke@435 2291 smallCoalDeath(size);
duke@435 2292 } else {
jmasa@4196 2293 dictionary()->dict_census_update(size,
duke@435 2294 false /* split */,
duke@435 2295 false /* birth */);
duke@435 2296 }
duke@435 2297 }
duke@435 2298
duke@435 2299 void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
duke@435 2300 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2301 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2302 fl->increment_split_births();
duke@435 2303 fl->increment_surplus();
duke@435 2304 }
duke@435 2305
duke@435 2306 void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
duke@435 2307 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2308 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2309 fl->increment_split_deaths();
duke@435 2310 fl->decrement_surplus();
duke@435 2311 }
duke@435 2312
jmasa@3732 2313 void CompactibleFreeListSpace::split_birth(size_t size) {
duke@435 2314 if (size < SmallForDictionary) {
duke@435 2315 smallSplitBirth(size);
duke@435 2316 } else {
jmasa@4196 2317 dictionary()->dict_census_update(size,
duke@435 2318 true /* split */,
duke@435 2319 true /* birth */);
duke@435 2320 }
duke@435 2321 }
duke@435 2322
duke@435 2323 void CompactibleFreeListSpace::splitDeath(size_t size) {
duke@435 2324 if (size < SmallForDictionary) {
duke@435 2325 smallSplitDeath(size);
duke@435 2326 } else {
jmasa@4196 2327 dictionary()->dict_census_update(size,
duke@435 2328 true /* split */,
duke@435 2329 false /* birth */);
duke@435 2330 }
duke@435 2331 }
duke@435 2332
duke@435 2333 void CompactibleFreeListSpace::split(size_t from, size_t to1) {
duke@435 2334 size_t to2 = from - to1;
duke@435 2335 splitDeath(from);
jmasa@3732 2336 split_birth(to1);
jmasa@3732 2337 split_birth(to2);
duke@435 2338 }
duke@435 2339
duke@435 2340 void CompactibleFreeListSpace::print() const {
ysr@2294 2341 print_on(tty);
duke@435 2342 }
duke@435 2343
duke@435 2344 void CompactibleFreeListSpace::prepare_for_verify() {
duke@435 2345 assert_locked();
duke@435 2346 repairLinearAllocationBlocks();
duke@435 2347 // Verify that the SpoolBlocks look like free blocks of
duke@435 2348 // appropriate sizes... To be done ...
duke@435 2349 }
duke@435 2350
duke@435 2351 class VerifyAllBlksClosure: public BlkClosure {
coleenp@548 2352 private:
duke@435 2353 const CompactibleFreeListSpace* _sp;
duke@435 2354 const MemRegion _span;
ysr@2071 2355 HeapWord* _last_addr;
ysr@2071 2356 size_t _last_size;
ysr@2071 2357 bool _last_was_obj;
ysr@2071 2358 bool _last_was_live;
duke@435 2359
duke@435 2360 public:
duke@435 2361 VerifyAllBlksClosure(const CompactibleFreeListSpace* sp,
ysr@2071 2362 MemRegion span) : _sp(sp), _span(span),
ysr@2071 2363 _last_addr(NULL), _last_size(0),
ysr@2071 2364 _last_was_obj(false), _last_was_live(false) { }
duke@435 2365
coleenp@548 2366 virtual size_t do_blk(HeapWord* addr) {
duke@435 2367 size_t res;
ysr@2071 2368 bool was_obj = false;
ysr@2071 2369 bool was_live = false;
duke@435 2370 if (_sp->block_is_obj(addr)) {
ysr@2071 2371 was_obj = true;
duke@435 2372 oop p = oop(addr);
duke@435 2373 guarantee(p->is_oop(), "Should be an oop");
duke@435 2374 res = _sp->adjustObjectSize(p->size());
duke@435 2375 if (_sp->obj_is_alive(addr)) {
ysr@2071 2376 was_live = true;
duke@435 2377 p->verify();
duke@435 2378 }
duke@435 2379 } else {
duke@435 2380 FreeChunk* fc = (FreeChunk*)addr;
duke@435 2381 res = fc->size();
duke@435 2382 if (FLSVerifyLists && !fc->cantCoalesce()) {
jmasa@3732 2383 guarantee(_sp->verify_chunk_in_free_list(fc),
duke@435 2384 "Chunk should be on a free list");
duke@435 2385 }
duke@435 2386 }
ysr@2071 2387 if (res == 0) {
ysr@2071 2388 gclog_or_tty->print_cr("Livelock: no rank reduction!");
ysr@2071 2389 gclog_or_tty->print_cr(
ysr@2071 2390 " Current: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n"
ysr@2071 2391 " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n",
drchase@6680 2392 p2i(addr), res, was_obj ?"true":"false", was_live ?"true":"false",
drchase@6680 2393 p2i(_last_addr), _last_size, _last_was_obj?"true":"false", _last_was_live?"true":"false");
ysr@2071 2394 _sp->print_on(gclog_or_tty);
ysr@2071 2395 guarantee(false, "Seppuku!");
ysr@2071 2396 }
ysr@2071 2397 _last_addr = addr;
ysr@2071 2398 _last_size = res;
ysr@2071 2399 _last_was_obj = was_obj;
ysr@2071 2400 _last_was_live = was_live;
duke@435 2401 return res;
duke@435 2402 }
duke@435 2403 };
duke@435 2404
duke@435 2405 class VerifyAllOopsClosure: public OopClosure {
coleenp@548 2406 private:
duke@435 2407 const CMSCollector* _collector;
duke@435 2408 const CompactibleFreeListSpace* _sp;
duke@435 2409 const MemRegion _span;
duke@435 2410 const bool _past_remark;
duke@435 2411 const CMSBitMap* _bit_map;
duke@435 2412
coleenp@548 2413 protected:
coleenp@548 2414 void do_oop(void* p, oop obj) {
coleenp@548 2415 if (_span.contains(obj)) { // the interior oop points into CMS heap
coleenp@548 2416 if (!_span.contains(p)) { // reference from outside CMS heap
coleenp@548 2417 // Should be a valid object; the first disjunct below allows
coleenp@548 2418 // us to sidestep an assertion in block_is_obj() that insists
coleenp@548 2419 // that p be in _sp. Note that several generations (and spaces)
coleenp@548 2420 // are spanned by _span (CMS heap) above.
