src/share/vm/opto/memnode.cpp

Wed, 13 Aug 2014 11:00:22 +0200

author
roland
date
Wed, 13 Aug 2014 11:00:22 +0200
changeset 7041
411e30e5fbb8
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 7341
e7b3d177adda
permissions
-rw-r--r--

8026796: Make replace_in_map() on parent maps generic
Summary: propagate node replacements along control flow edges to callers
Reviewed-by: kvn, vlivanov

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "oops/objArrayKlass.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/connode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/machnode.hpp"
stefank@2314 36 #include "opto/matcher.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/mulnode.hpp"
stefank@2314 39 #include "opto/phaseX.hpp"
stefank@2314 40 #include "opto/regmask.hpp"
stefank@2314 41
duke@435 42 // Portions of code courtesy of Clifford Click
duke@435 43
duke@435 44 // Optimization - Graph Style
duke@435 45
kvn@509 46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 47
duke@435 48 //=============================================================================
duke@435 49 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 50
duke@435 51 const TypePtr *MemNode::adr_type() const {
duke@435 52 Node* adr = in(Address);
duke@435 53 const TypePtr* cross_check = NULL;
duke@435 54 DEBUG_ONLY(cross_check = _adr_type);
duke@435 55 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 56 }
duke@435 57
duke@435 58 #ifndef PRODUCT
duke@435 59 void MemNode::dump_spec(outputStream *st) const {
duke@435 60 if (in(Address) == NULL) return; // node is dead
duke@435 61 #ifndef ASSERT
duke@435 62 // fake the missing field
duke@435 63 const TypePtr* _adr_type = NULL;
duke@435 64 if (in(Address) != NULL)
duke@435 65 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 66 #endif
duke@435 67 dump_adr_type(this, _adr_type, st);
duke@435 68
duke@435 69 Compile* C = Compile::current();
duke@435 70 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 71 st->print(" Volatile!");
duke@435 72 }
duke@435 73
duke@435 74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 75 st->print(" @");
duke@435 76 if (adr_type == NULL) {
duke@435 77 st->print("NULL");
duke@435 78 } else {
duke@435 79 adr_type->dump_on(st);
duke@435 80 Compile* C = Compile::current();
duke@435 81 Compile::AliasType* atp = NULL;
duke@435 82 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 83 if (atp == NULL)
duke@435 84 st->print(", idx=?\?;");
duke@435 85 else if (atp->index() == Compile::AliasIdxBot)
duke@435 86 st->print(", idx=Bot;");
duke@435 87 else if (atp->index() == Compile::AliasIdxTop)
duke@435 88 st->print(", idx=Top;");
duke@435 89 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 90 st->print(", idx=Raw;");
duke@435 91 else {
duke@435 92 ciField* field = atp->field();
duke@435 93 if (field) {
duke@435 94 st->print(", name=");
duke@435 95 field->print_name_on(st);
duke@435 96 }
duke@435 97 st->print(", idx=%d;", atp->index());
duke@435 98 }
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 extern void print_alias_types();
duke@435 103
duke@435 104 #endif
duke@435 105
kvn@5110 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
kvn@5110 107 assert((t_oop != NULL), "sanity");
kvn@5110 108 bool is_instance = t_oop->is_known_instance_field();
kvn@5110 109 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
kvn@5110 110 (load != NULL) && load->is_Load() &&
kvn@5110 111 (phase->is_IterGVN() != NULL);
kvn@5110 112 if (!(is_instance || is_boxed_value_load))
kvn@509 113 return mchain; // don't try to optimize non-instance types
kvn@5110 114 uint instance_id = t_oop->instance_id();
kvn@688 115 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 116 Node *prev = NULL;
kvn@509 117 Node *result = mchain;
kvn@509 118 while (prev != result) {
kvn@509 119 prev = result;
kvn@688 120 if (result == start_mem)
twisti@1040 121 break; // hit one of our sentinels
kvn@509 122 // skip over a call which does not affect this memory slice
kvn@509 123 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 124 Node *proj_in = result->in(0);
kvn@688 125 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
twisti@1040 126 break; // hit one of our sentinels
kvn@688 127 } else if (proj_in->is_Call()) {
kvn@509 128 CallNode *call = proj_in->as_Call();
kvn@5110 129 if (!call->may_modify(t_oop, phase)) { // returns false for instances
kvn@509 130 result = call->in(TypeFunc::Memory);
kvn@509 131 }
kvn@509 132 } else if (proj_in->is_Initialize()) {
kvn@509 133 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 134 // Stop if this is the initialization for the object instance which
kvn@509 135 // which contains this memory slice, otherwise skip over it.
kvn@5110 136 if ((alloc == NULL) || (alloc->_idx == instance_id)) {
kvn@5110 137 break;
kvn@5110 138 }
kvn@5110 139 if (is_instance) {
kvn@509 140 result = proj_in->in(TypeFunc::Memory);
kvn@5110 141 } else if (is_boxed_value_load) {
kvn@5110 142 Node* klass = alloc->in(AllocateNode::KlassNode);
kvn@5110 143 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
kvn@5110 144 if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
kvn@5110 145 result = proj_in->in(TypeFunc::Memory); // not related allocation
kvn@5110 146 }
kvn@509 147 }
kvn@509 148 } else if (proj_in->is_MemBar()) {
kvn@509 149 result = proj_in->in(TypeFunc::Memory);
kvn@688 150 } else {
kvn@688 151 assert(false, "unexpected projection");
kvn@509 152 }
kvn@1535 153 } else if (result->is_ClearArray()) {
kvn@5110 154 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
kvn@1535 155 // Can not bypass initialization of the instance
kvn@1535 156 // we are looking for.
kvn@1535 157 break;
kvn@1535 158 }
kvn@1535 159 // Otherwise skip it (the call updated 'result' value).
kvn@509 160 } else if (result->is_MergeMem()) {
kvn@5110 161 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
kvn@509 162 }
kvn@509 163 }
kvn@509 164 return result;
kvn@509 165 }
kvn@509 166
kvn@5110 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
kvn@5110 168 const TypeOopPtr* t_oop = t_adr->isa_oopptr();
kvn@5110 169 if (t_oop == NULL)
kvn@5110 170 return mchain; // don't try to optimize non-oop types
kvn@5110 171 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
kvn@5110 172 bool is_instance = t_oop->is_known_instance_field();
kvn@509 173 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 174 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 175 PhiNode *mphi = result->as_Phi();
kvn@509 176 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 177 const TypePtr *t = mphi->adr_type();
kvn@598 178 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 179 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 180 t->is_oopptr()->cast_to_exactness(true)
kvn@682 181 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 182 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 183 // clone the Phi with our address type
kvn@509 184 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 185 } else {
kvn@509 186 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 187 }
kvn@509 188 }
kvn@509 189 return result;
kvn@509 190 }
kvn@509 191
kvn@499 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 193 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 194 Node *mem = mmem;
kvn@499 195 #ifdef ASSERT
kvn@499 196 {
kvn@499 197 // Check that current type is consistent with the alias index used during graph construction
kvn@499 198 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 199 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 200 phase->C->must_alias(adr_check, alias_idx );
kvn@499 201 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 202 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 203 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 204 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 205 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 206 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 207 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 208 // don't assert if it is dead code.
kvn@499 209 consistent = true;
kvn@499 210 }
kvn@499 211 if( !consistent ) {
kvn@499 212 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 213 if( adr_check == NULL ) {
kvn@499 214 st->print("NULL");
kvn@499 215 } else {
kvn@499 216 adr_check->dump();
kvn@499 217 }
kvn@499 218 st->cr();
kvn@499 219 print_alias_types();
kvn@499 220 assert(consistent, "adr_check must match alias idx");
kvn@499 221 }
kvn@499 222 }
kvn@499 223 #endif
never@2170 224 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 225 // means an array I have not precisely typed yet. Do not do any
kvn@499 226 // alias stuff with it any time soon.
never@2170 227 const TypeOopPtr *toop = tp->isa_oopptr();
kvn@499 228 if( tp->base() != Type::AnyPtr &&
never@2170 229 !(toop &&
never@2170 230 toop->klass() != NULL &&
never@2170 231 toop->klass()->is_java_lang_Object() &&
never@2170 232 toop->offset() == Type::OffsetBot) ) {
kvn@499 233 // compress paths and change unreachable cycles to TOP
kvn@499 234 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 235 // Equivalent code in PhiNode::Ideal
kvn@499 236 Node* m = phase->transform(mmem);
twisti@1040 237 // If transformed to a MergeMem, get the desired slice
kvn@499 238 // Otherwise the returned node represents memory for every slice
kvn@499 239 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 240 // Update input if it is progress over what we have now
kvn@499 241 }
kvn@499 242 return mem;
kvn@499 243 }
kvn@499 244
duke@435 245 //--------------------------Ideal_common---------------------------------------
duke@435 246 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 249 // If our control input is a dead region, kill all below the region
duke@435 250 Node *ctl = in(MemNode::Control);
duke@435 251 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 252 return this;
kvn@740 253 ctl = in(MemNode::Control);
kvn@740 254 // Don't bother trying to transform a dead node
kvn@4695 255 if (ctl && ctl->is_top()) return NodeSentinel;
duke@435 256
kvn@1143 257 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1143 258 // Wait if control on the worklist.
kvn@1143 259 if (ctl && can_reshape && igvn != NULL) {
kvn@1143 260 Node* bol = NULL;
kvn@1143 261 Node* cmp = NULL;
kvn@1143 262 if (ctl->in(0)->is_If()) {
kvn@1143 263 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
kvn@1143 264 bol = ctl->in(0)->in(1);
kvn@1143 265 if (bol->is_Bool())
kvn@1143 266 cmp = ctl->in(0)->in(1)->in(1);
kvn@1143 267 }
kvn@1143 268 if (igvn->_worklist.member(ctl) ||
kvn@1143 269 (bol != NULL && igvn->_worklist.member(bol)) ||
kvn@1143 270 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
kvn@1143 271 // This control path may be dead.
kvn@1143 272 // Delay this memory node transformation until the control is processed.
kvn@1143 273 phase->is_IterGVN()->_worklist.push(this);
kvn@1143 274 return NodeSentinel; // caller will return NULL
kvn@1143 275 }
kvn@1143 276 }
duke@435 277 // Ignore if memory is dead, or self-loop
duke@435 278 Node *mem = in(MemNode::Memory);
kvn@4695 279 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
kvn@4695 280 assert(mem != this, "dead loop in MemNode::Ideal");
duke@435 281
kvn@3320 282 if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
kvn@3320 283 // This memory slice may be dead.
kvn@3320 284 // Delay this mem node transformation until the memory is processed.
kvn@3320 285 phase->is_IterGVN()->_worklist.push(this);
kvn@3320 286 return NodeSentinel; // caller will return NULL
kvn@3320 287 }
kvn@3320 288
duke@435 289 Node *address = in(MemNode::Address);
kvn@4695 290 const Type *t_adr = phase->type(address);
kvn@4695 291 if (t_adr == Type::TOP) return NodeSentinel; // caller will return NULL
kvn@4695 292
kvn@4695 293 if (can_reshape && igvn != NULL &&
kvn@2181 294 (igvn->_worklist.member(address) ||
kvn@4695 295 igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
kvn@855 296 // The address's base and type may change when the address is processed.
kvn@855 297 // Delay this mem node transformation until the address is processed.
kvn@855 298 phase->is_IterGVN()->_worklist.push(this);
kvn@855 299 return NodeSentinel; // caller will return NULL
kvn@855 300 }
kvn@855 301
kvn@1497 302 // Do NOT remove or optimize the next lines: ensure a new alias index
kvn@1497 303 // is allocated for an oop pointer type before Escape Analysis.
kvn@1497 304 // Note: C++ will not remove it since the call has side effect.
kvn@4695 305 if (t_adr->isa_oopptr()) {
kvn@1497 306 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
kvn@1497 307 }
kvn@1497 308
kvn@1143 309 Node* base = NULL;
kvn@6657 310 if (address->is_AddP()) {
kvn@1143 311 base = address->in(AddPNode::Base);
kvn@6657 312 }
kvn@4695 313 if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
kvn@4695 314 !t_adr->isa_rawptr()) {
kvn@4695 315 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
kvn@6657 316 // Skip this node optimization if its address has TOP base.
kvn@6657 317 return NodeSentinel; // caller will return NULL
kvn@4695 318 }
kvn@1143 319
duke@435 320 // Avoid independent memory operations
duke@435 321 Node* old_mem = mem;
duke@435 322
kvn@471 323 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 324 // initializations was removed. After macro-expansion all stores catched
kvn@471 325 // by Initialize node became raw stores and there is no information
kvn@471 326 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 327 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 328 // were already unhooked by using information from detect_ptr_independence()
kvn@471 329 // and find_previous_store().
duke@435 330
duke@435 331 if (mem->is_MergeMem()) {
duke@435 332 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 333 const TypePtr *tp = t_adr->is_ptr();
kvn@499 334
kvn@499 335 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 336 }
duke@435 337
duke@435 338 if (mem != old_mem) {
duke@435 339 set_req(MemNode::Memory, mem);
roland@4657 340 if (can_reshape && old_mem->outcnt() == 0) {
roland@4657 341 igvn->_worklist.push(old_mem);
roland@4657 342 }
kvn@740 343 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 344 return this;
duke@435 345 }
duke@435 346
duke@435 347 // let the subclass continue analyzing...
duke@435 348 return NULL;
duke@435 349 }
duke@435 350
duke@435 351 // Helper function for proving some simple control dominations.
kvn@554 352 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 353 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 354 // is not a constant (dominated by the method's StartNode).
duke@435 355 // Used by MemNode::find_previous_store to prove that the
duke@435 356 // control input of a memory operation predates (dominates)
duke@435 357 // an allocation it wants to look past.
kvn@554 358 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 359 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 360 return false; // Conservative answer for dead code
kvn@554 361
kvn@628 362 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 363 dom = dom->find_exact_control(dom);
kvn@554 364 if (dom == NULL || dom->is_top())
kvn@554 365 return false; // Conservative answer for dead code
kvn@554 366
kvn@628 367 if (dom == sub) {
kvn@628 368 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 369 // 'dom' is Proj node of the 'sub'.
kvn@628 370 return false;
kvn@628 371 }
kvn@628 372
kvn@590 373 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 374 return true;
kvn@554 375
kvn@554 376 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 377 // of all its inputs dominate or equal to sub's control edge.
kvn@554 378
kvn@554 379 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 380 // Or Region for the check in LoadNode::Ideal();
kvn@598 381 // 'sub' should have sub->in(0) != NULL.
kvn@598 382 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@5110 383 sub->is_Region() || sub->is_Call(), "expecting only these nodes");
kvn@554 384
kvn@554 385 // Get control edge of 'sub'.
kvn@628 386 Node* orig_sub = sub;
kvn@554 387 sub = sub->find_exact_control(sub->in(0));
kvn@554 388 if (sub == NULL || sub->is_top())
kvn@554 389 return false; // Conservative answer for dead code
kvn@554 390
kvn@554 391 assert(sub->is_CFG(), "expecting control");
kvn@554 392
kvn@554 393 if (sub == dom)
kvn@554 394 return true;
kvn@554 395
kvn@554 396 if (sub->is_Start() || sub->is_Root())
kvn@554 397 return false;
kvn@554 398
kvn@554 399 {
kvn@554 400 // Check all control edges of 'dom'.
kvn@554 401
kvn@554 402 ResourceMark rm;
kvn@554 403 Arena* arena = Thread::current()->resource_area();
kvn@554 404 Node_List nlist(arena);
kvn@554 405 Unique_Node_List dom_list(arena);
kvn@554 406
kvn@554 407 dom_list.push(dom);
kvn@554 408 bool only_dominating_controls = false;
kvn@554 409
kvn@554 410 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 411 Node* n = dom_list.at(next);
kvn@628 412 if (n == orig_sub)
kvn@628 413 return false; // One of dom's inputs dominated by sub.
kvn@554 414 if (!n->is_CFG() && n->pinned()) {
kvn@554 415 // Check only own control edge for pinned non-control nodes.
kvn@554 416 n = n->find_exact_control(n->in(0));
kvn@554 417 if (n == NULL || n->is_top())
kvn@554 418 return false; // Conservative answer for dead code
kvn@554 419 assert(n->is_CFG(), "expecting control");
kvn@628 420 dom_list.push(n);
kvn@628 421 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 422 only_dominating_controls = true;
kvn@554 423 } else if (n->is_CFG()) {
kvn@554 424 if (n->dominates(sub, nlist))
kvn@554 425 only_dominating_controls = true;
kvn@554 426 else
kvn@554 427 return false;
kvn@554 428 } else {
kvn@554 429 // First, own control edge.
kvn@554 430 Node* m = n->find_exact_control(n->in(0));
kvn@590 431 if (m != NULL) {
kvn@590 432 if (m->is_top())
kvn@590 433 return false; // Conservative answer for dead code
kvn@590 434 dom_list.push(m);
kvn@590 435 }
kvn@554 436 // Now, the rest of edges.
kvn@554 437 uint cnt = n->req();
kvn@554 438 for (uint i = 1; i < cnt; i++) {
kvn@554 439 m = n->find_exact_control(n->in(i));
kvn@554 440 if (m == NULL || m->is_top())
kvn@554 441 continue;
kvn@554 442 dom_list.push(m);
duke@435 443 }
duke@435 444 }
duke@435 445 }
kvn@554 446 return only_dominating_controls;
duke@435 447 }
duke@435 448 }
duke@435 449
duke@435 450 //---------------------detect_ptr_independence---------------------------------
duke@435 451 // Used by MemNode::find_previous_store to prove that two base
duke@435 452 // pointers are never equal.
duke@435 453 // The pointers are accompanied by their associated allocations,
duke@435 454 // if any, which have been previously discovered by the caller.
duke@435 455 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 456 Node* p2, AllocateNode* a2,
duke@435 457 PhaseTransform* phase) {
duke@435 458 // Attempt to prove that these two pointers cannot be aliased.
duke@435 459 // They may both manifestly be allocations, and they should differ.
duke@435 460 // Or, if they are not both allocations, they can be distinct constants.
duke@435 461 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 462 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 463 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 464 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 465 return (a1 != a2);
duke@435 466 } else if (a1 != NULL) { // one allocation a1
duke@435 467 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 468 return all_controls_dominate(p2, a1);
duke@435 469 } else { //(a2 != NULL) // one allocation a2
kvn@554 470 return all_controls_dominate(p1, a2);
duke@435 471 }
duke@435 472 return false;
duke@435 473 }
duke@435 474
duke@435 475
duke@435 476 // The logic for reordering loads and stores uses four steps:
duke@435 477 // (a) Walk carefully past stores and initializations which we
duke@435 478 // can prove are independent of this load.
duke@435 479 // (b) Observe that the next memory state makes an exact match
duke@435 480 // with self (load or store), and locate the relevant store.
duke@435 481 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 482 // the optimizer would fold it up somehow.
duke@435 483 // (d) Do the rewiring, and return, depending on some other part of
duke@435 484 // the optimizer to fold up the load.
duke@435 485 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 486 // specific to loads and stores, so they are handled by the callers.
duke@435 487 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 488 //
duke@435 489 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 490 Node* ctrl = in(MemNode::Control);
duke@435 491 Node* adr = in(MemNode::Address);
duke@435 492 intptr_t offset = 0;
duke@435 493 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 494 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 495
duke@435 496 if (offset == Type::OffsetBot)
duke@435 497 return NULL; // cannot unalias unless there are precise offsets
duke@435 498
kvn@509 499 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 500
duke@435 501 intptr_t size_in_bytes = memory_size();
duke@435 502
duke@435 503 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 504
duke@435 505 int cnt = 50; // Cycle limiter
duke@435 506 for (;;) { // While we can dance past unrelated stores...
duke@435 507 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 508
duke@435 509 if (mem->is_Store()) {
duke@435 510 Node* st_adr = mem->in(MemNode::Address);
duke@435 511 intptr_t st_offset = 0;
duke@435 512 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 513 if (st_base == NULL)
duke@435 514 break; // inscrutable pointer
duke@435 515 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 516 const int MAX_STORE = BytesPerLong;
duke@435 517 if (st_offset >= offset + size_in_bytes ||
duke@435 518 st_offset <= offset - MAX_STORE ||
duke@435 519 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 520 // Success: The offsets are provably independent.
duke@435 521 // (You may ask, why not just test st_offset != offset and be done?
duke@435 522 // The answer is that stores of different sizes can co-exist
duke@435 523 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 524 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 525 mem = mem->in(MemNode::Memory);
duke@435 526 continue; // (a) advance through independent store memory
duke@435 527 }
duke@435 528 }
duke@435 529 if (st_base != base &&
duke@435 530 detect_ptr_independence(base, alloc,
duke@435 531 st_base,
duke@435 532 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 533 phase)) {
duke@435 534 // Success: The bases are provably independent.
duke@435 535 mem = mem->in(MemNode::Memory);
duke@435 536 continue; // (a) advance through independent store memory
duke@435 537 }
duke@435 538
duke@435 539 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 540 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 541 if (st_base == base && st_offset == offset) {
duke@435 542 return mem; // let caller handle steps (c), (d)
duke@435 543 }
duke@435 544
duke@435 545 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 546 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 547 AllocateNode* st_alloc = st_init->allocation();
duke@435 548 if (st_alloc == NULL)
duke@435 549 break; // something degenerated
duke@435 550 bool known_identical = false;
duke@435 551 bool known_independent = false;
duke@435 552 if (alloc == st_alloc)
duke@435 553 known_identical = true;
duke@435 554 else if (alloc != NULL)
duke@435 555 known_independent = true;
kvn@554 556 else if (all_controls_dominate(this, st_alloc))
duke@435 557 known_independent = true;
duke@435 558
duke@435 559 if (known_independent) {
duke@435 560 // The bases are provably independent: Either they are
duke@435 561 // manifestly distinct allocations, or else the control
duke@435 562 // of this load dominates the store's allocation.
duke@435 563 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 564 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 565 mem = st_alloc->in(TypeFunc::Memory);
duke@435 566 } else {
duke@435 567 mem = st_init->memory(alias_idx);
duke@435 568 }
duke@435 569 continue; // (a) advance through independent store memory
duke@435 570 }
duke@435 571
duke@435 572 // (b) at this point, if we are not looking at a store initializing
duke@435 573 // the same allocation we are loading from, we lose.
duke@435 574 if (known_identical) {
duke@435 575 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 576 return mem; // let caller handle steps (c), (d)
duke@435 577 }
duke@435 578
kvn@658 579 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 580 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 581 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 582 CallNode *call = mem->in(0)->as_Call();
kvn@509 583 if (!call->may_modify(addr_t, phase)) {
kvn@509 584 mem = call->in(TypeFunc::Memory);
kvn@509 585 continue; // (a) advance through independent call memory
kvn@509 586 }
kvn@509 587 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 588 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 589 continue; // (a) advance through independent MemBar memory
kvn@1535 590 } else if (mem->is_ClearArray()) {
kvn@1535 591 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
kvn@1535 592 // (the call updated 'mem' value)
kvn@1535 593 continue; // (a) advance through independent allocation memory
kvn@1535 594 } else {
kvn@1535 595 // Can not bypass initialization of the instance
kvn@1535 596 // we are looking for.
