src/share/vm/opto/runtime.cpp

Wed, 17 Feb 2016 13:40:12 +0300

author
igerasim
date
Wed, 17 Feb 2016 13:40:12 +0300
changeset 8489
51c505229e71
parent 8307
daaf806995b3
child 8318
ea7ac121a5d3
permissions
-rw-r--r--

8081778: Use Intel x64 CPU instructions for RSA acceleration
Summary: Add intrinsics for BigInteger squareToLen and mulAdd methods.
Reviewed-by: kvn, jrose

duke@435 1 /*
dlong@7598 2 * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/pcDesc.hpp"
stefank@2314 32 #include "code/scopeDesc.hpp"
stefank@2314 33 #include "code/vtableStubs.hpp"
stefank@2314 34 #include "compiler/compileBroker.hpp"
stefank@2314 35 #include "compiler/compilerOracle.hpp"
stefank@2314 36 #include "compiler/oopMap.hpp"
stefank@2314 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 38 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 39 #include "gc_interface/collectedHeap.hpp"
stefank@2314 40 #include "interpreter/bytecode.hpp"
stefank@2314 41 #include "interpreter/interpreter.hpp"
stefank@2314 42 #include "interpreter/linkResolver.hpp"
stefank@2314 43 #include "memory/barrierSet.hpp"
stefank@2314 44 #include "memory/gcLocker.inline.hpp"
stefank@2314 45 #include "memory/oopFactory.hpp"
stefank@2314 46 #include "oops/objArrayKlass.hpp"
stefank@2314 47 #include "oops/oop.inline.hpp"
stefank@2314 48 #include "opto/addnode.hpp"
stefank@2314 49 #include "opto/callnode.hpp"
stefank@2314 50 #include "opto/cfgnode.hpp"
stefank@2314 51 #include "opto/connode.hpp"
stefank@2314 52 #include "opto/graphKit.hpp"
stefank@2314 53 #include "opto/machnode.hpp"
stefank@2314 54 #include "opto/matcher.hpp"
stefank@2314 55 #include "opto/memnode.hpp"
stefank@2314 56 #include "opto/mulnode.hpp"
stefank@2314 57 #include "opto/runtime.hpp"
stefank@2314 58 #include "opto/subnode.hpp"
stefank@2314 59 #include "runtime/fprofiler.hpp"
stefank@2314 60 #include "runtime/handles.inline.hpp"
stefank@2314 61 #include "runtime/interfaceSupport.hpp"
stefank@2314 62 #include "runtime/javaCalls.hpp"
stefank@2314 63 #include "runtime/sharedRuntime.hpp"
stefank@2314 64 #include "runtime/signature.hpp"
stefank@2314 65 #include "runtime/threadCritical.hpp"
stefank@2314 66 #include "runtime/vframe.hpp"
stefank@2314 67 #include "runtime/vframeArray.hpp"
stefank@2314 68 #include "runtime/vframe_hp.hpp"
stefank@2314 69 #include "utilities/copy.hpp"
stefank@2314 70 #include "utilities/preserveException.hpp"
dlong@7598 71 #if defined AD_MD_HPP
dlong@7598 72 # include AD_MD_HPP
dlong@7598 73 #elif defined TARGET_ARCH_MODEL_x86_32
stefank@2314 74 # include "adfiles/ad_x86_32.hpp"
dlong@7598 75 #elif defined TARGET_ARCH_MODEL_x86_64
stefank@2314 76 # include "adfiles/ad_x86_64.hpp"
dlong@7598 77 #elif defined TARGET_ARCH_MODEL_sparc
stefank@2314 78 # include "adfiles/ad_sparc.hpp"
dlong@7598 79 #elif defined TARGET_ARCH_MODEL_zero
stefank@2314 80 # include "adfiles/ad_zero.hpp"
dlong@7598 81 #elif defined TARGET_ARCH_MODEL_ppc_64
goetz@6441 82 # include "adfiles/ad_ppc_64.hpp"
bobv@2508 83 #endif
duke@435 84
duke@435 85
duke@435 86 // For debugging purposes:
duke@435 87 // To force FullGCALot inside a runtime function, add the following two lines
duke@435 88 //
duke@435 89 // Universe::release_fullgc_alot_dummy();
duke@435 90 // MarkSweep::invoke(0, "Debugging");
duke@435 91 //
duke@435 92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
duke@435 93
duke@435 94
duke@435 95
duke@435 96
duke@435 97 // Compiled code entry points
duke@435 98 address OptoRuntime::_new_instance_Java = NULL;
duke@435 99 address OptoRuntime::_new_array_Java = NULL;
kvn@3157 100 address OptoRuntime::_new_array_nozero_Java = NULL;
duke@435 101 address OptoRuntime::_multianewarray2_Java = NULL;
duke@435 102 address OptoRuntime::_multianewarray3_Java = NULL;
duke@435 103 address OptoRuntime::_multianewarray4_Java = NULL;
duke@435 104 address OptoRuntime::_multianewarray5_Java = NULL;
iveresov@3002 105 address OptoRuntime::_multianewarrayN_Java = NULL;
ysr@777 106 address OptoRuntime::_g1_wb_pre_Java = NULL;
ysr@777 107 address OptoRuntime::_g1_wb_post_Java = NULL;
duke@435 108 address OptoRuntime::_vtable_must_compile_Java = NULL;
duke@435 109 address OptoRuntime::_complete_monitor_locking_Java = NULL;
duke@435 110 address OptoRuntime::_rethrow_Java = NULL;
duke@435 111
duke@435 112 address OptoRuntime::_slow_arraycopy_Java = NULL;
duke@435 113 address OptoRuntime::_register_finalizer_Java = NULL;
duke@435 114
duke@435 115 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 116 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
duke@435 117 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
duke@435 118 # endif
duke@435 119
never@2950 120 ExceptionBlob* OptoRuntime::_exception_blob;
duke@435 121
duke@435 122 // This should be called in an assertion at the start of OptoRuntime routines
duke@435 123 // which are entered from compiled code (all of them)
roland@5106 124 #ifdef ASSERT
duke@435 125 static bool check_compiled_frame(JavaThread* thread) {
duke@435 126 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
duke@435 127 RegisterMap map(thread, false);
duke@435 128 frame caller = thread->last_frame().sender(&map);
duke@435 129 assert(caller.is_compiled_frame(), "not being called from compiled like code");
duke@435 130 return true;
duke@435 131 }
roland@5106 132 #endif // ASSERT
duke@435 133
duke@435 134
duke@435 135 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
anoll@5919 136 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
anoll@5919 137 if (var == NULL) { return false; }
duke@435 138
anoll@5919 139 bool OptoRuntime::generate(ciEnv* env) {
duke@435 140
duke@435 141 generate_exception_blob();
duke@435 142
duke@435 143 // Note: tls: Means fetching the return oop out of the thread-local storage
duke@435 144 //
duke@435 145 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
duke@435 146 // -------------------------------------------------------------------------------------------------------------------------------
duke@435 147 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
duke@435 148 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
kvn@3157 149 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
duke@435 150 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
duke@435 151 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
duke@435 152 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
duke@435 153 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
iveresov@3002 154 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
ysr@777 155 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
ysr@777 156 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
anoll@5919 157 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
duke@435 158 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
duke@435 159
duke@435 160 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
duke@435 161 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
duke@435 162
duke@435 163 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 164 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
duke@435 165 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
duke@435 166 # endif
anoll@5919 167 return true;
duke@435 168 }
duke@435 169
duke@435 170 #undef gen
duke@435 171
duke@435 172
duke@435 173 // Helper method to do generation of RunTimeStub's
duke@435 174 address OptoRuntime::generate_stub( ciEnv* env,
duke@435 175 TypeFunc_generator gen, address C_function,
duke@435 176 const char *name, int is_fancy_jump,
duke@435 177 bool pass_tls,
duke@435 178 bool save_argument_registers,
duke@435 179 bool return_pc ) {
duke@435 180 ResourceMark rm;
duke@435 181 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
duke@435 182 return C.stub_entry_point();
duke@435 183 }
duke@435 184
duke@435 185 const char* OptoRuntime::stub_name(address entry) {
duke@435 186 #ifndef PRODUCT
duke@435 187 CodeBlob* cb = CodeCache::find_blob(entry);
duke@435 188 RuntimeStub* rs =(RuntimeStub *)cb;
duke@435 189 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
duke@435 190 return rs->name();
duke@435 191 #else
duke@435 192 // Fast implementation for product mode (maybe it should be inlined too)
duke@435 193 return "runtime stub";
duke@435 194 #endif
duke@435 195 }
duke@435 196
duke@435 197
duke@435 198 //=============================================================================
duke@435 199 // Opto compiler runtime routines
duke@435 200 //=============================================================================
duke@435 201
duke@435 202
duke@435 203 //=============================allocation======================================
duke@435 204 // We failed the fast-path allocation. Now we need to do a scavenge or GC
duke@435 205 // and try allocation again.