coleenp@548 2421 guarantee(!_sp->is_in_reserved(obj) ||
coleenp@548 2422 _sp->block_is_obj((HeapWord*)obj),
coleenp@548 2423 "Should be an object");
coleenp@548 2424 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2425 obj->verify();
coleenp@548 2426 if (_past_remark) {
coleenp@548 2427 // Remark has been completed, the object should be marked
coleenp@548 2428 _bit_map->isMarked((HeapWord*)obj);
coleenp@548 2429 }
coleenp@548 2430 } else { // reference within CMS heap
coleenp@548 2431 if (_past_remark) {
coleenp@548 2432 // Remark has been completed -- so the referent should have
coleenp@548 2433 // been marked, if referring object is.
coleenp@548 2434 if (_bit_map->isMarked(_collector->block_start(p))) {
coleenp@548 2435 guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?");
coleenp@548 2436 }
coleenp@548 2437 }
coleenp@548 2438 }
coleenp@548 2439 } else if (_sp->is_in_reserved(p)) {
coleenp@548 2440 // the reference is from FLS, and points out of FLS
coleenp@548 2441 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2442 obj->verify();
coleenp@548 2443 }
coleenp@548 2444 }
coleenp@548 2445
coleenp@548 2446 template <class T> void do_oop_work(T* p) {
coleenp@548 2447 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 2448 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 2449 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 2450 do_oop(p, obj);
coleenp@548 2451 }
coleenp@548 2452 }
coleenp@548 2453
duke@435 2454 public:
duke@435 2455 VerifyAllOopsClosure(const CMSCollector* collector,
duke@435 2456 const CompactibleFreeListSpace* sp, MemRegion span,
duke@435 2457 bool past_remark, CMSBitMap* bit_map) :
coleenp@4037 2458 _collector(collector), _sp(sp), _span(span),
duke@435 2459 _past_remark(past_remark), _bit_map(bit_map) { }
duke@435 2460
coleenp@548 2461 virtual void do_oop(oop* p) { VerifyAllOopsClosure::do_oop_work(p); }
coleenp@548 2462 virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); }
duke@435 2463 };
duke@435 2464
brutisso@3711 2465 void CompactibleFreeListSpace::verify() const {
duke@435 2466 assert_lock_strong(&_freelistLock);
duke@435 2467 verify_objects_initialized();
duke@435 2468 MemRegion span = _collector->_span;
duke@435 2469 bool past_remark = (_collector->abstract_state() ==
duke@435 2470 CMSCollector::Sweeping);
duke@435 2471
duke@435 2472 ResourceMark rm;
duke@435 2473 HandleMark hm;
duke@435 2474
duke@435 2475 // Check integrity of CFL data structures
duke@435 2476 _promoInfo.verify();
duke@435 2477 _dictionary->verify();
duke@435 2478 if (FLSVerifyIndexTable) {
duke@435 2479 verifyIndexedFreeLists();
duke@435 2480 }
duke@435 2481 // Check integrity of all objects and free blocks in space
duke@435 2482 {
duke@435 2483 VerifyAllBlksClosure cl(this, span);
duke@435 2484 ((CompactibleFreeListSpace*)this)->blk_iterate(&cl); // cast off const
duke@435 2485 }
duke@435 2486 // Check that all references in the heap to FLS
duke@435 2487 // are to valid objects in FLS or that references in
duke@435 2488 // FLS are to valid objects elsewhere in the heap
duke@435 2489 if (FLSVerifyAllHeapReferences)
duke@435 2490 {
duke@435 2491 VerifyAllOopsClosure cl(_collector, this, span, past_remark,
duke@435 2492 _collector->markBitMap());
duke@435 2493 CollectedHeap* ch = Universe::heap();
coleenp@4037 2494
coleenp@4037 2495 // Iterate over all oops in the heap. Uses the _no_header version
coleenp@4037 2496 // since we are not interested in following the klass pointers.
