src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp

Thu, 06 Mar 2014 09:08:18 +0100

author
mgerdin
date
Thu, 06 Mar 2014 09:08:18 +0100
changeset 6978
30c99d8e0f02
parent 6912
c49dcaf78a65
child 6979
5255b195f828
permissions
-rw-r--r--

8038399: Remove dead oop_iterate MemRegion variants from SharedHeap, Generation and Space classes
Reviewed-by: tschatzl, stefank

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
stefank@2314 27 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
stefank@2314 28 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 30 #include "gc_implementation/shared/liveRange.hpp"
stefank@2314 31 #include "gc_implementation/shared/spaceDecorator.hpp"
coleenp@4037 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/allocation.inline.hpp"
stefank@2314 34 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 35 #include "memory/resourceArea.hpp"
goetz@6912 36 #include "memory/space.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "runtime/globals.hpp"
stefank@2314 40 #include "runtime/handles.inline.hpp"
stefank@2314 41 #include "runtime/init.hpp"
stefank@2314 42 #include "runtime/java.hpp"
goetz@6911 43 #include "runtime/orderAccess.inline.hpp"
stefank@2314 44 #include "runtime/vmThread.hpp"
stefank@2314 45 #include "utilities/copy.hpp"
duke@435 46
duke@435 47 /////////////////////////////////////////////////////////////////////////
duke@435 48 //// CompactibleFreeListSpace
duke@435 49 /////////////////////////////////////////////////////////////////////////
duke@435 50
duke@435 51 // highest ranked free list lock rank
duke@435 52 int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
duke@435 53
kvn@1926 54 // Defaults are 0 so things will break badly if incorrectly initialized.
ysr@3264 55 size_t CompactibleFreeListSpace::IndexSetStart = 0;
ysr@3264 56 size_t CompactibleFreeListSpace::IndexSetStride = 0;
kvn@1926 57
kvn@1926 58 size_t MinChunkSize = 0;
kvn@1926 59
kvn@1926 60 void CompactibleFreeListSpace::set_cms_values() {
kvn@1926 61 // Set CMS global values
kvn@1926 62 assert(MinChunkSize == 0, "already set");
brutisso@3807 63
brutisso@3807 64 // MinChunkSize should be a multiple of MinObjAlignment and be large enough
brutisso@3807 65 // for chunks to contain a FreeChunk.
brutisso@3807 66 size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes);
brutisso@3807 67 MinChunkSize = min_chunk_size_in_bytes / BytesPerWord;
kvn@1926 68
kvn@1926 69 assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
ysr@3264 70 IndexSetStart = MinChunkSize;
kvn@1926 71 IndexSetStride = MinObjAlignment;
kvn@1926 72 }
kvn@1926 73
duke@435 74 // Constructor
duke@435 75 CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
duke@435 76 MemRegion mr, bool use_adaptive_freelists,
jmasa@3730 77 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
duke@435 78 _dictionaryChoice(dictionaryChoice),
duke@435 79 _adaptive_freelists(use_adaptive_freelists),
duke@435 80 _bt(bs, mr),
duke@435 81 // free list locks are in the range of values taken by _lockRank
duke@435 82 // This range currently is [_leaf+2, _leaf+3]
duke@435 83 // Note: this requires that CFLspace c'tors
duke@435 84 // are called serially in the order in which the locks are
duke@435 85 // are acquired in the program text. This is true today.
duke@435 86 _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true),
duke@435 87 _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1
duke@435 88 "CompactibleFreeListSpace._dict_par_lock", true),
duke@435 89 _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 90 CMSRescanMultiple),
duke@435 91 _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 92 CMSConcMarkMultiple),
duke@435 93 _collector(NULL)
duke@435 94 {
jmasa@3730 95 assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
jmasa@4196 96 "FreeChunk is larger than expected");
duke@435 97 _bt.set_space(this);
jmasa@698 98 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 99 // We have all of "mr", all of which we place in the dictionary
duke@435 100 // as one big chunk. We'll need to decide here which of several
duke@435 101 // possible alternative dictionary implementations to use. For
duke@435 102 // now the choice is easy, since we have only one working
duke@435 103 // implementation, namely, the simple binary tree (splaying
duke@435 104 // temporarily disabled).
duke@435 105 switch (dictionaryChoice) {
jmasa@4196 106 case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
jmasa@4488 107 _dictionary = new AFLBinaryTreeDictionary(mr);
jmasa@4196 108 break;
jmasa@3730 109 case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
jmasa@3730 110 case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
duke@435 111 default:
duke@435 112 warning("dictionaryChoice: selected option not understood; using"
duke@435 113 " default BinaryTreeDictionary implementation instead.");
duke@435 114 }
duke@435 115 assert(_dictionary != NULL, "CMS dictionary initialization");
duke@435 116 // The indexed free lists are initially all empty and are lazily
duke@435 117 // filled in on demand. Initialize the array elements to NULL.
duke@435 118 initializeIndexedFreeListArray();
duke@435 119
duke@435 120 // Not using adaptive free lists assumes that allocation is first
duke@435 121 // from the linAB's. Also a cms perm gen which can be compacted
duke@435 122 // has to have the klass's klassKlass allocated at a lower
duke@435 123 // address in the heap than the klass so that the klassKlass is
duke@435 124 // moved to its new location before the klass is moved.
duke@435 125 // Set the _refillSize for the linear allocation blocks
duke@435 126 if (!use_adaptive_freelists) {
jmasa@4488 127 FreeChunk* fc = _dictionary->get_chunk(mr.word_size(),
jmasa@4488 128 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 129 // The small linAB initially has all the space and will allocate
duke@435 130 // a chunk of any size.
duke@435 131 HeapWord* addr = (HeapWord*) fc;
duke@435 132 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 133 1024*SmallForLinearAlloc, fc->size());
duke@435 134 // Note that _unallocated_block is not updated here.
duke@435 135 // Allocations from the linear allocation block should
duke@435 136 // update it.
duke@435 137 } else {
duke@435 138 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc,
duke@435 139 SmallForLinearAlloc);
duke@435 140 }
duke@435 141 // CMSIndexedFreeListReplenish should be at least 1
duke@435 142 CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish);
duke@435 143 _promoInfo.setSpace(this);
duke@435 144 if (UseCMSBestFit) {
duke@435 145 _fitStrategy = FreeBlockBestFitFirst;
duke@435 146 } else {
duke@435 147 _fitStrategy = FreeBlockStrategyNone;
duke@435 148 }
ysr@3220 149 check_free_list_consistency();
duke@435 150
duke@435 151 // Initialize locks for parallel case.
jmasa@2188 152
jmasa@2188 153 if (CollectedHeap::use_parallel_gc_threads()) {
duke@435 154 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 155 _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1
duke@435 156 "a freelist par lock",
duke@435 157 true);
duke@435 158 DEBUG_ONLY(
duke@435 159 _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]);
duke@435 160 )
duke@435 161 }
duke@435 162 _dictionary->set_par_lock(&_parDictionaryAllocLock);
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166 // Like CompactibleSpace forward() but always calls cross_threshold() to
duke@435 167 // update the block offset table. Removed initialize_threshold call because
duke@435 168 // CFLS does not use a block offset array for contiguous spaces.
duke@435 169 HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size,
duke@435 170 CompactPoint* cp, HeapWord* compact_top) {
duke@435 171 // q is alive
duke@435 172 // First check if we should switch compaction space
duke@435 173 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 174 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 175 assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size),
duke@435 176 "virtual adjustObjectSize_v() method is not correct");
duke@435 177 size_t adjusted_size = adjustObjectSize(size);
duke@435 178 assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0,
duke@435 179 "no small fragments allowed");
duke@435 180 assert(minimum_free_block_size() == MinChunkSize,
duke@435 181 "for de-virtualized reference below");
duke@435 182 // Can't leave a nonzero size, residual fragment smaller than MinChunkSize
duke@435 183 if (adjusted_size + MinChunkSize > compaction_max_size &&
duke@435 184 adjusted_size != compaction_max_size) {
duke@435 185 do {
duke@435 186 // switch to next compaction space
duke@435 187 cp->space->set_compaction_top(compact_top);
duke@435 188 cp->space = cp->space->next_compaction_space();
duke@435 189 if (cp->space == NULL) {
duke@435 190 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 191 assert(cp->gen != NULL, "compaction must succeed");
duke@435 192 cp->space = cp->gen->first_compaction_space();
duke@435 193 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 194 }
duke@435 195 compact_top = cp->space->bottom();
duke@435 196 cp->space->set_compaction_top(compact_top);
duke@435 197 // The correct adjusted_size may not be the same as that for this method
duke@435 198 // (i.e., cp->space may no longer be "this" so adjust the size again.
duke@435 199 // Use the virtual method which is not used above to save the virtual
duke@435 200 // dispatch.
duke@435 201 adjusted_size = cp->space->adjust_object_size_v(size);
duke@435 202 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 203 assert(cp->space->minimum_free_block_size() == 0, "just checking");
duke@435 204 } while (adjusted_size > compaction_max_size);
duke@435 205 }
duke@435 206
duke@435 207 // store the forwarding pointer into the mark word
duke@435 208 if ((HeapWord*)q != compact_top) {
duke@435 209 q->forward_to(oop(compact_top));
duke@435 210 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 211 } else {
duke@435 212 // if the object isn't moving we can just set the mark to the default
duke@435 213 // mark and handle it specially later on.
duke@435 214 q->init_mark();
duke@435 215 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 216 }
duke@435 217
duke@435 218 compact_top += adjusted_size;
duke@435 219
duke@435 220 // we need to update the offset table so that the beginnings of objects can be
duke@435 221 // found during scavenge. Note that we are updating the offset table based on
duke@435 222 // where the object will be once the compaction phase finishes.
duke@435 223
duke@435 224 // Always call cross_threshold(). A contiguous space can only call it when
duke@435 225 // the compaction_top exceeds the current threshold but not for an
duke@435 226 // non-contiguous space.
duke@435 227 cp->threshold =
duke@435 228 cp->space->cross_threshold(compact_top - adjusted_size, compact_top);
duke@435 229 return compact_top;
duke@435 230 }
duke@435 231
duke@435 232 // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt
duke@435 233 // and use of single_block instead of alloc_block. The name here is not really
duke@435 234 // appropriate - maybe a more general name could be invented for both the
duke@435 235 // contiguous and noncontiguous spaces.
duke@435 236
duke@435 237 HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 238 _bt.single_block(start, the_end);
duke@435 239 return end();
duke@435 240 }
duke@435 241
duke@435 242 // Initialize them to NULL.
duke@435 243 void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
duke@435 244 for (size_t i = 0; i < IndexSetSize; i++) {
duke@435 245 // Note that on platforms where objects are double word aligned,
duke@435 246 // the odd array elements are not used. It is convenient, however,
duke@435 247 // to map directly from the object size to the array element.
duke@435 248 _indexedFreeList[i].reset(IndexSetSize);
duke@435 249 _indexedFreeList[i].set_size(i);
duke@435 250 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 251 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 252 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 253 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 void CompactibleFreeListSpace::resetIndexedFreeListArray() {
ysr@3264 258 for (size_t i = 1; i < IndexSetSize; i++) {
duke@435 259 assert(_indexedFreeList[i].size() == (size_t) i,
duke@435 260 "Indexed free list sizes are incorrect");
duke@435 261 _indexedFreeList[i].reset(IndexSetSize);
duke@435 262 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 263 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 264 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 265 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 266 }
duke@435 267 }
duke@435 268
duke@435 269 void CompactibleFreeListSpace::reset(MemRegion mr) {
duke@435 270 resetIndexedFreeListArray();
duke@435 271 dictionary()->reset();
duke@435 272 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 273 assert(end() == mr.end(), "We are compacting to the bottom of CMS gen");
duke@435 274 // Everything's allocated until proven otherwise.
duke@435 275 _bt.set_unallocated_block(end());
duke@435 276 }
duke@435 277 if (!mr.is_empty()) {
duke@435 278 assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
duke@435 279 _bt.single_block(mr.start(), mr.word_size());
duke@435 280 FreeChunk* fc = (FreeChunk*) mr.start();
jmasa@3732 281 fc->set_size(mr.word_size());
duke@435 282 if (mr.word_size() >= IndexSetSize ) {
duke@435 283 returnChunkToDictionary(fc);
duke@435 284 } else {
duke@435 285 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
jmasa@3732 286 _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
duke@435 287 }
brutisso@5163 288 coalBirth(mr.word_size());
duke@435 289 }
duke@435 290 _promoInfo.reset();
duke@435 291 _smallLinearAllocBlock._ptr = NULL;
duke@435 292 _smallLinearAllocBlock._word_size = 0;
duke@435 293 }
duke@435 294
duke@435 295 void CompactibleFreeListSpace::reset_after_compaction() {
duke@435 296 // Reset the space to the new reality - one free chunk.
duke@435 297 MemRegion mr(compaction_top(), end());
duke@435 298 reset(mr);
duke@435 299 // Now refill the linear allocation block(s) if possible.
duke@435 300 if (_adaptive_freelists) {
duke@435 301 refillLinearAllocBlocksIfNeeded();
duke@435 302 } else {
duke@435 303 // Place as much of mr in the linAB as we can get,
duke@435 304 // provided it was big enough to go into the dictionary.
jmasa@3732 305 FreeChunk* fc = dictionary()->find_largest_dict();
duke@435 306 if (fc != NULL) {
duke@435 307 assert(fc->size() == mr.word_size(),
duke@435 308 "Why was the chunk broken up?");
duke@435 309 removeChunkFromDictionary(fc);
duke@435 310 HeapWord* addr = (HeapWord*) fc;
duke@435 311 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 312 1024*SmallForLinearAlloc, fc->size());
duke@435 313 // Note that _unallocated_block is not updated here.
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317
duke@435 318 // Walks the entire dictionary, returning a coterminal
duke@435 319 // chunk, if it exists. Use with caution since it involves
duke@435 320 // a potentially complete walk of a potentially large tree.
duke@435 321 FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
duke@435 322
duke@435 323 assert_lock_strong(&_freelistLock);
duke@435 324
duke@435 325 return dictionary()->find_chunk_ends_at(end());
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 #ifndef PRODUCT
duke@435 330 void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
duke@435 331 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 332 _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
duke@435 333 }
duke@435 334 }
duke@435 335
duke@435 336 size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
duke@435 337 size_t sum = 0;
duke@435 338 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 339 sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
duke@435 340 }
duke@435 341 return sum;
duke@435 342 }
duke@435 343
duke@435 344 size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
duke@435 345 size_t count = 0;
ysr@3264 346 for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
duke@435 347 debug_only(
duke@435 348 ssize_t total_list_count = 0;
duke@435 349 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 350 fc = fc->next()) {
duke@435 351 total_list_count++;
duke@435 352 }
duke@435 353 assert(total_list_count == _indexedFreeList[i].count(),
duke@435 354 "Count in list is incorrect");
duke@435 355 )
duke@435 356 count += _indexedFreeList[i].count();
duke@435 357 }
duke@435 358 return count;
duke@435 359 }
duke@435 360
duke@435 361 size_t CompactibleFreeListSpace::totalCount() {
duke@435 362 size_t num = totalCountInIndexedFreeLists();
jmasa@3732 363 num += dictionary()->total_count();
duke@435 364 if (_smallLinearAllocBlock._word_size != 0) {
duke@435 365 num++;
duke@435 366 }
duke@435 367 return num;
duke@435 368 }
duke@435 369 #endif
duke@435 370
duke@435 371 bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
duke@435 372 FreeChunk* fc = (FreeChunk*) p;
jmasa@3732 373 return fc->is_free();
duke@435 374 }
duke@435 375
duke@435 376 size_t CompactibleFreeListSpace::used() const {
duke@435 377 return capacity() - free();
duke@435 378 }
duke@435 379
duke@435 380 size_t CompactibleFreeListSpace::free() const {
duke@435 381 // "MT-safe, but not MT-precise"(TM), if you will: i.e.
duke@435 382 // if you do this while the structures are in flux you
duke@435 383 // may get an approximate answer only; for instance
duke@435 384 // because there is concurrent allocation either
duke@435 385 // directly by mutators or for promotion during a GC.
duke@435 386 // It's "MT-safe", however, in the sense that you are guaranteed
duke@435 387 // not to crash and burn, for instance, because of walking
duke@435 388 // pointers that could disappear as you were walking them.
duke@435 389 // The approximation is because the various components
duke@435 390 // that are read below are not read atomically (and
duke@435 391 // further the computation of totalSizeInIndexedFreeLists()
duke@435 392 // is itself a non-atomic computation. The normal use of
duke@435 393 // this is during a resize operation at the end of GC
duke@435 394 // and at that time you are guaranteed to get the
duke@435 395 // correct actual value. However, for instance, this is
duke@435 396 // also read completely asynchronously by the "perf-sampler"
duke@435 397 // that supports jvmstat, and you are apt to see the values
duke@435 398 // flicker in such cases.
duke@435 399 assert(_dictionary != NULL, "No _dictionary?");
jmasa@3732 400 return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
duke@435 401 totalSizeInIndexedFreeLists() +
duke@435 402 _smallLinearAllocBlock._word_size) * HeapWordSize;
duke@435 403 }
duke@435 404
duke@435 405 size_t CompactibleFreeListSpace::max_alloc_in_words() const {
duke@435 406 assert(_dictionary != NULL, "No _dictionary?");
duke@435 407 assert_locked();
jmasa@3732 408 size_t res = _dictionary->max_chunk_size();
duke@435 409 res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
duke@435 410 (size_t) SmallForLinearAlloc - 1));
duke@435 411 // XXX the following could potentially be pretty slow;
duke@435 412 // should one, pesimally for the rare cases when res
duke@435 413 // caclulated above is less than IndexSetSize,
duke@435 414 // just return res calculated above? My reasoning was that
duke@435 415 // those cases will be so rare that the extra time spent doesn't
duke@435 416 // really matter....