duke@435 206
ysr@1601 207 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
duke@435 208 // After any safepoint, just before going back to compiled code,
ysr@1462 209 // we inform the GC that we will be doing initializing writes to
ysr@1462 210 // this object in the future without emitting card-marks, so
ysr@1462 211 // GC may take any compensating steps.
ysr@1462 212 // NOTE: Keep this code consistent with GraphKit::store_barrier.
duke@435 213
duke@435 214 oop new_obj = thread->vm_result();
duke@435 215 if (new_obj == NULL) return;
duke@435 216
duke@435 217 assert(Universe::heap()->can_elide_tlab_store_barriers(),
duke@435 218 "compiler must check this first");
ysr@1462 219 // GC may decide to give back a safer copy of new_obj.
ysr@1601 220 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
duke@435 221 thread->set_vm_result(new_obj);
duke@435 222 }
duke@435 223
duke@435 224 // object allocation
coleenp@4037 225 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
duke@435 226 JRT_BLOCK;
duke@435 227 #ifndef PRODUCT
duke@435 228 SharedRuntime::_new_instance_ctr++; // new instance requires GC
duke@435 229 #endif
duke@435 230 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 231
duke@435 232 // These checks are cheap to make and support reflective allocation.
hseigel@4278 233 int lh = klass->layout_helper();
duke@435 234 if (Klass::layout_helper_needs_slow_path(lh)
coleenp@4037 235 || !InstanceKlass::cast(klass)->is_initialized()) {
duke@435 236 KlassHandle kh(THREAD, klass);
duke@435 237 kh->check_valid_for_instantiation(false, THREAD);
duke@435 238 if (!HAS_PENDING_EXCEPTION) {
coleenp@4037 239 InstanceKlass::cast(kh())->initialize(THREAD);
duke@435 240 }
duke@435 241 if (!HAS_PENDING_EXCEPTION) {
duke@435 242 klass = kh();
duke@435 243 } else {
duke@435 244 klass = NULL;
duke@435 245 }
duke@435 246 }
duke@435 247
duke@435 248 if (klass != NULL) {
duke@435 249 // Scavenge and allocate an instance.
coleenp@4037 250 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
duke@435 251 thread->set_vm_result(result);
duke@435 252
duke@435 253 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 254 // is that we return an oop, but we can block on exit from this routine and
duke@435 255 // a GC can trash the oop in C's return register. The generated stub will
duke@435 256 // fetch the oop from TLS after any possible GC.
duke@435 257 }
duke@435 258
duke@435 259 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 260 JRT_BLOCK_END;
duke@435 261
duke@435 262 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 263 // inform GC that we won't do card marks for initializing writes.
ysr@1601 264 new_store_pre_barrier(thread);
duke@435 265 }
duke@435 266 JRT_END
duke@435 267
duke@435 268
duke@435 269 // array allocation
coleenp@4037 270 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
duke@435 271 JRT_BLOCK;
duke@435 272 #ifndef PRODUCT
duke@435 273 SharedRuntime::_new_array_ctr++; // new array requires GC
duke@435 274 #endif
duke@435 275 assert(check_compiled_frame(thread), "incorrect caller");
duke@435 276
duke@435 277 // Scavenge and allocate an instance.
duke@435 278 oop result;
duke@435 279
hseigel@4278 280 if (array_type->oop_is_typeArray()) {
duke@435 281 // The oopFactory likes to work with the element type.
duke@435 282 // (We could bypass the oopFactory, since it doesn't add much value.)
coleenp@4142 283 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
duke@435 284 result = oopFactory::new_typeArray(elem_type, len, THREAD);
duke@435 285 } else {
duke@435 286 // Although the oopFactory likes to work with the elem_type,
duke@435 287 // the compiler prefers the array_type, since it must already have
duke@435 288 // that latter value in hand for the fast path.
coleenp@4142 289 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
duke@435 290 result = oopFactory::new_objArray(elem_type, len, THREAD);
duke@435 291 }
duke@435 292
duke@435 293 // Pass oops back through thread local storage. Our apparent type to Java
duke@435 294 // is that we return an oop, but we can block on exit from this routine and
duke@435 295 // a GC can trash the oop in C's return register. The generated stub will
duke@435 296 // fetch the oop from TLS after any possible GC.
duke@435 297 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 298 thread->set_vm_result(result);
duke@435 299 JRT_BLOCK_END;
duke@435 300
duke@435 301 if (GraphKit::use_ReduceInitialCardMarks()) {
ysr@1462 302 // inform GC that we won't do card marks for initializing writes.
ysr@1601 303 new_store_pre_barrier(thread);
duke@435 304 }
duke@435 305 JRT_END
duke@435 306
kvn@3157 307 // array allocation without zeroing
coleenp@4037 308 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
kvn@3157 309 JRT_BLOCK;
kvn@3157 310 #ifndef PRODUCT
kvn@3157 311 SharedRuntime::_new_array_ctr++; // new array requires GC
kvn@3157 312 #endif
kvn@3157 313 assert(check_compiled_frame(thread), "incorrect caller");
kvn@3157 314
kvn@3157 315 // Scavenge and allocate an instance.
kvn@3157 316 oop result;
kvn@3157 317
hseigel@4278 318 assert(array_type->oop_is_typeArray(), "should be called only for type array");
kvn@3157 319 // The oopFactory likes to work with the element type.
coleenp@4142 320 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3157 321 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
kvn@3157 322
kvn@3157 323 // Pass oops back through thread local storage. Our apparent type to Java
kvn@3157 324 // is that we return an oop, but we can block on exit from this routine and
kvn@3157 325 // a GC can trash the oop in C's return register. The generated stub will
kvn@3157 326 // fetch the oop from TLS after any possible GC.
kvn@3157 327 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
kvn@3157 328 thread->set_vm_result(result);
kvn@3157 329 JRT_BLOCK_END;
kvn@3157 330
kvn@3157 331 if (GraphKit::use_ReduceInitialCardMarks()) {
kvn@3157 332 // inform GC that we won't do card marks for initializing writes.
kvn@3157 333 new_store_pre_barrier(thread);
kvn@3157 334 }
kvn@3259 335
kvn@3259 336 oop result = thread->vm_result();
kvn@3259 337 if ((len > 0) && (result != NULL) &&
kvn@3259 338 is_deoptimized_caller_frame(thread)) {
kvn@3259 339 // Zero array here if the caller is deoptimized.
kvn@3259 340 int size = ((typeArrayOop)result)->object_size();
coleenp@4142 341 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
kvn@3259 342 const size_t hs = arrayOopDesc::header_size(elem_type);
kvn@3259 343 // Align to next 8 bytes to avoid trashing arrays's length.
kvn@3259 344 const size_t aligned_hs = align_object_offset(hs);
kvn@3259 345 HeapWord* obj = (HeapWord*)result;
kvn@3259 346 if (aligned_hs > hs) {
kvn@3259 347 Copy::zero_to_words(obj+hs, aligned_hs-hs);
kvn@3259 348 }
kvn@3259 349 // Optimized zeroing.