kvn@1535 597 return mem;
kvn@1535 598 }
kvn@509 599 } else if (mem->is_MergeMem()) {
kvn@509 600 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 601 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 602 continue; // (a) advance through independent MergeMem memory
kvn@509 603 }
duke@435 604 }
duke@435 605
duke@435 606 // Unless there is an explicit 'continue', we must bail out here,
duke@435 607 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 608 break;
duke@435 609 }
duke@435 610
duke@435 611 return NULL; // bail out
duke@435 612 }
duke@435 613
duke@435 614 //----------------------calculate_adr_type-------------------------------------
duke@435 615 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 616 // Also, asserts a cross-check of the type against the expected address type.
duke@435 617 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 618 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 619 #ifdef PRODUCT
duke@435 620 cross_check = NULL;
duke@435 621 #else
duke@435 622 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 623 #endif
duke@435 624 const TypePtr* tp = t->isa_ptr();
duke@435 625 if (tp == NULL) {
duke@435 626 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 627 return TypePtr::BOTTOM; // touches lots of memory
duke@435 628 } else {
duke@435 629 #ifdef ASSERT
duke@435 630 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 631 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 632 if (cross_check != NULL &&
duke@435 633 cross_check != TypePtr::BOTTOM &&
duke@435 634 cross_check != TypeRawPtr::BOTTOM) {
duke@435 635 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 636 Compile* C = Compile::current();
duke@435 637 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 638 "must stay in the original alias category");
duke@435 639 // The type of the address must be contained in the adr_type,
duke@435 640 // disregarding "null"-ness.
duke@435 641 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 642 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
roland@6313 643 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
duke@435 644 "real address must not escape from expected memory type");
duke@435 645 }
duke@435 646 #endif
duke@435 647 return tp;
duke@435 648 }
duke@435 649 }
duke@435 650
duke@435 651 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 652 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 653 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 654 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 655 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 656 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 657 // with the same data. This implies that any path into the loop already
duke@435 658 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 659 // must be covered by an equivalent cast, with an earlier control input.
duke@435 660 ResourceMark rm;
duke@435 661
duke@435 662 // The loop entry input of the phi should be the unique dominating
duke@435 663 // node for every Phi/CastPP in the loop.
duke@435 664 Unique_Node_List closure;
duke@435 665 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 666
duke@435 667 // Add the phi node and the cast to the worklist.
duke@435 668 Unique_Node_List worklist;
duke@435 669 worklist.push(adr_phi);
duke@435 670 if( cast != NULL ){
duke@435 671 if( !cast->is_ConstraintCast() ) return false;
duke@435 672 worklist.push(cast);
duke@435 673 }
duke@435 674
duke@435 675 // Begin recursive walk of phi nodes.
duke@435 676 while( worklist.size() ){
duke@435 677 // Take a node off the worklist
duke@435 678 Node *n = worklist.pop();
duke@435 679 if( !closure.member(n) ){
duke@435 680 // Add it to the closure.
duke@435 681 closure.push(n);
duke@435 682 // Make a sanity check to ensure we don't waste too much time here.
duke@435 683 if( closure.size() > 20) return false;
duke@435 684 // This node is OK if:
duke@435 685 // - it is a cast of an identical value
duke@435 686 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 687 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 688 if( n->is_ConstraintCast() ){
duke@435 689 worklist.push(n->in(1));
duke@435 690 } else if( n->is_Phi() ) {
duke@435 691 for( uint i = 1; i < n->req(); i++ ) {
duke@435 692 worklist.push(n->in(i));
duke@435 693 }
duke@435 694 } else {
duke@435 695 return false;
duke@435 696 }
duke@435 697 }
duke@435 698 }
duke@435 699
duke@435 700 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 701 return true;
duke@435 702 }
duke@435 703
duke@435 704 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 705 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 706 // going away in this pass and we need to make this memory op depend on the
duke@435 707 // gating null check.
kvn@598 708 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 709 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 710 }
duke@435 711
duke@435 712 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 713 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 714 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 715 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 716 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 717 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 718 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 719 // up on this approach. CNC 10/20/2000
kvn@598 720 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 721 // Only the control edge of the node 'n' might be updated.
kvn@598 722 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 723 Node *skipped_cast = NULL;
duke@435 724 // Need a null check? Regular static accesses do not because they are
duke@435 725 // from constant addresses. Array ops are gated by the range check (which
duke@435 726 // always includes a NULL check). Just check field ops.
kvn@598 727 if( n->in(MemNode::Control) == NULL ) {
duke@435 728 // Scan upwards for the highest location we can place this memory op.
duke@435 729 while( true ) {
duke@435 730 switch( adr->Opcode() ) {
duke@435 731
duke@435 732 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 733 adr = adr->in(AddPNode::Base);
duke@435 734 continue;
duke@435 735
coleenp@548 736 case Op_DecodeN: // No change to NULL-ness, so peek thru
roland@4159 737 case Op_DecodeNKlass:
coleenp@548 738 adr = adr->in(1);
coleenp@548 739 continue;
coleenp@548 740
kvn@3842 741 case Op_EncodeP:
roland@4159 742 case Op_EncodePKlass:
kvn@3842 743 // EncodeP node's control edge could be set by this method
kvn@3842 744 // when EncodeP node depends on CastPP node.
kvn@3842 745 //
kvn@3842 746 // Use its control edge for memory op because EncodeP may go away
kvn@3842 747 // later when it is folded with following or preceding DecodeN node.
kvn@3842 748 if (adr->in(0) == NULL) {
kvn@3842 749 // Keep looking for cast nodes.
kvn@3842 750 adr = adr->in(1);
kvn@3842 751 continue;
kvn@3842 752 }
kvn@3842 753 ccp->hash_delete(n);
kvn@3842 754 n->set_req(MemNode::Control, adr->in(0));
kvn@3842 755 ccp->hash_insert(n);
kvn@3842 756 return n;
kvn@3842 757
duke@435 758 case Op_CastPP:
duke@435 759 // If the CastPP is useless, just peek on through it.
duke@435 760 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 761 // Remember the cast that we've peeked though. If we peek
duke@435 762 // through more than one, then we end up remembering the highest
duke@435 763 // one, that is, if in a loop, the one closest to the top.
duke@435 764 skipped_cast = adr;
duke@435 765 adr = adr->in(1);
duke@435 766 continue;
duke@435 767 }
duke@435 768 // CastPP is going away in this pass! We need this memory op to be
duke@435 769 // control-dependent on the test that is guarding the CastPP.
kvn@598 770 ccp->hash_delete(n);
kvn@598 771 n->set_req(MemNode::Control, adr->in(0));
kvn@598 772 ccp->hash_insert(n);
kvn@598 773 return n;
duke@435 774
duke@435 775 case Op_Phi:
duke@435 776 // Attempt to float above a Phi to some dominating point.
duke@435 777 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 778 // If we've already peeked through a Cast (which could have set the
duke@435 779 // control), we can't float above a Phi, because the skipped Cast
duke@435 780 // may not be loop invariant.
duke@435 781 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 782 adr = adr->in(1);
duke@435 783 continue;
duke@435 784 }
duke@435 785 }
duke@435 786
duke@435 787 // Intentional fallthrough!
duke@435 788
duke@435 789 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 790 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 791 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 792 // behind the controls leading to the Phi.
duke@435 793 case Op_CheckCastPP:
duke@435 794 // These usually stick around to change address type, however a
duke@435 795 // useless one can be elided and we still need to pick up a control edge
duke@435 796 if (adr->in(0) == NULL) {
duke@435 797 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 798 // need check further up the ancestor chain for a control input to keep
duke@435 799 // the node in place. 4959717.
duke@435 800 skipped_cast = adr;
duke@435 801 adr = adr->in(1);
duke@435 802 continue;
duke@435 803 }
kvn@598 804 ccp->hash_delete(n);
kvn@598 805 n->set_req(MemNode::Control, adr->in(0));
kvn@598 806 ccp->hash_insert(n);
kvn@598 807 return n;
duke@435 808
duke@435 809 // List of "safe" opcodes; those that implicitly block the memory
duke@435 810 // op below any null check.
duke@435 811 case Op_CastX2P: // no null checks on native pointers
duke@435 812 case Op_Parm: // 'this' pointer is not null
duke@435 813 case Op_LoadP: // Loading from within a klass
coleenp@548 814 case Op_LoadN: // Loading from within a klass
duke@435 815 case Op_LoadKlass: // Loading from within a klass
kvn@599 816 case Op_LoadNKlass: // Loading from within a klass
duke@435 817 case Op_ConP: // Loading from a klass
kvn@598 818 case Op_ConN: // Loading from a klass
roland@4159 819 case Op_ConNKlass: // Loading from a klass
duke@435 820 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 821 case Op_Con: // Reading from TLS
duke@435 822 case Op_CMoveP: // CMoveP is pinned
kvn@599 823 case Op_CMoveN: // CMoveN is pinned
duke@435 824 break; // No progress
duke@435 825
duke@435 826 case Op_Proj: // Direct call to an allocation routine
duke@435 827 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 828 #ifdef ASSERT
duke@435 829 {
duke@435 830 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 831 const Node* call = adr->in(0);
kvn@598 832 if (call->is_CallJava()) {
kvn@598 833 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 834 const TypeTuple *r = call_java->tf()->range();
kvn@499 835 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 836 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 837 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 838 // We further presume that this is one of
duke@435 839 // new_instance_Java, new_array_Java, or
duke@435 840 // the like, but do not assert for this.
duke@435 841 } else if (call->is_Allocate()) {
duke@435 842 // similar case to new_instance_Java, etc.
duke@435 843 } else if (!call->is_CallLeaf()) {
duke@435 844 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 845 ShouldNotReachHere();
duke@435 846 }
duke@435 847 }
duke@435 848 #endif
duke@435 849 break;
duke@435 850 default:
duke@435 851 ShouldNotReachHere();
duke@435 852 }
duke@435 853 break;
duke@435 854 }
duke@435 855 }
duke@435 856
duke@435 857 return NULL; // No progress
duke@435 858 }
duke@435 859
duke@435 860
duke@435 861 //=============================================================================
duke@435 862 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 863 uint LoadNode::cmp( const Node &n ) const
duke@435 864 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 865 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 866 uint LoadNode::ideal_reg() const {
coleenp@4037 867 return _type->ideal_reg();
duke@435 868 }
duke@435 869
duke@435 870 #ifndef PRODUCT
duke@435 871 void LoadNode::dump_spec(outputStream *st) const {
duke@435 872 MemNode::dump_spec(st);
duke@435 873 if( !Verbose && !WizardMode ) {
duke@435 874 // standard dump does this in Verbose and WizardMode
duke@435 875 st->print(" #"); _type->dump_on(st);
duke@435 876 }
duke@435 877 }
duke@435 878 #endif
duke@435 879
kvn@1964 880 #ifdef ASSERT
kvn@1964 881 //----------------------------is_immutable_value-------------------------------
kvn@1964 882 // Helper function to allow a raw load without control edge for some cases
kvn@1964 883 bool LoadNode::is_immutable_value(Node* adr) {
kvn@1964 884 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
kvn@1964 885 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1964 886 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
kvn@1964 887 in_bytes(JavaThread::osthread_offset())));
kvn@1964 888 }
kvn@1964 889 #endif
duke@435 890
duke@435 891 //----------------------------LoadNode::make-----------------------------------
duke@435 892 // Polymorphic factory method:
goetz@6479 893 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
coleenp@548 894 Compile* C = gvn.C;
coleenp@548 895
duke@435 896 // sanity check the alias category against the created node type
duke@435 897 assert(!(adr_type->isa_oopptr() &&
duke@435 898 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 899 "use LoadKlassNode instead");
duke@435 900 assert(!(adr_type->isa_aryptr() &&
duke@435 901 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 902 "use LoadRangeNode instead");
kvn@1964 903 // Check control edge of raw loads
kvn@1964 904 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 905 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 906 rt->isa_oopptr() || is_immutable_value(adr),
kvn@1964 907 "raw memory operations should have control edge");
duke@435 908 switch (bt) {
goetz@6479 909 case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo);
goetz@6479 910 case T_BYTE: return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo);
goetz@6479 911 case T_INT: return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo);
goetz@6479 912 case T_CHAR: return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo);
goetz@6479 913 case T_SHORT: return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo);
goetz@6479 914 case T_LONG: return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
goetz@6479 915 case T_FLOAT: return new (C) LoadFNode (ctl, mem, adr, adr_type, rt, mo);
goetz@6479 916 case T_DOUBLE: return new (C) LoadDNode (ctl, mem, adr, adr_type, rt, mo);
goetz@6479 917 case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo);
coleenp@548 918 case T_OBJECT:
coleenp@548 919 #ifdef _LP64
kvn@598 920 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
goetz@6479 921 Node* load = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
kvn@4115 922 return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 923 } else
coleenp@548 924 #endif
kvn@598 925 {
roland@4159 926 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
goetz@6479 927 return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
kvn@598 928 }
duke@435 929 }
duke@435 930 ShouldNotReachHere();
duke@435 931 return (LoadNode*)NULL;
duke@435 932 }
duke@435 933
goetz@6479 934 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
duke@435 935 bool require_atomic = true;
goetz@6479 936 return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
duke@435 937 }
duke@435 938
duke@435 939
duke@435 940
duke@435 941
duke@435 942 //------------------------------hash-------------------------------------------
duke@435 943 uint LoadNode::hash() const {
duke@435 944 // unroll addition of interesting fields
duke@435 945 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 946 }
duke@435 947
vlivanov@5658 948 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
vlivanov@5658 949 if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
vlivanov@5658 950 bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
vlivanov@5658 951 bool is_stable_ary = FoldStableValues &&
vlivanov@5658 952 (tp != NULL) && (tp->isa_aryptr() != NULL) &&
vlivanov@5658 953 tp->isa_aryptr()->is_stable();
vlivanov@5658 954
vlivanov@5658 955 return (eliminate_boxing && non_volatile) || is_stable_ary;
vlivanov@5658 956 }
vlivanov@5658 957
vlivanov@5658 958 return false;
vlivanov@5658 959 }
vlivanov@5658 960
duke@435 961 //---------------------------can_see_stored_value------------------------------
duke@435 962 // This routine exists to make sure this set of tests is done the same
duke@435 963 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 964 // will change the graph shape in a way which makes memory alive twice at the
duke@435 965 // same time (uses the Oracle model of aliasing), then some
duke@435 966 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 967 // of aliasing.
duke@435 968 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 969 Node* ld_adr = in(MemNode::Address);
kvn@5110 970 intptr_t ld_off = 0;
kvn@5110 971 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
never@452 972 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
kvn@5110 973 Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
kvn@5110 974 // This is more general than load from boxing objects.
vlivanov@5658 975 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
never@452 976 uint alias_idx = atp->index();
vlivanov@5658 977 bool final = !atp->is_rewritable();
never@452 978 Node* result = NULL;
never@452 979 Node* current = st;
never@452 980 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 981 // new states for the slice of this load. Stop once any other
never@452 982 // kind of node is encountered. Loads from final memory can skip
never@452 983 // through any kind of MemBar but normal loads shouldn't skip
never@452 984 // through MemBarAcquire since the could allow them to move out of
never@452 985 // a synchronized region.
never@452 986 while (current->is_Proj()) {
never@452 987 int opc = current->in(0)->Opcode();
goetz@6489 988 if ((final && (opc == Op_MemBarAcquire ||
goetz@6489 989 opc == Op_MemBarAcquireLock ||
goetz@6489 990 opc == Op_LoadFence)) ||
goetz@6489 991 opc == Op_MemBarRelease ||
goetz@6489 992 opc == Op_StoreFence ||
goetz@6489 993 opc == Op_MemBarReleaseLock ||
goetz@6489 994 opc == Op_MemBarCPUOrder) {
never@452 995 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 996 if (mem->is_MergeMem()) {
never@452 997 MergeMemNode* merge = mem->as_MergeMem();
never@452 998 Node* new_st = merge->memory_at(alias_idx);
never@452 999 if (new_st == merge->base_memory()) {
never@452 1000 // Keep searching
kvn@5110 1001 current = new_st;
never@452 1002 continue;
never@452 1003 }
never@452 1004 // Save the new memory state for the slice and fall through
never@452 1005 // to exit.
never@452 1006 result = new_st;
never@452 1007 }
never@452 1008 }
never@452 1009 break;
never@452 1010 }
never@452 1011 if (result != NULL) {
never@452 1012 st = result;
never@452 1013 }
never@452 1014 }
never@452 1015
duke@435 1016 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 1017 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 1018 for (int trip = 0; trip <= 1; trip++) {
duke@435 1019
duke@435 1020 if (st->is_Store()) {
duke@435 1021 Node* st_adr = st->in(MemNode::Address);
duke@435 1022 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 1023 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 1024 intptr_t st_off = 0;
duke@435 1025 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 1026 if (alloc == NULL) return NULL;
kvn@5110 1027 if (alloc != ld_alloc) return NULL;
duke@435 1028 if (ld_off != st_off) return NULL;
duke@435 1029 // At this point we have proven something like this setup:
duke@435 1030 // A = Allocate(...)
duke@435 1031 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 1032 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 1033 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 1034 // In other words, we are loading from a casted version of
duke@435 1035 // the same pointer-and-offset that we stored to.
duke@435 1036 // Thus, we are able to replace L by V.
duke@435 1037 }
duke@435 1038 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 1039 if (store_Opcode() != st->Opcode())
duke@435 1040 return NULL;
duke@435 1041 return st->in(MemNode::ValueIn);
duke@435 1042 }
duke@435 1043
duke@435 1044 // A load from a freshly-created object always returns zero.
duke@435 1045 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 1046 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 1047 if (st->is_Proj() && st->in(0)->is_Allocate() &&
kvn@5110 1048 (st->in(0) == ld_alloc) &&
kvn@5110 1049 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
duke@435 1050 // return a zero value for the load's basic type
duke@435 1051 // (This is one of the few places where a generic PhaseTransform
duke@435 1052 // can create new nodes. Think of it as lazily manifesting
duke@435 1053 // virtually pre-existing constants.)
duke@435 1054 return phase->zerocon(memory_type());
duke@435 1055 }
duke@435 1056
duke@435 1057 // A load from an initialization barrier can match a captured store.
duke@435 1058 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 1059 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 1060 AllocateNode* alloc = init->allocation();
kvn@5110 1061 if ((alloc != NULL) && (alloc == ld_alloc)) {
duke@435 1062 // examine a captured store value
kvn@5110 1063 st = init->find_captured_store(ld_off, memory_size(), phase);
duke@435 1064 if (st != NULL)
duke@435 1065 continue; // take one more trip around
duke@435 1066 }
duke@435 1067 }
duke@435 1068
kvn@5110 1069 // Load boxed value from result of valueOf() call is input parameter.
kvn@5110 1070 if (this->is_Load() && ld_adr->is_AddP() &&
kvn@5110 1071 (tp != NULL) && tp->is_ptr_to_boxed_value()) {
kvn@5110 1072 intptr_t ignore = 0;
kvn@5110 1073 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
kvn@5110 1074 if (base != NULL && base->is_Proj() &&
kvn@5110 1075 base->as_Proj()->_con == TypeFunc::Parms &&
kvn@5110 1076 base->in(0)->is_CallStaticJava() &&
kvn@5110 1077 base->in(0)->as_CallStaticJava()->is_boxing_method()) {
kvn@5110 1078 return base->in(0)->in(TypeFunc::Parms);
kvn@5110 1079 }
kvn@5110 1080 }
kvn@5110 1081
duke@435 1082 break;
duke@435 1083 }
duke@435 1084
duke@435 1085 return NULL;
duke@435 1086 }
duke@435 1087
kvn@499 1088 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 1089 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@5110 1090 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
kvn@5110 1091 in(Address)->is_AddP() ) {
kvn@5110 1092 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
kvn@5110 1093 // Only instances and boxed values.
kvn@5110 1094 if( t_oop != NULL &&
kvn@5110 1095 (t_oop->is_ptr_to_boxed_value() ||
kvn@5110 1096 t_oop->is_known_instance_field()) &&
kvn@499 1097 t_oop->offset() != Type::OffsetBot &&
kvn@499 1098 t_oop->offset() != Type::OffsetTop) {
kvn@499 1099 return true;
kvn@499 1100 }
kvn@499 1101 }
kvn@499 1102 return false;
kvn@499 1103 }
kvn@499 1104
duke@435 1105 //------------------------------Identity---------------------------------------
duke@435 1106 // Loads are identity if previous store is to same address
duke@435 1107 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 1108 // If the previous store-maker is the right kind of Store, and the store is
duke@435 1109 // to the same address, then we are equal to the value stored.
kvn@5110 1110 Node* mem = in(Memory);
duke@435 1111 Node* value = can_see_stored_value(mem, phase);
duke@435 1112 if( value ) {
duke@435 1113 // byte, short & char stores truncate naturally.
duke@435 1114 // A load has to load the truncated value which requires
duke@435 1115 // some sort of masking operation and that requires an
duke@435 1116 // Ideal call instead of an Identity call.
duke@435 1117 if (memory_size() < BytesPerInt) {
duke@435 1118 // If the input to the store does not fit with the load's result type,
duke@435 1119 // it must be truncated via an Ideal call.
duke@435 1120 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 1121 return this;
duke@435 1122 }
duke@435 1123 // (This works even when value is a Con, but LoadNode::Value
duke@435 1124 // usually runs first, producing the singleton type of the Con.)
duke@435 1125 return value;
duke@435 1126 }
kvn@499 1127
kvn@499 1128 // Search for an existing data phi which was generated before for the same
twisti@1040 1129 // instance's field to avoid infinite generation of phis in a loop.
kvn@499 1130 Node *region = mem->in(0);
kvn@499 1131 if (is_instance_field_load_with_local_phi(region)) {
kvn@5110 1132 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
kvn@499 1133 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 1134 int this_offset = addr_t->offset();
kvn@5110 1135 int this_iid = addr_t->instance_id();
kvn@5110 1136 if (!addr_t->is_known_instance() &&
kvn@5110 1137 addr_t->is_ptr_to_boxed_value()) {
kvn@5110 1138 // Use _idx of address base (could be Phi node) for boxed values.
kvn@5110 1139 intptr_t ignore = 0;
kvn@5110 1140 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
kvn@5110 1141 this_iid = base->_idx;
kvn@5110 1142 }
kvn@499 1143 const Type* this_type = bottom_type();
kvn@499 1144 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 1145 Node* phi = region->fast_out(i);
kvn@499 1146 if (phi->is_Phi() && phi != mem &&
kvn@5110 1147 phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
kvn@499 1148 return phi;
kvn@499 1149 }
kvn@499 1150 }
kvn@499 1151 }
kvn@499 1152
duke@435 1153 return this;
duke@435 1154 }
duke@435 1155
never@452 1156 // We're loading from an object which has autobox behaviour.
never@452 1157 // If this object is result of a valueOf call we'll have a phi
never@452 1158 // merging a newly allocated object and a load from the cache.
never@452 1159 // We want to replace this load with the original incoming
never@452 1160 // argument to the valueOf call.
