src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp

Tue, 11 Feb 2014 09:34:50 +0100

author
goetz
date
Tue, 11 Feb 2014 09:34:50 +0100
changeset 6337
ab36007d6358
parent 5369
71180a6e5080
child 6513
bbfbe9b06038
permissions
-rw-r--r--

8034171: Remove use of template template parameters from binaryTreeDictionary.
Reviewed-by: mgerdin, jmasa
Contributed-by: matthias.baesken@sap.com

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
stefank@2314 27 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
stefank@2314 28 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 30 #include "gc_implementation/shared/liveRange.hpp"
stefank@2314 31 #include "gc_implementation/shared/spaceDecorator.hpp"
coleenp@4037 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/allocation.inline.hpp"
stefank@2314 34 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 35 #include "memory/resourceArea.hpp"
stefank@2314 36 #include "memory/universe.inline.hpp"
stefank@2314 37 #include "oops/oop.inline.hpp"
stefank@2314 38 #include "runtime/globals.hpp"
stefank@2314 39 #include "runtime/handles.inline.hpp"
stefank@2314 40 #include "runtime/init.hpp"
stefank@2314 41 #include "runtime/java.hpp"
stefank@2314 42 #include "runtime/vmThread.hpp"
stefank@2314 43 #include "utilities/copy.hpp"
duke@435 44
duke@435 45 /////////////////////////////////////////////////////////////////////////
duke@435 46 //// CompactibleFreeListSpace
duke@435 47 /////////////////////////////////////////////////////////////////////////
duke@435 48
duke@435 49 // highest ranked free list lock rank
duke@435 50 int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
duke@435 51
kvn@1926 52 // Defaults are 0 so things will break badly if incorrectly initialized.
ysr@3264 53 size_t CompactibleFreeListSpace::IndexSetStart = 0;
ysr@3264 54 size_t CompactibleFreeListSpace::IndexSetStride = 0;
kvn@1926 55
kvn@1926 56 size_t MinChunkSize = 0;
kvn@1926 57
kvn@1926 58 void CompactibleFreeListSpace::set_cms_values() {
kvn@1926 59 // Set CMS global values
kvn@1926 60 assert(MinChunkSize == 0, "already set");
brutisso@3807 61
brutisso@3807 62 // MinChunkSize should be a multiple of MinObjAlignment and be large enough
brutisso@3807 63 // for chunks to contain a FreeChunk.
brutisso@3807 64 size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes);
brutisso@3807 65 MinChunkSize = min_chunk_size_in_bytes / BytesPerWord;
kvn@1926 66
kvn@1926 67 assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
ysr@3264 68 IndexSetStart = MinChunkSize;
kvn@1926 69 IndexSetStride = MinObjAlignment;
kvn@1926 70 }
kvn@1926 71
duke@435 72 // Constructor
duke@435 73 CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
duke@435 74 MemRegion mr, bool use_adaptive_freelists,
jmasa@3730 75 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
duke@435 76 _dictionaryChoice(dictionaryChoice),
duke@435 77 _adaptive_freelists(use_adaptive_freelists),
duke@435 78 _bt(bs, mr),
duke@435 79 // free list locks are in the range of values taken by _lockRank
duke@435 80 // This range currently is [_leaf+2, _leaf+3]
duke@435 81 // Note: this requires that CFLspace c'tors
duke@435 82 // are called serially in the order in which the locks are
duke@435 83 // are acquired in the program text. This is true today.
duke@435 84 _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true),
duke@435 85 _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1
duke@435 86 "CompactibleFreeListSpace._dict_par_lock", true),
duke@435 87 _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 88 CMSRescanMultiple),
duke@435 89 _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 90 CMSConcMarkMultiple),
duke@435 91 _collector(NULL)
duke@435 92 {
jmasa@3730 93 assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
jmasa@4196 94 "FreeChunk is larger than expected");
duke@435 95 _bt.set_space(this);
jmasa@698 96 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 97 // We have all of "mr", all of which we place in the dictionary
duke@435 98 // as one big chunk. We'll need to decide here which of several
duke@435 99 // possible alternative dictionary implementations to use. For
duke@435 100 // now the choice is easy, since we have only one working
duke@435 101 // implementation, namely, the simple binary tree (splaying
duke@435 102 // temporarily disabled).
duke@435 103 switch (dictionaryChoice) {
jmasa@4196 104 case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
jmasa@4488 105 _dictionary = new AFLBinaryTreeDictionary(mr);
jmasa@4196 106 break;
jmasa@3730 107 case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
jmasa@3730 108 case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
duke@435 109 default:
duke@435 110 warning("dictionaryChoice: selected option not understood; using"
duke@435 111 " default BinaryTreeDictionary implementation instead.");
duke@435 112 }
duke@435 113 assert(_dictionary != NULL, "CMS dictionary initialization");
duke@435 114 // The indexed free lists are initially all empty and are lazily
duke@435 115 // filled in on demand. Initialize the array elements to NULL.
duke@435 116 initializeIndexedFreeListArray();
duke@435 117
duke@435 118 // Not using adaptive free lists assumes that allocation is first
duke@435 119 // from the linAB's. Also a cms perm gen which can be compacted
duke@435 120 // has to have the klass's klassKlass allocated at a lower
duke@435 121 // address in the heap than the klass so that the klassKlass is
duke@435 122 // moved to its new location before the klass is moved.
duke@435 123 // Set the _refillSize for the linear allocation blocks
duke@435 124 if (!use_adaptive_freelists) {
jmasa@4488 125 FreeChunk* fc = _dictionary->get_chunk(mr.word_size(),
jmasa@4488 126 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 127 // The small linAB initially has all the space and will allocate
duke@435 128 // a chunk of any size.
duke@435 129 HeapWord* addr = (HeapWord*) fc;
duke@435 130 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 131 1024*SmallForLinearAlloc, fc->size());
duke@435 132 // Note that _unallocated_block is not updated here.
duke@435 133 // Allocations from the linear allocation block should
duke@435 134 // update it.
duke@435 135 } else {
duke@435 136 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc,
duke@435 137 SmallForLinearAlloc);
duke@435 138 }
duke@435 139 // CMSIndexedFreeListReplenish should be at least 1
duke@435 140 CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish);
duke@435 141 _promoInfo.setSpace(this);
duke@435 142 if (UseCMSBestFit) {
duke@435 143 _fitStrategy = FreeBlockBestFitFirst;
duke@435 144 } else {
duke@435 145 _fitStrategy = FreeBlockStrategyNone;
duke@435 146 }
ysr@3220 147 check_free_list_consistency();
duke@435 148
duke@435 149 // Initialize locks for parallel case.
jmasa@2188 150
jmasa@2188 151 if (CollectedHeap::use_parallel_gc_threads()) {
duke@435 152 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 153 _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1
duke@435 154 "a freelist par lock",
duke@435 155 true);
duke@435 156 DEBUG_ONLY(
duke@435 157 _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]);
duke@435 158 )
duke@435 159 }
duke@435 160 _dictionary->set_par_lock(&_parDictionaryAllocLock);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164 // Like CompactibleSpace forward() but always calls cross_threshold() to
duke@435 165 // update the block offset table. Removed initialize_threshold call because
duke@435 166 // CFLS does not use a block offset array for contiguous spaces.
duke@435 167 HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size,
duke@435 168 CompactPoint* cp, HeapWord* compact_top) {
duke@435 169 // q is alive
duke@435 170 // First check if we should switch compaction space
duke@435 171 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 172 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 173 assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size),
duke@435 174 "virtual adjustObjectSize_v() method is not correct");
duke@435 175 size_t adjusted_size = adjustObjectSize(size);
duke@435 176 assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0,
duke@435 177 "no small fragments allowed");
duke@435 178 assert(minimum_free_block_size() == MinChunkSize,
duke@435 179 "for de-virtualized reference below");
duke@435 180 // Can't leave a nonzero size, residual fragment smaller than MinChunkSize
duke@435 181 if (adjusted_size + MinChunkSize > compaction_max_size &&
duke@435 182 adjusted_size != compaction_max_size) {
duke@435 183 do {
duke@435 184 // switch to next compaction space
duke@435 185 cp->space->set_compaction_top(compact_top);
duke@435 186 cp->space = cp->space->next_compaction_space();
duke@435 187 if (cp->space == NULL) {
duke@435 188 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 189 assert(cp->gen != NULL, "compaction must succeed");
duke@435 190 cp->space = cp->gen->first_compaction_space();
duke@435 191 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 192 }
duke@435 193 compact_top = cp->space->bottom();
duke@435 194 cp->space->set_compaction_top(compact_top);
duke@435 195 // The correct adjusted_size may not be the same as that for this method
duke@435 196 // (i.e., cp->space may no longer be "this" so adjust the size again.
duke@435 197 // Use the virtual method which is not used above to save the virtual
duke@435 198 // dispatch.
duke@435 199 adjusted_size = cp->space->adjust_object_size_v(size);
duke@435 200 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 201 assert(cp->space->minimum_free_block_size() == 0, "just checking");
duke@435 202 } while (adjusted_size > compaction_max_size);
duke@435 203 }
duke@435 204
duke@435 205 // store the forwarding pointer into the mark word
duke@435 206 if ((HeapWord*)q != compact_top) {
duke@435 207 q->forward_to(oop(compact_top));
duke@435 208 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 209 } else {
duke@435 210 // if the object isn't moving we can just set the mark to the default
duke@435 211 // mark and handle it specially later on.
duke@435 212 q->init_mark();
duke@435 213 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 214 }
duke@435 215
duke@435 216 compact_top += adjusted_size;
duke@435 217
duke@435 218 // we need to update the offset table so that the beginnings of objects can be
duke@435 219 // found during scavenge. Note that we are updating the offset table based on
duke@435 220 // where the object will be once the compaction phase finishes.
duke@435 221
duke@435 222 // Always call cross_threshold(). A contiguous space can only call it when
duke@435 223 // the compaction_top exceeds the current threshold but not for an
duke@435 224 // non-contiguous space.
duke@435 225 cp->threshold =
duke@435 226 cp->space->cross_threshold(compact_top - adjusted_size, compact_top);
duke@435 227 return compact_top;
duke@435 228 }
duke@435 229
duke@435 230 // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt
duke@435 231 // and use of single_block instead of alloc_block. The name here is not really
duke@435 232 // appropriate - maybe a more general name could be invented for both the
duke@435 233 // contiguous and noncontiguous spaces.
duke@435 234
duke@435 235 HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 236 _bt.single_block(start, the_end);
duke@435 237 return end();
duke@435 238 }
duke@435 239
duke@435 240 // Initialize them to NULL.
duke@435 241 void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
duke@435 242 for (size_t i = 0; i < IndexSetSize; i++) {
duke@435 243 // Note that on platforms where objects are double word aligned,
duke@435 244 // the odd array elements are not used. It is convenient, however,
duke@435 245 // to map directly from the object size to the array element.
duke@435 246 _indexedFreeList[i].reset(IndexSetSize);
duke@435 247 _indexedFreeList[i].set_size(i);
duke@435 248 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 249 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 250 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 251 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 252 }
duke@435 253 }
duke@435 254
duke@435 255 void CompactibleFreeListSpace::resetIndexedFreeListArray() {
ysr@3264 256 for (size_t i = 1; i < IndexSetSize; i++) {
duke@435 257 assert(_indexedFreeList[i].size() == (size_t) i,
duke@435 258 "Indexed free list sizes are incorrect");
duke@435 259 _indexedFreeList[i].reset(IndexSetSize);
duke@435 260 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 261 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 262 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 263 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 264 }
duke@435 265 }
duke@435 266
duke@435 267 void CompactibleFreeListSpace::reset(MemRegion mr) {
duke@435 268 resetIndexedFreeListArray();
duke@435 269 dictionary()->reset();
duke@435 270 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 271 assert(end() == mr.end(), "We are compacting to the bottom of CMS gen");
duke@435 272 // Everything's allocated until proven otherwise.
duke@435 273 _bt.set_unallocated_block(end());
duke@435 274 }
duke@435 275 if (!mr.is_empty()) {
duke@435 276 assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
duke@435 277 _bt.single_block(mr.start(), mr.word_size());
duke@435 278 FreeChunk* fc = (FreeChunk*) mr.start();
jmasa@3732 279 fc->set_size(mr.word_size());
duke@435 280 if (mr.word_size() >= IndexSetSize ) {
duke@435 281 returnChunkToDictionary(fc);
duke@435 282 } else {
duke@435 283 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
jmasa@3732 284 _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
duke@435 285 }
brutisso@5163 286 coalBirth(mr.word_size());
duke@435 287 }
duke@435 288 _promoInfo.reset();
duke@435 289 _smallLinearAllocBlock._ptr = NULL;
duke@435 290 _smallLinearAllocBlock._word_size = 0;
duke@435 291 }
duke@435 292
duke@435 293 void CompactibleFreeListSpace::reset_after_compaction() {
duke@435 294 // Reset the space to the new reality - one free chunk.
duke@435 295 MemRegion mr(compaction_top(), end());
duke@435 296 reset(mr);
duke@435 297 // Now refill the linear allocation block(s) if possible.
duke@435 298 if (_adaptive_freelists) {
duke@435 299 refillLinearAllocBlocksIfNeeded();
duke@435 300 } else {
duke@435 301 // Place as much of mr in the linAB as we can get,
duke@435 302 // provided it was big enough to go into the dictionary.
jmasa@3732 303 FreeChunk* fc = dictionary()->find_largest_dict();
duke@435 304 if (fc != NULL) {
duke@435 305 assert(fc->size() == mr.word_size(),
duke@435 306 "Why was the chunk broken up?");
duke@435 307 removeChunkFromDictionary(fc);
duke@435 308 HeapWord* addr = (HeapWord*) fc;
duke@435 309 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 310 1024*SmallForLinearAlloc, fc->size());
duke@435 311 // Note that _unallocated_block is not updated here.
duke@435 312 }
duke@435 313 }
duke@435 314 }
duke@435 315
duke@435 316 // Walks the entire dictionary, returning a coterminal
duke@435 317 // chunk, if it exists. Use with caution since it involves
duke@435 318 // a potentially complete walk of a potentially large tree.
duke@435 319 FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
duke@435 320
duke@435 321 assert_lock_strong(&_freelistLock);
duke@435 322
duke@435 323 return dictionary()->find_chunk_ends_at(end());
duke@435 324 }
duke@435 325
duke@435 326
duke@435 327 #ifndef PRODUCT
duke@435 328 void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
duke@435 329 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 330 _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
duke@435 331 }
duke@435 332 }
duke@435 333
duke@435 334 size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
duke@435 335 size_t sum = 0;
duke@435 336 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 337 sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
duke@435 338 }
duke@435 339 return sum;
duke@435 340 }
duke@435 341
duke@435 342 size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
duke@435 343 size_t count = 0;
ysr@3264 344 for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
duke@435 345 debug_only(
duke@435 346 ssize_t total_list_count = 0;
duke@435 347 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 348 fc = fc->next()) {
duke@435 349 total_list_count++;
duke@435 350 }
duke@435 351 assert(total_list_count == _indexedFreeList[i].count(),
duke@435 352 "Count in list is incorrect");
duke@435 353 )
duke@435 354 count += _indexedFreeList[i].count();
duke@435 355 }
duke@435 356 return count;
duke@435 357 }
duke@435 358
duke@435 359 size_t CompactibleFreeListSpace::totalCount() {
duke@435 360 size_t num = totalCountInIndexedFreeLists();
jmasa@3732 361 num += dictionary()->total_count();
duke@435 362 if (_smallLinearAllocBlock._word_size != 0) {
duke@435 363 num++;
duke@435 364 }
duke@435 365 return num;
duke@435 366 }
duke@435 367 #endif
duke@435 368
duke@435 369 bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
duke@435 370 FreeChunk* fc = (FreeChunk*) p;
jmasa@3732 371 return fc->is_free();
duke@435 372 }
duke@435 373
duke@435 374 size_t CompactibleFreeListSpace::used() const {
duke@435 375 return capacity() - free();
duke@435 376 }
duke@435 377
duke@435 378 size_t CompactibleFreeListSpace::free() const {
duke@435 379 // "MT-safe, but not MT-precise"(TM), if you will: i.e.
duke@435 380 // if you do this while the structures are in flux you
duke@435 381 // may get an approximate answer only; for instance
duke@435 382 // because there is concurrent allocation either
duke@435 383 // directly by mutators or for promotion during a GC.
duke@435 384 // It's "MT-safe", however, in the sense that you are guaranteed
duke@435 385 // not to crash and burn, for instance, because of walking
duke@435 386 // pointers that could disappear as you were walking them.
duke@435 387 // The approximation is because the various components
duke@435 388 // that are read below are not read atomically (and
duke@435 389 // further the computation of totalSizeInIndexedFreeLists()
duke@435 390 // is itself a non-atomic computation. The normal use of
duke@435 391 // this is during a resize operation at the end of GC
duke@435 392 // and at that time you are guaranteed to get the
duke@435 393 // correct actual value. However, for instance, this is
duke@435 394 // also read completely asynchronously by the "perf-sampler"
duke@435 395 // that supports jvmstat, and you are apt to see the values
duke@435 396 // flicker in such cases.
duke@435 397 assert(_dictionary != NULL, "No _dictionary?");
jmasa@3732 398 return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
duke@435 399 totalSizeInIndexedFreeLists() +
duke@435 400 _smallLinearAllocBlock._word_size) * HeapWordSize;
duke@435 401 }
duke@435 402
duke@435 403 size_t CompactibleFreeListSpace::max_alloc_in_words() const {
duke@435 404 assert(_dictionary != NULL, "No _dictionary?");
duke@435 405 assert_locked();
jmasa@3732 406 size_t res = _dictionary->max_chunk_size();
duke@435 407 res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
duke@435 408 (size_t) SmallForLinearAlloc - 1));
duke@435 409 // XXX the following could potentially be pretty slow;
duke@435 410 // should one, pesimally for the rare cases when res
duke@435 411 // caclulated above is less than IndexSetSize,
duke@435 412 // just return res calculated above? My reasoning was that
duke@435 413 // those cases will be so rare that the extra time spent doesn't
duke@435 414 // really matter....