kvn@3259 350 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
kvn@3259 351 }
kvn@3259 352
kvn@3157 353 JRT_END
kvn@3157 354
duke@435 355 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
duke@435 356
duke@435 357 // multianewarray for 2 dimensions
coleenp@4037 358 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
duke@435 359 #ifndef PRODUCT
duke@435 360 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
duke@435 361 #endif
duke@435 362 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 363 assert(elem_type->is_klass(), "not a class");
duke@435 364 jint dims[2];
duke@435 365 dims[0] = len1;
duke@435 366 dims[1] = len2;
coleenp@4142 367 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
duke@435 368 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 369 thread->set_vm_result(obj);
duke@435 370 JRT_END
duke@435 371
duke@435 372 // multianewarray for 3 dimensions
coleenp@4037 373 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
duke@435 374 #ifndef PRODUCT
duke@435 375 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
duke@435 376 #endif
duke@435 377 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 378 assert(elem_type->is_klass(), "not a class");
duke@435 379 jint dims[3];
duke@435 380 dims[0] = len1;
duke@435 381 dims[1] = len2;
duke@435 382 dims[2] = len3;
coleenp@4142 383 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
duke@435 384 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 385 thread->set_vm_result(obj);
duke@435 386 JRT_END
duke@435 387
duke@435 388 // multianewarray for 4 dimensions
coleenp@4037 389 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
duke@435 390 #ifndef PRODUCT
duke@435 391 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
duke@435 392 #endif
duke@435 393 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 394 assert(elem_type->is_klass(), "not a class");
duke@435 395 jint dims[4];
duke@435 396 dims[0] = len1;
duke@435 397 dims[1] = len2;
duke@435 398 dims[2] = len3;
duke@435 399 dims[3] = len4;
coleenp@4142 400 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
duke@435 401 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 402 thread->set_vm_result(obj);
duke@435 403 JRT_END
duke@435 404
duke@435 405 // multianewarray for 5 dimensions
coleenp@4037 406 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
duke@435 407 #ifndef PRODUCT
duke@435 408 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
duke@435 409 #endif
duke@435 410 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 411 assert(elem_type->is_klass(), "not a class");
duke@435 412 jint dims[5];
duke@435 413 dims[0] = len1;
duke@435 414 dims[1] = len2;
duke@435 415 dims[2] = len3;
duke@435 416 dims[3] = len4;
duke@435 417 dims[4] = len5;
coleenp@4142 418 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
duke@435 419 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
duke@435 420 thread->set_vm_result(obj);
duke@435 421 JRT_END
duke@435 422
coleenp@4037 423 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
iveresov@3002 424 assert(check_compiled_frame(thread), "incorrect caller");
coleenp@4037 425 assert(elem_type->is_klass(), "not a class");
iveresov@3002 426 assert(oop(dims)->is_typeArray(), "not an array");
iveresov@3002 427
iveresov@3002 428 ResourceMark rm;
iveresov@3002 429 jint len = dims->length();
iveresov@3002 430 assert(len > 0, "Dimensions array should contain data");
iveresov@3002 431 jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
iveresov@3002 432 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
iveresov@3002 433 Copy::conjoint_jints_atomic(j_dims, c_dims, len);
iveresov@3002 434
coleenp@4142 435 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
iveresov@3002 436 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
iveresov@3002 437 thread->set_vm_result(obj);
iveresov@3002 438 JRT_END
iveresov@3002 439
iveresov@3002 440
duke@435 441 const TypeFunc *OptoRuntime::new_instance_Type() {
duke@435 442 // create input type (domain)
duke@435 443 const Type **fields = TypeTuple::fields(1);
duke@435 444 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 445 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 446
duke@435 447 // create result type (range)
duke@435 448 fields = TypeTuple::fields(1);
duke@435 449 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 450
duke@435 451 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 452
duke@435 453 return TypeFunc::make(domain, range);
duke@435 454 }
duke@435 455
duke@435 456
duke@435 457 const TypeFunc *OptoRuntime::athrow_Type() {
duke@435 458 // create input type (domain)
duke@435 459 const Type **fields = TypeTuple::fields(1);
duke@435 460 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
duke@435 461 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 462
duke@435 463 // create result type (range)
duke@435 464 fields = TypeTuple::fields(0);
duke@435 465
duke@435 466 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 467
duke@435 468 return TypeFunc::make(domain, range);
duke@435 469 }
duke@435 470
duke@435 471
duke@435 472 const TypeFunc *OptoRuntime::new_array_Type() {
duke@435 473 // create input type (domain)
duke@435 474 const Type **fields = TypeTuple::fields(2);
duke@435 475 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 476 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
duke@435 477 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 478
duke@435 479 // create result type (range)
duke@435 480 fields = TypeTuple::fields(1);
duke@435 481 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 482
duke@435 483 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 484
duke@435 485 return TypeFunc::make(domain, range);
duke@435 486 }
duke@435 487
duke@435 488 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
duke@435 489 // create input type (domain)
duke@435 490 const int nargs = ndim + 1;
duke@435 491 const Type **fields = TypeTuple::fields(nargs);
duke@435 492 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
duke@435 493 for( int i = 1; i < nargs; i++ )
duke@435 494 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
duke@435 495 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
duke@435 496
duke@435 497 // create result type (range)
duke@435 498 fields = TypeTuple::fields(1);
duke@435 499 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 500 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 501
duke@435 502 return TypeFunc::make(domain, range);
duke@435 503 }
duke@435 504
duke@435 505 const TypeFunc *OptoRuntime::multianewarray2_Type() {
duke@435 506 return multianewarray_Type(2);
duke@435 507 }
duke@435 508
duke@435 509 const TypeFunc *OptoRuntime::multianewarray3_Type() {
duke@435 510 return multianewarray_Type(3);
duke@435 511 }
duke@435 512
duke@435 513 const TypeFunc *OptoRuntime::multianewarray4_Type() {
duke@435 514 return multianewarray_Type(4);
duke@435 515 }
duke@435 516
duke@435 517 const TypeFunc *OptoRuntime::multianewarray5_Type() {
duke@435 518 return multianewarray_Type(5);
duke@435 519 }
duke@435 520
iveresov@3002 521 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
iveresov@3002 522 // create input type (domain)
iveresov@3002 523 const Type **fields = TypeTuple::fields(2);
iveresov@3002 524 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
iveresov@3002 525 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
iveresov@3002 526 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
iveresov@3002 527
iveresov@3002 528 // create result type (range)
iveresov@3002 529 fields = TypeTuple::fields(1);
iveresov@3002 530 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
iveresov@3002 531 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
iveresov@3002 532
iveresov@3002 533 return TypeFunc::make(domain, range);
iveresov@3002 534 }
iveresov@3002 535
ysr@777 536 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
ysr@777 537 const Type **fields = TypeTuple::fields(2);
ysr@777 538 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
ysr@777 539 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 540 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 541
ysr@777 542 // create result type (range)
ysr@777 543 fields = TypeTuple::fields(0);
ysr@777 544 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
ysr@777 545
ysr@777 546 return TypeFunc::make(domain, range);
ysr@777 547 }
ysr@777 548
ysr@777 549 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
ysr@777 550
ysr@777 551 const Type **fields = TypeTuple::fields(2);
ysr@777 552 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
ysr@777 553 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
ysr@777 554 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
ysr@777 555
ysr@777 556 // create result type (range)
ysr@777 557 fields = TypeTuple::fields(0);
ysr@777 558 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
ysr@777 559
ysr@777 560 return TypeFunc::make(domain, range);
ysr@777 561 }
ysr@777 562
duke@435 563 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
duke@435 564 // create input type (domain)
duke@435 565 const Type **fields = TypeTuple::fields(1);
coleenp@2497 566 // Symbol* name of class to be loaded
duke@435 567 fields[TypeFunc::Parms+0] = TypeInt::INT;
duke@435 568 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 569
duke@435 570 // create result type (range)
duke@435 571 fields = TypeTuple::fields(0);
duke@435 572 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 573
duke@435 574 return TypeFunc::make(domain, range);
duke@435 575 }
duke@435 576
duke@435 577 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 578 // Type used for stub generation for zap_dead_locals.
