src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3807
c92a79900986
child 4196
685df3c6f84b
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
brutisso@3711 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
stefank@2314 27 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
stefank@2314 28 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
stefank@2314 29 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 30 #include "gc_implementation/shared/liveRange.hpp"
stefank@2314 31 #include "gc_implementation/shared/spaceDecorator.hpp"
coleenp@4037 32 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 33 #include "memory/allocation.inline.hpp"
stefank@2314 34 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 35 #include "memory/resourceArea.hpp"
stefank@2314 36 #include "memory/universe.inline.hpp"
stefank@2314 37 #include "oops/oop.inline.hpp"
stefank@2314 38 #include "runtime/globals.hpp"
stefank@2314 39 #include "runtime/handles.inline.hpp"
stefank@2314 40 #include "runtime/init.hpp"
stefank@2314 41 #include "runtime/java.hpp"
stefank@2314 42 #include "runtime/vmThread.hpp"
stefank@2314 43 #include "utilities/copy.hpp"
duke@435 44
duke@435 45 /////////////////////////////////////////////////////////////////////////
duke@435 46 //// CompactibleFreeListSpace
duke@435 47 /////////////////////////////////////////////////////////////////////////
duke@435 48
duke@435 49 // highest ranked free list lock rank
duke@435 50 int CompactibleFreeListSpace::_lockRank = Mutex::leaf + 3;
duke@435 51
kvn@1926 52 // Defaults are 0 so things will break badly if incorrectly initialized.
ysr@3264 53 size_t CompactibleFreeListSpace::IndexSetStart = 0;
ysr@3264 54 size_t CompactibleFreeListSpace::IndexSetStride = 0;
kvn@1926 55
kvn@1926 56 size_t MinChunkSize = 0;
kvn@1926 57
kvn@1926 58 void CompactibleFreeListSpace::set_cms_values() {
kvn@1926 59 // Set CMS global values
kvn@1926 60 assert(MinChunkSize == 0, "already set");
brutisso@3807 61
brutisso@3807 62 // MinChunkSize should be a multiple of MinObjAlignment and be large enough
brutisso@3807 63 // for chunks to contain a FreeChunk.
brutisso@3807 64 size_t min_chunk_size_in_bytes = align_size_up(sizeof(FreeChunk), MinObjAlignmentInBytes);
brutisso@3807 65 MinChunkSize = min_chunk_size_in_bytes / BytesPerWord;
kvn@1926 66
kvn@1926 67 assert(IndexSetStart == 0 && IndexSetStride == 0, "already set");
ysr@3264 68 IndexSetStart = MinChunkSize;
kvn@1926 69 IndexSetStride = MinObjAlignment;
kvn@1926 70 }
kvn@1926 71
duke@435 72 // Constructor
duke@435 73 CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
duke@435 74 MemRegion mr, bool use_adaptive_freelists,
jmasa@3730 75 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
duke@435 76 _dictionaryChoice(dictionaryChoice),
duke@435 77 _adaptive_freelists(use_adaptive_freelists),
duke@435 78 _bt(bs, mr),
duke@435 79 // free list locks are in the range of values taken by _lockRank
duke@435 80 // This range currently is [_leaf+2, _leaf+3]
duke@435 81 // Note: this requires that CFLspace c'tors
duke@435 82 // are called serially in the order in which the locks are
duke@435 83 // are acquired in the program text. This is true today.
duke@435 84 _freelistLock(_lockRank--, "CompactibleFreeListSpace._lock", true),
duke@435 85 _parDictionaryAllocLock(Mutex::leaf - 1, // == rank(ExpandHeap_lock) - 1
duke@435 86 "CompactibleFreeListSpace._dict_par_lock", true),
duke@435 87 _rescan_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 88 CMSRescanMultiple),
duke@435 89 _marking_task_size(CardTableModRefBS::card_size_in_words * BitsPerWord *
duke@435 90 CMSConcMarkMultiple),
duke@435 91 _collector(NULL)
duke@435 92 {
jmasa@3730 93 assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
jmasa@3730 94 "FreeChunk is larger than expected");
duke@435 95 _bt.set_space(this);
jmasa@698 96 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 97 // We have all of "mr", all of which we place in the dictionary
duke@435 98 // as one big chunk. We'll need to decide here which of several
duke@435 99 // possible alternative dictionary implementations to use. For
duke@435 100 // now the choice is easy, since we have only one working
duke@435 101 // implementation, namely, the simple binary tree (splaying
duke@435 102 // temporarily disabled).
duke@435 103 switch (dictionaryChoice) {
jmasa@3730 104 case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
jmasa@3730 105 case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
duke@435 106 default:
duke@435 107 warning("dictionaryChoice: selected option not understood; using"
duke@435 108 " default BinaryTreeDictionary implementation instead.");
jmasa@3730 109 case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
jmasa@3730 110 _dictionary = new BinaryTreeDictionary<FreeChunk>(mr, use_adaptive_freelists);
duke@435 111 break;
duke@435 112 }
duke@435 113 assert(_dictionary != NULL, "CMS dictionary initialization");
duke@435 114 // The indexed free lists are initially all empty and are lazily
duke@435 115 // filled in on demand. Initialize the array elements to NULL.
duke@435 116 initializeIndexedFreeListArray();
duke@435 117
duke@435 118 // Not using adaptive free lists assumes that allocation is first
duke@435 119 // from the linAB's. Also a cms perm gen which can be compacted
duke@435 120 // has to have the klass's klassKlass allocated at a lower
duke@435 121 // address in the heap than the klass so that the klassKlass is
duke@435 122 // moved to its new location before the klass is moved.
duke@435 123 // Set the _refillSize for the linear allocation blocks
duke@435 124 if (!use_adaptive_freelists) {
jmasa@3732 125 FreeChunk* fc = _dictionary->get_chunk(mr.word_size());
duke@435 126 // The small linAB initially has all the space and will allocate
duke@435 127 // a chunk of any size.
duke@435 128 HeapWord* addr = (HeapWord*) fc;
duke@435 129 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 130 1024*SmallForLinearAlloc, fc->size());
duke@435 131 // Note that _unallocated_block is not updated here.
duke@435 132 // Allocations from the linear allocation block should
duke@435 133 // update it.
duke@435 134 } else {
duke@435 135 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc,
duke@435 136 SmallForLinearAlloc);
duke@435 137 }
duke@435 138 // CMSIndexedFreeListReplenish should be at least 1
duke@435 139 CMSIndexedFreeListReplenish = MAX2((uintx)1, CMSIndexedFreeListReplenish);
duke@435 140 _promoInfo.setSpace(this);
duke@435 141 if (UseCMSBestFit) {
duke@435 142 _fitStrategy = FreeBlockBestFitFirst;
duke@435 143 } else {
duke@435 144 _fitStrategy = FreeBlockStrategyNone;
duke@435 145 }
ysr@3220 146 check_free_list_consistency();
duke@435 147
duke@435 148 // Initialize locks for parallel case.
jmasa@2188 149
jmasa@2188 150 if (CollectedHeap::use_parallel_gc_threads()) {
duke@435 151 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 152 _indexedFreeListParLocks[i] = new Mutex(Mutex::leaf - 1, // == ExpandHeap_lock - 1
duke@435 153 "a freelist par lock",
duke@435 154 true);
duke@435 155 if (_indexedFreeListParLocks[i] == NULL)
duke@435 156 vm_exit_during_initialization("Could not allocate a par lock");
duke@435 157 DEBUG_ONLY(
duke@435 158 _indexedFreeList[i].set_protecting_lock(_indexedFreeListParLocks[i]);
duke@435 159 )
duke@435 160 }
duke@435 161 _dictionary->set_par_lock(&_parDictionaryAllocLock);
duke@435 162 }
duke@435 163 }
duke@435 164
duke@435 165 // Like CompactibleSpace forward() but always calls cross_threshold() to
duke@435 166 // update the block offset table. Removed initialize_threshold call because
duke@435 167 // CFLS does not use a block offset array for contiguous spaces.
duke@435 168 HeapWord* CompactibleFreeListSpace::forward(oop q, size_t size,
duke@435 169 CompactPoint* cp, HeapWord* compact_top) {
duke@435 170 // q is alive
duke@435 171 // First check if we should switch compaction space
duke@435 172 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 173 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 174 assert(adjustObjectSize(size) == cp->space->adjust_object_size_v(size),
duke@435 175 "virtual adjustObjectSize_v() method is not correct");
duke@435 176 size_t adjusted_size = adjustObjectSize(size);
duke@435 177 assert(compaction_max_size >= MinChunkSize || compaction_max_size == 0,
duke@435 178 "no small fragments allowed");
duke@435 179 assert(minimum_free_block_size() == MinChunkSize,
duke@435 180 "for de-virtualized reference below");
duke@435 181 // Can't leave a nonzero size, residual fragment smaller than MinChunkSize
duke@435 182 if (adjusted_size + MinChunkSize > compaction_max_size &&
duke@435 183 adjusted_size != compaction_max_size) {
duke@435 184 do {
duke@435 185 // switch to next compaction space
duke@435 186 cp->space->set_compaction_top(compact_top);
duke@435 187 cp->space = cp->space->next_compaction_space();
duke@435 188 if (cp->space == NULL) {
duke@435 189 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 190 assert(cp->gen != NULL, "compaction must succeed");
duke@435 191 cp->space = cp->gen->first_compaction_space();
duke@435 192 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 193 }
duke@435 194 compact_top = cp->space->bottom();
duke@435 195 cp->space->set_compaction_top(compact_top);
duke@435 196 // The correct adjusted_size may not be the same as that for this method
duke@435 197 // (i.e., cp->space may no longer be "this" so adjust the size again.
duke@435 198 // Use the virtual method which is not used above to save the virtual
duke@435 199 // dispatch.
duke@435 200 adjusted_size = cp->space->adjust_object_size_v(size);
duke@435 201 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 202 assert(cp->space->minimum_free_block_size() == 0, "just checking");
duke@435 203 } while (adjusted_size > compaction_max_size);
duke@435 204 }
duke@435 205
duke@435 206 // store the forwarding pointer into the mark word
duke@435 207 if ((HeapWord*)q != compact_top) {
duke@435 208 q->forward_to(oop(compact_top));
duke@435 209 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 210 } else {
duke@435 211 // if the object isn't moving we can just set the mark to the default
duke@435 212 // mark and handle it specially later on.
duke@435 213 q->init_mark();
duke@435 214 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 215 }
duke@435 216
coleenp@548 217 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, adjusted_size));
duke@435 218 compact_top += adjusted_size;
duke@435 219
duke@435 220 // we need to update the offset table so that the beginnings of objects can be
duke@435 221 // found during scavenge. Note that we are updating the offset table based on
duke@435 222 // where the object will be once the compaction phase finishes.
duke@435 223
duke@435 224 // Always call cross_threshold(). A contiguous space can only call it when
duke@435 225 // the compaction_top exceeds the current threshold but not for an
duke@435 226 // non-contiguous space.
duke@435 227 cp->threshold =
duke@435 228 cp->space->cross_threshold(compact_top - adjusted_size, compact_top);
duke@435 229 return compact_top;
duke@435 230 }
duke@435 231
duke@435 232 // A modified copy of OffsetTableContigSpace::cross_threshold() with _offsets -> _bt
duke@435 233 // and use of single_block instead of alloc_block. The name here is not really
duke@435 234 // appropriate - maybe a more general name could be invented for both the
duke@435 235 // contiguous and noncontiguous spaces.
duke@435 236
duke@435 237 HeapWord* CompactibleFreeListSpace::cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 238 _bt.single_block(start, the_end);
duke@435 239 return end();
duke@435 240 }
duke@435 241
duke@435 242 // Initialize them to NULL.
duke@435 243 void CompactibleFreeListSpace::initializeIndexedFreeListArray() {
duke@435 244 for (size_t i = 0; i < IndexSetSize; i++) {
duke@435 245 // Note that on platforms where objects are double word aligned,
duke@435 246 // the odd array elements are not used. It is convenient, however,
duke@435 247 // to map directly from the object size to the array element.
duke@435 248 _indexedFreeList[i].reset(IndexSetSize);
duke@435 249 _indexedFreeList[i].set_size(i);
duke@435 250 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 251 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 252 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 253 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 void CompactibleFreeListSpace::resetIndexedFreeListArray() {
ysr@3264 258 for (size_t i = 1; i < IndexSetSize; i++) {
duke@435 259 assert(_indexedFreeList[i].size() == (size_t) i,
duke@435 260 "Indexed free list sizes are incorrect");
duke@435 261 _indexedFreeList[i].reset(IndexSetSize);
duke@435 262 assert(_indexedFreeList[i].count() == 0, "reset check failed");
duke@435 263 assert(_indexedFreeList[i].head() == NULL, "reset check failed");
duke@435 264 assert(_indexedFreeList[i].tail() == NULL, "reset check failed");
duke@435 265 assert(_indexedFreeList[i].hint() == IndexSetSize, "reset check failed");
duke@435 266 }
duke@435 267 }
duke@435 268
duke@435 269 void CompactibleFreeListSpace::reset(MemRegion mr) {
duke@435 270 resetIndexedFreeListArray();
duke@435 271 dictionary()->reset();
duke@435 272 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 273 assert(end() == mr.end(), "We are compacting to the bottom of CMS gen");
duke@435 274 // Everything's allocated until proven otherwise.
duke@435 275 _bt.set_unallocated_block(end());
duke@435 276 }
duke@435 277 if (!mr.is_empty()) {
duke@435 278 assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
duke@435 279 _bt.single_block(mr.start(), mr.word_size());
duke@435 280 FreeChunk* fc = (FreeChunk*) mr.start();
jmasa@3732 281 fc->set_size(mr.word_size());
duke@435 282 if (mr.word_size() >= IndexSetSize ) {
duke@435 283 returnChunkToDictionary(fc);
duke@435 284 } else {
duke@435 285 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
jmasa@3732 286 _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
duke@435 287 }
duke@435 288 }
duke@435 289 _promoInfo.reset();
duke@435 290 _smallLinearAllocBlock._ptr = NULL;
duke@435 291 _smallLinearAllocBlock._word_size = 0;
duke@435 292 }
duke@435 293
duke@435 294 void CompactibleFreeListSpace::reset_after_compaction() {
duke@435 295 // Reset the space to the new reality - one free chunk.
duke@435 296 MemRegion mr(compaction_top(), end());
duke@435 297 reset(mr);
duke@435 298 // Now refill the linear allocation block(s) if possible.
duke@435 299 if (_adaptive_freelists) {
duke@435 300 refillLinearAllocBlocksIfNeeded();
duke@435 301 } else {
duke@435 302 // Place as much of mr in the linAB as we can get,
duke@435 303 // provided it was big enough to go into the dictionary.
jmasa@3732 304 FreeChunk* fc = dictionary()->find_largest_dict();
duke@435 305 if (fc != NULL) {
duke@435 306 assert(fc->size() == mr.word_size(),
duke@435 307 "Why was the chunk broken up?");
duke@435 308 removeChunkFromDictionary(fc);
duke@435 309 HeapWord* addr = (HeapWord*) fc;
duke@435 310 _smallLinearAllocBlock.set(addr, fc->size() ,
duke@435 311 1024*SmallForLinearAlloc, fc->size());
duke@435 312 // Note that _unallocated_block is not updated here.
duke@435 313 }
duke@435 314 }
duke@435 315 }
duke@435 316
duke@435 317 // Walks the entire dictionary, returning a coterminal
duke@435 318 // chunk, if it exists. Use with caution since it involves
duke@435 319 // a potentially complete walk of a potentially large tree.
duke@435 320 FreeChunk* CompactibleFreeListSpace::find_chunk_at_end() {
duke@435 321
duke@435 322 assert_lock_strong(&_freelistLock);
duke@435 323
duke@435 324 return dictionary()->find_chunk_ends_at(end());
duke@435 325 }
duke@435 326
duke@435 327
duke@435 328 #ifndef PRODUCT
duke@435 329 void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
duke@435 330 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 331 _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
duke@435 332 }
duke@435 333 }
duke@435 334
duke@435 335 size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
duke@435 336 size_t sum = 0;
duke@435 337 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3732 338 sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
duke@435 339 }
duke@435 340 return sum;
duke@435 341 }
duke@435 342
duke@435 343 size_t CompactibleFreeListSpace::totalCountInIndexedFreeLists() const {
duke@435 344 size_t count = 0;
ysr@3264 345 for (size_t i = IndexSetStart; i < IndexSetSize; i++) {
duke@435 346 debug_only(
duke@435 347 ssize_t total_list_count = 0;
duke@435 348 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 349 fc = fc->next()) {
duke@435 350 total_list_count++;
duke@435 351 }
duke@435 352 assert(total_list_count == _indexedFreeList[i].count(),
duke@435 353 "Count in list is incorrect");
duke@435 354 )
duke@435 355 count += _indexedFreeList[i].count();
duke@435 356 }
duke@435 357 return count;
duke@435 358 }
duke@435 359
duke@435 360 size_t CompactibleFreeListSpace::totalCount() {
duke@435 361 size_t num = totalCountInIndexedFreeLists();
jmasa@3732 362 num += dictionary()->total_count();
duke@435 363 if (_smallLinearAllocBlock._word_size != 0) {
duke@435 364 num++;
duke@435 365 }
duke@435 366 return num;
duke@435 367 }
duke@435 368 #endif
duke@435 369
duke@435 370 bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
duke@435 371 FreeChunk* fc = (FreeChunk*) p;
jmasa@3732 372 return fc->is_free();
duke@435 373 }
duke@435 374
duke@435 375 size_t CompactibleFreeListSpace::used() const {
duke@435 376 return capacity() - free();
duke@435 377 }
duke@435 378
duke@435 379 size_t CompactibleFreeListSpace::free() const {
duke@435 380 // "MT-safe, but not MT-precise"(TM), if you will: i.e.
duke@435 381 // if you do this while the structures are in flux you
duke@435 382 // may get an approximate answer only; for instance
duke@435 383 // because there is concurrent allocation either
duke@435 384 // directly by mutators or for promotion during a GC.
duke@435 385 // It's "MT-safe", however, in the sense that you are guaranteed
duke@435 386 // not to crash and burn, for instance, because of walking
duke@435 387 // pointers that could disappear as you were walking them.
duke@435 388 // The approximation is because the various components
duke@435 389 // that are read below are not read atomically (and
duke@435 390 // further the computation of totalSizeInIndexedFreeLists()
duke@435 391 // is itself a non-atomic computation. The normal use of
duke@435 392 // this is during a resize operation at the end of GC
duke@435 393 // and at that time you are guaranteed to get the
duke@435 394 // correct actual value. However, for instance, this is
duke@435 395 // also read completely asynchronously by the "perf-sampler"
duke@435 396 // that supports jvmstat, and you are apt to see the values
duke@435 397 // flicker in such cases.
duke@435 398 assert(_dictionary != NULL, "No _dictionary?");
jmasa@3732 399 return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
duke@435 400 totalSizeInIndexedFreeLists() +
duke@435 401 _smallLinearAllocBlock._word_size) * HeapWordSize;
duke@435 402 }
duke@435 403
duke@435 404 size_t CompactibleFreeListSpace::max_alloc_in_words() const {
duke@435 405 assert(_dictionary != NULL, "No _dictionary?");
duke@435 406 assert_locked();
jmasa@3732 407 size_t res = _dictionary->max_chunk_size();
duke@435 408 res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
duke@435 409 (size_t) SmallForLinearAlloc - 1));
duke@435 410 // XXX the following could potentially be pretty slow;
duke@435 411 // should one, pesimally for the rare cases when res
duke@435 412 // caclulated above is less than IndexSetSize,
duke@435 413 // just return res calculated above? My reasoning was that
duke@435 414 // those cases will be so rare that the extra time spent doesn't
duke@435 415 // really matter....