coleenp@4037 2497 ch->oop_iterate_no_header(&cl);
duke@435 2498 }
duke@435 2499
duke@435 2500 if (VerifyObjectStartArray) {
duke@435 2501 // Verify the block offset table
duke@435 2502 _bt.verify();
duke@435 2503 }
duke@435 2504 }
duke@435 2505
duke@435 2506 #ifndef PRODUCT
duke@435 2507 void CompactibleFreeListSpace::verifyFreeLists() const {
duke@435 2508 if (FLSVerifyLists) {
duke@435 2509 _dictionary->verify();
duke@435 2510 verifyIndexedFreeLists();
duke@435 2511 } else {
duke@435 2512 if (FLSVerifyDictionary) {
duke@435 2513 _dictionary->verify();
duke@435 2514 }
duke@435 2515 if (FLSVerifyIndexTable) {
duke@435 2516 verifyIndexedFreeLists();
duke@435 2517 }
duke@435 2518 }
duke@435 2519 }
duke@435 2520 #endif
duke@435 2521
duke@435 2522 void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
duke@435 2523 size_t i = 0;
ysr@3264 2524 for (; i < IndexSetStart; i++) {
duke@435 2525 guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
duke@435 2526 }
duke@435 2527 for (; i < IndexSetSize; i++) {
duke@435 2528 verifyIndexedFreeList(i);
duke@435 2529 }
duke@435 2530 }
duke@435 2531
duke@435 2532 void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
ysr@1580 2533 FreeChunk* fc = _indexedFreeList[size].head();
ysr@1580 2534 FreeChunk* tail = _indexedFreeList[size].tail();
ysr@1580 2535 size_t num = _indexedFreeList[size].count();
ysr@1580 2536 size_t n = 0;
ysr@3264 2537 guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
ysr@3220 2538 "Slot should have been empty");
ysr@1580 2539 for (; fc != NULL; fc = fc->next(), n++) {
duke@435 2540 guarantee(fc->size() == size, "Size inconsistency");
jmasa@3732 2541 guarantee(fc->is_free(), "!free?");
duke@435 2542 guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
ysr@1580 2543 guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
duke@435 2544 }
ysr@1580 2545 guarantee(n == num, "Incorrect count");
duke@435 2546 }
duke@435 2547
duke@435 2548 #ifndef PRODUCT
ysr@3220 2549 void CompactibleFreeListSpace::check_free_list_consistency() const {
goetz@6337 2550 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size() <= IndexSetSize),
duke@435 2551 "Some sizes can't be allocated without recourse to"
duke@435 2552 " linear allocation buffers");
goetz@6337 2553 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size()*HeapWordSize == sizeof(TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >)),
duke@435 2554 "else MIN_TREE_CHUNK_SIZE is wrong");
brutisso@3807 2555 assert(IndexSetStart != 0, "IndexSetStart not initialized");
brutisso@3807 2556 assert(IndexSetStride != 0, "IndexSetStride not initialized");
duke@435 2557 }
duke@435 2558 #endif
duke@435 2559
ysr@447 2560 void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
duke@435 2561 assert_lock_strong(&_freelistLock);
jmasa@4196 2562 AdaptiveFreeList<FreeChunk> total;
ysr@447 2563 gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
jmasa@4196 2564 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
jmasa@3732 2565 size_t total_free = 0;
duke@435 2566 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2567 const AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2568 total_free += fl->count() * fl->size();
ysr@447 2569 if (i % (40*IndexSetStride) == 0) {
jmasa@4196 2570 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
ysr@447 2571 }
ysr@447 2572 fl->print_on(gclog_or_tty);
jmasa@3732 2573 total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
ysr@447 2574 total.set_surplus( total.surplus() + fl->surplus() );
ysr@447 2575 total.set_desired( total.desired() + fl->desired() );
jmasa@3732 2576 total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
jmasa@3732 2577 total.set_before_sweep(total.before_sweep() + fl->before_sweep());
ysr@447 2578 total.set_count( total.count() + fl->count() );
jmasa@3732 2579 total.set_coal_births( total.coal_births() + fl->coal_births() );
jmasa@3732 2580 total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
jmasa@3732 2581 total.set_split_births(total.split_births() + fl->split_births());
jmasa@3732 2582 total.set_split_deaths(total.split_deaths() + fl->split_deaths());
duke@435 2583 }
ysr@447 2584 total.print_on(gclog_or_tty, "TOTAL");
ysr@447 2585 gclog_or_tty->print_cr("Total free in indexed lists "
jmasa@3732 2586 SIZE_FORMAT " words", total_free);
duke@435 2587 gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
jmasa@3732 2588 (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
jmasa@3732 2589 (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
ysr@447 2590 (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
jmasa@3732 2591 _dictionary->print_dict_census();
duke@435 2592 }
duke@435 2593
ysr@1580 2594 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2595 // CFLS_LAB
ysr@1580 2596 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2597
ysr@1580 2598 #define VECTOR_257(x) \
ysr@1580 2599 /* 1 2 3 4 5 6 7 8 9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \
ysr@1580 2600 { x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2601 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2602 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2603 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2604 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2605 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2606 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2607 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2608 x }
ysr@1580 2609
ysr@1580 2610 // Initialize with default setting of CMSParPromoteBlocksToClaim, _not_
ysr@1580 2611 // OldPLABSize, whose static default is different; if overridden at the
ysr@1580 2612 // command-line, this will get reinitialized via a call to
ysr@1580 2613 // modify_initialization() below.