never@452 1161 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
kvn@5110 1162 assert(phase->C->eliminate_boxing(), "sanity");
kvn@5110 1163 intptr_t ignore = 0;
kvn@5110 1164 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
kvn@5110 1165 if ((base == NULL) || base->is_Phi()) {
kvn@5110 1166 // Push the loads from the phi that comes from valueOf up
kvn@5110 1167 // through it to allow elimination of the loads and the recovery
kvn@5110 1168 // of the original value. It is done in split_through_phi().
kvn@5110 1169 return NULL;
kvn@1018 1170 } else if (base->is_Load() ||
kvn@1018 1171 base->is_DecodeN() && base->in(1)->is_Load()) {
kvn@5110 1172 // Eliminate the load of boxed value for integer types from the cache
kvn@5110 1173 // array by deriving the value from the index into the array.
kvn@5110 1174 // Capture the offset of the load and then reverse the computation.
kvn@5110 1175
kvn@5110 1176 // Get LoadN node which loads a boxing object from 'cache' array.
kvn@1018 1177 if (base->is_DecodeN()) {
kvn@1018 1178 base = base->in(1);
kvn@1018 1179 }
kvn@5110 1180 if (!base->in(Address)->is_AddP()) {
kvn@5110 1181 return NULL; // Complex address
kvn@1018 1182 }
kvn@5110 1183 AddPNode* address = base->in(Address)->as_AddP();
kvn@5110 1184 Node* cache_base = address->in(AddPNode::Base);
kvn@5110 1185 if ((cache_base != NULL) && cache_base->is_DecodeN()) {
kvn@5110 1186 // Get ConP node which is static 'cache' field.
kvn@5110 1187 cache_base = cache_base->in(1);
kvn@5110 1188 }
kvn@5110 1189 if ((cache_base != NULL) && cache_base->is_Con()) {
kvn@5110 1190 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
kvn@5110 1191 if ((base_type != NULL) && base_type->is_autobox_cache()) {
never@452 1192 Node* elements[4];
kvn@5110 1193 int shift = exact_log2(type2aelembytes(T_OBJECT));
kvn@5110 1194 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
kvn@5110 1195 if ((count > 0) && elements[0]->is_Con() &&
kvn@5110 1196 ((count == 1) ||
kvn@5110 1197 (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
kvn@5110 1198 elements[1]->in(2) == phase->intcon(shift))) {
kvn@5110 1199 ciObjArray* array = base_type->const_oop()->as_obj_array();
kvn@5110 1200 // Fetch the box object cache[0] at the base of the array and get its value
kvn@5110 1201 ciInstance* box = array->obj_at(0)->as_instance();
kvn@5110 1202 ciInstanceKlass* ik = box->klass()->as_instance_klass();
kvn@5110 1203 assert(ik->is_box_klass(), "sanity");
kvn@5110 1204 assert(ik->nof_nonstatic_fields() == 1, "change following code");
kvn@5110 1205 if (ik->nof_nonstatic_fields() == 1) {
kvn@5110 1206 // This should be true nonstatic_field_at requires calling
kvn@5110 1207 // nof_nonstatic_fields so check it anyway
kvn@5110 1208 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
kvn@5110 1209 BasicType bt = c.basic_type();
kvn@5110 1210 // Only integer types have boxing cache.
kvn@5110 1211 assert(bt == T_BOOLEAN || bt == T_CHAR ||
kvn@5110 1212 bt == T_BYTE || bt == T_SHORT ||
kvn@5110 1213 bt == T_INT || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
kvn@5110 1214 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
kvn@5110 1215 if (cache_low != (int)cache_low) {
kvn@5110 1216 return NULL; // should not happen since cache is array indexed by value
kvn@5110 1217 }
kvn@5110 1218 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
kvn@5110 1219 if (offset != (int)offset) {
kvn@5110 1220 return NULL; // should not happen since cache is array indexed by value
kvn@5110 1221 }
kvn@5110 1222 // Add up all the offsets making of the address of the load
kvn@5110 1223 Node* result = elements[0];
kvn@5110 1224 for (int i = 1; i < count; i++) {
kvn@5110 1225 result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
kvn@5110 1226 }
kvn@5110 1227 // Remove the constant offset from the address and then
kvn@5110 1228 result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
kvn@5110 1229 // remove the scaling of the offset to recover the original index.
kvn@5110 1230 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
kvn@5110 1231 // Peel the shift off directly but wrap it in a dummy node
kvn@5110 1232 // since Ideal can't return existing nodes
kvn@5110 1233 result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
kvn@5110 1234 } else if (result->is_Add() && result->in(2)->is_Con() &&
kvn@5110 1235 result->in(1)->Opcode() == Op_LShiftX &&
kvn@5110 1236 result->in(1)->in(2) == phase->intcon(shift)) {
kvn@5110 1237 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
kvn@5110 1238 // but for boxing cache access we know that X<<Z will not overflow
kvn@5110 1239 // (there is range check) so we do this optimizatrion by hand here.
kvn@5110 1240 Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
kvn@5110 1241 result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
kvn@5110 1242 } else {
kvn@5110 1243 result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
kvn@5110 1244 }
kvn@5110 1245 #ifdef _LP64
kvn@5110 1246 if (bt != T_LONG) {
kvn@5110 1247 result = new (phase->C) ConvL2INode(phase->transform(result));
kvn@5110 1248 }
kvn@5110 1249 #else
kvn@5110 1250 if (bt == T_LONG) {
kvn@5110 1251 result = new (phase->C) ConvI2LNode(phase->transform(result));
kvn@5110 1252 }
kvn@5110 1253 #endif
kvn@5110 1254 return result;
never@452 1255 }
never@452 1256 }
never@452 1257 }
never@452 1258 }
never@452 1259 }
never@452 1260 return NULL;
never@452 1261 }
never@452 1262
kvn@5110 1263 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
kvn@5110 1264 Node* region = phi->in(0);
kvn@598 1265 if (region == NULL) {
kvn@5110 1266 return false; // Wait stable graph
kvn@598 1267 }
kvn@5110 1268 uint cnt = phi->req();
kvn@2810 1269 for (uint i = 1; i < cnt; i++) {
kvn@2810 1270 Node* rc = region->in(i);
kvn@2810 1271 if (rc == NULL || phase->type(rc) == Type::TOP)
kvn@5110 1272 return false; // Wait stable graph
kvn@5110 1273 Node* in = phi->in(i);
kvn@5110 1274 if (in == NULL || phase->type(in) == Type::TOP)
kvn@5110 1275 return false; // Wait stable graph
kvn@5110 1276 }
kvn@5110 1277 return true;
kvn@5110 1278 }
kvn@5110 1279 //------------------------------split_through_phi------------------------------
kvn@5110 1280 // Split instance or boxed field load through Phi.
kvn@5110 1281 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@5110 1282 Node* mem = in(Memory);
kvn@5110 1283 Node* address = in(Address);
kvn@5110 1284 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
kvn@5110 1285
kvn@5110 1286 assert((t_oop != NULL) &&
kvn@5110 1287 (t_oop->is_known_instance_field() ||
kvn@5110 1288 t_oop->is_ptr_to_boxed_value()), "invalide conditions");
kvn@5110 1289
kvn@5110 1290 Compile* C = phase->C;
kvn@5110 1291 intptr_t ignore = 0;
kvn@5110 1292 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@5110 1293 bool base_is_phi = (base != NULL) && base->is_Phi();
kvn@5110 1294 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
kvn@5110 1295 (base != NULL) && (base == address->in(AddPNode::Base)) &&
kvn@5110 1296 phase->type(base)->higher_equal(TypePtr::NOTNULL);
kvn@5110 1297
kvn@5110 1298 if (!((mem->is_Phi() || base_is_phi) &&
kvn@5110 1299 (load_boxed_values || t_oop->is_known_instance_field()))) {
kvn@5110 1300 return NULL; // memory is not Phi
kvn@5110 1301 }
kvn@5110 1302
kvn@5110 1303 if (mem->is_Phi()) {
kvn@5110 1304 if (!stable_phi(mem->as_Phi(), phase)) {
kvn@598 1305 return NULL; // Wait stable graph
kvn@598 1306 }
kvn@5110 1307 uint cnt = mem->req();
kvn@5110 1308 // Check for loop invariant memory.
kvn@5110 1309 if (cnt == 3) {
kvn@5110 1310 for (uint i = 1; i < cnt; i++) {
kvn@5110 1311 Node* in = mem->in(i);
kvn@5110 1312 Node* m = optimize_memory_chain(in, t_oop, this, phase);
kvn@5110 1313 if (m == mem) {
kvn@5110 1314 set_req(Memory, mem->in(cnt - i));
kvn@5110 1315 return this; // made change
kvn@5110 1316 }
kvn@598 1317 }
kvn@598 1318 }
kvn@598 1319 }
kvn@5110 1320 if (base_is_phi) {
kvn@5110 1321 if (!stable_phi(base->as_Phi(), phase)) {
kvn@5110 1322 return NULL; // Wait stable graph
kvn@5110 1323 }
kvn@5110 1324 uint cnt = base->req();
kvn@5110 1325 // Check for loop invariant memory.
kvn@5110 1326 if (cnt == 3) {
kvn@5110 1327 for (uint i = 1; i < cnt; i++) {
kvn@5110 1328 if (base->in(i) == base) {
kvn@5110 1329 return NULL; // Wait stable graph
kvn@5110 1330 }
kvn@5110 1331 }
kvn@5110 1332 }
kvn@5110 1333 }
kvn@5110 1334
kvn@5110 1335 bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
kvn@5110 1336
kvn@598 1337 // Split through Phi (see original code in loopopts.cpp).
kvn@5110 1338 assert(C->have_alias_type(t_oop), "instance should have alias type");
kvn@598 1339
kvn@598 1340 // Do nothing here if Identity will find a value
kvn@598 1341 // (to avoid infinite chain of value phis generation).
kvn@2810 1342 if (!phase->eqv(this, this->Identity(phase)))
kvn@598 1343 return NULL;
kvn@598 1344
kvn@5110 1345 // Select Region to split through.
kvn@5110 1346 Node* region;
kvn@5110 1347 if (!base_is_phi) {
kvn@5110 1348 assert(mem->is_Phi(), "sanity");
kvn@5110 1349 region = mem->in(0);
kvn@5110 1350 // Skip if the region dominates some control edge of the address.
kvn@5110 1351 if (!MemNode::all_controls_dominate(address, region))
kvn@5110 1352 return NULL;
kvn@5110 1353 } else if (!mem->is_Phi()) {
kvn@5110 1354 assert(base_is_phi, "sanity");
kvn@5110 1355 region = base->in(0);
kvn@5110 1356 // Skip if the region dominates some control edge of the memory.
kvn@5110 1357 if (!MemNode::all_controls_dominate(mem, region))
kvn@5110 1358 return NULL;
kvn@5110 1359 } else if (base->in(0) != mem->in(0)) {
kvn@5110 1360 assert(base_is_phi && mem->is_Phi(), "sanity");
kvn@5110 1361 if (MemNode::all_controls_dominate(mem, base->in(0))) {
kvn@5110 1362 region = base->in(0);
kvn@5110 1363 } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
kvn@5110 1364 region = mem->in(0);
kvn@5110 1365 } else {
kvn@5110 1366 return NULL; // complex graph
kvn@5110 1367 }
kvn@5110 1368 } else {
kvn@5110 1369 assert(base->in(0) == mem->in(0), "sanity");
kvn@5110 1370 region = mem->in(0);
kvn@5110 1371 }
kvn@598 1372
kvn@598 1373 const Type* this_type = this->bottom_type();
kvn@5110 1374 int this_index = C->get_alias_index(t_oop);
kvn@5110 1375 int this_offset = t_oop->offset();
kvn@5110 1376 int this_iid = t_oop->instance_id();
kvn@5110 1377 if (!t_oop->is_known_instance() && load_boxed_values) {
kvn@5110 1378 // Use _idx of address base for boxed values.
kvn@5110 1379 this_iid = base->_idx;
kvn@5110 1380 }
kvn@5110 1381 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@5110 1382 Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@2810 1383 for (uint i = 1; i < region->req(); i++) {
kvn@5110 1384 Node* x;
kvn@598 1385 Node* the_clone = NULL;
kvn@5110 1386 if (region->in(i) == C->top()) {
kvn@5110 1387 x = C->top(); // Dead path? Use a dead data op
kvn@598 1388 } else {
kvn@598 1389 x = this->clone(); // Else clone up the data op
kvn@598 1390 the_clone = x; // Remember for possible deletion.
kvn@598 1391 // Alter data node to use pre-phi inputs
kvn@2810 1392 if (this->in(0) == region) {
kvn@2810 1393 x->set_req(0, region->in(i));
kvn@598 1394 } else {
kvn@2810 1395 x->set_req(0, NULL);
kvn@598 1396 }
kvn@5110 1397 if (mem->is_Phi() && (mem->in(0) == region)) {
kvn@5110 1398 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
kvn@5110 1399 }
kvn@5110 1400 if (address->is_Phi() && address->in(0) == region) {
kvn@5110 1401 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
kvn@5110 1402 }
kvn@5110 1403 if (base_is_phi && (base->in(0) == region)) {
kvn@5110 1404 Node* base_x = base->in(i); // Clone address for loads from boxed objects.
kvn@5110 1405 Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
kvn@5110 1406 x->set_req(Address, adr_x);
kvn@598 1407 }
kvn@598 1408 }
kvn@598 1409 // Check for a 'win' on some paths
kvn@598 1410 const Type *t = x->Value(igvn);
kvn@598 1411
kvn@598 1412 bool singleton = t->singleton();
kvn@598 1413
kvn@598 1414 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@2810 1415 if (singleton && t == Type::TOP) {
kvn@598 1416 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1417 }
kvn@598 1418
kvn@2810 1419 if (singleton) {
kvn@598 1420 x = igvn->makecon(t);
kvn@598 1421 } else {
kvn@598 1422 // We now call Identity to try to simplify the cloned node.
kvn@598 1423 // Note that some Identity methods call phase->type(this).
kvn@598 1424 // Make sure that the type array is big enough for
kvn@598 1425 // our new node, even though we may throw the node away.
kvn@598 1426 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1427 igvn->set_type(x, t);
kvn@728 1428 // If x is a TypeNode, capture any more-precise type permanently into Node
twisti@1040 1429 // otherwise it will be not updated during igvn->transform since
kvn@728 1430 // igvn->type(x) is set to x->Value() already.
kvn@728 1431 x->raise_bottom_type(t);
kvn@598 1432 Node *y = x->Identity(igvn);
kvn@2810 1433 if (y != x) {
kvn@598 1434 x = y;
kvn@598 1435 } else {
kvn@5110 1436 y = igvn->hash_find_insert(x);
kvn@2810 1437 if (y) {
kvn@598 1438 x = y;
kvn@598 1439 } else {
kvn@598 1440 // Else x is a new node we are keeping
kvn@598 1441 // We do not need register_new_node_with_optimizer
kvn@598 1442 // because set_type has already been called.
kvn@598 1443 igvn->_worklist.push(x);
kvn@598 1444 }
kvn@598 1445 }
kvn@598 1446 }
kvn@5110 1447 if (x != the_clone && the_clone != NULL) {
kvn@598 1448 igvn->remove_dead_node(the_clone);
kvn@5110 1449 }
kvn@598 1450 phi->set_req(i, x);
kvn@598 1451 }
kvn@2810 1452 // Record Phi
kvn@2810 1453 igvn->register_new_node_with_optimizer(phi);
kvn@2810 1454 return phi;
kvn@598 1455 }
never@452 1456
duke@435 1457 //------------------------------Ideal------------------------------------------
duke@435 1458 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1459 // zero out the control input.
duke@435 1460 // If the offset is constant and the base is an object allocation,
duke@435 1461 // try to hook me up to the exact initializing store.
duke@435 1462 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1463 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1464 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1465
duke@435 1466 Node* ctrl = in(MemNode::Control);
duke@435 1467 Node* address = in(MemNode::Address);
duke@435 1468
duke@435 1469 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1470 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1471 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1472 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1473 ctrl = ctrl->in(0);
duke@435 1474 set_req(MemNode::Control,ctrl);
duke@435 1475 }
duke@435 1476
kvn@1143 1477 intptr_t ignore = 0;
kvn@1143 1478 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@1143 1479 if (base != NULL
kvn@1143 1480 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
kvn@1143 1481 // Check for useless control edge in some common special cases
kvn@1143 1482 if (in(MemNode::Control) != NULL
duke@435 1483 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1484 && all_controls_dominate(base, phase->C->start())) {
duke@435 1485 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1486 set_req(MemNode::Control, NULL);
duke@435 1487 }
never@452 1488 }
never@452 1489
kvn@509 1490 Node* mem = in(MemNode::Memory);
kvn@509 1491 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1492
kvn@5110 1493 if (can_reshape && (addr_t != NULL)) {
kvn@509 1494 // try to optimize our memory input
kvn@5110 1495 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
kvn@509 1496 if (opt_mem != mem) {
kvn@509 1497 set_req(MemNode::Memory, opt_mem);
kvn@740 1498 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1499 return this;
kvn@509 1500 }
kvn@509 1501 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@5110 1502 if ((t_oop != NULL) &&
kvn@5110 1503 (t_oop->is_known_instance_field() ||
kvn@5110 1504 t_oop->is_ptr_to_boxed_value())) {
kvn@3260 1505 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@3260 1506 if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
kvn@3260 1507 // Delay this transformation until memory Phi is processed.
kvn@3260 1508 phase->is_IterGVN()->_worklist.push(this);
kvn@3260 1509 return NULL;
kvn@3260 1510 }
kvn@598 1511 // Split instance field load through Phi.
kvn@598 1512 Node* result = split_through_phi(phase);
kvn@598 1513 if (result != NULL) return result;
kvn@5110 1514
kvn@5110 1515 if (t_oop->is_ptr_to_boxed_value()) {
kvn@5110 1516 Node* result = eliminate_autobox(phase);
kvn@5110 1517 if (result != NULL) return result;
kvn@5110 1518 }
kvn@509 1519 }
kvn@509 1520 }
kvn@509 1521
duke@435 1522 // Check for prior store with a different base or offset; make Load
duke@435 1523 // independent. Skip through any number of them. Bail out if the stores
duke@435 1524 // are in an endless dead cycle and report no progress. This is a key
duke@435 1525 // transform for Reflection. However, if after skipping through the Stores
duke@435 1526 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1527 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1528 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1529 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1530 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1531 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1532 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1533 // fold up, do so.
duke@435 1534 Node* prev_mem = find_previous_store(phase);
duke@435 1535 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1536 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1537 // (c) See if we can fold up on the spot, but don't fold up here.
twisti@993 1538 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
duke@435 1539 // just return a prior value, which is done by Identity calls.
duke@435 1540 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1541 // Make ready for step (d):
duke@435 1542 set_req(MemNode::Memory, prev_mem);
duke@435 1543 return this;
duke@435 1544 }
duke@435 1545 }
duke@435 1546
duke@435 1547 return NULL; // No further progress
duke@435 1548 }
duke@435 1549
duke@435 1550 // Helper to recognize certain Klass fields which are invariant across
duke@435 1551 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1552 const Type*
duke@435 1553 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1554 ciKlass* klass) const {
stefank@3391 1555 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
duke@435 1556 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1557 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1558 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1559 return TypeInt::make(klass->modifier_flags());
duke@435 1560 }
stefank@3391 1561 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
duke@435 1562 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1563 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1564 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1565 return TypeInt::make(klass->access_flags());
duke@435 1566 }
stefank@3391 1567 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
duke@435 1568 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1569 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1570 return TypeInt::make(klass->layout_helper());
duke@435 1571 }
duke@435 1572
duke@435 1573 // No match.
duke@435 1574 return NULL;
duke@435 1575 }
duke@435 1576
vlivanov@5658 1577 // Try to constant-fold a stable array element.
vlivanov@5658 1578 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
vlivanov@6526 1579 assert(ary->const_oop(), "array should be constant");
vlivanov@5658 1580 assert(ary->is_stable(), "array should be stable");
vlivanov@5658 1581
vlivanov@6526 1582 // Decode the results of GraphKit::array_element_address.
vlivanov@6526 1583 ciArray* aobj = ary->const_oop()->as_array();
vlivanov@6526 1584 ciConstant con = aobj->element_value_by_offset(off);
vlivanov@6526 1585
vlivanov@6526 1586 if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
vlivanov@6526 1587 const Type* con_type = Type::make_from_constant(con);
vlivanov@6526 1588 if (con_type != NULL) {
vlivanov@6526 1589 if (con_type->isa_aryptr()) {
vlivanov@6526 1590 // Join with the array element type, in case it is also stable.
vlivanov@6526 1591 int dim = ary->stable_dimension();
vlivanov@6526 1592 con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
vlivanov@6526 1593 }
vlivanov@6526 1594 if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
vlivanov@6526 1595 con_type = con_type->make_narrowoop();
vlivanov@6526 1596 }
vlivanov@5658 1597 #ifndef PRODUCT
vlivanov@6526 1598 if (TraceIterativeGVN) {
vlivanov@6526 1599 tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
vlivanov@6526 1600 con_type->dump(); tty->cr();
vlivanov@6526 1601 }
vlivanov@5658 1602 #endif //PRODUCT
vlivanov@6526 1603 return con_type;
vlivanov@5658 1604 }
vlivanov@5658 1605 }
vlivanov@5658 1606 return NULL;
vlivanov@5658 1607 }
vlivanov@5658 1608
duke@435 1609 //------------------------------Value-----------------------------------------
duke@435 1610 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1611 // Either input is TOP ==> the result is TOP
duke@435 1612 Node* mem = in(MemNode::Memory);
duke@435 1613 const Type *t1 = phase->type(mem);
duke@435 1614 if (t1 == Type::TOP) return Type::TOP;
duke@435 1615 Node* adr = in(MemNode::Address);
duke@435 1616 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1617 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1618 int off = tp->offset();
duke@435 1619 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
twisti@3102 1620 Compile* C = phase->C;
duke@435 1621
duke@435 1622 // Try to guess loaded type from pointer type
vlivanov@5658 1623 if (tp->isa_aryptr()) {
vlivanov@5658 1624 const TypeAryPtr* ary = tp->is_aryptr();
vlivanov@6526 1625 const Type* t = ary->elem();
vlivanov@5658 1626
vlivanov@5658 1627 // Determine whether the reference is beyond the header or not, by comparing
vlivanov@5658 1628 // the offset against the offset of the start of the array's data.
vlivanov@5658 1629 // Different array types begin at slightly different offsets (12 vs. 16).
vlivanov@5658 1630 // We choose T_BYTE as an example base type that is least restrictive
vlivanov@5658 1631 // as to alignment, which will therefore produce the smallest
vlivanov@5658 1632 // possible base offset.
vlivanov@5658 1633 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
vlivanov@5658 1634 const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
vlivanov@5658 1635
vlivanov@5658 1636 // Try to constant-fold a stable array element.