duke@435 417 // Note: do not change the loop test i >= res + IndexSetStride
duke@435 418 // to i > res below, because i is unsigned and res may be zero.
duke@435 419 for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride;
duke@435 420 i -= IndexSetStride) {
duke@435 421 if (_indexedFreeList[i].head() != NULL) {
duke@435 422 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 423 return i;
duke@435 424 }
duke@435 425 }
duke@435 426 return res;
duke@435 427 }
duke@435 428
ysr@2071 429 void LinearAllocBlock::print_on(outputStream* st) const {
ysr@2071 430 st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT
ysr@2071 431 ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT,
drchase@6680 432 p2i(_ptr), _word_size, _refillSize, _allocation_size_limit);
ysr@2071 433 }
ysr@2071 434
ysr@2071 435 void CompactibleFreeListSpace::print_on(outputStream* st) const {
ysr@2071 436 st->print_cr("COMPACTIBLE FREELIST SPACE");
ysr@2071 437 st->print_cr(" Space:");
ysr@2071 438 Space::print_on(st);
ysr@2071 439
ysr@2071 440 st->print_cr("promoInfo:");
ysr@2071 441 _promoInfo.print_on(st);
ysr@2071 442
ysr@2071 443 st->print_cr("_smallLinearAllocBlock");
ysr@2071 444 _smallLinearAllocBlock.print_on(st);
ysr@2071 445
ysr@2071 446 // dump_memory_block(_smallLinearAllocBlock->_ptr, 128);
ysr@2071 447
ysr@2071 448 st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s",
ysr@2071 449 _fitStrategy?"true":"false", _adaptive_freelists?"true":"false");
ysr@2071 450 }
ysr@2071 451
ysr@1580 452 void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st)
ysr@1580 453 const {
ysr@1580 454 reportIndexedFreeListStatistics();
ysr@1580 455 gclog_or_tty->print_cr("Layout of Indexed Freelists");
ysr@1580 456 gclog_or_tty->print_cr("---------------------------");
jmasa@4196 457 AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size");
ysr@1580 458 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
ysr@1580 459 _indexedFreeList[i].print_on(gclog_or_tty);
ysr@1580 460 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
ysr@1580 461 fc = fc->next()) {
ysr@1580 462 gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
drchase@6680 463 p2i(fc), p2i((HeapWord*)fc + i),
ysr@1580 464 fc->cantCoalesce() ? "\t CC" : "");
ysr@1580 465 }
ysr@1580 466 }
ysr@1580 467 }
ysr@1580 468
ysr@1580 469 void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st)
ysr@1580 470 const {
ysr@1580 471 _promoInfo.print_on(st);
ysr@1580 472 }
ysr@1580 473
ysr@1580 474 void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
ysr@1580 475 const {
jmasa@3732 476 _dictionary->report_statistics();
ysr@1580 477 st->print_cr("Layout of Freelists in Tree");
ysr@1580 478 st->print_cr("---------------------------");
ysr@1580 479 _dictionary->print_free_lists(st);
ysr@1580 480 }
ysr@1580 481
ysr@1580 482 class BlkPrintingClosure: public BlkClosure {
ysr@1580 483 const CMSCollector* _collector;
ysr@1580 484 const CompactibleFreeListSpace* _sp;
ysr@1580 485 const CMSBitMap* _live_bit_map;
ysr@1580 486 const bool _post_remark;
ysr@1580 487 outputStream* _st;
ysr@1580 488 public:
ysr@1580 489 BlkPrintingClosure(const CMSCollector* collector,
ysr@1580 490 const CompactibleFreeListSpace* sp,
ysr@1580 491 const CMSBitMap* live_bit_map,
ysr@1580 492 outputStream* st):
ysr@1580 493 _collector(collector),
ysr@1580 494 _sp(sp),
ysr@1580 495 _live_bit_map(live_bit_map),
ysr@1580 496 _post_remark(collector->abstract_state() > CMSCollector::FinalMarking),
ysr@1580 497 _st(st) { }
ysr@1580 498 size_t do_blk(HeapWord* addr);
ysr@1580 499 };
ysr@1580 500
ysr@1580 501 size_t BlkPrintingClosure::do_blk(HeapWord* addr) {
ysr@1580 502 size_t sz = _sp->block_size_no_stall(addr, _collector);
ysr@1580 503 assert(sz != 0, "Should always be able to compute a size");
ysr@1580 504 if (_sp->block_is_obj(addr)) {
ysr@1580 505 const bool dead = _post_remark && !_live_bit_map->isMarked(addr);
ysr@1580 506 _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s",
drchase@6680 507 p2i(addr),
ysr@1580 508 dead ? "dead" : "live",
ysr@1580 509 sz,
ysr@1580 510 (!dead && CMSPrintObjectsInDump) ? ":" : ".");
ysr@1580 511 if (CMSPrintObjectsInDump && !dead) {
ysr@1580 512 oop(addr)->print_on(_st);
ysr@1580 513 _st->print_cr("--------------------------------------");
ysr@1580 514 }
ysr@1580 515 } else { // free block
ysr@1580 516 _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s",
drchase@6680 517 p2i(addr), sz, CMSPrintChunksInDump ? ":" : ".");
ysr@1580 518 if (CMSPrintChunksInDump) {
ysr@1580 519 ((FreeChunk*)addr)->print_on(_st);
ysr@1580 520 _st->print_cr("--------------------------------------");
ysr@1580 521 }
ysr@1580 522 }
ysr@1580 523 return sz;
ysr@1580 524 }
ysr@1580 525
ysr@1580 526 void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
ysr@1580 527 outputStream* st) {
ysr@1580 528 st->print_cr("\n=========================");
ysr@1580 529 st->print_cr("Block layout in CMS Heap:");
ysr@1580 530 st->print_cr("=========================");
ysr@1580 531 BlkPrintingClosure bpcl(c, this, c->markBitMap(), st);
ysr@1580 532 blk_iterate(&bpcl);
ysr@1580 533
ysr@1580 534 st->print_cr("\n=======================================");
ysr@1580 535 st->print_cr("Order & Layout of Promotion Info Blocks");
ysr@1580 536 st->print_cr("=======================================");
ysr@1580 537 print_promo_info_blocks(st);
ysr@1580 538
ysr@1580 539 st->print_cr("\n===========================");
ysr@1580 540 st->print_cr("Order of Indexed Free Lists");
ysr@1580 541 st->print_cr("=========================");
ysr@1580 542 print_indexed_free_lists(st);
ysr@1580 543
ysr@1580 544 st->print_cr("\n=================================");
ysr@1580 545 st->print_cr("Order of Free Lists in Dictionary");
ysr@1580 546 st->print_cr("=================================");
ysr@1580 547 print_dictionary_free_lists(st);
ysr@1580 548 }
ysr@1580 549
ysr@1580 550
duke@435 551 void CompactibleFreeListSpace::reportFreeListStatistics() const {
duke@435 552 assert_lock_strong(&_freelistLock);
duke@435 553 assert(PrintFLSStatistics != 0, "Reporting error");
jmasa@3732 554 _dictionary->report_statistics();
duke@435 555 if (PrintFLSStatistics > 1) {
duke@435 556 reportIndexedFreeListStatistics();
jmasa@3732 557 size_t total_size = totalSizeInIndexedFreeLists() +
jmasa@3732 558 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
hseigel@4465 559 gclog_or_tty->print(" free=" SIZE_FORMAT " frag=%1.4f\n", total_size, flsFrag());
duke@435 560 }
duke@435 561 }
duke@435 562
duke@435 563 void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
duke@435 564 assert_lock_strong(&_freelistLock);
duke@435 565 gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
duke@435 566 "--------------------------------\n");
jmasa@3732 567 size_t total_size = totalSizeInIndexedFreeLists();
jmasa@3732 568 size_t free_blocks = numFreeBlocksInIndexedFreeLists();
drchase@6680 569 gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
drchase@6680 570 gclog_or_tty->print("Max Chunk Size: " SIZE_FORMAT "\n", maxChunkSizeInIndexedFreeLists());
drchase@6680 571 gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
jmasa@3732 572 if (free_blocks != 0) {
drchase@6680 573 gclog_or_tty->print("Av. Block Size: " SIZE_FORMAT "\n", total_size/free_blocks);
duke@435 574 }
duke@435 575 }
duke@435 576
duke@435 577 size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const {
duke@435 578 size_t res = 0;
duke@435 579 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 580 debug_only(
duke@435 581 ssize_t recount = 0;
duke@435 582 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 583 fc = fc->next()) {
duke@435 584 recount += 1;
duke@435 585 }
duke@435 586 assert(recount == _indexedFreeList[i].count(),
duke@435 587 "Incorrect count in list");
duke@435 588 )
duke@435 589 res += _indexedFreeList[i].count();
duke@435 590 }
duke@435 591 return res;
duke@435 592 }
duke@435 593
duke@435 594 size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const {
duke@435 595 for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
duke@435 596 if (_indexedFreeList[i].head() != NULL) {
duke@435 597 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 598 return (size_t)i;
duke@435 599 }
duke@435 600 }
duke@435 601 return 0;
duke@435 602 }
duke@435 603
duke@435 604 void CompactibleFreeListSpace::set_end(HeapWord* value) {
duke@435 605 HeapWord* prevEnd = end();
duke@435 606 assert(prevEnd != value, "unnecessary set_end call");
ysr@2071 607 assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 608 "New end is below unallocated block");
duke@435 609 _end = value;
duke@435 610 if (prevEnd != NULL) {
duke@435 611 // Resize the underlying block offset table.
duke@435 612 _bt.resize(pointer_delta(value, bottom()));
ysr@1580 613 if (value <= prevEnd) {
ysr@2071 614 assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 615 "New end is below unallocated block");
ysr@1580 616 } else {
ysr@1580 617 // Now, take this new chunk and add it to the free blocks.
ysr@1580 618 // Note that the BOT has not yet been updated for this block.
ysr@1580 619 size_t newFcSize = pointer_delta(value, prevEnd);
ysr@1580 620 // XXX This is REALLY UGLY and should be fixed up. XXX
ysr@1580 621 if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) {
ysr@1580 622 // Mark the boundary of the new block in BOT
ysr@1580 623 _bt.mark_block(prevEnd, value);
ysr@1580 624 // put it all in the linAB
ysr@1580 625 if (ParallelGCThreads == 0) {
ysr@1580 626 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 627 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 628 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 629 } else { // ParallelGCThreads > 0
ysr@1580 630 MutexLockerEx x(parDictionaryAllocLock(),
ysr@1580 631 Mutex::_no_safepoint_check_flag);
ysr@1580 632 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 633 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 634 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 635 }
ysr@1580 636 // Births of chunks put into a LinAB are not recorded. Births
ysr@1580 637 // of chunks as they are allocated out of a LinAB are.
ysr@1580 638 } else {
ysr@1580 639 // Add the block to the free lists, if possible coalescing it
ysr@1580 640 // with the last free block, and update the BOT and census data.
ysr@1580 641 addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize);
duke@435 642 }
duke@435 643 }
duke@435 644 }
duke@435 645 }
duke@435 646
duke@435 647 class FreeListSpace_DCTOC : public Filtering_DCTOC {
duke@435 648 CompactibleFreeListSpace* _cfls;
duke@435 649 CMSCollector* _collector;
duke@435 650 protected:
duke@435 651 // Override.
duke@435 652 #define walk_mem_region_with_cl_DECL(ClosureType) \
duke@435 653 virtual void walk_mem_region_with_cl(MemRegion mr, \
duke@435 654 HeapWord* bottom, HeapWord* top, \
duke@435 655 ClosureType* cl); \
duke@435 656 void walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 657 HeapWord* bottom, HeapWord* top, \
duke@435 658 ClosureType* cl); \
duke@435 659 void walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 660 HeapWord* bottom, HeapWord* top, \
duke@435 661 ClosureType* cl)
coleenp@4037 662 walk_mem_region_with_cl_DECL(ExtendedOopClosure);
duke@435 663 walk_mem_region_with_cl_DECL(FilteringClosure);
duke@435 664
duke@435 665 public:
duke@435 666 FreeListSpace_DCTOC(CompactibleFreeListSpace* sp,
duke@435 667 CMSCollector* collector,
coleenp@4037 668 ExtendedOopClosure* cl,
duke@435 669 CardTableModRefBS::PrecisionStyle precision,
duke@435 670 HeapWord* boundary) :
duke@435 671 Filtering_DCTOC(sp, cl, precision, boundary),
duke@435 672 _cfls(sp), _collector(collector) {}
duke@435 673 };
duke@435 674
duke@435 675 // We de-virtualize the block-related calls below, since we know that our
duke@435 676 // space is a CompactibleFreeListSpace.
jmasa@3294 677
duke@435 678 #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 679 void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 680 HeapWord* bottom, \
duke@435 681 HeapWord* top, \
duke@435 682 ClosureType* cl) { \
jmasa@3294 683 bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
jmasa@3294 684 if (is_par) { \
jmasa@3294 685 assert(SharedHeap::heap()->n_par_threads() == \
jmasa@3294 686 SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
duke@435 687 walk_mem_region_with_cl_par(mr, bottom, top, cl); \
duke@435 688 } else { \
duke@435 689 walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
duke@435 690 } \
duke@435 691 } \
duke@435 692 void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 693 HeapWord* bottom, \
duke@435 694 HeapWord* top, \
duke@435 695 ClosureType* cl) { \
duke@435 696 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 697 back too far. */ \
duke@435 698 HeapWord* mr_start = mr.start(); \
duke@435 699 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 700 HeapWord* next = bottom + bot_size; \
duke@435 701 while (next < mr_start) { \
duke@435 702 bottom = next; \
duke@435 703 bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 704 next = bottom + bot_size; \
duke@435 705 } \
duke@435 706 \
duke@435 707 while (bottom < top) { \
duke@435 708 if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \
duke@435 709 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 710 oop(bottom)) && \
duke@435 711 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 712 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 713 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 714 } else { \
duke@435 715 bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 716 } \
duke@435 717 } \
duke@435 718 } \
duke@435 719 void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 720 HeapWord* bottom, \
duke@435 721 HeapWord* top, \
duke@435 722 ClosureType* cl) { \
duke@435 723 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 724 back too far. */ \
duke@435 725 HeapWord* mr_start = mr.start(); \
duke@435 726 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 727 HeapWord* next = bottom + bot_size; \
duke@435 728 while (next < mr_start) { \
duke@435 729 bottom = next; \
duke@435 730 bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 731 next = bottom + bot_size; \
duke@435 732 } \
duke@435 733 \
duke@435 734 while (bottom < top) { \
duke@435 735 if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \
duke@435 736 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 737 oop(bottom)) && \
duke@435 738 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 739 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 740 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 741 } else { \
duke@435 742 bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 743 } \
duke@435 744 } \
duke@435 745 }
duke@435 746
duke@435 747 // (There are only two of these, rather than N, because the split is due
duke@435 748 // only to the introduction of the FilteringClosure, a local part of the
duke@435 749 // impl of this abstraction.)
coleenp@4037 750 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
duke@435 751 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 752
duke@435 753 DirtyCardToOopClosure*
coleenp@4037 754 CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 755 CardTableModRefBS::PrecisionStyle precision,
duke@435 756 HeapWord* boundary) {
duke@435 757 return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary);
duke@435 758 }
duke@435 759
duke@435 760
duke@435 761 // Note on locking for the space iteration functions:
duke@435 762 // since the collector's iteration activities are concurrent with
duke@435 763 // allocation activities by mutators, absent a suitable mutual exclusion
duke@435 764 // mechanism the iterators may go awry. For instace a block being iterated
duke@435 765 // may suddenly be allocated or divided up and part of it allocated and
duke@435 766 // so on.
duke@435 767
duke@435 768 // Apply the given closure to each block in the space.
duke@435 769 void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) {
duke@435 770 assert_lock_strong(freelistLock());
duke@435 771 HeapWord *cur, *limit;
duke@435 772 for (cur = bottom(), limit = end(); cur < limit;
duke@435 773 cur += cl->do_blk_careful(cur));
duke@435 774 }
duke@435 775
duke@435 776 // Apply the given closure to each block in the space.
duke@435 777 void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) {
duke@435 778 assert_lock_strong(freelistLock());
duke@435 779 HeapWord *cur, *limit;
duke@435 780 for (cur = bottom(), limit = end(); cur < limit;
duke@435 781 cur += cl->do_blk(cur));
duke@435 782 }
duke@435 783
duke@435 784 // Apply the given closure to each oop in the space.
coleenp@4037 785 void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
duke@435 786 assert_lock_strong(freelistLock());
duke@435 787 HeapWord *cur, *limit;
duke@435 788 size_t curSize;
duke@435 789 for (cur = bottom(), limit = end(); cur < limit;
duke@435 790 cur += curSize) {
duke@435 791 curSize = block_size(cur);
duke@435 792 if (block_is_obj(cur)) {
duke@435 793 oop(cur)->oop_iterate(cl);
duke@435 794 }
duke@435 795 }
duke@435 796 }
duke@435 797
duke@435 798 // NOTE: In the following methods, in order to safely be able to
duke@435 799 // apply the closure to an object, we need to be sure that the
duke@435 800 // object has been initialized. We are guaranteed that an object
duke@435 801 // is initialized if we are holding the Heap_lock with the
duke@435 802 // world stopped.