ysr@1580 2614 AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[] =
ysr@1580 2615 VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
ysr@1580 2616 size_t CFLS_LAB::_global_num_blocks[] = VECTOR_257(0);
jmasa@3357 2617 uint CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
duke@435 2618
duke@435 2619 CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
duke@435 2620 _cfls(cfls)
duke@435 2621 {
ysr@1580 2622 assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above");
duke@435 2623 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2624 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2625 i += CompactibleFreeListSpace::IndexSetStride) {
duke@435 2626 _indexedFreeList[i].set_size(i);
ysr@1580 2627 _num_blocks[i] = 0;
ysr@1580 2628 }
ysr@1580 2629 }
ysr@1580 2630
ysr@1580 2631 static bool _CFLS_LAB_modified = false;
ysr@1580 2632
ysr@1580 2633 void CFLS_LAB::modify_initialization(size_t n, unsigned wt) {
ysr@1580 2634 assert(!_CFLS_LAB_modified, "Call only once");
ysr@1580 2635 _CFLS_LAB_modified = true;
ysr@1580 2636 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2637 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2638 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2639 _blocks_to_claim[i].modify(n, wt, true /* force */);
duke@435 2640 }
duke@435 2641 }
duke@435 2642
duke@435 2643 HeapWord* CFLS_LAB::alloc(size_t word_sz) {
duke@435 2644 FreeChunk* res;
ysr@2132 2645 assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error");
duke@435 2646 if (word_sz >= CompactibleFreeListSpace::IndexSetSize) {
duke@435 2647 // This locking manages sync with other large object allocations.
duke@435 2648 MutexLockerEx x(_cfls->parDictionaryAllocLock(),
duke@435 2649 Mutex::_no_safepoint_check_flag);
duke@435 2650 res = _cfls->getChunkFromDictionaryExact(word_sz);
duke@435 2651 if (res == NULL) return NULL;
duke@435 2652 } else {
jmasa@4196 2653 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
duke@435 2654 if (fl->count() == 0) {
duke@435 2655 // Attempt to refill this local free list.
ysr@1580 2656 get_from_global_pool(word_sz, fl);
duke@435 2657 // If it didn't work, give up.
duke@435 2658 if (fl->count() == 0) return NULL;
duke@435 2659 }
jmasa@3732 2660 res = fl->get_chunk_at_head();
duke@435 2661 assert(res != NULL, "Why was count non-zero?");
duke@435 2662 }
duke@435 2663 res->markNotFree();
jmasa@3732 2664 assert(!res->is_free(), "shouldn't be marked free");
coleenp@622 2665 assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
duke@435 2666 // mangle a just allocated object with a distinct pattern.
duke@435 2667 debug_only(res->mangleAllocated(word_sz));
duke@435 2668 return (HeapWord*)res;
duke@435 2669 }
duke@435 2670
ysr@1580 2671 // Get a chunk of blocks of the right size and update related
ysr@1580 2672 // book-keeping stats
jmasa@4196 2673 void CFLS_LAB::get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl) {
ysr@1580 2674 // Get the #blocks we want to claim
ysr@1580 2675 size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
ysr@1580 2676 assert(n_blks > 0, "Error");
ysr@1580 2677 assert(ResizePLAB || n_blks == OldPLABSize, "Error");
ysr@1580 2678 // In some cases, when the application has a phase change,
ysr@1580 2679 // there may be a sudden and sharp shift in the object survival
ysr@1580 2680 // profile, and updating the counts at the end of a scavenge
ysr@1580 2681 // may not be quick enough, giving rise to large scavenge pauses
ysr@1580 2682 // during these phase changes. It is beneficial to detect such
ysr@1580 2683 // changes on-the-fly during a scavenge and avoid such a phase-change
ysr@1580 2684 // pothole. The following code is a heuristic attempt to do that.
ysr@1580 2685 // It is protected by a product flag until we have gained
ysr@1580 2686 // enough experience with this heuristic and fine-tuned its behaviour.
ysr@1580 2687 // WARNING: This might increase fragmentation if we overreact to
ysr@1580 2688 // small spikes, so some kind of historical smoothing based on
ysr@1580 2689 // previous experience with the greater reactivity might be useful.