vlivanov@6526 1637 if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
vlivanov@6526 1638 // Make sure the reference is not into the header and the offset is constant
vlivanov@6526 1639 if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
vlivanov@5658 1640 const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
vlivanov@5658 1641 if (con_type != NULL) {
vlivanov@5658 1642 return con_type;
vlivanov@5658 1643 }
vlivanov@5658 1644 }
vlivanov@5658 1645 }
vlivanov@5658 1646
duke@435 1647 // Don't do this for integer types. There is only potential profit if
duke@435 1648 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1649 // more restrictive than t. This only happens here if one is short and the other
duke@435 1650 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1651 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1652 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1653 //
duke@435 1654 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1655 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1656 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1657 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1658 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1659 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1660 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1661 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1662 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@3882 1663 && (_type->isa_vect() == NULL)
kvn@728 1664 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1665 // t might actually be lower than _type, if _type is a unique
duke@435 1666 // concrete subclass of abstract class t.
vlivanov@5658 1667 if (off_beyond_header) { // is the offset beyond the header?
roland@6313 1668 const Type* jt = t->join_speculative(_type);
duke@435 1669 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1670 if (jt->empty() && !t->empty()) {
duke@435 1671 // This can happen if a interface-typed array narrows to a class type.
duke@435 1672 jt = _type;
duke@435 1673 }
kvn@5110 1674 #ifdef ASSERT
kvn@5110 1675 if (phase->C->eliminate_boxing() && adr->is_AddP()) {
never@452 1676 // The pointers in the autobox arrays are always non-null
kvn@1143 1677 Node* base = adr->in(AddPNode::Base);
kvn@5110 1678 if ((base != NULL) && base->is_DecodeN()) {
kvn@5110 1679 // Get LoadN node which loads IntegerCache.cache field
kvn@5110 1680 base = base->in(1);
kvn@5110 1681 }
kvn@5110 1682 if ((base != NULL) && base->is_Con()) {
kvn@5110 1683 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
kvn@5110 1684 if ((base_type != NULL) && base_type->is_autobox_cache()) {
kvn@5110 1685 // It could be narrow oop
kvn@5110 1686 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
never@452 1687 }
never@452 1688 }
never@452 1689 }
kvn@5110 1690 #endif
duke@435 1691 return jt;
duke@435 1692 }
duke@435 1693 }
duke@435 1694 } else if (tp->base() == Type::InstPtr) {
twisti@3102 1695 ciEnv* env = C->env();
never@1515 1696 const TypeInstPtr* tinst = tp->is_instptr();
never@1515 1697 ciKlass* klass = tinst->klass();
duke@435 1698 assert( off != Type::OffsetBot ||
duke@435 1699 // arrays can be cast to Objects
duke@435 1700 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1701 // unsafe field access may not have a constant offset
twisti@3102 1702 C->has_unsafe_access(),
duke@435 1703 "Field accesses must be precise" );
duke@435 1704 // For oop loads, we expect the _type to be precise
twisti@3102 1705 if (klass == env->String_klass() &&
never@1515 1706 adr->is_AddP() && off != Type::OffsetBot) {
kvn@2602 1707 // For constant Strings treat the final fields as compile time constants.
never@1515 1708 Node* base = adr->in(AddPNode::Base);
never@2121 1709 const TypeOopPtr* t = phase->type(base)->isa_oopptr();
never@2121 1710 if (t != NULL && t->singleton()) {
twisti@3102 1711 ciField* field = env->String_klass()->get_field_by_offset(off, false);
kvn@2602 1712 if (field != NULL && field->is_final()) {
kvn@2602 1713 ciObject* string = t->const_oop();
kvn@2602 1714 ciConstant constant = string->as_instance()->field_value(field);
kvn@2602 1715 if (constant.basic_type() == T_INT) {
kvn@2602 1716 return TypeInt::make(constant.as_int());
kvn@2602 1717 } else if (constant.basic_type() == T_ARRAY) {
kvn@2602 1718 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
jcoomes@2661 1719 return TypeNarrowOop::make_from_constant(constant.as_object(), true);
kvn@2602 1720 } else {
jcoomes@2661 1721 return TypeOopPtr::make_from_constant(constant.as_object(), true);
kvn@2602 1722 }
never@1515 1723 }
never@1515 1724 }
never@1515 1725 }
never@1515 1726 }
twisti@3102 1727 // Optimizations for constant objects
twisti@3102 1728 ciObject* const_oop = tinst->const_oop();
twisti@3102 1729 if (const_oop != NULL) {
kvn@5110 1730 // For constant Boxed value treat the target field as a compile time constant.
kvn@5110 1731 if (tinst->is_ptr_to_boxed_value()) {
kvn@5110 1732 return tinst->get_const_boxed_value();
kvn@5110 1733 } else
twisti@3102 1734 // For constant CallSites treat the target field as a compile time constant.
twisti@3102 1735 if (const_oop->is_call_site()) {
twisti@3102 1736 ciCallSite* call_site = const_oop->as_call_site();
twisti@3102 1737 ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
twisti@3102 1738 if (field != NULL && field->is_call_site_target()) {
twisti@3102 1739 ciMethodHandle* target = call_site->get_target();
twisti@3102 1740 if (target != NULL) { // just in case
twisti@3102 1741 ciConstant constant(T_OBJECT, target);
twisti@3102 1742 const Type* t;
twisti@3102 1743 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
twisti@3102 1744 t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
twisti@3102 1745 } else {
twisti@3102 1746 t = TypeOopPtr::make_from_constant(constant.as_object(), true);
twisti@3102 1747 }
twisti@3102 1748 // Add a dependence for invalidation of the optimization.
twisti@3102 1749 if (!call_site->is_constant_call_site()) {
twisti@3102 1750 C->dependencies()->assert_call_site_target_value(call_site, target);
twisti@3102 1751 }
twisti@3102 1752 return t;
twisti@3102 1753 }
twisti@3102 1754 }
twisti@3102 1755 }
twisti@3102 1756 }
duke@435 1757 } else if (tp->base() == Type::KlassPtr) {
duke@435 1758 assert( off != Type::OffsetBot ||
duke@435 1759 // arrays can be cast to Objects
duke@435 1760 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1761 // also allow array-loading from the primary supertype
duke@435 1762 // array during subtype checks
duke@435 1763 Opcode() == Op_LoadKlass,
duke@435 1764 "Field accesses must be precise" );
duke@435 1765 // For klass/static loads, we expect the _type to be precise
duke@435 1766 }
duke@435 1767
duke@435 1768 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1769 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1770 ciKlass* klass = tkls->klass();
duke@435 1771 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1772 // We are loading a field from a Klass metaobject whose identity
duke@435 1773 // is known at compile time (the type is "exact" or "precise").
duke@435 1774 // Check for fields we know are maintained as constants by the VM.
stefank@3391 1775 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
duke@435 1776 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1777 // (Folds up type checking code.)
duke@435 1778 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1779 return TypeInt::make(klass->super_check_offset());
duke@435 1780 }
duke@435 1781 // Compute index into primary_supers array
coleenp@4037 1782 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1783 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1784 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1785 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1786 // (Folds up type checking code.)
duke@435 1787 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1788 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1789 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1790 }
duke@435 1791 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1792 if (aift != NULL) return aift;
coleenp@4142 1793 if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
duke@435 1794 && klass->is_array_klass()) {
coleenp@4142 1795 // The field is ArrayKlass::_component_mirror. Return its (constant) value.
duke@435 1796 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1797 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1798 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1799 }
stefank@3391 1800 if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
duke@435 1801 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1802 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1803 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1804 return TypeInstPtr::make(klass->java_mirror());
duke@435 1805 }
duke@435 1806 }
duke@435 1807
duke@435 1808 // We can still check if we are loading from the primary_supers array at a
duke@435 1809 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1810 // than or equal to its super depth are correct.
duke@435 1811 if (klass->is_loaded() ) {
coleenp@4037 1812 ciType *inner = klass;
duke@435 1813 while( inner->is_obj_array_klass() )
duke@435 1814 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1815 if( inner->is_instance_klass() &&
duke@435 1816 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1817 // Compute index into primary_supers array
coleenp@4037 1818 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1819 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1820 if( depth < ciKlass::primary_super_limit() &&
duke@435 1821 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1822 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1823 // (Folds up type checking code.)
duke@435 1824 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1825 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1826 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1827 }
duke@435 1828 }
duke@435 1829 }
duke@435 1830
duke@435 1831 // If the type is enough to determine that the thing is not an array,
duke@435 1832 // we can give the layout_helper a positive interval type.
duke@435 1833 // This will help short-circuit some reflective code.
stefank@3391 1834 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
duke@435 1835 && !klass->is_array_klass() // not directly typed as an array
duke@435 1836 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1837 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1838 ) {
duke@435 1839 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1840 // test to (klass != Serializable && klass != Cloneable).
duke@435 1841 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1842 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1843 // The key property of this type is that it folds up tests
duke@435 1844 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1845 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1846 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1847 }
duke@435 1848 }
duke@435 1849
duke@435 1850 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1851 // if the load is provably beyond the header of the object.
duke@435 1852 // (Also allow a variable load from a fresh array to produce zero.)
kvn@2810 1853 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@2810 1854 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
kvn@5110 1855 bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
kvn@5110 1856 if (ReduceFieldZeroing || is_instance || is_boxed_value) {
duke@435 1857 Node* value = can_see_stored_value(mem,phase);
kvn@3442 1858 if (value != NULL && value->is_Con()) {
kvn@3442 1859 assert(value->bottom_type()->higher_equal(_type),"sanity");
duke@435 1860 return value->bottom_type();
kvn@3442 1861 }
duke@435 1862 }
duke@435 1863
kvn@2810 1864 if (is_instance) {
kvn@499 1865 // If we have an instance type and our memory input is the
kvn@499 1866 // programs's initial memory state, there is no matching store,
kvn@499 1867 // so just return a zero of the appropriate type
kvn@499 1868 Node *mem = in(MemNode::Memory);
kvn@499 1869 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1870 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1871 return Type::get_zero_type(_type->basic_type());
kvn@499 1872 }
kvn@499 1873 }
duke@435 1874 return _type;
duke@435 1875 }
duke@435 1876
duke@435 1877 //------------------------------match_edge-------------------------------------
duke@435 1878 // Do we Match on this edge index or not? Match only the address.
duke@435 1879 uint LoadNode::match_edge(uint idx) const {
duke@435 1880 return idx == MemNode::Address;
duke@435 1881 }
duke@435 1882
duke@435 1883 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1884 //
duke@435 1885 // If the previous store is to the same address as this load,
duke@435 1886 // and the value stored was larger than a byte, replace this load
duke@435 1887 // with the value stored truncated to a byte. If no truncation is
duke@435 1888 // needed, the replacement is done in LoadNode::Identity().
duke@435 1889 //
duke@435 1890 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1891 Node* mem = in(MemNode::Memory);
duke@435 1892 Node* value = can_see_stored_value(mem,phase);
duke@435 1893 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1894 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
kvn@4115 1895 return new (phase->C) RShiftINode(result, phase->intcon(24));
duke@435 1896 }
duke@435 1897 // Identity call will handle the case where truncation is not needed.
duke@435 1898 return LoadNode::Ideal(phase, can_reshape);
duke@435 1899 }
duke@435 1900
kvn@3442 1901 const Type* LoadBNode::Value(PhaseTransform *phase) const {
kvn@3442 1902 Node* mem = in(MemNode::Memory);
kvn@3442 1903 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1904 if (value != NULL && value->is_Con() &&
kvn@3448 1905 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1906 // If the input to the store does not fit with the load's result type,
kvn@3442 1907 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1908 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1909 int con = value->get_int();
kvn@3442 1910 return TypeInt::make((con << 24) >> 24);
kvn@3442 1911 }
kvn@3442 1912 return LoadNode::Value(phase);
kvn@3442 1913 }
kvn@3442 1914
twisti@1059 1915 //--------------------------LoadUBNode::Ideal-------------------------------------
twisti@1059 1916 //
twisti@1059 1917 // If the previous store is to the same address as this load,
twisti@1059 1918 // and the value stored was larger than a byte, replace this load
twisti@1059 1919 // with the value stored truncated to a byte. If no truncation is
twisti@1059 1920 // needed, the replacement is done in LoadNode::Identity().
twisti@1059 1921 //
twisti@1059 1922 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
twisti@1059 1923 Node* mem = in(MemNode::Memory);
twisti@1059 1924 Node* value = can_see_stored_value(mem, phase);
twisti@1059 1925 if (value && !phase->type(value)->higher_equal(_type))
kvn@4115 1926 return new (phase->C) AndINode(value, phase->intcon(0xFF));
twisti@1059 1927 // Identity call will handle the case where truncation is not needed.
twisti@1059 1928 return LoadNode::Ideal(phase, can_reshape);
twisti@1059 1929 }
twisti@1059 1930
kvn@3442 1931 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
kvn@3442 1932 Node* mem = in(MemNode::Memory);
kvn@3442 1933 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1934 if (value != NULL && value->is_Con() &&
kvn@3448 1935 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1936 // If the input to the store does not fit with the load's result type,
kvn@3442 1937 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1938 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1939 int con = value->get_int();
kvn@3442 1940 return TypeInt::make(con & 0xFF);
kvn@3442 1941 }
kvn@3442 1942 return LoadNode::Value(phase);
kvn@3442 1943 }
kvn@3442 1944
twisti@993 1945 //--------------------------LoadUSNode::Ideal-------------------------------------
duke@435 1946 //
duke@435 1947 // If the previous store is to the same address as this load,
duke@435 1948 // and the value stored was larger than a char, replace this load
duke@435 1949 // with the value stored truncated to a char. If no truncation is
duke@435 1950 // needed, the replacement is done in LoadNode::Identity().
duke@435 1951 //
twisti@993 1952 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1953 Node* mem = in(MemNode::Memory);
duke@435 1954 Node* value = can_see_stored_value(mem,phase);
duke@435 1955 if( value && !phase->type(value)->higher_equal( _type ) )
kvn@4115 1956 return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
duke@435 1957 // Identity call will handle the case where truncation is not needed.
duke@435 1958 return LoadNode::Ideal(phase, can_reshape);
duke@435 1959 }
duke@435 1960
kvn@3442 1961 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
kvn@3442 1962 Node* mem = in(MemNode::Memory);
kvn@3442 1963 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1964 if (value != NULL && value->is_Con() &&
kvn@3448 1965 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1966 // If the input to the store does not fit with the load's result type,
kvn@3442 1967 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1968 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1969 int con = value->get_int();
kvn@3442 1970 return TypeInt::make(con & 0xFFFF);
kvn@3442 1971 }
kvn@3442 1972 return LoadNode::Value(phase);
kvn@3442 1973 }
kvn@3442 1974
duke@435 1975 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1976 //
duke@435 1977 // If the previous store is to the same address as this load,
duke@435 1978 // and the value stored was larger than a short, replace this load
duke@435 1979 // with the value stored truncated to a short. If no truncation is
duke@435 1980 // needed, the replacement is done in LoadNode::Identity().
duke@435 1981 //
duke@435 1982 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1983 Node* mem = in(MemNode::Memory);
duke@435 1984 Node* value = can_see_stored_value(mem,phase);
duke@435 1985 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1986 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
kvn@4115 1987 return new (phase->C) RShiftINode(result, phase->intcon(16));
duke@435 1988 }
duke@435 1989 // Identity call will handle the case where truncation is not needed.
duke@435 1990 return LoadNode::Ideal(phase, can_reshape);
duke@435 1991 }
duke@435 1992
kvn@3442 1993 const Type* LoadSNode::Value(PhaseTransform *phase) const {
kvn@3442 1994 Node* mem = in(MemNode::Memory);
kvn@3442 1995 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1996 if (value != NULL && value->is_Con() &&
kvn@3448 1997 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1998 // If the input to the store does not fit with the load's result type,
kvn@3442 1999 // it must be truncated. We can't delay until Ideal call since
kvn@3442 2000 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 2001 int con = value->get_int();
kvn@3442 2002 return TypeInt::make((con << 16) >> 16);
kvn@3442 2003 }
kvn@3442 2004 return LoadNode::Value(phase);
kvn@3442 2005 }
kvn@3442 2006
duke@435 2007 //=============================================================================
kvn@599 2008 //----------------------------LoadKlassNode::make------------------------------
kvn@599 2009 // Polymorphic factory method:
kvn@599 2010 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 2011 Compile* C = gvn.C;
kvn@599 2012 Node *ctl = NULL;
kvn@599 2013 // sanity check the alias category against the created node type
coleenp@4037 2014 const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
coleenp@4037 2015 assert(adr_type != NULL, "expecting TypeKlassPtr");
kvn@599 2016 #ifdef _LP64
roland@4159 2017 if (adr_type->is_ptr_to_narrowklass()) {
ehelin@5694 2018 assert(UseCompressedClassPointers, "no compressed klasses");
goetz@6479 2019 Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
roland@4159 2020 return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 2021 }
kvn@599 2022 #endif
roland@4159 2023 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
goetz@6479 2024 return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
kvn@599 2025 }
kvn@599 2026
duke@435 2027 //------------------------------Value------------------------------------------
duke@435 2028 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 2029 return klass_value_common(phase);
kvn@599 2030 }
kvn@599 2031
kvn@599 2032 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 2033 // Either input is TOP ==> the result is TOP
duke@435 2034 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2035 if (t1 == Type::TOP) return Type::TOP;
duke@435 2036 Node *adr = in(MemNode::Address);
duke@435 2037 const Type *t2 = phase->type( adr );
duke@435 2038 if (t2 == Type::TOP) return Type::TOP;
duke@435 2039 const TypePtr *tp = t2->is_ptr();
duke@435 2040 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 2041 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 2042
duke@435 2043 // Return a more precise klass, if possible
duke@435 2044 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 2045 if (tinst != NULL) {
duke@435 2046 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 2047 int offset = tinst->offset();
duke@435 2048 if (ik == phase->C->env()->Class_klass()
duke@435 2049 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 2050 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 2051 // We are loading a special hidden field from a Class mirror object,
duke@435 2052 // the field which points to the VM's Klass metaobject.
duke@435 2053 ciType* t = tinst->java_mirror_type();
duke@435 2054 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 2055 if (t != NULL) {
duke@435 2056 // constant oop => constant klass
duke@435 2057 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
twisti@6173 2058 if (t->is_void()) {
twisti@6173 2059 // We cannot create a void array. Since void is a primitive type return null
twisti@6173 2060 // klass. Users of this result need to do a null check on the returned klass.
twisti@6173 2061 return TypePtr::NULL_PTR;
twisti@6173 2062 }
duke@435 2063 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 2064 }
duke@435 2065 if (!t->is_klass()) {
duke@435 2066 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 2067 return TypePtr::NULL_PTR;
duke@435 2068 }
duke@435 2069 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 2070 return TypeKlassPtr::make(t->as_klass());
duke@435 2071 }
duke@435 2072 // non-constant mirror, so we can't tell what's going on
duke@435 2073 }
duke@435 2074 if( !ik->is_loaded() )
duke@435 2075 return _type; // Bail out if not loaded
duke@435 2076 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 2077 if (tinst->klass_is_exact()) {
duke@435 2078 return TypeKlassPtr::make(ik);
duke@435 2079 }
duke@435 2080 // See if we can become precise: no subklasses and no interface
duke@435 2081 // (Note: We need to support verified interfaces.)
duke@435 2082 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2083 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2084 // Add a dependence; if any subclass added we need to recompile
duke@435 2085 if (!ik->is_final()) {
duke@435 2086 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 2087 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 2088 }
duke@435 2089 // Return precise klass
duke@435 2090 return TypeKlassPtr::make(ik);
duke@435 2091 }
duke@435 2092
duke@435 2093 // Return root of possible klass
duke@435 2094 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 2095 }
duke@435 2096 }
duke@435 2097
duke@435 2098 // Check for loading klass from an array
duke@435 2099 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 2100 if( tary != NULL ) {
duke@435 2101 ciKlass *tary_klass = tary->klass();
duke@435 2102 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 2103 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 2104 if (tary->klass_is_exact()) {
duke@435 2105 return TypeKlassPtr::make(tary_klass);
duke@435 2106 }
duke@435 2107 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 2108 // If the klass is an object array, we defer the question to the
duke@435 2109 // array component klass.
duke@435 2110 if( ak->is_obj_array_klass() ) {
duke@435 2111 assert( ak->is_loaded(), "" );
duke@435 2112 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 2113 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 2114 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 2115 // See if we can become precise: no subklasses and no interface
duke@435 2116 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2117 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2118 // Add a dependence; if any subclass added we need to recompile
duke@435 2119 if (!ik->is_final()) {
duke@435 2120 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 2121 }
duke@435 2122 // Return precise array klass
duke@435 2123 return TypeKlassPtr::make(ak);
duke@435 2124 }
duke@435 2125 }
duke@435 2126 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 2127 } else { // Found a type-array?
duke@435 2128 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2129 assert( ak->is_type_array_klass(), "" );
duke@435 2130 return TypeKlassPtr::make(ak); // These are always precise
duke@435 2131 }
duke@435 2132 }
duke@435 2133 }
duke@435 2134
duke@435 2135 // Check for loading klass from an array klass
duke@435 2136 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 2137 if (tkls != NULL && !StressReflectiveCode) {
duke@435 2138 ciKlass* klass = tkls->klass();
duke@435 2139 if( !klass->is_loaded() )
duke@435 2140 return _type; // Bail out if not loaded
duke@435 2141 if( klass->is_obj_array_klass() &&
coleenp@4142 2142 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
duke@435 2143 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 2144 // // Always returning precise element type is incorrect,
duke@435 2145 // // e.g., element type could be object and array may contain strings
duke@435 2146 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 2147
duke@435 2148 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 2149 // according to the element type's subclassing.
duke@435 2150 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 2151 }
duke@435 2152 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
stefank@3391 2153 tkls->offset() == in_bytes(Klass::super_offset())) {
duke@435 2154 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 2155 // The field is Klass::_super. Return its (constant) value.
duke@435 2156 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 2157 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 2158 }
duke@435 2159 }
duke@435 2160
duke@435 2161 // Bailout case
duke@435 2162 return LoadNode::Value(phase);
duke@435 2163 }
duke@435 2164
duke@435 2165 //------------------------------Identity---------------------------------------
duke@435 2166 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 2167 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 2168 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2169 return klass_identity_common(phase);
kvn@599 2170 }
kvn@599 2171
kvn@599 2172 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 2173 Node* x = LoadNode::Identity(phase);
duke@435 2174 if (x != this) return x;
duke@435 2175
duke@435 2176 // Take apart the address into an oop and and offset.
duke@435 2177 // Return 'this' if we cannot.
duke@435 2178 Node* adr = in(MemNode::Address);
duke@435 2179 intptr_t offset = 0;
duke@435 2180 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2181 if (base == NULL) return this;
duke@435 2182 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 2183 if (toop == NULL) return this;
duke@435 2184
duke@435 2185 // We can fetch the klass directly through an AllocateNode.
duke@435 2186 // This works even if the klass is not constant (clone or newArray).
duke@435 2187 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 2188 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 2189 if (allocated_klass != NULL) {
duke@435 2190 return allocated_klass;
duke@435 2191 }
duke@435 2192 }
duke@435 2193
coleenp@4037 2194 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
coleenp@4142 2195 // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
duke@435 2196 // See inline_native_Class_query for occurrences of these patterns.