duke@435 415 // Note: do not change the loop test i >= res + IndexSetStride
duke@435 416 // to i > res below, because i is unsigned and res may be zero.
duke@435 417 for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride;
duke@435 418 i -= IndexSetStride) {
duke@435 419 if (_indexedFreeList[i].head() != NULL) {
duke@435 420 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 421 return i;
duke@435 422 }
duke@435 423 }
duke@435 424 return res;
duke@435 425 }
duke@435 426
ysr@2071 427 void LinearAllocBlock::print_on(outputStream* st) const {
ysr@2071 428 st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT
ysr@2071 429 ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT,
ysr@2071 430 _ptr, _word_size, _refillSize, _allocation_size_limit);
ysr@2071 431 }
ysr@2071 432
ysr@2071 433 void CompactibleFreeListSpace::print_on(outputStream* st) const {
ysr@2071 434 st->print_cr("COMPACTIBLE FREELIST SPACE");
ysr@2071 435 st->print_cr(" Space:");
ysr@2071 436 Space::print_on(st);
ysr@2071 437
ysr@2071 438 st->print_cr("promoInfo:");
ysr@2071 439 _promoInfo.print_on(st);
ysr@2071 440
ysr@2071 441 st->print_cr("_smallLinearAllocBlock");
ysr@2071 442 _smallLinearAllocBlock.print_on(st);
ysr@2071 443
ysr@2071 444 // dump_memory_block(_smallLinearAllocBlock->_ptr, 128);
ysr@2071 445
ysr@2071 446 st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s",
ysr@2071 447 _fitStrategy?"true":"false", _adaptive_freelists?"true":"false");
ysr@2071 448 }
ysr@2071 449
ysr@1580 450 void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st)
ysr@1580 451 const {
ysr@1580 452 reportIndexedFreeListStatistics();
ysr@1580 453 gclog_or_tty->print_cr("Layout of Indexed Freelists");
ysr@1580 454 gclog_or_tty->print_cr("---------------------------");
jmasa@4196 455 AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size");
ysr@1580 456 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
ysr@1580 457 _indexedFreeList[i].print_on(gclog_or_tty);
ysr@1580 458 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
ysr@1580 459 fc = fc->next()) {
ysr@1580 460 gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
ysr@1580 461 fc, (HeapWord*)fc + i,
ysr@1580 462 fc->cantCoalesce() ? "\t CC" : "");
ysr@1580 463 }
ysr@1580 464 }
ysr@1580 465 }
ysr@1580 466
ysr@1580 467 void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st)
ysr@1580 468 const {
ysr@1580 469 _promoInfo.print_on(st);
ysr@1580 470 }
ysr@1580 471
ysr@1580 472 void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
ysr@1580 473 const {
jmasa@3732 474 _dictionary->report_statistics();
ysr@1580 475 st->print_cr("Layout of Freelists in Tree");
ysr@1580 476 st->print_cr("---------------------------");
ysr@1580 477 _dictionary->print_free_lists(st);
ysr@1580 478 }
ysr@1580 479
ysr@1580 480 class BlkPrintingClosure: public BlkClosure {
ysr@1580 481 const CMSCollector* _collector;
ysr@1580 482 const CompactibleFreeListSpace* _sp;
ysr@1580 483 const CMSBitMap* _live_bit_map;
ysr@1580 484 const bool _post_remark;
ysr@1580 485 outputStream* _st;
ysr@1580 486 public:
ysr@1580 487 BlkPrintingClosure(const CMSCollector* collector,
ysr@1580 488 const CompactibleFreeListSpace* sp,
ysr@1580 489 const CMSBitMap* live_bit_map,
ysr@1580 490 outputStream* st):
ysr@1580 491 _collector(collector),
ysr@1580 492 _sp(sp),
ysr@1580 493 _live_bit_map(live_bit_map),
ysr@1580 494 _post_remark(collector->abstract_state() > CMSCollector::FinalMarking),
ysr@1580 495 _st(st) { }
ysr@1580 496 size_t do_blk(HeapWord* addr);
ysr@1580 497 };
ysr@1580 498
ysr@1580 499 size_t BlkPrintingClosure::do_blk(HeapWord* addr) {
ysr@1580 500 size_t sz = _sp->block_size_no_stall(addr, _collector);
ysr@1580 501 assert(sz != 0, "Should always be able to compute a size");
ysr@1580 502 if (_sp->block_is_obj(addr)) {
ysr@1580 503 const bool dead = _post_remark && !_live_bit_map->isMarked(addr);
ysr@1580 504 _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s",
ysr@1580 505 addr,
ysr@1580 506 dead ? "dead" : "live",
ysr@1580 507 sz,
ysr@1580 508 (!dead && CMSPrintObjectsInDump) ? ":" : ".");
ysr@1580 509 if (CMSPrintObjectsInDump && !dead) {
ysr@1580 510 oop(addr)->print_on(_st);
ysr@1580 511 _st->print_cr("--------------------------------------");
ysr@1580 512 }
ysr@1580 513 } else { // free block
ysr@1580 514 _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s",
ysr@1580 515 addr, sz, CMSPrintChunksInDump ? ":" : ".");
ysr@1580 516 if (CMSPrintChunksInDump) {
ysr@1580 517 ((FreeChunk*)addr)->print_on(_st);
ysr@1580 518 _st->print_cr("--------------------------------------");
ysr@1580 519 }
ysr@1580 520 }
ysr@1580 521 return sz;
ysr@1580 522 }
ysr@1580 523
ysr@1580 524 void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
ysr@1580 525 outputStream* st) {
ysr@1580 526 st->print_cr("\n=========================");
ysr@1580 527 st->print_cr("Block layout in CMS Heap:");
ysr@1580 528 st->print_cr("=========================");
ysr@1580 529 BlkPrintingClosure bpcl(c, this, c->markBitMap(), st);
ysr@1580 530 blk_iterate(&bpcl);
ysr@1580 531
ysr@1580 532 st->print_cr("\n=======================================");
ysr@1580 533 st->print_cr("Order & Layout of Promotion Info Blocks");
ysr@1580 534 st->print_cr("=======================================");
ysr@1580 535 print_promo_info_blocks(st);
ysr@1580 536
ysr@1580 537 st->print_cr("\n===========================");
ysr@1580 538 st->print_cr("Order of Indexed Free Lists");
ysr@1580 539 st->print_cr("=========================");
ysr@1580 540 print_indexed_free_lists(st);
ysr@1580 541
ysr@1580 542 st->print_cr("\n=================================");
ysr@1580 543 st->print_cr("Order of Free Lists in Dictionary");
ysr@1580 544 st->print_cr("=================================");
ysr@1580 545 print_dictionary_free_lists(st);
ysr@1580 546 }
ysr@1580 547
ysr@1580 548
duke@435 549 void CompactibleFreeListSpace::reportFreeListStatistics() const {
duke@435 550 assert_lock_strong(&_freelistLock);
duke@435 551 assert(PrintFLSStatistics != 0, "Reporting error");
jmasa@3732 552 _dictionary->report_statistics();
duke@435 553 if (PrintFLSStatistics > 1) {
duke@435 554 reportIndexedFreeListStatistics();
jmasa@3732 555 size_t total_size = totalSizeInIndexedFreeLists() +
jmasa@3732 556 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
hseigel@4465 557 gclog_or_tty->print(" free=" SIZE_FORMAT " frag=%1.4f\n", total_size, flsFrag());
duke@435 558 }
duke@435 559 }
duke@435 560
duke@435 561 void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
duke@435 562 assert_lock_strong(&_freelistLock);
duke@435 563 gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
duke@435 564 "--------------------------------\n");
jmasa@3732 565 size_t total_size = totalSizeInIndexedFreeLists();
jmasa@3732 566 size_t free_blocks = numFreeBlocksInIndexedFreeLists();
jmasa@3732 567 gclog_or_tty->print("Total Free Space: %d\n", total_size);
duke@435 568 gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSizeInIndexedFreeLists());
jmasa@3732 569 gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
jmasa@3732 570 if (free_blocks != 0) {
jmasa@3732 571 gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
duke@435 572 }
duke@435 573 }
duke@435 574
duke@435 575 size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const {
duke@435 576 size_t res = 0;
duke@435 577 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 578 debug_only(
duke@435 579 ssize_t recount = 0;
duke@435 580 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 581 fc = fc->next()) {
duke@435 582 recount += 1;
duke@435 583 }
duke@435 584 assert(recount == _indexedFreeList[i].count(),
duke@435 585 "Incorrect count in list");
duke@435 586 )
duke@435 587 res += _indexedFreeList[i].count();
duke@435 588 }
duke@435 589 return res;
duke@435 590 }
duke@435 591
duke@435 592 size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const {
duke@435 593 for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
duke@435 594 if (_indexedFreeList[i].head() != NULL) {
duke@435 595 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 596 return (size_t)i;
duke@435 597 }
duke@435 598 }
duke@435 599 return 0;
duke@435 600 }
duke@435 601
duke@435 602 void CompactibleFreeListSpace::set_end(HeapWord* value) {
duke@435 603 HeapWord* prevEnd = end();
duke@435 604 assert(prevEnd != value, "unnecessary set_end call");
ysr@2071 605 assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 606 "New end is below unallocated block");
duke@435 607 _end = value;
duke@435 608 if (prevEnd != NULL) {
duke@435 609 // Resize the underlying block offset table.
duke@435 610 _bt.resize(pointer_delta(value, bottom()));
ysr@1580 611 if (value <= prevEnd) {
ysr@2071 612 assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 613 "New end is below unallocated block");
ysr@1580 614 } else {
ysr@1580 615 // Now, take this new chunk and add it to the free blocks.
ysr@1580 616 // Note that the BOT has not yet been updated for this block.
ysr@1580 617 size_t newFcSize = pointer_delta(value, prevEnd);
ysr@1580 618 // XXX This is REALLY UGLY and should be fixed up. XXX
ysr@1580 619 if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) {
ysr@1580 620 // Mark the boundary of the new block in BOT
ysr@1580 621 _bt.mark_block(prevEnd, value);
ysr@1580 622 // put it all in the linAB
ysr@1580 623 if (ParallelGCThreads == 0) {
ysr@1580 624 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 625 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 626 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 627 } else { // ParallelGCThreads > 0
ysr@1580 628 MutexLockerEx x(parDictionaryAllocLock(),
ysr@1580 629 Mutex::_no_safepoint_check_flag);
ysr@1580 630 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 631 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 632 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 633 }
ysr@1580 634 // Births of chunks put into a LinAB are not recorded. Births
ysr@1580 635 // of chunks as they are allocated out of a LinAB are.
ysr@1580 636 } else {
ysr@1580 637 // Add the block to the free lists, if possible coalescing it
ysr@1580 638 // with the last free block, and update the BOT and census data.
ysr@1580 639 addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize);
duke@435 640 }
duke@435 641 }
duke@435 642 }
duke@435 643 }
duke@435 644
duke@435 645 class FreeListSpace_DCTOC : public Filtering_DCTOC {
duke@435 646 CompactibleFreeListSpace* _cfls;
duke@435 647 CMSCollector* _collector;
duke@435 648 protected:
duke@435 649 // Override.
duke@435 650 #define walk_mem_region_with_cl_DECL(ClosureType) \
duke@435 651 virtual void walk_mem_region_with_cl(MemRegion mr, \
duke@435 652 HeapWord* bottom, HeapWord* top, \
duke@435 653 ClosureType* cl); \
duke@435 654 void walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 655 HeapWord* bottom, HeapWord* top, \
duke@435 656 ClosureType* cl); \
duke@435 657 void walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 658 HeapWord* bottom, HeapWord* top, \
duke@435 659 ClosureType* cl)
coleenp@4037 660 walk_mem_region_with_cl_DECL(ExtendedOopClosure);
duke@435 661 walk_mem_region_with_cl_DECL(FilteringClosure);
duke@435 662
duke@435 663 public:
duke@435 664 FreeListSpace_DCTOC(CompactibleFreeListSpace* sp,
duke@435 665 CMSCollector* collector,
coleenp@4037 666 ExtendedOopClosure* cl,
duke@435 667 CardTableModRefBS::PrecisionStyle precision,
duke@435 668 HeapWord* boundary) :
duke@435 669 Filtering_DCTOC(sp, cl, precision, boundary),
duke@435 670 _cfls(sp), _collector(collector) {}
duke@435 671 };
duke@435 672
duke@435 673 // We de-virtualize the block-related calls below, since we know that our
duke@435 674 // space is a CompactibleFreeListSpace.
jmasa@3294 675
duke@435 676 #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 677 void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 678 HeapWord* bottom, \
duke@435 679 HeapWord* top, \
duke@435 680 ClosureType* cl) { \
jmasa@3294 681 bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
jmasa@3294 682 if (is_par) { \
jmasa@3294 683 assert(SharedHeap::heap()->n_par_threads() == \
jmasa@3294 684 SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
duke@435 685 walk_mem_region_with_cl_par(mr, bottom, top, cl); \
duke@435 686 } else { \
duke@435 687 walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
duke@435 688 } \
duke@435 689 } \
duke@435 690 void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 691 HeapWord* bottom, \
duke@435 692 HeapWord* top, \
duke@435 693 ClosureType* cl) { \
duke@435 694 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 695 back too far. */ \
duke@435 696 HeapWord* mr_start = mr.start(); \
duke@435 697 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 698 HeapWord* next = bottom + bot_size; \
duke@435 699 while (next < mr_start) { \
duke@435 700 bottom = next; \
duke@435 701 bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 702 next = bottom + bot_size; \
duke@435 703 } \
duke@435 704 \
duke@435 705 while (bottom < top) { \
duke@435 706 if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \
duke@435 707 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 708 oop(bottom)) && \
duke@435 709 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 710 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 711 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 712 } else { \
duke@435 713 bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 714 } \
duke@435 715 } \
duke@435 716 } \
duke@435 717 void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 718 HeapWord* bottom, \
duke@435 719 HeapWord* top, \
duke@435 720 ClosureType* cl) { \
duke@435 721 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 722 back too far. */ \
duke@435 723 HeapWord* mr_start = mr.start(); \
duke@435 724 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 725 HeapWord* next = bottom + bot_size; \
duke@435 726 while (next < mr_start) { \
duke@435 727 bottom = next; \
duke@435 728 bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 729 next = bottom + bot_size; \
duke@435 730 } \
duke@435 731 \
duke@435 732 while (bottom < top) { \
duke@435 733 if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \
duke@435 734 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 735 oop(bottom)) && \
duke@435 736 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 737 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 738 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 739 } else { \
duke@435 740 bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 741 } \
duke@435 742 } \
duke@435 743 }
duke@435 744
duke@435 745 // (There are only two of these, rather than N, because the split is due
duke@435 746 // only to the introduction of the FilteringClosure, a local part of the
duke@435 747 // impl of this abstraction.)
coleenp@4037 748 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
duke@435 749 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 750
duke@435 751 DirtyCardToOopClosure*
coleenp@4037 752 CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 753 CardTableModRefBS::PrecisionStyle precision,
duke@435 754 HeapWord* boundary) {
duke@435 755 return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary);
duke@435 756 }
duke@435 757
duke@435 758
duke@435 759 // Note on locking for the space iteration functions:
duke@435 760 // since the collector's iteration activities are concurrent with
duke@435 761 // allocation activities by mutators, absent a suitable mutual exclusion
duke@435 762 // mechanism the iterators may go awry. For instace a block being iterated
duke@435 763 // may suddenly be allocated or divided up and part of it allocated and
duke@435 764 // so on.
duke@435 765
duke@435 766 // Apply the given closure to each block in the space.
duke@435 767 void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) {
duke@435 768 assert_lock_strong(freelistLock());
duke@435 769 HeapWord *cur, *limit;
duke@435 770 for (cur = bottom(), limit = end(); cur < limit;
duke@435 771 cur += cl->do_blk_careful(cur));
duke@435 772 }
duke@435 773
duke@435 774 // Apply the given closure to each block in the space.
duke@435 775 void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) {
duke@435 776 assert_lock_strong(freelistLock());
duke@435 777 HeapWord *cur, *limit;
duke@435 778 for (cur = bottom(), limit = end(); cur < limit;
duke@435 779 cur += cl->do_blk(cur));
duke@435 780 }
duke@435 781
duke@435 782 // Apply the given closure to each oop in the space.
coleenp@4037 783 void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
duke@435 784 assert_lock_strong(freelistLock());
duke@435 785 HeapWord *cur, *limit;
duke@435 786 size_t curSize;
duke@435 787 for (cur = bottom(), limit = end(); cur < limit;
duke@435 788 cur += curSize) {
duke@435 789 curSize = block_size(cur);
duke@435 790 if (block_is_obj(cur)) {
duke@435 791 oop(cur)->oop_iterate(cl);
duke@435 792 }
duke@435 793 }
duke@435 794 }
duke@435 795
duke@435 796 // Apply the given closure to each oop in the space \intersect memory region.