ysr@1580 2690 // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by
ysr@1580 2691 // default.
ysr@1580 2692 if (ResizeOldPLAB && CMSOldPLABResizeQuicker) {
ysr@1580 2693 size_t multiple = _num_blocks[word_sz]/(CMSOldPLABToleranceFactor*CMSOldPLABNumRefills*n_blks);
ysr@1580 2694 n_blks += CMSOldPLABReactivityFactor*multiple*n_blks;
ysr@1580 2695 n_blks = MIN2(n_blks, CMSOldPLABMax);
ysr@1580 2696 }
ysr@1580 2697 assert(n_blks > 0, "Error");
ysr@1580 2698 _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl);
ysr@1580 2699 // Update stats table entry for this block size
ysr@1580 2700 _num_blocks[word_sz] += fl->count();
ysr@1580 2701 }
ysr@1580 2702
ysr@1580 2703 void CFLS_LAB::compute_desired_plab_size() {
ysr@1580 2704 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2705 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2706 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2707 assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0),
ysr@1580 2708 "Counter inconsistency");
ysr@1580 2709 if (_global_num_workers[i] > 0) {
ysr@1580 2710 // Need to smooth wrt historical average
ysr@1580 2711 if (ResizeOldPLAB) {
ysr@1580 2712 _blocks_to_claim[i].sample(
ysr@1580 2713 MAX2((size_t)CMSOldPLABMin,
ysr@1580 2714 MIN2((size_t)CMSOldPLABMax,
ysr@1580 2715 _global_num_blocks[i]/(_global_num_workers[i]*CMSOldPLABNumRefills))));
ysr@1580 2716 }
ysr@1580 2717 // Reset counters for next round
ysr@1580 2718 _global_num_workers[i] = 0;
ysr@1580 2719 _global_num_blocks[i] = 0;
ysr@1580 2720 if (PrintOldPLAB) {
drchase@6680 2721 gclog_or_tty->print_cr("[" SIZE_FORMAT "]: " SIZE_FORMAT, i, (size_t)_blocks_to_claim[i].average());
ysr@1580 2722 }
duke@435 2723 }
duke@435 2724 }
duke@435 2725 }
duke@435 2726
ysr@3220 2727 // If this is changed in the future to allow parallel
ysr@3220 2728 // access, one would need to take the FL locks and,
ysr@3220 2729 // depending on how it is used, stagger access from
ysr@3220 2730 // parallel threads to reduce contention.
ysr@1580 2731 void CFLS_LAB::retire(int tid) {
ysr@1580 2732 // We run this single threaded with the world stopped;
ysr@1580 2733 // so no need for locks and such.
ysr@1580 2734 NOT_PRODUCT(Thread* t = Thread::current();)
ysr@1580 2735 assert(Thread::current()->is_VM_thread(), "Error");
ysr@1580 2736 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2737 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2738 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2739 assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(),
ysr@1580 2740 "Can't retire more than what we obtained");
ysr@1580 2741 if (_num_blocks[i] > 0) {
ysr@1580 2742 size_t num_retire = _indexedFreeList[i].count();
ysr@1580 2743 assert(_num_blocks[i] > num_retire, "Should have used at least one");
ysr@1580 2744 {
ysr@3220 2745 // MutexLockerEx x(_cfls->_indexedFreeListParLocks[i],
ysr@3220 2746 // Mutex::_no_safepoint_check_flag);
ysr@3220 2747
ysr@1580 2748 // Update globals stats for num_blocks used
ysr@1580 2749 _global_num_blocks[i] += (_num_blocks[i] - num_retire);
ysr@1580 2750 _global_num_workers[i]++;
jmasa@3357 2751 assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
ysr@1580 2752 if (num_retire > 0) {
ysr@1580 2753 _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
ysr@1580 2754 // Reset this list.
jmasa@4196 2755 _indexedFreeList[i] = AdaptiveFreeList<FreeChunk>();
ysr@1580 2756 _indexedFreeList[i].set_size(i);
ysr@1580 2757 }
ysr@1580 2758 }
ysr@1580 2759 if (PrintOldPLAB) {
drchase@6680 2760 gclog_or_tty->print_cr("%d[" SIZE_FORMAT "]: " SIZE_FORMAT "/" SIZE_FORMAT "/" SIZE_FORMAT,
ysr@1580 2761 tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average());
ysr@1580 2762 }
ysr@1580 2763 // Reset stats for next round
ysr@1580 2764 _num_blocks[i] = 0;
ysr@1580 2765 }
ysr@1580 2766 }
ysr@1580 2767 }
ysr@1580 2768
jmasa@4196 2769 void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) {
duke@435 2770 assert(fl->count() == 0, "Precondition.");
duke@435 2771 assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
duke@435 2772 "Precondition");
duke@435 2773
ysr@1580 2774 // We'll try all multiples of word_sz in the indexed set, starting with
ysr@1580 2775 // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples,
ysr@1580 2776 // then try getting a big chunk and splitting it.