duke@435 416 // Note: do not change the loop test i >= res + IndexSetStride
duke@435 417 // to i > res below, because i is unsigned and res may be zero.
duke@435 418 for (size_t i = IndexSetSize - 1; i >= res + IndexSetStride;
duke@435 419 i -= IndexSetStride) {
duke@435 420 if (_indexedFreeList[i].head() != NULL) {
duke@435 421 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 422 return i;
duke@435 423 }
duke@435 424 }
duke@435 425 return res;
duke@435 426 }
duke@435 427
ysr@2071 428 void LinearAllocBlock::print_on(outputStream* st) const {
ysr@2071 429 st->print_cr(" LinearAllocBlock: ptr = " PTR_FORMAT ", word_size = " SIZE_FORMAT
ysr@2071 430 ", refillsize = " SIZE_FORMAT ", allocation_size_limit = " SIZE_FORMAT,
ysr@2071 431 _ptr, _word_size, _refillSize, _allocation_size_limit);
ysr@2071 432 }
ysr@2071 433
ysr@2071 434 void CompactibleFreeListSpace::print_on(outputStream* st) const {
ysr@2071 435 st->print_cr("COMPACTIBLE FREELIST SPACE");
ysr@2071 436 st->print_cr(" Space:");
ysr@2071 437 Space::print_on(st);
ysr@2071 438
ysr@2071 439 st->print_cr("promoInfo:");
ysr@2071 440 _promoInfo.print_on(st);
ysr@2071 441
ysr@2071 442 st->print_cr("_smallLinearAllocBlock");
ysr@2071 443 _smallLinearAllocBlock.print_on(st);
ysr@2071 444
ysr@2071 445 // dump_memory_block(_smallLinearAllocBlock->_ptr, 128);
ysr@2071 446
ysr@2071 447 st->print_cr(" _fitStrategy = %s, _adaptive_freelists = %s",
ysr@2071 448 _fitStrategy?"true":"false", _adaptive_freelists?"true":"false");
ysr@2071 449 }
ysr@2071 450
ysr@1580 451 void CompactibleFreeListSpace::print_indexed_free_lists(outputStream* st)
ysr@1580 452 const {
ysr@1580 453 reportIndexedFreeListStatistics();
ysr@1580 454 gclog_or_tty->print_cr("Layout of Indexed Freelists");
ysr@1580 455 gclog_or_tty->print_cr("---------------------------");
jmasa@3730 456 FreeList<FreeChunk>::print_labels_on(st, "size");
ysr@1580 457 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
ysr@1580 458 _indexedFreeList[i].print_on(gclog_or_tty);
ysr@1580 459 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
ysr@1580 460 fc = fc->next()) {
ysr@1580 461 gclog_or_tty->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
ysr@1580 462 fc, (HeapWord*)fc + i,
ysr@1580 463 fc->cantCoalesce() ? "\t CC" : "");
ysr@1580 464 }
ysr@1580 465 }
ysr@1580 466 }
ysr@1580 467
ysr@1580 468 void CompactibleFreeListSpace::print_promo_info_blocks(outputStream* st)
ysr@1580 469 const {
ysr@1580 470 _promoInfo.print_on(st);
ysr@1580 471 }
ysr@1580 472
ysr@1580 473 void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
ysr@1580 474 const {
jmasa@3732 475 _dictionary->report_statistics();
ysr@1580 476 st->print_cr("Layout of Freelists in Tree");
ysr@1580 477 st->print_cr("---------------------------");
ysr@1580 478 _dictionary->print_free_lists(st);
ysr@1580 479 }
ysr@1580 480
ysr@1580 481 class BlkPrintingClosure: public BlkClosure {
ysr@1580 482 const CMSCollector* _collector;
ysr@1580 483 const CompactibleFreeListSpace* _sp;
ysr@1580 484 const CMSBitMap* _live_bit_map;
ysr@1580 485 const bool _post_remark;
ysr@1580 486 outputStream* _st;
ysr@1580 487 public:
ysr@1580 488 BlkPrintingClosure(const CMSCollector* collector,
ysr@1580 489 const CompactibleFreeListSpace* sp,
ysr@1580 490 const CMSBitMap* live_bit_map,
ysr@1580 491 outputStream* st):
ysr@1580 492 _collector(collector),
ysr@1580 493 _sp(sp),
ysr@1580 494 _live_bit_map(live_bit_map),
ysr@1580 495 _post_remark(collector->abstract_state() > CMSCollector::FinalMarking),
ysr@1580 496 _st(st) { }
ysr@1580 497 size_t do_blk(HeapWord* addr);
ysr@1580 498 };
ysr@1580 499
ysr@1580 500 size_t BlkPrintingClosure::do_blk(HeapWord* addr) {
ysr@1580 501 size_t sz = _sp->block_size_no_stall(addr, _collector);
ysr@1580 502 assert(sz != 0, "Should always be able to compute a size");
ysr@1580 503 if (_sp->block_is_obj(addr)) {
ysr@1580 504 const bool dead = _post_remark && !_live_bit_map->isMarked(addr);
ysr@1580 505 _st->print_cr(PTR_FORMAT ": %s object of size " SIZE_FORMAT "%s",
ysr@1580 506 addr,
ysr@1580 507 dead ? "dead" : "live",
ysr@1580 508 sz,
ysr@1580 509 (!dead && CMSPrintObjectsInDump) ? ":" : ".");
ysr@1580 510 if (CMSPrintObjectsInDump && !dead) {
ysr@1580 511 oop(addr)->print_on(_st);
ysr@1580 512 _st->print_cr("--------------------------------------");
ysr@1580 513 }
ysr@1580 514 } else { // free block
ysr@1580 515 _st->print_cr(PTR_FORMAT ": free block of size " SIZE_FORMAT "%s",
ysr@1580 516 addr, sz, CMSPrintChunksInDump ? ":" : ".");
ysr@1580 517 if (CMSPrintChunksInDump) {
ysr@1580 518 ((FreeChunk*)addr)->print_on(_st);
ysr@1580 519 _st->print_cr("--------------------------------------");
ysr@1580 520 }
ysr@1580 521 }
ysr@1580 522 return sz;
ysr@1580 523 }
ysr@1580 524
ysr@1580 525 void CompactibleFreeListSpace::dump_at_safepoint_with_locks(CMSCollector* c,
ysr@1580 526 outputStream* st) {
ysr@1580 527 st->print_cr("\n=========================");
ysr@1580 528 st->print_cr("Block layout in CMS Heap:");
ysr@1580 529 st->print_cr("=========================");
ysr@1580 530 BlkPrintingClosure bpcl(c, this, c->markBitMap(), st);
ysr@1580 531 blk_iterate(&bpcl);
ysr@1580 532
ysr@1580 533 st->print_cr("\n=======================================");
ysr@1580 534 st->print_cr("Order & Layout of Promotion Info Blocks");
ysr@1580 535 st->print_cr("=======================================");
ysr@1580 536 print_promo_info_blocks(st);
ysr@1580 537
ysr@1580 538 st->print_cr("\n===========================");
ysr@1580 539 st->print_cr("Order of Indexed Free Lists");
ysr@1580 540 st->print_cr("=========================");
ysr@1580 541 print_indexed_free_lists(st);
ysr@1580 542
ysr@1580 543 st->print_cr("\n=================================");
ysr@1580 544 st->print_cr("Order of Free Lists in Dictionary");
ysr@1580 545 st->print_cr("=================================");
ysr@1580 546 print_dictionary_free_lists(st);
ysr@1580 547 }
ysr@1580 548
ysr@1580 549
duke@435 550 void CompactibleFreeListSpace::reportFreeListStatistics() const {
duke@435 551 assert_lock_strong(&_freelistLock);
duke@435 552 assert(PrintFLSStatistics != 0, "Reporting error");
jmasa@3732 553 _dictionary->report_statistics();
duke@435 554 if (PrintFLSStatistics > 1) {
duke@435 555 reportIndexedFreeListStatistics();
jmasa@3732 556 size_t total_size = totalSizeInIndexedFreeLists() +
jmasa@3732 557 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
jmasa@3732 558 gclog_or_tty->print(" free=%ld frag=%1.4f\n", total_size, flsFrag());
duke@435 559 }
duke@435 560 }
duke@435 561
duke@435 562 void CompactibleFreeListSpace::reportIndexedFreeListStatistics() const {
duke@435 563 assert_lock_strong(&_freelistLock);
duke@435 564 gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
duke@435 565 "--------------------------------\n");
jmasa@3732 566 size_t total_size = totalSizeInIndexedFreeLists();
jmasa@3732 567 size_t free_blocks = numFreeBlocksInIndexedFreeLists();
jmasa@3732 568 gclog_or_tty->print("Total Free Space: %d\n", total_size);
duke@435 569 gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSizeInIndexedFreeLists());
jmasa@3732 570 gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
jmasa@3732 571 if (free_blocks != 0) {
jmasa@3732 572 gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
duke@435 573 }
duke@435 574 }
duke@435 575
duke@435 576 size_t CompactibleFreeListSpace::numFreeBlocksInIndexedFreeLists() const {
duke@435 577 size_t res = 0;
duke@435 578 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 579 debug_only(
duke@435 580 ssize_t recount = 0;
duke@435 581 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 582 fc = fc->next()) {
duke@435 583 recount += 1;
duke@435 584 }
duke@435 585 assert(recount == _indexedFreeList[i].count(),
duke@435 586 "Incorrect count in list");
duke@435 587 )
duke@435 588 res += _indexedFreeList[i].count();
duke@435 589 }
duke@435 590 return res;
duke@435 591 }
duke@435 592
duke@435 593 size_t CompactibleFreeListSpace::maxChunkSizeInIndexedFreeLists() const {
duke@435 594 for (size_t i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
duke@435 595 if (_indexedFreeList[i].head() != NULL) {
duke@435 596 assert(_indexedFreeList[i].count() != 0, "Inconsistent FreeList");
duke@435 597 return (size_t)i;
duke@435 598 }
duke@435 599 }
duke@435 600 return 0;
duke@435 601 }
duke@435 602
duke@435 603 void CompactibleFreeListSpace::set_end(HeapWord* value) {
duke@435 604 HeapWord* prevEnd = end();
duke@435 605 assert(prevEnd != value, "unnecessary set_end call");
ysr@2071 606 assert(prevEnd == NULL || !BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 607 "New end is below unallocated block");
duke@435 608 _end = value;
duke@435 609 if (prevEnd != NULL) {
duke@435 610 // Resize the underlying block offset table.
duke@435 611 _bt.resize(pointer_delta(value, bottom()));
ysr@1580 612 if (value <= prevEnd) {
ysr@2071 613 assert(!BlockOffsetArrayUseUnallocatedBlock || value >= unallocated_block(),
ysr@2071 614 "New end is below unallocated block");
ysr@1580 615 } else {
ysr@1580 616 // Now, take this new chunk and add it to the free blocks.
ysr@1580 617 // Note that the BOT has not yet been updated for this block.
ysr@1580 618 size_t newFcSize = pointer_delta(value, prevEnd);
ysr@1580 619 // XXX This is REALLY UGLY and should be fixed up. XXX
ysr@1580 620 if (!_adaptive_freelists && _smallLinearAllocBlock._ptr == NULL) {
ysr@1580 621 // Mark the boundary of the new block in BOT
ysr@1580 622 _bt.mark_block(prevEnd, value);
ysr@1580 623 // put it all in the linAB
ysr@1580 624 if (ParallelGCThreads == 0) {
ysr@1580 625 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 626 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 627 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 628 } else { // ParallelGCThreads > 0
ysr@1580 629 MutexLockerEx x(parDictionaryAllocLock(),
ysr@1580 630 Mutex::_no_safepoint_check_flag);
ysr@1580 631 _smallLinearAllocBlock._ptr = prevEnd;
ysr@1580 632 _smallLinearAllocBlock._word_size = newFcSize;
ysr@1580 633 repairLinearAllocBlock(&_smallLinearAllocBlock);
ysr@1580 634 }
ysr@1580 635 // Births of chunks put into a LinAB are not recorded. Births
ysr@1580 636 // of chunks as they are allocated out of a LinAB are.
ysr@1580 637 } else {
ysr@1580 638 // Add the block to the free lists, if possible coalescing it
ysr@1580 639 // with the last free block, and update the BOT and census data.
ysr@1580 640 addChunkToFreeListsAtEndRecordingStats(prevEnd, newFcSize);
duke@435 641 }
duke@435 642 }
duke@435 643 }
duke@435 644 }
duke@435 645
duke@435 646 class FreeListSpace_DCTOC : public Filtering_DCTOC {
duke@435 647 CompactibleFreeListSpace* _cfls;
duke@435 648 CMSCollector* _collector;
duke@435 649 protected:
duke@435 650 // Override.
duke@435 651 #define walk_mem_region_with_cl_DECL(ClosureType) \
duke@435 652 virtual void walk_mem_region_with_cl(MemRegion mr, \
duke@435 653 HeapWord* bottom, HeapWord* top, \
duke@435 654 ClosureType* cl); \
duke@435 655 void walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 656 HeapWord* bottom, HeapWord* top, \
duke@435 657 ClosureType* cl); \
duke@435 658 void walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 659 HeapWord* bottom, HeapWord* top, \
duke@435 660 ClosureType* cl)
coleenp@4037 661 walk_mem_region_with_cl_DECL(ExtendedOopClosure);
duke@435 662 walk_mem_region_with_cl_DECL(FilteringClosure);
duke@435 663
duke@435 664 public:
duke@435 665 FreeListSpace_DCTOC(CompactibleFreeListSpace* sp,
duke@435 666 CMSCollector* collector,
coleenp@4037 667 ExtendedOopClosure* cl,
duke@435 668 CardTableModRefBS::PrecisionStyle precision,
duke@435 669 HeapWord* boundary) :
duke@435 670 Filtering_DCTOC(sp, cl, precision, boundary),
duke@435 671 _cfls(sp), _collector(collector) {}
duke@435 672 };
duke@435 673
duke@435 674 // We de-virtualize the block-related calls below, since we know that our
duke@435 675 // space is a CompactibleFreeListSpace.
jmasa@3294 676
duke@435 677 #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 678 void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 679 HeapWord* bottom, \
duke@435 680 HeapWord* top, \
duke@435 681 ClosureType* cl) { \
jmasa@3294 682 bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
jmasa@3294 683 if (is_par) { \
jmasa@3294 684 assert(SharedHeap::heap()->n_par_threads() == \
jmasa@3294 685 SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
duke@435 686 walk_mem_region_with_cl_par(mr, bottom, top, cl); \
duke@435 687 } else { \
duke@435 688 walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
duke@435 689 } \
duke@435 690 } \
duke@435 691 void FreeListSpace_DCTOC::walk_mem_region_with_cl_par(MemRegion mr, \
duke@435 692 HeapWord* bottom, \
duke@435 693 HeapWord* top, \
duke@435 694 ClosureType* cl) { \
duke@435 695 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 696 back too far. */ \
duke@435 697 HeapWord* mr_start = mr.start(); \
duke@435 698 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 699 HeapWord* next = bottom + bot_size; \
duke@435 700 while (next < mr_start) { \
duke@435 701 bottom = next; \
duke@435 702 bot_size = _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 703 next = bottom + bot_size; \
duke@435 704 } \
duke@435 705 \
duke@435 706 while (bottom < top) { \
duke@435 707 if (_cfls->CompactibleFreeListSpace::block_is_obj(bottom) && \
duke@435 708 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 709 oop(bottom)) && \
duke@435 710 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 711 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 712 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 713 } else { \
duke@435 714 bottom += _cfls->CompactibleFreeListSpace::block_size(bottom); \
duke@435 715 } \
duke@435 716 } \
duke@435 717 } \
duke@435 718 void FreeListSpace_DCTOC::walk_mem_region_with_cl_nopar(MemRegion mr, \
duke@435 719 HeapWord* bottom, \
duke@435 720 HeapWord* top, \
duke@435 721 ClosureType* cl) { \
duke@435 722 /* Skip parts that are before "mr", in case "block_start" sent us \
duke@435 723 back too far. */ \
duke@435 724 HeapWord* mr_start = mr.start(); \
duke@435 725 size_t bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 726 HeapWord* next = bottom + bot_size; \
duke@435 727 while (next < mr_start) { \
duke@435 728 bottom = next; \
duke@435 729 bot_size = _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 730 next = bottom + bot_size; \
duke@435 731 } \
duke@435 732 \
duke@435 733 while (bottom < top) { \
duke@435 734 if (_cfls->CompactibleFreeListSpace::block_is_obj_nopar(bottom) && \
duke@435 735 !_cfls->CompactibleFreeListSpace::obj_allocated_since_save_marks( \
duke@435 736 oop(bottom)) && \
duke@435 737 !_collector->CMSCollector::is_dead_obj(oop(bottom))) { \
duke@435 738 size_t word_sz = oop(bottom)->oop_iterate(cl, mr); \
duke@435 739 bottom += _cfls->adjustObjectSize(word_sz); \
duke@435 740 } else { \
duke@435 741 bottom += _cfls->CompactibleFreeListSpace::block_size_nopar(bottom); \
duke@435 742 } \
duke@435 743 } \
duke@435 744 }
duke@435 745
duke@435 746 // (There are only two of these, rather than N, because the split is due
duke@435 747 // only to the introduction of the FilteringClosure, a local part of the
duke@435 748 // impl of this abstraction.)
coleenp@4037 749 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
duke@435 750 FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 751
duke@435 752 DirtyCardToOopClosure*
coleenp@4037 753 CompactibleFreeListSpace::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 754 CardTableModRefBS::PrecisionStyle precision,
duke@435 755 HeapWord* boundary) {
duke@435 756 return new FreeListSpace_DCTOC(this, _collector, cl, precision, boundary);
duke@435 757 }
duke@435 758
duke@435 759
duke@435 760 // Note on locking for the space iteration functions:
duke@435 761 // since the collector's iteration activities are concurrent with
duke@435 762 // allocation activities by mutators, absent a suitable mutual exclusion
duke@435 763 // mechanism the iterators may go awry. For instace a block being iterated
duke@435 764 // may suddenly be allocated or divided up and part of it allocated and
duke@435 765 // so on.
duke@435 766
duke@435 767 // Apply the given closure to each block in the space.
duke@435 768 void CompactibleFreeListSpace::blk_iterate_careful(BlkClosureCareful* cl) {
duke@435 769 assert_lock_strong(freelistLock());
duke@435 770 HeapWord *cur, *limit;
duke@435 771 for (cur = bottom(), limit = end(); cur < limit;
duke@435 772 cur += cl->do_blk_careful(cur));
duke@435 773 }
duke@435 774
duke@435 775 // Apply the given closure to each block in the space.
duke@435 776 void CompactibleFreeListSpace::blk_iterate(BlkClosure* cl) {
duke@435 777 assert_lock_strong(freelistLock());
duke@435 778 HeapWord *cur, *limit;
duke@435 779 for (cur = bottom(), limit = end(); cur < limit;
duke@435 780 cur += cl->do_blk(cur));
duke@435 781 }
duke@435 782
duke@435 783 // Apply the given closure to each oop in the space.