duke@435 803 void CompactibleFreeListSpace::verify_objects_initialized() const {
duke@435 804 if (is_init_completed()) {
duke@435 805 assert_locked_or_safepoint(Heap_lock);
duke@435 806 if (Universe::is_fully_initialized()) {
duke@435 807 guarantee(SafepointSynchronize::is_at_safepoint(),
duke@435 808 "Required for objects to be initialized");
duke@435 809 }
duke@435 810 } // else make a concession at vm start-up
duke@435 811 }
duke@435 812
duke@435 813 // Apply the given closure to each object in the space
duke@435 814 void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) {
duke@435 815 assert_lock_strong(freelistLock());
duke@435 816 NOT_PRODUCT(verify_objects_initialized());
duke@435 817 HeapWord *cur, *limit;
duke@435 818 size_t curSize;
duke@435 819 for (cur = bottom(), limit = end(); cur < limit;
duke@435 820 cur += curSize) {
duke@435 821 curSize = block_size(cur);
duke@435 822 if (block_is_obj(cur)) {
duke@435 823 blk->do_object(oop(cur));
duke@435 824 }
duke@435 825 }
duke@435 826 }
duke@435 827
jmasa@952 828 // Apply the given closure to each live object in the space
jmasa@952 829 // The usage of CompactibleFreeListSpace
jmasa@952 830 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 831 // objects in the space with references to objects that are no longer
jmasa@952 832 // valid. For example, an object may reference another object
jmasa@952 833 // that has already been sweep up (collected). This method uses
jmasa@952 834 // obj_is_alive() to determine whether it is safe to apply the closure to
jmasa@952 835 // an object. See obj_is_alive() for details on how liveness of an
jmasa@952 836 // object is decided.
jmasa@952 837
jmasa@952 838 void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 839 assert_lock_strong(freelistLock());
jmasa@952 840 NOT_PRODUCT(verify_objects_initialized());
jmasa@952 841 HeapWord *cur, *limit;
jmasa@952 842 size_t curSize;
jmasa@952 843 for (cur = bottom(), limit = end(); cur < limit;
jmasa@952 844 cur += curSize) {
jmasa@952 845 curSize = block_size(cur);
jmasa@952 846 if (block_is_obj(cur) && obj_is_alive(cur)) {
jmasa@952 847 blk->do_object(oop(cur));
jmasa@952 848 }
jmasa@952 849 }
jmasa@952 850 }
jmasa@952 851
duke@435 852 void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
duke@435 853 UpwardsObjectClosure* cl) {
ysr@1580 854 assert_locked(freelistLock());
duke@435 855 NOT_PRODUCT(verify_objects_initialized());
duke@435 856 Space::object_iterate_mem(mr, cl);
duke@435 857 }
duke@435 858
duke@435 859 // Callers of this iterator beware: The closure application should
duke@435 860 // be robust in the face of uninitialized objects and should (always)
duke@435 861 // return a correct size so that the next addr + size below gives us a
duke@435 862 // valid block boundary. [See for instance,
duke@435 863 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 864 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 865 HeapWord*
duke@435 866 CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 867 assert_lock_strong(freelistLock());
duke@435 868 HeapWord *addr, *last;
duke@435 869 size_t size;
duke@435 870 for (addr = bottom(), last = end();
duke@435 871 addr < last; addr += size) {
duke@435 872 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 873 if (fc->is_free()) {
duke@435 874 // Since we hold the free list lock, which protects direct
duke@435 875 // allocation in this generation by mutators, a free object
duke@435 876 // will remain free throughout this iteration code.
duke@435 877 size = fc->size();
duke@435 878 } else {
duke@435 879 // Note that the object need not necessarily be initialized,
duke@435 880 // because (for instance) the free list lock does NOT protect
duke@435 881 // object initialization. The closure application below must
duke@435 882 // therefore be correct in the face of uninitialized objects.
duke@435 883 size = cl->do_object_careful(oop(addr));
duke@435 884 if (size == 0) {
duke@435 885 // An unparsable object found. Signal early termination.
duke@435 886 return addr;
duke@435 887 }
duke@435 888 }
duke@435 889 }
duke@435 890 return NULL;
duke@435 891 }
duke@435 892
duke@435 893 // Callers of this iterator beware: The closure application should
duke@435 894 // be robust in the face of uninitialized objects and should (always)
duke@435 895 // return a correct size so that the next addr + size below gives us a
duke@435 896 // valid block boundary. [See for instance,
duke@435 897 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 898 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 899 HeapWord*
duke@435 900 CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
duke@435 901 ObjectClosureCareful* cl) {
duke@435 902 assert_lock_strong(freelistLock());
duke@435 903 // Can't use used_region() below because it may not necessarily
duke@435 904 // be the same as [bottom(),end()); although we could
duke@435 905 // use [used_region().start(),round_to(used_region().end(),CardSize)),
duke@435 906 // that appears too cumbersome, so we just do the simpler check
duke@435 907 // in the assertion below.
duke@435 908 assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr),
duke@435 909 "mr should be non-empty and within used space");
duke@435 910 HeapWord *addr, *end;
duke@435 911 size_t size;
duke@435 912 for (addr = block_start_careful(mr.start()), end = mr.end();
duke@435 913 addr < end; addr += size) {
duke@435 914 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 915 if (fc->is_free()) {
duke@435 916 // Since we hold the free list lock, which protects direct
duke@435 917 // allocation in this generation by mutators, a free object
duke@435 918 // will remain free throughout this iteration code.
duke@435 919 size = fc->size();
duke@435 920 } else {
duke@435 921 // Note that the object need not necessarily be initialized,
duke@435 922 // because (for instance) the free list lock does NOT protect
duke@435 923 // object initialization. The closure application below must
duke@435 924 // therefore be correct in the face of uninitialized objects.
duke@435 925 size = cl->do_object_careful_m(oop(addr), mr);
duke@435 926 if (size == 0) {
duke@435 927 // An unparsable object found. Signal early termination.
duke@435 928 return addr;
duke@435 929 }
duke@435 930 }
duke@435 931 }
duke@435 932 return NULL;
duke@435 933 }
duke@435 934
duke@435 935
ysr@777 936 HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const {
duke@435 937 NOT_PRODUCT(verify_objects_initialized());
duke@435 938 return _bt.block_start(p);
duke@435 939 }
duke@435 940
duke@435 941 HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const {
duke@435 942 return _bt.block_start_careful(p);
duke@435 943 }
duke@435 944
duke@435 945 size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const {
duke@435 946 NOT_PRODUCT(verify_objects_initialized());
duke@435 947 // This must be volatile, or else there is a danger that the compiler
duke@435 948 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 949 // the value read the first time in a register.
duke@435 950 while (true) {
duke@435 951 // We must do this until we get a consistent view of the object.
coleenp@622 952 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 953 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 954 size_t res = fc->size();
goetz@6493 955
goetz@6493 956 // Bugfix for systems with weak memory model (PPC64/IA64). The
goetz@6493 957 // block's free bit was set and we have read the size of the
goetz@6493 958 // block. Acquire and check the free bit again. If the block is
goetz@6493 959 // still free, the read size is correct.
goetz@6493 960 OrderAccess::acquire();
goetz@6493 961
coleenp@622 962 // If the object is still a free chunk, return the size, else it
coleenp@622 963 // has been allocated so try again.
coleenp@622 964 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 965 assert(res != 0, "Block size should not be 0");
duke@435 966 return res;
duke@435 967 }
coleenp@622 968 } else {
coleenp@622 969 // must read from what 'p' points to in each loop.
coleenp@4037 970 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
coleenp@622 971 if (k != NULL) {
coleenp@4037 972 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 973 oop o = (oop)p;
coleenp@622 974 assert(o->is_oop(true /* ignore mark word */), "Should be an oop.");
goetz@6493 975
goetz@6493 976 // Bugfix for systems with weak memory model (PPC64/IA64).
goetz@6493 977 // The object o may be an array. Acquire to make sure that the array
goetz@6493 978 // size (third word) is consistent.
goetz@6493 979 OrderAccess::acquire();
goetz@6493 980
coleenp@4037 981 size_t res = o->size_given_klass(k);
coleenp@622 982 res = adjustObjectSize(res);
coleenp@622 983 assert(res != 0, "Block size should not be 0");
coleenp@622 984 return res;
coleenp@622 985 }
duke@435 986 }
duke@435 987 }
duke@435 988 }
duke@435 989
coleenp@4037 990 // TODO: Now that is_parsable is gone, we should combine these two functions.
duke@435 991 // A variant of the above that uses the Printezis bits for
duke@435 992 // unparsable but allocated objects. This avoids any possible
duke@435 993 // stalls waiting for mutators to initialize objects, and is
duke@435 994 // thus potentially faster than the variant above. However,
duke@435 995 // this variant may return a zero size for a block that is
duke@435 996 // under mutation and for which a consistent size cannot be
duke@435 997 // inferred without stalling; see CMSCollector::block_size_if_printezis_bits().
duke@435 998 size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p,
duke@435 999 const CMSCollector* c)
duke@435 1000 const {
duke@435 1001 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1002 // This must be volatile, or else there is a danger that the compiler
duke@435 1003 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 1004 // the value read the first time in a register.
duke@435 1005 DEBUG_ONLY(uint loops = 0;)
duke@435 1006 while (true) {
duke@435 1007 // We must do this until we get a consistent view of the object.
coleenp@622 1008 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1009 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1010 size_t res = fc->size();
goetz@6493 1011
goetz@6493 1012 // Bugfix for systems with weak memory model (PPC64/IA64). The
goetz@6493 1013 // free bit of the block was set and we have read the size of
goetz@6493 1014 // the block. Acquire and check the free bit again. If the
goetz@6493 1015 // block is still free, the read size is correct.
goetz@6493 1016 OrderAccess::acquire();
goetz@6493 1017
coleenp@622 1018 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1019 assert(res != 0, "Block size should not be 0");
duke@435 1020 assert(loops == 0, "Should be 0");
duke@435 1021 return res;
duke@435 1022 }
duke@435 1023 } else {
coleenp@622 1024 // must read from what 'p' points to in each loop.
coleenp@4037 1025 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
ysr@2533 1026 // We trust the size of any object that has a non-NULL
ysr@2533 1027 // klass and (for those in the perm gen) is parsable
ysr@2533 1028 // -- irrespective of its conc_safe-ty.
coleenp@4037 1029 if (k != NULL) {
coleenp@4037 1030 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1031 oop o = (oop)p;
coleenp@622 1032 assert(o->is_oop(), "Should be an oop");
goetz@6493 1033
goetz@6493 1034 // Bugfix for systems with weak memory model (PPC64/IA64).
goetz@6493 1035 // The object o may be an array. Acquire to make sure that the array
goetz@6493 1036 // size (third word) is consistent.
goetz@6493 1037 OrderAccess::acquire();
goetz@6493 1038
coleenp@4037 1039 size_t res = o->size_given_klass(k);
coleenp@622 1040 res = adjustObjectSize(res);
coleenp@622 1041 assert(res != 0, "Block size should not be 0");
coleenp@622 1042 return res;
coleenp@622 1043 } else {
ysr@2533 1044 // May return 0 if P-bits not present.
coleenp@622 1045 return c->block_size_if_printezis_bits(p);
coleenp@622 1046 }
duke@435 1047 }
duke@435 1048 assert(loops == 0, "Can loop at most once");
duke@435 1049 DEBUG_ONLY(loops++;)
duke@435 1050 }
duke@435 1051 }
duke@435 1052
duke@435 1053 size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
duke@435 1054 NOT_PRODUCT(verify_objects_initialized());
duke@435 1055 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1056 FreeChunk* fc = (FreeChunk*)p;
jmasa@3732 1057 if (fc->is_free()) {
duke@435 1058 return fc->size();
duke@435 1059 } else {
duke@435 1060 // Ignore mark word because this may be a recently promoted
duke@435 1061 // object whose mark word is used to chain together grey
duke@435 1062 // objects (the last one would have a null value).
duke@435 1063 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1064 return adjustObjectSize(oop(p)->size());
duke@435 1065 }
duke@435 1066 }
duke@435 1067
duke@435 1068 // This implementation assumes that the property of "being an object" is
duke@435 1069 // stable. But being a free chunk may not be (because of parallel
duke@435 1070 // promotion.)
duke@435 1071 bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const {
duke@435 1072 FreeChunk* fc = (FreeChunk*)p;
duke@435 1073 assert(is_in_reserved(p), "Should be in space");
duke@435 1074 // When doing a mark-sweep-compact of the CMS generation, this
duke@435 1075 // assertion may fail because prepare_for_compaction() uses
duke@435 1076 // space that is garbage to maintain information on ranges of
duke@435 1077 // live objects so that these live ranges can be moved as a whole.
duke@435 1078 // Comment out this assertion until that problem can be solved
duke@435 1079 // (i.e., that the block start calculation may look at objects
duke@435 1080 // at address below "p" in finding the object that contains "p"
duke@435 1081 // and those objects (if garbage) may have been modified to hold
duke@435 1082 // live range information.
jmasa@2188 1083 // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p,
jmasa@2188 1084 // "Should be a block boundary");
coleenp@622 1085 if (FreeChunk::indicatesFreeChunk(p)) return false;
coleenp@4037 1086 Klass* k = oop(p)->klass_or_null();
duke@435 1087 if (k != NULL) {
duke@435 1088 // Ignore mark word because it may have been used to
duke@435 1089 // chain together promoted objects (the last one
duke@435 1090 // would have a null value).
duke@435 1091 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1092 return true;
duke@435 1093 } else {
duke@435 1094 return false; // Was not an object at the start of collection.
duke@435 1095 }
duke@435 1096 }
duke@435 1097
duke@435 1098 // Check if the object is alive. This fact is checked either by consulting
duke@435 1099 // the main marking bitmap in the sweeping phase or, if it's a permanent
duke@435 1100 // generation and we're not in the sweeping phase, by checking the
duke@435 1101 // perm_gen_verify_bit_map where we store the "deadness" information if
duke@435 1102 // we did not sweep the perm gen in the most recent previous GC cycle.
duke@435 1103 bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const {
ysr@2301 1104 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
ysr@2301 1105 "Else races are possible");
ysr@2293 1106 assert(block_is_obj(p), "The address should point to an object");
duke@435 1107
duke@435 1108 // If we're sweeping, we use object liveness information from the main bit map
duke@435 1109 // for both perm gen and old gen.
duke@435 1110 // We don't need to lock the bitmap (live_map or dead_map below), because
duke@435 1111 // EITHER we are in the middle of the sweeping phase, and the
duke@435 1112 // main marking bit map (live_map below) is locked,
duke@435 1113 // OR we're in other phases and perm_gen_verify_bit_map (dead_map below)
duke@435 1114 // is stable, because it's mutated only in the sweeping phase.
ysr@2293 1115 // NOTE: This method is also used by jmap where, if class unloading is
ysr@2293 1116 // off, the results can return "false" for legitimate perm objects,
ysr@2293 1117 // when we are not in the midst of a sweeping phase, which can result
ysr@2293 1118 // in jmap not reporting certain perm gen objects. This will be moot
ysr@2293 1119 // if/when the perm gen goes away in the future.
duke@435 1120 if (_collector->abstract_state() == CMSCollector::Sweeping) {
duke@435 1121 CMSBitMap* live_map = _collector->markBitMap();
ysr@2293 1122 return live_map->par_isMarked((HeapWord*) p);
duke@435 1123 }
duke@435 1124 return true;
duke@435 1125 }
duke@435 1126
duke@435 1127 bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
duke@435 1128 FreeChunk* fc = (FreeChunk*)p;
duke@435 1129 assert(is_in_reserved(p), "Should be in space");
duke@435 1130 assert(_bt.block_start(p) == p, "Should be a block boundary");
jmasa@3732 1131 if (!fc->is_free()) {
duke@435 1132 // Ignore mark word because it may have been used to
duke@435 1133 // chain together promoted objects (the last one
duke@435 1134 // would have a null value).
duke@435 1135 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1136 return true;
duke@435 1137 }
duke@435 1138 return false;
duke@435 1139 }
duke@435 1140
duke@435 1141 // "MT-safe but not guaranteed MT-precise" (TM); you may get an
duke@435 1142 // approximate answer if you don't hold the freelistlock when you call this.
duke@435 1143 size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const {
duke@435 1144 size_t size = 0;
duke@435 1145 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 1146 debug_only(
duke@435 1147 // We may be calling here without the lock in which case we
duke@435 1148 // won't do this modest sanity check.
duke@435 1149 if (freelistLock()->owned_by_self()) {
duke@435 1150 size_t total_list_size = 0;
duke@435 1151 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 1152 fc = fc->next()) {
duke@435 1153 total_list_size += i;
duke@435 1154 }
duke@435 1155 assert(total_list_size == i * _indexedFreeList[i].count(),
duke@435 1156 "Count in list is incorrect");
duke@435 1157 }
duke@435 1158 )
duke@435 1159 size += i * _indexedFreeList[i].count();
duke@435 1160 }
duke@435 1161 return size;
duke@435 1162 }
duke@435 1163
duke@435 1164 HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) {
duke@435 1165 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
duke@435 1166 return allocate(size);
duke@435 1167 }
duke@435 1168
duke@435 1169 HeapWord*
duke@435 1170 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) {
duke@435 1171 return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size);
duke@435 1172 }
duke@435 1173
duke@435 1174 HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
duke@435 1175 assert_lock_strong(freelistLock());
duke@435 1176 HeapWord* res = NULL;
duke@435 1177 assert(size == adjustObjectSize(size),
duke@435 1178 "use adjustObjectSize() before calling into allocate()");
duke@435 1179
duke@435 1180 if (_adaptive_freelists) {
duke@435 1181 res = allocate_adaptive_freelists(size);
duke@435 1182 } else { // non-adaptive free lists
duke@435 1183 res = allocate_non_adaptive_freelists(size);
duke@435 1184 }
duke@435 1185
duke@435 1186 if (res != NULL) {
duke@435 1187 // check that res does lie in this space!