ysr@1580 2777 {
ysr@1580 2778 bool found;
ysr@1580 2779 int k;
ysr@1580 2780 size_t cur_sz;
ysr@1580 2781 for (k = 1, cur_sz = k * word_sz, found = false;
ysr@1580 2782 (cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
ysr@1580 2783 (CMSSplitIndexedFreeListBlocks || k <= 1);
ysr@1580 2784 k++, cur_sz = k * word_sz) {
jmasa@4196 2785 AdaptiveFreeList<FreeChunk> fl_for_cur_sz; // Empty.
ysr@1580 2786 fl_for_cur_sz.set_size(cur_sz);
ysr@1580 2787 {
ysr@1580 2788 MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
ysr@1580 2789 Mutex::_no_safepoint_check_flag);
jmasa@4196 2790 AdaptiveFreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
ysr@1580 2791 if (gfl->count() != 0) {
ysr@1580 2792 // nn is the number of chunks of size cur_sz that
ysr@1580 2793 // we'd need to split k-ways each, in order to create
ysr@1580 2794 // "n" chunks of size word_sz each.
ysr@1580 2795 const size_t nn = MAX2(n/k, (size_t)1);
ysr@1580 2796 gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz);
ysr@1580 2797 found = true;
ysr@1580 2798 if (k > 1) {
ysr@1580 2799 // Update split death stats for the cur_sz-size blocks list:
ysr@1580 2800 // we increment the split death count by the number of blocks
ysr@1580 2801 // we just took from the cur_sz-size blocks list and which
ysr@1580 2802 // we will be splitting below.
jmasa@3732 2803 ssize_t deaths = gfl->split_deaths() +
ysr@1580 2804 fl_for_cur_sz.count();
jmasa@3732 2805 gfl->set_split_deaths(deaths);
ysr@1580 2806 }
ysr@1580 2807 }
ysr@1580 2808 }
ysr@1580 2809 // Now transfer fl_for_cur_sz to fl. Common case, we hope, is k = 1.
ysr@1580 2810 if (found) {
ysr@1580 2811 if (k == 1) {
ysr@1580 2812 fl->prepend(&fl_for_cur_sz);
ysr@1580 2813 } else {
ysr@1580 2814 // Divide each block on fl_for_cur_sz up k ways.
ysr@1580 2815 FreeChunk* fc;
jmasa@3732 2816 while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
ysr@1580 2817 // Must do this in reverse order, so that anybody attempting to
ysr@1580 2818 // access the main chunk sees it as a single free block until we
ysr@1580 2819 // change it.
ysr@1580 2820 size_t fc_size = fc->size();
jmasa@3732 2821 assert(fc->is_free(), "Error");
ysr@1580 2822 for (int i = k-1; i >= 0; i--) {
ysr@1580 2823 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
ysr@2071 2824 assert((i != 0) ||
jmasa@3732 2825 ((fc == ffc) && ffc->is_free() &&
ysr@2071 2826 (ffc->size() == k*word_sz) && (fc_size == word_sz)),
ysr@2071 2827 "Counting error");
jmasa@3732 2828 ffc->set_size(word_sz);
jmasa@3732 2829 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2830 ffc->link_next(NULL);
ysr@1580 2831 // Above must occur before BOT is updated below.
ysr@2071 2832 OrderAccess::storestore();
ysr@2071 2833 // splitting from the right, fc_size == i * word_sz
ysr@2071 2834 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
ysr@1580 2835 fc_size -= word_sz;
ysr@2071 2836 assert(fc_size == i*word_sz, "Error");
ysr@2071 2837 _bt.verify_not_unallocated((HeapWord*)ffc, word_sz);
ysr@1580 2838 _bt.verify_single_block((HeapWord*)fc, fc_size);
ysr@2071 2839 _bt.verify_single_block((HeapWord*)ffc, word_sz);
ysr@1580 2840 // Push this on "fl".
jmasa@3732 2841 fl->return_chunk_at_head(ffc);
ysr@1580 2842 }
ysr@1580 2843 // TRAP
ysr@1580 2844 assert(fl->tail()->next() == NULL, "List invariant.");
ysr@1580 2845 }
ysr@1580 2846 }
ysr@1580 2847 // Update birth stats for this block size.
ysr@1580 2848 size_t num = fl->count();
ysr@1580 2849 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
ysr@1580 2850 Mutex::_no_safepoint_check_flag);
jmasa@3732 2851 ssize_t births = _indexedFreeList[word_sz].split_births() + num;
jmasa@3732 2852 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2853 return;
duke@435 2854 }
duke@435 2855 }
duke@435 2856 }
duke@435 2857 // Otherwise, we'll split a block from the dictionary.