duke@435 2197 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 2198 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 2199 //
duke@435 2200 // This improves reflective code, often making the Class
duke@435 2201 // mirror go completely dead. (Current exception: Class
duke@435 2202 // mirrors may appear in debug info, but we could clean them out by
coleenp@4037 2203 // introducing a new debug info operator for Klass*.java_mirror).
duke@435 2204 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 2205 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 2206 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 2207 // We are loading a special hidden field from a Class mirror,
coleenp@4142 2208 // the field which points to its Klass or ArrayKlass metaobject.
duke@435 2209 if (base->is_Load()) {
duke@435 2210 Node* adr2 = base->in(MemNode::Address);
duke@435 2211 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 2212 if (tkls != NULL && !tkls->empty()
duke@435 2213 && (tkls->klass()->is_instance_klass() ||
duke@435 2214 tkls->klass()->is_array_klass())
duke@435 2215 && adr2->is_AddP()
duke@435 2216 ) {
stefank@3391 2217 int mirror_field = in_bytes(Klass::java_mirror_offset());
duke@435 2218 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
coleenp@4142 2219 mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
duke@435 2220 }
stefank@3391 2221 if (tkls->offset() == mirror_field) {
duke@435 2222 return adr2->in(AddPNode::Base);
duke@435 2223 }
duke@435 2224 }
duke@435 2225 }
duke@435 2226 }
duke@435 2227
duke@435 2228 return this;
duke@435 2229 }
duke@435 2230
kvn@599 2231
kvn@599 2232 //------------------------------Value------------------------------------------
kvn@599 2233 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 2234 const Type *t = klass_value_common(phase);
kvn@656 2235 if (t == Type::TOP)
kvn@656 2236 return t;
kvn@656 2237
roland@4159 2238 return t->make_narrowklass();
kvn@599 2239 }
kvn@599 2240
kvn@599 2241 //------------------------------Identity---------------------------------------
kvn@599 2242 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 2243 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 2244 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2245 Node *x = klass_identity_common(phase);
kvn@599 2246
kvn@599 2247 const Type *t = phase->type( x );
kvn@599 2248 if( t == Type::TOP ) return x;
roland@4159 2249 if( t->isa_narrowklass()) return x;
roland@4159 2250 assert (!t->isa_narrowoop(), "no narrow oop here");
roland@4159 2251
roland@4159 2252 return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
kvn@599 2253 }
kvn@599 2254
duke@435 2255 //------------------------------Value-----------------------------------------
duke@435 2256 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 2257 // Either input is TOP ==> the result is TOP
duke@435 2258 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2259 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2260 Node *adr = in(MemNode::Address);
duke@435 2261 const Type *t2 = phase->type( adr );
duke@435 2262 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2263 const TypePtr *tp = t2->is_ptr();
duke@435 2264 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 2265 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 2266 if( !tap ) return _type;
duke@435 2267 return tap->size();
duke@435 2268 }
duke@435 2269
rasbold@801 2270 //-------------------------------Ideal---------------------------------------
rasbold@801 2271 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 2272 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 2273 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 2274 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 2275
rasbold@801 2276 // Take apart the address into an oop and and offset.
rasbold@801 2277 // Return 'this' if we cannot.
rasbold@801 2278 Node* adr = in(MemNode::Address);
rasbold@801 2279 intptr_t offset = 0;
rasbold@801 2280 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 2281 if (base == NULL) return NULL;
rasbold@801 2282 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 2283 if (tary == NULL) return NULL;
rasbold@801 2284
rasbold@801 2285 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 2286 // This works even if the length is not constant (clone or newArray).
rasbold@801 2287 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2288 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2289 if (alloc != NULL) {
rasbold@801 2290 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2291 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 2292 if (allocated_length != len) {
rasbold@801 2293 // New CastII improves on this.
rasbold@801 2294 return len;
rasbold@801 2295 }
rasbold@801 2296 }
rasbold@801 2297 }
rasbold@801 2298
rasbold@801 2299 return NULL;
rasbold@801 2300 }
rasbold@801 2301
duke@435 2302 //------------------------------Identity---------------------------------------
duke@435 2303 // Feed through the length in AllocateArray(...length...)._length.
duke@435 2304 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 2305 Node* x = LoadINode::Identity(phase);
duke@435 2306 if (x != this) return x;
duke@435 2307
duke@435 2308 // Take apart the address into an oop and and offset.
duke@435 2309 // Return 'this' if we cannot.
duke@435 2310 Node* adr = in(MemNode::Address);
duke@435 2311 intptr_t offset = 0;
duke@435 2312 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2313 if (base == NULL) return this;
duke@435 2314 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 2315 if (tary == NULL) return this;
duke@435 2316
duke@435 2317 // We can fetch the length directly through an AllocateArrayNode.
duke@435 2318 // This works even if the length is not constant (clone or newArray).
duke@435 2319 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2320 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2321 if (alloc != NULL) {
rasbold@801 2322 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2323 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 2324 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 2325 if (allocated_length == len) {
rasbold@801 2326 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 2327 return allocated_length;
rasbold@801 2328 }
duke@435 2329 }
duke@435 2330 }
duke@435 2331
duke@435 2332 return this;
duke@435 2333
duke@435 2334 }
rasbold@801 2335
duke@435 2336 //=============================================================================
duke@435 2337 //---------------------------StoreNode::make-----------------------------------
duke@435 2338 // Polymorphic factory method:
goetz@6479 2339 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
goetz@6479 2340 assert((mo == unordered || mo == release), "unexpected");
coleenp@548 2341 Compile* C = gvn.C;
goetz@6479 2342 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
goetz@6479 2343 ctl != NULL, "raw memory operations should have control edge");
coleenp@548 2344
duke@435 2345 switch (bt) {
duke@435 2346 case T_BOOLEAN:
goetz@6479 2347 case T_BYTE: return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
goetz@6479 2348 case T_INT: return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
duke@435 2349 case T_CHAR:
goetz@6479 2350 case T_SHORT: return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
goetz@6479 2351 case T_LONG: return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
goetz@6479 2352 case T_FLOAT: return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
goetz@6479 2353 case T_DOUBLE: return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
coleenp@4037 2354 case T_METADATA:
duke@435 2355 case T_ADDRESS:
coleenp@548 2356 case T_OBJECT:
coleenp@548 2357 #ifdef _LP64
roland@4159 2358 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2359 val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
goetz@6479 2360 return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
roland@4159 2361 } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
ehelin@5694 2362 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
roland@4159 2363 adr->bottom_type()->isa_rawptr())) {
roland@4159 2364 val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
goetz@6479 2365 return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
roland@4159 2366 }
coleenp@548 2367 #endif
kvn@656 2368 {
goetz@6479 2369 return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
kvn@656 2370 }
duke@435 2371 }
duke@435 2372 ShouldNotReachHere();
duke@435 2373 return (StoreNode*)NULL;
duke@435 2374 }
duke@435 2375
goetz@6479 2376 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
duke@435 2377 bool require_atomic = true;
goetz@6479 2378 return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
duke@435 2379 }
duke@435 2380
duke@435 2381
duke@435 2382 //--------------------------bottom_type----------------------------------------
duke@435 2383 const Type *StoreNode::bottom_type() const {
duke@435 2384 return Type::MEMORY;
duke@435 2385 }
duke@435 2386
duke@435 2387 //------------------------------hash-------------------------------------------
duke@435 2388 uint StoreNode::hash() const {
duke@435 2389 // unroll addition of interesting fields
duke@435 2390 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2391
duke@435 2392 // Since they are not commoned, do not hash them:
duke@435 2393 return NO_HASH;
duke@435 2394 }
duke@435 2395
duke@435 2396 //------------------------------Ideal------------------------------------------
duke@435 2397 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2398 // When a store immediately follows a relevant allocation/initialization,
duke@435 2399 // try to capture it into the initialization, or hoist it above.
duke@435 2400 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2401 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2402 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2403
duke@435 2404 Node* mem = in(MemNode::Memory);
duke@435 2405 Node* address = in(MemNode::Address);
duke@435 2406
never@2780 2407 // Back-to-back stores to same address? Fold em up. Generally
never@2780 2408 // unsafe if I have intervening uses... Also disallowed for StoreCM
never@2780 2409 // since they must follow each StoreP operation. Redundant StoreCMs
never@2780 2410 // are eliminated just before matching in final_graph_reshape.
kvn@3407 2411 if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
never@2780 2412 mem->Opcode() != Op_StoreCM) {
duke@435 2413 // Looking at a dead closed cycle of memory?
duke@435 2414 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2415
duke@435 2416 assert(Opcode() == mem->Opcode() ||
duke@435 2417 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2418 "no mismatched stores, except on raw memory");
duke@435 2419
duke@435 2420 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2421 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2422 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2423 // For example, 'mem' might be the final state at a conditional return.
duke@435 2424 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2425 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2426 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2427 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2428 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2429 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2430 phase->is_IterGVN());
duke@435 2431 } else {
duke@435 2432 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2433 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2434 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2435 }
duke@435 2436 return this;
duke@435 2437 }
duke@435 2438 }
duke@435 2439
duke@435 2440 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2441 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2442 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2443 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2444 InitializeNode* init = mem->in(0)->as_Initialize();
roland@4657 2445 intptr_t offset = init->can_capture_store(this, phase, can_reshape);
duke@435 2446 if (offset > 0) {
roland@4657 2447 Node* moved = init->capture_store(this, offset, phase, can_reshape);
duke@435 2448 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2449 // and I need to disappear.
duke@435 2450 if (moved != NULL) {
duke@435 2451 // %%% hack to ensure that Ideal returns a new node:
duke@435 2452 mem = MergeMemNode::make(phase->C, mem);
duke@435 2453 return mem; // fold me away
duke@435 2454 }
duke@435 2455 }
duke@435 2456 }
duke@435 2457
duke@435 2458 return NULL; // No further progress
duke@435 2459 }
duke@435 2460
duke@435 2461 //------------------------------Value-----------------------------------------
duke@435 2462 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2463 // Either input is TOP ==> the result is TOP
duke@435 2464 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2465 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2466 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2467 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2468 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2469 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2470 return Type::MEMORY;
duke@435 2471 }
duke@435 2472
duke@435 2473 //------------------------------Identity---------------------------------------
duke@435 2474 // Remove redundant stores:
duke@435 2475 // Store(m, p, Load(m, p)) changes to m.
duke@435 2476 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2477 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2478 Node* mem = in(MemNode::Memory);
duke@435 2479 Node* adr = in(MemNode::Address);
duke@435 2480 Node* val = in(MemNode::ValueIn);
duke@435 2481
duke@435 2482 // Load then Store? Then the Store is useless
duke@435 2483 if (val->is_Load() &&
kvn@3407 2484 val->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2485 val->in(MemNode::Memory )->eqv_uncast(mem) &&
duke@435 2486 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2487 return mem;
duke@435 2488 }
duke@435 2489
duke@435 2490 // Two stores in a row of the same value?
duke@435 2491 if (mem->is_Store() &&
kvn@3407 2492 mem->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2493 mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
duke@435 2494 mem->Opcode() == Opcode()) {
duke@435 2495 return mem;
duke@435 2496 }
duke@435 2497
duke@435 2498 // Store of zero anywhere into a freshly-allocated object?
duke@435 2499 // Then the store is useless.
duke@435 2500 // (It must already have been captured by the InitializeNode.)
duke@435 2501 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2502 // a newly allocated object is already all-zeroes everywhere
duke@435 2503 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2504 return mem;
duke@435 2505 }
duke@435 2506
duke@435 2507 // the store may also apply to zero-bits in an earlier object
duke@435 2508 Node* prev_mem = find_previous_store(phase);
duke@435 2509 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2510 if (prev_mem != NULL) {
duke@435 2511 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2512 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2513 // prev_val and val might differ by a cast; it would be good
duke@435 2514 // to keep the more informative of the two.
duke@435 2515 return mem;
duke@435 2516 }
duke@435 2517 }
duke@435 2518 }
duke@435 2519
duke@435 2520 return this;
duke@435 2521 }
duke@435 2522
duke@435 2523 //------------------------------match_edge-------------------------------------
duke@435 2524 // Do we Match on this edge index or not? Match only memory & value
duke@435 2525 uint StoreNode::match_edge(uint idx) const {
duke@435 2526 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2527 }
duke@435 2528
duke@435 2529 //------------------------------cmp--------------------------------------------
duke@435 2530 // Do not common stores up together. They generally have to be split
duke@435 2531 // back up anyways, so do not bother.
duke@435 2532 uint StoreNode::cmp( const Node &n ) const {
duke@435 2533 return (&n == this); // Always fail except on self
duke@435 2534 }
duke@435 2535
duke@435 2536 //------------------------------Ideal_masked_input-----------------------------
duke@435 2537 // Check for a useless mask before a partial-word store
duke@435 2538 // (StoreB ... (AndI valIn conIa) )
duke@435 2539 // If (conIa & mask == mask) this simplifies to
duke@435 2540 // (StoreB ... (valIn) )
duke@435 2541 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2542 Node *val = in(MemNode::ValueIn);
duke@435 2543 if( val->Opcode() == Op_AndI ) {
duke@435 2544 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2545 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2546 set_req(MemNode::ValueIn, val->in(1));
duke@435 2547 return this;
duke@435 2548 }
duke@435 2549 }
duke@435 2550 return NULL;
duke@435 2551 }
duke@435 2552
duke@435 2553
duke@435 2554 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2555 // Check for useless sign-extension before a partial-word store
duke@435 2556 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2557 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2558 // (StoreB ... (valIn) )
duke@435 2559 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2560 Node *val = in(MemNode::ValueIn);
duke@435 2561 if( val->Opcode() == Op_RShiftI ) {
duke@435 2562 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2563 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2564 Node *shl = val->in(1);
duke@435 2565 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2566 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2567 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2568 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2569 return this;
duke@435 2570 }
duke@435 2571 }
duke@435 2572 }
duke@435 2573 }
duke@435 2574 return NULL;
duke@435 2575 }
duke@435 2576
duke@435 2577 //------------------------------value_never_loaded-----------------------------------
duke@435 2578 // Determine whether there are any possible loads of the value stored.
duke@435 2579 // For simplicity, we actually check if there are any loads from the
duke@435 2580 // address stored to, not just for loads of the value stored by this node.
duke@435 2581 //
duke@435 2582 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2583 Node *adr = in(Address);
duke@435 2584 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2585 if (adr_oop == NULL)
duke@435 2586 return false;
kvn@658 2587 if (!adr_oop->is_known_instance_field())
duke@435 2588 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2589 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2590 Node *use = adr->fast_out(i);
duke@435 2591 int opc = use->Opcode();
duke@435 2592 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2593 return false;
duke@435 2594 }
duke@435 2595 }
duke@435 2596 return true;
duke@435 2597 }
duke@435 2598
duke@435 2599 //=============================================================================
duke@435 2600 //------------------------------Ideal------------------------------------------
duke@435 2601 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2602 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2603 // (a left shift, then right shift) we can skip both.
duke@435 2604 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2605 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2606 if( progress != NULL ) return progress;
duke@435 2607
duke@435 2608 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2609 if( progress != NULL ) return progress;
duke@435 2610
duke@435 2611 // Finally check the default case
duke@435 2612 return StoreNode::Ideal(phase, can_reshape);
duke@435 2613 }
duke@435 2614
duke@435 2615 //=============================================================================
duke@435 2616 //------------------------------Ideal------------------------------------------
duke@435 2617 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2618 // we can skip the AND operation
duke@435 2619 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2620 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2621 if( progress != NULL ) return progress;
duke@435 2622
duke@435 2623 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2624 if( progress != NULL ) return progress;
duke@435 2625
duke@435 2626 // Finally check the default case
duke@435 2627 return StoreNode::Ideal(phase, can_reshape);
duke@435 2628 }
duke@435 2629
duke@435 2630 //=============================================================================
duke@435 2631 //------------------------------Identity---------------------------------------
duke@435 2632 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2633 // No need to card mark when storing a null ptr
duke@435 2634 Node* my_store = in(MemNode::OopStore);
duke@435 2635 if (my_store->is_Store()) {
duke@435 2636 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2637 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2638 return in(MemNode::Memory);
duke@435 2639 }
duke@435 2640 }
duke@435 2641 return this;
duke@435 2642 }
duke@435 2643
cfang@1420 2644 //=============================================================================
cfang@1420 2645 //------------------------------Ideal---------------------------------------
cfang@1420 2646 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1420 2647 Node* progress = StoreNode::Ideal(phase, can_reshape);
cfang@1420 2648 if (progress != NULL) return progress;
cfang@1420 2649
cfang@1420 2650 Node* my_store = in(MemNode::OopStore);
cfang@1420 2651 if (my_store->is_MergeMem()) {
cfang@1420 2652 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
cfang@1420 2653 set_req(MemNode::OopStore, mem);
cfang@1420 2654 return this;
cfang@1420 2655 }
cfang@1420 2656
cfang@1420 2657 return NULL;
cfang@1420 2658 }
cfang@1420 2659
duke@435 2660 //------------------------------Value-----------------------------------------
duke@435 2661 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2662 // Either input is TOP ==> the result is TOP
kvn@478 2663 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2664 if( t == Type::TOP ) return Type::TOP;
kvn@478 2665 t = phase->type( in(MemNode::Address) );
kvn@478 2666 if( t == Type::TOP ) return Type::TOP;
kvn@478 2667 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2668 if( t == Type::TOP ) return Type::TOP;
duke@435 2669 // If extra input is TOP ==> the result is TOP
kvn@478 2670 t = phase->type( in(MemNode::OopStore) );
kvn@478 2671 if( t == Type::TOP ) return Type::TOP;
duke@435 2672
duke@435 2673 return StoreNode::Value( phase );
duke@435 2674 }
duke@435 2675
duke@435 2676
duke@435 2677 //=============================================================================
duke@435 2678 //----------------------------------SCMemProjNode------------------------------
duke@435 2679 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2680 {
duke@435 2681 return bottom_type();
duke@435 2682 }
duke@435 2683
duke@435 2684 //=============================================================================
roland@4106 2685 //----------------------------------LoadStoreNode------------------------------
roland@4106 2686 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
roland@4106 2687 : Node(required),
roland@4106 2688 _type(rt),
roland@4106 2689 _adr_type(at)
roland@4106 2690 {
duke@435 2691 init_req(MemNode::Control, c );
duke@435 2692 init_req(MemNode::Memory , mem);
duke@435 2693 init_req(MemNode::Address, adr);
duke@435 2694 init_req(MemNode::ValueIn, val);
duke@435 2695 init_class_id(Class_LoadStore);
roland@4106 2696 }
roland@4106 2697
roland@4106 2698 uint LoadStoreNode::ideal_reg() const {
roland@4106 2699 return _type->ideal_reg();
roland@4106 2700 }
roland@4106 2701
roland@4106 2702 bool LoadStoreNode::result_not_used() const {
roland@4106 2703 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
roland@4106 2704 Node *x = fast_out(i);
roland@4106 2705 if (x->Opcode() == Op_SCMemProj) continue;
roland@4106 2706 return false;
roland@4106 2707 }
roland@4106 2708 return true;
roland@4106 2709 }
roland@4106 2710
roland@4106 2711 uint LoadStoreNode::size_of() const { return sizeof(*this); }
roland@4106 2712
roland@4106 2713 //=============================================================================
roland@4106 2714 //----------------------------------LoadStoreConditionalNode--------------------
roland@4106 2715 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
roland@4106 2716 init_req(ExpectedIn, ex );
duke@435 2717 }
duke@435 2718
duke@435 2719 //=============================================================================
duke@435 2720 //-------------------------------adr_type--------------------------------------
duke@435 2721 // Do we Match on this edge index or not? Do not match memory
duke@435 2722 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2723 Node *adr = in(3);
duke@435 2724 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2725 }
duke@435 2726
duke@435 2727 //------------------------------match_edge-------------------------------------
duke@435 2728 // Do we Match on this edge index or not? Do not match memory
duke@435 2729 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2730 return idx > 1;
duke@435 2731 }
duke@435 2732
duke@435 2733 //------------------------------Identity---------------------------------------
duke@435 2734 // Clearing a zero length array does nothing
duke@435 2735 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2736 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2737 }
duke@435 2738
duke@435 2739 //------------------------------Idealize---------------------------------------
duke@435 2740 // Clearing a short array is faster with stores
duke@435 2741 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2742 const int unit = BytesPerLong;
duke@435 2743 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2744 if (!t) return NULL;
duke@435 2745 if (!t->is_con()) return NULL;
duke@435 2746 intptr_t raw_count = t->get_con();
duke@435 2747 intptr_t size = raw_count;
duke@435 2748 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2749 // Clearing nothing uses the Identity call.
duke@435 2750 // Negative clears are possible on dead ClearArrays
duke@435 2751 // (see jck test stmt114.stmt11402.val).
duke@435 2752 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2753 intptr_t count = size / unit;
duke@435 2754 // Length too long; use fast hardware clear
duke@435 2755 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2756 Node *mem = in(1);
duke@435 2757 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2758 Node *adr = in(3);
duke@435 2759 const Type* at = phase->type(adr);
duke@435 2760 if( at==Type::TOP ) return NULL;
duke@435 2761 const TypePtr* atp = at->isa_ptr();
duke@435 2762 // adjust atp to be the correct array element address type
duke@435 2763 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2764 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2765 // Get base for derived pointer purposes
duke@435 2766 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2767 Node *base = adr->in(1);
duke@435 2768
duke@435 2769 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2770 Node *off = phase->MakeConX(BytesPerLong);
goetz@6479 2771 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
duke@435 2772 count--;
duke@435 2773 while( count-- ) {
duke@435 2774 mem = phase->transform(mem);
kvn@4115 2775 adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
goetz@6479 2776 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
duke@435 2777 }
duke@435 2778 return mem;
duke@435 2779 }
duke@435 2780
kvn@1535 2781 //----------------------------step_through----------------------------------
kvn@1535 2782 // Return allocation input memory edge if it is different instance
kvn@1535 2783 // or itself if it is the one we are looking for.
kvn@1535 2784 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
kvn@1535 2785 Node* n = *np;
kvn@1535 2786 assert(n->is_ClearArray(), "sanity");
kvn@1535 2787 intptr_t offset;
kvn@1535 2788 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
kvn@1535 2789 // This method is called only before Allocate nodes are expanded during
kvn@1535 2790 // macro nodes expansion. Before that ClearArray nodes are only generated
kvn@1535 2791 // in LibraryCallKit::generate_arraycopy() which follows allocations.
kvn@1535 2792 assert(alloc != NULL, "should have allocation");
kvn@1535 2793 if (alloc->_idx == instance_id) {
kvn@1535 2794 // Can not bypass initialization of the instance we are looking for.
kvn@1535 2795 return false;
kvn@1535 2796 }
kvn@1535 2797 // Otherwise skip it.
kvn@1535 2798 InitializeNode* init = alloc->initialization();
kvn@1535 2799 if (init != NULL)
kvn@1535 2800 *np = init->in(TypeFunc::Memory);
kvn@1535 2801 else
kvn@1535 2802 *np = alloc->in(TypeFunc::Memory);
kvn@1535 2803 return true;
kvn@1535 2804 }
kvn@1535 2805
duke@435 2806 //----------------------------clear_memory-------------------------------------
duke@435 2807 // Generate code to initialize object storage to zero.
