src/share/vm/opto/memnode.cpp

Tue, 25 Jun 2013 12:07:07 -0700

author
adlertz
date
Tue, 25 Jun 2013 12:07:07 -0700
changeset 5317
3aa636f2a743
parent 5292
b88209cf98c0
child 5658
edb5ab0f3fe5
child 5694
7944aba7ba41
permissions
-rw-r--r--

8017243: 8001345 is incomplete
Summary: Replaces unused decodeN at MemBarAcquire with its corresponding loadN if loadN is used at more than one place.
Reviewed-by: kvn, twisti

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "oops/objArrayKlass.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/connode.hpp"
stefank@2314 34 #include "opto/loopnode.hpp"
stefank@2314 35 #include "opto/machnode.hpp"
stefank@2314 36 #include "opto/matcher.hpp"
stefank@2314 37 #include "opto/memnode.hpp"
stefank@2314 38 #include "opto/mulnode.hpp"
stefank@2314 39 #include "opto/phaseX.hpp"
stefank@2314 40 #include "opto/regmask.hpp"
stefank@2314 41
duke@435 42 // Portions of code courtesy of Clifford Click
duke@435 43
duke@435 44 // Optimization - Graph Style
duke@435 45
kvn@509 46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
kvn@509 47
duke@435 48 //=============================================================================
duke@435 49 uint MemNode::size_of() const { return sizeof(*this); }
duke@435 50
duke@435 51 const TypePtr *MemNode::adr_type() const {
duke@435 52 Node* adr = in(Address);
duke@435 53 const TypePtr* cross_check = NULL;
duke@435 54 DEBUG_ONLY(cross_check = _adr_type);
duke@435 55 return calculate_adr_type(adr->bottom_type(), cross_check);
duke@435 56 }
duke@435 57
duke@435 58 #ifndef PRODUCT
duke@435 59 void MemNode::dump_spec(outputStream *st) const {
duke@435 60 if (in(Address) == NULL) return; // node is dead
duke@435 61 #ifndef ASSERT
duke@435 62 // fake the missing field
duke@435 63 const TypePtr* _adr_type = NULL;
duke@435 64 if (in(Address) != NULL)
duke@435 65 _adr_type = in(Address)->bottom_type()->isa_ptr();
duke@435 66 #endif
duke@435 67 dump_adr_type(this, _adr_type, st);
duke@435 68
duke@435 69 Compile* C = Compile::current();
duke@435 70 if( C->alias_type(_adr_type)->is_volatile() )
duke@435 71 st->print(" Volatile!");
duke@435 72 }
duke@435 73
duke@435 74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
duke@435 75 st->print(" @");
duke@435 76 if (adr_type == NULL) {
duke@435 77 st->print("NULL");
duke@435 78 } else {
duke@435 79 adr_type->dump_on(st);
duke@435 80 Compile* C = Compile::current();
duke@435 81 Compile::AliasType* atp = NULL;
duke@435 82 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type);
duke@435 83 if (atp == NULL)
duke@435 84 st->print(", idx=?\?;");
duke@435 85 else if (atp->index() == Compile::AliasIdxBot)
duke@435 86 st->print(", idx=Bot;");
duke@435 87 else if (atp->index() == Compile::AliasIdxTop)
duke@435 88 st->print(", idx=Top;");
duke@435 89 else if (atp->index() == Compile::AliasIdxRaw)
duke@435 90 st->print(", idx=Raw;");
duke@435 91 else {
duke@435 92 ciField* field = atp->field();
duke@435 93 if (field) {
duke@435 94 st->print(", name=");
duke@435 95 field->print_name_on(st);
duke@435 96 }
duke@435 97 st->print(", idx=%d;", atp->index());
duke@435 98 }
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 extern void print_alias_types();
duke@435 103
duke@435 104 #endif
duke@435 105
kvn@5110 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
kvn@5110 107 assert((t_oop != NULL), "sanity");
kvn@5110 108 bool is_instance = t_oop->is_known_instance_field();
kvn@5110 109 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
kvn@5110 110 (load != NULL) && load->is_Load() &&
kvn@5110 111 (phase->is_IterGVN() != NULL);
kvn@5110 112 if (!(is_instance || is_boxed_value_load))
kvn@509 113 return mchain; // don't try to optimize non-instance types
kvn@5110 114 uint instance_id = t_oop->instance_id();
kvn@688 115 Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
kvn@509 116 Node *prev = NULL;
kvn@509 117 Node *result = mchain;
kvn@509 118 while (prev != result) {
kvn@509 119 prev = result;
kvn@688 120 if (result == start_mem)
twisti@1040 121 break; // hit one of our sentinels
kvn@509 122 // skip over a call which does not affect this memory slice
kvn@509 123 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@509 124 Node *proj_in = result->in(0);
kvn@688 125 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
twisti@1040 126 break; // hit one of our sentinels
kvn@688 127 } else if (proj_in->is_Call()) {
kvn@509 128 CallNode *call = proj_in->as_Call();
kvn@5110 129 if (!call->may_modify(t_oop, phase)) { // returns false for instances
kvn@509 130 result = call->in(TypeFunc::Memory);
kvn@509 131 }
kvn@509 132 } else if (proj_in->is_Initialize()) {
kvn@509 133 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@509 134 // Stop if this is the initialization for the object instance which
kvn@509 135 // which contains this memory slice, otherwise skip over it.
kvn@5110 136 if ((alloc == NULL) || (alloc->_idx == instance_id)) {
kvn@5110 137 break;
kvn@5110 138 }
kvn@5110 139 if (is_instance) {
kvn@509 140 result = proj_in->in(TypeFunc::Memory);
kvn@5110 141 } else if (is_boxed_value_load) {
kvn@5110 142 Node* klass = alloc->in(AllocateNode::KlassNode);
kvn@5110 143 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
kvn@5110 144 if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
kvn@5110 145 result = proj_in->in(TypeFunc::Memory); // not related allocation
kvn@5110 146 }
kvn@509 147 }
kvn@509 148 } else if (proj_in->is_MemBar()) {
kvn@509 149 result = proj_in->in(TypeFunc::Memory);
kvn@688 150 } else {
kvn@688 151 assert(false, "unexpected projection");
kvn@509 152 }
kvn@1535 153 } else if (result->is_ClearArray()) {
kvn@5110 154 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
kvn@1535 155 // Can not bypass initialization of the instance
kvn@1535 156 // we are looking for.
kvn@1535 157 break;
kvn@1535 158 }
kvn@1535 159 // Otherwise skip it (the call updated 'result' value).
kvn@509 160 } else if (result->is_MergeMem()) {
kvn@5110 161 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
kvn@509 162 }
kvn@509 163 }
kvn@509 164 return result;
kvn@509 165 }
kvn@509 166
kvn@5110 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
kvn@5110 168 const TypeOopPtr* t_oop = t_adr->isa_oopptr();
kvn@5110 169 if (t_oop == NULL)
kvn@5110 170 return mchain; // don't try to optimize non-oop types
kvn@5110 171 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
kvn@5110 172 bool is_instance = t_oop->is_known_instance_field();
kvn@509 173 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@509 174 if (is_instance && igvn != NULL && result->is_Phi()) {
kvn@509 175 PhiNode *mphi = result->as_Phi();
kvn@509 176 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@509 177 const TypePtr *t = mphi->adr_type();
kvn@598 178 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 179 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 180 t->is_oopptr()->cast_to_exactness(true)
kvn@682 181 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 182 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
kvn@509 183 // clone the Phi with our address type
kvn@509 184 result = mphi->split_out_instance(t_adr, igvn);
kvn@509 185 } else {
kvn@509 186 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
kvn@509 187 }
kvn@509 188 }
kvn@509 189 return result;
kvn@509 190 }
kvn@509 191
kvn@499 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
kvn@499 193 uint alias_idx = phase->C->get_alias_index(tp);
kvn@499 194 Node *mem = mmem;
kvn@499 195 #ifdef ASSERT
kvn@499 196 {
kvn@499 197 // Check that current type is consistent with the alias index used during graph construction
kvn@499 198 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
kvn@499 199 bool consistent = adr_check == NULL || adr_check->empty() ||
kvn@499 200 phase->C->must_alias(adr_check, alias_idx );
kvn@499 201 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
kvn@499 202 if( !consistent && adr_check != NULL && !adr_check->empty() &&
rasbold@604 203 tp->isa_aryptr() && tp->offset() == Type::OffsetBot &&
kvn@499 204 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
kvn@499 205 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
kvn@499 206 adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
kvn@499 207 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
kvn@499 208 // don't assert if it is dead code.