coleenp@4037 784 void CompactibleFreeListSpace::oop_iterate(ExtendedOopClosure* cl) {
duke@435 785 assert_lock_strong(freelistLock());
duke@435 786 HeapWord *cur, *limit;
duke@435 787 size_t curSize;
duke@435 788 for (cur = bottom(), limit = end(); cur < limit;
duke@435 789 cur += curSize) {
duke@435 790 curSize = block_size(cur);
duke@435 791 if (block_is_obj(cur)) {
duke@435 792 oop(cur)->oop_iterate(cl);
duke@435 793 }
duke@435 794 }
duke@435 795 }
duke@435 796
duke@435 797 // Apply the given closure to each oop in the space \intersect memory region.
coleenp@4037 798 void CompactibleFreeListSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
duke@435 799 assert_lock_strong(freelistLock());
duke@435 800 if (is_empty()) {
duke@435 801 return;
duke@435 802 }
duke@435 803 MemRegion cur = MemRegion(bottom(), end());
duke@435 804 mr = mr.intersection(cur);
duke@435 805 if (mr.is_empty()) {
duke@435 806 return;
duke@435 807 }
duke@435 808 if (mr.equals(cur)) {
duke@435 809 oop_iterate(cl);
duke@435 810 return;
duke@435 811 }
duke@435 812 assert(mr.end() <= end(), "just took an intersection above");
duke@435 813 HeapWord* obj_addr = block_start(mr.start());
duke@435 814 HeapWord* t = mr.end();
duke@435 815
duke@435 816 SpaceMemRegionOopsIterClosure smr_blk(cl, mr);
duke@435 817 if (block_is_obj(obj_addr)) {
duke@435 818 // Handle first object specially.
duke@435 819 oop obj = oop(obj_addr);
duke@435 820 obj_addr += adjustObjectSize(obj->oop_iterate(&smr_blk));
duke@435 821 } else {
duke@435 822 FreeChunk* fc = (FreeChunk*)obj_addr;
duke@435 823 obj_addr += fc->size();
duke@435 824 }
duke@435 825 while (obj_addr < t) {
duke@435 826 HeapWord* obj = obj_addr;
duke@435 827 obj_addr += block_size(obj_addr);
duke@435 828 // If "obj_addr" is not greater than top, then the
duke@435 829 // entire object "obj" is within the region.
duke@435 830 if (obj_addr <= t) {
duke@435 831 if (block_is_obj(obj)) {
duke@435 832 oop(obj)->oop_iterate(cl);
duke@435 833 }
duke@435 834 } else {
duke@435 835 // "obj" extends beyond end of region
duke@435 836 if (block_is_obj(obj)) {
duke@435 837 oop(obj)->oop_iterate(&smr_blk);
duke@435 838 }
duke@435 839 break;
duke@435 840 }
duke@435 841 }
duke@435 842 }
duke@435 843
duke@435 844 // NOTE: In the following methods, in order to safely be able to
duke@435 845 // apply the closure to an object, we need to be sure that the
duke@435 846 // object has been initialized. We are guaranteed that an object
duke@435 847 // is initialized if we are holding the Heap_lock with the
duke@435 848 // world stopped.
duke@435 849 void CompactibleFreeListSpace::verify_objects_initialized() const {
duke@435 850 if (is_init_completed()) {
duke@435 851 assert_locked_or_safepoint(Heap_lock);
duke@435 852 if (Universe::is_fully_initialized()) {
duke@435 853 guarantee(SafepointSynchronize::is_at_safepoint(),
duke@435 854 "Required for objects to be initialized");
duke@435 855 }
duke@435 856 } // else make a concession at vm start-up
duke@435 857 }
duke@435 858
duke@435 859 // Apply the given closure to each object in the space
duke@435 860 void CompactibleFreeListSpace::object_iterate(ObjectClosure* blk) {
duke@435 861 assert_lock_strong(freelistLock());
duke@435 862 NOT_PRODUCT(verify_objects_initialized());
duke@435 863 HeapWord *cur, *limit;
duke@435 864 size_t curSize;
duke@435 865 for (cur = bottom(), limit = end(); cur < limit;
duke@435 866 cur += curSize) {
duke@435 867 curSize = block_size(cur);
duke@435 868 if (block_is_obj(cur)) {
duke@435 869 blk->do_object(oop(cur));
duke@435 870 }
duke@435 871 }
duke@435 872 }
duke@435 873
jmasa@952 874 // Apply the given closure to each live object in the space
jmasa@952 875 // The usage of CompactibleFreeListSpace
jmasa@952 876 // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
jmasa@952 877 // objects in the space with references to objects that are no longer
jmasa@952 878 // valid. For example, an object may reference another object
jmasa@952 879 // that has already been sweep up (collected). This method uses
jmasa@952 880 // obj_is_alive() to determine whether it is safe to apply the closure to
jmasa@952 881 // an object. See obj_is_alive() for details on how liveness of an
jmasa@952 882 // object is decided.
jmasa@952 883
jmasa@952 884 void CompactibleFreeListSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 885 assert_lock_strong(freelistLock());
jmasa@952 886 NOT_PRODUCT(verify_objects_initialized());
jmasa@952 887 HeapWord *cur, *limit;
jmasa@952 888 size_t curSize;
jmasa@952 889 for (cur = bottom(), limit = end(); cur < limit;
jmasa@952 890 cur += curSize) {
jmasa@952 891 curSize = block_size(cur);
jmasa@952 892 if (block_is_obj(cur) && obj_is_alive(cur)) {
jmasa@952 893 blk->do_object(oop(cur));
jmasa@952 894 }
jmasa@952 895 }
jmasa@952 896 }
jmasa@952 897
duke@435 898 void CompactibleFreeListSpace::object_iterate_mem(MemRegion mr,
duke@435 899 UpwardsObjectClosure* cl) {
ysr@1580 900 assert_locked(freelistLock());
duke@435 901 NOT_PRODUCT(verify_objects_initialized());
duke@435 902 Space::object_iterate_mem(mr, cl);
duke@435 903 }
duke@435 904
duke@435 905 // Callers of this iterator beware: The closure application should
duke@435 906 // be robust in the face of uninitialized objects and should (always)
duke@435 907 // return a correct size so that the next addr + size below gives us a
duke@435 908 // valid block boundary. [See for instance,
duke@435 909 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 910 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 911 HeapWord*
duke@435 912 CompactibleFreeListSpace::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 913 assert_lock_strong(freelistLock());
duke@435 914 HeapWord *addr, *last;
duke@435 915 size_t size;
duke@435 916 for (addr = bottom(), last = end();
duke@435 917 addr < last; addr += size) {
duke@435 918 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 919 if (fc->is_free()) {
duke@435 920 // Since we hold the free list lock, which protects direct
duke@435 921 // allocation in this generation by mutators, a free object
duke@435 922 // will remain free throughout this iteration code.
duke@435 923 size = fc->size();
duke@435 924 } else {
duke@435 925 // Note that the object need not necessarily be initialized,
duke@435 926 // because (for instance) the free list lock does NOT protect
duke@435 927 // object initialization. The closure application below must
duke@435 928 // therefore be correct in the face of uninitialized objects.
duke@435 929 size = cl->do_object_careful(oop(addr));
duke@435 930 if (size == 0) {
duke@435 931 // An unparsable object found. Signal early termination.
duke@435 932 return addr;
duke@435 933 }
duke@435 934 }
duke@435 935 }
duke@435 936 return NULL;
duke@435 937 }
duke@435 938
duke@435 939 // Callers of this iterator beware: The closure application should
duke@435 940 // be robust in the face of uninitialized objects and should (always)
duke@435 941 // return a correct size so that the next addr + size below gives us a
duke@435 942 // valid block boundary. [See for instance,
duke@435 943 // ScanMarkedObjectsAgainCarefullyClosure::do_object_careful()
duke@435 944 // in ConcurrentMarkSweepGeneration.cpp.]
duke@435 945 HeapWord*
duke@435 946 CompactibleFreeListSpace::object_iterate_careful_m(MemRegion mr,
duke@435 947 ObjectClosureCareful* cl) {
duke@435 948 assert_lock_strong(freelistLock());
duke@435 949 // Can't use used_region() below because it may not necessarily
duke@435 950 // be the same as [bottom(),end()); although we could
duke@435 951 // use [used_region().start(),round_to(used_region().end(),CardSize)),
duke@435 952 // that appears too cumbersome, so we just do the simpler check
duke@435 953 // in the assertion below.
duke@435 954 assert(!mr.is_empty() && MemRegion(bottom(),end()).contains(mr),
duke@435 955 "mr should be non-empty and within used space");
duke@435 956 HeapWord *addr, *end;
duke@435 957 size_t size;
duke@435 958 for (addr = block_start_careful(mr.start()), end = mr.end();
duke@435 959 addr < end; addr += size) {
duke@435 960 FreeChunk* fc = (FreeChunk*)addr;
jmasa@3732 961 if (fc->is_free()) {
duke@435 962 // Since we hold the free list lock, which protects direct
duke@435 963 // allocation in this generation by mutators, a free object
duke@435 964 // will remain free throughout this iteration code.
duke@435 965 size = fc->size();
duke@435 966 } else {
duke@435 967 // Note that the object need not necessarily be initialized,
duke@435 968 // because (for instance) the free list lock does NOT protect
duke@435 969 // object initialization. The closure application below must
duke@435 970 // therefore be correct in the face of uninitialized objects.
duke@435 971 size = cl->do_object_careful_m(oop(addr), mr);
duke@435 972 if (size == 0) {
duke@435 973 // An unparsable object found. Signal early termination.
duke@435 974 return addr;
duke@435 975 }
duke@435 976 }
duke@435 977 }
duke@435 978 return NULL;
duke@435 979 }
duke@435 980
duke@435 981
ysr@777 982 HeapWord* CompactibleFreeListSpace::block_start_const(const void* p) const {
duke@435 983 NOT_PRODUCT(verify_objects_initialized());
duke@435 984 return _bt.block_start(p);
duke@435 985 }
duke@435 986
duke@435 987 HeapWord* CompactibleFreeListSpace::block_start_careful(const void* p) const {
duke@435 988 return _bt.block_start_careful(p);
duke@435 989 }
duke@435 990
duke@435 991 size_t CompactibleFreeListSpace::block_size(const HeapWord* p) const {
duke@435 992 NOT_PRODUCT(verify_objects_initialized());
duke@435 993 // This must be volatile, or else there is a danger that the compiler
duke@435 994 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 995 // the value read the first time in a register.
duke@435 996 while (true) {
duke@435 997 // We must do this until we get a consistent view of the object.
coleenp@622 998 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 999 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1000 size_t res = fc->size();
coleenp@622 1001 // If the object is still a free chunk, return the size, else it
coleenp@622 1002 // has been allocated so try again.
coleenp@622 1003 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1004 assert(res != 0, "Block size should not be 0");
duke@435 1005 return res;
duke@435 1006 }
coleenp@622 1007 } else {
coleenp@622 1008 // must read from what 'p' points to in each loop.
coleenp@4037 1009 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
coleenp@622 1010 if (k != NULL) {
coleenp@4037 1011 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1012 oop o = (oop)p;
coleenp@622 1013 assert(o->is_oop(true /* ignore mark word */), "Should be an oop.");
coleenp@4037 1014 size_t res = o->size_given_klass(k);
coleenp@622 1015 res = adjustObjectSize(res);
coleenp@622 1016 assert(res != 0, "Block size should not be 0");
coleenp@622 1017 return res;
coleenp@622 1018 }
duke@435 1019 }
duke@435 1020 }
duke@435 1021 }
duke@435 1022
coleenp@4037 1023 // TODO: Now that is_parsable is gone, we should combine these two functions.
duke@435 1024 // A variant of the above that uses the Printezis bits for
duke@435 1025 // unparsable but allocated objects. This avoids any possible
duke@435 1026 // stalls waiting for mutators to initialize objects, and is
duke@435 1027 // thus potentially faster than the variant above. However,
duke@435 1028 // this variant may return a zero size for a block that is
duke@435 1029 // under mutation and for which a consistent size cannot be
duke@435 1030 // inferred without stalling; see CMSCollector::block_size_if_printezis_bits().
duke@435 1031 size_t CompactibleFreeListSpace::block_size_no_stall(HeapWord* p,
duke@435 1032 const CMSCollector* c)
duke@435 1033 const {
duke@435 1034 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1035 // This must be volatile, or else there is a danger that the compiler
duke@435 1036 // will compile the code below into a sometimes-infinite loop, by keeping
duke@435 1037 // the value read the first time in a register.
duke@435 1038 DEBUG_ONLY(uint loops = 0;)
duke@435 1039 while (true) {
duke@435 1040 // We must do this until we get a consistent view of the object.
coleenp@622 1041 if (FreeChunk::indicatesFreeChunk(p)) {
coleenp@622 1042 volatile FreeChunk* fc = (volatile FreeChunk*)p;
coleenp@622 1043 size_t res = fc->size();
coleenp@622 1044 if (FreeChunk::indicatesFreeChunk(p)) {
duke@435 1045 assert(res != 0, "Block size should not be 0");
duke@435 1046 assert(loops == 0, "Should be 0");
duke@435 1047 return res;
duke@435 1048 }
duke@435 1049 } else {
coleenp@622 1050 // must read from what 'p' points to in each loop.
coleenp@4037 1051 Klass* k = ((volatile oopDesc*)p)->klass_or_null();
ysr@2533 1052 // We trust the size of any object that has a non-NULL
ysr@2533 1053 // klass and (for those in the perm gen) is parsable
ysr@2533 1054 // -- irrespective of its conc_safe-ty.
coleenp@4037 1055 if (k != NULL) {
coleenp@4037 1056 assert(k->is_klass(), "Should really be klass oop.");
coleenp@622 1057 oop o = (oop)p;
coleenp@622 1058 assert(o->is_oop(), "Should be an oop");
coleenp@4037 1059 size_t res = o->size_given_klass(k);
coleenp@622 1060 res = adjustObjectSize(res);
coleenp@622 1061 assert(res != 0, "Block size should not be 0");
coleenp@622 1062 return res;
coleenp@622 1063 } else {
ysr@2533 1064 // May return 0 if P-bits not present.
coleenp@622 1065 return c->block_size_if_printezis_bits(p);
coleenp@622 1066 }
duke@435 1067 }
duke@435 1068 assert(loops == 0, "Can loop at most once");
duke@435 1069 DEBUG_ONLY(loops++;)
duke@435 1070 }
duke@435 1071 }
duke@435 1072
duke@435 1073 size_t CompactibleFreeListSpace::block_size_nopar(const HeapWord* p) const {
duke@435 1074 NOT_PRODUCT(verify_objects_initialized());
duke@435 1075 assert(MemRegion(bottom(), end()).contains(p), "p not in space");
duke@435 1076 FreeChunk* fc = (FreeChunk*)p;
jmasa@3732 1077 if (fc->is_free()) {
duke@435 1078 return fc->size();
duke@435 1079 } else {
duke@435 1080 // Ignore mark word because this may be a recently promoted
duke@435 1081 // object whose mark word is used to chain together grey
duke@435 1082 // objects (the last one would have a null value).
duke@435 1083 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1084 return adjustObjectSize(oop(p)->size());
duke@435 1085 }
duke@435 1086 }
duke@435 1087
duke@435 1088 // This implementation assumes that the property of "being an object" is
duke@435 1089 // stable. But being a free chunk may not be (because of parallel
duke@435 1090 // promotion.)
duke@435 1091 bool CompactibleFreeListSpace::block_is_obj(const HeapWord* p) const {
duke@435 1092 FreeChunk* fc = (FreeChunk*)p;
duke@435 1093 assert(is_in_reserved(p), "Should be in space");
duke@435 1094 // When doing a mark-sweep-compact of the CMS generation, this
duke@435 1095 // assertion may fail because prepare_for_compaction() uses
duke@435 1096 // space that is garbage to maintain information on ranges of
duke@435 1097 // live objects so that these live ranges can be moved as a whole.
duke@435 1098 // Comment out this assertion until that problem can be solved
duke@435 1099 // (i.e., that the block start calculation may look at objects
duke@435 1100 // at address below "p" in finding the object that contains "p"
duke@435 1101 // and those objects (if garbage) may have been modified to hold
duke@435 1102 // live range information.
jmasa@2188 1103 // assert(CollectedHeap::use_parallel_gc_threads() || _bt.block_start(p) == p,
jmasa@2188 1104 // "Should be a block boundary");
coleenp@622 1105 if (FreeChunk::indicatesFreeChunk(p)) return false;
coleenp@4037 1106 Klass* k = oop(p)->klass_or_null();
duke@435 1107 if (k != NULL) {
duke@435 1108 // Ignore mark word because it may have been used to
duke@435 1109 // chain together promoted objects (the last one
duke@435 1110 // would have a null value).
duke@435 1111 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1112 return true;
duke@435 1113 } else {
duke@435 1114 return false; // Was not an object at the start of collection.
duke@435 1115 }
duke@435 1116 }
duke@435 1117
duke@435 1118 // Check if the object is alive. This fact is checked either by consulting
duke@435 1119 // the main marking bitmap in the sweeping phase or, if it's a permanent
duke@435 1120 // generation and we're not in the sweeping phase, by checking the
duke@435 1121 // perm_gen_verify_bit_map where we store the "deadness" information if
duke@435 1122 // we did not sweep the perm gen in the most recent previous GC cycle.
duke@435 1123 bool CompactibleFreeListSpace::obj_is_alive(const HeapWord* p) const {
ysr@2301 1124 assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
ysr@2301 1125 "Else races are possible");
ysr@2293 1126 assert(block_is_obj(p), "The address should point to an object");
duke@435 1127
duke@435 1128 // If we're sweeping, we use object liveness information from the main bit map
duke@435 1129 // for both perm gen and old gen.
duke@435 1130 // We don't need to lock the bitmap (live_map or dead_map below), because
duke@435 1131 // EITHER we are in the middle of the sweeping phase, and the
duke@435 1132 // main marking bit map (live_map below) is locked,
duke@435 1133 // OR we're in other phases and perm_gen_verify_bit_map (dead_map below)
duke@435 1134 // is stable, because it's mutated only in the sweeping phase.
ysr@2293 1135 // NOTE: This method is also used by jmap where, if class unloading is
ysr@2293 1136 // off, the results can return "false" for legitimate perm objects,
ysr@2293 1137 // when we are not in the midst of a sweeping phase, which can result
ysr@2293 1138 // in jmap not reporting certain perm gen objects. This will be moot
ysr@2293 1139 // if/when the perm gen goes away in the future.
duke@435 1140 if (_collector->abstract_state() == CMSCollector::Sweeping) {
duke@435 1141 CMSBitMap* live_map = _collector->markBitMap();
ysr@2293 1142 return live_map->par_isMarked((HeapWord*) p);
duke@435 1143 }
duke@435 1144 return true;
duke@435 1145 }
duke@435 1146
duke@435 1147 bool CompactibleFreeListSpace::block_is_obj_nopar(const HeapWord* p) const {
duke@435 1148 FreeChunk* fc = (FreeChunk*)p;
duke@435 1149 assert(is_in_reserved(p), "Should be in space");
duke@435 1150 assert(_bt.block_start(p) == p, "Should be a block boundary");
jmasa@3732 1151 if (!fc->is_free()) {
duke@435 1152 // Ignore mark word because it may have been used to
duke@435 1153 // chain together promoted objects (the last one
duke@435 1154 // would have a null value).
duke@435 1155 assert(oop(p)->is_oop(true), "Should be an oop");
duke@435 1156 return true;
duke@435 1157 }
duke@435 1158 return false;
duke@435 1159 }
duke@435 1160
duke@435 1161 // "MT-safe but not guaranteed MT-precise" (TM); you may get an
duke@435 1162 // approximate answer if you don't hold the freelistlock when you call this.