duke@435 579 // No inputs or outputs
duke@435 580 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
duke@435 581 // create input type (domain)
duke@435 582 const Type **fields = TypeTuple::fields(0);
duke@435 583 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 584
duke@435 585 // create result type (range)
duke@435 586 fields = TypeTuple::fields(0);
duke@435 587 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
duke@435 588
duke@435 589 return TypeFunc::make(domain,range);
duke@435 590 }
duke@435 591 # endif
duke@435 592
duke@435 593
duke@435 594 //-----------------------------------------------------------------------------
duke@435 595 // Monitor Handling
duke@435 596 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
duke@435 597 // create input type (domain)
duke@435 598 const Type **fields = TypeTuple::fields(2);
duke@435 599 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 600 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 601 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 602
duke@435 603 // create result type (range)
duke@435 604 fields = TypeTuple::fields(0);
duke@435 605
duke@435 606 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 607
duke@435 608 return TypeFunc::make(domain,range);
duke@435 609 }
duke@435 610
duke@435 611
duke@435 612 //-----------------------------------------------------------------------------
duke@435 613 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
duke@435 614 // create input type (domain)
duke@435 615 const Type **fields = TypeTuple::fields(2);
duke@435 616 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 617 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 618 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 619
duke@435 620 // create result type (range)
duke@435 621 fields = TypeTuple::fields(0);
duke@435 622
duke@435 623 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 624
duke@435 625 return TypeFunc::make(domain,range);
duke@435 626 }
duke@435 627
duke@435 628 const TypeFunc* OptoRuntime::flush_windows_Type() {
duke@435 629 // create input type (domain)
duke@435 630 const Type** fields = TypeTuple::fields(1);
duke@435 631 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 632 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 633
duke@435 634 // create result type
duke@435 635 fields = TypeTuple::fields(1);
duke@435 636 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 637 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 638
duke@435 639 return TypeFunc::make(domain, range);
duke@435 640 }
duke@435 641
duke@435 642 const TypeFunc* OptoRuntime::l2f_Type() {
duke@435 643 // create input type (domain)
duke@435 644 const Type **fields = TypeTuple::fields(2);
duke@435 645 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 646 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 647 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 648
duke@435 649 // create result type (range)
duke@435 650 fields = TypeTuple::fields(1);
duke@435 651 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 652 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 653
duke@435 654 return TypeFunc::make(domain, range);
duke@435 655 }
duke@435 656
duke@435 657 const TypeFunc* OptoRuntime::modf_Type() {
duke@435 658 const Type **fields = TypeTuple::fields(2);
duke@435 659 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 660 fields[TypeFunc::Parms+1] = Type::FLOAT;
duke@435 661 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 662
duke@435 663 // create result type (range)
duke@435 664 fields = TypeTuple::fields(1);
duke@435 665 fields[TypeFunc::Parms+0] = Type::FLOAT;
duke@435 666
duke@435 667 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 668
duke@435 669 return TypeFunc::make(domain, range);
duke@435 670 }
duke@435 671
duke@435 672 const TypeFunc *OptoRuntime::Math_D_D_Type() {
duke@435 673 // create input type (domain)
duke@435 674 const Type **fields = TypeTuple::fields(2);
coleenp@2497 675 // Symbol* name of class to be loaded
duke@435 676 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 677 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 678 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 679
duke@435 680 // create result type (range)
duke@435 681 fields = TypeTuple::fields(2);
duke@435 682 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 683 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 684 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 685
duke@435 686 return TypeFunc::make(domain, range);
duke@435 687 }
duke@435 688
duke@435 689 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
duke@435 690 const Type **fields = TypeTuple::fields(4);
duke@435 691 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 692 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 693 fields[TypeFunc::Parms+2] = Type::DOUBLE;
duke@435 694 fields[TypeFunc::Parms+3] = Type::HALF;
duke@435 695 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
duke@435 696
duke@435 697 // create result type (range)
duke@435 698 fields = TypeTuple::fields(2);
duke@435 699 fields[TypeFunc::Parms+0] = Type::DOUBLE;
duke@435 700 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 701 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 702
duke@435 703 return TypeFunc::make(domain, range);
duke@435 704 }
duke@435 705
rbackman@3709 706 //-------------- currentTimeMillis, currentTimeNanos, etc
duke@435 707
rbackman@3709 708 const TypeFunc* OptoRuntime::void_long_Type() {
duke@435 709 // create input type (domain)
duke@435 710 const Type **fields = TypeTuple::fields(0);
duke@435 711 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
duke@435 712
duke@435 713 // create result type (range)
duke@435 714 fields = TypeTuple::fields(2);
duke@435 715 fields[TypeFunc::Parms+0] = TypeLong::LONG;
duke@435 716 fields[TypeFunc::Parms+1] = Type::HALF;
duke@435 717 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 718
duke@435 719 return TypeFunc::make(domain, range);
duke@435 720 }
duke@435 721
duke@435 722 // arraycopy stub variations:
duke@435 723 enum ArrayCopyType {
duke@435 724 ac_fast, // void(ptr, ptr, size_t)
duke@435 725 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
duke@435 726 ac_slow, // void(ptr, int, ptr, int, int)
duke@435 727 ac_generic // int(ptr, int, ptr, int, int)
duke@435 728 };
duke@435 729
duke@435 730 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
duke@435 731 // create input type (domain)
duke@435 732 int num_args = (act == ac_fast ? 3 : 5);
duke@435 733 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
duke@435 734 int argcnt = num_args;
duke@435 735 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
duke@435 736 const Type** fields = TypeTuple::fields(argcnt);
duke@435 737 int argp = TypeFunc::Parms;
duke@435 738 fields[argp++] = TypePtr::NOTNULL; // src
duke@435 739 if (num_size_args == 0) {
duke@435 740 fields[argp++] = TypeInt::INT; // src_pos
duke@435 741 }
duke@435 742 fields[argp++] = TypePtr::NOTNULL; // dest
duke@435 743 if (num_size_args == 0) {
duke@435 744 fields[argp++] = TypeInt::INT; // dest_pos
duke@435 745 fields[argp++] = TypeInt::INT; // length
duke@435 746 }
duke@435 747 while (num_size_args-- > 0) {
duke@435 748 fields[argp++] = TypeX_X; // size in whatevers (size_t)
duke@435 749 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
duke@435 750 }
duke@435 751 if (act == ac_checkcast) {
duke@435 752 fields[argp++] = TypePtr::NOTNULL; // super_klass
duke@435 753 }
duke@435 754 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
duke@435 755 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
duke@435 756
duke@435 757 // create result type if needed
duke@435 758 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
duke@435 759 fields = TypeTuple::fields(1);
duke@435 760 if (retcnt == 0)
duke@435 761 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 762 else
duke@435 763 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
duke@435 764 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
duke@435 765 return TypeFunc::make(domain, range);
duke@435 766 }
duke@435 767
duke@435 768 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
duke@435 769 // This signature is simple: Two base pointers and a size_t.
duke@435 770 return make_arraycopy_Type(ac_fast);
duke@435 771 }
duke@435 772
duke@435 773 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
duke@435 774 // An extension of fast_arraycopy_Type which adds type checking.
duke@435 775 return make_arraycopy_Type(ac_checkcast);
duke@435 776 }
duke@435 777
duke@435 778 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
duke@435 779 // This signature is exactly the same as System.arraycopy.
duke@435 780 // There are no intptr_t (int/long) arguments.
duke@435 781 return make_arraycopy_Type(ac_slow);
duke@435 782 }
duke@435 783
duke@435 784 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
duke@435 785 // This signature is like System.arraycopy, except that it returns status.