duke@435 1188 assert(is_in_reserved(res), "Not in this space!");
duke@435 1189 assert(is_aligned((void*)res), "alignment check");
duke@435 1190
duke@435 1191 FreeChunk* fc = (FreeChunk*)res;
duke@435 1192 fc->markNotFree();
jmasa@3732 1193 assert(!fc->is_free(), "shouldn't be marked free");
coleenp@622 1194 assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
duke@435 1195 // Verify that the block offset table shows this to
duke@435 1196 // be a single block, but not one which is unallocated.
duke@435 1197 _bt.verify_single_block(res, size);
duke@435 1198 _bt.verify_not_unallocated(res, size);
duke@435 1199 // mangle a just allocated object with a distinct pattern.
duke@435 1200 debug_only(fc->mangleAllocated(size));
duke@435 1201 }
duke@435 1202
duke@435 1203 return res;
duke@435 1204 }
duke@435 1205
duke@435 1206 HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) {
duke@435 1207 HeapWord* res = NULL;
duke@435 1208 // try and use linear allocation for smaller blocks
duke@435 1209 if (size < _smallLinearAllocBlock._allocation_size_limit) {
duke@435 1210 // if successful, the following also adjusts block offset table
duke@435 1211 res = getChunkFromSmallLinearAllocBlock(size);
duke@435 1212 }
duke@435 1213 // Else triage to indexed lists for smaller sizes
duke@435 1214 if (res == NULL) {
duke@435 1215 if (size < SmallForDictionary) {
duke@435 1216 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1217 } else {
duke@435 1218 // else get it from the big dictionary; if even this doesn't
duke@435 1219 // work we are out of luck.
duke@435 1220 res = (HeapWord*)getChunkFromDictionaryExact(size);
duke@435 1221 }
duke@435 1222 }
duke@435 1223
duke@435 1224 return res;
duke@435 1225 }
duke@435 1226
duke@435 1227 HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) {
duke@435 1228 assert_lock_strong(freelistLock());
duke@435 1229 HeapWord* res = NULL;
duke@435 1230 assert(size == adjustObjectSize(size),
duke@435 1231 "use adjustObjectSize() before calling into allocate()");
duke@435 1232
duke@435 1233 // Strategy
duke@435 1234 // if small
duke@435 1235 // exact size from small object indexed list if small
duke@435 1236 // small or large linear allocation block (linAB) as appropriate
duke@435 1237 // take from lists of greater sized chunks
duke@435 1238 // else
duke@435 1239 // dictionary
duke@435 1240 // small or large linear allocation block if it has the space
duke@435 1241 // Try allocating exact size from indexTable first
duke@435 1242 if (size < IndexSetSize) {
duke@435 1243 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1244 if(res != NULL) {
duke@435 1245 assert(res != (HeapWord*)_indexedFreeList[size].head(),
duke@435 1246 "Not removed from free list");
duke@435 1247 // no block offset table adjustment is necessary on blocks in
duke@435 1248 // the indexed lists.
duke@435 1249
duke@435 1250 // Try allocating from the small LinAB
duke@435 1251 } else if (size < _smallLinearAllocBlock._allocation_size_limit &&
duke@435 1252 (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) {
duke@435 1253 // if successful, the above also adjusts block offset table
duke@435 1254 // Note that this call will refill the LinAB to
duke@435 1255 // satisfy the request. This is different that
duke@435 1256 // evm.
duke@435 1257 // Don't record chunk off a LinAB? smallSplitBirth(size);
duke@435 1258 } else {
duke@435 1259 // Raid the exact free lists larger than size, even if they are not
duke@435 1260 // overpopulated.
duke@435 1261 res = (HeapWord*) getChunkFromGreater(size);
duke@435 1262 }
duke@435 1263 } else {
duke@435 1264 // Big objects get allocated directly from the dictionary.
duke@435 1265 res = (HeapWord*) getChunkFromDictionaryExact(size);
duke@435 1266 if (res == NULL) {
duke@435 1267 // Try hard not to fail since an allocation failure will likely
duke@435 1268 // trigger a synchronous GC. Try to get the space from the
duke@435 1269 // allocation blocks.
duke@435 1270 res = getChunkFromSmallLinearAllocBlockRemainder(size);
duke@435 1271 }
duke@435 1272 }
duke@435 1273
duke@435 1274 return res;
duke@435 1275 }
duke@435 1276
duke@435 1277 // A worst-case estimate of the space required (in HeapWords) to expand the heap
duke@435 1278 // when promoting obj.
duke@435 1279 size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const {
duke@435 1280 // Depending on the object size, expansion may require refilling either a
duke@435 1281 // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize
duke@435 1282 // is added because the dictionary may over-allocate to avoid fragmentation.
duke@435 1283 size_t space = obj_size;
duke@435 1284 if (!_adaptive_freelists) {
duke@435 1285 space = MAX2(space, _smallLinearAllocBlock._refillSize);
duke@435 1286 }
duke@435 1287 space += _promoInfo.refillSize() + 2 * MinChunkSize;
duke@435 1288 return space;
duke@435 1289 }
duke@435 1290
duke@435 1291 FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
duke@435 1292 FreeChunk* ret;
duke@435 1293
duke@435 1294 assert(numWords >= MinChunkSize, "Size is less than minimum");
duke@435 1295 assert(linearAllocationWouldFail() || bestFitFirst(),
duke@435 1296 "Should not be here");
duke@435 1297
duke@435 1298 size_t i;
duke@435 1299 size_t currSize = numWords + MinChunkSize;
duke@435 1300 assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
duke@435 1301 for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 1302 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
duke@435 1303 if (fl->head()) {
duke@435 1304 ret = getFromListGreater(fl, numWords);
jmasa@3732 1305 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1306 return ret;
duke@435 1307 }
duke@435 1308 }
duke@435 1309
duke@435 1310 currSize = MAX2((size_t)SmallForDictionary,
duke@435 1311 (size_t)(numWords + MinChunkSize));
duke@435 1312
duke@435 1313 /* Try to get a chunk that satisfies request, while avoiding
duke@435 1314 fragmentation that can't be handled. */
duke@435 1315 {
jmasa@3732 1316 ret = dictionary()->get_chunk(currSize);
duke@435 1317 if (ret != NULL) {
duke@435 1318 assert(ret->size() - numWords >= MinChunkSize,
duke@435 1319 "Chunk is too small");
duke@435 1320 _bt.allocated((HeapWord*)ret, ret->size());
duke@435 1321 /* Carve returned chunk. */
duke@435 1322 (void) splitChunkAndReturnRemainder(ret, numWords);
duke@435 1323 /* Label this as no longer a free chunk. */
jmasa@3732 1324 assert(ret->is_free(), "This chunk should be free");
jmasa@3732 1325 ret->link_prev(NULL);
duke@435 1326 }
jmasa@3732 1327 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1328 return ret;
duke@435 1329 }
duke@435 1330 ShouldNotReachHere();
duke@435 1331 }
duke@435 1332
ysr@3220 1333 bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
duke@435 1334 assert(fc->size() < IndexSetSize, "Size of chunk is too large");
jmasa@3732 1335 return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
duke@435 1336 }
duke@435 1337
ysr@3220 1338 bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
ysr@3220 1339 assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) ||
ysr@3220 1340 (_smallLinearAllocBlock._word_size == fc->size()),
ysr@3220 1341 "Linear allocation block shows incorrect size");
ysr@3220 1342 return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) &&
ysr@3220 1343 (_smallLinearAllocBlock._word_size == fc->size()));
ysr@3220 1344 }
ysr@3220 1345
ysr@3220 1346 // Check if the purported free chunk is present either as a linear
ysr@3220 1347 // allocation block, the size-indexed table of (smaller) free blocks,
ysr@3220 1348 // or the larger free blocks kept in the binary tree dictionary.
jmasa@3732 1349 bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
ysr@3220 1350 if (verify_chunk_is_linear_alloc_block(fc)) {
ysr@3220 1351 return true;
ysr@3220 1352 } else if (fc->size() < IndexSetSize) {
ysr@3220 1353 return verifyChunkInIndexedFreeLists(fc);
ysr@3220 1354 } else {
jmasa@3732 1355 return dictionary()->verify_chunk_in_free_list(fc);
duke@435 1356 }
duke@435 1357 }
duke@435 1358
duke@435 1359 #ifndef PRODUCT
duke@435 1360 void CompactibleFreeListSpace::assert_locked() const {
duke@435 1361 CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock());
duke@435 1362 }
ysr@1580 1363
ysr@1580 1364 void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const {
ysr@1580 1365 CMSLockVerifier::assert_locked(lock);
ysr@1580 1366 }
duke@435 1367 #endif
duke@435 1368
duke@435 1369 FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
duke@435 1370 // In the parallel case, the main thread holds the free list lock
duke@435 1371 // on behalf the parallel threads.
duke@435 1372 FreeChunk* fc;
duke@435 1373 {
duke@435 1374 // If GC is parallel, this might be called by several threads.
duke@435 1375 // This should be rare enough that the locking overhead won't affect
duke@435 1376 // the sequential code.
duke@435 1377 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 1378 Mutex::_no_safepoint_check_flag);
duke@435 1379 fc = getChunkFromDictionary(size);
duke@435 1380 }
duke@435 1381 if (fc != NULL) {
duke@435 1382 fc->dontCoalesce();
jmasa@3732 1383 assert(fc->is_free(), "Should be free, but not coalescable");
duke@435 1384 // Verify that the block offset table shows this to
duke@435 1385 // be a single block, but not one which is unallocated.
duke@435 1386 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1387 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 1388 }
duke@435 1389 return fc;
duke@435 1390 }
duke@435 1391
coleenp@548 1392 oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) {
duke@435 1393 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1394 assert_locked();
duke@435 1395
duke@435 1396 // if we are tracking promotions, then first ensure space for
duke@435 1397 // promotion (including spooling space for saving header if necessary).
duke@435 1398 // then allocate and copy, then track promoted info if needed.
duke@435 1399 // When tracking (see PromotionInfo::track()), the mark word may
duke@435 1400 // be displaced and in this case restoration of the mark word
duke@435 1401 // occurs in the (oop_since_save_marks_)iterate phase.
duke@435 1402 if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) {
duke@435 1403 return NULL;
duke@435 1404 }
duke@435 1405 // Call the allocate(size_t, bool) form directly to avoid the
duke@435 1406 // additional call through the allocate(size_t) form. Having
duke@435 1407 // the compile inline the call is problematic because allocate(size_t)
duke@435 1408 // is a virtual method.
duke@435 1409 HeapWord* res = allocate(adjustObjectSize(obj_size));
duke@435 1410 if (res != NULL) {
duke@435 1411 Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size);
duke@435 1412 // if we should be tracking promotions, do so.
duke@435 1413 if (_promoInfo.tracking()) {
duke@435 1414 _promoInfo.track((PromotedObject*)res);
duke@435 1415 }
duke@435 1416 }
duke@435 1417 return oop(res);
duke@435 1418 }
duke@435 1419
duke@435 1420 HeapWord*
duke@435 1421 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) {
duke@435 1422 assert_locked();
duke@435 1423 assert(size >= MinChunkSize, "minimum chunk size");
duke@435 1424 assert(size < _smallLinearAllocBlock._allocation_size_limit,
duke@435 1425 "maximum from smallLinearAllocBlock");
duke@435 1426 return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size);
duke@435 1427 }
duke@435 1428
duke@435 1429 HeapWord*
duke@435 1430 CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
duke@435 1431 size_t size) {
duke@435 1432 assert_locked();
duke@435 1433 assert(size >= MinChunkSize, "too small");
duke@435 1434 HeapWord* res = NULL;
duke@435 1435 // Try to do linear allocation from blk, making sure that
duke@435 1436 if (blk->_word_size == 0) {
duke@435 1437 // We have probably been unable to fill this either in the prologue or
duke@435 1438 // when it was exhausted at the last linear allocation. Bail out until
duke@435 1439 // next time.
duke@435 1440 assert(blk->_ptr == NULL, "consistency check");
duke@435 1441 return NULL;
duke@435 1442 }
duke@435 1443 assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check");
duke@435 1444 res = getChunkFromLinearAllocBlockRemainder(blk, size);
duke@435 1445 if (res != NULL) return res;
duke@435 1446
duke@435 1447 // about to exhaust this linear allocation block
duke@435 1448 if (blk->_word_size == size) { // exactly satisfied
duke@435 1449 res = blk->_ptr;
duke@435 1450 _bt.allocated(res, blk->_word_size);
duke@435 1451 } else if (size + MinChunkSize <= blk->_refillSize) {
ysr@1580 1452 size_t sz = blk->_word_size;
duke@435 1453 // Update _unallocated_block if the size is such that chunk would be
duke@435 1454 // returned to the indexed free list. All other chunks in the indexed
duke@435 1455 // free lists are allocated from the dictionary so that _unallocated_block
duke@435 1456 // has already been adjusted for them. Do it here so that the cost
duke@435 1457 // for all chunks added back to the indexed free lists.
ysr@1580 1458 if (sz < SmallForDictionary) {
ysr@1580 1459 _bt.allocated(blk->_ptr, sz);
duke@435 1460 }
duke@435 1461 // Return the chunk that isn't big enough, and then refill below.
ysr@1580 1462 addChunkToFreeLists(blk->_ptr, sz);
jmasa@3732 1463 split_birth(sz);
duke@435 1464 // Don't keep statistics on adding back chunk from a LinAB.
duke@435 1465 } else {
duke@435 1466 // A refilled block would not satisfy the request.
duke@435 1467 return NULL;
duke@435 1468 }
duke@435 1469
duke@435 1470 blk->_ptr = NULL; blk->_word_size = 0;
duke@435 1471 refillLinearAllocBlock(blk);
duke@435 1472 assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
duke@435 1473 "block was replenished");
duke@435 1474 if (res != NULL) {
jmasa@3732 1475 split_birth(size);
duke@435 1476 repairLinearAllocBlock(blk);
duke@435 1477 } else if (blk->_ptr != NULL) {
duke@435 1478 res = blk->_ptr;
duke@435 1479 size_t blk_size = blk->_word_size;
duke@435 1480 blk->_word_size -= size;
duke@435 1481 blk->_ptr += size;
jmasa@3732 1482 split_birth(size);
duke@435 1483 repairLinearAllocBlock(blk);
duke@435 1484 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1485 // view of the BOT and free blocks.
duke@435 1486 // Above must occur before BOT is updated below.
ysr@2071 1487 OrderAccess::storestore();
duke@435 1488 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1489 }
duke@435 1490 return res;
duke@435 1491 }
duke@435 1492
duke@435 1493 HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
duke@435 1494 LinearAllocBlock* blk,
duke@435 1495 size_t size) {
duke@435 1496 assert_locked();
duke@435 1497 assert(size >= MinChunkSize, "too small");
duke@435 1498
duke@435 1499 HeapWord* res = NULL;
duke@435 1500 // This is the common case. Keep it simple.
duke@435 1501 if (blk->_word_size >= size + MinChunkSize) {
duke@435 1502 assert(blk->_ptr != NULL, "consistency check");
duke@435 1503 res = blk->_ptr;
duke@435 1504 // Note that the BOT is up-to-date for the linAB before allocation. It
duke@435 1505 // indicates the start of the linAB. The split_block() updates the
duke@435 1506 // BOT for the linAB after the allocation (indicates the start of the
duke@435 1507 // next chunk to be allocated).
duke@435 1508 size_t blk_size = blk->_word_size;
duke@435 1509 blk->_word_size -= size;
duke@435 1510 blk->_ptr += size;
jmasa@3732 1511 split_birth(size);
duke@435 1512 repairLinearAllocBlock(blk);
duke@435 1513 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1514 // view of the BOT and free blocks.
duke@435 1515 // Above must occur before BOT is updated below.
ysr@2071 1516 OrderAccess::storestore();
duke@435 1517 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1518 _bt.allocated(res, size);
duke@435 1519 }
duke@435 1520 return res;
duke@435 1521 }
duke@435 1522
duke@435 1523 FreeChunk*
duke@435 1524 CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
duke@435 1525 assert_locked();
duke@435 1526 assert(size < SmallForDictionary, "just checking");
duke@435 1527 FreeChunk* res;
jmasa@3732 1528 res = _indexedFreeList[size].get_chunk_at_head();
duke@435 1529 if (res == NULL) {
duke@435 1530 res = getChunkFromIndexedFreeListHelper(size);
duke@435 1531 }
duke@435 1532 _bt.verify_not_unallocated((HeapWord*) res, size);
ysr@1580 1533 assert(res == NULL || res->size() == size, "Incorrect block size");
duke@435 1534 return res;
duke@435 1535 }
duke@435 1536
duke@435 1537 FreeChunk*
ysr@1580 1538 CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
ysr@1580 1539 bool replenish) {
duke@435 1540 assert_locked();
duke@435 1541 FreeChunk* fc = NULL;
duke@435 1542 if (size < SmallForDictionary) {
duke@435 1543 assert(_indexedFreeList[size].head() == NULL ||
duke@435 1544 _indexedFreeList[size].surplus() <= 0,
duke@435 1545 "List for this size should be empty or under populated");
duke@435 1546 // Try best fit in exact lists before replenishing the list
duke@435 1547 if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) {
duke@435 1548 // Replenish list.
duke@435 1549 //
duke@435 1550 // Things tried that failed.
duke@435 1551 // Tried allocating out of the two LinAB's first before
duke@435 1552 // replenishing lists.