coleenp@4037 797 void CompactibleFreeListSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
duke@435 798 assert_lock_strong(freelistLock());
duke@435 799 if (is_empty()) {
duke@435 800 return;
duke@435 801 }
duke@435 802 MemRegion cur = MemRegion(bottom(), end());
duke@435 803 mr = mr.intersection(cur);
duke@435 804 if (mr.is_empty()) {
duke@435 805 return;
duke@435 806 }
duke@435 807 if (mr.equals(cur)) {
duke@435 808 oop_iterate(cl);
duke@435 809 return;
duke@435 810 }
duke@435 811 assert(mr.end() <= end(), "just took an intersection above");
duke@435 812 HeapWord* obj_addr = block_start(mr.start());
duke@435 813 HeapWord* t = mr.end();
duke@435 814
duke@435 815 SpaceMemRegionOopsIterClosure smr_blk(cl, mr);
duke@435 816 if (block_is_obj(obj_addr)) {
duke@435 817 // Handle first object specially.
duke@435 818 oop obj = oop(obj_addr);
duke@435 819 obj_addr += adjustObjectSize(obj->oop_iterate(&smr_blk));
duke@435 820 } else {
duke@435 821 FreeChunk* fc = (FreeChunk*)obj_addr;
duke@435 822 obj_addr += fc->size();
duke@435 823 }
duke@435 824 while (obj_addr < t) {
duke@435 825 HeapWord* obj = obj_addr;
duke@435 826 obj_addr += block_size(obj_addr);
duke@435 827 // If "obj_addr" is not greater than top, then the
duke@435 828 // entire object "obj" is within the region.
duke@435 829 if (obj_addr <= t) {
duke@435 830 if (block_is_obj(obj)) {
duke@435 831 oop(obj)->oop_iterate(cl);
duke@435 832 }
duke@435 833 } else {
duke@435 834 // "obj" extends beyond end of region
duke@435 835 if (block_is_obj(obj)) {
duke@435 836 oop(obj)->oop_iterate(&smr_blk);
duke@435 837 }
duke@435 838 break;
duke@435 839 }
duke@435 840 }
duke@435 841 }
duke@435 842
duke@435 843 // NOTE: In the following methods, in order to safely be able to
duke@435 844 // apply the closure to an object, we need to be sure that the
duke@435 845 // object has been initialized. We are guaranteed that an object
duke@435 846 // is initialized if we are holding the Heap_lock with the
duke@435 847 // world stopped.
duke@435 848 void CompactibleFreeListSpace::verify_objects_initialized() const {
duke@435 849 if (is_init_completed()) {
duke@435 850 assert_locked_or_safepoint(Heap_lock);
duke@435 851 if (Universe::is_fully_initialized()) {
duke@435 852 guarantee(SafepointSynchronize::is_at_safepoint(),
duke@435 853 "Required for objects to be initialized");
duke@435 854 }
duke@435 855 } // else make a concession at vm start-up
duke@435 856 }
duke@435 857
duke@435 858 // Apply the given closure to each object in the space
duke@435 859 void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) {
duke@435 860 assert_lock_strong(freelistLock());
duke@435 861 NOT_PRODUCT(verify_objects_initialized());
duke@435 862 HeapWord *cur, *limit;
duke@435 863 size_t curSize;
duke@435 864 for (cur = bottom(), limit = end(); cur < limit;
duke@435 865 cur += curSize) {
duke@435 866 curSize = block_size(cur);
duke@435 867 if (block_is_obj(cur)) {
duke@435 868 blk->do_object(oop(cur));
duke@435 869 }
duke@435 870 }
duke@435 871 }
duke@435 872
jmasa@952 873 // Apply the given closure to each live object in the space
jmasa@952 874 // The usage of CompactibleFreeListSpace
jmasa@952 875 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 876 // objects in the space with references to objects that are no longer
jmasa@952 877 // valid. For example, an object may reference another object
jmasa@952 878 // that has already been sweep up (collected). This method uses
jmasa@952 879 // obj_is_alive() to determine whether it is safe to apply the closure to
jmasa@952 880 // an object. See obj_is_alive() for details on how liveness of an
jmasa@952 881 // object is decided.
jmasa@952 882
jmasa@952 883 void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 884 assert_lock_strong(freelistLock());
jmasa@952 885 NOT_PRODUCT(verify_objects_initialized());
jmasa@952 886 HeapWord *cur, *limit;
jmasa@952 887 size_t curSize;
jmasa@952 888 for (cur = bottom(), limit = end(); cur < limit;
jmasa@952 889 cur += curSize) {
jmasa@952 890 curSize = block_size(cur);
jmasa@952 891 if (block_is_obj(cur) && obj_is_alive(cur)) {
jmasa@952 892 blk->do_object(oop(cur));
jmasa@952 893 }
jmasa@952 894 }
jmasa@952 895 }
jmasa@952 896
duke@435 897 void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
duke@435 898 UpwardsObjectClosure* cl) {
ysr@1580 899 assert_locked(freelistLock());
duke@435 900 NOT_PRODUCT(verify_objects_initialized());
duke@435 901 Space::object_iterate_mem(mr, cl);
duke@435 902 }
duke@435 903
duke@435 904 // Callers of this iterator beware: The closure application should
duke@435 905 // be robust in the face of uninitialized objects and should (always)
duke@435 906 // return a correct size so that the next addr + size below gives us a
duke@435 907 // valid block boundary. [See for instance,
duke@435 908 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 909 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 910 HeapWord*
duke@435 911 CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 912 assert_lock_strong(freelistLock());
duke@435 913 HeapWord *addr, *last;
duke@435 914 size_t size;
duke@435 915 for (addr = bottom(), last = end();
duke@435 916 addr < last; addr += size) {
duke@435 917 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 918 if (fc->is_free()) {
duke@435 919 // Since we hold the free list lock, which protects direct
duke@435 920 // allocation in this generation by mutators, a free object
duke@435 921 // will remain free throughout this iteration code.
duke@435 922 size = fc->size();
duke@435 923 } else {
duke@435 924 // Note that the object need not necessarily be initialized,
duke@435 925 // because (for instance) the free list lock does NOT protect
duke@435 926 // object initialization. The closure application below must
duke@435 927 // therefore be correct in the face of uninitialized objects.
duke@435 928 size = cl->do_object_careful(oop(addr));
duke@435 929 if (size == 0) {
duke@435 930 // An unparsable object found. Signal early termination.
duke@435 931 return addr;
duke@435 932 }
duke@435 933 }
duke@435 934 }
duke@435 935 return NULL;
duke@435 936 }
duke@435 937
duke@435 938 // Callers of this iterator beware: The closure application should
duke@435 939 // be robust in the face of uninitialized objects and should (always)
duke@435 940 // return a correct size so that the next addr + size below gives us a
duke@435 941 // valid block boundary. [See for instance,
duke@435 942 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 943 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 944 HeapWord*
duke@435 945 CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
duke@435 946 ObjectClosureCareful* cl) {
duke@435 947 assert_lock_strong(freelistLock());
duke@435 948 // Can't use used_region() below because it may not necessarily
duke@435 949 // be the same as [bottom(),end()); although we could
duke@435 950 // use [used_region().start(),round_to(used_region().end(),CardSize)),
duke@435 951 // that appears too cumbersome, so we just do the simpler check
duke@435 952 // in the assertion below.
duke@435 953 assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr),
duke@435 954 "mr should be non-empty and within used space");
duke@435 955 HeapWord *addr, *end;
duke@435 956 size_t size;
duke@435 957 for (addr = block_start_careful(mr.start()), end = mr.end();
duke@435 958 addr < end; addr += size) {
duke@435 959 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 960 if (fc->is_free()) {
duke@435 961 // Since we hold the free list lock, which protects direct
duke@435 962 // allocation in this generation by mutators, a free object
duke@435 963 // will remain free throughout this iteration code.
duke@435 964 size = fc->size();
duke@435 965 } else {
duke@435 966 // Note that the object need not necessarily be initialized,
duke@435 967 // because (for instance) the free list lock does NOT protect
duke@435 968 // object initialization. The closure application below must
duke@435 969 // therefore be correct in the face of uninitialized objects.
duke@435 970 size = cl->do_object_careful_m(oop(addr), mr);
duke@435 971 if (size == 0) {
duke@435 972 // An unparsable object found. Signal early termination.
duke@435 973 return addr;
duke@435 974 }
duke@435 975 }
duke@435 976 }
duke@435 977 return NULL;
duke@435 978 }
duke@435 979
duke@435 980
ysr@777 981 HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const {
duke@435 982 NOT_PRODUCT(verify_objects_initialized());
duke@435 983 return _bt.block_start(p);
duke@435 984 }
duke@435 985
duke@435 986 HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const {
duke@435 987 return _bt.block_start_careful(p);
duke@435 988 }
duke@435 989
duke@435 990 size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const {
duke@435 991 NOT_PRODUCT(verify_objects_initialized());
duke@435 992 // This must be volatile, or else there is a danger that the compiler
duke@435 993 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 994 // the value read the first time in a register.
duke@435 995 while (true) {
duke@435 996 // We must do this until we get a consistent view of the object.
coleenp@622 997 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 998 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 999 size_t res = fc->size();
coleenp@622 1000 // If the object is still a free chunk, return the size, else it
coleenp@622 1001 // has been allocated so try again.
coleenp@622 1002 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1003 assert(res != 0, "Block size should not be 0");
duke@435 1004 return res;
duke@435 1005 }
coleenp@622 1006 } else {
coleenp@622 1007 // must read from what 'p' points to in each loop.
coleenp@4037 1008 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
coleenp@622 1009 if (k != NULL) {
coleenp@4037 1010 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1011 oop o = (oop)p;
coleenp@622 1012 assert(o->is_oop(true /* ignore mark word */), "Should be an oop.");
coleenp@4037 1013 size_t res = o->size_given_klass(k);
coleenp@622 1014 res = adjustObjectSize(res);
coleenp@622 1015 assert(res != 0, "Block size should not be 0");
coleenp@622 1016 return res;
coleenp@622 1017 }
duke@435 1018 }
duke@435 1019 }
duke@435 1020 }
duke@435 1021
coleenp@4037 1022 // TODO: Now that is_parsable is gone, we should combine these two functions.
duke@435 1023 // A variant of the above that uses the Printezis bits for
duke@435 1024 // unparsable but allocated objects. This avoids any possible
duke@435 1025 // stalls waiting for mutators to initialize objects, and is
duke@435 1026 // thus potentially faster than the variant above. However,
duke@435 1027 // this variant may return a zero size for a block that is
duke@435 1028 // under mutation and for which a consistent size cannot be
duke@435 1029 // inferred without stalling; see CMSCollector::block_size_if_printezis_bits().
duke@435 1030 size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p,
duke@435 1031 const CMSCollector* c)
duke@435 1032 const {
duke@435 1033 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1034 // This must be volatile, or else there is a danger that the compiler
duke@435 1035 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 1036 // the value read the first time in a register.
duke@435 1037 DEBUG_ONLY(uint loops = 0;)
duke@435 1038 while (true) {
duke@435 1039 // We must do this until we get a consistent view of the object.
coleenp@622 1040 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1041 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1042 size_t res = fc->size();
coleenp@622 1043 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1044 assert(res != 0, "Block size should not be 0");
duke@435 1045 assert(loops == 0, "Should be 0");
duke@435 1046 return res;
duke@435 1047 }
duke@435 1048 } else {
coleenp@622 1049 // must read from what 'p' points to in each loop.
coleenp@4037 1050 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
ysr@2533 1051 // We trust the size of any object that has a non-NULL
ysr@2533 1052 // klass and (for those in the perm gen) is parsable
ysr@2533 1053 // -- irrespective of its conc_safe-ty.
coleenp@4037 1054 if (k != NULL) {
coleenp@4037 1055 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1056 oop o = (oop)p;
coleenp@622 1057 assert(o->is_oop(), "Should be an oop");
coleenp@4037 1058 size_t res = o->size_given_klass(k);
coleenp@622 1059 res = adjustObjectSize(res);
coleenp@622 1060 assert(res != 0, "Block size should not be 0");
coleenp@622 1061 return res;
coleenp@622 1062 } else {
ysr@2533 1063 // May return 0 if P-bits not present.
coleenp@622 1064 return c->block_size_if_printezis_bits(p);
coleenp@622 1065 }
duke@435 1066 }
duke@435 1067 assert(loops == 0, "Can loop at most once");
duke@435 1068 DEBUG_ONLY(loops++;)
duke@435 1069 }
duke@435 1070 }
duke@435 1071
duke@435 1072 size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
duke@435 1073 NOT_PRODUCT(verify_objects_initialized());
duke@435 1074 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1075 FreeChunk* fc = (FreeChunk*)p;
jmasa@3732 1076 if (fc->is_free()) {
duke@435 1077 return fc->size();
duke@435 1078 } else {
duke@435 1079 // Ignore mark word because this may be a recently promoted
duke@435 1080 // object whose mark word is used to chain together grey
duke@435 1081 // objects (the last one would have a null value).
duke@435 1082 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1083 return adjustObjectSize(oop(p)->size());
duke@435 1084 }
duke@435 1085 }
duke@435 1086
duke@435 1087 // This implementation assumes that the property of "being an object" is
duke@435 1088 // stable. But being a free chunk may not be (because of parallel
duke@435 1089 // promotion.)
duke@435 1090 bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const {
duke@435 1091 FreeChunk* fc = (FreeChunk*)p;
duke@435 1092 assert(is_in_reserved(p), "Should be in space");
duke@435 1093 // When doing a mark-sweep-compact of the CMS generation, this
duke@435 1094 // assertion may fail because prepare_for_compaction() uses
duke@435 1095 // space that is garbage to maintain information on ranges of
duke@435 1096 // live objects so that these live ranges can be moved as a whole.
duke@435 1097 // Comment out this assertion until that problem can be solved
duke@435 1098 // (i.e., that the block start calculation may look at objects
duke@435 1099 // at address below "p" in finding the object that contains "p"
duke@435 1100 // and those objects (if garbage) may have been modified to hold
duke@435 1101 // live range information.
jmasa@2188 1102 // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p,
jmasa@2188 1103 // "Should be a block boundary");
coleenp@622 1104 if (FreeChunk::indicatesFreeChunk(p)) return false;
coleenp@4037 1105 Klass* k = oop(p)->klass_or_null();
duke@435 1106 if (k != NULL) {
duke@435 1107 // Ignore mark word because it may have been used to
duke@435 1108 // chain together promoted objects (the last one
duke@435 1109 // would have a null value).
duke@435 1110 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1111 return true;
duke@435 1112 } else {
duke@435 1113 return false; // Was not an object at the start of collection.
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117 // Check if the object is alive. This fact is checked either by consulting
duke@435 1118 // the main marking bitmap in the sweeping phase or, if it's a permanent
duke@435 1119 // generation and we're not in the sweeping phase, by checking the
duke@435 1120 // perm_gen_verify_bit_map where we store the "deadness" information if
duke@435 1121 // we did not sweep the perm gen in the most recent previous GC cycle.
duke@435 1122 bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const {
ysr@2301 1123 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
ysr@2301 1124 "Else races are possible");
ysr@2293 1125 assert(block_is_obj(p), "The address should point to an object");
duke@435 1126
duke@435 1127 // If we're sweeping, we use object liveness information from the main bit map
duke@435 1128 // for both perm gen and old gen.
duke@435 1129 // We don't need to lock the bitmap (live_map or dead_map below), because
duke@435 1130 // EITHER we are in the middle of the sweeping phase, and the
duke@435 1131 // main marking bit map (live_map below) is locked,
duke@435 1132 // OR we're in other phases and perm_gen_verify_bit_map (dead_map below)
duke@435 1133 // is stable, because it's mutated only in the sweeping phase.
ysr@2293 1134 // NOTE: This method is also used by jmap where, if class unloading is
ysr@2293 1135 // off, the results can return "false" for legitimate perm objects,
ysr@2293 1136 // when we are not in the midst of a sweeping phase, which can result
ysr@2293 1137 // in jmap not reporting certain perm gen objects. This will be moot
ysr@2293 1138 // if/when the perm gen goes away in the future.
duke@435 1139 if (_collector->abstract_state() == CMSCollector::Sweeping) {
duke@435 1140 CMSBitMap* live_map = _collector->markBitMap();
ysr@2293 1141 return live_map->par_isMarked((HeapWord*) p);
duke@435 1142 }
duke@435 1143 return true;
duke@435 1144 }
duke@435 1145
duke@435 1146 bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
duke@435 1147 FreeChunk* fc = (FreeChunk*)p;
duke@435 1148 assert(is_in_reserved(p), "Should be in space");
duke@435 1149 assert(_bt.block_start(p) == p, "Should be a block boundary");
jmasa@3732 1150 if (!fc->is_free()) {
duke@435 1151 // Ignore mark word because it may have been used to
duke@435 1152 // chain together promoted objects (the last one
duke@435 1153 // would have a null value).
duke@435 1154 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1155 return true;
duke@435 1156 }
duke@435 1157 return false;
duke@435 1158 }
duke@435 1159
duke@435 1160 // "MT-safe but not guaranteed MT-precise" (TM); you may get an
duke@435 1161 // approximate answer if you don't hold the freelistlock when you call this.
duke@435 1162 size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const {
duke@435 1163 size_t size = 0;
duke@435 1164 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 1165 debug_only(
duke@435 1166 // We may be calling here without the lock in which case we
duke@435 1167 // won't do this modest sanity check.