duke@435 786 return make_arraycopy_Type(ac_generic);
duke@435 787 }
duke@435 788
duke@435 789
never@2118 790 const TypeFunc* OptoRuntime::array_fill_Type() {
goetz@6468 791 const Type** fields;
goetz@6468 792 int argp = TypeFunc::Parms;
goetz@6468 793 if (CCallingConventionRequiresIntsAsLongs) {
never@2199 794 // create input type (domain): pointer, int, size_t
goetz@6468 795 fields = TypeTuple::fields(3 LP64_ONLY( + 2));
goetz@6468 796 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 797 fields[argp++] = TypeLong::LONG;
goetz@6468 798 fields[argp++] = Type::HALF;
goetz@6468 799 } else {
goetz@6468 800 // create input type (domain): pointer, int, size_t
goetz@6468 801 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
goetz@6468 802 fields[argp++] = TypePtr::NOTNULL;
goetz@6468 803 fields[argp++] = TypeInt::INT;
goetz@6468 804 }
never@2199 805 fields[argp++] = TypeX_X; // size in whatevers (size_t)
never@2199 806 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
never@2199 807 const TypeTuple *domain = TypeTuple::make(argp, fields);
never@2118 808
never@2118 809 // create result type
never@2118 810 fields = TypeTuple::fields(1);
never@2118 811 fields[TypeFunc::Parms+0] = NULL; // void
never@2118 812 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
never@2118 813
never@2118 814 return TypeFunc::make(domain, range);
never@2118 815 }
never@2118 816
kvn@4205 817 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
kvn@4205 818 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
kvn@4205 819 // create input type (domain)
kvn@4205 820 int num_args = 3;
kvn@6312 821 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 822 num_args = 4;
kvn@6312 823 }
kvn@4205 824 int argcnt = num_args;
kvn@4205 825 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 826 int argp = TypeFunc::Parms;
kvn@4205 827 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 828 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 829 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@6312 830 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 831 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 832 }
kvn@4205 833 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 834 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 835
kvn@4205 836 // no result type needed
kvn@4205 837 fields = TypeTuple::fields(1);
kvn@4205 838 fields[TypeFunc::Parms+0] = NULL; // void
kvn@4205 839 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@4205 840 return TypeFunc::make(domain, range);
kvn@4205 841 }
kvn@4205 842
drchase@5353 843 /**
drchase@5353 844 * int updateBytesCRC32(int crc, byte* b, int len)
drchase@5353 845 */
drchase@5353 846 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
drchase@5353 847 // create input type (domain)
drchase@5353 848 int num_args = 3;
drchase@5353 849 int argcnt = num_args;
drchase@5353 850 const Type** fields = TypeTuple::fields(argcnt);
drchase@5353 851 int argp = TypeFunc::Parms;
drchase@5353 852 fields[argp++] = TypeInt::INT; // crc
drchase@5353 853 fields[argp++] = TypePtr::NOTNULL; // src
drchase@5353 854 fields[argp++] = TypeInt::INT; // len
drchase@5353 855 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
drchase@5353 856 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
drchase@5353 857
drchase@5353 858 // result type needed
drchase@5353 859 fields = TypeTuple::fields(1);
drchase@5353 860 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
drchase@5353 861 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
drchase@5353 862 return TypeFunc::make(domain, range);
drchase@5353 863 }
drchase@5353 864
kvn@6653 865 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
kvn@4205 866 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
kvn@4205 867 // create input type (domain)
kvn@4205 868 int num_args = 5;
kvn@6312 869 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 870 num_args = 6;
kvn@6312 871 }
kvn@4205 872 int argcnt = num_args;
kvn@4205 873 const Type** fields = TypeTuple::fields(argcnt);
kvn@4205 874 int argp = TypeFunc::Parms;
kvn@4205 875 fields[argp++] = TypePtr::NOTNULL; // src
kvn@4205 876 fields[argp++] = TypePtr::NOTNULL; // dest
kvn@4205 877 fields[argp++] = TypePtr::NOTNULL; // k array
kvn@4205 878 fields[argp++] = TypePtr::NOTNULL; // r array
kvn@4205 879 fields[argp++] = TypeInt::INT; // src len
kvn@6312 880 if (Matcher::pass_original_key_for_aes()) {
kvn@6312 881 fields[argp++] = TypePtr::NOTNULL; // original k array
kvn@6312 882 }
kvn@4205 883 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@4205 884 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@4205 885
kvn@6312 886 // returning cipher len (int)
kvn@4205 887 fields = TypeTuple::fields(1);
kvn@6312 888 fields[TypeFunc::Parms+0] = TypeInt::INT;
kvn@6312 889 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@4205 890 return TypeFunc::make(domain, range);
kvn@4205 891 }
kvn@4205 892
kvn@7027 893 /*
kvn@7027 894 * void implCompress(byte[] buf, int ofs)
kvn@7027 895 */
kvn@7027 896 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
kvn@7027 897 // create input type (domain)
kvn@7027 898 int num_args = 2;
kvn@7027 899 int argcnt = num_args;
kvn@7027 900 const Type** fields = TypeTuple::fields(argcnt);
kvn@7027 901 int argp = TypeFunc::Parms;
kvn@7027 902 fields[argp++] = TypePtr::NOTNULL; // buf
kvn@7027 903 fields[argp++] = TypePtr::NOTNULL; // state
kvn@7027 904 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7027 905 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7027 906
kvn@7027 907 // no result type needed
kvn@7027 908 fields = TypeTuple::fields(1);
kvn@7027 909 fields[TypeFunc::Parms+0] = NULL; // void
kvn@7027 910 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@7027 911 return TypeFunc::make(domain, range);
kvn@7027 912 }
kvn@7027 913
kvn@7027 914 /*
kvn@7027 915 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
kvn@7027 916 */
kvn@7027 917 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
kvn@7027 918 // create input type (domain)
kvn@7027 919 int num_args = 4;
kvn@7027 920 int argcnt = num_args;
kvn@7027 921 const Type** fields = TypeTuple::fields(argcnt);
kvn@7027 922 int argp = TypeFunc::Parms;
kvn@7027 923 fields[argp++] = TypePtr::NOTNULL; // buf
kvn@7027 924 fields[argp++] = TypePtr::NOTNULL; // state
kvn@7027 925 fields[argp++] = TypeInt::INT; // ofs
kvn@7027 926 fields[argp++] = TypeInt::INT; // limit
kvn@7027 927 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7027 928 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7027 929
kvn@7027 930 // returning ofs (int)
kvn@7027 931 fields = TypeTuple::fields(1);
kvn@7027 932 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
kvn@7027 933 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
kvn@7027 934 return TypeFunc::make(domain, range);
kvn@7027 935 }
kvn@7027 936
kvn@7152 937 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
kvn@7152 938 // create input type (domain)
kvn@7152 939 int num_args = 6;
kvn@7152 940 int argcnt = num_args;
kvn@7152 941 const Type** fields = TypeTuple::fields(argcnt);
kvn@7152 942 int argp = TypeFunc::Parms;
kvn@7152 943 fields[argp++] = TypePtr::NOTNULL; // x
kvn@7152 944 fields[argp++] = TypeInt::INT; // xlen
kvn@7152 945 fields[argp++] = TypePtr::NOTNULL; // y
kvn@7152 946 fields[argp++] = TypeInt::INT; // ylen
kvn@7152 947 fields[argp++] = TypePtr::NOTNULL; // z
kvn@7152 948 fields[argp++] = TypeInt::INT; // zlen
kvn@7152 949 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
kvn@7152 950 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
kvn@7152 951
kvn@7152 952 // no result type needed
kvn@7152 953 fields = TypeTuple::fields(1);
kvn@7152 954 fields[TypeFunc::Parms+0] = NULL;
kvn@7152 955 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
kvn@7152 956 return TypeFunc::make(domain, range);
kvn@7152 957 }
kvn@7152 958
igerasim@8307 959 const TypeFunc* OptoRuntime::squareToLen_Type() {
igerasim@8307 960 // create input type (domain)
igerasim@8307 961 int num_args = 4;
igerasim@8307 962 int argcnt = num_args;
igerasim@8307 963 const Type** fields = TypeTuple::fields(argcnt);
igerasim@8307 964 int argp = TypeFunc::Parms;
igerasim@8307 965 fields[argp++] = TypePtr::NOTNULL; // x
igerasim@8307 966 fields[argp++] = TypeInt::INT; // len
igerasim@8307 967 fields[argp++] = TypePtr::NOTNULL; // z
igerasim@8307 968 fields[argp++] = TypeInt::INT; // zlen
igerasim@8307 969 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
igerasim@8307 970 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
igerasim@8307 971
igerasim@8307 972 // no result type needed
igerasim@8307 973 fields = TypeTuple::fields(1);
igerasim@8307 974 fields[TypeFunc::Parms+0] = NULL;
igerasim@8307 975 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
igerasim@8307 976 return TypeFunc::make(domain, range);
igerasim@8307 977 }
igerasim@8307 978
igerasim@8307 979 // for mulAdd calls, 2 pointers and 3 ints, returning int