duke@435 1553 // Tried small linAB of size 256 (size in indexed list)
duke@435 1554 // and replenishing indexed lists from the small linAB.
duke@435 1555 //
duke@435 1556 FreeChunk* newFc = NULL;
ysr@1580 1557 const size_t replenish_size = CMSIndexedFreeListReplenish * size;
duke@435 1558 if (replenish_size < SmallForDictionary) {
duke@435 1559 // Do not replenish from an underpopulated size.
duke@435 1560 if (_indexedFreeList[replenish_size].surplus() > 0 &&
duke@435 1561 _indexedFreeList[replenish_size].head() != NULL) {
jmasa@3732 1562 newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
ysr@1580 1563 } else if (bestFitFirst()) {
duke@435 1564 newFc = bestFitSmall(replenish_size);
duke@435 1565 }
duke@435 1566 }
ysr@1580 1567 if (newFc == NULL && replenish_size > size) {
ysr@1580 1568 assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant");
ysr@1580 1569 newFc = getChunkFromIndexedFreeListHelper(replenish_size, false);
ysr@1580 1570 }
ysr@1580 1571 // Note: The stats update re split-death of block obtained above
ysr@1580 1572 // will be recorded below precisely when we know we are going to
ysr@1580 1573 // be actually splitting it into more than one pieces below.
duke@435 1574 if (newFc != NULL) {
ysr@1580 1575 if (replenish || CMSReplenishIntermediate) {
ysr@1580 1576 // Replenish this list and return one block to caller.
ysr@1580 1577 size_t i;
ysr@1580 1578 FreeChunk *curFc, *nextFc;
ysr@1580 1579 size_t num_blk = newFc->size() / size;
ysr@1580 1580 assert(num_blk >= 1, "Smaller than requested?");
ysr@1580 1581 assert(newFc->size() % size == 0, "Should be integral multiple of request");
ysr@1580 1582 if (num_blk > 1) {
ysr@1580 1583 // we are sure we will be splitting the block just obtained
ysr@1580 1584 // into multiple pieces; record the split-death of the original
ysr@1580 1585 splitDeath(replenish_size);
ysr@1580 1586 }
ysr@1580 1587 // carve up and link blocks 0, ..., num_blk - 2
ysr@1580 1588 // The last chunk is not added to the lists but is returned as the
ysr@1580 1589 // free chunk.
ysr@1580 1590 for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size),
ysr@1580 1591 i = 0;
ysr@1580 1592 i < (num_blk - 1);
ysr@1580 1593 curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
ysr@1580 1594 i++) {
jmasa@3732 1595 curFc->set_size(size);
ysr@1580 1596 // Don't record this as a return in order to try and
ysr@1580 1597 // determine the "returns" from a GC.
ysr@1580 1598 _bt.verify_not_unallocated((HeapWord*) fc, size);
jmasa@3732 1599 _indexedFreeList[size].return_chunk_at_tail(curFc, false);
ysr@1580 1600 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1601 split_birth(size);
ysr@1580 1602 // Don't record the initial population of the indexed list
ysr@1580 1603 // as a split birth.
ysr@1580 1604 }
ysr@1580 1605
ysr@1580 1606 // check that the arithmetic was OK above
ysr@1580 1607 assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
ysr@1580 1608 "inconsistency in carving newFc");
jmasa@3732 1609 curFc->set_size(size);
duke@435 1610 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1611 split_birth(size);
ysr@1580 1612 fc = curFc;
ysr@1580 1613 } else {
ysr@1580 1614 // Return entire block to caller
ysr@1580 1615 fc = newFc;
duke@435 1616 }
duke@435 1617 }
duke@435 1618 }
duke@435 1619 } else {
duke@435 1620 // Get a free chunk from the free chunk dictionary to be returned to
duke@435 1621 // replenish the indexed free list.
duke@435 1622 fc = getChunkFromDictionaryExact(size);
duke@435 1623 }
jmasa@3732 1624 // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
duke@435 1625 return fc;
duke@435 1626 }
duke@435 1627
duke@435 1628 FreeChunk*
duke@435 1629 CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
duke@435 1630 assert_locked();
jmasa@4488 1631 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1632 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1633 if (fc == NULL) {
duke@435 1634 return NULL;
duke@435 1635 }
duke@435 1636 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1637 if (fc->size() >= size + MinChunkSize) {
duke@435 1638 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1639 }
duke@435 1640 assert(fc->size() >= size, "chunk too small");
duke@435 1641 assert(fc->size() < size + MinChunkSize, "chunk too big");
duke@435 1642 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1643 return fc;
duke@435 1644 }
duke@435 1645
duke@435 1646 FreeChunk*
duke@435 1647 CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
duke@435 1648 assert_locked();
jmasa@4488 1649 FreeChunk* fc = _dictionary->get_chunk(size,
jmasa@4488 1650 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1651 if (fc == NULL) {
duke@435 1652 return fc;
duke@435 1653 }
duke@435 1654 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1655 if (fc->size() == size) {
duke@435 1656 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1657 return fc;
duke@435 1658 }
jmasa@3732 1659 assert(fc->size() > size, "get_chunk() guarantee");
duke@435 1660 if (fc->size() < size + MinChunkSize) {
duke@435 1661 // Return the chunk to the dictionary and go get a bigger one.
duke@435 1662 returnChunkToDictionary(fc);
jmasa@4488 1663 fc = _dictionary->get_chunk(size + MinChunkSize,
jmasa@4488 1664 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 1665 if (fc == NULL) {
duke@435 1666 return NULL;
duke@435 1667 }
duke@435 1668 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1669 }
duke@435 1670 assert(fc->size() >= size + MinChunkSize, "tautology");
duke@435 1671 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1672 assert(fc->size() == size, "chunk is wrong size");
duke@435 1673 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1674 return fc;
duke@435 1675 }
duke@435 1676
duke@435 1677 void
duke@435 1678 CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
duke@435 1679 assert_locked();
duke@435 1680
duke@435 1681 size_t size = chunk->size();
duke@435 1682 _bt.verify_single_block((HeapWord*)chunk, size);
duke@435 1683 // adjust _unallocated_block downward, as necessary
duke@435 1684 _bt.freed((HeapWord*)chunk, size);
jmasa@3732 1685 _dictionary->return_chunk(chunk);
ysr@1580 1686 #ifndef PRODUCT
ysr@1580 1687 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
goetz@6337 1688 TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >* tc = TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::as_TreeChunk(chunk);
goetz@6337 1689 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* tl = tc->list();
jmasa@4196 1690 tl->verify_stats();
ysr@1580 1691 }
ysr@1580 1692 #endif // PRODUCT
duke@435 1693 }
duke@435 1694
duke@435 1695 void
duke@435 1696 CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
duke@435 1697 assert_locked();
duke@435 1698 size_t size = fc->size();
duke@435 1699 _bt.verify_single_block((HeapWord*) fc, size);
duke@435 1700 _bt.verify_not_unallocated((HeapWord*) fc, size);
duke@435 1701 if (_adaptive_freelists) {
jmasa@3732 1702 _indexedFreeList[size].return_chunk_at_tail(fc);
duke@435 1703 } else {
jmasa@3732 1704 _indexedFreeList[size].return_chunk_at_head(fc);
duke@435 1705 }
ysr@1580 1706 #ifndef PRODUCT
ysr@1580 1707 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
ysr@1580 1708 _indexedFreeList[size].verify_stats();
ysr@1580 1709 }
ysr@1580 1710 #endif // PRODUCT
duke@435 1711 }
duke@435 1712
duke@435 1713 // Add chunk to end of last block -- if it's the largest
duke@435 1714 // block -- and update BOT and census data. We would
duke@435 1715 // of course have preferred to coalesce it with the
duke@435 1716 // last block, but it's currently less expensive to find the
duke@435 1717 // largest block than it is to find the last.
duke@435 1718 void
duke@435 1719 CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
duke@435 1720 HeapWord* chunk, size_t size) {
duke@435 1721 // check that the chunk does lie in this space!
duke@435 1722 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1723 // One of the parallel gc task threads may be here
duke@435 1724 // whilst others are allocating.
duke@435 1725 Mutex* lock = NULL;
duke@435 1726 if (ParallelGCThreads != 0) {
duke@435 1727 lock = &_parDictionaryAllocLock;
duke@435 1728 }
duke@435 1729 FreeChunk* ec;
duke@435 1730 {
duke@435 1731 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
jmasa@3732 1732 ec = dictionary()->find_largest_dict(); // get largest block
jmasa@4196 1733 if (ec != NULL && ec->end() == (uintptr_t*) chunk) {
duke@435 1734 // It's a coterminal block - we can coalesce.
duke@435 1735 size_t old_size = ec->size();
duke@435 1736 coalDeath(old_size);
duke@435 1737 removeChunkFromDictionary(ec);
duke@435 1738 size += old_size;
duke@435 1739 } else {
duke@435 1740 ec = (FreeChunk*)chunk;
duke@435 1741 }
duke@435 1742 }
jmasa@3732 1743 ec->set_size(size);
duke@435 1744 debug_only(ec->mangleFreed(size));
brutisso@5166 1745 if (size < SmallForDictionary && ParallelGCThreads != 0) {
duke@435 1746 lock = _indexedFreeListParLocks[size];
duke@435 1747 }
duke@435 1748 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
duke@435 1749 addChunkAndRepairOffsetTable((HeapWord*)ec, size, true);
duke@435 1750 // record the birth under the lock since the recording involves
duke@435 1751 // manipulation of the list on which the chunk lives and
duke@435 1752 // if the chunk is allocated and is the last on the list,
duke@435 1753 // the list can go away.
duke@435 1754 coalBirth(size);
duke@435 1755 }
duke@435 1756
duke@435 1757 void
duke@435 1758 CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
duke@435 1759 size_t size) {
duke@435 1760 // check that the chunk does lie in this space!
duke@435 1761 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1762 assert_locked();
duke@435 1763 _bt.verify_single_block(chunk, size);
duke@435 1764
duke@435 1765 FreeChunk* fc = (FreeChunk*) chunk;
jmasa@3732 1766 fc->set_size(size);
duke@435 1767 debug_only(fc->mangleFreed(size));
duke@435 1768 if (size < SmallForDictionary) {
duke@435 1769 returnChunkToFreeList(fc);
duke@435 1770 } else {
duke@435 1771 returnChunkToDictionary(fc);
duke@435 1772 }
duke@435 1773 }
duke@435 1774
duke@435 1775 void
duke@435 1776 CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk,
duke@435 1777 size_t size, bool coalesced) {
duke@435 1778 assert_locked();
duke@435 1779 assert(chunk != NULL, "null chunk");
duke@435 1780 if (coalesced) {
duke@435 1781 // repair BOT
duke@435 1782 _bt.single_block(chunk, size);
duke@435 1783 }
duke@435 1784 addChunkToFreeLists(chunk, size);
duke@435 1785 }
duke@435 1786
duke@435 1787 // We _must_ find the purported chunk on our free lists;
duke@435 1788 // we assert if we don't.
duke@435 1789 void
duke@435 1790 CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) {
duke@435 1791 size_t size = fc->size();
duke@435 1792 assert_locked();
duke@435 1793 debug_only(verifyFreeLists());
duke@435 1794 if (size < SmallForDictionary) {
duke@435 1795 removeChunkFromIndexedFreeList(fc);
duke@435 1796 } else {
duke@435 1797 removeChunkFromDictionary(fc);
duke@435 1798 }
duke@435 1799 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1800 debug_only(verifyFreeLists());
duke@435 1801 }
duke@435 1802
duke@435 1803 void
duke@435 1804 CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
duke@435 1805 size_t size = fc->size();
duke@435 1806 assert_locked();
duke@435 1807 assert(fc != NULL, "null chunk");
duke@435 1808 _bt.verify_single_block((HeapWord*)fc, size);
jmasa@3732 1809 _dictionary->remove_chunk(fc);
duke@435 1810 // adjust _unallocated_block upward, as necessary
duke@435 1811 _bt.allocated((HeapWord*)fc, size);
duke@435 1812 }
duke@435 1813
duke@435 1814 void
duke@435 1815 CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
duke@435 1816 assert_locked();
duke@435 1817 size_t size = fc->size();
duke@435 1818 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1819 NOT_PRODUCT(
duke@435 1820 if (FLSVerifyIndexTable) {
duke@435 1821 verifyIndexedFreeList(size);
duke@435 1822 }
duke@435 1823 )
jmasa@3732 1824 _indexedFreeList[size].remove_chunk(fc);
duke@435 1825 NOT_PRODUCT(
duke@435 1826 if (FLSVerifyIndexTable) {
duke@435 1827 verifyIndexedFreeList(size);
duke@435 1828 }
duke@435 1829 )
duke@435 1830 }
duke@435 1831
duke@435 1832 FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
duke@435 1833 /* A hint is the next larger size that has a surplus.
duke@435 1834 Start search at a size large enough to guarantee that
duke@435 1835 the excess is >= MIN_CHUNK. */
duke@435 1836 size_t start = align_object_size(numWords + MinChunkSize);
duke@435 1837 if (start < IndexSetSize) {
jmasa@4196 1838 AdaptiveFreeList<FreeChunk>* it = _indexedFreeList;
duke@435 1839 size_t hint = _indexedFreeList[start].hint();
duke@435 1840 while (hint < IndexSetSize) {
duke@435 1841 assert(hint % MinObjAlignment == 0, "hint should be aligned");
jmasa@4196 1842 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[hint];
duke@435 1843 if (fl->surplus() > 0 && fl->head() != NULL) {
duke@435 1844 // Found a list with surplus, reset original hint
duke@435 1845 // and split out a free chunk which is returned.
duke@435 1846 _indexedFreeList[start].set_hint(hint);
duke@435 1847 FreeChunk* res = getFromListGreater(fl, numWords);
jmasa@3732 1848 assert(res == NULL || res->is_free(),
duke@435 1849 "Should be returning a free chunk");
duke@435 1850 return res;
duke@435 1851 }
duke@435 1852 hint = fl->hint(); /* keep looking */
duke@435 1853 }
duke@435 1854 /* None found. */
duke@435 1855 it[start].set_hint(IndexSetSize);
duke@435 1856 }
duke@435 1857 return NULL;
duke@435 1858 }
duke@435 1859
duke@435 1860 /* Requires fl->size >= numWords + MinChunkSize */
jmasa@4196 1861 FreeChunk* CompactibleFreeListSpace::getFromListGreater(AdaptiveFreeList<FreeChunk>* fl,
duke@435 1862 size_t numWords) {
duke@435 1863 FreeChunk *curr = fl->head();
duke@435 1864 size_t oldNumWords = curr->size();
duke@435 1865 assert(numWords >= MinChunkSize, "Word size is too small");
duke@435 1866 assert(curr != NULL, "List is empty");
duke@435 1867 assert(oldNumWords >= numWords + MinChunkSize,
duke@435 1868 "Size of chunks in the list is too small");
duke@435 1869
jmasa@3732 1870 fl->remove_chunk(curr);
duke@435 1871 // recorded indirectly by splitChunkAndReturnRemainder -
duke@435 1872 // smallSplit(oldNumWords, numWords);
duke@435 1873 FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
duke@435 1874 // Does anything have to be done for the remainder in terms of
duke@435 1875 // fixing the card table?
jmasa@3732 1876 assert(new_chunk == NULL || new_chunk->is_free(),
duke@435 1877 "Should be returning a free chunk");
duke@435 1878 return new_chunk;
duke@435 1879 }
duke@435 1880
duke@435 1881 FreeChunk*
duke@435 1882 CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
duke@435 1883 size_t new_size) {
duke@435 1884 assert_locked();
duke@435 1885 size_t size = chunk->size();
duke@435 1886 assert(size > new_size, "Split from a smaller block?");
duke@435 1887 assert(is_aligned(chunk), "alignment problem");
duke@435 1888 assert(size == adjustObjectSize(size), "alignment problem");
duke@435 1889 size_t rem_size = size - new_size;
duke@435 1890 assert(rem_size == adjustObjectSize(rem_size), "alignment problem");
duke@435 1891 assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
duke@435 1892 FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
duke@435 1893 assert(is_aligned(ffc), "alignment problem");
jmasa@3732 1894 ffc->set_size(rem_size);
jmasa@3732 1895 ffc->link_next(NULL);
jmasa@3732 1896 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
duke@435 1897 // Above must occur before BOT is updated below.
duke@435 1898 // adjust block offset table
ysr@2071 1899 OrderAccess::storestore();
jmasa@3732 1900 assert(chunk->is_free() && ffc->is_free(), "Error");
duke@435 1901 _bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
duke@435 1902 if (rem_size < SmallForDictionary) {
duke@435 1903 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
duke@435 1904 if (is_par) _indexedFreeListParLocks[rem_size]->lock();
jmasa@3294 1905 assert(!is_par ||
jmasa@3294 1906 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 1907 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 1908 returnChunkToFreeList(ffc);
duke@435 1909 split(size, rem_size);
duke@435 1910 if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
duke@435 1911 } else {
duke@435 1912 returnChunkToDictionary(ffc);
duke@435 1913 split(size ,rem_size);
duke@435 1914 }
jmasa@3732 1915 chunk->set_size(new_size);
duke@435 1916 return chunk;
duke@435 1917 }
duke@435 1918
duke@435 1919 void
duke@435 1920 CompactibleFreeListSpace::sweep_completed() {
duke@435 1921 // Now that space is probably plentiful, refill linear
duke@435 1922 // allocation blocks as needed.