duke@435 2858 FreeChunk* fc = NULL;
duke@435 2859 FreeChunk* rem_fc = NULL;
duke@435 2860 size_t rem;
duke@435 2861 {
duke@435 2862 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 2863 Mutex::_no_safepoint_check_flag);
duke@435 2864 while (n > 0) {
jmasa@4196 2865 fc = dictionary()->get_chunk(MAX2(n * word_sz, _dictionary->min_size()),
jmasa@3730 2866 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 2867 if (fc != NULL) {
ysr@2071 2868 _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
jmasa@4196 2869 dictionary()->dict_census_update(fc->size(),
duke@435 2870 true /*split*/,
duke@435 2871 false /*birth*/);
duke@435 2872 break;
duke@435 2873 } else {
duke@435 2874 n--;
duke@435 2875 }
duke@435 2876 }
duke@435 2877 if (fc == NULL) return;
ysr@2071 2878 // Otherwise, split up that block.
ysr@1580 2879 assert((ssize_t)n >= 1, "Control point invariant");
jmasa@3732 2880 assert(fc->is_free(), "Error: should be a free block");
ysr@2071 2881 _bt.verify_single_block((HeapWord*)fc, fc->size());
ysr@1580 2882 const size_t nn = fc->size() / word_sz;
duke@435 2883 n = MIN2(nn, n);
ysr@1580 2884 assert((ssize_t)n >= 1, "Control point invariant");
duke@435 2885 rem = fc->size() - n * word_sz;
duke@435 2886 // If there is a remainder, and it's too small, allocate one fewer.
duke@435 2887 if (rem > 0 && rem < MinChunkSize) {
duke@435 2888 n--; rem += word_sz;
duke@435 2889 }
jmasa@1583 2890 // Note that at this point we may have n == 0.
jmasa@1583 2891 assert((ssize_t)n >= 0, "Control point invariant");
jmasa@1583 2892
jmasa@1583 2893 // If n is 0, the chunk fc that was found is not large
jmasa@1583 2894 // enough to leave a viable remainder. We are unable to
jmasa@1583 2895 // allocate even one block. Return fc to the
jmasa@1583 2896 // dictionary and return, leaving "fl" empty.
jmasa@1583 2897 if (n == 0) {
jmasa@1583 2898 returnChunkToDictionary(fc);
ysr@2071 2899 assert(fl->count() == 0, "We never allocated any blocks");
jmasa@1583 2900 return;
jmasa@1583 2901 }
jmasa@1583 2902
duke@435 2903 // First return the remainder, if any.
duke@435 2904 // Note that we hold the lock until we decide if we're going to give
ysr@1580 2905 // back the remainder to the dictionary, since a concurrent allocation
duke@435 2906 // may otherwise see the heap as empty. (We're willing to take that
duke@435 2907 // hit if the block is a small block.)
duke@435 2908 if (rem > 0) {
duke@435 2909 size_t prefix_size = n * word_sz;
duke@435 2910 rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
jmasa@3732 2911 rem_fc->set_size(rem);
jmasa@3732 2912 rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2913 rem_fc->link_next(NULL);
duke@435 2914 // Above must occur before BOT is updated below.
ysr@1580 2915 assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
ysr@2071 2916 OrderAccess::storestore();
duke@435 2917 _bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
jmasa@3732 2918 assert(fc->is_free(), "Error");
jmasa@3732 2919 fc->set_size(prefix_size);
duke@435 2920 if (rem >= IndexSetSize) {
duke@435 2921 returnChunkToDictionary(rem_fc);
jmasa@4196 2922 dictionary()->dict_census_update(rem, true /*split*/, true /*birth*/);
duke@435 2923 rem_fc = NULL;
duke@435 2924 }
duke@435 2925 // Otherwise, return it to the small list below.
duke@435 2926 }
duke@435 2927 }
duke@435 2928 if (rem_fc != NULL) {
duke@435 2929 MutexLockerEx x(_indexedFreeListParLocks[rem],
duke@435 2930 Mutex::_no_safepoint_check_flag);
duke@435 2931 _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
jmasa@3732 2932 _indexedFreeList[rem].return_chunk_at_head(rem_fc);
duke@435 2933 smallSplitBirth(rem);
duke@435 2934 }
ysr@1580 2935 assert((ssize_t)n > 0 && fc != NULL, "Consistency");
duke@435 2936 // Now do the splitting up.
duke@435 2937 // Must do this in reverse order, so that anybody attempting to
duke@435 2938 // access the main chunk sees it as a single free block until we
duke@435 2939 // change it.
duke@435 2940 size_t fc_size = n * word_sz;
duke@435 2941 // All but first chunk in this loop
duke@435 2942 for (ssize_t i = n-1; i > 0; i--) {
duke@435 2943 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
jmasa@3732 2944 ffc->set_size(word_sz);
jmasa@3732 2945 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2946 ffc->link_next(NULL);
duke@435 2947 // Above must occur before BOT is updated below.