duke@435 2808 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2809 intptr_t start_offset,
duke@435 2810 Node* end_offset,
duke@435 2811 PhaseGVN* phase) {
duke@435 2812 Compile* C = phase->C;
duke@435 2813 intptr_t offset = start_offset;
duke@435 2814
duke@435 2815 int unit = BytesPerLong;
duke@435 2816 if ((offset % unit) != 0) {
kvn@4115 2817 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2818 adr = phase->transform(adr);
duke@435 2819 const TypePtr* atp = TypeRawPtr::BOTTOM;
goetz@6479 2820 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
duke@435 2821 mem = phase->transform(mem);
duke@435 2822 offset += BytesPerInt;
duke@435 2823 }
duke@435 2824 assert((offset % unit) == 0, "");
duke@435 2825
duke@435 2826 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2827 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2828 }
duke@435 2829
duke@435 2830 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2831 Node* start_offset,
duke@435 2832 Node* end_offset,
duke@435 2833 PhaseGVN* phase) {
never@503 2834 if (start_offset == end_offset) {
never@503 2835 // nothing to do
never@503 2836 return mem;
never@503 2837 }
never@503 2838
duke@435 2839 Compile* C = phase->C;
duke@435 2840 int unit = BytesPerLong;
duke@435 2841 Node* zbase = start_offset;
duke@435 2842 Node* zend = end_offset;
duke@435 2843
duke@435 2844 // Scale to the unit required by the CPU:
duke@435 2845 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2846 Node* shift = phase->intcon(exact_log2(unit));
kvn@4115 2847 zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
kvn@4115 2848 zend = phase->transform( new(C) URShiftXNode(zend, shift) );
duke@435 2849 }
duke@435 2850
kvn@4410 2851 // Bulk clear double-words
kvn@4115 2852 Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
kvn@4115 2853 Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
kvn@4115 2854 mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2855 return phase->transform(mem);
duke@435 2856 }
duke@435 2857
duke@435 2858 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2859 intptr_t start_offset,
duke@435 2860 intptr_t end_offset,
duke@435 2861 PhaseGVN* phase) {
never@503 2862 if (start_offset == end_offset) {
never@503 2863 // nothing to do
never@503 2864 return mem;
never@503 2865 }
never@503 2866
duke@435 2867 Compile* C = phase->C;
duke@435 2868 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2869 intptr_t done_offset = end_offset;
duke@435 2870 if ((done_offset % BytesPerLong) != 0) {
duke@435 2871 done_offset -= BytesPerInt;
duke@435 2872 }
duke@435 2873 if (done_offset > start_offset) {
duke@435 2874 mem = clear_memory(ctl, mem, dest,
duke@435 2875 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2876 }
duke@435 2877 if (done_offset < end_offset) { // emit the final 32-bit store
kvn@4115 2878 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2879 adr = phase->transform(adr);
duke@435 2880 const TypePtr* atp = TypeRawPtr::BOTTOM;
goetz@6479 2881 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
duke@435 2882 mem = phase->transform(mem);
duke@435 2883 done_offset += BytesPerInt;
duke@435 2884 }
duke@435 2885 assert(done_offset == end_offset, "");
duke@435 2886 return mem;
duke@435 2887 }
duke@435 2888
duke@435 2889 //=============================================================================
kvn@2694 2890 // Do not match memory edge.
kvn@2694 2891 uint StrIntrinsicNode::match_edge(uint idx) const {
kvn@2694 2892 return idx == 2 || idx == 3;
duke@435 2893 }
duke@435 2894
duke@435 2895 //------------------------------Ideal------------------------------------------
duke@435 2896 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2897 // control copies
kvn@2694 2898 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2694 2899 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2900 // Don't bother trying to transform a dead node
kvn@3311 2901 if (in(0) && in(0)->is_top()) return NULL;
kvn@2694 2902
kvn@2699 2903 if (can_reshape) {
kvn@2699 2904 Node* mem = phase->transform(in(MemNode::Memory));
kvn@2699 2905 // If transformed to a MergeMem, get the desired slice
kvn@2699 2906 uint alias_idx = phase->C->get_alias_index(adr_type());
kvn@2699 2907 mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
kvn@2699 2908 if (mem != in(MemNode::Memory)) {
kvn@2699 2909 set_req(MemNode::Memory, mem);
kvn@2699 2910 return this;
kvn@2699 2911 }
kvn@2699 2912 }
kvn@2694 2913 return NULL;
rasbold@604 2914 }
rasbold@604 2915
kvn@3311 2916 //------------------------------Value------------------------------------------
kvn@3311 2917 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
kvn@3311 2918 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@3311 2919 return bottom_type();
kvn@3311 2920 }
kvn@3311 2921
duke@435 2922 //=============================================================================
kvn@4479 2923 //------------------------------match_edge-------------------------------------
kvn@4479 2924 // Do not match memory edge
kvn@4479 2925 uint EncodeISOArrayNode::match_edge(uint idx) const {
kvn@4479 2926 return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
kvn@4479 2927 }
kvn@4479 2928
kvn@4479 2929 //------------------------------Ideal------------------------------------------
kvn@4479 2930 // Return a node which is more "ideal" than the current node. Strip out
kvn@4479 2931 // control copies
kvn@4479 2932 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@4479 2933 return remove_dead_region(phase, can_reshape) ? this : NULL;
kvn@4479 2934 }
kvn@4479 2935
kvn@4479 2936 //------------------------------Value------------------------------------------
kvn@4479 2937 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
kvn@4479 2938 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@4479 2939 return bottom_type();
kvn@4479 2940 }
kvn@4479 2941
kvn@4479 2942 //=============================================================================
duke@435 2943 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2944 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2945 _adr_type(C->get_adr_type(alias_idx))
duke@435 2946 {
duke@435 2947 init_class_id(Class_MemBar);
duke@435 2948 Node* top = C->top();
duke@435 2949 init_req(TypeFunc::I_O,top);
duke@435 2950 init_req(TypeFunc::FramePtr,top);
duke@435 2951 init_req(TypeFunc::ReturnAdr,top);
duke@435 2952 if (precedent != NULL)
duke@435 2953 init_req(TypeFunc::Parms, precedent);
duke@435 2954 }
duke@435 2955
duke@435 2956 //------------------------------cmp--------------------------------------------
duke@435 2957 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2958 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2959 return (&n == this); // Always fail except on self
duke@435 2960 }
duke@435 2961
duke@435 2962 //------------------------------make-------------------------------------------
duke@435 2963 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2964 switch (opcode) {
goetz@6489 2965 case Op_MemBarAcquire: return new(C) MemBarAcquireNode(C, atp, pn);
goetz@6489 2966 case Op_LoadFence: return new(C) LoadFenceNode(C, atp, pn);
goetz@6489 2967 case Op_MemBarRelease: return new(C) MemBarReleaseNode(C, atp, pn);
goetz@6489 2968 case Op_StoreFence: return new(C) StoreFenceNode(C, atp, pn);
goetz@6489 2969 case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
goetz@6489 2970 case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
goetz@6489 2971 case Op_MemBarVolatile: return new(C) MemBarVolatileNode(C, atp, pn);
goetz@6489 2972 case Op_MemBarCPUOrder: return new(C) MemBarCPUOrderNode(C, atp, pn);
goetz@6489 2973 case Op_Initialize: return new(C) InitializeNode(C, atp, pn);
goetz@6489 2974 case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C, atp, pn);
goetz@6489 2975 default: ShouldNotReachHere(); return NULL;
duke@435 2976 }
duke@435 2977 }
duke@435 2978
duke@435 2979 //------------------------------Ideal------------------------------------------
duke@435 2980 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2981 // control copies
duke@435 2982 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1535 2983 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2984 // Don't bother trying to transform a dead node
adlertz@5291 2985 if (in(0) && in(0)->is_top()) {
adlertz@5291 2986 return NULL;
adlertz@5291 2987 }
kvn@1535 2988
kvn@1535 2989 // Eliminate volatile MemBars for scalar replaced objects.
kvn@5110 2990 if (can_reshape && req() == (Precedent+1)) {
kvn@5110 2991 bool eliminate = false;
kvn@5110 2992 int opc = Opcode();
kvn@5110 2993 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
kvn@5110 2994 // Volatile field loads and stores.
kvn@5110 2995 Node* my_mem = in(MemBarNode::Precedent);
adlertz@5291 2996 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
adlertz@5291 2997 if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
adlertz@5317 2998 // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
adlertz@5317 2999 // replace this Precedent (decodeN) with the Load instead.
adlertz@5317 3000 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) {
adlertz@5317 3001 Node* load_node = my_mem->in(1);
adlertz@5317 3002 set_req(MemBarNode::Precedent, load_node);
adlertz@5317 3003 phase->is_IterGVN()->_worklist.push(my_mem);
adlertz@5317 3004 my_mem = load_node;
adlertz@5317 3005 } else {
adlertz@5317 3006 assert(my_mem->unique_out() == this, "sanity");
adlertz@5317 3007 del_req(Precedent);
adlertz@5317 3008 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
adlertz@5317 3009 my_mem = NULL;
adlertz@5317 3010 }
adlertz@5291 3011 }
kvn@5110 3012 if (my_mem != NULL && my_mem->is_Mem()) {
kvn@5110 3013 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@5110 3014 // Check for scalar replaced object reference.
kvn@5110 3015 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@5110 3016 t_oop->offset() != Type::OffsetBot &&
kvn@5110 3017 t_oop->offset() != Type::OffsetTop) {
kvn@5110 3018 eliminate = true;
kvn@5110 3019 }
kvn@1535 3020 }
kvn@5110 3021 } else if (opc == Op_MemBarRelease) {
kvn@5110 3022 // Final field stores.
kvn@5110 3023 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
kvn@5110 3024 if ((alloc != NULL) && alloc->is_Allocate() &&
kvn@5110 3025 alloc->as_Allocate()->_is_non_escaping) {
kvn@5110 3026 // The allocated object does not escape.
kvn@5110 3027 eliminate = true;
kvn@5110 3028 }
kvn@5110 3029 }
kvn@5110 3030 if (eliminate) {
kvn@5110 3031 // Replace MemBar projections by its inputs.
kvn@5110 3032 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@5110 3033 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
kvn@5110 3034 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
kvn@5110 3035 // Must return either the original node (now dead) or a new node
kvn@5110 3036 // (Do not return a top here, since that would break the uniqueness of top.)
kvn@5110 3037 return new (phase->C) ConINode(TypeInt::ZERO);
kvn@1535 3038 }
kvn@1535 3039 }
kvn@1535 3040 return NULL;
duke@435 3041 }
duke@435 3042
duke@435 3043 //------------------------------Value------------------------------------------
duke@435 3044 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 3045 if( !in(0) ) return Type::TOP;
duke@435 3046 if( phase->type(in(0)) == Type::TOP )
duke@435 3047 return Type::TOP;
duke@435 3048 return TypeTuple::MEMBAR;
duke@435 3049 }
duke@435 3050
duke@435 3051 //------------------------------match------------------------------------------
duke@435 3052 // Construct projections for memory.
duke@435 3053 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 3054 switch (proj->_con) {
duke@435 3055 case TypeFunc::Control:
duke@435 3056 case TypeFunc::Memory:
kvn@4115 3057 return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 3058 }
duke@435 3059 ShouldNotReachHere();
duke@435 3060 return NULL;
duke@435 3061 }
duke@435 3062
duke@435 3063 //===========================InitializeNode====================================
duke@435 3064 // SUMMARY:
duke@435 3065 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 3066 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 3067 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 3068 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 3069 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 3070 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 3071 //
duke@435 3072 // EXAMPLE:
duke@435 3073 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 3074 // ctl = incoming control; mem* = incoming memory
duke@435 3075 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 3076 // First allocate uninitialized memory and fill in the header:
duke@435 3077 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 3078 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 3079 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 3080 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 3081 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 3082 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 3083 // After the initialize node executes, the object is ready for service:
duke@435 3084 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 3085 // Suppose its body is immediately initialized as {1,2}:
duke@435 3086 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3087 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3088 // mem.SLICE(#short[*]) := store2
duke@435 3089 //
duke@435 3090 // DETAILS:
duke@435 3091 // An InitializeNode collects and isolates object initialization after
duke@435 3092 // an AllocateNode and before the next possible safepoint. As a
duke@435 3093 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 3094 // down past any safepoint or any publication of the allocation.
duke@435 3095 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 3096 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 3097 //
duke@435 3098 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 3099 // the new object from object header to the end of the object.
duke@435 3100 // (The object header and end are determined by the AllocateNode.)
duke@435 3101 //
duke@435 3102 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 3103 // These stores must update raw memory, and they must be to addresses
duke@435 3104 // derived from the raw address produced by AllocateNode, and with
duke@435 3105 // a constant offset. They must be ordered by increasing offset.
duke@435 3106 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 3107 // Unlike most memory operations, they are not linked in a chain,
duke@435 3108 // but are displayed in parallel as users of the rawmem output of
duke@435 3109 // the allocation.
duke@435 3110 //
duke@435 3111 // (See comments in InitializeNode::capture_store, which continue
duke@435 3112 // the example given above.)
duke@435 3113 //
duke@435 3114 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 3115 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 3116 // may also be created at that point to represent any required zeroing.
duke@435 3117 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 3118 // capturing of nearby memory operations.
duke@435 3119 //
duke@435 3120 // During macro-expansion, all captured initializations which store
twisti@1040 3121 // constant values of 32 bits or smaller are coalesced (if advantageous)
duke@435 3122 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 3123 // initialized in fewer memory operations. Memory words which are
duke@435 3124 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 3125 // by explicit stores of zero. (The code shape happens to do all
duke@435 3126 // zeroing first, then all other stores, with both sequences occurring
duke@435 3127 // in order of ascending offsets.)
duke@435 3128 //
duke@435 3129 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 3130 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 3131 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 3132 // The initialization must then be marked as 'complete' disable the
duke@435 3133 // built-in zeroing semantics and the collection of initializing stores.
duke@435 3134 //
duke@435 3135 // While an InitializeNode is incomplete, reads from the memory state
duke@435 3136 // produced by it are optimizable if they match the control edge and
duke@435 3137 // new oop address associated with the allocation/initialization.
duke@435 3138 // They return a stored value (if the offset matches) or else zero.
duke@435 3139 // A write to the memory state, if it matches control and address,
duke@435 3140 // and if it is to a constant offset, may be 'captured' by the
duke@435 3141 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 3142 // inside the initialization, to the raw oop produced by the allocation.
duke@435 3143 // Operations on addresses which are provably distinct (e.g., to
duke@435 3144 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 3145 //
duke@435 3146 // The effect of all this is to consolidate object initialization
duke@435 3147 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 3148 // single location, where it can be optimized as a unit.
duke@435 3149 //
duke@435 3150 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 3151 // will be considered for capture by an InitializeNode. This puts a
duke@435 3152 // reasonable limit on the complexity of optimized initializations.
duke@435 3153
duke@435 3154 //---------------------------InitializeNode------------------------------------
duke@435 3155 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
roland@3392 3156 : _is_complete(Incomplete), _does_not_escape(false),
duke@435 3157 MemBarNode(C, adr_type, rawoop)
duke@435 3158 {
duke@435 3159 init_class_id(Class_Initialize);
duke@435 3160
duke@435 3161 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 3162 assert(in(RawAddress) == rawoop, "proper init");
duke@435 3163 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 3164 }
duke@435 3165
duke@435 3166 // Since this node is not matched, it will be processed by the
duke@435 3167 // register allocator. Declare that there are no constraints
duke@435 3168 // on the allocation of the RawAddress edge.
duke@435 3169 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 3170 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 3171 if (idx == InitializeNode::RawAddress)
duke@435 3172 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 3173 return RegMask::Empty;
duke@435 3174 }
duke@435 3175
duke@435 3176 Node* InitializeNode::memory(uint alias_idx) {
duke@435 3177 Node* mem = in(Memory);
duke@435 3178 if (mem->is_MergeMem()) {
duke@435 3179 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 3180 } else {
duke@435 3181 // incoming raw memory is not split
duke@435 3182 return mem;
duke@435 3183 }
duke@435 3184 }
duke@435 3185
duke@435 3186 bool InitializeNode::is_non_zero() {
duke@435 3187 if (is_complete()) return false;
duke@435 3188 remove_extra_zeroes();
duke@435 3189 return (req() > RawStores);
duke@435 3190 }
duke@435 3191
duke@435 3192 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 3193 assert(!is_complete(), "caller responsibility");
kvn@3157 3194 _is_complete = Complete;
duke@435 3195
duke@435 3196 // After this node is complete, it contains a bunch of
duke@435 3197 // raw-memory initializations. There is no need for
duke@435 3198 // it to have anything to do with non-raw memory effects.
duke@435 3199 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 3200 // after skipping the memory effects of this initialization.
duke@435 3201 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 3202 if (igvn) igvn->add_users_to_worklist(this);
duke@435 3203 }
duke@435 3204
duke@435 3205 // convenience function
duke@435 3206 // return false if the init contains any stores already
duke@435 3207 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 3208 InitializeNode* init = initialization();
duke@435 3209 if (init == NULL || init->is_complete()) return false;
duke@435 3210 init->remove_extra_zeroes();
duke@435 3211 // for now, if this allocation has already collected any inits, bail:
duke@435 3212 if (init->is_non_zero()) return false;
duke@435 3213 init->set_complete(phase);
duke@435 3214 return true;
duke@435 3215 }
duke@435 3216
duke@435 3217 void InitializeNode::remove_extra_zeroes() {
duke@435 3218 if (req() == RawStores) return;
duke@435 3219 Node* zmem = zero_memory();
duke@435 3220 uint fill = RawStores;
duke@435 3221 for (uint i = fill; i < req(); i++) {
duke@435 3222 Node* n = in(i);
duke@435 3223 if (n->is_top() || n == zmem) continue; // skip
duke@435 3224 if (fill < i) set_req(fill, n); // compact
duke@435 3225 ++fill;
duke@435 3226 }
duke@435 3227 // delete any empty spaces created:
duke@435 3228 while (fill < req()) {
duke@435 3229 del_req(fill);
duke@435 3230 }
duke@435 3231 }
duke@435 3232
duke@435 3233 // Helper for remembering which stores go with which offsets.
duke@435 3234 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 3235 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 3236 intptr_t offset = -1;
duke@435 3237 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 3238 phase, offset);
duke@435 3239 if (base == NULL) return -1; // something is dead,
duke@435 3240 if (offset < 0) return -1; // dead, dead
duke@435 3241 return offset;
duke@435 3242 }
duke@435 3243
duke@435 3244 // Helper for proving that an initialization expression is
duke@435 3245 // "simple enough" to be folded into an object initialization.
duke@435 3246 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 3247 // within the initialization without creating a vicious cycle, such as:
duke@435 3248 // { Foo p = new Foo(); p.next = p; }
duke@435 3249 // True for constants and parameters and small combinations thereof.
kvn@5110 3250 bool InitializeNode::detect_init_independence(Node* n, int& count) {
duke@435 3251 if (n == NULL) return true; // (can this really happen?)
duke@435 3252 if (n->is_Proj()) n = n->in(0);
duke@435 3253 if (n == this) return false; // found a cycle
duke@435 3254 if (n->is_Con()) return true;
duke@435 3255 if (n->is_Start()) return true; // params, etc., are OK
duke@435 3256 if (n->is_Root()) return true; // even better
duke@435 3257
duke@435 3258 Node* ctl = n->in(0);
duke@435 3259 if (ctl != NULL && !ctl->is_top()) {
duke@435 3260 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 3261 if (ctl == this) return false;
duke@435 3262
duke@435 3263 // If we already know that the enclosing memory op is pinned right after
duke@435 3264 // the init, then any control flow that the store has picked up
duke@435 3265 // must have preceded the init, or else be equal to the init.
duke@435 3266 // Even after loop optimizations (which might change control edges)
duke@435 3267 // a store is never pinned *before* the availability of its inputs.
kvn@554 3268 if (!MemNode::all_controls_dominate(n, this))
duke@435 3269 return false; // failed to prove a good control
duke@435 3270 }
duke@435 3271
duke@435 3272 // Check data edges for possible dependencies on 'this'.
duke@435 3273 if ((count += 1) > 20) return false; // complexity limit
duke@435 3274 for (uint i = 1; i < n->req(); i++) {
duke@435 3275 Node* m = n->in(i);
duke@435 3276 if (m == NULL || m == n || m->is_top()) continue;
duke@435 3277 uint first_i = n->find_edge(m);
duke@435 3278 if (i != first_i) continue; // process duplicate edge just once
kvn@5110 3279 if (!detect_init_independence(m, count)) {
duke@435 3280 return false;
duke@435 3281 }
duke@435 3282 }
duke@435 3283
duke@435 3284 return true;
duke@435 3285 }
duke@435 3286
duke@435 3287 // Here are all the checks a Store must pass before it can be moved into
duke@435 3288 // an initialization. Returns zero if a check fails.
duke@435 3289 // On success, returns the (constant) offset to which the store applies,
duke@435 3290 // within the initialized memory.
roland@4657 3291 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
duke@435 3292 const int FAIL = 0;
duke@435 3293 if (st->req() != MemNode::ValueIn + 1)
duke@435 3294 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 3295 Node* ctl = st->in(MemNode::Control);
duke@435 3296 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 3297 return FAIL; // must be unconditional after the initialization
duke@435 3298 Node* mem = st->in(MemNode::Memory);
duke@435 3299 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 3300 return FAIL; // must not be preceded by other stores
duke@435 3301 Node* adr = st->in(MemNode::Address);
duke@435 3302 intptr_t offset;
duke@435 3303 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 3304 if (alloc == NULL)
duke@435 3305 return FAIL; // inscrutable address
duke@435 3306 if (alloc != allocation())
duke@435 3307 return FAIL; // wrong allocation! (store needs to float up)
duke@435 3308 Node* val = st->in(MemNode::ValueIn);
duke@435 3309 int complexity_count = 0;
kvn@5110 3310 if (!detect_init_independence(val, complexity_count))
duke@435 3311 return FAIL; // stored value must be 'simple enough'
duke@435 3312
roland@4657 3313 // The Store can be captured only if nothing after the allocation
roland@4657 3314 // and before the Store is using the memory location that the store
roland@4657 3315 // overwrites.
roland@4657 3316 bool failed = false;
roland@4657 3317 // If is_complete_with_arraycopy() is true the shape of the graph is
roland@4657 3318 // well defined and is safe so no need for extra checks.
roland@4657 3319 if (!is_complete_with_arraycopy()) {
roland@4657 3320 // We are going to look at each use of the memory state following
roland@4657 3321 // the allocation to make sure nothing reads the memory that the
roland@4657 3322 // Store writes.