duke@435 1923 refillLinearAllocBlocksIfNeeded();
duke@435 1924 }
duke@435 1925
duke@435 1926 void
duke@435 1927 CompactibleFreeListSpace::gc_prologue() {
duke@435 1928 assert_locked();
duke@435 1929 if (PrintFLSStatistics != 0) {
duke@435 1930 gclog_or_tty->print("Before GC:\n");
duke@435 1931 reportFreeListStatistics();
duke@435 1932 }
duke@435 1933 refillLinearAllocBlocksIfNeeded();
duke@435 1934 }
duke@435 1935
duke@435 1936 void
duke@435 1937 CompactibleFreeListSpace::gc_epilogue() {
duke@435 1938 assert_locked();
duke@435 1939 if (PrintGCDetails && Verbose && !_adaptive_freelists) {
duke@435 1940 if (_smallLinearAllocBlock._word_size == 0)
duke@435 1941 warning("CompactibleFreeListSpace(epilogue):: Linear allocation failure");
duke@435 1942 }
duke@435 1943 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1944 _promoInfo.stopTrackingPromotions();
duke@435 1945 repairLinearAllocationBlocks();
duke@435 1946 // Print Space's stats
duke@435 1947 if (PrintFLSStatistics != 0) {
duke@435 1948 gclog_or_tty->print("After GC:\n");
duke@435 1949 reportFreeListStatistics();
duke@435 1950 }
duke@435 1951 }
duke@435 1952
duke@435 1953 // Iteration support, mostly delegated from a CMS generation
duke@435 1954
duke@435 1955 void CompactibleFreeListSpace::save_marks() {
ysr@2825 1956 assert(Thread::current()->is_VM_thread(),
ysr@2825 1957 "Global variable should only be set when single-threaded");
ysr@2825 1958 // Mark the "end" of the used space at the time of this call;
duke@435 1959 // note, however, that promoted objects from this point
duke@435 1960 // on are tracked in the _promoInfo below.
ysr@2071 1961 set_saved_mark_word(unallocated_block());
ysr@2825 1962 #ifdef ASSERT
ysr@2825 1963 // Check the sanity of save_marks() etc.
ysr@2825 1964 MemRegion ur = used_region();
ysr@2825 1965 MemRegion urasm = used_region_at_save_marks();
ysr@2825 1966 assert(ur.contains(urasm),
ysr@2825 1967 err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
ysr@2825 1968 " should contain [" PTR_FORMAT "," PTR_FORMAT ")",
drchase@6680 1969 p2i(ur.start()), p2i(ur.end()), p2i(urasm.start()), p2i(urasm.end())));
ysr@2825 1970 #endif
duke@435 1971 // inform allocator that promotions should be tracked.
duke@435 1972 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1973 _promoInfo.startTrackingPromotions();
duke@435 1974 }
duke@435 1975
duke@435 1976 bool CompactibleFreeListSpace::no_allocs_since_save_marks() {
duke@435 1977 assert(_promoInfo.tracking(), "No preceding save_marks?");
ysr@2132 1978 assert(SharedHeap::heap()->n_par_threads() == 0,
ysr@2132 1979 "Shouldn't be called if using parallel gc.");
duke@435 1980 return _promoInfo.noPromotions();
duke@435 1981 }
duke@435 1982
duke@435 1983 #define CFLS_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 1984 \
duke@435 1985 void CompactibleFreeListSpace:: \
duke@435 1986 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 1987 assert(SharedHeap::heap()->n_par_threads() == 0, \
duke@435 1988 "Shouldn't be called (yet) during parallel part of gc."); \
duke@435 1989 _promoInfo.promoted_oops_iterate##nv_suffix(blk); \
duke@435 1990 /* \
duke@435 1991 * This also restores any displaced headers and removes the elements from \
duke@435 1992 * the iteration set as they are processed, so that we have a clean slate \
duke@435 1993 * at the end of the iteration. Note, thus, that if new objects are \
duke@435 1994 * promoted as a result of the iteration they are iterated over as well. \
duke@435 1995 */ \
duke@435 1996 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency"); \
duke@435 1997 }
duke@435 1998
duke@435 1999 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 2000
ysr@447 2001 bool CompactibleFreeListSpace::linearAllocationWouldFail() const {
duke@435 2002 return _smallLinearAllocBlock._word_size == 0;
duke@435 2003 }
duke@435 2004
duke@435 2005 void CompactibleFreeListSpace::repairLinearAllocationBlocks() {
duke@435 2006 // Fix up linear allocation blocks to look like free blocks
duke@435 2007 repairLinearAllocBlock(&_smallLinearAllocBlock);
duke@435 2008 }
duke@435 2009
duke@435 2010 void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2011 assert_locked();
duke@435 2012 if (blk->_ptr != NULL) {
duke@435 2013 assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
duke@435 2014 "Minimum block size requirement");
duke@435 2015 FreeChunk* fc = (FreeChunk*)(blk->_ptr);
jmasa@3732 2016 fc->set_size(blk->_word_size);
jmasa@3732 2017 fc->link_prev(NULL); // mark as free
duke@435 2018 fc->dontCoalesce();
jmasa@3732 2019 assert(fc->is_free(), "just marked it free");
duke@435 2020 assert(fc->cantCoalesce(), "just marked it uncoalescable");
duke@435 2021 }
duke@435 2022 }
duke@435 2023
duke@435 2024 void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() {
duke@435 2025 assert_locked();
duke@435 2026 if (_smallLinearAllocBlock._ptr == NULL) {
duke@435 2027 assert(_smallLinearAllocBlock._word_size == 0,
duke@435 2028 "Size of linAB should be zero if the ptr is NULL");
duke@435 2029 // Reset the linAB refill and allocation size limit.
duke@435 2030 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc);
duke@435 2031 }
duke@435 2032 refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock);
duke@435 2033 }
duke@435 2034
duke@435 2035 void
duke@435 2036 CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) {
duke@435 2037 assert_locked();
duke@435 2038 assert((blk->_ptr == NULL && blk->_word_size == 0) ||
duke@435 2039 (blk->_ptr != NULL && blk->_word_size >= MinChunkSize),
duke@435 2040 "blk invariant");
duke@435 2041 if (blk->_ptr == NULL) {
duke@435 2042 refillLinearAllocBlock(blk);
duke@435 2043 }
duke@435 2044 if (PrintMiscellaneous && Verbose) {
duke@435 2045 if (blk->_word_size == 0) {
duke@435 2046 warning("CompactibleFreeListSpace(prologue):: Linear allocation failure");
duke@435 2047 }
duke@435 2048 }
duke@435 2049 }
duke@435 2050
duke@435 2051 void
duke@435 2052 CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2053 assert_locked();
duke@435 2054 assert(blk->_word_size == 0 && blk->_ptr == NULL,
duke@435 2055 "linear allocation block should be empty");
duke@435 2056 FreeChunk* fc;
duke@435 2057 if (blk->_refillSize < SmallForDictionary &&
duke@435 2058 (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) {
duke@435 2059 // A linAB's strategy might be to use small sizes to reduce
duke@435 2060 // fragmentation but still get the benefits of allocation from a
duke@435 2061 // linAB.
duke@435 2062 } else {
duke@435 2063 fc = getChunkFromDictionary(blk->_refillSize);
duke@435 2064 }
duke@435 2065 if (fc != NULL) {
duke@435 2066 blk->_ptr = (HeapWord*)fc;
duke@435 2067 blk->_word_size = fc->size();
duke@435 2068 fc->dontCoalesce(); // to prevent sweeper from sweeping us up
duke@435 2069 }
duke@435 2070 }
duke@435 2071
ysr@447 2072 // Support for concurrent collection policy decisions.
ysr@447 2073 bool CompactibleFreeListSpace::should_concurrent_collect() const {
ysr@447 2074 // In the future we might want to add in frgamentation stats --
ysr@447 2075 // including erosion of the "mountain" into this decision as well.
ysr@447 2076 return !adaptive_freelists() && linearAllocationWouldFail();
ysr@447 2077 }
ysr@447 2078
duke@435 2079 // Support for compaction
duke@435 2080
duke@435 2081 void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 2082 SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
duke@435 2083 // prepare_for_compaction() uses the space between live objects
duke@435 2084 // so that later phase can skip dead space quickly. So verification
duke@435 2085 // of the free lists doesn't work after.
duke@435 2086 }
duke@435 2087
duke@435 2088 #define obj_size(q) adjustObjectSize(oop(q)->size())
duke@435 2089 #define adjust_obj_size(s) adjustObjectSize(s)
duke@435 2090
duke@435 2091 void CompactibleFreeListSpace::adjust_pointers() {
duke@435 2092 // In other versions of adjust_pointers(), a bail out
duke@435 2093 // based on the amount of live data in the generation
duke@435 2094 // (i.e., if 0, bail out) may be used.
duke@435 2095 // Cannot test used() == 0 here because the free lists have already
duke@435 2096 // been mangled by the compaction.
duke@435 2097
duke@435 2098 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 2099 // See note about verification in prepare_for_compaction().
duke@435 2100 }
duke@435 2101
duke@435 2102 void CompactibleFreeListSpace::compact() {
duke@435 2103 SCAN_AND_COMPACT(obj_size);
duke@435 2104 }
duke@435 2105
duke@435 2106 // fragmentation_metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]
duke@435 2107 // where fbs is free block sizes
duke@435 2108 double CompactibleFreeListSpace::flsFrag() const {
duke@435 2109 size_t itabFree = totalSizeInIndexedFreeLists();
duke@435 2110 double frag = 0.0;
duke@435 2111 size_t i;
duke@435 2112
duke@435 2113 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 2114 double sz = i;
duke@435 2115 frag += _indexedFreeList[i].count() * (sz * sz);
duke@435 2116 }
duke@435 2117
duke@435 2118 double totFree = itabFree +
jmasa@3732 2119 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
duke@435 2120 if (totFree > 0) {
duke@435 2121 frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
duke@435 2122 (totFree * totFree));
duke@435 2123 frag = (double)1.0 - frag;
duke@435 2124 } else {
duke@435 2125 assert(frag == 0.0, "Follows from totFree == 0");
duke@435 2126 }
duke@435 2127 return frag;
duke@435 2128 }
duke@435 2129
duke@435 2130 void CompactibleFreeListSpace::beginSweepFLCensus(
duke@435 2131 float inter_sweep_current,
ysr@1580 2132 float inter_sweep_estimate,
ysr@1580 2133 float intra_sweep_estimate) {
duke@435 2134 assert_locked();
duke@435 2135 size_t i;
duke@435 2136 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2137 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[i];
ysr@1580 2138 if (PrintFLSStatistics > 1) {
drchase@6680 2139 gclog_or_tty->print("size[" SIZE_FORMAT "] : ", i);
ysr@1580 2140 }
ysr@1580 2141 fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
jmasa@3732 2142 fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
jmasa@3732 2143 fl->set_before_sweep(fl->count());
jmasa@3732 2144 fl->set_bfr_surp(fl->surplus());
duke@435 2145 }
jmasa@3732 2146 _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
duke@435 2147 inter_sweep_current,
ysr@1580 2148 inter_sweep_estimate,
ysr@1580 2149 intra_sweep_estimate);
duke@435 2150 }
duke@435 2151
duke@435 2152 void CompactibleFreeListSpace::setFLSurplus() {
duke@435 2153 assert_locked();
duke@435 2154 size_t i;
duke@435 2155 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2156 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2157 fl->set_surplus(fl->count() -
ysr@1580 2158 (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
duke@435 2159 }
duke@435 2160 }
duke@435 2161
duke@435 2162 void CompactibleFreeListSpace::setFLHints() {
duke@435 2163 assert_locked();
duke@435 2164 size_t i;
duke@435 2165 size_t h = IndexSetSize;
duke@435 2166 for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
jmasa@4196 2167 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2168 fl->set_hint(h);
duke@435 2169 if (fl->surplus() > 0) {
duke@435 2170 h = i;
duke@435 2171 }
duke@435 2172 }
duke@435 2173 }
duke@435 2174
duke@435 2175 void CompactibleFreeListSpace::clearFLCensus() {
duke@435 2176 assert_locked();
ysr@3264 2177 size_t i;
duke@435 2178 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2179 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2180 fl->set_prev_sweep(fl->count());
jmasa@3732 2181 fl->set_coal_births(0);
jmasa@3732 2182 fl->set_coal_deaths(0);
jmasa@3732 2183 fl->set_split_births(0);
jmasa@3732 2184 fl->set_split_deaths(0);
duke@435 2185 }
duke@435 2186 }
duke@435 2187
ysr@447 2188 void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
ysr@1580 2189 if (PrintFLSStatistics > 0) {
jmasa@3732 2190 HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
ysr@1580 2191 gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
drchase@6680 2192 p2i(largestAddr));
ysr@1580 2193 }
duke@435 2194 setFLSurplus();
duke@435 2195 setFLHints();
duke@435 2196 if (PrintGC && PrintFLSCensus > 0) {
ysr@447 2197 printFLCensus(sweep_count);
duke@435 2198 }
duke@435 2199 clearFLCensus();
duke@435 2200 assert_locked();
jmasa@3732 2201 _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
duke@435 2202 }
duke@435 2203
duke@435 2204 bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
duke@435 2205 if (size < SmallForDictionary) {
jmasa@4196 2206 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2207 return (fl->coal_desired() < 0) ||
jmasa@3732 2208 ((int)fl->count() > fl->coal_desired());
duke@435 2209 } else {
jmasa@3732 2210 return dictionary()->coal_dict_over_populated(size);
duke@435 2211 }
duke@435 2212 }
duke@435 2213
duke@435 2214 void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
duke@435 2215 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2216 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2217 fl->increment_coal_births();
duke@435 2218 fl->increment_surplus();
duke@435 2219 }
duke@435 2220
duke@435 2221 void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
duke@435 2222 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2223 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2224 fl->increment_coal_deaths();
duke@435 2225 fl->decrement_surplus();
duke@435 2226 }
duke@435 2227
duke@435 2228 void CompactibleFreeListSpace::coalBirth(size_t size) {
duke@435 2229 if (size < SmallForDictionary) {
duke@435 2230 smallCoalBirth(size);
duke@435 2231 } else {
jmasa@4196 2232 dictionary()->dict_census_update(size,
duke@435 2233 false /* split */,
duke@435 2234 true /* birth */);
duke@435 2235 }
duke@435 2236 }
duke@435 2237
duke@435 2238 void CompactibleFreeListSpace::coalDeath(size_t size) {
duke@435 2239 if(size < SmallForDictionary) {
duke@435 2240 smallCoalDeath(size);
duke@435 2241 } else {
jmasa@4196 2242 dictionary()->dict_census_update(size,
duke@435 2243 false /* split */,
duke@435 2244 false /* birth */);
duke@435 2245 }
duke@435 2246 }
duke@435 2247
duke@435 2248 void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
duke@435 2249 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2250 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2251 fl->increment_split_births();
duke@435 2252 fl->increment_surplus();
duke@435 2253 }
duke@435 2254
duke@435 2255 void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
duke@435 2256 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@4196 2257 AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2258 fl->increment_split_deaths();
duke@435 2259 fl->decrement_surplus();
duke@435 2260 }
duke@435 2261
jmasa@3732 2262 void CompactibleFreeListSpace::split_birth(size_t size) {
duke@435 2263 if (size < SmallForDictionary) {
duke@435 2264 smallSplitBirth(size);
duke@435 2265 } else {
jmasa@4196 2266 dictionary()->dict_census_update(size,
duke@435 2267 true /* split */,
duke@435 2268 true /* birth */);
duke@435 2269 }
duke@435 2270 }
duke@435 2271
duke@435 2272 void CompactibleFreeListSpace::splitDeath(size_t size) {
duke@435 2273 if (size < SmallForDictionary) {
duke@435 2274 smallSplitDeath(size);
duke@435 2275 } else {
jmasa@4196 2276 dictionary()->dict_census_update(size,
duke@435 2277 true /* split */,
duke@435 2278 false /* birth */);
duke@435 2279 }
duke@435 2280 }
duke@435 2281
duke@435 2282 void CompactibleFreeListSpace::split(size_t from, size_t to1) {
duke@435 2283 size_t to2 = from - to1;
duke@435 2284 splitDeath(from);
jmasa@3732 2285 split_birth(to1);
jmasa@3732 2286 split_birth(to2);
duke@435 2287 }
duke@435 2288
duke@435 2289 void CompactibleFreeListSpace::print() const {
ysr@2294 2290 print_on(tty);
duke@435 2291 }
duke@435 2292
duke@435 2293 void CompactibleFreeListSpace::prepare_for_verify() {
duke@435 2294 assert_locked();
duke@435 2295 repairLinearAllocationBlocks();
duke@435 2296 // Verify that the SpoolBlocks look like free blocks of
duke@435 2297 // appropriate sizes... To be done ...