duke@435 1168 if (freelistLock()->owned_by_self()) {
duke@435 1169 size_t total_list_size = 0;
duke@435 1170 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 1171 fc = fc->next()) {
duke@435 1172 total_list_size += i;
duke@435 1173 }
duke@435 1174 assert(total_list_size == i * _indexedFreeList[i].count(),
duke@435 1175 "Count in list is incorrect");
duke@435 1176 }
duke@435 1177 )
duke@435 1178 size += i * _indexedFreeList[i].count();
duke@435 1179 }
duke@435 1180 return size;
duke@435 1181 }
duke@435 1182
duke@435 1183 HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) {
duke@435 1184 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
duke@435 1185 return allocate(size);
duke@435 1186 }
duke@435 1187
duke@435 1188 HeapWord*
duke@435 1189 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) {
duke@435 1190 return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size);
duke@435 1191 }
duke@435 1192
duke@435 1193 HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
duke@435 1194 assert_lock_strong(freelistLock());
duke@435 1195 HeapWord* res = NULL;
duke@435 1196 assert(size == adjustObjectSize(size),
duke@435 1197 "use adjustObjectSize() before calling into allocate()");
duke@435 1198
duke@435 1199 if (_adaptive_freelists) {
duke@435 1200 res = allocate_adaptive_freelists(size);
duke@435 1201 } else { // non-adaptive free lists
duke@435 1202 res = allocate_non_adaptive_freelists(size);
duke@435 1203 }
duke@435 1204
duke@435 1205 if (res != NULL) {
duke@435 1206 // check that res does lie in this space!
duke@435 1207 assert(is_in_reserved(res), "Not in this space!");
duke@435 1208 assert(is_aligned((void*)res), "alignment check");
duke@435 1209
duke@435 1210 FreeChunk* fc = (FreeChunk*)res;
duke@435 1211 fc->markNotFree();
jmasa@3732 1212 assert(!fc->is_free(), "shouldn't be marked free");
coleenp@622 1213 assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
duke@435 1214 // Verify that the block offset table shows this to
duke@435 1215 // be a single block, but not one which is unallocated.
duke@435 1216 _bt.verify_single_block(res, size);
duke@435 1217 _bt.verify_not_unallocated(res, size);
duke@435 1218 // mangle a just allocated object with a distinct pattern.
duke@435 1219 debug_only(fc->mangleAllocated(size));
duke@435 1220 }
duke@435 1221
duke@435 1222 return res;
duke@435 1223 }
duke@435 1224
duke@435 1225 HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) {
duke@435 1226 HeapWord* res = NULL;
duke@435 1227 // try and use linear allocation for smaller blocks
duke@435 1228 if (size < _smallLinearAllocBlock._allocation_size_limit) {
duke@435 1229 // if successful, the following also adjusts block offset table
duke@435 1230 res = getChunkFromSmallLinearAllocBlock(size);
duke@435 1231 }
duke@435 1232 // Else triage to indexed lists for smaller sizes
duke@435 1233 if (res == NULL) {
duke@435 1234 if (size < SmallForDictionary) {
duke@435 1235 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1236 } else {
duke@435 1237 // else get it from the big dictionary; if even this doesn't
duke@435 1238 // work we are out of luck.
duke@435 1239 res = (HeapWord*)getChunkFromDictionaryExact(size);
duke@435 1240 }
duke@435 1241 }
duke@435 1242
duke@435 1243 return res;
duke@435 1244 }
duke@435 1245
duke@435 1246 HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) {
duke@435 1247 assert_lock_strong(freelistLock());
duke@435 1248 HeapWord* res = NULL;
duke@435 1249 assert(size == adjustObjectSize(size),
duke@435 1250 "use adjustObjectSize() before calling into allocate()");
duke@435 1251
duke@435 1252 // Strategy
duke@435 1253 // if small
duke@435 1254 // exact size from small object indexed list if small
duke@435 1255 // small or large linear allocation block (linAB) as appropriate
duke@435 1256 // take from lists of greater sized chunks
duke@435 1257 // else
duke@435 1258 // dictionary
duke@435 1259 // small or large linear allocation block if it has the space
duke@435 1260 // Try allocating exact size from indexTable first
duke@435 1261 if (size < IndexSetSize) {
duke@435 1262 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1263 if(res != NULL) {
duke@435 1264 assert(res != (HeapWord*)_indexedFreeList[size].head(),
duke@435 1265 "Not removed from free list");
duke@435 1266 // no block offset table adjustment is necessary on blocks in
duke@435 1267 // the indexed lists.
duke@435 1268
duke@435 1269 // Try allocating from the small LinAB
duke@435 1270 } else if (size < _smallLinearAllocBlock._allocation_size_limit &&
duke@435 1271 (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) {
duke@435 1272 // if successful, the above also adjusts block offset table
duke@435 1273 // Note that this call will refill the LinAB to
duke@435 1274 // satisfy the request. This is different that
duke@435 1275 // evm.
duke@435 1276 // Don't record chunk off a LinAB? smallSplitBirth(size);
duke@435 1277 } else {
duke@435 1278 // Raid the exact free lists larger than size, even if they are not
duke@435 1279 // overpopulated.
duke@435 1280 res = (HeapWord*) getChunkFromGreater(size);
duke@435 1281 }
duke@435 1282 } else {
duke@435 1283 // Big objects get allocated directly from the dictionary.
duke@435 1284 res = (HeapWord*) getChunkFromDictionaryExact(size);
duke@435 1285 if (res == NULL) {
duke@435 1286 // Try hard not to fail since an allocation failure will likely
duke@435 1287 // trigger a synchronous GC. Try to get the space from the
duke@435 1288 // allocation blocks.
duke@435 1289 res = getChunkFromSmallLinearAllocBlockRemainder(size);
duke@435 1290 }
duke@435 1291 }
duke@435 1292
duke@435 1293 return res;
duke@435 1294 }
duke@435 1295
duke@435 1296 // A worst-case estimate of the space required (in HeapWords) to expand the heap
duke@435 1297 // when promoting obj.
duke@435 1298 size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const {
duke@435 1299 // Depending on the object size, expansion may require refilling either a
duke@435 1300 // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize
duke@435 1301 // is added because the dictionary may over-allocate to avoid fragmentation.
duke@435 1302 size_t space = obj_size;
duke@435 1303 if (!_adaptive_freelists) {
duke@435 1304 space = MAX2(space, _smallLinearAllocBlock._refillSize);
duke@435 1305 }
duke@435 1306 space += _promoInfo.refillSize() + 2 * MinChunkSize;
duke@435 1307 return space;
duke@435 1308 }
duke@435 1309
duke@435 1310 FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
duke@435 1311 FreeChunk* ret;
duke@435 1312
duke@435 1313 assert(numWords >= MinChunkSize, "Size is less than minimum");
duke@435 1314 assert(linearAllocationWouldFail() || bestFitFirst(),
duke@435 1315 "Should not be here");
duke@435 1316
duke@435 1317 size_t i;
duke@435 1318 size_t currSize = numWords + MinChunkSize;
duke@435 1319 assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
duke@435 1320 for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 1321 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
duke@435 1322 if (fl->head()) {
duke@435 1323 ret = getFromListGreater(fl, numWords);
jmasa@3732 1324 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1325 return ret;
duke@435 1326 }
duke@435 1327 }
duke@435 1328
duke@435 1329 currSize = MAX2((size_t)SmallForDictionary,
duke@435 1330 (size_t)(numWords + MinChunkSize));
duke@435 1331
duke@435 1332 /* Try to get a chunk that satisfies request, while avoiding
duke@435 1333 fragmentation that can't be handled. */
duke@435 1334 {
jmasa@3732 1335 ret = dictionary()->get_chunk(currSize);
duke@435 1336 if (ret != NULL) {
duke@435 1337 assert(ret->size() - numWords >= MinChunkSize,
duke@435 1338 "Chunk is too small");
duke@435 1339 _bt.allocated((HeapWord*)ret, ret->size());
duke@435 1340 /* Carve returned chunk. */
duke@435 1341 (void) splitChunkAndReturnRemainder(ret, numWords);
duke@435 1342 /* Label this as no longer a free chunk. */
jmasa@3732 1343 assert(ret->is_free(), "This chunk should be free");
jmasa@3732 1344 ret->link_prev(NULL);
duke@435 1345 }
jmasa@3732 1346 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1347 return ret;
duke@435 1348 }
duke@435 1349 ShouldNotReachHere();
duke@435 1350 }
duke@435 1351
ysr@3220 1352 bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
duke@435 1353 assert(fc->size() < IndexSetSize, "Size of chunk is too large");
jmasa@3732 1354 return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
duke@435 1355 }
duke@435 1356
ysr@3220 1357 bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
ysr@3220 1358 assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) ||
ysr@3220 1359 (_smallLinearAllocBlock._word_size == fc->size()),
ysr@3220 1360 "Linear allocation block shows incorrect size");
ysr@3220 1361 return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) &&
ysr@3220 1362 (_smallLinearAllocBlock._word_size == fc->size()));
ysr@3220 1363 }
ysr@3220 1364
ysr@3220 1365 // Check if the purported free chunk is present either as a linear
ysr@3220 1366 // allocation block, the size-indexed table of (smaller) free blocks,
ysr@3220 1367 // or the larger free blocks kept in the binary tree dictionary.
jmasa@3732 1368 bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
ysr@3220 1369 if (verify_chunk_is_linear_alloc_block(fc)) {
ysr@3220 1370 return true;
ysr@3220 1371 } else if (fc->size() < IndexSetSize) {
ysr@3220 1372 return verifyChunkInIndexedFreeLists(fc);
ysr@3220 1373 } else {
jmasa@3732 1374 return dictionary()->verify_chunk_in_free_list(fc);
duke@435 1375 }
duke@435 1376 }
duke@435 1377
duke@435 1378 #ifndef PRODUCT
duke@435 1379 void CompactibleFreeListSpace::assert_locked() const {
duke@435 1380 CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock());
duke@435 1381 }
ysr@1580 1382
ysr@1580 1383 void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const {
ysr@1580 1384 CMSLockVerifier::assert_locked(lock);
ysr@1580 1385 }
duke@435 1386 #endif
duke@435 1387
duke@435 1388 FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
duke@435 1389 // In the parallel case, the main thread holds the free list lock
duke@435 1390 // on behalf the parallel threads.
duke@435 1391 FreeChunk* fc;
duke@435 1392 {
duke@435 1393 // If GC is parallel, this might be called by several threads.
duke@435 1394 // This should be rare enough that the locking overhead won't affect
duke@435 1395 // the sequential code.
duke@435 1396 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 1397 Mutex::_no_safepoint_check_flag);
duke@435 1398 fc = getChunkFromDictionary(size);
duke@435 1399 }
duke@435 1400 if (fc != NULL) {
duke@435 1401 fc->dontCoalesce();
jmasa@3732 1402 assert(fc->is_free(), "Should be free, but not coalescable");
duke@435 1403 // Verify that the block offset table shows this to
duke@435 1404 // be a single block, but not one which is unallocated.
duke@435 1405 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1406 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 1407 }
duke@435 1408 return fc;
duke@435 1409 }
duke@435 1410
coleenp@548 1411 oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) {
duke@435 1412 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1413 assert_locked();
duke@435 1414
duke@435 1415 // if we are tracking promotions, then first ensure space for
duke@435 1416 // promotion (including spooling space for saving header if necessary).
duke@435 1417 // then allocate and copy, then track promoted info if needed.
duke@435 1418 // When tracking (see PromotionInfo::track()), the mark word may
duke@435 1419 // be displaced and in this case restoration of the mark word
duke@435 1420 // occurs in the (oop_since_save_marks_)iterate phase.
duke@435 1421 if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) {
duke@435 1422 return NULL;
duke@435 1423 }
duke@435 1424 // Call the allocate(size_t, bool) form directly to avoid the
duke@435 1425 // additional call through the allocate(size_t) form. Having
duke@435 1426 // the compile inline the call is problematic because allocate(size_t)
duke@435 1427 // is a virtual method.
duke@435 1428 HeapWord* res = allocate(adjustObjectSize(obj_size));
duke@435 1429 if (res != NULL) {
duke@435 1430 Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size);
duke@435 1431 // if we should be tracking promotions, do so.
duke@435 1432 if (_promoInfo.tracking()) {
duke@435 1433 _promoInfo.track((PromotedObject*)res);
duke@435 1434 }
duke@435 1435 }
duke@435 1436 return oop(res);
duke@435 1437 }
duke@435 1438
duke@435 1439 HeapWord*
duke@435 1440 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) {
duke@435 1441 assert_locked();
duke@435 1442 assert(size >= MinChunkSize, "minimum chunk size");
duke@435 1443 assert(size < _smallLinearAllocBlock._allocation_size_limit,
duke@435 1444 "maximum from smallLinearAllocBlock");
duke@435 1445 return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size);
duke@435 1446 }
duke@435 1447
duke@435 1448 HeapWord*
duke@435 1449 CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
duke@435 1450 size_t size) {
duke@435 1451 assert_locked();
duke@435 1452 assert(size >= MinChunkSize, "too small");
duke@435 1453 HeapWord* res = NULL;
duke@435 1454 // Try to do linear allocation from blk, making sure that
duke@435 1455 if (blk->_word_size == 0) {
duke@435 1456 // We have probably been unable to fill this either in the prologue or
duke@435 1457 // when it was exhausted at the last linear allocation. Bail out until
duke@435 1458 // next time.
duke@435 1459 assert(blk->_ptr == NULL, "consistency check");
duke@435 1460 return NULL;
duke@435 1461 }
duke@435 1462 assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check");
duke@435 1463 res = getChunkFromLinearAllocBlockRemainder(blk, size);
duke@435 1464 if (res != NULL) return res;
duke@435 1465
duke@435 1466 // about to exhaust this linear allocation block
duke@435 1467 if (blk->_word_size == size) { // exactly satisfied
duke@435 1468 res = blk->_ptr;
duke@435 1469 _bt.allocated(res, blk->_word_size);
duke@435 1470 } else if (size + MinChunkSize <= blk->_refillSize) {
ysr@1580 1471 size_t sz = blk->_word_size;
duke@435 1472 // Update _unallocated_block if the size is such that chunk would be
duke@435 1473 // returned to the indexed free list. All other chunks in the indexed
duke@435 1474 // free lists are allocated from the dictionary so that _unallocated_block
duke@435 1475 // has already been adjusted for them. Do it here so that the cost
duke@435 1476 // for all chunks added back to the indexed free lists.
ysr@1580 1477 if (sz < SmallForDictionary) {
ysr@1580 1478 _bt.allocated(blk->_ptr, sz);
duke@435 1479 }
duke@435 1480 // Return the chunk that isn't big enough, and then refill below.
ysr@1580 1481 addChunkToFreeLists(blk->_ptr, sz);
jmasa@3732 1482 split_birth(sz);
duke@435 1483 // Don't keep statistics on adding back chunk from a LinAB.
duke@435 1484 } else {
duke@435 1485 // A refilled block would not satisfy the request.
duke@435 1486 return NULL;
duke@435 1487 }
duke@435 1488
duke@435 1489 blk->_ptr = NULL; blk->_word_size = 0;
duke@435 1490 refillLinearAllocBlock(blk);
duke@435 1491 assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
duke@435 1492 "block was replenished");
duke@435 1493 if (res != NULL) {
jmasa@3732 1494 split_birth(size);
duke@435 1495 repairLinearAllocBlock(blk);
duke@435 1496 } else if (blk->_ptr != NULL) {
duke@435 1497 res = blk->_ptr;
duke@435 1498 size_t blk_size = blk->_word_size;
duke@435 1499 blk->_word_size -= size;
duke@435 1500 blk->_ptr += size;
jmasa@3732 1501 split_birth(size);
duke@435 1502 repairLinearAllocBlock(blk);
duke@435 1503 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1504 // view of the BOT and free blocks.
duke@435 1505 // Above must occur before BOT is updated below.
ysr@2071 1506 OrderAccess::storestore();
duke@435 1507 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1508 }
duke@435 1509 return res;
duke@435 1510 }
duke@435 1511
duke@435 1512 HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
duke@435 1513 LinearAllocBlock* blk,
duke@435 1514 size_t size) {
duke@435 1515 assert_locked();
duke@435 1516 assert(size >= MinChunkSize, "too small");
duke@435 1517
duke@435 1518 HeapWord* res = NULL;
duke@435 1519 // This is the common case. Keep it simple.
duke@435 1520 if (blk->_word_size >= size + MinChunkSize) {
duke@435 1521 assert(blk->_ptr != NULL, "consistency check");
duke@435 1522 res = blk->_ptr;
duke@435 1523 // Note that the BOT is up-to-date for the linAB before allocation. It
duke@435 1524 // indicates the start of the linAB. The split_block() updates the
duke@435 1525 // BOT for the linAB after the allocation (indicates the start of the
duke@435 1526 // next chunk to be allocated).
duke@435 1527 size_t blk_size = blk->_word_size;
duke@435 1528 blk->_word_size -= size;
duke@435 1529 blk->_ptr += size;
jmasa@3732 1530 split_birth(size);
duke@435 1531 repairLinearAllocBlock(blk);
duke@435 1532 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1533 // view of the BOT and free blocks.
duke@435 1534 // Above must occur before BOT is updated below.
ysr@2071 1535 OrderAccess::storestore();
duke@435 1536 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1537 _bt.allocated(res, size);
duke@435 1538 }
duke@435 1539 return res;
duke@435 1540 }
duke@435 1541
duke@435 1542 FreeChunk*
duke@435 1543 CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
duke@435 1544 assert_locked();
duke@435 1545 assert(size < SmallForDictionary, "just checking");
duke@435 1546 FreeChunk* res;
jmasa@3732 1547 res = _indexedFreeList[size].get_chunk_at_head();
duke@435 1548 if (res == NULL) {
duke@435 1549 res = getChunkFromIndexedFreeListHelper(size);
duke@435 1550 }
duke@435 1551 _bt.verify_not_unallocated((HeapWord*) res, size);
ysr@1580 1552 assert(res == NULL || res->size() == size, "Incorrect block size");
duke@435 1553 return res;
duke@435 1554 }
duke@435 1555
duke@435 1556 FreeChunk*
ysr@1580 1557 CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
ysr@1580 1558 bool replenish) {
duke@435 1559 assert_locked();
duke@435 1560 FreeChunk* fc = NULL;
duke@435 1561 if (size < SmallForDictionary) {
duke@435 1562 assert(_indexedFreeList[size].head() == NULL ||
duke@435 1563 _indexedFreeList[size].surplus() <= 0,
duke@435 1564 "List for this size should be empty or under populated");
duke@435 1565 // Try best fit in exact lists before replenishing the list
duke@435 1566 if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) {
duke@435 1567 // Replenish list.