kvn@499 209 consistent = true;
kvn@499 210 }
kvn@499 211 if( !consistent ) {
kvn@499 212 st->print("alias_idx==%d, adr_check==", alias_idx);
kvn@499 213 if( adr_check == NULL ) {
kvn@499 214 st->print("NULL");
kvn@499 215 } else {
kvn@499 216 adr_check->dump();
kvn@499 217 }
kvn@499 218 st->cr();
kvn@499 219 print_alias_types();
kvn@499 220 assert(consistent, "adr_check must match alias idx");
kvn@499 221 }
kvn@499 222 }
kvn@499 223 #endif
never@2170 224 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@499 225 // means an array I have not precisely typed yet. Do not do any
kvn@499 226 // alias stuff with it any time soon.
never@2170 227 const TypeOopPtr *toop = tp->isa_oopptr();
kvn@499 228 if( tp->base() != Type::AnyPtr &&
never@2170 229 !(toop &&
never@2170 230 toop->klass() != NULL &&
never@2170 231 toop->klass()->is_java_lang_Object() &&
never@2170 232 toop->offset() == Type::OffsetBot) ) {
kvn@499 233 // compress paths and change unreachable cycles to TOP
kvn@499 234 // If not, we can update the input infinitely along a MergeMem cycle
kvn@499 235 // Equivalent code in PhiNode::Ideal
kvn@499 236 Node* m = phase->transform(mmem);
twisti@1040 237 // If transformed to a MergeMem, get the desired slice
kvn@499 238 // Otherwise the returned node represents memory for every slice
kvn@499 239 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
kvn@499 240 // Update input if it is progress over what we have now
kvn@499 241 }
kvn@499 242 return mem;
kvn@499 243 }
kvn@499 244
duke@435 245 //--------------------------Ideal_common---------------------------------------
duke@435 246 // Look for degenerate control and memory inputs. Bypass MergeMem inputs.
duke@435 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
duke@435 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
duke@435 249 // If our control input is a dead region, kill all below the region
duke@435 250 Node *ctl = in(MemNode::Control);
duke@435 251 if (ctl && remove_dead_region(phase, can_reshape))
duke@435 252 return this;
kvn@740 253 ctl = in(MemNode::Control);
kvn@740 254 // Don't bother trying to transform a dead node
kvn@4695 255 if (ctl && ctl->is_top()) return NodeSentinel;
duke@435 256
kvn@1143 257 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1143 258 // Wait if control on the worklist.
kvn@1143 259 if (ctl && can_reshape && igvn != NULL) {
kvn@1143 260 Node* bol = NULL;
kvn@1143 261 Node* cmp = NULL;
kvn@1143 262 if (ctl->in(0)->is_If()) {
kvn@1143 263 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
kvn@1143 264 bol = ctl->in(0)->in(1);
kvn@1143 265 if (bol->is_Bool())
kvn@1143 266 cmp = ctl->in(0)->in(1)->in(1);
kvn@1143 267 }
kvn@1143 268 if (igvn->_worklist.member(ctl) ||
kvn@1143 269 (bol != NULL && igvn->_worklist.member(bol)) ||
kvn@1143 270 (cmp != NULL && igvn->_worklist.member(cmp)) ) {
kvn@1143 271 // This control path may be dead.
kvn@1143 272 // Delay this memory node transformation until the control is processed.
kvn@1143 273 phase->is_IterGVN()->_worklist.push(this);
kvn@1143 274 return NodeSentinel; // caller will return NULL
kvn@1143 275 }
kvn@1143 276 }
duke@435 277 // Ignore if memory is dead, or self-loop
duke@435 278 Node *mem = in(MemNode::Memory);
kvn@4695 279 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
kvn@4695 280 assert(mem != this, "dead loop in MemNode::Ideal");
duke@435 281
kvn@3320 282 if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
kvn@3320 283 // This memory slice may be dead.
kvn@3320 284 // Delay this mem node transformation until the memory is processed.
kvn@3320 285 phase->is_IterGVN()->_worklist.push(this);
kvn@3320 286 return NodeSentinel; // caller will return NULL
kvn@3320 287 }
kvn@3320 288
duke@435 289 Node *address = in(MemNode::Address);
kvn@4695 290 const Type *t_adr = phase->type(address);
kvn@4695 291 if (t_adr == Type::TOP) return NodeSentinel; // caller will return NULL
kvn@4695 292
kvn@4695 293 if (can_reshape && igvn != NULL &&
kvn@2181 294 (igvn->_worklist.member(address) ||
kvn@4695 295 igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
kvn@855 296 // The address's base and type may change when the address is processed.
kvn@855 297 // Delay this mem node transformation until the address is processed.
kvn@855 298 phase->is_IterGVN()->_worklist.push(this);
kvn@855 299 return NodeSentinel; // caller will return NULL
kvn@855 300 }
kvn@855 301
kvn@1497 302 // Do NOT remove or optimize the next lines: ensure a new alias index
kvn@1497 303 // is allocated for an oop pointer type before Escape Analysis.
kvn@1497 304 // Note: C++ will not remove it since the call has side effect.
kvn@4695 305 if (t_adr->isa_oopptr()) {
kvn@1497 306 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
kvn@1497 307 }
kvn@1497 308
kvn@1143 309 #ifdef ASSERT
kvn@1143 310 Node* base = NULL;
kvn@1143 311 if (address->is_AddP())
kvn@1143 312 base = address->in(AddPNode::Base);
kvn@4695 313 if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
kvn@4695 314 !t_adr->isa_rawptr()) {
kvn@4695 315 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
kvn@4695 316 Compile* C = phase->C;
kvn@4695 317 tty->cr();
kvn@4695 318 tty->print_cr("===== NULL+offs not RAW address =====");
kvn@4695 319 if (C->is_dead_node(this->_idx)) tty->print_cr("'this' is dead");
kvn@4695 320 if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
kvn@4695 321 if (C->is_dead_node(mem->_idx)) tty->print_cr("'mem' is dead");
kvn@4695 322 if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
kvn@4695 323 if (C->is_dead_node(base->_idx)) tty->print_cr("'base' is dead");
kvn@4695 324 tty->cr();
kvn@4695 325 base->dump(1);
kvn@4695 326 tty->cr();
kvn@4695 327 this->dump(2);
kvn@4695 328 tty->print("this->adr_type(): "); adr_type()->dump(); tty->cr();
kvn@4695 329 tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
kvn@4695 330 tty->print("phase->type(base): "); phase->type(address)->dump(); tty->cr();
kvn@4695 331 tty->cr();
kvn@4695 332 }
kvn@1143 333 assert(base == NULL || t_adr->isa_rawptr() ||
kvn@1143 334 !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
kvn@1143 335 #endif
kvn@1143 336
duke@435 337 // Avoid independent memory operations
duke@435 338 Node* old_mem = mem;
duke@435 339
kvn@471 340 // The code which unhooks non-raw memories from complete (macro-expanded)
kvn@471 341 // initializations was removed. After macro-expansion all stores catched
kvn@471 342 // by Initialize node became raw stores and there is no information
kvn@471 343 // which memory slices they modify. So it is unsafe to move any memory
kvn@471 344 // operation above these stores. Also in most cases hooked non-raw memories
kvn@471 345 // were already unhooked by using information from detect_ptr_independence()
kvn@471 346 // and find_previous_store().