duke@435 1163 size_t CompactibleFreeListSpace::totalSizeInIndexedFreeLists() const {
duke@435 1164 size_t size = 0;
duke@435 1165 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 1166 debug_only(
duke@435 1167 // We may be calling here without the lock in which case we
duke@435 1168 // won't do this modest sanity check.
duke@435 1169 if (freelistLock()->owned_by_self()) {
duke@435 1170 size_t total_list_size = 0;
duke@435 1171 for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
duke@435 1172 fc = fc->next()) {
duke@435 1173 total_list_size += i;
duke@435 1174 }
duke@435 1175 assert(total_list_size == i * _indexedFreeList[i].count(),
duke@435 1176 "Count in list is incorrect");
duke@435 1177 }
duke@435 1178 )
duke@435 1179 size += i * _indexedFreeList[i].count();
duke@435 1180 }
duke@435 1181 return size;
duke@435 1182 }
duke@435 1183
duke@435 1184 HeapWord* CompactibleFreeListSpace::par_allocate(size_t size) {
duke@435 1185 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
duke@435 1186 return allocate(size);
duke@435 1187 }
duke@435 1188
duke@435 1189 HeapWord*
duke@435 1190 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlockRemainder(size_t size) {
duke@435 1191 return getChunkFromLinearAllocBlockRemainder(&_smallLinearAllocBlock, size);
duke@435 1192 }
duke@435 1193
duke@435 1194 HeapWord* CompactibleFreeListSpace::allocate(size_t size) {
duke@435 1195 assert_lock_strong(freelistLock());
duke@435 1196 HeapWord* res = NULL;
duke@435 1197 assert(size == adjustObjectSize(size),
duke@435 1198 "use adjustObjectSize() before calling into allocate()");
duke@435 1199
duke@435 1200 if (_adaptive_freelists) {
duke@435 1201 res = allocate_adaptive_freelists(size);
duke@435 1202 } else { // non-adaptive free lists
duke@435 1203 res = allocate_non_adaptive_freelists(size);
duke@435 1204 }
duke@435 1205
duke@435 1206 if (res != NULL) {
duke@435 1207 // check that res does lie in this space!
duke@435 1208 assert(is_in_reserved(res), "Not in this space!");
duke@435 1209 assert(is_aligned((void*)res), "alignment check");
duke@435 1210
duke@435 1211 FreeChunk* fc = (FreeChunk*)res;
duke@435 1212 fc->markNotFree();
jmasa@3732 1213 assert(!fc->is_free(), "shouldn't be marked free");
coleenp@622 1214 assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
duke@435 1215 // Verify that the block offset table shows this to
duke@435 1216 // be a single block, but not one which is unallocated.
duke@435 1217 _bt.verify_single_block(res, size);
duke@435 1218 _bt.verify_not_unallocated(res, size);
duke@435 1219 // mangle a just allocated object with a distinct pattern.
duke@435 1220 debug_only(fc->mangleAllocated(size));
duke@435 1221 }
duke@435 1222
duke@435 1223 return res;
duke@435 1224 }
duke@435 1225
duke@435 1226 HeapWord* CompactibleFreeListSpace::allocate_non_adaptive_freelists(size_t size) {
duke@435 1227 HeapWord* res = NULL;
duke@435 1228 // try and use linear allocation for smaller blocks
duke@435 1229 if (size < _smallLinearAllocBlock._allocation_size_limit) {
duke@435 1230 // if successful, the following also adjusts block offset table
duke@435 1231 res = getChunkFromSmallLinearAllocBlock(size);
duke@435 1232 }
duke@435 1233 // Else triage to indexed lists for smaller sizes
duke@435 1234 if (res == NULL) {
duke@435 1235 if (size < SmallForDictionary) {
duke@435 1236 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1237 } else {
duke@435 1238 // else get it from the big dictionary; if even this doesn't
duke@435 1239 // work we are out of luck.
duke@435 1240 res = (HeapWord*)getChunkFromDictionaryExact(size);
duke@435 1241 }
duke@435 1242 }
duke@435 1243
duke@435 1244 return res;
duke@435 1245 }
duke@435 1246
duke@435 1247 HeapWord* CompactibleFreeListSpace::allocate_adaptive_freelists(size_t size) {
duke@435 1248 assert_lock_strong(freelistLock());
duke@435 1249 HeapWord* res = NULL;
duke@435 1250 assert(size == adjustObjectSize(size),
duke@435 1251 "use adjustObjectSize() before calling into allocate()");
duke@435 1252
duke@435 1253 // Strategy
duke@435 1254 // if small
duke@435 1255 // exact size from small object indexed list if small
duke@435 1256 // small or large linear allocation block (linAB) as appropriate
duke@435 1257 // take from lists of greater sized chunks
duke@435 1258 // else
duke@435 1259 // dictionary
duke@435 1260 // small or large linear allocation block if it has the space
duke@435 1261 // Try allocating exact size from indexTable first
duke@435 1262 if (size < IndexSetSize) {
duke@435 1263 res = (HeapWord*) getChunkFromIndexedFreeList(size);
duke@435 1264 if(res != NULL) {
duke@435 1265 assert(res != (HeapWord*)_indexedFreeList[size].head(),
duke@435 1266 "Not removed from free list");
duke@435 1267 // no block offset table adjustment is necessary on blocks in
duke@435 1268 // the indexed lists.
duke@435 1269
duke@435 1270 // Try allocating from the small LinAB
duke@435 1271 } else if (size < _smallLinearAllocBlock._allocation_size_limit &&
duke@435 1272 (res = getChunkFromSmallLinearAllocBlock(size)) != NULL) {
duke@435 1273 // if successful, the above also adjusts block offset table
duke@435 1274 // Note that this call will refill the LinAB to
duke@435 1275 // satisfy the request. This is different that
duke@435 1276 // evm.
duke@435 1277 // Don't record chunk off a LinAB? smallSplitBirth(size);
duke@435 1278 } else {
duke@435 1279 // Raid the exact free lists larger than size, even if they are not
duke@435 1280 // overpopulated.
duke@435 1281 res = (HeapWord*) getChunkFromGreater(size);
duke@435 1282 }
duke@435 1283 } else {
duke@435 1284 // Big objects get allocated directly from the dictionary.
duke@435 1285 res = (HeapWord*) getChunkFromDictionaryExact(size);
duke@435 1286 if (res == NULL) {
duke@435 1287 // Try hard not to fail since an allocation failure will likely
duke@435 1288 // trigger a synchronous GC. Try to get the space from the
duke@435 1289 // allocation blocks.
duke@435 1290 res = getChunkFromSmallLinearAllocBlockRemainder(size);
duke@435 1291 }
duke@435 1292 }
duke@435 1293
duke@435 1294 return res;
duke@435 1295 }
duke@435 1296
duke@435 1297 // A worst-case estimate of the space required (in HeapWords) to expand the heap
duke@435 1298 // when promoting obj.
duke@435 1299 size_t CompactibleFreeListSpace::expansionSpaceRequired(size_t obj_size) const {
duke@435 1300 // Depending on the object size, expansion may require refilling either a
duke@435 1301 // bigLAB or a smallLAB plus refilling a PromotionInfo object. MinChunkSize
duke@435 1302 // is added because the dictionary may over-allocate to avoid fragmentation.
duke@435 1303 size_t space = obj_size;
duke@435 1304 if (!_adaptive_freelists) {
duke@435 1305 space = MAX2(space, _smallLinearAllocBlock._refillSize);
duke@435 1306 }
duke@435 1307 space += _promoInfo.refillSize() + 2 * MinChunkSize;
duke@435 1308 return space;
duke@435 1309 }
duke@435 1310
duke@435 1311 FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
duke@435 1312 FreeChunk* ret;
duke@435 1313
duke@435 1314 assert(numWords >= MinChunkSize, "Size is less than minimum");
duke@435 1315 assert(linearAllocationWouldFail() || bestFitFirst(),
duke@435 1316 "Should not be here");
duke@435 1317
duke@435 1318 size_t i;
duke@435 1319 size_t currSize = numWords + MinChunkSize;
duke@435 1320 assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
duke@435 1321 for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
jmasa@3730 1322 FreeList<FreeChunk>* fl = &_indexedFreeList[i];
duke@435 1323 if (fl->head()) {
duke@435 1324 ret = getFromListGreater(fl, numWords);
jmasa@3732 1325 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1326 return ret;
duke@435 1327 }
duke@435 1328 }
duke@435 1329
duke@435 1330 currSize = MAX2((size_t)SmallForDictionary,
duke@435 1331 (size_t)(numWords + MinChunkSize));
duke@435 1332
duke@435 1333 /* Try to get a chunk that satisfies request, while avoiding
duke@435 1334 fragmentation that can't be handled. */
duke@435 1335 {
jmasa@3732 1336 ret = dictionary()->get_chunk(currSize);
duke@435 1337 if (ret != NULL) {
duke@435 1338 assert(ret->size() - numWords >= MinChunkSize,
duke@435 1339 "Chunk is too small");
duke@435 1340 _bt.allocated((HeapWord*)ret, ret->size());
duke@435 1341 /* Carve returned chunk. */
duke@435 1342 (void) splitChunkAndReturnRemainder(ret, numWords);
duke@435 1343 /* Label this as no longer a free chunk. */
jmasa@3732 1344 assert(ret->is_free(), "This chunk should be free");
jmasa@3732 1345 ret->link_prev(NULL);
duke@435 1346 }
jmasa@3732 1347 assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
duke@435 1348 return ret;
duke@435 1349 }
duke@435 1350 ShouldNotReachHere();
duke@435 1351 }
duke@435 1352
ysr@3220 1353 bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
duke@435 1354 assert(fc->size() < IndexSetSize, "Size of chunk is too large");
jmasa@3732 1355 return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
duke@435 1356 }
duke@435 1357
ysr@3220 1358 bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
ysr@3220 1359 assert((_smallLinearAllocBlock._ptr != (HeapWord*)fc) ||
ysr@3220 1360 (_smallLinearAllocBlock._word_size == fc->size()),
ysr@3220 1361 "Linear allocation block shows incorrect size");
ysr@3220 1362 return ((_smallLinearAllocBlock._ptr == (HeapWord*)fc) &&
ysr@3220 1363 (_smallLinearAllocBlock._word_size == fc->size()));
ysr@3220 1364 }
ysr@3220 1365
ysr@3220 1366 // Check if the purported free chunk is present either as a linear
ysr@3220 1367 // allocation block, the size-indexed table of (smaller) free blocks,
ysr@3220 1368 // or the larger free blocks kept in the binary tree dictionary.
jmasa@3732 1369 bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
ysr@3220 1370 if (verify_chunk_is_linear_alloc_block(fc)) {
ysr@3220 1371 return true;
ysr@3220 1372 } else if (fc->size() < IndexSetSize) {
ysr@3220 1373 return verifyChunkInIndexedFreeLists(fc);
ysr@3220 1374 } else {
jmasa@3732 1375 return dictionary()->verify_chunk_in_free_list(fc);
duke@435 1376 }
duke@435 1377 }
duke@435 1378
duke@435 1379 #ifndef PRODUCT
duke@435 1380 void CompactibleFreeListSpace::assert_locked() const {
duke@435 1381 CMSLockVerifier::assert_locked(freelistLock(), parDictionaryAllocLock());
duke@435 1382 }
ysr@1580 1383
ysr@1580 1384 void CompactibleFreeListSpace::assert_locked(const Mutex* lock) const {
ysr@1580 1385 CMSLockVerifier::assert_locked(lock);
ysr@1580 1386 }
duke@435 1387 #endif
duke@435 1388
duke@435 1389 FreeChunk* CompactibleFreeListSpace::allocateScratch(size_t size) {
duke@435 1390 // In the parallel case, the main thread holds the free list lock
duke@435 1391 // on behalf the parallel threads.
duke@435 1392 FreeChunk* fc;
duke@435 1393 {
duke@435 1394 // If GC is parallel, this might be called by several threads.
duke@435 1395 // This should be rare enough that the locking overhead won't affect
duke@435 1396 // the sequential code.
duke@435 1397 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 1398 Mutex::_no_safepoint_check_flag);
duke@435 1399 fc = getChunkFromDictionary(size);
duke@435 1400 }
duke@435 1401 if (fc != NULL) {
duke@435 1402 fc->dontCoalesce();
jmasa@3732 1403 assert(fc->is_free(), "Should be free, but not coalescable");
duke@435 1404 // Verify that the block offset table shows this to
duke@435 1405 // be a single block, but not one which is unallocated.
duke@435 1406 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1407 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 1408 }
duke@435 1409 return fc;
duke@435 1410 }
duke@435 1411
coleenp@548 1412 oop CompactibleFreeListSpace::promote(oop obj, size_t obj_size) {
duke@435 1413 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1414 assert_locked();
duke@435 1415
duke@435 1416 // if we are tracking promotions, then first ensure space for
duke@435 1417 // promotion (including spooling space for saving header if necessary).
duke@435 1418 // then allocate and copy, then track promoted info if needed.
duke@435 1419 // When tracking (see PromotionInfo::track()), the mark word may
duke@435 1420 // be displaced and in this case restoration of the mark word
duke@435 1421 // occurs in the (oop_since_save_marks_)iterate phase.
duke@435 1422 if (_promoInfo.tracking() && !_promoInfo.ensure_spooling_space()) {
duke@435 1423 return NULL;
duke@435 1424 }
duke@435 1425 // Call the allocate(size_t, bool) form directly to avoid the
duke@435 1426 // additional call through the allocate(size_t) form. Having
duke@435 1427 // the compile inline the call is problematic because allocate(size_t)
duke@435 1428 // is a virtual method.
duke@435 1429 HeapWord* res = allocate(adjustObjectSize(obj_size));
duke@435 1430 if (res != NULL) {
duke@435 1431 Copy::aligned_disjoint_words((HeapWord*)obj, res, obj_size);
duke@435 1432 // if we should be tracking promotions, do so.
duke@435 1433 if (_promoInfo.tracking()) {
duke@435 1434 _promoInfo.track((PromotedObject*)res);
duke@435 1435 }
duke@435 1436 }
duke@435 1437 return oop(res);
duke@435 1438 }
duke@435 1439
duke@435 1440 HeapWord*
duke@435 1441 CompactibleFreeListSpace::getChunkFromSmallLinearAllocBlock(size_t size) {
duke@435 1442 assert_locked();
duke@435 1443 assert(size >= MinChunkSize, "minimum chunk size");
duke@435 1444 assert(size < _smallLinearAllocBlock._allocation_size_limit,
duke@435 1445 "maximum from smallLinearAllocBlock");
duke@435 1446 return getChunkFromLinearAllocBlock(&_smallLinearAllocBlock, size);
duke@435 1447 }
duke@435 1448
duke@435 1449 HeapWord*
duke@435 1450 CompactibleFreeListSpace::getChunkFromLinearAllocBlock(LinearAllocBlock *blk,
duke@435 1451 size_t size) {
duke@435 1452 assert_locked();
duke@435 1453 assert(size >= MinChunkSize, "too small");
duke@435 1454 HeapWord* res = NULL;
duke@435 1455 // Try to do linear allocation from blk, making sure that
duke@435 1456 if (blk->_word_size == 0) {
duke@435 1457 // We have probably been unable to fill this either in the prologue or
duke@435 1458 // when it was exhausted at the last linear allocation. Bail out until
duke@435 1459 // next time.
duke@435 1460 assert(blk->_ptr == NULL, "consistency check");
duke@435 1461 return NULL;
duke@435 1462 }
duke@435 1463 assert(blk->_word_size != 0 && blk->_ptr != NULL, "consistency check");
duke@435 1464 res = getChunkFromLinearAllocBlockRemainder(blk, size);
duke@435 1465 if (res != NULL) return res;
duke@435 1466
duke@435 1467 // about to exhaust this linear allocation block
duke@435 1468 if (blk->_word_size == size) { // exactly satisfied
duke@435 1469 res = blk->_ptr;
duke@435 1470 _bt.allocated(res, blk->_word_size);
duke@435 1471 } else if (size + MinChunkSize <= blk->_refillSize) {
ysr@1580 1472 size_t sz = blk->_word_size;
duke@435 1473 // Update _unallocated_block if the size is such that chunk would be
duke@435 1474 // returned to the indexed free list. All other chunks in the indexed
duke@435 1475 // free lists are allocated from the dictionary so that _unallocated_block
duke@435 1476 // has already been adjusted for them. Do it here so that the cost
duke@435 1477 // for all chunks added back to the indexed free lists.
ysr@1580 1478 if (sz < SmallForDictionary) {
ysr@1580 1479 _bt.allocated(blk->_ptr, sz);
duke@435 1480 }
duke@435 1481 // Return the chunk that isn't big enough, and then refill below.
ysr@1580 1482 addChunkToFreeLists(blk->_ptr, sz);
jmasa@3732 1483 split_birth(sz);
duke@435 1484 // Don't keep statistics on adding back chunk from a LinAB.
duke@435 1485 } else {
duke@435 1486 // A refilled block would not satisfy the request.
duke@435 1487 return NULL;
duke@435 1488 }
duke@435 1489
duke@435 1490 blk->_ptr = NULL; blk->_word_size = 0;
duke@435 1491 refillLinearAllocBlock(blk);
duke@435 1492 assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
duke@435 1493 "block was replenished");
duke@435 1494 if (res != NULL) {
jmasa@3732 1495 split_birth(size);
duke@435 1496 repairLinearAllocBlock(blk);
duke@435 1497 } else if (blk->_ptr != NULL) {
duke@435 1498 res = blk->_ptr;
duke@435 1499 size_t blk_size = blk->_word_size;
duke@435 1500 blk->_word_size -= size;
duke@435 1501 blk->_ptr += size;
jmasa@3732 1502 split_birth(size);
duke@435 1503 repairLinearAllocBlock(blk);
duke@435 1504 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1505 // view of the BOT and free blocks.
duke@435 1506 // Above must occur before BOT is updated below.
ysr@2071 1507 OrderAccess::storestore();
duke@435 1508 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1509 }
duke@435 1510 return res;
duke@435 1511 }
duke@435 1512
duke@435 1513 HeapWord* CompactibleFreeListSpace::getChunkFromLinearAllocBlockRemainder(
duke@435 1514 LinearAllocBlock* blk,
duke@435 1515 size_t size) {
duke@435 1516 assert_locked();
duke@435 1517 assert(size >= MinChunkSize, "too small");
duke@435 1518
duke@435 1519 HeapWord* res = NULL;
duke@435 1520 // This is the common case. Keep it simple.
duke@435 1521 if (blk->_word_size >= size + MinChunkSize) {
duke@435 1522 assert(blk->_ptr != NULL, "consistency check");
duke@435 1523 res = blk->_ptr;
duke@435 1524 // Note that the BOT is up-to-date for the linAB before allocation. It
duke@435 1525 // indicates the start of the linAB. The split_block() updates the
duke@435 1526 // BOT for the linAB after the allocation (indicates the start of the
duke@435 1527 // next chunk to be allocated).
duke@435 1528 size_t blk_size = blk->_word_size;
duke@435 1529 blk->_word_size -= size;
duke@435 1530 blk->_ptr += size;
jmasa@3732 1531 split_birth(size);
duke@435 1532 repairLinearAllocBlock(blk);
duke@435 1533 // Update BOT last so that other (parallel) GC threads see a consistent
duke@435 1534 // view of the BOT and free blocks.