duke@435 1568 //
duke@435 1569 // Things tried that failed.
duke@435 1570 // Tried allocating out of the two LinAB's first before
duke@435 1571 // replenishing lists.
duke@435 1572 // Tried small linAB of size 256 (size in indexed list)
duke@435 1573 // and replenishing indexed lists from the small linAB.
duke@435 1574 //
duke@435 1575 FreeChunk* newFc = NULL;
ysr@1580 1576 const size_t replenish_size = CMSIndexedFreeListReplenish * size;
duke@435 1577 if (replenish_size < SmallForDictionary) {
duke@435 1578 // Do not replenish from an underpopulated size.
duke@435 1579 if (_indexedFreeList[replenish_size].surplus() > 0 &&
duke@435 1580 _indexedFreeList[replenish_size].head() != NULL) {
jmasa@3732 1581 newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
ysr@1580 1582 } else if (bestFitFirst()) {
duke@435 1583 newFc = bestFitSmall(replenish_size);
duke@435 1584 }
duke@435 1585 }
ysr@1580 1586 if (newFc == NULL && replenish_size > size) {
ysr@1580 1587 assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant");
ysr@1580 1588 newFc = getChunkFromIndexedFreeListHelper(replenish_size, false);
ysr@1580 1589 }
ysr@1580 1590 // Note: The stats update re split-death of block obtained above
ysr@1580 1591 // will be recorded below precisely when we know we are going to
ysr@1580 1592 // be actually splitting it into more than one pieces below.
duke@435 1593 if (newFc != NULL) {
ysr@1580 1594 if (replenish || CMSReplenishIntermediate) {
ysr@1580 1595 // Replenish this list and return one block to caller.
ysr@1580 1596 size_t i;
ysr@1580 1597 FreeChunk *curFc, *nextFc;
ysr@1580 1598 size_t num_blk = newFc->size() / size;
ysr@1580 1599 assert(num_blk >= 1, "Smaller than requested?");
ysr@1580 1600 assert(newFc->size() % size == 0, "Should be integral multiple of request");
ysr@1580 1601 if (num_blk > 1) {
ysr@1580 1602 // we are sure we will be splitting the block just obtained
ysr@1580 1603 // into multiple pieces; record the split-death of the original
ysr@1580 1604 splitDeath(replenish_size);
ysr@1580 1605 }
ysr@1580 1606 // carve up and link blocks 0, ..., num_blk - 2
ysr@1580 1607 // The last chunk is not added to the lists but is returned as the
ysr@1580 1608 // free chunk.
ysr@1580 1609 for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size),
ysr@1580 1610 i = 0;
ysr@1580 1611 i < (num_blk - 1);
ysr@1580 1612 curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
ysr@1580 1613 i++) {
jmasa@3732 1614 curFc->set_size(size);
ysr@1580 1615 // Don't record this as a return in order to try and
ysr@1580 1616 // determine the "returns" from a GC.
ysr@1580 1617 _bt.verify_not_unallocated((HeapWord*) fc, size);
jmasa@3732 1618 _indexedFreeList[size].return_chunk_at_tail(curFc, false);
ysr@1580 1619 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1620 split_birth(size);
ysr@1580 1621 // Don't record the initial population of the indexed list
ysr@1580 1622 // as a split birth.
ysr@1580 1623 }
ysr@1580 1624
ysr@1580 1625 // check that the arithmetic was OK above
ysr@1580 1626 assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
ysr@1580 1627 "inconsistency in carving newFc");
jmasa@3732 1628 curFc->set_size(size);
duke@435 1629 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1630 split_birth(size);
ysr@1580 1631 fc = curFc;
ysr@1580 1632 } else {
ysr@1580 1633 // Return entire block to caller
ysr@1580 1634 fc = newFc;
duke@435 1635 }
duke@435 1636 }
duke@435 1637 }
duke@435 1638 } else {
duke@435 1639 // Get a free chunk from the free chunk dictionary to be returned to
duke@435 1640 // replenish the indexed free list.
duke@435 1641 fc = getChunkFromDictionaryExact(size);
duke@435 1642 }
jmasa@3732 1643 // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
duke@435 1644 return fc;
duke@435 1645 }
duke@435 1646
duke@435 1647 FreeChunk*
duke@435 1648 CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
duke@435 1649 assert_locked();
jmasa@4488 1650 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1651 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1652 if (fc == NULL) {
duke@435 1653 return NULL;
duke@435 1654 }
duke@435 1655 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1656 if (fc->size() >= size + MinChunkSize) {
duke@435 1657 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1658 }
duke@435 1659 assert(fc->size() >= size, "chunk too small");
duke@435 1660 assert(fc->size() < size + MinChunkSize, "chunk too big");
duke@435 1661 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1662 return fc;
duke@435 1663 }
duke@435 1664
duke@435 1665 FreeChunk*
duke@435 1666 CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
duke@435 1667 assert_locked();
jmasa@4488 1668 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1669 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1670 if (fc == NULL) {
duke@435 1671 return fc;
duke@435 1672 }
duke@435 1673 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1674 if (fc->size() == size) {
duke@435 1675 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1676 return fc;
duke@435 1677 }
jmasa@3732 1678 assert(fc->size() > size, "get_chunk() guarantee");
duke@435 1679 if (fc->size() < size + MinChunkSize) {
duke@435 1680 // Return the chunk to the dictionary and go get a bigger one.
duke@435 1681 returnChunkToDictionary(fc);
jmasa@4488 1682 fc = _dictionary->get_chunk(size + MinChunkSize,
jmasa@4488 1683 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1684 if (fc == NULL) {
duke@435 1685 return NULL;
duke@435 1686 }
duke@435 1687 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1688 }
duke@435 1689 assert(fc->size() >= size + MinChunkSize, "tautology");
duke@435 1690 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1691 assert(fc->size() == size, "chunk is wrong size");
duke@435 1692 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1693 return fc;
duke@435 1694 }
duke@435 1695
duke@435 1696 void
duke@435 1697 CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
duke@435 1698 assert_locked();
duke@435 1699
duke@435 1700 size_t size = chunk->size();
duke@435 1701 _bt.verify_single_block((HeapWord*)chunk, size);
duke@435 1702 // adjust _unallocated_block downward, as necessary
duke@435 1703 _bt.freed((HeapWord*)chunk, size);
jmasa@3732 1704 _dictionary->return_chunk(chunk);
ysr@1580 1705 #ifndef PRODUCT
ysr@1580 1706 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
goetz@6337 1707 TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >* tc = TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::as_TreeChunk(chunk);
goetz@6337 1708 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* tl = tc->list();
jmasa@4196 1709 tl->verify_stats();
ysr@1580 1710 }
ysr@1580 1711 #endif // PRODUCT
duke@435 1712 }
duke@435 1713
duke@435 1714 void
duke@435 1715 CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
duke@435 1716 assert_locked();
duke@435 1717 size_t size = fc->size();
duke@435 1718 _bt.verify_single_block((HeapWord*) fc, size);
duke@435 1719 _bt.verify_not_unallocated((HeapWord*) fc, size);
duke@435 1720 if (_adaptive_freelists) {
jmasa@3732 1721 _indexedFreeList[size].return_chunk_at_tail(fc);
duke@435 1722 } else {
jmasa@3732 1723 _indexedFreeList[size].return_chunk_at_head(fc);
duke@435 1724 }
ysr@1580 1725 #ifndef PRODUCT
ysr@1580 1726 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
ysr@1580 1727 _indexedFreeList[size].verify_stats();
ysr@1580 1728 }
ysr@1580 1729 #endif // PRODUCT
duke@435 1730 }
duke@435 1731
duke@435 1732 // Add chunk to end of last block -- if it's the largest
duke@435 1733 // block -- and update BOT and census data. We would
duke@435 1734 // of course have preferred to coalesce it with the
duke@435 1735 // last block, but it's currently less expensive to find the
duke@435 1736 // largest block than it is to find the last.
duke@435 1737 void
duke@435 1738 CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
duke@435 1739 HeapWord* chunk, size_t size) {
duke@435 1740 // check that the chunk does lie in this space!
duke@435 1741 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1742 // One of the parallel gc task threads may be here
duke@435 1743 // whilst others are allocating.
duke@435 1744 Mutex* lock = NULL;
duke@435 1745 if (ParallelGCThreads != 0) {
duke@435 1746 lock = &_parDictionaryAllocLock;
duke@435 1747 }
duke@435 1748 FreeChunk* ec;
duke@435 1749 {
duke@435 1750 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
jmasa@3732 1751 ec = dictionary()->find_largest_dict(); // get largest block
jmasa@4196 1752 if (ec != NULL && ec->end() == (uintptr_t*) chunk) {
duke@435 1753 // It's a coterminal block - we can coalesce.
duke@435 1754 size_t old_size = ec->size();
duke@435 1755 coalDeath(old_size);
duke@435 1756 removeChunkFromDictionary(ec);
duke@435 1757 size += old_size;
duke@435 1758 } else {
duke@435 1759 ec = (FreeChunk*)chunk;
duke@435 1760 }
duke@435 1761 }
jmasa@3732 1762 ec->set_size(size);
duke@435 1763 debug_only(ec->mangleFreed(size));
brutisso@5166 1764 if (size < SmallForDictionary && ParallelGCThreads != 0) {
duke@435 1765 lock = _indexedFreeListParLocks[size];
duke@435 1766 }
duke@435 1767 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
duke@435 1768 addChunkAndRepairOffsetTable((HeapWord*)ec, size, true);
duke@435 1769 // record the birth under the lock since the recording involves
duke@435 1770 // manipulation of the list on which the chunk lives and
duke@435 1771 // if the chunk is allocated and is the last on the list,
duke@435 1772 // the list can go away.
duke@435 1773 coalBirth(size);
duke@435 1774 }
duke@435 1775
duke@435 1776 void
duke@435 1777 CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
duke@435 1778 size_t size) {
duke@435 1779 // check that the chunk does lie in this space!
duke@435 1780 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1781 assert_locked();
duke@435 1782 _bt.verify_single_block(chunk, size);
duke@435 1783
duke@435 1784 FreeChunk* fc = (FreeChunk*) chunk;
jmasa@3732 1785 fc->set_size(size);
duke@435 1786 debug_only(fc->mangleFreed(size));
duke@435 1787 if (size < SmallForDictionary) {
duke@435 1788 returnChunkToFreeList(fc);
duke@435 1789 } else {
duke@435 1790 returnChunkToDictionary(fc);
duke@435 1791 }
duke@435 1792 }
duke@435 1793
duke@435 1794 void
duke@435 1795 CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk,
duke@435 1796 size_t size, bool coalesced) {
duke@435 1797 assert_locked();
duke@435 1798 assert(chunk != NULL, "null chunk");
duke@435 1799 if (coalesced) {
duke@435 1800 // repair BOT
duke@435 1801 _bt.single_block(chunk, size);
duke@435 1802 }
duke@435 1803 addChunkToFreeLists(chunk, size);
duke@435 1804 }
duke@435 1805
duke@435 1806 // We _must_ find the purported chunk on our free lists;
duke@435 1807 // we assert if we don't.
duke@435 1808 void
duke@435 1809 CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) {
duke@435 1810 size_t size = fc->size();
duke@435 1811 assert_locked();
duke@435 1812 debug_only(verifyFreeLists());
duke@435 1813 if (size < SmallForDictionary) {
duke@435 1814 removeChunkFromIndexedFreeList(fc);
duke@435 1815 } else {
duke@435 1816 removeChunkFromDictionary(fc);
duke@435 1817 }
duke@435 1818 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1819 debug_only(verifyFreeLists());
duke@435 1820 }
duke@435 1821
duke@435 1822 void
duke@435 1823 CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
duke@435 1824 size_t size = fc->size();
duke@435 1825 assert_locked();
duke@435 1826 assert(fc != NULL, "null chunk");
duke@435 1827 _bt.verify_single_block((HeapWord*)fc, size);
jmasa@3732 1828 _dictionary->remove_chunk(fc);
duke@435 1829 // adjust _unallocated_block upward, as necessary
duke@435 1830 _bt.allocated((HeapWord*)fc, size);
duke@435 1831 }
duke@435 1832
duke@435 1833 void
duke@435 1834 CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
duke@435 1835 assert_locked();
duke@435 1836 size_t size = fc->size();
duke@435 1837 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1838 NOT_PRODUCT(
duke@435 1839 if (FLSVerifyIndexTable) {
duke@435 1840 verifyIndexedFreeList(size);
duke@435 1841 }
duke@435 1842 )
jmasa@3732 1843 _indexedFreeList[size].remove_chunk(fc);
duke@435 1844 NOT_PRODUCT(
duke@435 1845 if (FLSVerifyIndexTable) {
duke@435 1846 verifyIndexedFreeList(size);
duke@435 1847 }
duke@435 1848 )
duke@435 1849 }
duke@435 1850
duke@435 1851 FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
duke@435 1852 /* A hint is the next larger size that has a surplus.
duke@435 1853 Start search at a size large enough to guarantee that
duke@435 1854 the excess is >= MIN_CHUNK. */
duke@435 1855 size_t start = align_object_size(numWords + MinChunkSize);
duke@435 1856 if (start < IndexSetSize) {
jmasa@4196 1857 AdaptiveFreeList<FreeChunk>* it = _indexedFreeList;
duke@435 1858 size_t hint = _indexedFreeList[start].hint();
duke@435 1859 while (hint < IndexSetSize) {
duke@435 1860 assert(hint % MinObjAlignment == 0, "hint should be aligned");
jmasa@4196 1861 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[hint];
duke@435 1862 if (fl->surplus() > 0 && fl->head() != NULL) {
duke@435 1863 // Found a list with surplus, reset original hint
duke@435 1864 // and split out a free chunk which is returned.
duke@435 1865 _indexedFreeList[start].set_hint(hint);
duke@435 1866 FreeChunk* res = getFromListGreater(fl, numWords);
jmasa@3732 1867 assert(res == NULL || res->is_free(),
duke@435 1868 "Should be returning a free chunk");
duke@435 1869 return res;
duke@435 1870 }
duke@435 1871 hint = fl->hint(); /* keep looking */
duke@435 1872 }
duke@435 1873 /* None found. */
duke@435 1874 it[start].set_hint(IndexSetSize);
duke@435 1875 }
duke@435 1876 return NULL;
duke@435 1877 }
duke@435 1878
duke@435 1879 /* Requires fl->size >= numWords + MinChunkSize */
jmasa@4196 1880 FreeChunk* CompactibleFreeListSpace::getFromListGreater(AdaptiveFreeList<FreeChunk>* fl,
duke@435 1881 size_t numWords) {
duke@435 1882 FreeChunk *curr = fl->head();
duke@435 1883 size_t oldNumWords = curr->size();
duke@435 1884 assert(numWords >= MinChunkSize, "Word size is too small");
duke@435 1885 assert(curr != NULL, "List is empty");
duke@435 1886 assert(oldNumWords >= numWords + MinChunkSize,
duke@435 1887 "Size of chunks in the list is too small");
duke@435 1888
jmasa@3732 1889 fl->remove_chunk(curr);
duke@435 1890 // recorded indirectly by splitChunkAndReturnRemainder -
duke@435 1891 // smallSplit(oldNumWords, numWords);
duke@435 1892 FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
duke@435 1893 // Does anything have to be done for the remainder in terms of
duke@435 1894 // fixing the card table?
jmasa@3732 1895 assert(new_chunk == NULL || new_chunk->is_free(),
duke@435 1896 "Should be returning a free chunk");
duke@435 1897 return new_chunk;
duke@435 1898 }
duke@435 1899
duke@435 1900 FreeChunk*
duke@435 1901 CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
duke@435 1902 size_t new_size) {
duke@435 1903 assert_locked();
duke@435 1904 size_t size = chunk->size();
duke@435 1905 assert(size > new_size, "Split from a smaller block?");
duke@435 1906 assert(is_aligned(chunk), "alignment problem");
duke@435 1907 assert(size == adjustObjectSize(size), "alignment problem");
duke@435 1908 size_t rem_size = size - new_size;
duke@435 1909 assert(rem_size == adjustObjectSize(rem_size), "alignment problem");
duke@435 1910 assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
duke@435 1911 FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
duke@435 1912 assert(is_aligned(ffc), "alignment problem");
jmasa@3732 1913 ffc->set_size(rem_size);
jmasa@3732 1914 ffc->link_next(NULL);
jmasa@3732 1915 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
duke@435 1916 // Above must occur before BOT is updated below.
duke@435 1917 // adjust block offset table
ysr@2071 1918 OrderAccess::storestore();
jmasa@3732 1919 assert(chunk->is_free() && ffc->is_free(), "Error");
duke@435 1920 _bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
duke@435 1921 if (rem_size < SmallForDictionary) {
duke@435 1922 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
duke@435 1923 if (is_par) _indexedFreeListParLocks[rem_size]->lock();
jmasa@3294 1924 assert(!is_par ||
jmasa@3294 1925 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 1926 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 1927 returnChunkToFreeList(ffc);
duke@435 1928 split(size, rem_size);
duke@435 1929 if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
duke@435 1930 } else {
duke@435 1931 returnChunkToDictionary(ffc);
duke@435 1932 split(size ,rem_size);
duke@435 1933 }
jmasa@3732 1934 chunk->set_size(new_size);
duke@435 1935 return chunk;
duke@435 1936 }
duke@435 1937
duke@435 1938 void
duke@435 1939 CompactibleFreeListSpace::sweep_completed() {
duke@435 1940 // Now that space is probably plentiful, refill linear
duke@435 1941 // allocation blocks as needed.