duke@435 347
duke@435 348 if (mem->is_MergeMem()) {
duke@435 349 MergeMemNode* mmem = mem->as_MergeMem();
duke@435 350 const TypePtr *tp = t_adr->is_ptr();
kvn@499 351
kvn@499 352 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
duke@435 353 }
duke@435 354
duke@435 355 if (mem != old_mem) {
duke@435 356 set_req(MemNode::Memory, mem);
roland@4657 357 if (can_reshape && old_mem->outcnt() == 0) {
roland@4657 358 igvn->_worklist.push(old_mem);
roland@4657 359 }
kvn@740 360 if (phase->type( mem ) == Type::TOP) return NodeSentinel;
duke@435 361 return this;
duke@435 362 }
duke@435 363
duke@435 364 // let the subclass continue analyzing...
duke@435 365 return NULL;
duke@435 366 }
duke@435 367
duke@435 368 // Helper function for proving some simple control dominations.
kvn@554 369 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
duke@435 370 // Already assumes that 'dom' is available at 'sub', and that 'sub'
duke@435 371 // is not a constant (dominated by the method's StartNode).
duke@435 372 // Used by MemNode::find_previous_store to prove that the
duke@435 373 // control input of a memory operation predates (dominates)
duke@435 374 // an allocation it wants to look past.
kvn@554 375 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
kvn@554 376 if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
kvn@554 377 return false; // Conservative answer for dead code
kvn@554 378
kvn@628 379 // Check 'dom'. Skip Proj and CatchProj nodes.
kvn@554 380 dom = dom->find_exact_control(dom);
kvn@554 381 if (dom == NULL || dom->is_top())
kvn@554 382 return false; // Conservative answer for dead code
kvn@554 383
kvn@628 384 if (dom == sub) {
kvn@628 385 // For the case when, for example, 'sub' is Initialize and the original
kvn@628 386 // 'dom' is Proj node of the 'sub'.
kvn@628 387 return false;
kvn@628 388 }
kvn@628 389
kvn@590 390 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
kvn@554 391 return true;
kvn@554 392
kvn@554 393 // 'dom' dominates 'sub' if its control edge and control edges
kvn@554 394 // of all its inputs dominate or equal to sub's control edge.
kvn@554 395
kvn@554 396 // Currently 'sub' is either Allocate, Initialize or Start nodes.
kvn@598 397 // Or Region for the check in LoadNode::Ideal();
kvn@598 398 // 'sub' should have sub->in(0) != NULL.
kvn@598 399 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
kvn@5110 400 sub->is_Region() || sub->is_Call(), "expecting only these nodes");
kvn@554 401
kvn@554 402 // Get control edge of 'sub'.
kvn@628 403 Node* orig_sub = sub;
kvn@554 404 sub = sub->find_exact_control(sub->in(0));
kvn@554 405 if (sub == NULL || sub->is_top())
kvn@554 406 return false; // Conservative answer for dead code
kvn@554 407
kvn@554 408 assert(sub->is_CFG(), "expecting control");
kvn@554 409
kvn@554 410 if (sub == dom)
kvn@554 411 return true;
kvn@554 412
kvn@554 413 if (sub->is_Start() || sub->is_Root())
kvn@554 414 return false;
kvn@554 415
kvn@554 416 {
kvn@554 417 // Check all control edges of 'dom'.
kvn@554 418
kvn@554 419 ResourceMark rm;
kvn@554 420 Arena* arena = Thread::current()->resource_area();
kvn@554 421 Node_List nlist(arena);
kvn@554 422 Unique_Node_List dom_list(arena);
kvn@554 423
kvn@554 424 dom_list.push(dom);
kvn@554 425 bool only_dominating_controls = false;
kvn@554 426
kvn@554 427 for (uint next = 0; next < dom_list.size(); next++) {
kvn@554 428 Node* n = dom_list.at(next);
kvn@628 429 if (n == orig_sub)
kvn@628 430 return false; // One of dom's inputs dominated by sub.
kvn@554 431 if (!n->is_CFG() && n->pinned()) {
kvn@554 432 // Check only own control edge for pinned non-control nodes.
kvn@554 433 n = n->find_exact_control(n->in(0));
kvn@554 434 if (n == NULL || n->is_top())
kvn@554 435 return false; // Conservative answer for dead code
kvn@554 436 assert(n->is_CFG(), "expecting control");
kvn@628 437 dom_list.push(n);
kvn@628 438 } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
kvn@554 439 only_dominating_controls = true;
kvn@554 440 } else if (n->is_CFG()) {
kvn@554 441 if (n->dominates(sub, nlist))
kvn@554 442 only_dominating_controls = true;
kvn@554 443 else
kvn@554 444 return false;
kvn@554 445 } else {
kvn@554 446 // First, own control edge.
kvn@554 447 Node* m = n->find_exact_control(n->in(0));
kvn@590 448 if (m != NULL) {
kvn@590 449 if (m->is_top())
kvn@590 450 return false; // Conservative answer for dead code
kvn@590 451 dom_list.push(m);
kvn@590 452 }
kvn@554 453 // Now, the rest of edges.
kvn@554 454 uint cnt = n->req();
kvn@554 455 for (uint i = 1; i < cnt; i++) {
kvn@554 456 m = n->find_exact_control(n->in(i));
kvn@554 457 if (m == NULL || m->is_top())
kvn@554 458 continue;
kvn@554 459 dom_list.push(m);
duke@435 460 }
duke@435 461 }
duke@435 462 }
kvn@554 463 return only_dominating_controls;
duke@435 464 }
duke@435 465 }
duke@435 466
duke@435 467 //---------------------detect_ptr_independence---------------------------------
duke@435 468 // Used by MemNode::find_previous_store to prove that two base
duke@435 469 // pointers are never equal.
duke@435 470 // The pointers are accompanied by their associated allocations,
duke@435 471 // if any, which have been previously discovered by the caller.
duke@435 472 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 473 Node* p2, AllocateNode* a2,
duke@435 474 PhaseTransform* phase) {
duke@435 475 // Attempt to prove that these two pointers cannot be aliased.
duke@435 476 // They may both manifestly be allocations, and they should differ.
duke@435 477 // Or, if they are not both allocations, they can be distinct constants.
duke@435 478 // Otherwise, one is an allocation and the other a pre-existing value.
duke@435 479 if (a1 == NULL && a2 == NULL) { // neither an allocation
duke@435 480 return (p1 != p2) && p1->is_Con() && p2->is_Con();
duke@435 481 } else if (a1 != NULL && a2 != NULL) { // both allocations
duke@435 482 return (a1 != a2);
duke@435 483 } else if (a1 != NULL) { // one allocation a1
duke@435 484 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.)
kvn@554 485 return all_controls_dominate(p2, a1);
duke@435 486 } else { //(a2 != NULL) // one allocation a2
kvn@554 487 return all_controls_dominate(p1, a2);
duke@435 488 }
duke@435 489 return false;
duke@435 490 }
duke@435 491
duke@435 492
duke@435 493 // The logic for reordering loads and stores uses four steps:
duke@435 494 // (a) Walk carefully past stores and initializations which we
duke@435 495 // can prove are independent of this load.
duke@435 496 // (b) Observe that the next memory state makes an exact match
duke@435 497 // with self (load or store), and locate the relevant store.
duke@435 498 // (c) Ensure that, if we were to wire self directly to the store,
duke@435 499 // the optimizer would fold it up somehow.
duke@435 500 // (d) Do the rewiring, and return, depending on some other part of
duke@435 501 // the optimizer to fold up the load.
duke@435 502 // This routine handles steps (a) and (b). Steps (c) and (d) are
duke@435 503 // specific to loads and stores, so they are handled by the callers.