duke@435 1535 // Above must occur before BOT is updated below.
ysr@2071 1536 OrderAccess::storestore();
duke@435 1537 _bt.split_block(res, blk_size, size); // adjust block offset table
duke@435 1538 _bt.allocated(res, size);
duke@435 1539 }
duke@435 1540 return res;
duke@435 1541 }
duke@435 1542
duke@435 1543 FreeChunk*
duke@435 1544 CompactibleFreeListSpace::getChunkFromIndexedFreeList(size_t size) {
duke@435 1545 assert_locked();
duke@435 1546 assert(size < SmallForDictionary, "just checking");
duke@435 1547 FreeChunk* res;
jmasa@3732 1548 res = _indexedFreeList[size].get_chunk_at_head();
duke@435 1549 if (res == NULL) {
duke@435 1550 res = getChunkFromIndexedFreeListHelper(size);
duke@435 1551 }
duke@435 1552 _bt.verify_not_unallocated((HeapWord*) res, size);
ysr@1580 1553 assert(res == NULL || res->size() == size, "Incorrect block size");
duke@435 1554 return res;
duke@435 1555 }
duke@435 1556
duke@435 1557 FreeChunk*
ysr@1580 1558 CompactibleFreeListSpace::getChunkFromIndexedFreeListHelper(size_t size,
ysr@1580 1559 bool replenish) {
duke@435 1560 assert_locked();
duke@435 1561 FreeChunk* fc = NULL;
duke@435 1562 if (size < SmallForDictionary) {
duke@435 1563 assert(_indexedFreeList[size].head() == NULL ||
duke@435 1564 _indexedFreeList[size].surplus() <= 0,
duke@435 1565 "List for this size should be empty or under populated");
duke@435 1566 // Try best fit in exact lists before replenishing the list
duke@435 1567 if (!bestFitFirst() || (fc = bestFitSmall(size)) == NULL) {
duke@435 1568 // Replenish list.
duke@435 1569 //
duke@435 1570 // Things tried that failed.
duke@435 1571 // Tried allocating out of the two LinAB's first before
duke@435 1572 // replenishing lists.
duke@435 1573 // Tried small linAB of size 256 (size in indexed list)
duke@435 1574 // and replenishing indexed lists from the small linAB.
duke@435 1575 //
duke@435 1576 FreeChunk* newFc = NULL;
ysr@1580 1577 const size_t replenish_size = CMSIndexedFreeListReplenish * size;
duke@435 1578 if (replenish_size < SmallForDictionary) {
duke@435 1579 // Do not replenish from an underpopulated size.
duke@435 1580 if (_indexedFreeList[replenish_size].surplus() > 0 &&
duke@435 1581 _indexedFreeList[replenish_size].head() != NULL) {
jmasa@3732 1582 newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
ysr@1580 1583 } else if (bestFitFirst()) {
duke@435 1584 newFc = bestFitSmall(replenish_size);
duke@435 1585 }
duke@435 1586 }
ysr@1580 1587 if (newFc == NULL && replenish_size > size) {
ysr@1580 1588 assert(CMSIndexedFreeListReplenish > 1, "ctl pt invariant");
ysr@1580 1589 newFc = getChunkFromIndexedFreeListHelper(replenish_size, false);
ysr@1580 1590 }
ysr@1580 1591 // Note: The stats update re split-death of block obtained above
ysr@1580 1592 // will be recorded below precisely when we know we are going to
ysr@1580 1593 // be actually splitting it into more than one pieces below.
duke@435 1594 if (newFc != NULL) {
ysr@1580 1595 if (replenish || CMSReplenishIntermediate) {
ysr@1580 1596 // Replenish this list and return one block to caller.
ysr@1580 1597 size_t i;
ysr@1580 1598 FreeChunk *curFc, *nextFc;
ysr@1580 1599 size_t num_blk = newFc->size() / size;
ysr@1580 1600 assert(num_blk >= 1, "Smaller than requested?");
ysr@1580 1601 assert(newFc->size() % size == 0, "Should be integral multiple of request");
ysr@1580 1602 if (num_blk > 1) {
ysr@1580 1603 // we are sure we will be splitting the block just obtained
ysr@1580 1604 // into multiple pieces; record the split-death of the original
ysr@1580 1605 splitDeath(replenish_size);
ysr@1580 1606 }
ysr@1580 1607 // carve up and link blocks 0, ..., num_blk - 2
ysr@1580 1608 // The last chunk is not added to the lists but is returned as the
ysr@1580 1609 // free chunk.
ysr@1580 1610 for (curFc = newFc, nextFc = (FreeChunk*)((HeapWord*)curFc + size),
ysr@1580 1611 i = 0;
ysr@1580 1612 i < (num_blk - 1);
ysr@1580 1613 curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
ysr@1580 1614 i++) {
jmasa@3732 1615 curFc->set_size(size);
ysr@1580 1616 // Don't record this as a return in order to try and
ysr@1580 1617 // determine the "returns" from a GC.
ysr@1580 1618 _bt.verify_not_unallocated((HeapWord*) fc, size);
jmasa@3732 1619 _indexedFreeList[size].return_chunk_at_tail(curFc, false);
ysr@1580 1620 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1621 split_birth(size);
ysr@1580 1622 // Don't record the initial population of the indexed list
ysr@1580 1623 // as a split birth.
ysr@1580 1624 }
ysr@1580 1625
ysr@1580 1626 // check that the arithmetic was OK above
ysr@1580 1627 assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
ysr@1580 1628 "inconsistency in carving newFc");
jmasa@3732 1629 curFc->set_size(size);
duke@435 1630 _bt.mark_block((HeapWord*)curFc, size);
jmasa@3732 1631 split_birth(size);
ysr@1580 1632 fc = curFc;
ysr@1580 1633 } else {
ysr@1580 1634 // Return entire block to caller
ysr@1580 1635 fc = newFc;
duke@435 1636 }
duke@435 1637 }
duke@435 1638 }
duke@435 1639 } else {
duke@435 1640 // Get a free chunk from the free chunk dictionary to be returned to
duke@435 1641 // replenish the indexed free list.
duke@435 1642 fc = getChunkFromDictionaryExact(size);
duke@435 1643 }
jmasa@3732 1644 // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
duke@435 1645 return fc;
duke@435 1646 }
duke@435 1647
duke@435 1648 FreeChunk*
duke@435 1649 CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
duke@435 1650 assert_locked();
jmasa@3732 1651 FreeChunk* fc = _dictionary->get_chunk(size);
duke@435 1652 if (fc == NULL) {
duke@435 1653 return NULL;
duke@435 1654 }
duke@435 1655 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1656 if (fc->size() >= size + MinChunkSize) {
duke@435 1657 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1658 }
duke@435 1659 assert(fc->size() >= size, "chunk too small");
duke@435 1660 assert(fc->size() < size + MinChunkSize, "chunk too big");
duke@435 1661 _bt.verify_single_block((HeapWord*)fc, fc->size());
duke@435 1662 return fc;
duke@435 1663 }
duke@435 1664
duke@435 1665 FreeChunk*
duke@435 1666 CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
duke@435 1667 assert_locked();
jmasa@3732 1668 FreeChunk* fc = _dictionary->get_chunk(size);
duke@435 1669 if (fc == NULL) {
duke@435 1670 return fc;
duke@435 1671 }
duke@435 1672 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1673 if (fc->size() == size) {
duke@435 1674 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1675 return fc;
duke@435 1676 }
jmasa@3732 1677 assert(fc->size() > size, "get_chunk() guarantee");
duke@435 1678 if (fc->size() < size + MinChunkSize) {
duke@435 1679 // Return the chunk to the dictionary and go get a bigger one.
duke@435 1680 returnChunkToDictionary(fc);
jmasa@3732 1681 fc = _dictionary->get_chunk(size + MinChunkSize);
duke@435 1682 if (fc == NULL) {
duke@435 1683 return NULL;
duke@435 1684 }
duke@435 1685 _bt.allocated((HeapWord*)fc, fc->size());
duke@435 1686 }
duke@435 1687 assert(fc->size() >= size + MinChunkSize, "tautology");
duke@435 1688 fc = splitChunkAndReturnRemainder(fc, size);
duke@435 1689 assert(fc->size() == size, "chunk is wrong size");
duke@435 1690 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1691 return fc;
duke@435 1692 }
duke@435 1693
duke@435 1694 void
duke@435 1695 CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
duke@435 1696 assert_locked();
duke@435 1697
duke@435 1698 size_t size = chunk->size();
duke@435 1699 _bt.verify_single_block((HeapWord*)chunk, size);
duke@435 1700 // adjust _unallocated_block downward, as necessary
duke@435 1701 _bt.freed((HeapWord*)chunk, size);
jmasa@3732 1702 _dictionary->return_chunk(chunk);
ysr@1580 1703 #ifndef PRODUCT
ysr@1580 1704 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
jmasa@3730 1705 TreeChunk<FreeChunk>::as_TreeChunk(chunk)->list()->verify_stats();
ysr@1580 1706 }
ysr@1580 1707 #endif // PRODUCT
duke@435 1708 }
duke@435 1709
duke@435 1710 void
duke@435 1711 CompactibleFreeListSpace::returnChunkToFreeList(FreeChunk* fc) {
duke@435 1712 assert_locked();
duke@435 1713 size_t size = fc->size();
duke@435 1714 _bt.verify_single_block((HeapWord*) fc, size);
duke@435 1715 _bt.verify_not_unallocated((HeapWord*) fc, size);
duke@435 1716 if (_adaptive_freelists) {
jmasa@3732 1717 _indexedFreeList[size].return_chunk_at_tail(fc);
duke@435 1718 } else {
jmasa@3732 1719 _indexedFreeList[size].return_chunk_at_head(fc);
duke@435 1720 }
ysr@1580 1721 #ifndef PRODUCT
ysr@1580 1722 if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
ysr@1580 1723 _indexedFreeList[size].verify_stats();
ysr@1580 1724 }
ysr@1580 1725 #endif // PRODUCT
duke@435 1726 }
duke@435 1727
duke@435 1728 // Add chunk to end of last block -- if it's the largest
duke@435 1729 // block -- and update BOT and census data. We would
duke@435 1730 // of course have preferred to coalesce it with the
duke@435 1731 // last block, but it's currently less expensive to find the
duke@435 1732 // largest block than it is to find the last.
duke@435 1733 void
duke@435 1734 CompactibleFreeListSpace::addChunkToFreeListsAtEndRecordingStats(
duke@435 1735 HeapWord* chunk, size_t size) {
duke@435 1736 // check that the chunk does lie in this space!
duke@435 1737 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1738 // One of the parallel gc task threads may be here
duke@435 1739 // whilst others are allocating.
duke@435 1740 Mutex* lock = NULL;
duke@435 1741 if (ParallelGCThreads != 0) {
duke@435 1742 lock = &_parDictionaryAllocLock;
duke@435 1743 }
duke@435 1744 FreeChunk* ec;
duke@435 1745 {
duke@435 1746 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
jmasa@3732 1747 ec = dictionary()->find_largest_dict(); // get largest block
duke@435 1748 if (ec != NULL && ec->end() == chunk) {
duke@435 1749 // It's a coterminal block - we can coalesce.
duke@435 1750 size_t old_size = ec->size();
duke@435 1751 coalDeath(old_size);
duke@435 1752 removeChunkFromDictionary(ec);
duke@435 1753 size += old_size;
duke@435 1754 } else {
duke@435 1755 ec = (FreeChunk*)chunk;
duke@435 1756 }
duke@435 1757 }
jmasa@3732 1758 ec->set_size(size);
duke@435 1759 debug_only(ec->mangleFreed(size));
duke@435 1760 if (size < SmallForDictionary) {
duke@435 1761 lock = _indexedFreeListParLocks[size];
duke@435 1762 }
duke@435 1763 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
duke@435 1764 addChunkAndRepairOffsetTable((HeapWord*)ec, size, true);
duke@435 1765 // record the birth under the lock since the recording involves
duke@435 1766 // manipulation of the list on which the chunk lives and
duke@435 1767 // if the chunk is allocated and is the last on the list,
duke@435 1768 // the list can go away.
duke@435 1769 coalBirth(size);
duke@435 1770 }
duke@435 1771
duke@435 1772 void
duke@435 1773 CompactibleFreeListSpace::addChunkToFreeLists(HeapWord* chunk,
duke@435 1774 size_t size) {
duke@435 1775 // check that the chunk does lie in this space!
duke@435 1776 assert(chunk != NULL && is_in_reserved(chunk), "Not in this space!");
duke@435 1777 assert_locked();
duke@435 1778 _bt.verify_single_block(chunk, size);
duke@435 1779
duke@435 1780 FreeChunk* fc = (FreeChunk*) chunk;
jmasa@3732 1781 fc->set_size(size);
duke@435 1782 debug_only(fc->mangleFreed(size));
duke@435 1783 if (size < SmallForDictionary) {
duke@435 1784 returnChunkToFreeList(fc);
duke@435 1785 } else {
duke@435 1786 returnChunkToDictionary(fc);
duke@435 1787 }
duke@435 1788 }
duke@435 1789
duke@435 1790 void
duke@435 1791 CompactibleFreeListSpace::addChunkAndRepairOffsetTable(HeapWord* chunk,
duke@435 1792 size_t size, bool coalesced) {
duke@435 1793 assert_locked();
duke@435 1794 assert(chunk != NULL, "null chunk");
duke@435 1795 if (coalesced) {
duke@435 1796 // repair BOT
duke@435 1797 _bt.single_block(chunk, size);
duke@435 1798 }
duke@435 1799 addChunkToFreeLists(chunk, size);
duke@435 1800 }
duke@435 1801
duke@435 1802 // We _must_ find the purported chunk on our free lists;
duke@435 1803 // we assert if we don't.
duke@435 1804 void
duke@435 1805 CompactibleFreeListSpace::removeFreeChunkFromFreeLists(FreeChunk* fc) {
duke@435 1806 size_t size = fc->size();
duke@435 1807 assert_locked();
duke@435 1808 debug_only(verifyFreeLists());
duke@435 1809 if (size < SmallForDictionary) {
duke@435 1810 removeChunkFromIndexedFreeList(fc);
duke@435 1811 } else {
duke@435 1812 removeChunkFromDictionary(fc);
duke@435 1813 }
duke@435 1814 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1815 debug_only(verifyFreeLists());
duke@435 1816 }
duke@435 1817
duke@435 1818 void
duke@435 1819 CompactibleFreeListSpace::removeChunkFromDictionary(FreeChunk* fc) {
duke@435 1820 size_t size = fc->size();
duke@435 1821 assert_locked();
duke@435 1822 assert(fc != NULL, "null chunk");
duke@435 1823 _bt.verify_single_block((HeapWord*)fc, size);
jmasa@3732 1824 _dictionary->remove_chunk(fc);
duke@435 1825 // adjust _unallocated_block upward, as necessary
duke@435 1826 _bt.allocated((HeapWord*)fc, size);
duke@435 1827 }
duke@435 1828
duke@435 1829 void
duke@435 1830 CompactibleFreeListSpace::removeChunkFromIndexedFreeList(FreeChunk* fc) {
duke@435 1831 assert_locked();
duke@435 1832 size_t size = fc->size();
duke@435 1833 _bt.verify_single_block((HeapWord*)fc, size);
duke@435 1834 NOT_PRODUCT(
duke@435 1835 if (FLSVerifyIndexTable) {
duke@435 1836 verifyIndexedFreeList(size);
duke@435 1837 }
duke@435 1838 )
jmasa@3732 1839 _indexedFreeList[size].remove_chunk(fc);
duke@435 1840 NOT_PRODUCT(
duke@435 1841 if (FLSVerifyIndexTable) {
duke@435 1842 verifyIndexedFreeList(size);
duke@435 1843 }
duke@435 1844 )
duke@435 1845 }
duke@435 1846
duke@435 1847 FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
duke@435 1848 /* A hint is the next larger size that has a surplus.
duke@435 1849 Start search at a size large enough to guarantee that
duke@435 1850 the excess is >= MIN_CHUNK. */
duke@435 1851 size_t start = align_object_size(numWords + MinChunkSize);
duke@435 1852 if (start < IndexSetSize) {
jmasa@3730 1853 FreeList<FreeChunk>* it = _indexedFreeList;
duke@435 1854 size_t hint = _indexedFreeList[start].hint();
duke@435 1855 while (hint < IndexSetSize) {
duke@435 1856 assert(hint % MinObjAlignment == 0, "hint should be aligned");
jmasa@3730 1857 FreeList<FreeChunk> *fl = &_indexedFreeList[hint];
duke@435 1858 if (fl->surplus() > 0 && fl->head() != NULL) {
duke@435 1859 // Found a list with surplus, reset original hint
duke@435 1860 // and split out a free chunk which is returned.
duke@435 1861 _indexedFreeList[start].set_hint(hint);
duke@435 1862 FreeChunk* res = getFromListGreater(fl, numWords);
jmasa@3732 1863 assert(res == NULL || res->is_free(),
duke@435 1864 "Should be returning a free chunk");
duke@435 1865 return res;
duke@435 1866 }
duke@435 1867 hint = fl->hint(); /* keep looking */
duke@435 1868 }
duke@435 1869 /* None found. */
duke@435 1870 it[start].set_hint(IndexSetSize);
duke@435 1871 }
duke@435 1872 return NULL;
duke@435 1873 }
duke@435 1874
duke@435 1875 /* Requires fl->size >= numWords + MinChunkSize */
jmasa@3730 1876 FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList<FreeChunk>* fl,
duke@435 1877 size_t numWords) {
duke@435 1878 FreeChunk *curr = fl->head();
duke@435 1879 size_t oldNumWords = curr->size();
duke@435 1880 assert(numWords >= MinChunkSize, "Word size is too small");
duke@435 1881 assert(curr != NULL, "List is empty");
duke@435 1882 assert(oldNumWords >= numWords + MinChunkSize,
duke@435 1883 "Size of chunks in the list is too small");
duke@435 1884
jmasa@3732 1885 fl->remove_chunk(curr);
duke@435 1886 // recorded indirectly by splitChunkAndReturnRemainder -
duke@435 1887 // smallSplit(oldNumWords, numWords);
duke@435 1888 FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
duke@435 1889 // Does anything have to be done for the remainder in terms of
duke@435 1890 // fixing the card table?
jmasa@3732 1891 assert(new_chunk == NULL || new_chunk->is_free(),
duke@435 1892 "Should be returning a free chunk");
duke@435 1893 return new_chunk;
duke@435 1894 }
duke@435 1895
duke@435 1896 FreeChunk*
duke@435 1897 CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
duke@435 1898 size_t new_size) {
duke@435 1899 assert_locked();
duke@435 1900 size_t size = chunk->size();
duke@435 1901 assert(size > new_size, "Split from a smaller block?");
duke@435 1902 assert(is_aligned(chunk), "alignment problem");
duke@435 1903 assert(size == adjustObjectSize(size), "alignment problem");
duke@435 1904 size_t rem_size = size - new_size;
duke@435 1905 assert(rem_size == adjustObjectSize(rem_size), "alignment problem");
duke@435 1906 assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
duke@435 1907 FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
duke@435 1908 assert(is_aligned(ffc), "alignment problem");
jmasa@3732 1909 ffc->set_size(rem_size);
jmasa@3732 1910 ffc->link_next(NULL);
jmasa@3732 1911 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
duke@435 1912 // Above must occur before BOT is updated below.