ysr@2071 2948 OrderAccess::storestore();
duke@435 2949 // splitting from the right, fc_size == (n - i + 1) * wordsize
ysr@2071 2950 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
duke@435 2951 fc_size -= word_sz;
duke@435 2952 _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size());
duke@435 2953 _bt.verify_single_block((HeapWord*)ffc, ffc->size());
duke@435 2954 _bt.verify_single_block((HeapWord*)fc, fc_size);
duke@435 2955 // Push this on "fl".
jmasa@3732 2956 fl->return_chunk_at_head(ffc);
duke@435 2957 }
duke@435 2958 // First chunk
jmasa@3732 2959 assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
ysr@2071 2960 // The blocks above should show their new sizes before the first block below
jmasa@3732 2961 fc->set_size(word_sz);
jmasa@3732 2962 fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
jmasa@3732 2963 fc->link_next(NULL);
duke@435 2964 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 2965 _bt.verify_single_block((HeapWord*)fc, fc->size());
jmasa@3732 2966 fl->return_chunk_at_head(fc);
duke@435 2967
ysr@1580 2968 assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
duke@435 2969 {
ysr@1580 2970 // Update the stats for this block size.
duke@435 2971 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
duke@435 2972 Mutex::_no_safepoint_check_flag);
jmasa@3732 2973 const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
jmasa@3732 2974 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2975 // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
ysr@1580 2976 // _indexedFreeList[word_sz].set_surplus(new_surplus);
duke@435 2977 }
duke@435 2978
duke@435 2979 // TRAP
duke@435 2980 assert(fl->tail()->next() == NULL, "List invariant.");
duke@435 2981 }
duke@435 2982
duke@435 2983 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2984 // for parallel rescan. See CMSParRemarkTask where this is currently used.
duke@435 2985 // XXX Need to suitably abstract and generalize this and the next
duke@435 2986 // method into one.
duke@435 2987 void
duke@435 2988 CompactibleFreeListSpace::
duke@435 2989 initialize_sequential_subtasks_for_rescan(int n_threads) {
duke@435 2990 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2991 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2992 const size_t task_size = rescan_task_size();
duke@435 2993 size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size;
ysr@775 2994 assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect");
ysr@775 2995 assert(n_tasks == 0 ||
ysr@775 2996 ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) &&
ysr@775 2997 (used_region().start() + n_tasks*task_size >= used_region().end())),
ysr@775 2998 "n_tasks calculation incorrect");
duke@435 2999 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 3000 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 3001 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 3002 // need to finish in order to be done).
jmasa@2188 3003 pst->set_n_threads(n_threads);
duke@435 3004 pst->set_n_tasks((int)n_tasks);
duke@435 3005 }
duke@435 3006
duke@435 3007 // Set up the space's par_seq_tasks structure for work claiming
duke@435 3008 // for parallel concurrent marking. See CMSConcMarkTask where this is currently used.
duke@435 3009 void
duke@435 3010 CompactibleFreeListSpace::
duke@435 3011 initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 3012 HeapWord* low) {
duke@435 3013 // The "size" of each task is fixed according to rescan_task_size.
duke@435 3014 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 3015 const size_t task_size = marking_task_size();
duke@435 3016 assert(task_size > CardTableModRefBS::card_size_in_words &&
duke@435 3017 (task_size % CardTableModRefBS::card_size_in_words == 0),
duke@435 3018 "Otherwise arithmetic below would be incorrect");
duke@435 3019 MemRegion span = _gen->reserved();
duke@435 3020 if (low != NULL) {
duke@435 3021 if (span.contains(low)) {
duke@435 3022 // Align low down to a card boundary so that
duke@435 3023 // we can use block_offset_careful() on span boundaries.
duke@435 3024 HeapWord* aligned_low = (HeapWord*)align_size_down((uintptr_t)low,
duke@435 3025 CardTableModRefBS::card_size);
duke@435 3026 // Clip span prefix at aligned_low
duke@435 3027 span = span.intersection(MemRegion(aligned_low, span.end()));
duke@435 3028 } else if (low > span.end()) {
duke@435 3029 span = MemRegion(low, low); // Null region
duke@435 3030 } // else use entire span
duke@435 3031 }
duke@435 3032 assert(span.is_empty() ||
duke@435 3033 ((uintptr_t)span.start() % CardTableModRefBS::card_size == 0),
duke@435 3034 "span should start at a card boundary");
duke@435 3035 size_t n_tasks = (span.word_size() + task_size - 1)/task_size;
duke@435 3036 assert((n_tasks == 0) == span.is_empty(), "Inconsistency");
duke@435 3037 assert(n_tasks == 0 ||
duke@435 3038 ((span.start() + (n_tasks - 1)*task_size < span.end()) &&
duke@435 3039 (span.start() + n_tasks*task_size >= span.end())),
ysr@775 3040 "n_tasks calculation incorrect");
duke@435 3041 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 3042 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 3043 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 3044 // need to finish in order to be done).
jmasa@2188 3045 pst->set_n_threads(n_threads);
duke@435 3046 pst->set_n_tasks((int)n_tasks);
duke@435 3047 }

mercurial