duke@435 1942 refillLinearAllocBlocksIfNeeded();
duke@435 1943 }
duke@435 1944
duke@435 1945 void
duke@435 1946 CompactibleFreeListSpace::gc_prologue() {
duke@435 1947 assert_locked();
duke@435 1948 if (PrintFLSStatistics != 0) {
duke@435 1949 gclog_or_tty->print("Before GC:\n");
duke@435 1950 reportFreeListStatistics();
duke@435 1951 }
duke@435 1952 refillLinearAllocBlocksIfNeeded();
duke@435 1953 }
duke@435 1954
duke@435 1955 void
duke@435 1956 CompactibleFreeListSpace::gc_epilogue() {
duke@435 1957 assert_locked();
duke@435 1958 if (PrintGCDetails && Verbose && !_adaptive_freelists) {
duke@435 1959 if (_smallLinearAllocBlock._word_size == 0)
duke@435 1960 warning("CompactibleFreeListSpace(epilogue):: Linear allocation failure");
duke@435 1961 }
duke@435 1962 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1963 _promoInfo.stopTrackingPromotions();
duke@435 1964 repairLinearAllocationBlocks();
duke@435 1965 // Print Space's stats
duke@435 1966 if (PrintFLSStatistics != 0) {
duke@435 1967 gclog_or_tty->print("After GC:\n");
duke@435 1968 reportFreeListStatistics();
duke@435 1969 }
duke@435 1970 }
duke@435 1971
duke@435 1972 // Iteration support, mostly delegated from a CMS generation
duke@435 1973
duke@435 1974 void CompactibleFreeListSpace::save_marks() {
ysr@2825 1975 assert(Thread::current()->is_VM_thread(),
ysr@2825 1976 "Global variable should only be set when single-threaded");
ysr@2825 1977 // Mark the "end" of the used space at the time of this call;
duke@435 1978 // note, however, that promoted objects from this point
duke@435 1979 // on are tracked in the _promoInfo below.
ysr@2071 1980 set_saved_mark_word(unallocated_block());
ysr@2825 1981 #ifdef ASSERT
ysr@2825 1982 // Check the sanity of save_marks() etc.
ysr@2825 1983 MemRegion ur = used_region();
ysr@2825 1984 MemRegion urasm = used_region_at_save_marks();
ysr@2825 1985 assert(ur.contains(urasm),
ysr@2825 1986 err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
ysr@2825 1987 " should contain [" PTR_FORMAT "," PTR_FORMAT ")",
ysr@2825 1988 ur.start(), ur.end(), urasm.start(), urasm.end()));
ysr@2825 1989 #endif
duke@435 1990 // inform allocator that promotions should be tracked.
duke@435 1991 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1992 _promoInfo.startTrackingPromotions();
duke@435 1993 }
duke@435 1994
duke@435 1995 bool CompactibleFreeListSpace::no_allocs_since_save_marks() {
duke@435 1996 assert(_promoInfo.tracking(), "No preceding save_marks?");
ysr@2132 1997 assert(SharedHeap::heap()->n_par_threads() == 0,
ysr@2132 1998 "Shouldn't be called if using parallel gc.");
duke@435 1999 return _promoInfo.noPromotions();
duke@435 2000 }
duke@435 2001
duke@435 2002 #define CFLS_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 2003 \
duke@435 2004 void CompactibleFreeListSpace:: \
duke@435 2005 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 2006 assert(SharedHeap::heap()->n_par_threads() == 0, \
duke@435 2007 "Shouldn't be called (yet) during parallel part of gc."); \
duke@435 2008 _promoInfo.promoted_oops_iterate##nv_suffix(blk); \
duke@435 2009 /* \
duke@435 2010 * This also restores any displaced headers and removes the elements from \
duke@435 2011 * the iteration set as they are processed, so that we have a clean slate \
duke@435 2012 * at the end of the iteration. Note, thus, that if new objects are \
duke@435 2013 * promoted as a result of the iteration they are iterated over as well. \
duke@435 2014 */ \
duke@435 2015 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency"); \
duke@435 2016 }
duke@435 2017
duke@435 2018 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 2019
ysr@447 2020 bool CompactibleFreeListSpace::linearAllocationWouldFail() const {
duke@435 2021 return _smallLinearAllocBlock._word_size == 0;
duke@435 2022 }
duke@435 2023
duke@435 2024 void CompactibleFreeListSpace::repairLinearAllocationBlocks() {
duke@435 2025 // Fix up linear allocation blocks to look like free blocks
duke@435 2026 repairLinearAllocBlock(&_smallLinearAllocBlock);
duke@435 2027 }
duke@435 2028
duke@435 2029 void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2030 assert_locked();
duke@435 2031 if (blk->_ptr != NULL) {
duke@435 2032 assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
duke@435 2033 "Minimum block size requirement");
duke@435 2034 FreeChunk* fc = (FreeChunk*)(blk->_ptr);
jmasa@3732 2035 fc->set_size(blk->_word_size);
jmasa@3732 2036 fc->link_prev(NULL); // mark as free
duke@435 2037 fc->dontCoalesce();
jmasa@3732 2038 assert(fc->is_free(), "just marked it free");
duke@435 2039 assert(fc->cantCoalesce(), "just marked it uncoalescable");
duke@435 2040 }
duke@435 2041 }
duke@435 2042
duke@435 2043 void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() {
duke@435 2044 assert_locked();
duke@435 2045 if (_smallLinearAllocBlock._ptr == NULL) {
duke@435 2046 assert(_smallLinearAllocBlock._word_size == 0,
duke@435 2047 "Size of linAB should be zero if the ptr is NULL");
duke@435 2048 // Reset the linAB refill and allocation size limit.
duke@435 2049 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc);
duke@435 2050 }
duke@435 2051 refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock);
duke@435 2052 }
duke@435 2053
duke@435 2054 void
duke@435 2055 CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) {
duke@435 2056 assert_locked();
duke@435 2057 assert((blk->_ptr == NULL && blk->_word_size == 0) ||
duke@435 2058 (blk->_ptr != NULL && blk->_word_size >= MinChunkSize),
duke@435 2059 "blk invariant");
duke@435 2060 if (blk->_ptr == NULL) {
duke@435 2061 refillLinearAllocBlock(blk);
duke@435 2062 }
duke@435 2063 if (PrintMiscellaneous && Verbose) {
duke@435 2064 if (blk->_word_size == 0) {
duke@435 2065 warning("CompactibleFreeListSpace(prologue):: Linear allocation failure");
duke@435 2066 }
duke@435 2067 }
duke@435 2068 }
duke@435 2069
duke@435 2070 void
duke@435 2071 CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2072 assert_locked();
duke@435 2073 assert(blk->_word_size == 0 && blk->_ptr == NULL,
duke@435 2074 "linear allocation block should be empty");
duke@435 2075 FreeChunk* fc;
duke@435 2076 if (blk->_refillSize < SmallForDictionary &&
duke@435 2077 (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) {
duke@435 2078 // A linAB's strategy might be to use small sizes to reduce
duke@435 2079 // fragmentation but still get the benefits of allocation from a
duke@435 2080 // linAB.
duke@435 2081 } else {
duke@435 2082 fc = getChunkFromDictionary(blk->_refillSize);
duke@435 2083 }
duke@435 2084 if (fc != NULL) {
duke@435 2085 blk->_ptr = (HeapWord*)fc;
duke@435 2086 blk->_word_size = fc->size();
duke@435 2087 fc->dontCoalesce(); // to prevent sweeper from sweeping us up
duke@435 2088 }
duke@435 2089 }
duke@435 2090
ysr@447 2091 // Support for concurrent collection policy decisions.
ysr@447 2092 bool CompactibleFreeListSpace::should_concurrent_collect() const {
ysr@447 2093 // In the future we might want to add in frgamentation stats --
ysr@447 2094 // including erosion of the "mountain" into this decision as well.
ysr@447 2095 return !adaptive_freelists() && linearAllocationWouldFail();
ysr@447 2096 }
ysr@447 2097
duke@435 2098 // Support for compaction
duke@435 2099
duke@435 2100 void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 2101 SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
duke@435 2102 // prepare_for_compaction() uses the space between live objects
duke@435 2103 // so that later phase can skip dead space quickly. So verification
duke@435 2104 // of the free lists doesn't work after.
duke@435 2105 }
duke@435 2106
duke@435 2107 #define obj_size(q) adjustObjectSize(oop(q)->size())
duke@435 2108 #define adjust_obj_size(s) adjustObjectSize(s)
duke@435 2109
duke@435 2110 void CompactibleFreeListSpace::adjust_pointers() {
duke@435 2111 // In other versions of adjust_pointers(), a bail out
duke@435 2112 // based on the amount of live data in the generation
duke@435 2113 // (i.e., if 0, bail out) may be used.
duke@435 2114 // Cannot test used() == 0 here because the free lists have already
duke@435 2115 // been mangled by the compaction.
duke@435 2116
duke@435 2117 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 2118 // See note about verification in prepare_for_compaction().
duke@435 2119 }
duke@435 2120
duke@435 2121 void CompactibleFreeListSpace::compact() {
duke@435 2122 SCAN_AND_COMPACT(obj_size);
duke@435 2123 }
duke@435 2124
duke@435 2125 // fragmentation_metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]
duke@435 2126 // where fbs is free block sizes
duke@435 2127 double CompactibleFreeListSpace::flsFrag() const {
duke@435 2128 size_t itabFree = totalSizeInIndexedFreeLists();
duke@435 2129 double frag = 0.0;
duke@435 2130 size_t i;
duke@435 2131
duke@435 2132 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 2133 double sz = i;
duke@435 2134 frag += _indexedFreeList[i].count() * (sz * sz);
duke@435 2135 }
duke@435 2136
duke@435 2137 double totFree = itabFree +
jmasa@3732 2138 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
duke@435 2139 if (totFree > 0) {
duke@435 2140 frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
duke@435 2141 (totFree * totFree));
duke@435 2142 frag = (double)1.0 - frag;
duke@435 2143 } else {
duke@435 2144 assert(frag == 0.0, "Follows from totFree == 0");
duke@435 2145 }
duke@435 2146 return frag;
duke@435 2147 }
duke@435 2148
duke@435 2149 void CompactibleFreeListSpace::beginSweepFLCensus(
duke@435 2150 float inter_sweep_current,
ysr@1580 2151 float inter_sweep_estimate,
ysr@1580 2152 float intra_sweep_estimate) {
duke@435 2153 assert_locked();
duke@435 2154 size_t i;
duke@435 2155 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2156 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
ysr@1580 2157 if (PrintFLSStatistics > 1) {
ysr@1580 2158 gclog_or_tty->print("size[%d] : ", i);
ysr@1580 2159 }
ysr@1580 2160 fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
jmasa@3732 2161 fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
jmasa@3732 2162 fl->set_before_sweep(fl->count());
jmasa@3732 2163 fl->set_bfr_surp(fl->surplus());
duke@435 2164 }
jmasa@3732 2165 _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
duke@435 2166 inter_sweep_current,
ysr@1580 2167 inter_sweep_estimate,
ysr@1580 2168 intra_sweep_estimate);
duke@435 2169 }
duke@435 2170
duke@435 2171 void CompactibleFreeListSpace::setFLSurplus() {
duke@435 2172 assert_locked();
duke@435 2173 size_t i;
duke@435 2174 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2175 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2176 fl->set_surplus(fl->count() -
ysr@1580 2177 (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
duke@435 2178 }
duke@435 2179 }
duke@435 2180
duke@435 2181 void CompactibleFreeListSpace::setFLHints() {
duke@435 2182 assert_locked();
duke@435 2183 size_t i;
duke@435 2184 size_t h = IndexSetSize;
duke@435 2185 for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
jmasa@4196 2186 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2187 fl->set_hint(h);
duke@435 2188 if (fl->surplus() > 0) {
duke@435 2189 h = i;
duke@435 2190 }
duke@435 2191 }
duke@435 2192 }
duke@435 2193
duke@435 2194 void CompactibleFreeListSpace::clearFLCensus() {
duke@435 2195 assert_locked();
ysr@3264 2196 size_t i;
duke@435 2197 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2198 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2199 fl->set_prev_sweep(fl->count());
jmasa@3732 2200 fl->set_coal_births(0);
jmasa@3732 2201 fl->set_coal_deaths(0);
jmasa@3732 2202 fl->set_split_births(0);
jmasa@3732 2203 fl->set_split_deaths(0);
duke@435 2204 }
duke@435 2205 }
duke@435 2206
ysr@447 2207 void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
ysr@1580 2208 if (PrintFLSStatistics > 0) {
jmasa@3732 2209 HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
ysr@1580 2210 gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
ysr@1580 2211 largestAddr);
ysr@1580 2212 }
duke@435 2213 setFLSurplus();
duke@435 2214 setFLHints();
duke@435 2215 if (PrintGC && PrintFLSCensus > 0) {
ysr@447 2216 printFLCensus(sweep_count);
duke@435 2217 }
duke@435 2218 clearFLCensus();
duke@435 2219 assert_locked();
jmasa@3732 2220 _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
duke@435 2221 }
duke@435 2222
duke@435 2223 bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
duke@435 2224 if (size < SmallForDictionary) {
jmasa@4196 2225 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2226 return (fl->coal_desired() < 0) ||
jmasa@3732 2227 ((int)fl->count() > fl->coal_desired());
duke@435 2228 } else {
jmasa@3732 2229 return dictionary()->coal_dict_over_populated(size);
duke@435 2230 }
duke@435 2231 }
duke@435 2232
duke@435 2233 void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
duke@435 2234 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2235 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2236 fl->increment_coal_births();
duke@435 2237 fl->increment_surplus();
duke@435 2238 }
duke@435 2239
duke@435 2240 void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
duke@435 2241 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2242 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2243 fl->increment_coal_deaths();
duke@435 2244 fl->decrement_surplus();
duke@435 2245 }
duke@435 2246
duke@435 2247 void CompactibleFreeListSpace::coalBirth(size_t size) {
duke@435 2248 if (size < SmallForDictionary) {
duke@435 2249 smallCoalBirth(size);
duke@435 2250 } else {
jmasa@4196 2251 dictionary()->dict_census_update(size,
duke@435 2252 false /* split */,
duke@435 2253 true /* birth */);
duke@435 2254 }
duke@435 2255 }
duke@435 2256
duke@435 2257 void CompactibleFreeListSpace::coalDeath(size_t size) {
duke@435 2258 if(size < SmallForDictionary) {
duke@435 2259 smallCoalDeath(size);
duke@435 2260 } else {
jmasa@4196 2261 dictionary()->dict_census_update(size,
duke@435 2262 false /* split */,
duke@435 2263 false /* birth */);
duke@435 2264 }
duke@435 2265 }
duke@435 2266
duke@435 2267 void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
duke@435 2268 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2269 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2270 fl->increment_split_births();
duke@435 2271 fl->increment_surplus();
duke@435 2272 }
duke@435 2273
duke@435 2274 void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
duke@435 2275 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2276 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2277 fl->increment_split_deaths();
duke@435 2278 fl->decrement_surplus();
duke@435 2279 }
duke@435 2280
jmasa@3732 2281 void CompactibleFreeListSpace::split_birth(size_t size) {
duke@435 2282 if (size < SmallForDictionary) {
duke@435 2283 smallSplitBirth(size);
duke@435 2284 } else {
jmasa@4196 2285 dictionary()->dict_census_update(size,
duke@435 2286 true /* split */,
duke@435 2287 true /* birth */);
duke@435 2288 }
duke@435 2289 }
duke@435 2290
duke@435 2291 void CompactibleFreeListSpace::splitDeath(size_t size) {
duke@435 2292 if (size < SmallForDictionary) {
duke@435 2293 smallSplitDeath(size);
duke@435 2294 } else {
jmasa@4196 2295 dictionary()->dict_census_update(size,
duke@435 2296 true /* split */,
duke@435 2297 false /* birth */);
duke@435 2298 }
duke@435 2299 }
duke@435 2300
duke@435 2301 void CompactibleFreeListSpace::split(size_t from, size_t to1) {
duke@435 2302 size_t to2 = from - to1;
duke@435 2303 splitDeath(from);
jmasa@3732 2304 split_birth(to1);
jmasa@3732 2305 split_birth(to2);
duke@435 2306 }
duke@435 2307
duke@435 2308 void CompactibleFreeListSpace::print() const {
ysr@2294 2309 print_on(tty);
duke@435 2310 }
duke@435 2311
duke@435 2312 void CompactibleFreeListSpace::prepare_for_verify() {
duke@435 2313 assert_locked();
duke@435 2314 repairLinearAllocationBlocks();
duke@435 2315 // Verify that the SpoolBlocks look like free blocks of
duke@435 2316 // appropriate sizes... To be done ...