duke@435 1913 // adjust block offset table
ysr@2071 1914 OrderAccess::storestore();
jmasa@3732 1915 assert(chunk->is_free() && ffc->is_free(), "Error");
duke@435 1916 _bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
duke@435 1917 if (rem_size < SmallForDictionary) {
duke@435 1918 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
duke@435 1919 if (is_par) _indexedFreeListParLocks[rem_size]->lock();
jmasa@3294 1920 assert(!is_par ||
jmasa@3294 1921 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 1922 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 1923 returnChunkToFreeList(ffc);
duke@435 1924 split(size, rem_size);
duke@435 1925 if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
duke@435 1926 } else {
duke@435 1927 returnChunkToDictionary(ffc);
duke@435 1928 split(size ,rem_size);
duke@435 1929 }
jmasa@3732 1930 chunk->set_size(new_size);
duke@435 1931 return chunk;
duke@435 1932 }
duke@435 1933
duke@435 1934 void
duke@435 1935 CompactibleFreeListSpace::sweep_completed() {
duke@435 1936 // Now that space is probably plentiful, refill linear
duke@435 1937 // allocation blocks as needed.
duke@435 1938 refillLinearAllocBlocksIfNeeded();
duke@435 1939 }
duke@435 1940
duke@435 1941 void
duke@435 1942 CompactibleFreeListSpace::gc_prologue() {
duke@435 1943 assert_locked();
duke@435 1944 if (PrintFLSStatistics != 0) {
duke@435 1945 gclog_or_tty->print("Before GC:\n");
duke@435 1946 reportFreeListStatistics();
duke@435 1947 }
duke@435 1948 refillLinearAllocBlocksIfNeeded();
duke@435 1949 }
duke@435 1950
duke@435 1951 void
duke@435 1952 CompactibleFreeListSpace::gc_epilogue() {
duke@435 1953 assert_locked();
duke@435 1954 if (PrintGCDetails && Verbose && !_adaptive_freelists) {
duke@435 1955 if (_smallLinearAllocBlock._word_size == 0)
duke@435 1956 warning("CompactibleFreeListSpace(epilogue):: Linear allocation failure");
duke@435 1957 }
duke@435 1958 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1959 _promoInfo.stopTrackingPromotions();
duke@435 1960 repairLinearAllocationBlocks();
duke@435 1961 // Print Space's stats
duke@435 1962 if (PrintFLSStatistics != 0) {
duke@435 1963 gclog_or_tty->print("After GC:\n");
duke@435 1964 reportFreeListStatistics();
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968 // Iteration support, mostly delegated from a CMS generation
duke@435 1969
duke@435 1970 void CompactibleFreeListSpace::save_marks() {
ysr@2825 1971 assert(Thread::current()->is_VM_thread(),
ysr@2825 1972 "Global variable should only be set when single-threaded");
ysr@2825 1973 // Mark the "end" of the used space at the time of this call;
duke@435 1974 // note, however, that promoted objects from this point
duke@435 1975 // on are tracked in the _promoInfo below.
ysr@2071 1976 set_saved_mark_word(unallocated_block());
ysr@2825 1977 #ifdef ASSERT
ysr@2825 1978 // Check the sanity of save_marks() etc.
ysr@2825 1979 MemRegion ur = used_region();
ysr@2825 1980 MemRegion urasm = used_region_at_save_marks();
ysr@2825 1981 assert(ur.contains(urasm),
ysr@2825 1982 err_msg(" Error at save_marks(): [" PTR_FORMAT "," PTR_FORMAT ")"
ysr@2825 1983 " should contain [" PTR_FORMAT "," PTR_FORMAT ")",
ysr@2825 1984 ur.start(), ur.end(), urasm.start(), urasm.end()));
ysr@2825 1985 #endif
duke@435 1986 // inform allocator that promotions should be tracked.
duke@435 1987 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency");
duke@435 1988 _promoInfo.startTrackingPromotions();
duke@435 1989 }
duke@435 1990
duke@435 1991 bool CompactibleFreeListSpace::no_allocs_since_save_marks() {
duke@435 1992 assert(_promoInfo.tracking(), "No preceding save_marks?");
ysr@2132 1993 assert(SharedHeap::heap()->n_par_threads() == 0,
ysr@2132 1994 "Shouldn't be called if using parallel gc.");
duke@435 1995 return _promoInfo.noPromotions();
duke@435 1996 }
duke@435 1997
duke@435 1998 #define CFLS_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 1999 \
duke@435 2000 void CompactibleFreeListSpace:: \
duke@435 2001 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 2002 assert(SharedHeap::heap()->n_par_threads() == 0, \
duke@435 2003 "Shouldn't be called (yet) during parallel part of gc."); \
duke@435 2004 _promoInfo.promoted_oops_iterate##nv_suffix(blk); \
duke@435 2005 /* \
duke@435 2006 * This also restores any displaced headers and removes the elements from \
duke@435 2007 * the iteration set as they are processed, so that we have a clean slate \
duke@435 2008 * at the end of the iteration. Note, thus, that if new objects are \
duke@435 2009 * promoted as a result of the iteration they are iterated over as well. \
duke@435 2010 */ \
duke@435 2011 assert(_promoInfo.noPromotions(), "_promoInfo inconsistency"); \
duke@435 2012 }
duke@435 2013
duke@435 2014 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 2015
duke@435 2016
duke@435 2017 void CompactibleFreeListSpace::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 2018 // ugghh... how would one do this efficiently for a non-contiguous space?
duke@435 2019 guarantee(false, "NYI");
duke@435 2020 }
duke@435 2021
ysr@447 2022 bool CompactibleFreeListSpace::linearAllocationWouldFail() const {
duke@435 2023 return _smallLinearAllocBlock._word_size == 0;
duke@435 2024 }
duke@435 2025
duke@435 2026 void CompactibleFreeListSpace::repairLinearAllocationBlocks() {
duke@435 2027 // Fix up linear allocation blocks to look like free blocks
duke@435 2028 repairLinearAllocBlock(&_smallLinearAllocBlock);
duke@435 2029 }
duke@435 2030
duke@435 2031 void CompactibleFreeListSpace::repairLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2032 assert_locked();
duke@435 2033 if (blk->_ptr != NULL) {
duke@435 2034 assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
duke@435 2035 "Minimum block size requirement");
duke@435 2036 FreeChunk* fc = (FreeChunk*)(blk->_ptr);
jmasa@3732 2037 fc->set_size(blk->_word_size);
jmasa@3732 2038 fc->link_prev(NULL); // mark as free
duke@435 2039 fc->dontCoalesce();
jmasa@3732 2040 assert(fc->is_free(), "just marked it free");
duke@435 2041 assert(fc->cantCoalesce(), "just marked it uncoalescable");
duke@435 2042 }
duke@435 2043 }
duke@435 2044
duke@435 2045 void CompactibleFreeListSpace::refillLinearAllocBlocksIfNeeded() {
duke@435 2046 assert_locked();
duke@435 2047 if (_smallLinearAllocBlock._ptr == NULL) {
duke@435 2048 assert(_smallLinearAllocBlock._word_size == 0,
duke@435 2049 "Size of linAB should be zero if the ptr is NULL");
duke@435 2050 // Reset the linAB refill and allocation size limit.
duke@435 2051 _smallLinearAllocBlock.set(0, 0, 1024*SmallForLinearAlloc, SmallForLinearAlloc);
duke@435 2052 }
duke@435 2053 refillLinearAllocBlockIfNeeded(&_smallLinearAllocBlock);
duke@435 2054 }
duke@435 2055
duke@435 2056 void
duke@435 2057 CompactibleFreeListSpace::refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk) {
duke@435 2058 assert_locked();
duke@435 2059 assert((blk->_ptr == NULL && blk->_word_size == 0) ||
duke@435 2060 (blk->_ptr != NULL && blk->_word_size >= MinChunkSize),
duke@435 2061 "blk invariant");
duke@435 2062 if (blk->_ptr == NULL) {
duke@435 2063 refillLinearAllocBlock(blk);
duke@435 2064 }
duke@435 2065 if (PrintMiscellaneous && Verbose) {
duke@435 2066 if (blk->_word_size == 0) {
duke@435 2067 warning("CompactibleFreeListSpace(prologue):: Linear allocation failure");
duke@435 2068 }
duke@435 2069 }
duke@435 2070 }
duke@435 2071
duke@435 2072 void
duke@435 2073 CompactibleFreeListSpace::refillLinearAllocBlock(LinearAllocBlock* blk) {
duke@435 2074 assert_locked();
duke@435 2075 assert(blk->_word_size == 0 && blk->_ptr == NULL,
duke@435 2076 "linear allocation block should be empty");
duke@435 2077 FreeChunk* fc;
duke@435 2078 if (blk->_refillSize < SmallForDictionary &&
duke@435 2079 (fc = getChunkFromIndexedFreeList(blk->_refillSize)) != NULL) {
duke@435 2080 // A linAB's strategy might be to use small sizes to reduce
duke@435 2081 // fragmentation but still get the benefits of allocation from a
duke@435 2082 // linAB.
duke@435 2083 } else {
duke@435 2084 fc = getChunkFromDictionary(blk->_refillSize);
duke@435 2085 }
duke@435 2086 if (fc != NULL) {
duke@435 2087 blk->_ptr = (HeapWord*)fc;
duke@435 2088 blk->_word_size = fc->size();
duke@435 2089 fc->dontCoalesce(); // to prevent sweeper from sweeping us up
duke@435 2090 }
duke@435 2091 }
duke@435 2092
ysr@447 2093 // Support for concurrent collection policy decisions.
ysr@447 2094 bool CompactibleFreeListSpace::should_concurrent_collect() const {
ysr@447 2095 // In the future we might want to add in frgamentation stats --
ysr@447 2096 // including erosion of the "mountain" into this decision as well.
ysr@447 2097 return !adaptive_freelists() && linearAllocationWouldFail();
ysr@447 2098 }
ysr@447 2099
duke@435 2100 // Support for compaction
duke@435 2101
duke@435 2102 void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 2103 SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
duke@435 2104 // prepare_for_compaction() uses the space between live objects
duke@435 2105 // so that later phase can skip dead space quickly. So verification
duke@435 2106 // of the free lists doesn't work after.
duke@435 2107 }
duke@435 2108
duke@435 2109 #define obj_size(q) adjustObjectSize(oop(q)->size())
duke@435 2110 #define adjust_obj_size(s) adjustObjectSize(s)
duke@435 2111
duke@435 2112 void CompactibleFreeListSpace::adjust_pointers() {
duke@435 2113 // In other versions of adjust_pointers(), a bail out
duke@435 2114 // based on the amount of live data in the generation
duke@435 2115 // (i.e., if 0, bail out) may be used.
duke@435 2116 // Cannot test used() == 0 here because the free lists have already
duke@435 2117 // been mangled by the compaction.
duke@435 2118
duke@435 2119 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 2120 // See note about verification in prepare_for_compaction().
duke@435 2121 }
duke@435 2122
duke@435 2123 void CompactibleFreeListSpace::compact() {
duke@435 2124 SCAN_AND_COMPACT(obj_size);
duke@435 2125 }
duke@435 2126
duke@435 2127 // fragmentation_metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]
duke@435 2128 // where fbs is free block sizes
duke@435 2129 double CompactibleFreeListSpace::flsFrag() const {
duke@435 2130 size_t itabFree = totalSizeInIndexedFreeLists();
duke@435 2131 double frag = 0.0;
duke@435 2132 size_t i;
duke@435 2133
duke@435 2134 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
duke@435 2135 double sz = i;
duke@435 2136 frag += _indexedFreeList[i].count() * (sz * sz);
duke@435 2137 }
duke@435 2138
duke@435 2139 double totFree = itabFree +
jmasa@3732 2140 _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
duke@435 2141 if (totFree > 0) {
duke@435 2142 frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
duke@435 2143 (totFree * totFree));
duke@435 2144 frag = (double)1.0 - frag;
duke@435 2145 } else {
duke@435 2146 assert(frag == 0.0, "Follows from totFree == 0");
duke@435 2147 }
duke@435 2148 return frag;
duke@435 2149 }
duke@435 2150
duke@435 2151 void CompactibleFreeListSpace::beginSweepFLCensus(
duke@435 2152 float inter_sweep_current,
ysr@1580 2153 float inter_sweep_estimate,
ysr@1580 2154 float intra_sweep_estimate) {
duke@435 2155 assert_locked();
duke@435 2156 size_t i;
duke@435 2157 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3730 2158 FreeList<FreeChunk>* fl = &_indexedFreeList[i];
ysr@1580 2159 if (PrintFLSStatistics > 1) {
ysr@1580 2160 gclog_or_tty->print("size[%d] : ", i);
ysr@1580 2161 }
ysr@1580 2162 fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
jmasa@3732 2163 fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
jmasa@3732 2164 fl->set_before_sweep(fl->count());
jmasa@3732 2165 fl->set_bfr_surp(fl->surplus());
duke@435 2166 }
jmasa@3732 2167 _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
duke@435 2168 inter_sweep_current,
ysr@1580 2169 inter_sweep_estimate,
ysr@1580 2170 intra_sweep_estimate);
duke@435 2171 }
duke@435 2172
duke@435 2173 void CompactibleFreeListSpace::setFLSurplus() {
duke@435 2174 assert_locked();
duke@435 2175 size_t i;
duke@435 2176 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3730 2177 FreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2178 fl->set_surplus(fl->count() -
ysr@1580 2179 (ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
duke@435 2180 }
duke@435 2181 }
duke@435 2182
duke@435 2183 void CompactibleFreeListSpace::setFLHints() {
duke@435 2184 assert_locked();
duke@435 2185 size_t i;
duke@435 2186 size_t h = IndexSetSize;
duke@435 2187 for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
jmasa@3730 2188 FreeList<FreeChunk> *fl = &_indexedFreeList[i];
duke@435 2189 fl->set_hint(h);
duke@435 2190 if (fl->surplus() > 0) {
duke@435 2191 h = i;
duke@435 2192 }
duke@435 2193 }
duke@435 2194 }
duke@435 2195
duke@435 2196 void CompactibleFreeListSpace::clearFLCensus() {
duke@435 2197 assert_locked();
ysr@3264 2198 size_t i;
duke@435 2199 for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3730 2200 FreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2201 fl->set_prev_sweep(fl->count());
jmasa@3732 2202 fl->set_coal_births(0);
jmasa@3732 2203 fl->set_coal_deaths(0);
jmasa@3732 2204 fl->set_split_births(0);
jmasa@3732 2205 fl->set_split_deaths(0);
duke@435 2206 }
duke@435 2207 }
duke@435 2208
ysr@447 2209 void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
ysr@1580 2210 if (PrintFLSStatistics > 0) {
jmasa@3732 2211 HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
ysr@1580 2212 gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
ysr@1580 2213 largestAddr);
ysr@1580 2214 }
duke@435 2215 setFLSurplus();
duke@435 2216 setFLHints();
duke@435 2217 if (PrintGC && PrintFLSCensus > 0) {
ysr@447 2218 printFLCensus(sweep_count);
duke@435 2219 }
duke@435 2220 clearFLCensus();
duke@435 2221 assert_locked();
jmasa@3732 2222 _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
duke@435 2223 }
duke@435 2224
duke@435 2225 bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
duke@435 2226 if (size < SmallForDictionary) {
jmasa@3730 2227 FreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2228 return (fl->coal_desired() < 0) ||
jmasa@3732 2229 ((int)fl->count() > fl->coal_desired());
duke@435 2230 } else {
jmasa@3732 2231 return dictionary()->coal_dict_over_populated(size);
duke@435 2232 }
duke@435 2233 }
duke@435 2234
duke@435 2235 void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
duke@435 2236 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@3730 2237 FreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2238 fl->increment_coal_births();
duke@435 2239 fl->increment_surplus();
duke@435 2240 }
duke@435 2241
duke@435 2242 void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
duke@435 2243 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@3730 2244 FreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2245 fl->increment_coal_deaths();
duke@435 2246 fl->decrement_surplus();
duke@435 2247 }
duke@435 2248
duke@435 2249 void CompactibleFreeListSpace::coalBirth(size_t size) {
duke@435 2250 if (size < SmallForDictionary) {
duke@435 2251 smallCoalBirth(size);
duke@435 2252 } else {
jmasa@3732 2253 dictionary()->dict_census_udpate(size,
duke@435 2254 false /* split */,
duke@435 2255 true /* birth */);
duke@435 2256 }
duke@435 2257 }
duke@435 2258
duke@435 2259 void CompactibleFreeListSpace::coalDeath(size_t size) {
duke@435 2260 if(size < SmallForDictionary) {
duke@435 2261 smallCoalDeath(size);
duke@435 2262 } else {
jmasa@3732 2263 dictionary()->dict_census_udpate(size,
duke@435 2264 false /* split */,
duke@435 2265 false /* birth */);
duke@435 2266 }
duke@435 2267 }
duke@435 2268
duke@435 2269 void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
duke@435 2270 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@3730 2271 FreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2272 fl->increment_split_births();
duke@435 2273 fl->increment_surplus();
duke@435 2274 }
duke@435 2275
duke@435 2276 void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
duke@435 2277 assert(size < SmallForDictionary, "Size too large for indexed list");
jmasa@3730 2278 FreeList<FreeChunk> *fl = &_indexedFreeList[size];
jmasa@3732 2279 fl->increment_split_deaths();
duke@435 2280 fl->decrement_surplus();
duke@435 2281 }
duke@435 2282
jmasa@3732 2283 void CompactibleFreeListSpace::split_birth(size_t size) {
duke@435 2284 if (size < SmallForDictionary) {
duke@435 2285 smallSplitBirth(size);
duke@435 2286 } else {
jmasa@3732 2287 dictionary()->dict_census_udpate(size,
duke@435 2288 true /* split */,
duke@435 2289 true /* birth */);
duke@435 2290 }
duke@435 2291 }
duke@435 2292
duke@435 2293 void CompactibleFreeListSpace::splitDeath(size_t size) {
duke@435 2294 if (size < SmallForDictionary) {
duke@435 2295 smallSplitDeath(size);
duke@435 2296 } else {
jmasa@3732 2297 dictionary()->dict_census_udpate(size,
duke@435 2298 true /* split */,
duke@435 2299 false /* birth */);
duke@435 2300 }
duke@435 2301 }
duke@435 2302
duke@435 2303 void CompactibleFreeListSpace::split(size_t from, size_t to1) {
duke@435 2304 size_t to2 = from - to1;
duke@435 2305 splitDeath(from);
jmasa@3732 2306 split_birth(to1);
jmasa@3732 2307 split_birth(to2);
duke@435 2308 }
duke@435 2309
duke@435 2310 void CompactibleFreeListSpace::print() const {
ysr@2294 2311 print_on(tty);
duke@435 2312 }
duke@435 2313
duke@435 2314 void CompactibleFreeListSpace::prepare_for_verify() {
duke@435 2315 assert_locked();
duke@435 2316 repairLinearAllocationBlocks();
duke@435 2317 // Verify that the SpoolBlocks look like free blocks of
duke@435 2318 // appropriate sizes... To be done ...