roland@4657 3323 const TypePtr* t_adr = phase->type(adr)->isa_ptr();
roland@4657 3324 int alias_idx = phase->C->get_alias_index(t_adr);
roland@4657 3325 ResourceMark rm;
roland@4657 3326 Unique_Node_List mems;
roland@4657 3327 mems.push(mem);
roland@4657 3328 Node* unique_merge = NULL;
roland@4657 3329 for (uint next = 0; next < mems.size(); ++next) {
roland@4657 3330 Node *m = mems.at(next);
roland@4657 3331 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
roland@4657 3332 Node *n = m->fast_out(j);
roland@4657 3333 if (n->outcnt() == 0) {
roland@4657 3334 continue;
roland@4657 3335 }
roland@4657 3336 if (n == st) {
roland@4657 3337 continue;
roland@4657 3338 } else if (n->in(0) != NULL && n->in(0) != ctl) {
roland@4657 3339 // If the control of this use is different from the control
roland@4657 3340 // of the Store which is right after the InitializeNode then
roland@4657 3341 // this node cannot be between the InitializeNode and the
roland@4657 3342 // Store.
roland@4657 3343 continue;
roland@4657 3344 } else if (n->is_MergeMem()) {
roland@4657 3345 if (n->as_MergeMem()->memory_at(alias_idx) == m) {
roland@4657 3346 // We can hit a MergeMemNode (that will likely go away
roland@4657 3347 // later) that is a direct use of the memory state
roland@4657 3348 // following the InitializeNode on the same slice as the
roland@4657 3349 // store node that we'd like to capture. We need to check
roland@4657 3350 // the uses of the MergeMemNode.
roland@4657 3351 mems.push(n);
roland@4657 3352 }
roland@4657 3353 } else if (n->is_Mem()) {
roland@4657 3354 Node* other_adr = n->in(MemNode::Address);
roland@4657 3355 if (other_adr == adr) {
roland@4657 3356 failed = true;
roland@4657 3357 break;
roland@4657 3358 } else {
roland@4657 3359 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
roland@4657 3360 if (other_t_adr != NULL) {
roland@4657 3361 int other_alias_idx = phase->C->get_alias_index(other_t_adr);
roland@4657 3362 if (other_alias_idx == alias_idx) {
roland@4657 3363 // A load from the same memory slice as the store right
roland@4657 3364 // after the InitializeNode. We check the control of the
roland@4657 3365 // object/array that is loaded from. If it's the same as
roland@4657 3366 // the store control then we cannot capture the store.
roland@4657 3367 assert(!n->is_Store(), "2 stores to same slice on same control?");
roland@4657 3368 Node* base = other_adr;
roland@4657 3369 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
roland@4657 3370 base = base->in(AddPNode::Base);
roland@4657 3371 if (base != NULL) {
roland@4657 3372 base = base->uncast();
roland@4657 3373 if (base->is_Proj() && base->in(0) == alloc) {
roland@4657 3374 failed = true;
roland@4657 3375 break;
roland@4657 3376 }
roland@4657 3377 }
roland@4657 3378 }
roland@4657 3379 }
roland@4657 3380 }
roland@4657 3381 } else {
roland@4657 3382 failed = true;
roland@4657 3383 break;
roland@4657 3384 }
roland@4657 3385 }
roland@4657 3386 }
roland@4657 3387 }
roland@4657 3388 if (failed) {
roland@4657 3389 if (!can_reshape) {
roland@4657 3390 // We decided we couldn't capture the store during parsing. We
roland@4657 3391 // should try again during the next IGVN once the graph is
roland@4657 3392 // cleaner.
roland@4657 3393 phase->C->record_for_igvn(st);
roland@4657 3394 }
roland@4657 3395 return FAIL;
roland@4657 3396 }
roland@4657 3397
duke@435 3398 return offset; // success
duke@435 3399 }
duke@435 3400
duke@435 3401 // Find the captured store in(i) which corresponds to the range
duke@435 3402 // [start..start+size) in the initialized object.
duke@435 3403 // If there is one, return its index i. If there isn't, return the
duke@435 3404 // negative of the index where it should be inserted.
duke@435 3405 // Return 0 if the queried range overlaps an initialization boundary
duke@435 3406 // or if dead code is encountered.
duke@435 3407 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 3408 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 3409 int size_in_bytes,
duke@435 3410 PhaseTransform* phase) {
duke@435 3411 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 3412
duke@435 3413 if (is_complete())
duke@435 3414 return FAIL; // arraycopy got here first; punt
duke@435 3415
duke@435 3416 assert(allocation() != NULL, "must be present");
duke@435 3417
duke@435 3418 // no negatives, no header fields:
coleenp@548 3419 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 3420
duke@435 3421 // after a certain size, we bail out on tracking all the stores:
duke@435 3422 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3423 if (start >= ti_limit) return FAIL;
duke@435 3424
duke@435 3425 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 3426 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 3427
duke@435 3428 Node* st = in(i);
duke@435 3429 intptr_t st_off = get_store_offset(st, phase);
duke@435 3430 if (st_off < 0) {
duke@435 3431 if (st != zero_memory()) {
duke@435 3432 return FAIL; // bail out if there is dead garbage
duke@435 3433 }
duke@435 3434 } else if (st_off > start) {
duke@435 3435 // ...we are done, since stores are ordered
duke@435 3436 if (st_off < start + size_in_bytes) {
duke@435 3437 return FAIL; // the next store overlaps
duke@435 3438 }
duke@435 3439 return -(int)i; // not found; here is where to put it
duke@435 3440 } else if (st_off < start) {
duke@435 3441 if (size_in_bytes != 0 &&
duke@435 3442 start < st_off + MAX_STORE &&
duke@435 3443 start < st_off + st->as_Store()->memory_size()) {
duke@435 3444 return FAIL; // the previous store overlaps
duke@435 3445 }
duke@435 3446 } else {
duke@435 3447 if (size_in_bytes != 0 &&
duke@435 3448 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 3449 return FAIL; // mismatched store size
duke@435 3450 }
duke@435 3451 return i;
duke@435 3452 }
duke@435 3453
duke@435 3454 ++i;
duke@435 3455 }
duke@435 3456 }
duke@435 3457
duke@435 3458 // Look for a captured store which initializes at the offset 'start'
duke@435 3459 // with the given size. If there is no such store, and no other
duke@435 3460 // initialization interferes, then return zero_memory (the memory
duke@435 3461 // projection of the AllocateNode).
duke@435 3462 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 3463 PhaseTransform* phase) {
duke@435 3464 assert(stores_are_sane(phase), "");
duke@435 3465 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3466 if (i == 0) {
duke@435 3467 return NULL; // something is dead
duke@435 3468 } else if (i < 0) {
duke@435 3469 return zero_memory(); // just primordial zero bits here
duke@435 3470 } else {
duke@435 3471 Node* st = in(i); // here is the store at this position
duke@435 3472 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 3473 return st;
duke@435 3474 }
duke@435 3475 }
duke@435 3476
duke@435 3477 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 3478 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 3479 PhaseTransform* phase) {
duke@435 3480 Node* addr = in(RawAddress);
duke@435 3481 if (offset != 0) {
duke@435 3482 Compile* C = phase->C;
kvn@4115 3483 addr = phase->transform( new (C) AddPNode(C->top(), addr,
duke@435 3484 phase->MakeConX(offset)) );
duke@435 3485 }
duke@435 3486 return addr;
duke@435 3487 }
duke@435 3488
duke@435 3489 // Clone the given store, converting it into a raw store
duke@435 3490 // initializing a field or element of my new object.
duke@435 3491 // Caller is responsible for retiring the original store,
duke@435 3492 // with subsume_node or the like.
duke@435 3493 //
duke@435 3494 // From the example above InitializeNode::InitializeNode,
duke@435 3495 // here are the old stores to be captured:
duke@435 3496 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3497 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3498 //
duke@435 3499 // Here is the changed code; note the extra edges on init:
duke@435 3500 // alloc = (Allocate ...)
duke@435 3501 // rawoop = alloc.RawAddress
duke@435 3502 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 3503 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 3504 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 3505 // rawstore1 rawstore2)
duke@435 3506 //
duke@435 3507 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
roland@4657 3508 PhaseTransform* phase, bool can_reshape) {
duke@435 3509 assert(stores_are_sane(phase), "");
duke@435 3510
duke@435 3511 if (start < 0) return NULL;
roland@4657 3512 assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
duke@435 3513
duke@435 3514 Compile* C = phase->C;
duke@435 3515 int size_in_bytes = st->memory_size();
duke@435 3516 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3517 if (i == 0) return NULL; // bail out
duke@435 3518 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 3519 if (i > 0) {
duke@435 3520 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 3521 set_req(i, C->top()); // temporarily disconnect it
duke@435 3522 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 3523 } else {
duke@435 3524 i = -i; // no pre-existing store
duke@435 3525 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 3526 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 3527 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 3528 else
duke@435 3529 ins_req(i, C->top()); // build a new edge
duke@435 3530 }
duke@435 3531 Node* new_st = st->clone();
duke@435 3532 new_st->set_req(MemNode::Control, in(Control));
duke@435 3533 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 3534 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 3535 new_st = phase->transform(new_st);
duke@435 3536
duke@435 3537 // At this point, new_st might have swallowed a pre-existing store
duke@435 3538 // at the same offset, or perhaps new_st might have disappeared,
duke@435 3539 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 3540
duke@435 3541 // In any case, wire it in:
duke@435 3542 set_req(i, new_st);
duke@435 3543
duke@435 3544 // The caller may now kill the old guy.
duke@435 3545 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 3546 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 3547 assert(!is_complete(), "");
duke@435 3548 return new_st;
duke@435 3549 }
duke@435 3550
duke@435 3551 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 3552 intptr_t st_off, int st_size,
duke@435 3553 jlong con) {
duke@435 3554 if ((st_off & (st_size-1)) != 0)
duke@435 3555 return false; // strange store offset (assume size==2**N)
duke@435 3556 address addr = (address)tiles + st_off;
duke@435 3557 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 3558 switch (st_size) {
duke@435 3559 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 3560 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 3561 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 3562 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 3563 default: return false; // strange store size (detect size!=2**N here)
duke@435 3564 }
duke@435 3565 return true; // return success to caller
duke@435 3566 }
duke@435 3567
duke@435 3568 // Coalesce subword constants into int constants and possibly
duke@435 3569 // into long constants. The goal, if the CPU permits,
duke@435 3570 // is to initialize the object with a small number of 64-bit tiles.
duke@435 3571 // Also, convert floating-point constants to bit patterns.
duke@435 3572 // Non-constants are not relevant to this pass.
duke@435 3573 //
duke@435 3574 // In terms of the running example on InitializeNode::InitializeNode
duke@435 3575 // and InitializeNode::capture_store, here is the transformation
duke@435 3576 // of rawstore1 and rawstore2 into rawstore12:
duke@435 3577 // alloc = (Allocate ...)
duke@435 3578 // rawoop = alloc.RawAddress
duke@435 3579 // tile12 = 0x00010002
duke@435 3580 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 3581 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 3582 //
duke@435 3583 void
duke@435 3584 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 3585 Node* size_in_bytes,
duke@435 3586 PhaseGVN* phase) {
duke@435 3587 Compile* C = phase->C;
duke@435 3588
duke@435 3589 assert(stores_are_sane(phase), "");
duke@435 3590 // Note: After this pass, they are not completely sane,
duke@435 3591 // since there may be some overlaps.
duke@435 3592
duke@435 3593 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 3594
duke@435 3595 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3596 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 3597 size_limit = MIN2(size_limit, ti_limit);
duke@435 3598 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 3599 int num_tiles = size_limit / BytesPerLong;
duke@435 3600
duke@435 3601 // allocate space for the tile map:
duke@435 3602 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 3603 jlong tiles_buf[small_len];
duke@435 3604 Node* nodes_buf[small_len];
duke@435 3605 jlong inits_buf[small_len];
duke@435 3606 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 3607 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3608 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 3609 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 3610 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 3611 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3612 // tiles: exact bitwise model of all primitive constants
duke@435 3613 // nodes: last constant-storing node subsumed into the tiles model
duke@435 3614 // inits: which bytes (in each tile) are touched by any initializations
duke@435 3615
duke@435 3616 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 3617
duke@435 3618 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 3619 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3620 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3621 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3622 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3623 Node* st = in(i);
duke@435 3624 intptr_t st_off = get_store_offset(st, phase);
duke@435 3625
duke@435 3626 // Figure out the store's offset and constant value:
duke@435 3627 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3628 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3629 int st_size = st->as_Store()->memory_size();
duke@435 3630 if (st_off + st_size > size_limit) break;
duke@435 3631
duke@435 3632 // Record which bytes are touched, whether by constant or not.
duke@435 3633 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3634 continue; // skip (strange store size)
duke@435 3635
duke@435 3636 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3637 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3638 BasicType type = val->basic_type();
duke@435 3639
duke@435 3640 jlong con = 0;
duke@435 3641 switch (type) {
duke@435 3642 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3643 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3644 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3645 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3646 default: continue; //skip (odd store type)
duke@435 3647 }
duke@435 3648
duke@435 3649 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3650 st->Opcode() == Op_StoreL) {
duke@435 3651 continue; // This StoreL is already optimal.
duke@435 3652 }
duke@435 3653
duke@435 3654 // Store down the constant.
duke@435 3655 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3656
duke@435 3657 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3658
duke@435 3659 if (type == T_INT && st_size == BytesPerInt
duke@435 3660 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3661 jlong lcon = tiles[j];
duke@435 3662 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3663 st->Opcode() == Op_StoreI) {
duke@435 3664 // This StoreI is already optimal by itself.
duke@435 3665 jint* intcon = (jint*) &tiles[j];
duke@435 3666 intcon[1] = 0; // undo the store_constant()
duke@435 3667
duke@435 3668 // If the previous store is also optimal by itself, back up and
duke@435 3669 // undo the action of the previous loop iteration... if we can.
duke@435 3670 // But if we can't, just let the previous half take care of itself.
duke@435 3671 st = nodes[j];
duke@435 3672 st_off -= BytesPerInt;
duke@435 3673 con = intcon[0];
duke@435 3674 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3675 assert(st_off >= header_size, "still ignoring header");
duke@435 3676 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3677 assert(in(i-1) == zmem, "must be");
duke@435 3678 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3679 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3680 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3681 intcon[0] = 0; // undo store_constant()
duke@435 3682 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3683 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3684 --old_subword; // undo ++old_subword
duke@435 3685 }
duke@435 3686 continue; // This StoreI is already optimal.
duke@435 3687 }
duke@435 3688 }
duke@435 3689
duke@435 3690 // This store is not needed.
duke@435 3691 set_req(i, zmem);
duke@435 3692 nodes[j] = st; // record for the moment
duke@435 3693 if (st_size < BytesPerLong) // something has changed
duke@435 3694 ++old_subword; // includes int/float, but who's counting...
duke@435 3695 else ++old_long;
duke@435 3696 }
duke@435 3697
duke@435 3698 if ((old_subword + old_long) == 0)
duke@435 3699 return; // nothing more to do
duke@435 3700
duke@435 3701 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3702 // Be sure to insert them before overlapping non-constant stores.
duke@435 3703 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3704 for (int j = 0; j < num_tiles; j++) {
duke@435 3705 jlong con = tiles[j];
duke@435 3706 jlong init = inits[j];
duke@435 3707 if (con == 0) continue;
duke@435 3708 jint con0, con1; // split the constant, address-wise
duke@435 3709 jint init0, init1; // split the init map, address-wise
duke@435 3710 { union { jlong con; jint intcon[2]; } u;
duke@435 3711 u.con = con;
duke@435 3712 con0 = u.intcon[0];
duke@435 3713 con1 = u.intcon[1];
duke@435 3714 u.con = init;
duke@435 3715 init0 = u.intcon[0];
duke@435 3716 init1 = u.intcon[1];
duke@435 3717 }
duke@435 3718
duke@435 3719 Node* old = nodes[j];
duke@435 3720 assert(old != NULL, "need the prior store");
duke@435 3721 intptr_t offset = (j * BytesPerLong);
duke@435 3722
duke@435 3723 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3724
duke@435 3725 if (offset < header_size) {
duke@435 3726 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3727 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3728 split = true; // only the second word counts
duke@435 3729 // Example: int a[] = { 42 ... }
duke@435 3730 } else if (con0 == 0 && init0 == -1) {
duke@435 3731 split = true; // first word is covered by full inits
duke@435 3732 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3733 } else if (con1 == 0 && init1 == -1) {
duke@435 3734 split = true; // second word is covered by full inits
duke@435 3735 // Example: int a[] = { ... 42, foo() ... }
duke@435 3736 }
duke@435 3737
duke@435 3738 // Here's a case where init0 is neither 0 nor -1:
duke@435 3739 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3740 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3741 // In this case the tile is not split; it is (jlong)42.
duke@435 3742 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3743 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3744
duke@435 3745 Node* ctl = old->in(MemNode::Control);
duke@435 3746 Node* adr = make_raw_address(offset, phase);
duke@435 3747 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3748
duke@435 3749 // One or two coalesced stores to plop down.
duke@435 3750 Node* st[2];
duke@435 3751 intptr_t off[2];
duke@435 3752 int nst = 0;
duke@435 3753 if (!split) {
duke@435 3754 ++new_long;
duke@435 3755 off[nst] = offset;
coleenp@548 3756 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
goetz@6479 3757 phase->longcon(con), T_LONG, MemNode::unordered);
duke@435 3758 } else {
duke@435 3759 // Omit either if it is a zero.
duke@435 3760 if (con0 != 0) {
duke@435 3761 ++new_int;
duke@435 3762 off[nst] = offset;
coleenp@548 3763 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
goetz@6479 3764 phase->intcon(con0), T_INT, MemNode::unordered);
duke@435 3765 }
duke@435 3766 if (con1 != 0) {
duke@435 3767 ++new_int;
duke@435 3768 offset += BytesPerInt;
duke@435 3769 adr = make_raw_address(offset, phase);
duke@435 3770 off[nst] = offset;
coleenp@548 3771 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
goetz@6479 3772 phase->intcon(con1), T_INT, MemNode::unordered);
duke@435 3773 }
duke@435 3774 }
duke@435 3775
duke@435 3776 // Insert second store first, then the first before the second.
duke@435 3777 // Insert each one just before any overlapping non-constant stores.
duke@435 3778 while (nst > 0) {
duke@435 3779 Node* st1 = st[--nst];
duke@435 3780 C->copy_node_notes_to(st1, old);
duke@435 3781 st1 = phase->transform(st1);
duke@435 3782 offset = off[nst];
duke@435 3783 assert(offset >= header_size, "do not smash header");
duke@435 3784 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3785 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3786 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3787 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3788 set_req(--ins_idx, st1);
duke@435 3789 else
duke@435 3790 ins_req(ins_idx, st1);
duke@435 3791 }
duke@435 3792 }
duke@435 3793
duke@435 3794 if (PrintCompilation && WizardMode)
duke@435 3795 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3796 old_subword, old_long, new_int, new_long);
duke@435 3797 if (C->log() != NULL)
duke@435 3798 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3799 old_subword, old_long, new_int, new_long);
duke@435 3800
duke@435 3801 // Clean up any remaining occurrences of zmem:
duke@435 3802 remove_extra_zeroes();
duke@435 3803 }
duke@435 3804
duke@435 3805 // Explore forward from in(start) to find the first fully initialized
duke@435 3806 // word, and return its offset. Skip groups of subword stores which
duke@435 3807 // together initialize full words. If in(start) is itself part of a
duke@435 3808 // fully initialized word, return the offset of in(start). If there
duke@435 3809 // are no following full-word stores, or if something is fishy, return
duke@435 3810 // a negative value.
duke@435 3811 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3812 int int_map = 0;
duke@435 3813 intptr_t int_map_off = 0;
duke@435 3814 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3815
duke@435 3816 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3817 Node* st = in(i);
duke@435 3818
duke@435 3819 intptr_t st_off = get_store_offset(st, phase);
duke@435 3820 if (st_off < 0) break; // return conservative answer
duke@435 3821
duke@435 3822 int st_size = st->as_Store()->memory_size();
duke@435 3823 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3824 return st_off; // we found a complete word init
duke@435 3825 }
duke@435 3826
duke@435 3827 // update the map:
duke@435 3828
duke@435 3829 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3830 if (this_int_off != int_map_off) {
duke@435 3831 // reset the map:
duke@435 3832 int_map = 0;
duke@435 3833 int_map_off = this_int_off;
duke@435 3834 }
duke@435 3835
duke@435 3836 int subword_off = st_off - this_int_off;
duke@435 3837 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3838 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3839 return this_int_off; // we found a complete word init
duke@435 3840 }
duke@435 3841
duke@435 3842 // Did this store hit or cross the word boundary?
duke@435 3843 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3844 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3845 // We passed the current int, without fully initializing it.
duke@435 3846 int_map_off = next_int_off;
duke@435 3847 int_map >>= BytesPerInt;
duke@435 3848 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3849 // We passed the current and next int.
duke@435 3850 return this_int_off + BytesPerInt;
duke@435 3851 }
duke@435 3852 }
duke@435 3853
duke@435 3854 return -1;
duke@435 3855 }
duke@435 3856
duke@435 3857
duke@435 3858 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3859 // At this point, we may perform additional optimizations.
duke@435 3860 // Linearize the stores by ascending offset, to make memory
duke@435 3861 // activity as coherent as possible.
duke@435 3862 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3863 intptr_t header_size,
duke@435 3864 Node* size_in_bytes,
duke@435 3865 PhaseGVN* phase) {
duke@435 3866 assert(!is_complete(), "not already complete");
duke@435 3867 assert(stores_are_sane(phase), "");
duke@435 3868 assert(allocation() != NULL, "must be present");
duke@435 3869
duke@435 3870 remove_extra_zeroes();
duke@435 3871
duke@435 3872 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3873 // reduce instruction count for common initialization patterns
duke@435 3874 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3875
duke@435 3876 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3877 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3878 #ifdef ASSERT
coleenp@548 3879 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3880 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3881 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3882 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3883 #endif
duke@435 3884 intptr_t zeroes_done = header_size;
duke@435 3885
duke@435 3886 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3887 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3888
duke@435 3889 if (ZeroTLAB) do_zeroing = false;
duke@435 3890 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3891
duke@435 3892 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3893 Node* st = in(i);
duke@435 3894 intptr_t st_off = get_store_offset(st, phase);
duke@435 3895 if (st_off < 0)
duke@435 3896 break; // unknown junk in the inits
duke@435 3897 if (st->in(MemNode::Memory) != zmem)
duke@435 3898 break; // complicated store chains somehow in list
duke@435 3899
duke@435 3900 int st_size = st->as_Store()->memory_size();
duke@435 3901 intptr_t next_init_off = st_off + st_size;
duke@435 3902
duke@435 3903 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3904 // See if this store needs a zero before it or under it.
duke@435 3905 intptr_t zeroes_needed = st_off;
duke@435 3906
duke@435 3907 if (st_size < BytesPerInt) {
duke@435 3908 // Look for subword stores which only partially initialize words.
duke@435 3909 // If we find some, we must lay down some word-level zeroes first,
duke@435 3910 // underneath the subword stores.
duke@435 3911 //
duke@435 3912 // Examples:
duke@435 3913 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3914 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3915 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3916 //
duke@435 3917 // Note: coalesce_subword_stores may have already done this,
duke@435 3918 // if it was prompted by constant non-zero subword initializers.
duke@435 3919 // But this case can still arise with non-constant stores.