duke@435 2317 }
duke@435 2318
duke@435 2319 class VerifyAllBlksClosure: public BlkClosure {
coleenp@548 2320 private:
duke@435 2321 const CompactibleFreeListSpace* _sp;
duke@435 2322 const MemRegion _span;
ysr@2071 2323 HeapWord* _last_addr;
ysr@2071 2324 size_t _last_size;
ysr@2071 2325 bool _last_was_obj;
ysr@2071 2326 bool _last_was_live;
duke@435 2327
duke@435 2328 public:
duke@435 2329 VerifyAllBlksClosure(const CompactibleFreeListSpace* sp,
ysr@2071 2330 MemRegion span) : _sp(sp), _span(span),
ysr@2071 2331 _last_addr(NULL), _last_size(0),
ysr@2071 2332 _last_was_obj(false), _last_was_live(false) { }
duke@435 2333
coleenp@548 2334 virtual size_t do_blk(HeapWord* addr) {
duke@435 2335 size_t res;
ysr@2071 2336 bool was_obj = false;
ysr@2071 2337 bool was_live = false;
duke@435 2338 if (_sp->block_is_obj(addr)) {
ysr@2071 2339 was_obj = true;
duke@435 2340 oop p = oop(addr);
duke@435 2341 guarantee(p->is_oop(), "Should be an oop");
duke@435 2342 res = _sp->adjustObjectSize(p->size());
duke@435 2343 if (_sp->obj_is_alive(addr)) {
ysr@2071 2344 was_live = true;
duke@435 2345 p->verify();
duke@435 2346 }
duke@435 2347 } else {
duke@435 2348 FreeChunk* fc = (FreeChunk*)addr;
duke@435 2349 res = fc->size();
duke@435 2350 if (FLSVerifyLists && !fc->cantCoalesce()) {
jmasa@3732 2351 guarantee(_sp->verify_chunk_in_free_list(fc),
duke@435 2352 "Chunk should be on a free list");
duke@435 2353 }
duke@435 2354 }
ysr@2071 2355 if (res == 0) {
ysr@2071 2356 gclog_or_tty->print_cr("Livelock: no rank reduction!");
ysr@2071 2357 gclog_or_tty->print_cr(
ysr@2071 2358 " Current: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n"
ysr@2071 2359 " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n",
ysr@2071 2360 addr, res, was_obj ?"true":"false", was_live ?"true":"false",
ysr@2071 2361 _last_addr, _last_size, _last_was_obj?"true":"false", _last_was_live?"true":"false");
ysr@2071 2362 _sp->print_on(gclog_or_tty);
ysr@2071 2363 guarantee(false, "Seppuku!");
ysr@2071 2364 }
ysr@2071 2365 _last_addr = addr;
ysr@2071 2366 _last_size = res;
ysr@2071 2367 _last_was_obj = was_obj;
ysr@2071 2368 _last_was_live = was_live;
duke@435 2369 return res;
duke@435 2370 }
duke@435 2371 };
duke@435 2372
duke@435 2373 class VerifyAllOopsClosure: public OopClosure {
coleenp@548 2374 private:
duke@435 2375 const CMSCollector* _collector;
duke@435 2376 const CompactibleFreeListSpace* _sp;
duke@435 2377 const MemRegion _span;
duke@435 2378 const bool _past_remark;
duke@435 2379 const CMSBitMap* _bit_map;
duke@435 2380
coleenp@548 2381 protected:
coleenp@548 2382 void do_oop(void* p, oop obj) {
coleenp@548 2383 if (_span.contains(obj)) { // the interior oop points into CMS heap
coleenp@548 2384 if (!_span.contains(p)) { // reference from outside CMS heap
coleenp@548 2385 // Should be a valid object; the first disjunct below allows
coleenp@548 2386 // us to sidestep an assertion in block_is_obj() that insists
coleenp@548 2387 // that p be in _sp. Note that several generations (and spaces)
coleenp@548 2388 // are spanned by _span (CMS heap) above.
coleenp@548 2389 guarantee(!_sp->is_in_reserved(obj) ||
coleenp@548 2390 _sp->block_is_obj((HeapWord*)obj),
coleenp@548 2391 "Should be an object");
coleenp@548 2392 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2393 obj->verify();
coleenp@548 2394 if (_past_remark) {
coleenp@548 2395 // Remark has been completed, the object should be marked
coleenp@548 2396 _bit_map->isMarked((HeapWord*)obj);
coleenp@548 2397 }
coleenp@548 2398 } else { // reference within CMS heap
coleenp@548 2399 if (_past_remark) {
coleenp@548 2400 // Remark has been completed -- so the referent should have
coleenp@548 2401 // been marked, if referring object is.
coleenp@548 2402 if (_bit_map->isMarked(_collector->block_start(p))) {
coleenp@548 2403 guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?");
coleenp@548 2404 }
coleenp@548 2405 }
coleenp@548 2406 }
coleenp@548 2407 } else if (_sp->is_in_reserved(p)) {
coleenp@548 2408 // the reference is from FLS, and points out of FLS
coleenp@548 2409 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2410 obj->verify();
coleenp@548 2411 }
coleenp@548 2412 }
coleenp@548 2413
coleenp@548 2414 template <class T> void do_oop_work(T* p) {
coleenp@548 2415 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 2416 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 2417 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 2418 do_oop(p, obj);
coleenp@548 2419 }
coleenp@548 2420 }
coleenp@548 2421
duke@435 2422 public:
duke@435 2423 VerifyAllOopsClosure(const CMSCollector* collector,
duke@435 2424 const CompactibleFreeListSpace* sp, MemRegion span,
duke@435 2425 bool past_remark, CMSBitMap* bit_map) :
coleenp@4037 2426 _collector(collector), _sp(sp), _span(span),
duke@435 2427 _past_remark(past_remark), _bit_map(bit_map) { }
duke@435 2428
coleenp@548 2429 virtual void do_oop(oop* p) { VerifyAllOopsClosure::do_oop_work(p); }
coleenp@548 2430 virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); }
duke@435 2431 };
duke@435 2432
brutisso@3711 2433 void CompactibleFreeListSpace::verify() const {
duke@435 2434 assert_lock_strong(&_freelistLock);
duke@435 2435 verify_objects_initialized();
duke@435 2436 MemRegion span = _collector->_span;
duke@435 2437 bool past_remark = (_collector->abstract_state() ==
duke@435 2438 CMSCollector::Sweeping);
duke@435 2439
duke@435 2440 ResourceMark rm;
duke@435 2441 HandleMark hm;
duke@435 2442
duke@435 2443 // Check integrity of CFL data structures
duke@435 2444 _promoInfo.verify();
duke@435 2445 _dictionary->verify();
duke@435 2446 if (FLSVerifyIndexTable) {
duke@435 2447 verifyIndexedFreeLists();
duke@435 2448 }
duke@435 2449 // Check integrity of all objects and free blocks in space
duke@435 2450 {
duke@435 2451 VerifyAllBlksClosure cl(this, span);
duke@435 2452 ((CompactibleFreeListSpace*)this)->blk_iterate(&cl); // cast off const
duke@435 2453 }
duke@435 2454 // Check that all references in the heap to FLS
duke@435 2455 // are to valid objects in FLS or that references in
duke@435 2456 // FLS are to valid objects elsewhere in the heap
duke@435 2457 if (FLSVerifyAllHeapReferences)
duke@435 2458 {
duke@435 2459 VerifyAllOopsClosure cl(_collector, this, span, past_remark,
duke@435 2460 _collector->markBitMap());
duke@435 2461 CollectedHeap* ch = Universe::heap();
coleenp@4037 2462
coleenp@4037 2463 // Iterate over all oops in the heap. Uses the _no_header version
coleenp@4037 2464 // since we are not interested in following the klass pointers.
coleenp@4037 2465 ch->oop_iterate_no_header(&cl);
duke@435 2466 }
duke@435 2467
duke@435 2468 if (VerifyObjectStartArray) {
duke@435 2469 // Verify the block offset table
duke@435 2470 _bt.verify();
duke@435 2471 }
duke@435 2472 }
duke@435 2473
duke@435 2474 #ifndef PRODUCT
duke@435 2475 void CompactibleFreeListSpace::verifyFreeLists() const {
duke@435 2476 if (FLSVerifyLists) {
duke@435 2477 _dictionary->verify();
duke@435 2478 verifyIndexedFreeLists();
duke@435 2479 } else {
duke@435 2480 if (FLSVerifyDictionary) {
duke@435 2481 _dictionary->verify();
duke@435 2482 }
duke@435 2483 if (FLSVerifyIndexTable) {
duke@435 2484 verifyIndexedFreeLists();
duke@435 2485 }
duke@435 2486 }
duke@435 2487 }
duke@435 2488 #endif
duke@435 2489
duke@435 2490 void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
duke@435 2491 size_t i = 0;
ysr@3264 2492 for (; i < IndexSetStart; i++) {
duke@435 2493 guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
duke@435 2494 }
duke@435 2495 for (; i < IndexSetSize; i++) {
duke@435 2496 verifyIndexedFreeList(i);
duke@435 2497 }
duke@435 2498 }
duke@435 2499
duke@435 2500 void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
ysr@1580 2501 FreeChunk* fc = _indexedFreeList[size].head();
ysr@1580 2502 FreeChunk* tail = _indexedFreeList[size].tail();
ysr@1580 2503 size_t num = _indexedFreeList[size].count();
ysr@1580 2504 size_t n = 0;
ysr@3264 2505 guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
ysr@3220 2506 "Slot should have been empty");
ysr@1580 2507 for (; fc != NULL; fc = fc->next(), n++) {
duke@435 2508 guarantee(fc->size() == size, "Size inconsistency");
jmasa@3732 2509 guarantee(fc->is_free(), "!free?");
duke@435 2510 guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
ysr@1580 2511 guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
duke@435 2512 }
ysr@1580 2513 guarantee(n == num, "Incorrect count");
duke@435 2514 }
duke@435 2515
duke@435 2516 #ifndef PRODUCT
ysr@3220 2517 void CompactibleFreeListSpace::check_free_list_consistency() const {
goetz@6337 2518 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size() <= IndexSetSize),
duke@435 2519 "Some sizes can't be allocated without recourse to"
duke@435 2520 " linear allocation buffers");
goetz@6337 2521 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size()*HeapWordSize == sizeof(TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >)),
duke@435 2522 "else MIN_TREE_CHUNK_SIZE is wrong");
brutisso@3807 2523 assert(IndexSetStart != 0, "IndexSetStart not initialized");
brutisso@3807 2524 assert(IndexSetStride != 0, "IndexSetStride not initialized");
duke@435 2525 }
duke@435 2526 #endif
duke@435 2527
ysr@447 2528 void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
duke@435 2529 assert_lock_strong(&_freelistLock);
jmasa@4196 2530 AdaptiveFreeList<FreeChunk> total;
ysr@447 2531 gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
jmasa@4196 2532 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
jmasa@3732 2533 size_t total_free = 0;
duke@435 2534 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2535 const AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2536 total_free += fl->count() * fl->size();
ysr@447 2537 if (i % (40*IndexSetStride) == 0) {
jmasa@4196 2538 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
ysr@447 2539 }
ysr@447 2540 fl->print_on(gclog_or_tty);
jmasa@3732 2541 total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
ysr@447 2542 total.set_surplus( total.surplus() + fl->surplus() );
ysr@447 2543 total.set_desired( total.desired() + fl->desired() );
jmasa@3732 2544 total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
jmasa@3732 2545 total.set_before_sweep(total.before_sweep() + fl->before_sweep());
ysr@447 2546 total.set_count( total.count() + fl->count() );
jmasa@3732 2547 total.set_coal_births( total.coal_births() + fl->coal_births() );
jmasa@3732 2548 total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
jmasa@3732 2549 total.set_split_births(total.split_births() + fl->split_births());
jmasa@3732 2550 total.set_split_deaths(total.split_deaths() + fl->split_deaths());
duke@435 2551 }
ysr@447 2552 total.print_on(gclog_or_tty, "TOTAL");
ysr@447 2553 gclog_or_tty->print_cr("Total free in indexed lists "
jmasa@3732 2554 SIZE_FORMAT " words", total_free);
duke@435 2555 gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
jmasa@3732 2556 (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
jmasa@3732 2557 (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
ysr@447 2558 (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
jmasa@3732 2559 _dictionary->print_dict_census();
duke@435 2560 }
duke@435 2561
ysr@1580 2562 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2563 // CFLS_LAB
ysr@1580 2564 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2565
ysr@1580 2566 #define VECTOR_257(x) \
ysr@1580 2567 /* 1 2 3 4 5 6 7 8 9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \
ysr@1580 2568 { x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2569 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2570 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2571 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2572 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2573 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2574 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2575 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2576 x }
ysr@1580 2577
ysr@1580 2578 // Initialize with default setting of CMSParPromoteBlocksToClaim, _not_
ysr@1580 2579 // OldPLABSize, whose static default is different; if overridden at the
ysr@1580 2580 // command-line, this will get reinitialized via a call to
ysr@1580 2581 // modify_initialization() below.
ysr@1580 2582 AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[] =
ysr@1580 2583 VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
ysr@1580 2584 size_t CFLS_LAB::_global_num_blocks[] = VECTOR_257(0);
jmasa@3357 2585 uint CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
duke@435 2586
duke@435 2587 CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
duke@435 2588 _cfls(cfls)
duke@435 2589 {
ysr@1580 2590 assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above");
duke@435 2591 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2592 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2593 i += CompactibleFreeListSpace::IndexSetStride) {
duke@435 2594 _indexedFreeList[i].set_size(i);
ysr@1580 2595 _num_blocks[i] = 0;
ysr@1580 2596 }
ysr@1580 2597 }
ysr@1580 2598
ysr@1580 2599 static bool _CFLS_LAB_modified = false;
ysr@1580 2600
ysr@1580 2601 void CFLS_LAB::modify_initialization(size_t n, unsigned wt) {
ysr@1580 2602 assert(!_CFLS_LAB_modified, "Call only once");
ysr@1580 2603 _CFLS_LAB_modified = true;
ysr@1580 2604 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2605 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2606 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2607 _blocks_to_claim[i].modify(n, wt, true /* force */);
duke@435 2608 }
duke@435 2609 }
duke@435 2610
duke@435 2611 HeapWord* CFLS_LAB::alloc(size_t word_sz) {
duke@435 2612 FreeChunk* res;
ysr@2132 2613 assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error");
duke@435 2614 if (word_sz >= CompactibleFreeListSpace::IndexSetSize) {
duke@435 2615 // This locking manages sync with other large object allocations.
duke@435 2616 MutexLockerEx x(_cfls->parDictionaryAllocLock(),
duke@435 2617 Mutex::_no_safepoint_check_flag);
duke@435 2618 res = _cfls->getChunkFromDictionaryExact(word_sz);
duke@435 2619 if (res == NULL) return NULL;
duke@435 2620 } else {
jmasa@4196 2621 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
duke@435 2622 if (fl->count() == 0) {
duke@435 2623 // Attempt to refill this local free list.
ysr@1580 2624 get_from_global_pool(word_sz, fl);
duke@435 2625 // If it didn't work, give up.
duke@435 2626 if (fl->count() == 0) return NULL;
duke@435 2627 }
jmasa@3732 2628 res = fl->get_chunk_at_head();
duke@435 2629 assert(res != NULL, "Why was count non-zero?");
duke@435 2630 }
duke@435 2631 res->markNotFree();
jmasa@3732 2632 assert(!res->is_free(), "shouldn't be marked free");
coleenp@622 2633 assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
duke@435 2634 // mangle a just allocated object with a distinct pattern.
duke@435 2635 debug_only(res->mangleAllocated(word_sz));
duke@435 2636 return (HeapWord*)res;
duke@435 2637 }
duke@435 2638
ysr@1580 2639 // Get a chunk of blocks of the right size and update related
ysr@1580 2640 // book-keeping stats
jmasa@4196 2641 void CFLS_LAB::get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl) {
ysr@1580 2642 // Get the #blocks we want to claim
ysr@1580 2643 size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
ysr@1580 2644 assert(n_blks > 0, "Error");
ysr@1580 2645 assert(ResizePLAB || n_blks == OldPLABSize, "Error");
ysr@1580 2646 // In some cases, when the application has a phase change,
ysr@1580 2647 // there may be a sudden and sharp shift in the object survival
ysr@1580 2648 // profile, and updating the counts at the end of a scavenge
ysr@1580 2649 // may not be quick enough, giving rise to large scavenge pauses
ysr@1580 2650 // during these phase changes. It is beneficial to detect such
ysr@1580 2651 // changes on-the-fly during a scavenge and avoid such a phase-change
ysr@1580 2652 // pothole. The following code is a heuristic attempt to do that.
ysr@1580 2653 // It is protected by a product flag until we have gained
ysr@1580 2654 // enough experience with this heuristic and fine-tuned its behaviour.
ysr@1580 2655 // WARNING: This might increase fragmentation if we overreact to
ysr@1580 2656 // small spikes, so some kind of historical smoothing based on
ysr@1580 2657 // previous experience with the greater reactivity might be useful.
ysr@1580 2658 // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by
ysr@1580 2659 // default.
ysr@1580 2660 if (ResizeOldPLAB && CMSOldPLABResizeQuicker) {
ysr@1580 2661 size_t multiple = _num_blocks[word_sz]/(CMSOldPLABToleranceFactor*CMSOldPLABNumRefills*n_blks);
ysr@1580 2662 n_blks += CMSOldPLABReactivityFactor*multiple*n_blks;
ysr@1580 2663 n_blks = MIN2(n_blks, CMSOldPLABMax);
ysr@1580 2664 }
ysr@1580 2665 assert(n_blks > 0, "Error");
ysr@1580 2666 _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl);
ysr@1580 2667 // Update stats table entry for this block size
ysr@1580 2668 _num_blocks[word_sz] += fl->count();
ysr@1580 2669 }
ysr@1580 2670
ysr@1580 2671 void CFLS_LAB::compute_desired_plab_size() {
ysr@1580 2672 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2673 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2674 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2675 assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0),
ysr@1580 2676 "Counter inconsistency");
ysr@1580 2677 if (_global_num_workers[i] > 0) {
ysr@1580 2678 // Need to smooth wrt historical average
ysr@1580 2679 if (ResizeOldPLAB) {
ysr@1580 2680 _blocks_to_claim[i].sample(
ysr@1580 2681 MAX2((size_t)CMSOldPLABMin,
ysr@1580 2682 MIN2((size_t)CMSOldPLABMax,
ysr@1580 2683 _global_num_blocks[i]/(_global_num_workers[i]*CMSOldPLABNumRefills))));
ysr@1580 2684 }
ysr@1580 2685 // Reset counters for next round
ysr@1580 2686 _global_num_workers[i] = 0;
ysr@1580 2687 _global_num_blocks[i] = 0;
ysr@1580 2688 if (PrintOldPLAB) {
ysr@1580 2689 gclog_or_tty->print_cr("[%d]: %d", i, (size_t)_blocks_to_claim[i].average());
ysr@1580 2690 }
duke@435 2691 }
duke@435 2692 }
duke@435 2693 }
duke@435 2694
ysr@3220 2695 // If this is changed in the future to allow parallel
ysr@3220 2696 // access, one would need to take the FL locks and,
ysr@3220 2697 // depending on how it is used, stagger access from
ysr@3220 2698 // parallel threads to reduce contention.