igerasim@8307 980 const TypeFunc* OptoRuntime::mulAdd_Type() {
igerasim@8307 981 // create input type (domain)
igerasim@8307 982 int num_args = 5;
igerasim@8307 983 int argcnt = num_args;
igerasim@8307 984 const Type** fields = TypeTuple::fields(argcnt);
igerasim@8307 985 int argp = TypeFunc::Parms;
igerasim@8307 986 fields[argp++] = TypePtr::NOTNULL; // out
igerasim@8307 987 fields[argp++] = TypePtr::NOTNULL; // in
igerasim@8307 988 fields[argp++] = TypeInt::INT; // offset
igerasim@8307 989 fields[argp++] = TypeInt::INT; // len
igerasim@8307 990 fields[argp++] = TypeInt::INT; // k
igerasim@8307 991 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
igerasim@8307 992 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
igerasim@8307 993
igerasim@8307 994 // returning carry (int)
igerasim@8307 995 fields = TypeTuple::fields(1);
igerasim@8307 996 fields[TypeFunc::Parms+0] = TypeInt::INT;
igerasim@8307 997 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
igerasim@8307 998 return TypeFunc::make(domain, range);
igerasim@8307 999 }
igerasim@8307 1000
kvn@7152 1001
kvn@7152 1002
duke@435 1003 //------------- Interpreter state access for on stack replacement
duke@435 1004 const TypeFunc* OptoRuntime::osr_end_Type() {
duke@435 1005 // create input type (domain)
duke@435 1006 const Type **fields = TypeTuple::fields(1);
duke@435 1007 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
duke@435 1008 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1009
duke@435 1010 // create result type
duke@435 1011 fields = TypeTuple::fields(1);
duke@435 1012 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
duke@435 1013 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 1014 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 1015 return TypeFunc::make(domain, range);
duke@435 1016 }
duke@435 1017
duke@435 1018 //-------------- methodData update helpers
duke@435 1019
duke@435 1020 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
duke@435 1021 // create input type (domain)
duke@435 1022 const Type **fields = TypeTuple::fields(2);
duke@435 1023 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
duke@435 1024 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
duke@435 1025 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
duke@435 1026
duke@435 1027 // create result type
duke@435 1028 fields = TypeTuple::fields(1);
duke@435 1029 fields[TypeFunc::Parms+0] = NULL; // void
duke@435 1030 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
duke@435 1031 return TypeFunc::make(domain,range);
duke@435 1032 }
duke@435 1033
duke@435 1034 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
duke@435 1035 if (receiver == NULL) return;
coleenp@4037 1036 Klass* receiver_klass = receiver->klass();
duke@435 1037
duke@435 1038 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
duke@435 1039 int empty_row = -1; // free row, if any is encountered
duke@435 1040
duke@435 1041 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
duke@435 1042 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
duke@435 1043 // if (vc->receiver(row) == receiver_klass)
duke@435 1044 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
duke@435 1045 intptr_t row_recv = *(mdp + receiver_off);
duke@435 1046 if (row_recv == (intptr_t) receiver_klass) {
duke@435 1047 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
duke@435 1048 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
duke@435 1049 *(mdp + count_off) += DataLayout::counter_increment;
duke@435 1050 return;
duke@435 1051 } else if (row_recv == 0) {
duke@435 1052 // else if (vc->receiver(row) == NULL)
duke@435 1053 empty_row = (int) row;
duke@435 1054 }
duke@435 1055 }
duke@435 1056
duke@435 1057 if (empty_row != -1) {
duke@435 1058 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
duke@435 1059 // vc->set_receiver(empty_row, receiver_klass);
duke@435 1060 *(mdp + receiver_off) = (intptr_t) receiver_klass;
duke@435 1061 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
duke@435 1062 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
duke@435 1063 *(mdp + count_off) = DataLayout::counter_increment;
kvn@1641 1064 } else {
kvn@1641 1065 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1066 // Increment total counter to indicate polymorphic case.
kvn@1641 1067 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
kvn@1641 1068 *count_p += DataLayout::counter_increment;
duke@435 1069 }
duke@435 1070 JRT_END
duke@435 1071
duke@435 1072 //-------------------------------------------------------------------------------------
duke@435 1073 // register policy
duke@435 1074
duke@435 1075 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
duke@435 1076 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
duke@435 1077 switch (register_save_policy[reg]) {
duke@435 1078 case 'C': return false; //SOC
duke@435 1079 case 'E': return true ; //SOE
duke@435 1080 case 'N': return false; //NS
duke@435 1081 case 'A': return false; //AS
duke@435 1082 }
duke@435 1083 ShouldNotReachHere();
duke@435 1084 return false;
duke@435 1085 }
duke@435 1086
duke@435 1087 //-----------------------------------------------------------------------
duke@435 1088 // Exceptions
duke@435 1089 //
duke@435 1090
duke@435 1091 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
duke@435 1092
duke@435 1093 // The method is an entry that is always called by a C++ method not
duke@435 1094 // directly from compiled code. Compiled code will call the C++ method following.
duke@435 1095 // We can't allow async exception to be installed during exception processing.
duke@435 1096 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
duke@435 1097
duke@435 1098 // Do not confuse exception_oop with pending_exception. The exception_oop
duke@435 1099 // is only used to pass arguments into the method. Not for general
duke@435 1100 // exception handling. DO NOT CHANGE IT to use pending_exception, since
duke@435 1101 // the runtime stubs checks this on exit.
duke@435 1102 assert(thread->exception_oop() != NULL, "exception oop is found");
duke@435 1103 address handler_address = NULL;
duke@435 1104
duke@435 1105 Handle exception(thread, thread->exception_oop());
twisti@5915 1106 address pc = thread->exception_pc();
twisti@5915 1107
twisti@5915 1108 // Clear out the exception oop and pc since looking up an
twisti@5915 1109 // exception handler can cause class loading, which might throw an
twisti@5915 1110 // exception and those fields are expected to be clear during
twisti@5915 1111 // normal bytecode execution.
twisti@5915 1112 thread->clear_exception_oop_and_pc();
duke@435 1113
duke@435 1114 if (TraceExceptions) {
twisti@5915 1115 trace_exception(exception(), pc, "");
duke@435 1116 }
twisti@5915 1117
duke@435 1118 // for AbortVMOnException flag
duke@435 1119 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 1120
twisti@5915 1121 #ifdef ASSERT
twisti@5915 1122 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
twisti@5915 1123 // should throw an exception here
twisti@5915 1124 ShouldNotReachHere();
twisti@5915 1125 }
twisti@5915 1126 #endif
duke@435 1127
duke@435 1128 // new exception handling: this method is entered only from adapters
duke@435 1129 // exceptions from compiled java methods are handled in compiled code
duke@435 1130 // using rethrow node
duke@435 1131
duke@435 1132 nm = CodeCache::find_nmethod(pc);
duke@435 1133 assert(nm != NULL, "No NMethod found");
duke@435 1134 if (nm->is_native_method()) {
twisti@5915 1135 fatal("Native method should not have path to exception handling");
duke@435 1136 } else {
duke@435 1137 // we are switching to old paradigm: search for exception handler in caller_frame
duke@435 1138 // instead in exception handler of caller_frame.sender()
duke@435 1139
dcubed@1648 1140 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 1141 // "Full-speed catching" is not necessary here,
duke@435 1142 // since we're notifying the VM on every catch.
duke@435 1143 // Force deoptimization and the rest of the lookup
duke@435 1144 // will be fine.
kvn@4364 1145 deoptimize_caller_frame(thread);
duke@435 1146 }
duke@435 1147
duke@435 1148 // Check the stack guard pages. If enabled, look for handler in this frame;
duke@435 1149 // otherwise, forcibly unwind the frame.
duke@435 1150 //
duke@435 1151 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
duke@435 1152 bool force_unwind = !thread->reguard_stack();
duke@435 1153 bool deopting = false;
duke@435 1154 if (nm->is_deopt_pc(pc)) {
duke@435 1155 deopting = true;
duke@435 1156 RegisterMap map(thread, false);
duke@435 1157 frame deoptee = thread->last_frame().sender(&map);
duke@435 1158 assert(deoptee.is_deoptimized_frame(), "must be deopted");
duke@435 1159 // Adjust the pc back to the original throwing pc
duke@435 1160 pc = deoptee.pc();
duke@435 1161 }
duke@435 1162
duke@435 1163 // If we are forcing an unwind because of stack overflow then deopt is
goetz@6441 1164 // irrelevant since we are throwing the frame away anyway.