duke@435 504 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.)
duke@435 505 //
duke@435 506 Node* MemNode::find_previous_store(PhaseTransform* phase) {
duke@435 507 Node* ctrl = in(MemNode::Control);
duke@435 508 Node* adr = in(MemNode::Address);
duke@435 509 intptr_t offset = 0;
duke@435 510 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 511 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
duke@435 512
duke@435 513 if (offset == Type::OffsetBot)
duke@435 514 return NULL; // cannot unalias unless there are precise offsets
duke@435 515
kvn@509 516 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
kvn@509 517
duke@435 518 intptr_t size_in_bytes = memory_size();
duke@435 519
duke@435 520 Node* mem = in(MemNode::Memory); // start searching here...
duke@435 521
duke@435 522 int cnt = 50; // Cycle limiter
duke@435 523 for (;;) { // While we can dance past unrelated stores...
duke@435 524 if (--cnt < 0) break; // Caught in cycle or a complicated dance?
duke@435 525
duke@435 526 if (mem->is_Store()) {
duke@435 527 Node* st_adr = mem->in(MemNode::Address);
duke@435 528 intptr_t st_offset = 0;
duke@435 529 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
duke@435 530 if (st_base == NULL)
duke@435 531 break; // inscrutable pointer
duke@435 532 if (st_offset != offset && st_offset != Type::OffsetBot) {
duke@435 533 const int MAX_STORE = BytesPerLong;
duke@435 534 if (st_offset >= offset + size_in_bytes ||
duke@435 535 st_offset <= offset - MAX_STORE ||
duke@435 536 st_offset <= offset - mem->as_Store()->memory_size()) {
duke@435 537 // Success: The offsets are provably independent.
duke@435 538 // (You may ask, why not just test st_offset != offset and be done?
duke@435 539 // The answer is that stores of different sizes can co-exist
duke@435 540 // in the same sequence of RawMem effects. We sometimes initialize
duke@435 541 // a whole 'tile' of array elements with a single jint or jlong.)
duke@435 542 mem = mem->in(MemNode::Memory);
duke@435 543 continue; // (a) advance through independent store memory
duke@435 544 }
duke@435 545 }
duke@435 546 if (st_base != base &&
duke@435 547 detect_ptr_independence(base, alloc,
duke@435 548 st_base,
duke@435 549 AllocateNode::Ideal_allocation(st_base, phase),
duke@435 550 phase)) {
duke@435 551 // Success: The bases are provably independent.
duke@435 552 mem = mem->in(MemNode::Memory);
duke@435 553 continue; // (a) advance through independent store memory
duke@435 554 }
duke@435 555
duke@435 556 // (b) At this point, if the bases or offsets do not agree, we lose,
duke@435 557 // since we have not managed to prove 'this' and 'mem' independent.
duke@435 558 if (st_base == base && st_offset == offset) {
duke@435 559 return mem; // let caller handle steps (c), (d)
duke@435 560 }
duke@435 561
duke@435 562 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 563 InitializeNode* st_init = mem->in(0)->as_Initialize();
duke@435 564 AllocateNode* st_alloc = st_init->allocation();
duke@435 565 if (st_alloc == NULL)
duke@435 566 break; // something degenerated
duke@435 567 bool known_identical = false;
duke@435 568 bool known_independent = false;
duke@435 569 if (alloc == st_alloc)
duke@435 570 known_identical = true;
duke@435 571 else if (alloc != NULL)
duke@435 572 known_independent = true;
kvn@554 573 else if (all_controls_dominate(this, st_alloc))
duke@435 574 known_independent = true;
duke@435 575
duke@435 576 if (known_independent) {
duke@435 577 // The bases are provably independent: Either they are
duke@435 578 // manifestly distinct allocations, or else the control
duke@435 579 // of this load dominates the store's allocation.
duke@435 580 int alias_idx = phase->C->get_alias_index(adr_type());
duke@435 581 if (alias_idx == Compile::AliasIdxRaw) {
duke@435 582 mem = st_alloc->in(TypeFunc::Memory);
duke@435 583 } else {
duke@435 584 mem = st_init->memory(alias_idx);
duke@435 585 }
duke@435 586 continue; // (a) advance through independent store memory
duke@435 587 }
duke@435 588
duke@435 589 // (b) at this point, if we are not looking at a store initializing
duke@435 590 // the same allocation we are loading from, we lose.
duke@435 591 if (known_identical) {
duke@435 592 // From caller, can_see_stored_value will consult find_captured_store.
duke@435 593 return mem; // let caller handle steps (c), (d)
duke@435 594 }
duke@435 595
kvn@658 596 } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
kvn@509 597 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
kvn@509 598 if (mem->is_Proj() && mem->in(0)->is_Call()) {
kvn@509 599 CallNode *call = mem->in(0)->as_Call();
kvn@509 600 if (!call->may_modify(addr_t, phase)) {
kvn@509 601 mem = call->in(TypeFunc::Memory);
kvn@509 602 continue; // (a) advance through independent call memory
kvn@509 603 }
kvn@509 604 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
kvn@509 605 mem = mem->in(0)->in(TypeFunc::Memory);
kvn@509 606 continue; // (a) advance through independent MemBar memory
kvn@1535 607 } else if (mem->is_ClearArray()) {
kvn@1535 608 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
kvn@1535 609 // (the call updated 'mem' value)
kvn@1535 610 continue; // (a) advance through independent allocation memory
kvn@1535 611 } else {
kvn@1535 612 // Can not bypass initialization of the instance
kvn@1535 613 // we are looking for.
kvn@1535 614 return mem;
kvn@1535 615 }
kvn@509 616 } else if (mem->is_MergeMem()) {
kvn@509 617 int alias_idx = phase->C->get_alias_index(adr_type());
kvn@509 618 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@509 619 continue; // (a) advance through independent MergeMem memory
kvn@509 620 }
duke@435 621 }
duke@435 622
duke@435 623 // Unless there is an explicit 'continue', we must bail out here,
duke@435 624 // because 'mem' is an inscrutable memory state (e.g., a call).
duke@435 625 break;
duke@435 626 }
duke@435 627
duke@435 628 return NULL; // bail out
duke@435 629 }
duke@435 630
duke@435 631 //----------------------calculate_adr_type-------------------------------------
duke@435 632 // Helper function. Notices when the given type of address hits top or bottom.
duke@435 633 // Also, asserts a cross-check of the type against the expected address type.
duke@435 634 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
duke@435 635 if (t == Type::TOP) return NULL; // does not touch memory any more?
duke@435 636 #ifdef PRODUCT
duke@435 637 cross_check = NULL;
duke@435 638 #else
duke@435 639 if (!VerifyAliases || is_error_reported() || Node::in_dump()) cross_check = NULL;
duke@435 640 #endif
duke@435 641 const TypePtr* tp = t->isa_ptr();
duke@435 642 if (tp == NULL) {
duke@435 643 assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
duke@435 644 return TypePtr::BOTTOM; // touches lots of memory
duke@435 645 } else {
duke@435 646 #ifdef ASSERT
duke@435 647 // %%%% [phh] We don't check the alias index if cross_check is
duke@435 648 // TypeRawPtr::BOTTOM. Needs to be investigated.
duke@435 649 if (cross_check != NULL &&
duke@435 650 cross_check != TypePtr::BOTTOM &&
duke@435 651 cross_check != TypeRawPtr::BOTTOM) {
duke@435 652 // Recheck the alias index, to see if it has changed (due to a bug).
duke@435 653 Compile* C = Compile::current();
duke@435 654 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
duke@435 655 "must stay in the original alias category");
duke@435 656 // The type of the address must be contained in the adr_type,
duke@435 657 // disregarding "null"-ness.