duke@435 2298 }
duke@435 2299
duke@435 2300 class VerifyAllBlksClosure: public BlkClosure {
coleenp@548 2301 private:
duke@435 2302 const CompactibleFreeListSpace* _sp;
duke@435 2303 const MemRegion _span;
ysr@2071 2304 HeapWord* _last_addr;
ysr@2071 2305 size_t _last_size;
ysr@2071 2306 bool _last_was_obj;
ysr@2071 2307 bool _last_was_live;
duke@435 2308
duke@435 2309 public:
duke@435 2310 VerifyAllBlksClosure(const CompactibleFreeListSpace* sp,
ysr@2071 2311 MemRegion span) : _sp(sp), _span(span),
ysr@2071 2312 _last_addr(NULL), _last_size(0),
ysr@2071 2313 _last_was_obj(false), _last_was_live(false) { }
duke@435 2314
coleenp@548 2315 virtual size_t do_blk(HeapWord* addr) {
duke@435 2316 size_t res;
ysr@2071 2317 bool was_obj = false;
ysr@2071 2318 bool was_live = false;
duke@435 2319 if (_sp->block_is_obj(addr)) {
ysr@2071 2320 was_obj = true;
duke@435 2321 oop p = oop(addr);
duke@435 2322 guarantee(p->is_oop(), "Should be an oop");
duke@435 2323 res = _sp->adjustObjectSize(p->size());
duke@435 2324 if (_sp->obj_is_alive(addr)) {
ysr@2071 2325 was_live = true;
duke@435 2326 p->verify();
duke@435 2327 }
duke@435 2328 } else {
duke@435 2329 FreeChunk* fc = (FreeChunk*)addr;
duke@435 2330 res = fc->size();
duke@435 2331 if (FLSVerifyLists && !fc->cantCoalesce()) {
jmasa@3732 2332 guarantee(_sp->verify_chunk_in_free_list(fc),
duke@435 2333 "Chunk should be on a free list");
duke@435 2334 }
duke@435 2335 }
ysr@2071 2336 if (res == 0) {
ysr@2071 2337 gclog_or_tty->print_cr("Livelock: no rank reduction!");
ysr@2071 2338 gclog_or_tty->print_cr(
ysr@2071 2339 " Current: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n"
ysr@2071 2340 " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n",
drchase@6680 2341 p2i(addr), res, was_obj ?"true":"false", was_live ?"true":"false",
drchase@6680 2342 p2i(_last_addr), _last_size, _last_was_obj?"true":"false", _last_was_live?"true":"false");
ysr@2071 2343 _sp->print_on(gclog_or_tty);
ysr@2071 2344 guarantee(false, "Seppuku!");
ysr@2071 2345 }
ysr@2071 2346 _last_addr = addr;
ysr@2071 2347 _last_size = res;
ysr@2071 2348 _last_was_obj = was_obj;
ysr@2071 2349 _last_was_live = was_live;
duke@435 2350 return res;
duke@435 2351 }
duke@435 2352 };
duke@435 2353
duke@435 2354 class VerifyAllOopsClosure: public OopClosure {
coleenp@548 2355 private:
duke@435 2356 const CMSCollector* _collector;
duke@435 2357 const CompactibleFreeListSpace* _sp;
duke@435 2358 const MemRegion _span;
duke@435 2359 const bool _past_remark;
duke@435 2360 const CMSBitMap* _bit_map;
duke@435 2361
coleenp@548 2362 protected:
coleenp@548 2363 void do_oop(void* p, oop obj) {
coleenp@548 2364 if (_span.contains(obj)) { // the interior oop points into CMS heap
coleenp@548 2365 if (!_span.contains(p)) { // reference from outside CMS heap
coleenp@548 2366 // Should be a valid object; the first disjunct below allows
coleenp@548 2367 // us to sidestep an assertion in block_is_obj() that insists
coleenp@548 2368 // that p be in _sp. Note that several generations (and spaces)
coleenp@548 2369 // are spanned by _span (CMS heap) above.
coleenp@548 2370 guarantee(!_sp->is_in_reserved(obj) ||
coleenp@548 2371 _sp->block_is_obj((HeapWord*)obj),
coleenp@548 2372 "Should be an object");
coleenp@548 2373 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2374 obj->verify();
coleenp@548 2375 if (_past_remark) {
coleenp@548 2376 // Remark has been completed, the object should be marked
coleenp@548 2377 _bit_map->isMarked((HeapWord*)obj);
coleenp@548 2378 }
coleenp@548 2379 } else { // reference within CMS heap
coleenp@548 2380 if (_past_remark) {
coleenp@548 2381 // Remark has been completed -- so the referent should have
coleenp@548 2382 // been marked, if referring object is.
coleenp@548 2383 if (_bit_map->isMarked(_collector->block_start(p))) {
coleenp@548 2384 guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?");
coleenp@548 2385 }
coleenp@548 2386 }
coleenp@548 2387 }
coleenp@548 2388 } else if (_sp->is_in_reserved(p)) {
coleenp@548 2389 // the reference is from FLS, and points out of FLS
coleenp@548 2390 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2391 obj->verify();
coleenp@548 2392 }
coleenp@548 2393 }
coleenp@548 2394
coleenp@548 2395 template <class T> void do_oop_work(T* p) {
coleenp@548 2396 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 2397 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 2398 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 2399 do_oop(p, obj);
coleenp@548 2400 }
coleenp@548 2401 }
coleenp@548 2402
duke@435 2403 public:
duke@435 2404 VerifyAllOopsClosure(const CMSCollector* collector,
duke@435 2405 const CompactibleFreeListSpace* sp, MemRegion span,
duke@435 2406 bool past_remark, CMSBitMap* bit_map) :
coleenp@4037 2407 _collector(collector), _sp(sp), _span(span),
duke@435 2408 _past_remark(past_remark), _bit_map(bit_map) { }
duke@435 2409
coleenp@548 2410 virtual void do_oop(oop* p) { VerifyAllOopsClosure::do_oop_work(p); }
coleenp@548 2411 virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); }
duke@435 2412 };
duke@435 2413
brutisso@3711 2414 void CompactibleFreeListSpace::verify() const {
duke@435 2415 assert_lock_strong(&_freelistLock);
duke@435 2416 verify_objects_initialized();
duke@435 2417 MemRegion span = _collector->_span;
duke@435 2418 bool past_remark = (_collector->abstract_state() ==
duke@435 2419 CMSCollector::Sweeping);
duke@435 2420
duke@435 2421 ResourceMark rm;
duke@435 2422 HandleMark hm;
duke@435 2423
duke@435 2424 // Check integrity of CFL data structures
duke@435 2425 _promoInfo.verify();
duke@435 2426 _dictionary->verify();
duke@435 2427 if (FLSVerifyIndexTable) {
duke@435 2428 verifyIndexedFreeLists();
duke@435 2429 }
duke@435 2430 // Check integrity of all objects and free blocks in space
duke@435 2431 {
duke@435 2432 VerifyAllBlksClosure cl(this, span);
duke@435 2433 ((CompactibleFreeListSpace*)this)->blk_iterate(&cl); // cast off const
duke@435 2434 }
duke@435 2435 // Check that all references in the heap to FLS
duke@435 2436 // are to valid objects in FLS or that references in
duke@435 2437 // FLS are to valid objects elsewhere in the heap
duke@435 2438 if (FLSVerifyAllHeapReferences)
duke@435 2439 {
duke@435 2440 VerifyAllOopsClosure cl(_collector, this, span, past_remark,
duke@435 2441 _collector->markBitMap());
duke@435 2442 CollectedHeap* ch = Universe::heap();
coleenp@4037 2443
coleenp@4037 2444 // Iterate over all oops in the heap. Uses the _no_header version
coleenp@4037 2445 // since we are not interested in following the klass pointers.
coleenp@4037 2446 ch->oop_iterate_no_header(&cl);
duke@435 2447 }
duke@435 2448
duke@435 2449 if (VerifyObjectStartArray) {
duke@435 2450 // Verify the block offset table
duke@435 2451 _bt.verify();
duke@435 2452 }
duke@435 2453 }
duke@435 2454
duke@435 2455 #ifndef PRODUCT
duke@435 2456 void CompactibleFreeListSpace::verifyFreeLists() const {
duke@435 2457 if (FLSVerifyLists) {
duke@435 2458 _dictionary->verify();
duke@435 2459 verifyIndexedFreeLists();
duke@435 2460 } else {
duke@435 2461 if (FLSVerifyDictionary) {
duke@435 2462 _dictionary->verify();
duke@435 2463 }
duke@435 2464 if (FLSVerifyIndexTable) {
duke@435 2465 verifyIndexedFreeLists();
duke@435 2466 }
duke@435 2467 }
duke@435 2468 }
duke@435 2469 #endif
duke@435 2470
duke@435 2471 void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
duke@435 2472 size_t i = 0;
ysr@3264 2473 for (; i < IndexSetStart; i++) {
duke@435 2474 guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
duke@435 2475 }
duke@435 2476 for (; i < IndexSetSize; i++) {
duke@435 2477 verifyIndexedFreeList(i);
duke@435 2478 }
duke@435 2479 }
duke@435 2480
duke@435 2481 void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
ysr@1580 2482 FreeChunk* fc = _indexedFreeList[size].head();
ysr@1580 2483 FreeChunk* tail = _indexedFreeList[size].tail();
ysr@1580 2484 size_t num = _indexedFreeList[size].count();
ysr@1580 2485 size_t n = 0;
ysr@3264 2486 guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
ysr@3220 2487 "Slot should have been empty");
ysr@1580 2488 for (; fc != NULL; fc = fc->next(), n++) {
duke@435 2489 guarantee(fc->size() == size, "Size inconsistency");
jmasa@3732 2490 guarantee(fc->is_free(), "!free?");
duke@435 2491 guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
ysr@1580 2492 guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
duke@435 2493 }
ysr@1580 2494 guarantee(n == num, "Incorrect count");
duke@435 2495 }
duke@435 2496
duke@435 2497 #ifndef PRODUCT
ysr@3220 2498 void CompactibleFreeListSpace::check_free_list_consistency() const {
goetz@6337 2499 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size() <= IndexSetSize),
duke@435 2500 "Some sizes can't be allocated without recourse to"
duke@435 2501 " linear allocation buffers");
goetz@6337 2502 assert((TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >::min_size()*HeapWordSize == sizeof(TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >)),
duke@435 2503 "else MIN_TREE_CHUNK_SIZE is wrong");
brutisso@3807 2504 assert(IndexSetStart != 0, "IndexSetStart not initialized");
brutisso@3807 2505 assert(IndexSetStride != 0, "IndexSetStride not initialized");
duke@435 2506 }
duke@435 2507 #endif
duke@435 2508
ysr@447 2509 void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
duke@435 2510 assert_lock_strong(&_freelistLock);
jmasa@4196 2511 AdaptiveFreeList<FreeChunk> total;
ysr@447 2512 gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
jmasa@4196 2513 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
jmasa@3732 2514 size_t total_free = 0;
duke@435 2515 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@4196 2516 const AdaptiveFreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2517 total_free += fl->count() * fl->size();
ysr@447 2518 if (i % (40*IndexSetStride) == 0) {
jmasa@4196 2519 AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
ysr@447 2520 }
ysr@447 2521 fl->print_on(gclog_or_tty);
jmasa@3732 2522 total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
ysr@447 2523 total.set_surplus( total.surplus() + fl->surplus() );
ysr@447 2524 total.set_desired( total.desired() + fl->desired() );
jmasa@3732 2525 total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
jmasa@3732 2526 total.set_before_sweep(total.before_sweep() + fl->before_sweep());
ysr@447 2527 total.set_count( total.count() + fl->count() );
jmasa@3732 2528 total.set_coal_births( total.coal_births() + fl->coal_births() );
jmasa@3732 2529 total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
jmasa@3732 2530 total.set_split_births(total.split_births() + fl->split_births());
jmasa@3732 2531 total.set_split_deaths(total.split_deaths() + fl->split_deaths());
duke@435 2532 }
ysr@447 2533 total.print_on(gclog_or_tty, "TOTAL");
ysr@447 2534 gclog_or_tty->print_cr("Total free in indexed lists "
jmasa@3732 2535 SIZE_FORMAT " words", total_free);
duke@435 2536 gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
jmasa@3732 2537 (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
jmasa@3732 2538 (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
ysr@447 2539 (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
jmasa@3732 2540 _dictionary->print_dict_census();
duke@435 2541 }
duke@435 2542
ysr@1580 2543 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2544 // CFLS_LAB
ysr@1580 2545 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2546
ysr@1580 2547 #define VECTOR_257(x) \
ysr@1580 2548 /* 1 2 3 4 5 6 7 8 9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \
ysr@1580 2549 { x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2550 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2551 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2552 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2553 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2554 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2555 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2556 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2557 x }
ysr@1580 2558
ysr@1580 2559 // Initialize with default setting of CMSParPromoteBlocksToClaim, _not_
ysr@1580 2560 // OldPLABSize, whose static default is different; if overridden at the
ysr@1580 2561 // command-line, this will get reinitialized via a call to
ysr@1580 2562 // modify_initialization() below.
ysr@1580 2563 AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[] =
ysr@1580 2564 VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
ysr@1580 2565 size_t CFLS_LAB::_global_num_blocks[] = VECTOR_257(0);
jmasa@3357 2566 uint CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
duke@435 2567
duke@435 2568 CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
duke@435 2569 _cfls(cfls)
duke@435 2570 {
ysr@1580 2571 assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above");
duke@435 2572 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2573 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2574 i += CompactibleFreeListSpace::IndexSetStride) {
duke@435 2575 _indexedFreeList[i].set_size(i);
ysr@1580 2576 _num_blocks[i] = 0;
ysr@1580 2577 }
ysr@1580 2578 }
ysr@1580 2579
ysr@1580 2580 static bool _CFLS_LAB_modified = false;
ysr@1580 2581
ysr@1580 2582 void CFLS_LAB::modify_initialization(size_t n, unsigned wt) {
ysr@1580 2583 assert(!_CFLS_LAB_modified, "Call only once");
ysr@1580 2584 _CFLS_LAB_modified = true;
ysr@1580 2585 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2586 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2587 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2588 _blocks_to_claim[i].modify(n, wt, true /* force */);
duke@435 2589 }
duke@435 2590 }
duke@435 2591
duke@435 2592 HeapWord* CFLS_LAB::alloc(size_t word_sz) {
duke@435 2593 FreeChunk* res;
ysr@2132 2594 assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error");
duke@435 2595 if (word_sz >= CompactibleFreeListSpace::IndexSetSize) {
duke@435 2596 // This locking manages sync with other large object allocations.
duke@435 2597 MutexLockerEx x(_cfls->parDictionaryAllocLock(),
duke@435 2598 Mutex::_no_safepoint_check_flag);
duke@435 2599 res = _cfls->getChunkFromDictionaryExact(word_sz);
duke@435 2600 if (res == NULL) return NULL;
duke@435 2601 } else {
jmasa@4196 2602 AdaptiveFreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
duke@435 2603 if (fl->count() == 0) {
duke@435 2604 // Attempt to refill this local free list.
ysr@1580 2605 get_from_global_pool(word_sz, fl);
duke@435 2606 // If it didn't work, give up.
duke@435 2607 if (fl->count() == 0) return NULL;
duke@435 2608 }
jmasa@3732 2609 res = fl->get_chunk_at_head();
duke@435 2610 assert(res != NULL, "Why was count non-zero?");
duke@435 2611 }
duke@435 2612 res->markNotFree();
jmasa@3732 2613 assert(!res->is_free(), "shouldn't be marked free");
coleenp@622 2614 assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
duke@435 2615 // mangle a just allocated object with a distinct pattern.
duke@435 2616 debug_only(res->mangleAllocated(word_sz));
duke@435 2617 return (HeapWord*)res;
duke@435 2618 }
duke@435 2619
ysr@1580 2620 // Get a chunk of blocks of the right size and update related
ysr@1580 2621 // book-keeping stats
jmasa@4196 2622 void CFLS_LAB::get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl) {
ysr@1580 2623 // Get the #blocks we want to claim
ysr@1580 2624 size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
ysr@1580 2625 assert(n_blks > 0, "Error");
ysr@1580 2626 assert(ResizePLAB || n_blks == OldPLABSize, "Error");
ysr@1580 2627 // In some cases, when the application has a phase change,
ysr@1580 2628 // there may be a sudden and sharp shift in the object survival
ysr@1580 2629 // profile, and updating the counts at the end of a scavenge
ysr@1580 2630 // may not be quick enough, giving rise to large scavenge pauses
ysr@1580 2631 // during these phase changes. It is beneficial to detect such
ysr@1580 2632 // changes on-the-fly during a scavenge and avoid such a phase-change
ysr@1580 2633 // pothole. The following code is a heuristic attempt to do that.
ysr@1580 2634 // It is protected by a product flag until we have gained
ysr@1580 2635 // enough experience with this heuristic and fine-tuned its behaviour.
ysr@1580 2636 // WARNING: This might increase fragmentation if we overreact to
ysr@1580 2637 // small spikes, so some kind of historical smoothing based on
ysr@1580 2638 // previous experience with the greater reactivity might be useful.
ysr@1580 2639 // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by
ysr@1580 2640 // default.
ysr@1580 2641 if (ResizeOldPLAB && CMSOldPLABResizeQuicker) {
ysr@1580 2642 size_t multiple = _num_blocks[word_sz]/(CMSOldPLABToleranceFactor*CMSOldPLABNumRefills*n_blks);
ysr@1580 2643 n_blks += CMSOldPLABReactivityFactor*multiple*n_blks;
ysr@1580 2644 n_blks = MIN2(n_blks, CMSOldPLABMax);
ysr@1580 2645 }
ysr@1580 2646 assert(n_blks > 0, "Error");
ysr@1580 2647 _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl);
ysr@1580 2648 // Update stats table entry for this block size
ysr@1580 2649 _num_blocks[word_sz] += fl->count();
ysr@1580 2650 }
ysr@1580 2651
ysr@1580 2652 void CFLS_LAB::compute_desired_plab_size() {
ysr@1580 2653 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2654 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2655 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2656 assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0),
ysr@1580 2657 "Counter inconsistency");
ysr@1580 2658 if (_global_num_workers[i] > 0) {
ysr@1580 2659 // Need to smooth wrt historical average
ysr@1580 2660 if (ResizeOldPLAB) {
ysr@1580 2661 _blocks_to_claim[i].sample(
ysr@1580 2662 MAX2((size_t)CMSOldPLABMin,
ysr@1580 2663 MIN2((size_t)CMSOldPLABMax,
ysr@1580 2664 _global_num_blocks[i]/(_global_num_workers[i]*CMSOldPLABNumRefills))));
ysr@1580 2665 }
ysr@1580 2666 // Reset counters for next round
ysr@1580 2667 _global_num_workers[i] = 0;
ysr@1580 2668 _global_num_blocks[i] = 0;
ysr@1580 2669 if (PrintOldPLAB) {
drchase@6680 2670 gclog_or_tty->print_cr("[" SIZE_FORMAT "]: " SIZE_FORMAT, i, (size_t)_blocks_to_claim[i].average());
ysr@1580 2671 }
duke@435 2672 }
duke@435 2673 }
duke@435 2674 }
duke@435 2675
ysr@3220 2676 // If this is changed in the future to allow parallel
ysr@3220 2677 // access, one would need to take the FL locks and,
ysr@3220 2678 // depending on how it is used, stagger access from
ysr@3220 2679 // parallel threads to reduce contention.