duke@435 1165
duke@435 1166 if (deopting && !force_unwind) {
duke@435 1167 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1168 } else {
duke@435 1169
duke@435 1170 handler_address =
duke@435 1171 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
duke@435 1172
duke@435 1173 if (handler_address == NULL) {
kvn@3194 1174 Handle original_exception(thread, exception());
duke@435 1175 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
duke@435 1176 assert (handler_address != NULL, "must have compiled handler");
kvn@3194 1177 // Update the exception cache only when the unwind was not forced
kvn@3194 1178 // and there didn't happen another exception during the computation of the
kvn@3194 1179 // compiled exception handler.
kvn@3194 1180 if (!force_unwind && original_exception() == exception()) {
duke@435 1181 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
duke@435 1182 }
duke@435 1183 } else {
duke@435 1184 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
duke@435 1185 }
duke@435 1186 }
duke@435 1187
duke@435 1188 thread->set_exception_pc(pc);
duke@435 1189 thread->set_exception_handler_pc(handler_address);
twisti@1570 1190
twisti@1730 1191 // Check if the exception PC is a MethodHandle call site.
twisti@1803 1192 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
duke@435 1193 }
duke@435 1194
duke@435 1195 // Restore correct return pc. Was saved above.
duke@435 1196 thread->set_exception_oop(exception());
duke@435 1197 return handler_address;
duke@435 1198
duke@435 1199 JRT_END
duke@435 1200
duke@435 1201 // We are entering here from exception_blob
duke@435 1202 // If there is a compiled exception handler in this method, we will continue there;
duke@435 1203 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 1204 // Note we enter without the usual JRT wrapper. We will call a helper routine that
duke@435 1205 // will do the normal VM entry. We do it this way so that we can see if the nmethod
duke@435 1206 // we looked up the handler for has been deoptimized in the meantime. If it has been
goetz@6441 1207 // we must not use the handler and instead return the deopt blob.
duke@435 1208 address OptoRuntime::handle_exception_C(JavaThread* thread) {
duke@435 1209 //
duke@435 1210 // We are in Java not VM and in debug mode we have a NoHandleMark
duke@435 1211 //
duke@435 1212 #ifndef PRODUCT
duke@435 1213 SharedRuntime::_find_handler_ctr++; // find exception handler
duke@435 1214 #endif
duke@435 1215 debug_only(NoHandleMark __hm;)
duke@435 1216 nmethod* nm = NULL;
duke@435 1217 address handler_address = NULL;
duke@435 1218 {
duke@435 1219 // Enter the VM
duke@435 1220
duke@435 1221 ResetNoHandleMark rnhm;
duke@435 1222 handler_address = handle_exception_C_helper(thread, nm);
duke@435 1223 }
duke@435 1224
duke@435 1225 // Back in java: Use no oops, DON'T safepoint
duke@435 1226
duke@435 1227 // Now check to see if the handler we are returning is in a now
duke@435 1228 // deoptimized frame
duke@435 1229
duke@435 1230 if (nm != NULL) {
duke@435 1231 RegisterMap map(thread, false);
duke@435 1232 frame caller = thread->last_frame().sender(&map);
duke@435 1233 #ifdef ASSERT
duke@435 1234 assert(caller.is_compiled_frame(), "must be");
duke@435 1235 #endif // ASSERT
duke@435 1236 if (caller.is_deoptimized_frame()) {
duke@435 1237 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 1238 }
duke@435 1239 }
duke@435 1240 return handler_address;
duke@435 1241 }
duke@435 1242
duke@435 1243 //------------------------------rethrow----------------------------------------
duke@435 1244 // We get here after compiled code has executed a 'RethrowNode'. The callee
duke@435 1245 // is either throwing or rethrowing an exception. The callee-save registers
duke@435 1246 // have been restored, synchronized objects have been unlocked and the callee
duke@435 1247 // stack frame has been removed. The return address was passed in.
duke@435 1248 // Exception oop is passed as the 1st argument. This routine is then called
duke@435 1249 // from the stub. On exit, we know where to jump in the caller's code.
duke@435 1250 // After this C code exits, the stub will pop his frame and end in a jump
duke@435 1251 // (instead of a return). We enter the caller's default handler.
duke@435 1252 //
duke@435 1253 // This must be JRT_LEAF:
duke@435 1254 // - caller will not change its state as we cannot block on exit,
duke@435 1255 // therefore raw_exception_handler_for_return_address is all it takes
duke@435 1256 // to handle deoptimized blobs
duke@435 1257 //
duke@435 1258 // However, there needs to be a safepoint check in the middle! So compiled
duke@435 1259 // safepoints are completely watertight.
duke@435 1260 //
duke@435 1261 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
duke@435 1262 //
duke@435 1263 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
duke@435 1264 //
duke@435 1265 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
duke@435 1266 #ifndef PRODUCT
duke@435 1267 SharedRuntime::_rethrow_ctr++; // count rethrows
duke@435 1268 #endif
duke@435 1269 assert (exception != NULL, "should have thrown a NULLPointerException");
duke@435 1270 #ifdef ASSERT
never@1577 1271 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 1272 // should throw an exception here
duke@435 1273 ShouldNotReachHere();
duke@435 1274 }
duke@435 1275 #endif
duke@435 1276
duke@435 1277 thread->set_vm_result(exception);
duke@435 1278 // Frame not compiled (handles deoptimization blob)
twisti@1730 1279 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
duke@435 1280 }
duke@435 1281
duke@435 1282
duke@435 1283 const TypeFunc *OptoRuntime::rethrow_Type() {
duke@435 1284 // create input type (domain)
duke@435 1285 const Type **fields = TypeTuple::fields(1);
duke@435 1286 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1287 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1288
duke@435 1289 // create result type (range)
duke@435 1290 fields = TypeTuple::fields(1);
duke@435 1291 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
duke@435 1292 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 1293
duke@435 1294 return TypeFunc::make(domain, range);
duke@435 1295 }
duke@435 1296
duke@435 1297
duke@435 1298 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
kvn@4364 1299 // Deoptimize the caller before continuing, as the compiled
kvn@4364 1300 // exception handler table may not be valid.
kvn@4364 1301 if (!StressCompiledExceptionHandlers && doit) {
kvn@4364 1302 deoptimize_caller_frame(thread);
kvn@4364 1303 }
kvn@4364 1304 }
duke@435 1305
kvn@4364 1306 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
kvn@4364 1307 // Called from within the owner thread, so no need for safepoint
kvn@4364 1308 RegisterMap reg_map(thread);
kvn@4364 1309 frame stub_frame = thread->last_frame();
kvn@4364 1310 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@4364 1311 frame caller_frame = stub_frame.sender(&reg_map);
kvn@4364 1312
kvn@4364 1313 // Deoptimize the caller frame.
kvn@4364 1314 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 1315 }
duke@435 1316
duke@435 1317
kvn@3259 1318 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
kvn@3259 1319 // Called from within the owner thread, so no need for safepoint
kvn@3259 1320 RegisterMap reg_map(thread);
kvn@3259 1321 frame stub_frame = thread->last_frame();
kvn@3259 1322 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
kvn@3259 1323 frame caller_frame = stub_frame.sender(&reg_map);
kvn@3259 1324 return caller_frame.is_deoptimized_frame();
kvn@3259 1325 }
kvn@3259 1326
kvn@3259 1327
duke@435 1328 const TypeFunc *OptoRuntime::register_finalizer_Type() {
duke@435 1329 // create input type (domain)
duke@435 1330 const Type **fields = TypeTuple::fields(1);
duke@435 1331 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
duke@435 1332 // // The JavaThread* is passed to each routine as the last argument
duke@435 1333 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
duke@435 1334 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
duke@435 1335
duke@435 1336 // create result type (range)
duke@435 1337 fields = TypeTuple::fields(0);
duke@435 1338
duke@435 1339 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1340
duke@435 1341 return TypeFunc::make(domain,range);
duke@435 1342 }
duke@435 1343
duke@435 1344
duke@435 1345 //-----------------------------------------------------------------------------
duke@435 1346 // Dtrace support. entry and exit probes have the same signature
duke@435 1347 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
duke@435 1348 // create input type (domain)
duke@435 1349 const Type **fields = TypeTuple::fields(2);
duke@435 1350 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
roland@4051 1351 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
duke@435 1352 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1353
duke@435 1354 // create result type (range)
duke@435 1355 fields = TypeTuple::fields(0);
duke@435 1356
duke@435 1357 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1358
duke@435 1359 return TypeFunc::make(domain,range);
duke@435 1360 }
duke@435 1361
duke@435 1362 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
duke@435 1363 // create input type (domain)
duke@435 1364 const Type **fields = TypeTuple::fields(2);
duke@435 1365 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
duke@435 1366 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
duke@435 1367
duke@435 1368 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
duke@435 1369
duke@435 1370 // create result type (range)
duke@435 1371 fields = TypeTuple::fields(0);
duke@435 1372
duke@435 1373 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 1374
duke@435 1375 return TypeFunc::make(domain,range);
duke@435 1376 }
duke@435 1377
duke@435 1378
duke@435 1379 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
duke@435 1380 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 1381 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 1382 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 1383 JRT_END
duke@435 1384
duke@435 1385 //-----------------------------------------------------------------------------
duke@435 1386
duke@435 1387 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
duke@435 1388
duke@435 1389 //
duke@435 1390 // dump the collected NamedCounters.