duke@435 658 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
duke@435 659 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
duke@435 660 assert(cross_check->meet(tp_notnull) == cross_check,
duke@435 661 "real address must not escape from expected memory type");
duke@435 662 }
duke@435 663 #endif
duke@435 664 return tp;
duke@435 665 }
duke@435 666 }
duke@435 667
duke@435 668 //------------------------adr_phi_is_loop_invariant----------------------------
duke@435 669 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
duke@435 670 // loop is loop invariant. Make a quick traversal of Phi and associated
duke@435 671 // CastPP nodes, looking to see if they are a closed group within the loop.
duke@435 672 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
duke@435 673 // The idea is that the phi-nest must boil down to only CastPP nodes
duke@435 674 // with the same data. This implies that any path into the loop already
duke@435 675 // includes such a CastPP, and so the original cast, whatever its input,
duke@435 676 // must be covered by an equivalent cast, with an earlier control input.
duke@435 677 ResourceMark rm;
duke@435 678
duke@435 679 // The loop entry input of the phi should be the unique dominating
duke@435 680 // node for every Phi/CastPP in the loop.
duke@435 681 Unique_Node_List closure;
duke@435 682 closure.push(adr_phi->in(LoopNode::EntryControl));
duke@435 683
duke@435 684 // Add the phi node and the cast to the worklist.
duke@435 685 Unique_Node_List worklist;
duke@435 686 worklist.push(adr_phi);
duke@435 687 if( cast != NULL ){
duke@435 688 if( !cast->is_ConstraintCast() ) return false;
duke@435 689 worklist.push(cast);
duke@435 690 }
duke@435 691
duke@435 692 // Begin recursive walk of phi nodes.
duke@435 693 while( worklist.size() ){
duke@435 694 // Take a node off the worklist
duke@435 695 Node *n = worklist.pop();
duke@435 696 if( !closure.member(n) ){
duke@435 697 // Add it to the closure.
duke@435 698 closure.push(n);
duke@435 699 // Make a sanity check to ensure we don't waste too much time here.
duke@435 700 if( closure.size() > 20) return false;
duke@435 701 // This node is OK if:
duke@435 702 // - it is a cast of an identical value
duke@435 703 // - or it is a phi node (then we add its inputs to the worklist)
duke@435 704 // Otherwise, the node is not OK, and we presume the cast is not invariant
duke@435 705 if( n->is_ConstraintCast() ){
duke@435 706 worklist.push(n->in(1));
duke@435 707 } else if( n->is_Phi() ) {
duke@435 708 for( uint i = 1; i < n->req(); i++ ) {
duke@435 709 worklist.push(n->in(i));
duke@435 710 }
duke@435 711 } else {
duke@435 712 return false;
duke@435 713 }
duke@435 714 }
duke@435 715 }
duke@435 716
duke@435 717 // Quit when the worklist is empty, and we've found no offending nodes.
duke@435 718 return true;
duke@435 719 }
duke@435 720
duke@435 721 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 722 // Find any cast-away of null-ness and keep its control. Null cast-aways are
duke@435 723 // going away in this pass and we need to make this memory op depend on the
duke@435 724 // gating null check.
kvn@598 725 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 726 return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
kvn@598 727 }
duke@435 728
duke@435 729 // I tried to leave the CastPP's in. This makes the graph more accurate in
duke@435 730 // some sense; we get to keep around the knowledge that an oop is not-null
duke@435 731 // after some test. Alas, the CastPP's interfere with GVN (some values are
duke@435 732 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
duke@435 733 // cannot collapse, etc). This cost us 10% on SpecJVM, even when I removed
duke@435 734 // some of the more trivial cases in the optimizer. Removing more useless
duke@435 735 // Phi's started allowing Loads to illegally float above null checks. I gave
duke@435 736 // up on this approach. CNC 10/20/2000
kvn@598 737 // This static method may be called not from MemNode (EncodePNode calls it).
kvn@598 738 // Only the control edge of the node 'n' might be updated.
kvn@598 739 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
duke@435 740 Node *skipped_cast = NULL;
duke@435 741 // Need a null check? Regular static accesses do not because they are
duke@435 742 // from constant addresses. Array ops are gated by the range check (which
duke@435 743 // always includes a NULL check). Just check field ops.
kvn@598 744 if( n->in(MemNode::Control) == NULL ) {
duke@435 745 // Scan upwards for the highest location we can place this memory op.
duke@435 746 while( true ) {
duke@435 747 switch( adr->Opcode() ) {
duke@435 748
duke@435 749 case Op_AddP: // No change to NULL-ness, so peek thru AddP's
duke@435 750 adr = adr->in(AddPNode::Base);
duke@435 751 continue;
duke@435 752
coleenp@548 753 case Op_DecodeN: // No change to NULL-ness, so peek thru
roland@4159 754 case Op_DecodeNKlass:
coleenp@548 755 adr = adr->in(1);
coleenp@548 756 continue;
coleenp@548 757
kvn@3842 758 case Op_EncodeP:
roland@4159 759 case Op_EncodePKlass:
kvn@3842 760 // EncodeP node's control edge could be set by this method
kvn@3842 761 // when EncodeP node depends on CastPP node.
kvn@3842 762 //
kvn@3842 763 // Use its control edge for memory op because EncodeP may go away
kvn@3842 764 // later when it is folded with following or preceding DecodeN node.
kvn@3842 765 if (adr->in(0) == NULL) {
kvn@3842 766 // Keep looking for cast nodes.
kvn@3842 767 adr = adr->in(1);
kvn@3842 768 continue;
kvn@3842 769 }
kvn@3842 770 ccp->hash_delete(n);
kvn@3842 771 n->set_req(MemNode::Control, adr->in(0));
kvn@3842 772 ccp->hash_insert(n);
kvn@3842 773 return n;
kvn@3842 774
duke@435 775 case Op_CastPP:
duke@435 776 // If the CastPP is useless, just peek on through it.
duke@435 777 if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
duke@435 778 // Remember the cast that we've peeked though. If we peek
duke@435 779 // through more than one, then we end up remembering the highest
duke@435 780 // one, that is, if in a loop, the one closest to the top.
duke@435 781 skipped_cast = adr;
duke@435 782 adr = adr->in(1);
duke@435 783 continue;
duke@435 784 }
duke@435 785 // CastPP is going away in this pass! We need this memory op to be
duke@435 786 // control-dependent on the test that is guarding the CastPP.
kvn@598 787 ccp->hash_delete(n);
kvn@598 788 n->set_req(MemNode::Control, adr->in(0));
kvn@598 789 ccp->hash_insert(n);
kvn@598 790 return n;
duke@435 791
duke@435 792 case Op_Phi:
duke@435 793 // Attempt to float above a Phi to some dominating point.
duke@435 794 if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
duke@435 795 // If we've already peeked through a Cast (which could have set the
duke@435 796 // control), we can't float above a Phi, because the skipped Cast
duke@435 797 // may not be loop invariant.
duke@435 798 if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
duke@435 799 adr = adr->in(1);
duke@435 800 continue;
duke@435 801 }
duke@435 802 }
duke@435 803
duke@435 804 // Intentional fallthrough!
duke@435 805
duke@435 806 // No obvious dominating point. The mem op is pinned below the Phi
duke@435 807 // by the Phi itself. If the Phi goes away (no true value is merged)
duke@435 808 // then the mem op can float, but not indefinitely. It must be pinned
duke@435 809 // behind the controls leading to the Phi.
duke@435 810 case Op_CheckCastPP:
duke@435 811 // These usually stick around to change address type, however a
duke@435 812 // useless one can be elided and we still need to pick up a control edge
duke@435 813 if (adr->in(0) == NULL) {
duke@435 814 // This CheckCastPP node has NO control and is likely useless. But we
duke@435 815 // need check further up the ancestor chain for a control input to keep
duke@435 816 // the node in place. 4959717.