duke@435 3920
duke@435 3921 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3922
duke@435 3923 // In the examples above:
duke@435 3924 // in(i) p q r s x y z
duke@435 3925 // st_off 12 13 14 15 12 13 14
duke@435 3926 // st_size 1 1 1 1 1 1 1
duke@435 3927 // next_full_s. 12 16 16 16 16 16 16
duke@435 3928 // z's_done 12 16 16 16 12 16 12
duke@435 3929 // z's_needed 12 16 16 16 16 16 16
duke@435 3930 // zsize 0 0 0 0 4 0 4
duke@435 3931 if (next_full_store < 0) {
duke@435 3932 // Conservative tack: Zero to end of current word.
duke@435 3933 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3934 } else {
duke@435 3935 // Zero to beginning of next fully initialized word.
duke@435 3936 // Or, don't zero at all, if we are already in that word.
duke@435 3937 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3938 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3939 zeroes_needed = next_full_store;
duke@435 3940 }
duke@435 3941 }
duke@435 3942
duke@435 3943 if (zeroes_needed > zeroes_done) {
duke@435 3944 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3945 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3946 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3947 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3948 zeroes_done, zeroes_needed,
duke@435 3949 phase);
duke@435 3950 zeroes_done = zeroes_needed;
duke@435 3951 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3952 do_zeroing = false; // leave the hole, next time
duke@435 3953 }
duke@435 3954 }
duke@435 3955
duke@435 3956 // Collect the store and move on:
duke@435 3957 st->set_req(MemNode::Memory, inits);
duke@435 3958 inits = st; // put it on the linearized chain
duke@435 3959 set_req(i, zmem); // unhook from previous position
duke@435 3960
duke@435 3961 if (zeroes_done == st_off)
duke@435 3962 zeroes_done = next_init_off;
duke@435 3963
duke@435 3964 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3965
duke@435 3966 #ifdef ASSERT
duke@435 3967 // Various order invariants. Weaker than stores_are_sane because
duke@435 3968 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3969 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3970 last_init_off = st_off;
duke@435 3971 const Type* val = NULL;
duke@435 3972 if (st_size >= BytesPerInt &&
duke@435 3973 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3974 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3975 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3976 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3977 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3978 } else {
duke@435 3979 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3980 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3981 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3982 last_init_end = next_init_off; // it's a non-tile
duke@435 3983 }
duke@435 3984 #endif //ASSERT
duke@435 3985 }
duke@435 3986
duke@435 3987 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3988 add_req(inits);
duke@435 3989
duke@435 3990 if (!ZeroTLAB) {
duke@435 3991 // If anything remains to be zeroed, zero it all now.
duke@435 3992 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3993 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3994 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3995 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3996 assert(allocation() != NULL, "");
never@2346 3997 if (allocation()->Opcode() == Op_Allocate) {
never@2346 3998 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
never@2346 3999 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
never@2346 4000 if (zeroes_done == k->layout_helper())
never@2346 4001 zeroes_done = size_limit;
never@2346 4002 }
duke@435 4003 }
duke@435 4004 if (zeroes_done < size_limit) {
duke@435 4005 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 4006 zeroes_done, size_in_bytes, phase);
duke@435 4007 }
duke@435 4008 }
duke@435 4009
duke@435 4010 set_complete(phase);
duke@435 4011 return rawmem;
duke@435 4012 }
duke@435 4013
duke@435 4014
duke@435 4015 #ifdef ASSERT
duke@435 4016 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 4017 if (is_complete())
duke@435 4018 return true; // stores could be anything at this point
coleenp@548 4019 assert(allocation() != NULL, "must be present");
coleenp@548 4020 intptr_t last_off = allocation()->minimum_header_size();
duke@435 4021 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 4022 Node* st = in(i);
duke@435 4023 intptr_t st_off = get_store_offset(st, phase);
duke@435 4024 if (st_off < 0) continue; // ignore dead garbage
duke@435 4025 if (last_off > st_off) {
drchase@6680 4026 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
duke@435 4027 this->dump(2);
duke@435 4028 assert(false, "ascending store offsets");
duke@435 4029 return false;
duke@435 4030 }
duke@435 4031 last_off = st_off + st->as_Store()->memory_size();
duke@435 4032 }
duke@435 4033 return true;
duke@435 4034 }
duke@435 4035 #endif //ASSERT
duke@435 4036
duke@435 4037
duke@435 4038
duke@435 4039
duke@435 4040 //============================MergeMemNode=====================================
duke@435 4041 //
duke@435 4042 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 4043 // contributing store or call operations. Each contributor provides the memory
duke@435 4044 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 4045 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 4046 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 4047 // to using the MergeMem as a whole.
duke@435 4048 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 4049 //
duke@435 4050 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 4051 //
duke@435 4052 // In one special case (and more cases in the future), alias categories overlap.
duke@435 4053 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 4054 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 4055 // it is exactly equivalent to that state W:
duke@435 4056 // MergeMem(<Bot>: W) <==> W
duke@435 4057 //
duke@435 4058 // Usually, the merge has more than one input. In that case, where inputs
duke@435 4059 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 4060 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 4061 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 4062 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 4063 //
duke@435 4064 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 4065 // This simply means that the merge observes out only the relevant parts of
duke@435 4066 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 4067 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 4068 //
duke@435 4069 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 4070 // and that memory slices "leak through":
duke@435 4071 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 4072 //
duke@435 4073 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 4074 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 4075 //
duke@435 4076 // In the last example, Y is not part of the combined memory state of the
duke@435 4077 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 4078 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 4079 // a precursor to state Y'.
duke@435 4080 //
duke@435 4081 //
duke@435 4082 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 4083 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 4084 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 4085 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 4086 //
duke@435 4087 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 4088 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 4089 // without the need to reach out via TLS to Compile::current.)
duke@435 4090 //
duke@435 4091 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 4092 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 4093 // containing all alias categories.
duke@435 4094 //
duke@435 4095 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 4096 //
duke@435 4097 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 4098 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 4099 // there is no particular input for that alias type. Note that the length of
duke@435 4100 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 4101 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 4102 // filled with "top" in the unused in() positions.
duke@435 4103 //
duke@435 4104 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 4105 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 4106 //
duke@435 4107 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 4108 // the type of random VM bits like TLS references.) Since it is always the
duke@435 4109 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 4110 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 4111 //
duke@435 4112 //
duke@435 4113 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 4114 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 4115 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 4116 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 4117 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 4118 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 4119 //
duke@435 4120 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 4121 // really that different from the other memory inputs. An abbreviation called
duke@435 4122 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 4123 //
duke@435 4124 //
duke@435 4125 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 4126 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 4127 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 4128 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 4129 //
duke@435 4130 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 4131 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 4132 //
duke@435 4133 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 4134 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 4135 // actually a disjoint union of memory states, rather than an overlay.
duke@435 4136 //
duke@435 4137
duke@435 4138 //------------------------------MergeMemNode-----------------------------------
duke@435 4139 Node* MergeMemNode::make_empty_memory() {
duke@435 4140 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 4141 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 4142 return empty_memory;
duke@435 4143 }
duke@435 4144
duke@435 4145 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 4146 init_class_id(Class_MergeMem);
duke@435 4147 // all inputs are nullified in Node::Node(int)
duke@435 4148 // set_input(0, NULL); // no control input
duke@435 4149
duke@435 4150 // Initialize the edges uniformly to top, for starters.
duke@435 4151 Node* empty_mem = make_empty_memory();
duke@435 4152 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 4153 init_req(i,empty_mem);
duke@435 4154 }
duke@435 4155 assert(empty_memory() == empty_mem, "");
duke@435 4156
duke@435 4157 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 4158 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 4159 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 4160 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 4161 mms.set_memory(mms.memory2());
duke@435 4162 }
duke@435 4163 assert(base_memory() == mdef->base_memory(), "");
duke@435 4164 } else {
duke@435 4165 set_base_memory(new_base);
duke@435 4166 }
duke@435 4167 }
duke@435 4168
duke@435 4169 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 4170 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 4171 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
kvn@4115 4172 return new(C) MergeMemNode(mem);
duke@435 4173 }
duke@435 4174
duke@435 4175 //------------------------------cmp--------------------------------------------
duke@435 4176 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 4177 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 4178 return (&n == this); // Always fail except on self
duke@435 4179 }
duke@435 4180
duke@435 4181 //------------------------------Identity---------------------------------------
duke@435 4182 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 4183 // Identity if this merge point does not record any interesting memory
duke@435 4184 // disambiguations.
duke@435 4185 Node* base_mem = base_memory();
duke@435 4186 Node* empty_mem = empty_memory();
duke@435 4187 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 4188 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4189 Node* mem = in(i);
duke@435 4190 if (mem != empty_mem && mem != base_mem) {
duke@435 4191 return this; // Many memory splits; no change
duke@435 4192 }
duke@435 4193 }
duke@435 4194 }
duke@435 4195 return base_mem; // No memory splits; ID on the one true input
duke@435 4196 }
duke@435 4197
duke@435 4198 //------------------------------Ideal------------------------------------------
duke@435 4199 // This method is invoked recursively on chains of MergeMem nodes
duke@435 4200 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 4201 // Remove chain'd MergeMems
duke@435 4202 //
duke@435 4203 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 4204 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 4205 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 4206 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 4207 Node *progress = NULL;
duke@435 4208
duke@435 4209
duke@435 4210 Node* old_base = base_memory();
duke@435 4211 Node* empty_mem = empty_memory();
duke@435 4212 if (old_base == empty_mem)
duke@435 4213 return NULL; // Dead memory path.
duke@435 4214
duke@435 4215 MergeMemNode* old_mbase;
duke@435 4216 if (old_base != NULL && old_base->is_MergeMem())
duke@435 4217 old_mbase = old_base->as_MergeMem();
duke@435 4218 else
duke@435 4219 old_mbase = NULL;
duke@435 4220 Node* new_base = old_base;
duke@435 4221
duke@435 4222 // simplify stacked MergeMems in base memory
duke@435 4223 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 4224
duke@435 4225 // the base memory might contribute new slices beyond my req()
duke@435 4226 if (old_mbase) grow_to_match(old_mbase);
duke@435 4227
duke@435 4228 // Look carefully at the base node if it is a phi.
duke@435 4229 PhiNode* phi_base;
duke@435 4230 if (new_base != NULL && new_base->is_Phi())
duke@435 4231 phi_base = new_base->as_Phi();
duke@435 4232 else
duke@435 4233 phi_base = NULL;
duke@435 4234
duke@435 4235 Node* phi_reg = NULL;
duke@435 4236 uint phi_len = (uint)-1;
duke@435 4237 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 4238 // do not examine phi if degraded to a copy
duke@435 4239 phi_reg = phi_base->region();
duke@435 4240 phi_len = phi_base->req();
duke@435 4241 // see if the phi is unfinished
duke@435 4242 for (uint i = 1; i < phi_len; i++) {
duke@435 4243 if (phi_base->in(i) == NULL) {
duke@435 4244 // incomplete phi; do not look at it yet!
duke@435 4245 phi_reg = NULL;
duke@435 4246 phi_len = (uint)-1;
duke@435 4247 break;
duke@435 4248 }
duke@435 4249 }
duke@435 4250 }
duke@435 4251
duke@435 4252 // Note: We do not call verify_sparse on entry, because inputs
duke@435 4253 // can normalize to the base_memory via subsume_node or similar
duke@435 4254 // mechanisms. This method repairs that damage.
duke@435 4255
duke@435 4256 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4257
duke@435 4258 // Look at each slice.
duke@435 4259 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4260 Node* old_in = in(i);
duke@435 4261 // calculate the old memory value
duke@435 4262 Node* old_mem = old_in;
duke@435 4263 if (old_mem == empty_mem) old_mem = old_base;
duke@435 4264 assert(old_mem == memory_at(i), "");
duke@435 4265
duke@435 4266 // maybe update (reslice) the old memory value
duke@435 4267
duke@435 4268 // simplify stacked MergeMems
duke@435 4269 Node* new_mem = old_mem;
duke@435 4270 MergeMemNode* old_mmem;
duke@435 4271 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 4272 old_mmem = old_mem->as_MergeMem();
duke@435 4273 else
duke@435 4274 old_mmem = NULL;
duke@435 4275 if (old_mmem == this) {
duke@435 4276 // This can happen if loops break up and safepoints disappear.
duke@435 4277 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 4278 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 4279 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 4280 // also, we can end up with a self-loop of the mergemem.
duke@435 4281 // In general, if loops degenerate and memory effects disappear,
duke@435 4282 // a mergemem can be left looking at itself. This simply means
duke@435 4283 // that the mergemem's default should be used, since there is
duke@435 4284 // no longer any apparent effect on this slice.
duke@435 4285 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 4286 // from start. Update the input to TOP.
duke@435 4287 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 4288 }
duke@435 4289 else if (old_mmem != NULL) {
duke@435 4290 new_mem = old_mmem->memory_at(i);
duke@435 4291 }
twisti@1040 4292 // else preceding memory was not a MergeMem
duke@435 4293
duke@435 4294 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 4295 if (new_mem != NULL && new_mem != new_base &&
duke@435 4296 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 4297 if (new_mem->is_Phi()) {
duke@435 4298 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 4299 for (uint i = 1; i < phi_len; i++) {
duke@435 4300 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 4301 phi_mem = NULL;
duke@435 4302 break;
duke@435 4303 }
duke@435 4304 }
duke@435 4305 if (phi_mem != NULL) {
duke@435 4306 // equivalent phi nodes; revert to the def
duke@435 4307 new_mem = new_base;
duke@435 4308 }
duke@435 4309 }
duke@435 4310 }
duke@435 4311
duke@435 4312 // maybe store down a new value
duke@435 4313 Node* new_in = new_mem;
duke@435 4314 if (new_in == new_base) new_in = empty_mem;
duke@435 4315
duke@435 4316 if (new_in != old_in) {
duke@435 4317 // Warning: Do not combine this "if" with the previous "if"
duke@435 4318 // A memory slice might have be be rewritten even if it is semantically
duke@435 4319 // unchanged, if the base_memory value has changed.
duke@435 4320 set_req(i, new_in);
duke@435 4321 progress = this; // Report progress
duke@435 4322 }
duke@435 4323 }
duke@435 4324
duke@435 4325 if (new_base != old_base) {
duke@435 4326 set_req(Compile::AliasIdxBot, new_base);
duke@435 4327 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 4328 assert(base_memory() == new_base, "");
duke@435 4329 progress = this;
duke@435 4330 }
duke@435 4331
duke@435 4332 if( base_memory() == this ) {
duke@435 4333 // a self cycle indicates this memory path is dead
duke@435 4334 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4335 }
duke@435 4336
duke@435 4337 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 4338 // Recursion must occur after the self cycle check above
duke@435 4339 if( base_memory()->is_MergeMem() ) {
duke@435 4340 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 4341 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 4342 if( m != NULL && (m->is_top() ||
duke@435 4343 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 4344 // propagate rollup of dead cycle to self
duke@435 4345 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4346 }
duke@435 4347 }
duke@435 4348
duke@435 4349 if( base_memory() == empty_mem ) {
duke@435 4350 progress = this;
duke@435 4351 // Cut inputs during Parse phase only.
duke@435 4352 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 4353 if( !can_reshape ) {
duke@435 4354 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4355 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 4356 }
duke@435 4357 }
duke@435 4358 }
duke@435 4359
duke@435 4360 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 4361 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 4362 // transform should be attempted. Look for this->phi->this cycle.
duke@435 4363 uint merge_width = req();
duke@435 4364 if (merge_width > Compile::AliasIdxRaw) {
duke@435 4365 PhiNode* phi = base_memory()->as_Phi();
duke@435 4366 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 4367 if (phi->in(i) == this) {
duke@435 4368 phase->is_IterGVN()->_worklist.push(phi);
duke@435 4369 break;
duke@435 4370 }
duke@435 4371 }
duke@435 4372 }
duke@435 4373 }
duke@435 4374
kvn@499 4375 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 4376 return progress;
duke@435 4377 }
duke@435 4378
duke@435 4379 //-------------------------set_base_memory-------------------------------------
duke@435 4380 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 4381 Node* empty_mem = empty_memory();
duke@435 4382 set_req(Compile::AliasIdxBot, new_base);
duke@435 4383 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 4384 // Clear out other occurrences of new_base:
duke@435 4385 if (new_base != empty_mem) {
duke@435 4386 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4387 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 4388 }
duke@435 4389 }
duke@435 4390 }
duke@435 4391
duke@435 4392 //------------------------------out_RegMask------------------------------------
duke@435 4393 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 4394 return RegMask::Empty;
duke@435 4395 }
duke@435 4396
duke@435 4397 //------------------------------dump_spec--------------------------------------
duke@435 4398 #ifndef PRODUCT
duke@435 4399 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 4400 st->print(" {");
duke@435 4401 Node* base_mem = base_memory();
duke@435 4402 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 4403 Node* mem = memory_at(i);
duke@435 4404 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 4405 st->print( " N%d:", mem->_idx );
duke@435 4406 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 4407 }
duke@435 4408 st->print(" }");
duke@435 4409 }
duke@435 4410 #endif // !PRODUCT
duke@435 4411
duke@435 4412
duke@435 4413 #ifdef ASSERT
duke@435 4414 static bool might_be_same(Node* a, Node* b) {
duke@435 4415 if (a == b) return true;
duke@435 4416 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 4417 // phis shift around during optimization
duke@435 4418 return true; // pretty stupid...
duke@435 4419 }
duke@435 4420
duke@435 4421 // verify a narrow slice (either incoming or outgoing)
duke@435 4422 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 4423 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 4424 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 4425 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 4426 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 4427 assert(n != NULL, "");
duke@435 4428 // Elide intervening MergeMem's
duke@435 4429 while (n->is_MergeMem()) {
duke@435 4430 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 4431 }
duke@435 4432 Compile* C = Compile::current();
duke@435 4433 const TypePtr* n_adr_type = n->adr_type();
duke@435 4434 if (n == m->empty_memory()) {
duke@435 4435 // Implicit copy of base_memory()
duke@435 4436 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 4437 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 4438 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 4439 } else {
duke@435 4440 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 4441 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 4442 bool expected_wide_mem = false;
duke@435 4443 if (n == m->base_memory()) {
duke@435 4444 expected_wide_mem = true;
duke@435 4445 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 4446 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 4447 expected_wide_mem = true;
duke@435 4448 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 4449 // memory can "leak through" calls on channels that
duke@435 4450 // are write-once. Allow this also.
duke@435 4451 expected_wide_mem = true;
duke@435 4452 }
duke@435 4453 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 4454 }
duke@435 4455 }
duke@435 4456 #else // !ASSERT
ccheung@5259 4457 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op
duke@435 4458 #endif
duke@435 4459
duke@435 4460
duke@435 4461 //-----------------------------memory_at---------------------------------------
duke@435 4462 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 4463 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 4464 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 4465 "must avoid base_memory and AliasIdxTop");
duke@435 4466
duke@435 4467 // Otherwise, it is a narrow slice.
duke@435 4468 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 4469 Compile *C = Compile::current();
duke@435 4470 if (is_empty_memory(n)) {
duke@435 4471 // the array is sparse; empty slots are the "top" node
duke@435 4472 n = base_memory();
duke@435 4473 assert(Node::in_dump()
duke@435 4474 || n == NULL || n->bottom_type() == Type::TOP
kvn@2599 4475 || n->adr_type() == NULL // address is TOP
duke@435 4476 || n->adr_type() == TypePtr::BOTTOM
duke@435 4477 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 4478 || Compile::current()->AliasLevel() == 0,
duke@435 4479 "must be a wide memory");
duke@435 4480 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 4481 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 4482 } else {
duke@435 4483 // make sure the stored slice is sane
duke@435 4484 #ifdef ASSERT
duke@435 4485 if (is_error_reported() || Node::in_dump()) {
duke@435 4486 } else if (might_be_same(n, base_memory())) {
duke@435 4487 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 4488 // This can arise normally from node subsumption during optimization.
duke@435 4489 } else {
duke@435 4490 verify_memory_slice(this, alias_idx, n);
duke@435 4491 }
duke@435 4492 #endif
duke@435 4493 }
duke@435 4494 return n;
duke@435 4495 }
duke@435 4496
duke@435 4497 //---------------------------set_memory_at-------------------------------------
duke@435 4498 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 4499 verify_memory_slice(this, alias_idx, n);
duke@435 4500 Node* empty_mem = empty_memory();
duke@435 4501 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 4502 uint need_req = alias_idx+1;
duke@435 4503 if (req() < need_req) {
duke@435 4504 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 4505 // grow the sparse array
duke@435 4506 do {
duke@435 4507 add_req(empty_mem);
duke@435 4508 } while (req() < need_req);
duke@435 4509 }
duke@435 4510 set_req( alias_idx, n );
duke@435 4511 }
duke@435 4512
duke@435 4513
duke@435 4514
duke@435 4515 //--------------------------iteration_setup------------------------------------
duke@435 4516 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 4517 if (other != NULL) {
duke@435 4518 grow_to_match(other);
duke@435 4519 // invariant: the finite support of mm2 is within mm->req()
duke@435 4520 #ifdef ASSERT
duke@435 4521 for (uint i = req(); i < other->req(); i++) {
duke@435 4522 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 4523 }
duke@435 4524 #endif
duke@435 4525 }
duke@435 4526 // Replace spurious copies of base_memory by top.
duke@435 4527 Node* base_mem = base_memory();
duke@435 4528 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 4529 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 4530 if (in(i) == base_mem)
duke@435 4531 set_req(i, empty_memory());
duke@435 4532 }
duke@435 4533 }
duke@435 4534 }
duke@435 4535
duke@435 4536 //---------------------------grow_to_match-------------------------------------
duke@435 4537 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 4538 Node* empty_mem = empty_memory();
duke@435 4539 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4540 // look for the finite support of the other memory
duke@435 4541 for (uint i = other->req(); --i >= req(); ) {
duke@435 4542 if (other->in(i) != empty_mem) {
duke@435 4543 uint new_len = i+1;
duke@435 4544 while (req() < new_len) add_req(empty_mem);
duke@435 4545 break;
duke@435 4546 }
duke@435 4547 }
duke@435 4548 }
duke@435 4549
duke@435 4550 //---------------------------verify_sparse-------------------------------------
duke@435 4551 #ifndef PRODUCT
duke@435 4552 bool MergeMemNode::verify_sparse() const {
duke@435 4553 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 4554 Node* base_mem = base_memory();
duke@435 4555 // The following can happen in degenerate cases, since empty==top.
duke@435 4556 if (is_empty_memory(base_mem)) return true;
duke@435 4557 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4558 assert(in(i) != NULL, "sane slice");
duke@435 4559 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 4560 }
duke@435 4561 return true;
duke@435 4562 }
duke@435 4563
duke@435 4564 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 4565 Node* n;
duke@435 4566 n = mm->in(idx);
duke@435 4567 if (mem == n) return true; // might be empty_memory()
duke@435 4568 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 4569 if (mem == n) return true;
duke@435 4570 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 4571 if (mem == n) return true;
duke@435 4572 if (n == NULL) break;
duke@435 4573 }
duke@435 4574 return false;
duke@435 4575 }
duke@435 4576 #endif // !PRODUCT

mercurial