ysr@1580 2699 void CFLS_LAB::retire(int tid) {
ysr@1580 2700 // We run this single threaded with the world stopped;
ysr@1580 2701 // so no need for locks and such.
ysr@1580 2702 NOT_PRODUCT(Thread* t = Thread::current();)
ysr@1580 2703 assert(Thread::current()->is_VM_thread(), "Error");
ysr@1580 2704 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2705 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2706 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2707 assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(),
ysr@1580 2708 "Can't retire more than what we obtained");
ysr@1580 2709 if (_num_blocks[i] > 0) {
ysr@1580 2710 size_t num_retire = _indexedFreeList[i].count();
ysr@1580 2711 assert(_num_blocks[i] > num_retire, "Should have used at least one");
ysr@1580 2712 {
ysr@3220 2713 // MutexLockerEx x(_cfls->_indexedFreeListParLocks[i],
ysr@3220 2714 // Mutex::_no_safepoint_check_flag);
ysr@3220 2715
ysr@1580 2716 // Update globals stats for num_blocks used
ysr@1580 2717 _global_num_blocks[i] += (_num_blocks[i] - num_retire);
ysr@1580 2718 _global_num_workers[i]++;
jmasa@3357 2719 assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
ysr@1580 2720 if (num_retire > 0) {
ysr@1580 2721 _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
ysr@1580 2722 // Reset this list.
jmasa@4196 2723 _indexedFreeList[i] = AdaptiveFreeList<FreeChunk>();
ysr@1580 2724 _indexedFreeList[i].set_size(i);
ysr@1580 2725 }
ysr@1580 2726 }
ysr@1580 2727 if (PrintOldPLAB) {
ysr@1580 2728 gclog_or_tty->print_cr("%d[%d]: %d/%d/%d",
ysr@1580 2729 tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average());
ysr@1580 2730 }
ysr@1580 2731 // Reset stats for next round
ysr@1580 2732 _num_blocks[i] = 0;
ysr@1580 2733 }
ysr@1580 2734 }
ysr@1580 2735 }
ysr@1580 2736
jmasa@4196 2737 void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) {
duke@435 2738 assert(fl->count() == 0, "Precondition.");
duke@435 2739 assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
duke@435 2740 "Precondition");
duke@435 2741
ysr@1580 2742 // We'll try all multiples of word_sz in the indexed set, starting with
ysr@1580 2743 // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples,
ysr@1580 2744 // then try getting a big chunk and splitting it.
ysr@1580 2745 {
ysr@1580 2746 bool found;
ysr@1580 2747 int k;
ysr@1580 2748 size_t cur_sz;
ysr@1580 2749 for (k = 1, cur_sz = k * word_sz, found = false;
ysr@1580 2750 (cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
ysr@1580 2751 (CMSSplitIndexedFreeListBlocks || k <= 1);
ysr@1580 2752 k++, cur_sz = k * word_sz) {
jmasa@4196 2753 AdaptiveFreeList<FreeChunk> fl_for_cur_sz; // Empty.
ysr@1580 2754 fl_for_cur_sz.set_size(cur_sz);
ysr@1580 2755 {
ysr@1580 2756 MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
ysr@1580 2757 Mutex::_no_safepoint_check_flag);
jmasa@4196 2758 AdaptiveFreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
ysr@1580 2759 if (gfl->count() != 0) {
ysr@1580 2760 // nn is the number of chunks of size cur_sz that
ysr@1580 2761 // we'd need to split k-ways each, in order to create
ysr@1580 2762 // "n" chunks of size word_sz each.
ysr@1580 2763 const size_t nn = MAX2(n/k, (size_t)1);
ysr@1580 2764 gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz);
ysr@1580 2765 found = true;
ysr@1580 2766 if (k > 1) {
ysr@1580 2767 // Update split death stats for the cur_sz-size blocks list:
ysr@1580 2768 // we increment the split death count by the number of blocks
ysr@1580 2769 // we just took from the cur_sz-size blocks list and which
ysr@1580 2770 // we will be splitting below.
jmasa@3732 2771 ssize_t deaths = gfl->split_deaths() +
ysr@1580 2772 fl_for_cur_sz.count();
jmasa@3732 2773 gfl->set_split_deaths(deaths);
ysr@1580 2774 }
ysr@1580 2775 }
ysr@1580 2776 }
ysr@1580 2777 // Now transfer fl_for_cur_sz to fl. Common case, we hope, is k = 1.
ysr@1580 2778 if (found) {
ysr@1580 2779 if (k == 1) {
ysr@1580 2780 fl->prepend(&fl_for_cur_sz);
ysr@1580 2781 } else {
ysr@1580 2782 // Divide each block on fl_for_cur_sz up k ways.
ysr@1580 2783 FreeChunk* fc;
jmasa@3732 2784 while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
ysr@1580 2785 // Must do this in reverse order, so that anybody attempting to
ysr@1580 2786 // access the main chunk sees it as a single free block until we
ysr@1580 2787 // change it.
ysr@1580 2788 size_t fc_size = fc->size();
jmasa@3732 2789 assert(fc->is_free(), "Error");
ysr@1580 2790 for (int i = k-1; i >= 0; i--) {
ysr@1580 2791 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
ysr@2071 2792 assert((i != 0) ||
jmasa@3732 2793 ((fc == ffc) && ffc->is_free() &&
ysr@2071 2794 (ffc->size() == k*word_sz) && (fc_size == word_sz)),
ysr@2071 2795 "Counting error");
jmasa@3732 2796 ffc->set_size(word_sz);
jmasa@3732 2797 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2798 ffc->link_next(NULL);
ysr@1580 2799 // Above must occur before BOT is updated below.
ysr@2071 2800 OrderAccess::storestore();
ysr@2071 2801 // splitting from the right, fc_size == i * word_sz
ysr@2071 2802 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
ysr@1580 2803 fc_size -= word_sz;
ysr@2071 2804 assert(fc_size == i*word_sz, "Error");
ysr@2071 2805 _bt.verify_not_unallocated((HeapWord*)ffc, word_sz);
ysr@1580 2806 _bt.verify_single_block((HeapWord*)fc, fc_size);
ysr@2071 2807 _bt.verify_single_block((HeapWord*)ffc, word_sz);
ysr@1580 2808 // Push this on "fl".
jmasa@3732 2809 fl->return_chunk_at_head(ffc);
ysr@1580 2810 }
ysr@1580 2811 // TRAP
ysr@1580 2812 assert(fl->tail()->next() == NULL, "List invariant.");
ysr@1580 2813 }
ysr@1580 2814 }
ysr@1580 2815 // Update birth stats for this block size.
ysr@1580 2816 size_t num = fl->count();
ysr@1580 2817 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
ysr@1580 2818 Mutex::_no_safepoint_check_flag);
jmasa@3732 2819 ssize_t births = _indexedFreeList[word_sz].split_births() + num;
jmasa@3732 2820 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2821 return;
duke@435 2822 }
duke@435 2823 }
duke@435 2824 }
duke@435 2825 // Otherwise, we'll split a block from the dictionary.
duke@435 2826 FreeChunk* fc = NULL;
duke@435 2827 FreeChunk* rem_fc = NULL;
duke@435 2828 size_t rem;
duke@435 2829 {
duke@435 2830 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 2831 Mutex::_no_safepoint_check_flag);
duke@435 2832 while (n > 0) {
jmasa@4196 2833 fc = dictionary()->get_chunk(MAX2(n * word_sz, _dictionary->min_size()),
jmasa@3730 2834 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 2835 if (fc != NULL) {
ysr@2071 2836 _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
jmasa@4196 2837 dictionary()->dict_census_update(fc->size(),
duke@435 2838 true /*split*/,
duke@435 2839 false /*birth*/);
duke@435 2840 break;
duke@435 2841 } else {
duke@435 2842 n--;
duke@435 2843 }
duke@435 2844 }
duke@435 2845 if (fc == NULL) return;
ysr@2071 2846 // Otherwise, split up that block.
ysr@1580 2847 assert((ssize_t)n >= 1, "Control point invariant");
jmasa@3732 2848 assert(fc->is_free(), "Error: should be a free block");
ysr@2071 2849 _bt.verify_single_block((HeapWord*)fc, fc->size());
ysr@1580 2850 const size_t nn = fc->size() / word_sz;
duke@435 2851 n = MIN2(nn, n);
ysr@1580 2852 assert((ssize_t)n >= 1, "Control point invariant");
duke@435 2853 rem = fc->size() - n * word_sz;
duke@435 2854 // If there is a remainder, and it's too small, allocate one fewer.
duke@435 2855 if (rem > 0 && rem < MinChunkSize) {
duke@435 2856 n--; rem += word_sz;
duke@435 2857 }
jmasa@1583 2858 // Note that at this point we may have n == 0.
jmasa@1583 2859 assert((ssize_t)n >= 0, "Control point invariant");
jmasa@1583 2860
jmasa@1583 2861 // If n is 0, the chunk fc that was found is not large
jmasa@1583 2862 // enough to leave a viable remainder. We are unable to
jmasa@1583 2863 // allocate even one block. Return fc to the
jmasa@1583 2864 // dictionary and return, leaving "fl" empty.
jmasa@1583 2865 if (n == 0) {
jmasa@1583 2866 returnChunkToDictionary(fc);
ysr@2071 2867 assert(fl->count() == 0, "We never allocated any blocks");
jmasa@1583 2868 return;
jmasa@1583 2869 }
jmasa@1583 2870
duke@435 2871 // First return the remainder, if any.
duke@435 2872 // Note that we hold the lock until we decide if we're going to give
ysr@1580 2873 // back the remainder to the dictionary, since a concurrent allocation
duke@435 2874 // may otherwise see the heap as empty. (We're willing to take that
duke@435 2875 // hit if the block is a small block.)
duke@435 2876 if (rem > 0) {
duke@435 2877 size_t prefix_size = n * word_sz;
duke@435 2878 rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
jmasa@3732 2879 rem_fc->set_size(rem);
jmasa@3732 2880 rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2881 rem_fc->link_next(NULL);
duke@435 2882 // Above must occur before BOT is updated below.
ysr@1580 2883 assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
ysr@2071 2884 OrderAccess::storestore();
duke@435 2885 _bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
jmasa@3732 2886 assert(fc->is_free(), "Error");
jmasa@3732 2887 fc->set_size(prefix_size);
duke@435 2888 if (rem >= IndexSetSize) {
duke@435 2889 returnChunkToDictionary(rem_fc);
jmasa@4196 2890 dictionary()->dict_census_update(rem, true /*split*/, true /*birth*/);
duke@435 2891 rem_fc = NULL;
duke@435 2892 }
duke@435 2893 // Otherwise, return it to the small list below.
duke@435 2894 }
duke@435 2895 }
duke@435 2896 if (rem_fc != NULL) {
duke@435 2897 MutexLockerEx x(_indexedFreeListParLocks[rem],
duke@435 2898 Mutex::_no_safepoint_check_flag);
duke@435 2899 _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
jmasa@3732 2900 _indexedFreeList[rem].return_chunk_at_head(rem_fc);
duke@435 2901 smallSplitBirth(rem);
duke@435 2902 }
ysr@1580 2903 assert((ssize_t)n > 0 && fc != NULL, "Consistency");
duke@435 2904 // Now do the splitting up.
duke@435 2905 // Must do this in reverse order, so that anybody attempting to
duke@435 2906 // access the main chunk sees it as a single free block until we
duke@435 2907 // change it.
duke@435 2908 size_t fc_size = n * word_sz;
duke@435 2909 // All but first chunk in this loop
duke@435 2910 for (ssize_t i = n-1; i > 0; i--) {
duke@435 2911 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
jmasa@3732 2912 ffc->set_size(word_sz);
jmasa@3732 2913 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2914 ffc->link_next(NULL);
duke@435 2915 // Above must occur before BOT is updated below.
ysr@2071 2916 OrderAccess::storestore();
duke@435 2917 // splitting from the right, fc_size == (n - i + 1) * wordsize
ysr@2071 2918 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
duke@435 2919 fc_size -= word_sz;
duke@435 2920 _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size());
duke@435 2921 _bt.verify_single_block((HeapWord*)ffc, ffc->size());
duke@435 2922 _bt.verify_single_block((HeapWord*)fc, fc_size);
duke@435 2923 // Push this on "fl".
jmasa@3732 2924 fl->return_chunk_at_head(ffc);
duke@435 2925 }
duke@435 2926 // First chunk
jmasa@3732 2927 assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
ysr@2071 2928 // The blocks above should show their new sizes before the first block below
jmasa@3732 2929 fc->set_size(word_sz);
jmasa@3732 2930 fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
jmasa@3732 2931 fc->link_next(NULL);
duke@435 2932 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 2933 _bt.verify_single_block((HeapWord*)fc, fc->size());
jmasa@3732 2934 fl->return_chunk_at_head(fc);
duke@435 2935
ysr@1580 2936 assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
duke@435 2937 {
ysr@1580 2938 // Update the stats for this block size.
duke@435 2939 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
duke@435 2940 Mutex::_no_safepoint_check_flag);
jmasa@3732 2941 const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
jmasa@3732 2942 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2943 // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
ysr@1580 2944 // _indexedFreeList[word_sz].set_surplus(new_surplus);
duke@435 2945 }
duke@435 2946
duke@435 2947 // TRAP
duke@435 2948 assert(fl->tail()->next() == NULL, "List invariant.");
duke@435 2949 }
duke@435 2950
duke@435 2951 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2952 // for parallel rescan. See CMSParRemarkTask where this is currently used.
duke@435 2953 // XXX Need to suitably abstract and generalize this and the next
duke@435 2954 // method into one.
duke@435 2955 void
duke@435 2956 CompactibleFreeListSpace::
duke@435 2957 initialize_sequential_subtasks_for_rescan(int n_threads) {
duke@435 2958 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2959 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2960 const size_t task_size = rescan_task_size();
duke@435 2961 size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size;
ysr@775 2962 assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect");
ysr@775 2963 assert(n_tasks == 0 ||
ysr@775 2964 ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) &&
ysr@775 2965 (used_region().start() + n_tasks*task_size >= used_region().end())),
ysr@775 2966 "n_tasks calculation incorrect");
duke@435 2967 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 2968 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 2969 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 2970 // need to finish in order to be done).
jmasa@2188 2971 pst->set_n_threads(n_threads);
duke@435 2972 pst->set_n_tasks((int)n_tasks);
duke@435 2973 }
duke@435 2974
duke@435 2975 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2976 // for parallel concurrent marking. See CMSConcMarkTask where this is currently used.
duke@435 2977 void
duke@435 2978 CompactibleFreeListSpace::
duke@435 2979 initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 2980 HeapWord* low) {
duke@435 2981 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2982 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2983 const size_t task_size = marking_task_size();
duke@435 2984 assert(task_size > CardTableModRefBS::card_size_in_words &&
duke@435 2985 (task_size % CardTableModRefBS::card_size_in_words == 0),
duke@435 2986 "Otherwise arithmetic below would be incorrect");
duke@435 2987 MemRegion span = _gen->reserved();
duke@435 2988 if (low != NULL) {
duke@435 2989 if (span.contains(low)) {
duke@435 2990 // Align low down to a card boundary so that
duke@435 2991 // we can use block_offset_careful() on span boundaries.
duke@435 2992 HeapWord* aligned_low = (HeapWord*)align_size_down((uintptr_t)low,
duke@435 2993 CardTableModRefBS::card_size);
duke@435 2994 // Clip span prefix at aligned_low
duke@435 2995 span = span.intersection(MemRegion(aligned_low, span.end()));
duke@435 2996 } else if (low > span.end()) {
duke@435 2997 span = MemRegion(low, low); // Null region
duke@435 2998 } // else use entire span
duke@435 2999 }
duke@435 3000 assert(span.is_empty() ||
duke@435 3001 ((uintptr_t)span.start() % CardTableModRefBS::card_size == 0),
duke@435 3002 "span should start at a card boundary");
duke@435 3003 size_t n_tasks = (span.word_size() + task_size - 1)/task_size;
duke@435 3004 assert((n_tasks == 0) == span.is_empty(), "Inconsistency");
duke@435 3005 assert(n_tasks == 0 ||
duke@435 3006 ((span.start() + (n_tasks - 1)*task_size < span.end()) &&
duke@435 3007 (span.start() + n_tasks*task_size >= span.end())),
ysr@775 3008 "n_tasks calculation incorrect");
duke@435 3009 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 3010 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 3011 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 3012 // need to finish in order to be done).
jmasa@2188 3013 pst->set_n_threads(n_threads);
duke@435 3014 pst->set_n_tasks((int)n_tasks);
duke@435 3015 }

mercurial