duke@435 817 skipped_cast = adr;
duke@435 818 adr = adr->in(1);
duke@435 819 continue;
duke@435 820 }
kvn@598 821 ccp->hash_delete(n);
kvn@598 822 n->set_req(MemNode::Control, adr->in(0));
kvn@598 823 ccp->hash_insert(n);
kvn@598 824 return n;
duke@435 825
duke@435 826 // List of "safe" opcodes; those that implicitly block the memory
duke@435 827 // op below any null check.
duke@435 828 case Op_CastX2P: // no null checks on native pointers
duke@435 829 case Op_Parm: // 'this' pointer is not null
duke@435 830 case Op_LoadP: // Loading from within a klass
coleenp@548 831 case Op_LoadN: // Loading from within a klass
duke@435 832 case Op_LoadKlass: // Loading from within a klass
kvn@599 833 case Op_LoadNKlass: // Loading from within a klass
duke@435 834 case Op_ConP: // Loading from a klass
kvn@598 835 case Op_ConN: // Loading from a klass
roland@4159 836 case Op_ConNKlass: // Loading from a klass
duke@435 837 case Op_CreateEx: // Sucking up the guts of an exception oop
duke@435 838 case Op_Con: // Reading from TLS
duke@435 839 case Op_CMoveP: // CMoveP is pinned
kvn@599 840 case Op_CMoveN: // CMoveN is pinned
duke@435 841 break; // No progress
duke@435 842
duke@435 843 case Op_Proj: // Direct call to an allocation routine
duke@435 844 case Op_SCMemProj: // Memory state from store conditional ops
duke@435 845 #ifdef ASSERT
duke@435 846 {
duke@435 847 assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
duke@435 848 const Node* call = adr->in(0);
kvn@598 849 if (call->is_CallJava()) {
kvn@598 850 const CallJavaNode* call_java = call->as_CallJava();
kvn@499 851 const TypeTuple *r = call_java->tf()->range();
kvn@499 852 assert(r->cnt() > TypeFunc::Parms, "must return value");
kvn@499 853 const Type* ret_type = r->field_at(TypeFunc::Parms);
kvn@499 854 assert(ret_type && ret_type->isa_ptr(), "must return pointer");
duke@435 855 // We further presume that this is one of
duke@435 856 // new_instance_Java, new_array_Java, or
duke@435 857 // the like, but do not assert for this.
duke@435 858 } else if (call->is_Allocate()) {
duke@435 859 // similar case to new_instance_Java, etc.
duke@435 860 } else if (!call->is_CallLeaf()) {
duke@435 861 // Projections from fetch_oop (OSR) are allowed as well.
duke@435 862 ShouldNotReachHere();
duke@435 863 }
duke@435 864 }
duke@435 865 #endif
duke@435 866 break;
duke@435 867 default:
duke@435 868 ShouldNotReachHere();
duke@435 869 }
duke@435 870 break;
duke@435 871 }
duke@435 872 }
duke@435 873
duke@435 874 return NULL; // No progress
duke@435 875 }
duke@435 876
duke@435 877
duke@435 878 //=============================================================================
duke@435 879 uint LoadNode::size_of() const { return sizeof(*this); }
duke@435 880 uint LoadNode::cmp( const Node &n ) const
duke@435 881 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
duke@435 882 const Type *LoadNode::bottom_type() const { return _type; }
duke@435 883 uint LoadNode::ideal_reg() const {
coleenp@4037 884 return _type->ideal_reg();
duke@435 885 }
duke@435 886
duke@435 887 #ifndef PRODUCT
duke@435 888 void LoadNode::dump_spec(outputStream *st) const {
duke@435 889 MemNode::dump_spec(st);
duke@435 890 if( !Verbose && !WizardMode ) {
duke@435 891 // standard dump does this in Verbose and WizardMode
duke@435 892 st->print(" #"); _type->dump_on(st);
duke@435 893 }
duke@435 894 }
duke@435 895 #endif
duke@435 896
kvn@1964 897 #ifdef ASSERT
kvn@1964 898 //----------------------------is_immutable_value-------------------------------
kvn@1964 899 // Helper function to allow a raw load without control edge for some cases
kvn@1964 900 bool LoadNode::is_immutable_value(Node* adr) {
kvn@1964 901 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
kvn@1964 902 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
kvn@1964 903 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
kvn@1964 904 in_bytes(JavaThread::osthread_offset())));
kvn@1964 905 }
kvn@1964 906 #endif
duke@435 907
duke@435 908 //----------------------------LoadNode::make-----------------------------------
duke@435 909 // Polymorphic factory method:
coleenp@548 910 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
coleenp@548 911 Compile* C = gvn.C;
coleenp@548 912
duke@435 913 // sanity check the alias category against the created node type
duke@435 914 assert(!(adr_type->isa_oopptr() &&
duke@435 915 adr_type->offset() == oopDesc::klass_offset_in_bytes()),
duke@435 916 "use LoadKlassNode instead");
duke@435 917 assert(!(adr_type->isa_aryptr() &&
duke@435 918 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
duke@435 919 "use LoadRangeNode instead");
kvn@1964 920 // Check control edge of raw loads
kvn@1964 921 assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 922 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 923 rt->isa_oopptr() || is_immutable_value(adr),
kvn@1964 924 "raw memory operations should have control edge");
duke@435 925 switch (bt) {
kvn@4115 926 case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 927 case T_BYTE: return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 928 case T_INT: return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 929 case T_CHAR: return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 930 case T_SHORT: return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int() );
kvn@4115 931 case T_LONG: return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long() );
kvn@4115 932 case T_FLOAT: return new (C) LoadFNode (ctl, mem, adr, adr_type, rt );
kvn@4115 933 case T_DOUBLE: return new (C) LoadDNode (ctl, mem, adr, adr_type, rt );
kvn@4115 934 case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr() );
coleenp@548 935 case T_OBJECT:
coleenp@548 936 #ifdef _LP64
kvn@598 937 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 938 Node* load = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
kvn@4115 939 return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
coleenp@548 940 } else
coleenp@548 941 #endif
kvn@598 942 {
roland@4159 943 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
kvn@4115 944 return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
kvn@598 945 }
duke@435 946 }
duke@435 947 ShouldNotReachHere();
duke@435 948 return (LoadNode*)NULL;
duke@435 949 }
duke@435 950
duke@435 951 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
duke@435 952 bool require_atomic = true;
kvn@4115 953 return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
duke@435 954 }
duke@435 955
duke@435 956
duke@435 957
duke@435 958
duke@435 959 //------------------------------hash-------------------------------------------
duke@435 960 uint LoadNode::hash() const {
duke@435 961 // unroll addition of interesting fields
duke@435 962 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
duke@435 963 }
duke@435 964
duke@435 965 //---------------------------can_see_stored_value------------------------------
duke@435 966 // This routine exists to make sure this set of tests is done the same
duke@435 967 // everywhere. We need to make a coordinated change: first LoadNode::Ideal
duke@435 968 // will change the graph shape in a way which makes memory alive twice at the
duke@435 969 // same time (uses the Oracle model of aliasing), then some
duke@435 970 // LoadXNode::Identity will fold things back to the equivalence-class model
duke@435 971 // of aliasing.
duke@435 972 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
duke@435 973 Node* ld_adr = in(MemNode::Address);
kvn@5110 974 intptr_t ld_off = 0;
kvn@5110 975 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
never@452 976 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
kvn@5110 977 Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
kvn@5110 978 // This is more general than load from boxing objects.
kvn@5110 979 if (phase->C->eliminate_boxing() && (atp != NULL) &&
kvn@5110 980 (atp->index() >= Compile::AliasIdxRaw) &&
kvn@5110 981 (atp->field() != NULL) && !atp->field()->is_volatile()) {
never@452 982 uint alias_idx = atp->index();
never@452 983 bool final = atp->field()->is_final();
never@452 984 Node* result = NULL;
never@452 985 Node* current = st;
never@452 986 // Skip through chains of MemBarNodes checking the MergeMems for
never@452 987 // new states for the slice of this load. Stop once any other
never@452 988 // kind of node is encountered. Loads from final memory can skip
never@452 989 // through any kind of MemBar but normal loads shouldn't skip
never@452 990 // through MemBarAcquire since the could allow them to move out of
never@452 991 // a synchronized region.