duke@435 2319 }
duke@435 2320
duke@435 2321 class VerifyAllBlksClosure: public BlkClosure {
coleenp@548 2322 private:
duke@435 2323 const CompactibleFreeListSpace* _sp;
duke@435 2324 const MemRegion _span;
ysr@2071 2325 HeapWord* _last_addr;
ysr@2071 2326 size_t _last_size;
ysr@2071 2327 bool _last_was_obj;
ysr@2071 2328 bool _last_was_live;
duke@435 2329
duke@435 2330 public:
duke@435 2331 VerifyAllBlksClosure(const CompactibleFreeListSpace* sp,
ysr@2071 2332 MemRegion span) : _sp(sp), _span(span),
ysr@2071 2333 _last_addr(NULL), _last_size(0),
ysr@2071 2334 _last_was_obj(false), _last_was_live(false) { }
duke@435 2335
coleenp@548 2336 virtual size_t do_blk(HeapWord* addr) {
duke@435 2337 size_t res;
ysr@2071 2338 bool was_obj = false;
ysr@2071 2339 bool was_live = false;
duke@435 2340 if (_sp->block_is_obj(addr)) {
ysr@2071 2341 was_obj = true;
duke@435 2342 oop p = oop(addr);
duke@435 2343 guarantee(p->is_oop(), "Should be an oop");
duke@435 2344 res = _sp->adjustObjectSize(p->size());
duke@435 2345 if (_sp->obj_is_alive(addr)) {
ysr@2071 2346 was_live = true;
duke@435 2347 p->verify();
duke@435 2348 }
duke@435 2349 } else {
duke@435 2350 FreeChunk* fc = (FreeChunk*)addr;
duke@435 2351 res = fc->size();
duke@435 2352 if (FLSVerifyLists && !fc->cantCoalesce()) {
jmasa@3732 2353 guarantee(_sp->verify_chunk_in_free_list(fc),
duke@435 2354 "Chunk should be on a free list");
duke@435 2355 }
duke@435 2356 }
ysr@2071 2357 if (res == 0) {
ysr@2071 2358 gclog_or_tty->print_cr("Livelock: no rank reduction!");
ysr@2071 2359 gclog_or_tty->print_cr(
ysr@2071 2360 " Current: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n"
ysr@2071 2361 " Previous: addr = " PTR_FORMAT ", size = " SIZE_FORMAT ", obj = %s, live = %s \n",
ysr@2071 2362 addr, res, was_obj ?"true":"false", was_live ?"true":"false",
ysr@2071 2363 _last_addr, _last_size, _last_was_obj?"true":"false", _last_was_live?"true":"false");
ysr@2071 2364 _sp->print_on(gclog_or_tty);
ysr@2071 2365 guarantee(false, "Seppuku!");
ysr@2071 2366 }
ysr@2071 2367 _last_addr = addr;
ysr@2071 2368 _last_size = res;
ysr@2071 2369 _last_was_obj = was_obj;
ysr@2071 2370 _last_was_live = was_live;
duke@435 2371 return res;
duke@435 2372 }
duke@435 2373 };
duke@435 2374
duke@435 2375 class VerifyAllOopsClosure: public OopClosure {
coleenp@548 2376 private:
duke@435 2377 const CMSCollector* _collector;
duke@435 2378 const CompactibleFreeListSpace* _sp;
duke@435 2379 const MemRegion _span;
duke@435 2380 const bool _past_remark;
duke@435 2381 const CMSBitMap* _bit_map;
duke@435 2382
coleenp@548 2383 protected:
coleenp@548 2384 void do_oop(void* p, oop obj) {
coleenp@548 2385 if (_span.contains(obj)) { // the interior oop points into CMS heap
coleenp@548 2386 if (!_span.contains(p)) { // reference from outside CMS heap
coleenp@548 2387 // Should be a valid object; the first disjunct below allows
coleenp@548 2388 // us to sidestep an assertion in block_is_obj() that insists
coleenp@548 2389 // that p be in _sp. Note that several generations (and spaces)
coleenp@548 2390 // are spanned by _span (CMS heap) above.
coleenp@548 2391 guarantee(!_sp->is_in_reserved(obj) ||
coleenp@548 2392 _sp->block_is_obj((HeapWord*)obj),
coleenp@548 2393 "Should be an object");
coleenp@548 2394 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2395 obj->verify();
coleenp@548 2396 if (_past_remark) {
coleenp@548 2397 // Remark has been completed, the object should be marked
coleenp@548 2398 _bit_map->isMarked((HeapWord*)obj);
coleenp@548 2399 }
coleenp@548 2400 } else { // reference within CMS heap
coleenp@548 2401 if (_past_remark) {
coleenp@548 2402 // Remark has been completed -- so the referent should have
coleenp@548 2403 // been marked, if referring object is.
coleenp@548 2404 if (_bit_map->isMarked(_collector->block_start(p))) {
coleenp@548 2405 guarantee(_bit_map->isMarked((HeapWord*)obj), "Marking error?");
coleenp@548 2406 }
coleenp@548 2407 }
coleenp@548 2408 }
coleenp@548 2409 } else if (_sp->is_in_reserved(p)) {
coleenp@548 2410 // the reference is from FLS, and points out of FLS
coleenp@548 2411 guarantee(obj->is_oop(), "Should be an oop");
coleenp@548 2412 obj->verify();
coleenp@548 2413 }
coleenp@548 2414 }
coleenp@548 2415
coleenp@548 2416 template <class T> void do_oop_work(T* p) {
coleenp@548 2417 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 2418 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 2419 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 2420 do_oop(p, obj);
coleenp@548 2421 }
coleenp@548 2422 }
coleenp@548 2423
duke@435 2424 public:
duke@435 2425 VerifyAllOopsClosure(const CMSCollector* collector,
duke@435 2426 const CompactibleFreeListSpace* sp, MemRegion span,
duke@435 2427 bool past_remark, CMSBitMap* bit_map) :
coleenp@4037 2428 _collector(collector), _sp(sp), _span(span),
duke@435 2429 _past_remark(past_remark), _bit_map(bit_map) { }
duke@435 2430
coleenp@548 2431 virtual void do_oop(oop* p) { VerifyAllOopsClosure::do_oop_work(p); }
coleenp@548 2432 virtual void do_oop(narrowOop* p) { VerifyAllOopsClosure::do_oop_work(p); }
duke@435 2433 };
duke@435 2434
brutisso@3711 2435 void CompactibleFreeListSpace::verify() const {
duke@435 2436 assert_lock_strong(&_freelistLock);
duke@435 2437 verify_objects_initialized();
duke@435 2438 MemRegion span = _collector->_span;
duke@435 2439 bool past_remark = (_collector->abstract_state() ==
duke@435 2440 CMSCollector::Sweeping);
duke@435 2441
duke@435 2442 ResourceMark rm;
duke@435 2443 HandleMark hm;
duke@435 2444
duke@435 2445 // Check integrity of CFL data structures
duke@435 2446 _promoInfo.verify();
duke@435 2447 _dictionary->verify();
duke@435 2448 if (FLSVerifyIndexTable) {
duke@435 2449 verifyIndexedFreeLists();
duke@435 2450 }
duke@435 2451 // Check integrity of all objects and free blocks in space
duke@435 2452 {
duke@435 2453 VerifyAllBlksClosure cl(this, span);
duke@435 2454 ((CompactibleFreeListSpace*)this)->blk_iterate(&cl); // cast off const
duke@435 2455 }
duke@435 2456 // Check that all references in the heap to FLS
duke@435 2457 // are to valid objects in FLS or that references in
duke@435 2458 // FLS are to valid objects elsewhere in the heap
duke@435 2459 if (FLSVerifyAllHeapReferences)
duke@435 2460 {
duke@435 2461 VerifyAllOopsClosure cl(_collector, this, span, past_remark,
duke@435 2462 _collector->markBitMap());
duke@435 2463 CollectedHeap* ch = Universe::heap();
coleenp@4037 2464
coleenp@4037 2465 // Iterate over all oops in the heap. Uses the _no_header version
coleenp@4037 2466 // since we are not interested in following the klass pointers.
coleenp@4037 2467 ch->oop_iterate_no_header(&cl);
duke@435 2468 }
duke@435 2469
duke@435 2470 if (VerifyObjectStartArray) {
duke@435 2471 // Verify the block offset table
duke@435 2472 _bt.verify();
duke@435 2473 }
duke@435 2474 }
duke@435 2475
duke@435 2476 #ifndef PRODUCT
duke@435 2477 void CompactibleFreeListSpace::verifyFreeLists() const {
duke@435 2478 if (FLSVerifyLists) {
duke@435 2479 _dictionary->verify();
duke@435 2480 verifyIndexedFreeLists();
duke@435 2481 } else {
duke@435 2482 if (FLSVerifyDictionary) {
duke@435 2483 _dictionary->verify();
duke@435 2484 }
duke@435 2485 if (FLSVerifyIndexTable) {
duke@435 2486 verifyIndexedFreeLists();
duke@435 2487 }
duke@435 2488 }
duke@435 2489 }
duke@435 2490 #endif
duke@435 2491
duke@435 2492 void CompactibleFreeListSpace::verifyIndexedFreeLists() const {
duke@435 2493 size_t i = 0;
ysr@3264 2494 for (; i < IndexSetStart; i++) {
duke@435 2495 guarantee(_indexedFreeList[i].head() == NULL, "should be NULL");
duke@435 2496 }
duke@435 2497 for (; i < IndexSetSize; i++) {
duke@435 2498 verifyIndexedFreeList(i);
duke@435 2499 }
duke@435 2500 }
duke@435 2501
duke@435 2502 void CompactibleFreeListSpace::verifyIndexedFreeList(size_t size) const {
ysr@1580 2503 FreeChunk* fc = _indexedFreeList[size].head();
ysr@1580 2504 FreeChunk* tail = _indexedFreeList[size].tail();
ysr@1580 2505 size_t num = _indexedFreeList[size].count();
ysr@1580 2506 size_t n = 0;
ysr@3264 2507 guarantee(((size >= IndexSetStart) && (size % IndexSetStride == 0)) || fc == NULL,
ysr@3220 2508 "Slot should have been empty");
ysr@1580 2509 for (; fc != NULL; fc = fc->next(), n++) {
duke@435 2510 guarantee(fc->size() == size, "Size inconsistency");
jmasa@3732 2511 guarantee(fc->is_free(), "!free?");
duke@435 2512 guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
ysr@1580 2513 guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
duke@435 2514 }
ysr@1580 2515 guarantee(n == num, "Incorrect count");
duke@435 2516 }
duke@435 2517
duke@435 2518 #ifndef PRODUCT
ysr@3220 2519 void CompactibleFreeListSpace::check_free_list_consistency() const {
jmasa@3732 2520 assert(_dictionary->min_size() <= IndexSetSize,
duke@435 2521 "Some sizes can't be allocated without recourse to"
duke@435 2522 " linear allocation buffers");
jmasa@3730 2523 assert(BinaryTreeDictionary<FreeChunk>::min_tree_chunk_size*HeapWordSize == sizeof(TreeChunk<FreeChunk>),
duke@435 2524 "else MIN_TREE_CHUNK_SIZE is wrong");
brutisso@3807 2525 assert(IndexSetStart != 0, "IndexSetStart not initialized");
brutisso@3807 2526 assert(IndexSetStride != 0, "IndexSetStride not initialized");
duke@435 2527 }
duke@435 2528 #endif
duke@435 2529
ysr@447 2530 void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
duke@435 2531 assert_lock_strong(&_freelistLock);
jmasa@3730 2532 FreeList<FreeChunk> total;
ysr@447 2533 gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
jmasa@3730 2534 FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
jmasa@3732 2535 size_t total_free = 0;
duke@435 2536 for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
jmasa@3730 2537 const FreeList<FreeChunk> *fl = &_indexedFreeList[i];
jmasa@3732 2538 total_free += fl->count() * fl->size();
ysr@447 2539 if (i % (40*IndexSetStride) == 0) {
jmasa@3730 2540 FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
ysr@447 2541 }
ysr@447 2542 fl->print_on(gclog_or_tty);
jmasa@3732 2543 total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
ysr@447 2544 total.set_surplus( total.surplus() + fl->surplus() );
ysr@447 2545 total.set_desired( total.desired() + fl->desired() );
jmasa@3732 2546 total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
jmasa@3732 2547 total.set_before_sweep(total.before_sweep() + fl->before_sweep());
ysr@447 2548 total.set_count( total.count() + fl->count() );
jmasa@3732 2549 total.set_coal_births( total.coal_births() + fl->coal_births() );
jmasa@3732 2550 total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
jmasa@3732 2551 total.set_split_births(total.split_births() + fl->split_births());
jmasa@3732 2552 total.set_split_deaths(total.split_deaths() + fl->split_deaths());
duke@435 2553 }
ysr@447 2554 total.print_on(gclog_or_tty, "TOTAL");
ysr@447 2555 gclog_or_tty->print_cr("Total free in indexed lists "
jmasa@3732 2556 SIZE_FORMAT " words", total_free);
duke@435 2557 gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
jmasa@3732 2558 (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
jmasa@3732 2559 (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
ysr@447 2560 (double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
jmasa@3732 2561 _dictionary->print_dict_census();
duke@435 2562 }
duke@435 2563
ysr@1580 2564 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2565 // CFLS_LAB
ysr@1580 2566 ///////////////////////////////////////////////////////////////////////////
ysr@1580 2567
ysr@1580 2568 #define VECTOR_257(x) \
ysr@1580 2569 /* 1 2 3 4 5 6 7 8 9 1x 11 12 13 14 15 16 17 18 19 2x 21 22 23 24 25 26 27 28 29 3x 31 32 */ \
ysr@1580 2570 { x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2571 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2572 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2573 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2574 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2575 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2576 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2577 x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, \
ysr@1580 2578 x }
ysr@1580 2579
ysr@1580 2580 // Initialize with default setting of CMSParPromoteBlocksToClaim, _not_
ysr@1580 2581 // OldPLABSize, whose static default is different; if overridden at the
ysr@1580 2582 // command-line, this will get reinitialized via a call to
ysr@1580 2583 // modify_initialization() below.
ysr@1580 2584 AdaptiveWeightedAverage CFLS_LAB::_blocks_to_claim[] =
ysr@1580 2585 VECTOR_257(AdaptiveWeightedAverage(OldPLABWeight, (float)CMSParPromoteBlocksToClaim));
ysr@1580 2586 size_t CFLS_LAB::_global_num_blocks[] = VECTOR_257(0);
jmasa@3357 2587 uint CFLS_LAB::_global_num_workers[] = VECTOR_257(0);
duke@435 2588
duke@435 2589 CFLS_LAB::CFLS_LAB(CompactibleFreeListSpace* cfls) :
duke@435 2590 _cfls(cfls)
duke@435 2591 {
ysr@1580 2592 assert(CompactibleFreeListSpace::IndexSetSize == 257, "Modify VECTOR_257() macro above");
duke@435 2593 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2594 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2595 i += CompactibleFreeListSpace::IndexSetStride) {
duke@435 2596 _indexedFreeList[i].set_size(i);
ysr@1580 2597 _num_blocks[i] = 0;
ysr@1580 2598 }
ysr@1580 2599 }
ysr@1580 2600
ysr@1580 2601 static bool _CFLS_LAB_modified = false;
ysr@1580 2602
ysr@1580 2603 void CFLS_LAB::modify_initialization(size_t n, unsigned wt) {
ysr@1580 2604 assert(!_CFLS_LAB_modified, "Call only once");
ysr@1580 2605 _CFLS_LAB_modified = true;
ysr@1580 2606 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2607 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2608 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2609 _blocks_to_claim[i].modify(n, wt, true /* force */);
duke@435 2610 }
duke@435 2611 }
duke@435 2612
duke@435 2613 HeapWord* CFLS_LAB::alloc(size_t word_sz) {
duke@435 2614 FreeChunk* res;
ysr@2132 2615 assert(word_sz == _cfls->adjustObjectSize(word_sz), "Error");
duke@435 2616 if (word_sz >= CompactibleFreeListSpace::IndexSetSize) {
duke@435 2617 // This locking manages sync with other large object allocations.
duke@435 2618 MutexLockerEx x(_cfls->parDictionaryAllocLock(),
duke@435 2619 Mutex::_no_safepoint_check_flag);
duke@435 2620 res = _cfls->getChunkFromDictionaryExact(word_sz);
duke@435 2621 if (res == NULL) return NULL;
duke@435 2622 } else {
jmasa@3730 2623 FreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
duke@435 2624 if (fl->count() == 0) {
duke@435 2625 // Attempt to refill this local free list.
ysr@1580 2626 get_from_global_pool(word_sz, fl);
duke@435 2627 // If it didn't work, give up.
duke@435 2628 if (fl->count() == 0) return NULL;
duke@435 2629 }
jmasa@3732 2630 res = fl->get_chunk_at_head();
duke@435 2631 assert(res != NULL, "Why was count non-zero?");
duke@435 2632 }
duke@435 2633 res->markNotFree();
jmasa@3732 2634 assert(!res->is_free(), "shouldn't be marked free");
coleenp@622 2635 assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
duke@435 2636 // mangle a just allocated object with a distinct pattern.
duke@435 2637 debug_only(res->mangleAllocated(word_sz));
duke@435 2638 return (HeapWord*)res;
duke@435 2639 }
duke@435 2640
ysr@1580 2641 // Get a chunk of blocks of the right size and update related
ysr@1580 2642 // book-keeping stats
jmasa@3730 2643 void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl) {
ysr@1580 2644 // Get the #blocks we want to claim
ysr@1580 2645 size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
ysr@1580 2646 assert(n_blks > 0, "Error");
ysr@1580 2647 assert(ResizePLAB || n_blks == OldPLABSize, "Error");
ysr@1580 2648 // In some cases, when the application has a phase change,
ysr@1580 2649 // there may be a sudden and sharp shift in the object survival
ysr@1580 2650 // profile, and updating the counts at the end of a scavenge
ysr@1580 2651 // may not be quick enough, giving rise to large scavenge pauses
ysr@1580 2652 // during these phase changes. It is beneficial to detect such
ysr@1580 2653 // changes on-the-fly during a scavenge and avoid such a phase-change
ysr@1580 2654 // pothole. The following code is a heuristic attempt to do that.
ysr@1580 2655 // It is protected by a product flag until we have gained
ysr@1580 2656 // enough experience with this heuristic and fine-tuned its behaviour.
ysr@1580 2657 // WARNING: This might increase fragmentation if we overreact to
ysr@1580 2658 // small spikes, so some kind of historical smoothing based on
ysr@1580 2659 // previous experience with the greater reactivity might be useful.
ysr@1580 2660 // Lacking sufficient experience, CMSOldPLABResizeQuicker is disabled by
ysr@1580 2661 // default.
ysr@1580 2662 if (ResizeOldPLAB && CMSOldPLABResizeQuicker) {
ysr@1580 2663 size_t multiple = _num_blocks[word_sz]/(CMSOldPLABToleranceFactor*CMSOldPLABNumRefills*n_blks);
ysr@1580 2664 n_blks += CMSOldPLABReactivityFactor*multiple*n_blks;
ysr@1580 2665 n_blks = MIN2(n_blks, CMSOldPLABMax);
ysr@1580 2666 }
ysr@1580 2667 assert(n_blks > 0, "Error");
ysr@1580 2668 _cfls->par_get_chunk_of_blocks(word_sz, n_blks, fl);
ysr@1580 2669 // Update stats table entry for this block size
ysr@1580 2670 _num_blocks[word_sz] += fl->count();
ysr@1580 2671 }
ysr@1580 2672
ysr@1580 2673 void CFLS_LAB::compute_desired_plab_size() {
ysr@1580 2674 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
duke@435 2675 i < CompactibleFreeListSpace::IndexSetSize;
duke@435 2676 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2677 assert((_global_num_workers[i] == 0) == (_global_num_blocks[i] == 0),
ysr@1580 2678 "Counter inconsistency");
ysr@1580 2679 if (_global_num_workers[i] > 0) {
ysr@1580 2680 // Need to smooth wrt historical average
ysr@1580 2681 if (ResizeOldPLAB) {
ysr@1580 2682 _blocks_to_claim[i].sample(
ysr@1580 2683 MAX2((size_t)CMSOldPLABMin,
ysr@1580 2684 MIN2((size_t)CMSOldPLABMax,
ysr@1580 2685 _global_num_blocks[i]/(_global_num_workers[i]*CMSOldPLABNumRefills))));
ysr@1580 2686 }
ysr@1580 2687 // Reset counters for next round
ysr@1580 2688 _global_num_workers[i] = 0;
ysr@1580 2689 _global_num_blocks[i] = 0;
ysr@1580 2690 if (PrintOldPLAB) {
ysr@1580 2691 gclog_or_tty->print_cr("[%d]: %d", i, (size_t)_blocks_to_claim[i].average());
ysr@1580 2692 }
duke@435 2693 }
duke@435 2694 }
duke@435 2695 }
duke@435 2696
ysr@3220 2697 // If this is changed in the future to allow parallel
ysr@3220 2698 // access, one would need to take the FL locks and,
ysr@3220 2699 // depending on how it is used, stagger access from
ysr@3220 2700 // parallel threads to reduce contention.