duke@435 1391 //
duke@435 1392 void OptoRuntime::print_named_counters() {
duke@435 1393 int total_lock_count = 0;
duke@435 1394 int eliminated_lock_count = 0;
duke@435 1395
duke@435 1396 NamedCounter* c = _named_counters;
duke@435 1397 while (c) {
duke@435 1398 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
duke@435 1399 int count = c->count();
duke@435 1400 if (count > 0) {
duke@435 1401 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
duke@435 1402 if (Verbose) {
duke@435 1403 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
duke@435 1404 }
duke@435 1405 total_lock_count += count;
duke@435 1406 if (eliminated) {
duke@435 1407 eliminated_lock_count += count;
duke@435 1408 }
duke@435 1409 }
duke@435 1410 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
duke@435 1411 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
duke@435 1412 if (blc->nonzero()) {
duke@435 1413 tty->print_cr("%s", c->name());
duke@435 1414 blc->print_on(tty);
duke@435 1415 }
kvn@6429 1416 #if INCLUDE_RTM_OPT
kvn@6429 1417 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
kvn@6429 1418 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
kvn@6429 1419 if (rlc->nonzero()) {
kvn@6429 1420 tty->print_cr("%s", c->name());
kvn@6429 1421 rlc->print_on(tty);
kvn@6429 1422 }
kvn@6429 1423 #endif
duke@435 1424 }
duke@435 1425 c = c->next();
duke@435 1426 }
duke@435 1427 if (total_lock_count > 0) {
duke@435 1428 tty->print_cr("dynamic locks: %d", total_lock_count);
duke@435 1429 if (eliminated_lock_count) {
duke@435 1430 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
duke@435 1431 (int)(eliminated_lock_count * 100.0 / total_lock_count));
duke@435 1432 }
duke@435 1433 }
duke@435 1434 }
duke@435 1435
duke@435 1436 //
duke@435 1437 // Allocate a new NamedCounter. The JVMState is used to generate the
duke@435 1438 // name which consists of method@line for the inlining tree.
duke@435 1439 //
duke@435 1440
duke@435 1441 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
duke@435 1442 int max_depth = youngest_jvms->depth();
duke@435 1443
duke@435 1444 // Visit scopes from youngest to oldest.
duke@435 1445 bool first = true;
duke@435 1446 stringStream st;
duke@435 1447 for (int depth = max_depth; depth >= 1; depth--) {
duke@435 1448 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1449 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
duke@435 1450 if (!first) {
duke@435 1451 st.print(" ");
duke@435 1452 } else {
duke@435 1453 first = false;
duke@435 1454 }
duke@435 1455 int bci = jvms->bci();
duke@435 1456 if (bci < 0) bci = 0;
duke@435 1457 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
duke@435 1458 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
duke@435 1459 }
duke@435 1460 NamedCounter* c;
duke@435 1461 if (tag == NamedCounter::BiasedLockingCounter) {
duke@435 1462 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
kvn@6429 1463 } else if (tag == NamedCounter::RTMLockingCounter) {
kvn@6429 1464 c = new RTMLockingNamedCounter(strdup(st.as_string()));
duke@435 1465 } else {
duke@435 1466 c = new NamedCounter(strdup(st.as_string()), tag);
duke@435 1467 }
duke@435 1468
duke@435 1469 // atomically add the new counter to the head of the list. We only
duke@435 1470 // add counters so this is safe.
duke@435 1471 NamedCounter* head;
duke@435 1472 do {
kvn@6429 1473 c->set_next(NULL);
duke@435 1474 head = _named_counters;
duke@435 1475 c->set_next(head);
duke@435 1476 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
duke@435 1477 return c;
duke@435 1478 }
duke@435 1479
duke@435 1480 //-----------------------------------------------------------------------------
duke@435 1481 // Non-product code
duke@435 1482 #ifndef PRODUCT
duke@435 1483
duke@435 1484 int trace_exception_counter = 0;
duke@435 1485 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
duke@435 1486 ttyLocker ttyl;
duke@435 1487 trace_exception_counter++;
duke@435 1488 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
duke@435 1489 exception_oop->print_value();
duke@435 1490 tty->print(" in ");
duke@435 1491 CodeBlob* blob = CodeCache::find_blob(exception_pc);
duke@435 1492 if (blob->is_nmethod()) {
twisti@5915 1493 nmethod* nm = blob->as_nmethod_or_null();
twisti@5915 1494 nm->method()->print_value();
duke@435 1495 } else if (blob->is_runtime_stub()) {
duke@435 1496 tty->print("<runtime-stub>");
duke@435 1497 } else {
duke@435 1498 tty->print("<unknown>");
duke@435 1499 }
drchase@6680 1500 tty->print(" at " INTPTR_FORMAT, p2i(exception_pc));
duke@435 1501 tty->print_cr("]");
duke@435 1502 }
duke@435 1503
duke@435 1504 #endif // PRODUCT
duke@435 1505
duke@435 1506
duke@435 1507 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1508 // Called from call sites in compiled code with oop maps (actually safepoints)
duke@435 1509 // Zaps dead locals in first java frame.
duke@435 1510 // Is entry because may need to lock to generate oop maps
duke@435 1511 // Currently, only used for compiler frames, but someday may be used
duke@435 1512 // for interpreter frames, too.
duke@435 1513
duke@435 1514 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
duke@435 1515
duke@435 1516 // avoid pointers to member funcs with these helpers
duke@435 1517 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
duke@435 1518 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
duke@435 1519
duke@435 1520
duke@435 1521 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
duke@435 1522 bool (*is_this_the_right_frame_to_zap)(frame*)) {
duke@435 1523 assert(JavaThread::current() == thread, "is this needed?");
duke@435 1524
duke@435 1525 if ( !ZapDeadCompiledLocals ) return;
duke@435 1526
duke@435 1527 bool skip = false;
duke@435 1528
duke@435 1529 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
duke@435 1530 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
duke@435 1531 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
duke@435 1532 warning("starting zapping after skipping");
duke@435 1533
duke@435 1534 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
duke@435 1535 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
duke@435 1536 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
duke@435 1537 warning("about to zap last zap");
duke@435 1538
duke@435 1539 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
duke@435 1540
duke@435 1541 if ( skip ) return;
duke@435 1542
duke@435 1543 // find java frame and zap it
duke@435 1544
duke@435 1545 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
duke@435 1546 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
duke@435 1547 sfs.current()->zap_dead_locals(thread, sfs.register_map());
duke@435 1548 return;
duke@435 1549 }
duke@435 1550 }
duke@435 1551 warning("no frame found to zap in zap_dead_Java_locals_C");
duke@435 1552 }
duke@435 1553
duke@435 1554 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
duke@435 1555 zap_dead_java_or_native_locals(thread, is_java_frame);
duke@435 1556 JRT_END
duke@435 1557
duke@435 1558 // The following does not work because for one thing, the
duke@435 1559 // thread state is wrong; it expects java, but it is native.
twisti@1040 1560 // Also, the invariants in a native stub are different and
duke@435 1561 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
duke@435 1562 // in there.
duke@435 1563 // So for now, we do not zap in native stubs.
duke@435 1564
duke@435 1565 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
duke@435 1566 zap_dead_java_or_native_locals(thread, is_native_frame);
duke@435 1567 JRT_END
duke@435 1568
duke@435 1569 # endif

mercurial