never@452 992 while (current->is_Proj()) {
never@452 993 int opc = current->in(0)->Opcode();
roland@3047 994 if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
roland@3047 995 opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
roland@3047 996 opc == Op_MemBarReleaseLock) {
never@452 997 Node* mem = current->in(0)->in(TypeFunc::Memory);
never@452 998 if (mem->is_MergeMem()) {
never@452 999 MergeMemNode* merge = mem->as_MergeMem();
never@452 1000 Node* new_st = merge->memory_at(alias_idx);
never@452 1001 if (new_st == merge->base_memory()) {
never@452 1002 // Keep searching
kvn@5110 1003 current = new_st;
never@452 1004 continue;
never@452 1005 }
never@452 1006 // Save the new memory state for the slice and fall through
never@452 1007 // to exit.
never@452 1008 result = new_st;
never@452 1009 }
never@452 1010 }
never@452 1011 break;
never@452 1012 }
never@452 1013 if (result != NULL) {
never@452 1014 st = result;
never@452 1015 }
never@452 1016 }
never@452 1017
never@452 1018
duke@435 1019 // Loop around twice in the case Load -> Initialize -> Store.
duke@435 1020 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
duke@435 1021 for (int trip = 0; trip <= 1; trip++) {
duke@435 1022
duke@435 1023 if (st->is_Store()) {
duke@435 1024 Node* st_adr = st->in(MemNode::Address);
duke@435 1025 if (!phase->eqv(st_adr, ld_adr)) {
duke@435 1026 // Try harder before giving up... Match raw and non-raw pointers.
duke@435 1027 intptr_t st_off = 0;
duke@435 1028 AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
duke@435 1029 if (alloc == NULL) return NULL;
kvn@5110 1030 if (alloc != ld_alloc) return NULL;
duke@435 1031 if (ld_off != st_off) return NULL;
duke@435 1032 // At this point we have proven something like this setup:
duke@435 1033 // A = Allocate(...)
duke@435 1034 // L = LoadQ(, AddP(CastPP(, A.Parm),, #Off))
duke@435 1035 // S = StoreQ(, AddP(, A.Parm , #Off), V)
duke@435 1036 // (Actually, we haven't yet proven the Q's are the same.)
duke@435 1037 // In other words, we are loading from a casted version of
duke@435 1038 // the same pointer-and-offset that we stored to.
duke@435 1039 // Thus, we are able to replace L by V.
duke@435 1040 }
duke@435 1041 // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
duke@435 1042 if (store_Opcode() != st->Opcode())
duke@435 1043 return NULL;
duke@435 1044 return st->in(MemNode::ValueIn);
duke@435 1045 }
duke@435 1046
duke@435 1047 // A load from a freshly-created object always returns zero.
duke@435 1048 // (This can happen after LoadNode::Ideal resets the load's memory input
duke@435 1049 // to find_captured_store, which returned InitializeNode::zero_memory.)
duke@435 1050 if (st->is_Proj() && st->in(0)->is_Allocate() &&
kvn@5110 1051 (st->in(0) == ld_alloc) &&
kvn@5110 1052 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
duke@435 1053 // return a zero value for the load's basic type
duke@435 1054 // (This is one of the few places where a generic PhaseTransform
duke@435 1055 // can create new nodes. Think of it as lazily manifesting
duke@435 1056 // virtually pre-existing constants.)
duke@435 1057 return phase->zerocon(memory_type());
duke@435 1058 }
duke@435 1059
duke@435 1060 // A load from an initialization barrier can match a captured store.
duke@435 1061 if (st->is_Proj() && st->in(0)->is_Initialize()) {
duke@435 1062 InitializeNode* init = st->in(0)->as_Initialize();
duke@435 1063 AllocateNode* alloc = init->allocation();
kvn@5110 1064 if ((alloc != NULL) && (alloc == ld_alloc)) {
duke@435 1065 // examine a captured store value
kvn@5110 1066 st = init->find_captured_store(ld_off, memory_size(), phase);
duke@435 1067 if (st != NULL)
duke@435 1068 continue; // take one more trip around
duke@435 1069 }
duke@435 1070 }
duke@435 1071
kvn@5110 1072 // Load boxed value from result of valueOf() call is input parameter.
kvn@5110 1073 if (this->is_Load() && ld_adr->is_AddP() &&
kvn@5110 1074 (tp != NULL) && tp->is_ptr_to_boxed_value()) {
kvn@5110 1075 intptr_t ignore = 0;
kvn@5110 1076 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
kvn@5110 1077 if (base != NULL && base->is_Proj() &&
kvn@5110 1078 base->as_Proj()->_con == TypeFunc::Parms &&
kvn@5110 1079 base->in(0)->is_CallStaticJava() &&
kvn@5110 1080 base->in(0)->as_CallStaticJava()->is_boxing_method()) {
kvn@5110 1081 return base->in(0)->in(TypeFunc::Parms);
kvn@5110 1082 }
kvn@5110 1083 }
kvn@5110 1084
duke@435 1085 break;
duke@435 1086 }
duke@435 1087
duke@435 1088 return NULL;
duke@435 1089 }
duke@435 1090
kvn@499 1091 //----------------------is_instance_field_load_with_local_phi------------------
kvn@499 1092 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
kvn@5110 1093 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
kvn@5110 1094 in(Address)->is_AddP() ) {
kvn@5110 1095 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
kvn@5110 1096 // Only instances and boxed values.
kvn@5110 1097 if( t_oop != NULL &&
kvn@5110 1098 (t_oop->is_ptr_to_boxed_value() ||
kvn@5110 1099 t_oop->is_known_instance_field()) &&
kvn@499 1100 t_oop->offset() != Type::OffsetBot &&
kvn@499 1101 t_oop->offset() != Type::OffsetTop) {
kvn@499 1102 return true;
kvn@499 1103 }
kvn@499 1104 }
kvn@499 1105 return false;
kvn@499 1106 }
kvn@499 1107
duke@435 1108 //------------------------------Identity---------------------------------------
duke@435 1109 // Loads are identity if previous store is to same address
duke@435 1110 Node *LoadNode::Identity( PhaseTransform *phase ) {
duke@435 1111 // If the previous store-maker is the right kind of Store, and the store is
duke@435 1112 // to the same address, then we are equal to the value stored.
kvn@5110 1113 Node* mem = in(Memory);
duke@435 1114 Node* value = can_see_stored_value(mem, phase);
duke@435 1115 if( value ) {
duke@435 1116 // byte, short & char stores truncate naturally.
duke@435 1117 // A load has to load the truncated value which requires
duke@435 1118 // some sort of masking operation and that requires an
duke@435 1119 // Ideal call instead of an Identity call.
duke@435 1120 if (memory_size() < BytesPerInt) {
duke@435 1121 // If the input to the store does not fit with the load's result type,
duke@435 1122 // it must be truncated via an Ideal call.
duke@435 1123 if (!phase->type(value)->higher_equal(phase->type(this)))
duke@435 1124 return this;
duke@435 1125 }
duke@435 1126 // (This works even when value is a Con, but LoadNode::Value
duke@435 1127 // usually runs first, producing the singleton type of the Con.)
duke@435 1128 return value;
duke@435 1129 }
kvn@499 1130
kvn@499 1131 // Search for an existing data phi which was generated before for the same
twisti@1040 1132 // instance's field to avoid infinite generation of phis in a loop.