ysr@1580 2701 void CFLS_LAB::retire(int tid) {
ysr@1580 2702 // We run this single threaded with the world stopped;
ysr@1580 2703 // so no need for locks and such.
ysr@1580 2704 NOT_PRODUCT(Thread* t = Thread::current();)
ysr@1580 2705 assert(Thread::current()->is_VM_thread(), "Error");
ysr@1580 2706 for (size_t i = CompactibleFreeListSpace::IndexSetStart;
ysr@1580 2707 i < CompactibleFreeListSpace::IndexSetSize;
ysr@1580 2708 i += CompactibleFreeListSpace::IndexSetStride) {
ysr@1580 2709 assert(_num_blocks[i] >= (size_t)_indexedFreeList[i].count(),
ysr@1580 2710 "Can't retire more than what we obtained");
ysr@1580 2711 if (_num_blocks[i] > 0) {
ysr@1580 2712 size_t num_retire = _indexedFreeList[i].count();
ysr@1580 2713 assert(_num_blocks[i] > num_retire, "Should have used at least one");
ysr@1580 2714 {
ysr@3220 2715 // MutexLockerEx x(_cfls->_indexedFreeListParLocks[i],
ysr@3220 2716 // Mutex::_no_safepoint_check_flag);
ysr@3220 2717
ysr@1580 2718 // Update globals stats for num_blocks used
ysr@1580 2719 _global_num_blocks[i] += (_num_blocks[i] - num_retire);
ysr@1580 2720 _global_num_workers[i]++;
jmasa@3357 2721 assert(_global_num_workers[i] <= ParallelGCThreads, "Too big");
ysr@1580 2722 if (num_retire > 0) {
ysr@1580 2723 _cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
ysr@1580 2724 // Reset this list.
jmasa@3730 2725 _indexedFreeList[i] = FreeList<FreeChunk>();
ysr@1580 2726 _indexedFreeList[i].set_size(i);
ysr@1580 2727 }
ysr@1580 2728 }
ysr@1580 2729 if (PrintOldPLAB) {
ysr@1580 2730 gclog_or_tty->print_cr("%d[%d]: %d/%d/%d",
ysr@1580 2731 tid, i, num_retire, _num_blocks[i], (size_t)_blocks_to_claim[i].average());
ysr@1580 2732 }
ysr@1580 2733 // Reset stats for next round
ysr@1580 2734 _num_blocks[i] = 0;
ysr@1580 2735 }
ysr@1580 2736 }
ysr@1580 2737 }
ysr@1580 2738
jmasa@3730 2739 void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl) {
duke@435 2740 assert(fl->count() == 0, "Precondition.");
duke@435 2741 assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
duke@435 2742 "Precondition");
duke@435 2743
ysr@1580 2744 // We'll try all multiples of word_sz in the indexed set, starting with
ysr@1580 2745 // word_sz itself and, if CMSSplitIndexedFreeListBlocks, try larger multiples,
ysr@1580 2746 // then try getting a big chunk and splitting it.
ysr@1580 2747 {
ysr@1580 2748 bool found;
ysr@1580 2749 int k;
ysr@1580 2750 size_t cur_sz;
ysr@1580 2751 for (k = 1, cur_sz = k * word_sz, found = false;
ysr@1580 2752 (cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
ysr@1580 2753 (CMSSplitIndexedFreeListBlocks || k <= 1);
ysr@1580 2754 k++, cur_sz = k * word_sz) {
jmasa@3730 2755 FreeList<FreeChunk> fl_for_cur_sz; // Empty.
ysr@1580 2756 fl_for_cur_sz.set_size(cur_sz);
ysr@1580 2757 {
ysr@1580 2758 MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
ysr@1580 2759 Mutex::_no_safepoint_check_flag);
jmasa@3730 2760 FreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
ysr@1580 2761 if (gfl->count() != 0) {
ysr@1580 2762 // nn is the number of chunks of size cur_sz that
ysr@1580 2763 // we'd need to split k-ways each, in order to create
ysr@1580 2764 // "n" chunks of size word_sz each.
ysr@1580 2765 const size_t nn = MAX2(n/k, (size_t)1);
ysr@1580 2766 gfl->getFirstNChunksFromList(nn, &fl_for_cur_sz);
ysr@1580 2767 found = true;
ysr@1580 2768 if (k > 1) {
ysr@1580 2769 // Update split death stats for the cur_sz-size blocks list:
ysr@1580 2770 // we increment the split death count by the number of blocks
ysr@1580 2771 // we just took from the cur_sz-size blocks list and which
ysr@1580 2772 // we will be splitting below.
jmasa@3732 2773 ssize_t deaths = gfl->split_deaths() +
ysr@1580 2774 fl_for_cur_sz.count();
jmasa@3732 2775 gfl->set_split_deaths(deaths);
ysr@1580 2776 }
ysr@1580 2777 }
ysr@1580 2778 }
ysr@1580 2779 // Now transfer fl_for_cur_sz to fl. Common case, we hope, is k = 1.
ysr@1580 2780 if (found) {
ysr@1580 2781 if (k == 1) {
ysr@1580 2782 fl->prepend(&fl_for_cur_sz);
ysr@1580 2783 } else {
ysr@1580 2784 // Divide each block on fl_for_cur_sz up k ways.
ysr@1580 2785 FreeChunk* fc;
jmasa@3732 2786 while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
ysr@1580 2787 // Must do this in reverse order, so that anybody attempting to
ysr@1580 2788 // access the main chunk sees it as a single free block until we
ysr@1580 2789 // change it.
ysr@1580 2790 size_t fc_size = fc->size();
jmasa@3732 2791 assert(fc->is_free(), "Error");
ysr@1580 2792 for (int i = k-1; i >= 0; i--) {
ysr@1580 2793 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
ysr@2071 2794 assert((i != 0) ||
jmasa@3732 2795 ((fc == ffc) && ffc->is_free() &&
ysr@2071 2796 (ffc->size() == k*word_sz) && (fc_size == word_sz)),
ysr@2071 2797 "Counting error");
jmasa@3732 2798 ffc->set_size(word_sz);
jmasa@3732 2799 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2800 ffc->link_next(NULL);
ysr@1580 2801 // Above must occur before BOT is updated below.
ysr@2071 2802 OrderAccess::storestore();
ysr@2071 2803 // splitting from the right, fc_size == i * word_sz
ysr@2071 2804 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
ysr@1580 2805 fc_size -= word_sz;
ysr@2071 2806 assert(fc_size == i*word_sz, "Error");
ysr@2071 2807 _bt.verify_not_unallocated((HeapWord*)ffc, word_sz);
ysr@1580 2808 _bt.verify_single_block((HeapWord*)fc, fc_size);
ysr@2071 2809 _bt.verify_single_block((HeapWord*)ffc, word_sz);
ysr@1580 2810 // Push this on "fl".
jmasa@3732 2811 fl->return_chunk_at_head(ffc);
ysr@1580 2812 }
ysr@1580 2813 // TRAP
ysr@1580 2814 assert(fl->tail()->next() == NULL, "List invariant.");
ysr@1580 2815 }
ysr@1580 2816 }
ysr@1580 2817 // Update birth stats for this block size.
ysr@1580 2818 size_t num = fl->count();
ysr@1580 2819 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
ysr@1580 2820 Mutex::_no_safepoint_check_flag);
jmasa@3732 2821 ssize_t births = _indexedFreeList[word_sz].split_births() + num;
jmasa@3732 2822 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2823 return;
duke@435 2824 }
duke@435 2825 }
duke@435 2826 }
duke@435 2827 // Otherwise, we'll split a block from the dictionary.
duke@435 2828 FreeChunk* fc = NULL;
duke@435 2829 FreeChunk* rem_fc = NULL;
duke@435 2830 size_t rem;
duke@435 2831 {
duke@435 2832 MutexLockerEx x(parDictionaryAllocLock(),
duke@435 2833 Mutex::_no_safepoint_check_flag);
duke@435 2834 while (n > 0) {
jmasa@3732 2835 fc = dictionary()->get_chunk(MAX2(n * word_sz,
jmasa@3732 2836 _dictionary->min_size()),
jmasa@3730 2837 FreeBlockDictionary<FreeChunk>::atLeast);
duke@435 2838 if (fc != NULL) {
ysr@2071 2839 _bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
jmasa@3732 2840 dictionary()->dict_census_udpate(fc->size(),
duke@435 2841 true /*split*/,
duke@435 2842 false /*birth*/);
duke@435 2843 break;
duke@435 2844 } else {
duke@435 2845 n--;
duke@435 2846 }
duke@435 2847 }
duke@435 2848 if (fc == NULL) return;
ysr@2071 2849 // Otherwise, split up that block.
ysr@1580 2850 assert((ssize_t)n >= 1, "Control point invariant");
jmasa@3732 2851 assert(fc->is_free(), "Error: should be a free block");
ysr@2071 2852 _bt.verify_single_block((HeapWord*)fc, fc->size());
ysr@1580 2853 const size_t nn = fc->size() / word_sz;
duke@435 2854 n = MIN2(nn, n);
ysr@1580 2855 assert((ssize_t)n >= 1, "Control point invariant");
duke@435 2856 rem = fc->size() - n * word_sz;
duke@435 2857 // If there is a remainder, and it's too small, allocate one fewer.
duke@435 2858 if (rem > 0 && rem < MinChunkSize) {
duke@435 2859 n--; rem += word_sz;
duke@435 2860 }
jmasa@1583 2861 // Note that at this point we may have n == 0.
jmasa@1583 2862 assert((ssize_t)n >= 0, "Control point invariant");
jmasa@1583 2863
jmasa@1583 2864 // If n is 0, the chunk fc that was found is not large
jmasa@1583 2865 // enough to leave a viable remainder. We are unable to
jmasa@1583 2866 // allocate even one block. Return fc to the
jmasa@1583 2867 // dictionary and return, leaving "fl" empty.
jmasa@1583 2868 if (n == 0) {
jmasa@1583 2869 returnChunkToDictionary(fc);
ysr@2071 2870 assert(fl->count() == 0, "We never allocated any blocks");
jmasa@1583 2871 return;
jmasa@1583 2872 }
jmasa@1583 2873
duke@435 2874 // First return the remainder, if any.
duke@435 2875 // Note that we hold the lock until we decide if we're going to give
ysr@1580 2876 // back the remainder to the dictionary, since a concurrent allocation
duke@435 2877 // may otherwise see the heap as empty. (We're willing to take that
duke@435 2878 // hit if the block is a small block.)
duke@435 2879 if (rem > 0) {
duke@435 2880 size_t prefix_size = n * word_sz;
duke@435 2881 rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
jmasa@3732 2882 rem_fc->set_size(rem);
jmasa@3732 2883 rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2884 rem_fc->link_next(NULL);
duke@435 2885 // Above must occur before BOT is updated below.
ysr@1580 2886 assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
ysr@2071 2887 OrderAccess::storestore();
duke@435 2888 _bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
jmasa@3732 2889 assert(fc->is_free(), "Error");
jmasa@3732 2890 fc->set_size(prefix_size);
duke@435 2891 if (rem >= IndexSetSize) {
duke@435 2892 returnChunkToDictionary(rem_fc);
jmasa@3732 2893 dictionary()->dict_census_udpate(rem, true /*split*/, true /*birth*/);
duke@435 2894 rem_fc = NULL;
duke@435 2895 }
duke@435 2896 // Otherwise, return it to the small list below.
duke@435 2897 }
duke@435 2898 }
duke@435 2899 if (rem_fc != NULL) {
duke@435 2900 MutexLockerEx x(_indexedFreeListParLocks[rem],
duke@435 2901 Mutex::_no_safepoint_check_flag);
duke@435 2902 _bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
jmasa@3732 2903 _indexedFreeList[rem].return_chunk_at_head(rem_fc);
duke@435 2904 smallSplitBirth(rem);
duke@435 2905 }
ysr@1580 2906 assert((ssize_t)n > 0 && fc != NULL, "Consistency");
duke@435 2907 // Now do the splitting up.
duke@435 2908 // Must do this in reverse order, so that anybody attempting to
duke@435 2909 // access the main chunk sees it as a single free block until we
duke@435 2910 // change it.
duke@435 2911 size_t fc_size = n * word_sz;
duke@435 2912 // All but first chunk in this loop
duke@435 2913 for (ssize_t i = n-1; i > 0; i--) {
duke@435 2914 FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
jmasa@3732 2915 ffc->set_size(word_sz);
jmasa@3732 2916 ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
jmasa@3732 2917 ffc->link_next(NULL);
duke@435 2918 // Above must occur before BOT is updated below.
ysr@2071 2919 OrderAccess::storestore();
duke@435 2920 // splitting from the right, fc_size == (n - i + 1) * wordsize
ysr@2071 2921 _bt.mark_block((HeapWord*)ffc, word_sz, true /* reducing */);
duke@435 2922 fc_size -= word_sz;
duke@435 2923 _bt.verify_not_unallocated((HeapWord*)ffc, ffc->size());
duke@435 2924 _bt.verify_single_block((HeapWord*)ffc, ffc->size());
duke@435 2925 _bt.verify_single_block((HeapWord*)fc, fc_size);
duke@435 2926 // Push this on "fl".
jmasa@3732 2927 fl->return_chunk_at_head(ffc);
duke@435 2928 }
duke@435 2929 // First chunk
jmasa@3732 2930 assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
ysr@2071 2931 // The blocks above should show their new sizes before the first block below
jmasa@3732 2932 fc->set_size(word_sz);
jmasa@3732 2933 fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
jmasa@3732 2934 fc->link_next(NULL);
duke@435 2935 _bt.verify_not_unallocated((HeapWord*)fc, fc->size());
duke@435 2936 _bt.verify_single_block((HeapWord*)fc, fc->size());
jmasa@3732 2937 fl->return_chunk_at_head(fc);
duke@435 2938
ysr@1580 2939 assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
duke@435 2940 {
ysr@1580 2941 // Update the stats for this block size.
duke@435 2942 MutexLockerEx x(_indexedFreeListParLocks[word_sz],
duke@435 2943 Mutex::_no_safepoint_check_flag);
jmasa@3732 2944 const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
jmasa@3732 2945 _indexedFreeList[word_sz].set_split_births(births);
ysr@1580 2946 // ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
ysr@1580 2947 // _indexedFreeList[word_sz].set_surplus(new_surplus);
duke@435 2948 }
duke@435 2949
duke@435 2950 // TRAP
duke@435 2951 assert(fl->tail()->next() == NULL, "List invariant.");
duke@435 2952 }
duke@435 2953
duke@435 2954 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2955 // for parallel rescan. See CMSParRemarkTask where this is currently used.
duke@435 2956 // XXX Need to suitably abstract and generalize this and the next
duke@435 2957 // method into one.
duke@435 2958 void
duke@435 2959 CompactibleFreeListSpace::
duke@435 2960 initialize_sequential_subtasks_for_rescan(int n_threads) {
duke@435 2961 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2962 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2963 const size_t task_size = rescan_task_size();
duke@435 2964 size_t n_tasks = (used_region().word_size() + task_size - 1)/task_size;
ysr@775 2965 assert((n_tasks == 0) == used_region().is_empty(), "n_tasks incorrect");
ysr@775 2966 assert(n_tasks == 0 ||
ysr@775 2967 ((used_region().start() + (n_tasks - 1)*task_size < used_region().end()) &&
ysr@775 2968 (used_region().start() + n_tasks*task_size >= used_region().end())),
ysr@775 2969 "n_tasks calculation incorrect");
duke@435 2970 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 2971 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 2972 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 2973 // need to finish in order to be done).
jmasa@2188 2974 pst->set_n_threads(n_threads);
duke@435 2975 pst->set_n_tasks((int)n_tasks);
duke@435 2976 }
duke@435 2977
duke@435 2978 // Set up the space's par_seq_tasks structure for work claiming
duke@435 2979 // for parallel concurrent marking. See CMSConcMarkTask where this is currently used.
duke@435 2980 void
duke@435 2981 CompactibleFreeListSpace::
duke@435 2982 initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 2983 HeapWord* low) {
duke@435 2984 // The "size" of each task is fixed according to rescan_task_size.
duke@435 2985 assert(n_threads > 0, "Unexpected n_threads argument");
duke@435 2986 const size_t task_size = marking_task_size();
duke@435 2987 assert(task_size > CardTableModRefBS::card_size_in_words &&
duke@435 2988 (task_size % CardTableModRefBS::card_size_in_words == 0),
duke@435 2989 "Otherwise arithmetic below would be incorrect");
duke@435 2990 MemRegion span = _gen->reserved();
duke@435 2991 if (low != NULL) {
duke@435 2992 if (span.contains(low)) {
duke@435 2993 // Align low down to a card boundary so that
duke@435 2994 // we can use block_offset_careful() on span boundaries.
duke@435 2995 HeapWord* aligned_low = (HeapWord*)align_size_down((uintptr_t)low,
duke@435 2996 CardTableModRefBS::card_size);
duke@435 2997 // Clip span prefix at aligned_low
duke@435 2998 span = span.intersection(MemRegion(aligned_low, span.end()));
duke@435 2999 } else if (low > span.end()) {
duke@435 3000 span = MemRegion(low, low); // Null region
duke@435 3001 } // else use entire span
duke@435 3002 }
duke@435 3003 assert(span.is_empty() ||
duke@435 3004 ((uintptr_t)span.start() % CardTableModRefBS::card_size == 0),
duke@435 3005 "span should start at a card boundary");
duke@435 3006 size_t n_tasks = (span.word_size() + task_size - 1)/task_size;
duke@435 3007 assert((n_tasks == 0) == span.is_empty(), "Inconsistency");
duke@435 3008 assert(n_tasks == 0 ||
duke@435 3009 ((span.start() + (n_tasks - 1)*task_size < span.end()) &&
duke@435 3010 (span.start() + n_tasks*task_size >= span.end())),
ysr@775 3011 "n_tasks calculation incorrect");
duke@435 3012 SequentialSubTasksDone* pst = conc_par_seq_tasks();
duke@435 3013 assert(!pst->valid(), "Clobbering existing data?");
jmasa@2188 3014 // Sets the condition for completion of the subtask (how many threads
jmasa@2188 3015 // need to finish in order to be done).
jmasa@2188 3016 pst->set_n_threads(n_threads);
duke@435 3017 pst->set_n_tasks((int)n_tasks);
duke@435 3018 }

mercurial