ysr@1580 2680 void CFLS_LAB::retire(int tid) {
ysr@1580 2681 // We run this single threaded with the world stopped;
ysr@1580 2682 // so no need for locks and such.
ysr@1580 2683 NOT_PRODUCT(Thread* t = Thread::current();)
ysr@1580 2684 assert(Thread::current()->is_VM_thread(), "Error");
ysr@1580 2685 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2686 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2687 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2688 assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(),
ysr@1580 2689 "Can't retire more than what we obtained");
ysr@1580 2690 if (_num_blocks[i] > 0) {
ysr@1580 2691 size_t num_retire = _indexedFreeList[i].count();
ysr@1580 2692 assert(_num_blocks[i] > num_retire, "Should have used at least one");
ysr@1580 2693 {
ysr@3220 2694 // MutexLockerEx x(_cfls->_indexedFreeListParLocks[i],
ysr@3220 2695 // Mutex::_no_safepoint_check_flag);
ysr@3220 2696
ysr@1580 2697 // Update globals stats for num_blocks used
ysr@1580 2698 _global_num_blocks[i] += (_num_blocks[i] - num_retire);
ysr@1580 2699 _global_num_workers[i]++;
jmasa@3357 2700 assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
ysr@1580 2701 if (num_retire > 0) {
ysr@1580 2702 _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
ysr@1580 2703 // Reset this list.
jmasa@4196 2704 _indexedFreeList[i] = AdaptiveFreeList<FreeChunk>();
ysr@1580 2705 _indexedFreeList[i].set_size(i);
ysr@1580 2706 }
ysr@1580 2707 }
ysr@1580 2708 if (PrintOldPLAB) {
drchase@6680 2709 gclog_or_tty->print_cr("%d[" SIZE_FORMAT "]: " SIZE_FORMAT "/" SIZE_FORMAT "/" SIZE_FORMAT,
ysr@1580 2710 tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average());
ysr@1580 2711 }
ysr@1580 2712 // Reset stats for next round
ysr@1580 2713 _num_blocks[i] = 0;
ysr@1580 2714 }
ysr@1580 2715 }
ysr@1580 2716 }
ysr@1580 2717
jmasa@4196 2718 void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl) {
duke@435 2719 assert(fl->count() == 0, "Precondition.");
duke@435 2720 assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
duke@435 2721 "Precondition");
duke@435 2722
ysr@1580 2723 // We'll try all multiples of word_sz in the indexed set, starting with
ysr@1580 2724 // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples,
ysr@1580 2725 // then try getting a big chunk and splitting it.
ysr@1580 2726 {
ysr@1580 2727 bool found;
ysr@1580 2728 int k;
ysr@1580 2729 size_t cur_sz;
ysr@1580 2730 for (k = 1, cur_sz = k * word_sz, found = false;
ysr@1580 2731 (cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
ysr@1580 2732 (CMSSplitIndexedFreeListBlocks || k <= 1);
ysr@1580 2733 k++, cur_sz = k * word_sz) {
jmasa@4196 2734 AdaptiveFreeList<FreeChunk> fl_for_cur_sz; // Empty.
ysr@1580 2735 fl_for_cur_sz.set_size(cur_sz);
ysr@1580 2736 {
ysr@1580 2737 MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
ysr@1580 2738 Mutex::_no_safepoint_check_flag);
jmasa@4196 2739 AdaptiveFreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
ysr@1580 2740 if (gfl->count() != 0) {
ysr@1580 2741 // nn is the number of chunks of size cur_sz that
ysr@1580 2742 // we'd need to split k-ways each, in order to create
ysr@1580 2743 // "n" chunks of size word_sz each.
ysr@1580 2744 const size_t nn = MAX2(n/k, (size_t)1);
ysr@1580 2745 gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz);
ysr@1580 2746 found = true;
ysr@1580 2747 if (k > 1) {
ysr@1580 2748 // Update split death stats for the cur_sz-size blocks list:
ysr@1580 2749 // we increment the split death count by the number of blocks
ysr@1580 2750 // we just took from the cur_sz-size blocks list and which
ysr@1580 2751 // we will be splitting below.
jmasa@3732 2752 ssize_t deaths = gfl->split_deaths() +
ysr@1580 2753 fl_for_cur_sz.count();
jmasa@3732 2754 gfl->set_split_deaths(deaths);
ysr@1580 2755 }
ysr@1580 2756 }
ysr@1580 2757 }
ysr@1580 2758 // Now transfer fl_for_cur_sz to fl. Common case, we hope, is k = 1.
ysr@1580 2759 if (found) {
ysr@1580 2760 if (k == 1) {
ysr@1580 2761 fl->prepend(&fl_for_cur_sz);
ysr@1580 2762 } else {
ysr@1580 2763 // Divide each block on fl_for_cur_sz up k ways.
ysr@1580 2764 FreeChunk* fc;
jmasa@3732 2765 while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
ysr@1580 2766 // Must do this in reverse order, so that anybody attempting to
ysr@1580 2767 // access the main chunk sees it as a single free block until we
ysr@1580 2768 // change it.
ysr@1580 2769 size_t fc_size = fc->size();
jmasa@3732 2770 assert(fc->is_free(), "Error");
ysr@1580 2771 for (int i = k-1; i >= 0; i--) {
ysr@1580 2772 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
ysr@2071 2773 assert((i != 0) ||
jmasa@3732 2774 ((fc == ffc) && ffc->is_free() &&
ysr@2071 2775 (ffc->size() == k*word_sz) && (fc_size == word_sz)),
ysr@2071 2776 "Counting error");
jmasa@3732 2777 ffc->set_size(word_sz);
jmasa@3732 2778 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2779 ffc->link_next(NULL);
ysr@1580 2780 // Above must occur before BOT is updated below.
ysr@2071 2781 OrderAccess::storestore();
ysr@2071 2782 // splitting from the right, fc_size == i * word_sz
ysr@2071 2783 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
ysr@1580 2784 fc_size -= word_sz;
ysr@2071 2785 assert(fc_size == i*word_sz, "Error");
ysr@2071 2786 _bt.verify_not_unallocated((HeapWord*)ffc, word_sz);
ysr@1580 2787 _bt.verify_single_block((HeapWord*)fc, fc_size);
ysr@2071 2788 _bt.verify_single_block((HeapWord*)ffc, word_sz);
ysr@1580 2789 // Push this on "fl".
jmasa@3732 2790 fl->return_chunk_at_head(ffc);
ysr@1580 2791 }
ysr@1580 2792 // TRAP
ysr@1580 2793 assert(fl->tail()->next() == NULL, "List invariant.");
ysr@1580 2794 }
ysr@1580 2795 }
ysr@1580 2796 // Update birth stats for this block size.
ysr@1580 2797 size_t num = fl->count();
ysr@1580 2798 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
ysr@1580 2799 Mutex::_no_safepoint_check_flag);
jmasa@3732 2800 ssize_t births = _indexedFreeList[word_sz].split_births() + num;
jmasa@3732 2801 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2802 return;
duke@435 2803 }
duke@435 2804 }
duke@435 2805 }
duke@435 2806 // Otherwise, we'll split a block from the dictionary.
duke@435 2807 FreeChunk* fc = NULL;
duke@435 2808 FreeChunk* rem_fc = NULL;
duke@435 2809 size_t rem;
duke@435 2810 {
duke@435 2811 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 2812 Mutex::_no_safepoint_check_flag);
duke@435 2813 while (n > 0) {
jmasa@4196 2814 fc = dictionary()->get_chunk(MAX2(n * word_sz, _dictionary->min_size()),
jmasa@3730 2815 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 2816 if (fc != NULL) {
ysr@2071 2817 _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
jmasa@4196 2818 dictionary()->dict_census_update(fc->size(),
duke@435 2819 true /*split*/,
duke@435 2820 false /*birth*/);
duke@435 2821 break;
duke@435 2822 } else {
duke@435 2823 n--;
duke@435 2824 }
duke@435 2825 }
duke@435 2826 if (fc == NULL) return;
ysr@2071 2827 // Otherwise, split up that block.
ysr@1580 2828 assert((ssize_t)n >= 1, "Control point invariant");
jmasa@3732 2829 assert(fc->is_free(), "Error: should be a free block");
ysr@2071 2830 _bt.verify_single_block((HeapWord*)fc, fc->size());
ysr@1580 2831 const size_t nn = fc->size() / word_sz;
duke@435 2832 n = MIN2(nn, n);
ysr@1580 2833 assert((ssize_t)n >= 1, "Control point invariant");
duke@435 2834 rem = fc->size() - n * word_sz;
duke@435 2835 // If there is a remainder, and it's too small, allocate one fewer.
duke@435 2836 if (rem > 0 && rem < MinChunkSize) {
duke@435 2837 n--; rem += word_sz;
duke@435 2838 }
jmasa@1583 2839 // Note that at this point we may have n == 0.
jmasa@1583 2840 assert((ssize_t)n >= 0, "Control point invariant");
jmasa@1583 2841
jmasa@1583 2842 // If n is 0, the chunk fc that was found is not large
jmasa@1583 2843 // enough to leave a viable remainder. We are unable to
jmasa@1583 2844 // allocate even one block. Return fc to the
jmasa@1583 2845 // dictionary and return, leaving "fl" empty.
jmasa@1583 2846 if (n == 0) {
jmasa@1583 2847 returnChunkToDictionary(fc);
ysr@2071 2848 assert(fl->count() == 0, "We never allocated any blocks");
jmasa@1583 2849 return;
jmasa@1583 2850 }
jmasa@1583 2851
duke@435 2852 // First return the remainder, if any.
duke@435 2853 // Note that we hold the lock until we decide if we're going to give
ysr@1580 2854 // back the remainder to the dictionary, since a concurrent allocation
duke@435 2855 // may otherwise see the heap as empty. (We're willing to take that
duke@435 2856 // hit if the block is a small block.)
duke@435 2857 if (rem > 0) {
duke@435 2858 size_t prefix_size = n * word_sz;
duke@435 2859 rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
jmasa@3732 2860 rem_fc->set_size(rem);
jmasa@3732 2861 rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2862 rem_fc->link_next(NULL);
duke@435 2863 // Above must occur before BOT is updated below.
ysr@1580 2864 assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
ysr@2071 2865 OrderAccess::storestore();
duke@435 2866 _bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
jmasa@3732 2867 assert(fc->is_free(), "Error");
jmasa@3732 2868 fc->set_size(prefix_size);
duke@435 2869 if (rem >= IndexSetSize) {
duke@435 2870 returnChunkToDictionary(rem_fc);
jmasa@4196 2871 dictionary()->dict_census_update(rem, true /*split*/, true /*birth*/);
duke@435 2872 rem_fc = NULL;
duke@435 2873 }
duke@435 2874 // Otherwise, return it to the small list below.
duke@435 2875 }
duke@435 2876 }
duke@435 2877 if (rem_fc != NULL) {
duke@435 2878 MutexLockerEx x(_indexedFreeListParLocks[rem],
duke@435 2879 Mutex::_no_safepoint_check_flag);
duke@435 2880 _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
jmasa@3732 2881 _indexedFreeList[rem].return_chunk_at_head(rem_fc);
duke@435 2882 smallSplitBirth(rem);
duke@435 2883 }
ysr@1580 2884 assert((ssize_t)n > 0 && fc != NULL, "Consistency");
duke@435 2885 // Now do the splitting up.
duke@435 2886 // Must do this in reverse order, so that anybody attempting to
duke@435 2887 // access the main chunk sees it as a single free block until we
duke@435 2888 // change it.
duke@435 2889 size_t fc_size = n * word_sz;
duke@435 2890 // All but first chunk in this loop
duke@435 2891 for (ssize_t i = n-1; i > 0; i--) {
duke@435 2892 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
jmasa@3732 2893 ffc->set_size(word_sz);
jmasa@3732 2894 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2895 ffc->link_next(NULL);
duke@435 2896 // Above must occur before BOT is updated below.
ysr@2071 2897 OrderAccess::storestore();
duke@435 2898 // splitting from the right, fc_size == (n - i + 1) * wordsize
ysr@2071 2899 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
duke@435 2900 fc_size -= word_sz;
duke@435 2901 _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size());
duke@435 2902 _bt.verify_single_block((HeapWord*)ffc, ffc->size());
duke@435 2903 _bt.verify_single_block((HeapWord*)fc, fc_size);
duke@435 2904 // Push this on "fl".
jmasa@3732 2905 fl->return_chunk_at_head(ffc);
duke@435 2906 }
duke@435 2907 // First chunk
jmasa@3732 2908 assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
ysr@2071 2909 // The blocks above should show their new sizes before the first block below
jmasa@3732 2910 fc->set_size(word_sz);
jmasa@3732 2911 fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
jmasa@3732 2912 fc->link_next(NULL);
duke@435 2913 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 2914 _bt.verify_single_block((HeapWord*)fc, fc->size());
jmasa@3732 2915 fl->return_chunk_at_head(fc);
duke@435 2916
ysr@1580 2917 assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
duke@435 2918 {
ysr@1580 2919 // Update the stats for this block size.
duke@435 2920 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
duke@435 2921 Mutex::_no_safepoint_check_flag);
jmasa@3732 2922 const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
jmasa@3732 2923 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2924 // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
ysr@1580 2925 // _indexedFreeList[word_sz].set_surplus(new_surplus);
duke@435 2926 }
duke@435 2927
duke@435 2928 // TRAP
duke@435 2929 assert(fl->tail()->next() == NULL, "List invariant.");
duke@435 2930 }
duke@435 2931
duke@435 2932 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2933 // for parallel rescan. See CMSParRemarkTask where this is currently used.
duke@435 2934 // XXX Need to suitably abstract and generalize this and the next
duke@435 2935 // method into one.
duke@435 2936 void
duke@435 2937 CompactibleFreeListSpace::
duke@435 2938 initialize_sequential_subtasks_for_rescan(int n_threads) {
duke@435 2939 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2940 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2941 const size_t task_size = rescan_task_size();
duke@435 2942 size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size;
ysr@775 2943 assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect");
ysr@775 2944 assert(n_tasks == 0 ||
ysr@775 2945 ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) &&
ysr@775 2946 (used_region().start() + n_tasks*task_size >= used_region().end())),
ysr@775 2947 "n_tasks calculation incorrect");
duke@435 2948 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 2949 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 2950 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 2951 // need to finish in order to be done).
jmasa@2188 2952 pst->set_n_threads(n_threads);
duke@435 2953 pst->set_n_tasks((int)n_tasks);
duke@435 2954 }
duke@435 2955
duke@435 2956 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2957 // for parallel concurrent marking. See CMSConcMarkTask where this is currently used.
duke@435 2958 void
duke@435 2959 CompactibleFreeListSpace::
duke@435 2960 initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 2961 HeapWord* low) {
duke@435 2962 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2963 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2964 const size_t task_size = marking_task_size();
duke@435 2965 assert(task_size > CardTableModRefBS::card_size_in_words &&
duke@435 2966 (task_size % CardTableModRefBS::card_size_in_words == 0),
duke@435 2967 "Otherwise arithmetic below would be incorrect");
duke@435 2968 MemRegion span = _gen->reserved();
duke@435 2969 if (low != NULL) {
duke@435 2970 if (span.contains(low)) {
duke@435 2971 // Align low down to a card boundary so that
duke@435 2972 // we can use block_offset_careful() on span boundaries.
duke@435 2973 HeapWord* aligned_low = (HeapWord*)align_size_down((uintptr_t)low,
duke@435 2974 CardTableModRefBS::card_size);
duke@435 2975 // Clip span prefix at aligned_low
duke@435 2976 span = span.intersection(MemRegion(aligned_low, span.end()));
duke@435 2977 } else if (low > span.end()) {
duke@435 2978 span = MemRegion(low, low); // Null region
duke@435 2979 } // else use entire span
duke@435 2980 }
duke@435 2981 assert(span.is_empty() ||
duke@435 2982 ((uintptr_t)span.start() % CardTableModRefBS::card_size == 0),
duke@435 2983 "span should start at a card boundary");
duke@435 2984 size_t n_tasks = (span.word_size() + task_size - 1)/task_size;
duke@435 2985 assert((n_tasks == 0) == span.is_empty(), "Inconsistency");
duke@435 2986 assert(n_tasks == 0 ||
duke@435 2987 ((span.start() + (n_tasks - 1)*task_size < span.end()) &&
duke@435 2988 (span.start() + n_tasks*task_size >= span.end())),
ysr@775 2989 "n_tasks calculation incorrect");
duke@435 2990 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 2991 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 2992 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 2993 // need to finish in order to be done).
jmasa@2188 2994 pst->set_n_threads(n_threads);
duke@435 2995 pst->set_n_tasks((int)n_tasks);
duke@435 2996 }

mercurial