kvn@499 1133 Node *region = mem->in(0);
kvn@499 1134 if (is_instance_field_load_with_local_phi(region)) {
kvn@5110 1135 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
kvn@499 1136 int this_index = phase->C->get_alias_index(addr_t);
kvn@499 1137 int this_offset = addr_t->offset();
kvn@5110 1138 int this_iid = addr_t->instance_id();
kvn@5110 1139 if (!addr_t->is_known_instance() &&
kvn@5110 1140 addr_t->is_ptr_to_boxed_value()) {
kvn@5110 1141 // Use _idx of address base (could be Phi node) for boxed values.
kvn@5110 1142 intptr_t ignore = 0;
kvn@5110 1143 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
kvn@5110 1144 this_iid = base->_idx;
kvn@5110 1145 }
kvn@499 1146 const Type* this_type = bottom_type();
kvn@499 1147 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@499 1148 Node* phi = region->fast_out(i);
kvn@499 1149 if (phi->is_Phi() && phi != mem &&
kvn@5110 1150 phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
kvn@499 1151 return phi;
kvn@499 1152 }
kvn@499 1153 }
kvn@499 1154 }
kvn@499 1155
duke@435 1156 return this;
duke@435 1157 }
duke@435 1158
never@452 1159 // We're loading from an object which has autobox behaviour.
never@452 1160 // If this object is result of a valueOf call we'll have a phi
never@452 1161 // merging a newly allocated object and a load from the cache.
never@452 1162 // We want to replace this load with the original incoming
never@452 1163 // argument to the valueOf call.
never@452 1164 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
kvn@5110 1165 assert(phase->C->eliminate_boxing(), "sanity");
kvn@5110 1166 intptr_t ignore = 0;
kvn@5110 1167 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
kvn@5110 1168 if ((base == NULL) || base->is_Phi()) {
kvn@5110 1169 // Push the loads from the phi that comes from valueOf up
kvn@5110 1170 // through it to allow elimination of the loads and the recovery
kvn@5110 1171 // of the original value. It is done in split_through_phi().
kvn@5110 1172 return NULL;
kvn@1018 1173 } else if (base->is_Load() ||
kvn@1018 1174 base->is_DecodeN() && base->in(1)->is_Load()) {
kvn@5110 1175 // Eliminate the load of boxed value for integer types from the cache
kvn@5110 1176 // array by deriving the value from the index into the array.
kvn@5110 1177 // Capture the offset of the load and then reverse the computation.
kvn@5110 1178
kvn@5110 1179 // Get LoadN node which loads a boxing object from 'cache' array.
kvn@1018 1180 if (base->is_DecodeN()) {
kvn@1018 1181 base = base->in(1);
kvn@1018 1182 }
kvn@5110 1183 if (!base->in(Address)->is_AddP()) {
kvn@5110 1184 return NULL; // Complex address
kvn@1018 1185 }
kvn@5110 1186 AddPNode* address = base->in(Address)->as_AddP();
kvn@5110 1187 Node* cache_base = address->in(AddPNode::Base);
kvn@5110 1188 if ((cache_base != NULL) && cache_base->is_DecodeN()) {
kvn@5110 1189 // Get ConP node which is static 'cache' field.
kvn@5110 1190 cache_base = cache_base->in(1);
kvn@5110 1191 }
kvn@5110 1192 if ((cache_base != NULL) && cache_base->is_Con()) {
kvn@5110 1193 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
kvn@5110 1194 if ((base_type != NULL) && base_type->is_autobox_cache()) {
never@452 1195 Node* elements[4];
kvn@5110 1196 int shift = exact_log2(type2aelembytes(T_OBJECT));
kvn@5110 1197 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
kvn@5110 1198 if ((count > 0) && elements[0]->is_Con() &&
kvn@5110 1199 ((count == 1) ||
kvn@5110 1200 (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
kvn@5110 1201 elements[1]->in(2) == phase->intcon(shift))) {
kvn@5110 1202 ciObjArray* array = base_type->const_oop()->as_obj_array();
kvn@5110 1203 // Fetch the box object cache[0] at the base of the array and get its value
kvn@5110 1204 ciInstance* box = array->obj_at(0)->as_instance();
kvn@5110 1205 ciInstanceKlass* ik = box->klass()->as_instance_klass();
kvn@5110 1206 assert(ik->is_box_klass(), "sanity");
kvn@5110 1207 assert(ik->nof_nonstatic_fields() == 1, "change following code");
kvn@5110 1208 if (ik->nof_nonstatic_fields() == 1) {
kvn@5110 1209 // This should be true nonstatic_field_at requires calling
kvn@5110 1210 // nof_nonstatic_fields so check it anyway
kvn@5110 1211 ciConstant c = box->field_value(ik->nonstatic_field_at(0));
kvn@5110 1212 BasicType bt = c.basic_type();
kvn@5110 1213 // Only integer types have boxing cache.
kvn@5110 1214 assert(bt == T_BOOLEAN || bt == T_CHAR ||
kvn@5110 1215 bt == T_BYTE || bt == T_SHORT ||
kvn@5110 1216 bt == T_INT || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
kvn@5110 1217 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
kvn@5110 1218 if (cache_low != (int)cache_low) {
kvn@5110 1219 return NULL; // should not happen since cache is array indexed by value
kvn@5110 1220 }
kvn@5110 1221 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
kvn@5110 1222 if (offset != (int)offset) {
kvn@5110 1223 return NULL; // should not happen since cache is array indexed by value
kvn@5110 1224 }
kvn@5110 1225 // Add up all the offsets making of the address of the load
kvn@5110 1226 Node* result = elements[0];
kvn@5110 1227 for (int i = 1; i < count; i++) {
kvn@5110 1228 result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
kvn@5110 1229 }
kvn@5110 1230 // Remove the constant offset from the address and then
kvn@5110 1231 result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
kvn@5110 1232 // remove the scaling of the offset to recover the original index.
kvn@5110 1233 if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
kvn@5110 1234 // Peel the shift off directly but wrap it in a dummy node
kvn@5110 1235 // since Ideal can't return existing nodes
kvn@5110 1236 result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
kvn@5110 1237 } else if (result->is_Add() && result->in(2)->is_Con() &&
kvn@5110 1238 result->in(1)->Opcode() == Op_LShiftX &&
kvn@5110 1239 result->in(1)->in(2) == phase->intcon(shift)) {
kvn@5110 1240 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
kvn@5110 1241 // but for boxing cache access we know that X<<Z will not overflow
kvn@5110 1242 // (there is range check) so we do this optimizatrion by hand here.
kvn@5110 1243 Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
kvn@5110 1244 result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
kvn@5110 1245 } else {
kvn@5110 1246 result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
kvn@5110 1247 }
kvn@5110 1248 #ifdef _LP64
kvn@5110 1249 if (bt != T_LONG) {
kvn@5110 1250 result = new (phase->C) ConvL2INode(phase->transform(result));
kvn@5110 1251 }
kvn@5110 1252 #else
kvn@5110 1253 if (bt == T_LONG) {
kvn@5110 1254 result = new (phase->C) ConvI2LNode(phase->transform(result));
kvn@5110 1255 }
kvn@5110 1256 #endif
kvn@5110 1257 return result;
never@452 1258 }
never@452 1259 }
never@452 1260 }
never@452 1261 }
never@452 1262 }
never@452 1263 return NULL;
never@452 1264 }
never@452 1265
kvn@5110 1266 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
kvn@5110 1267 Node* region = phi->in(0);
kvn@598 1268 if (region == NULL) {
kvn@5110 1269 return false; // Wait stable graph
kvn@598 1270 }
kvn@5110 1271 uint cnt = phi->req();
kvn@2810 1272 for (uint i = 1; i < cnt; i++) {
kvn@2810 1273 Node* rc = region->in(i);
kvn@2810 1274 if (rc == NULL || phase->type(rc) == Type::TOP)
kvn@5110 1275 return false; // Wait stable graph
kvn@5110 1276 Node* in = phi->in(i);
kvn@5110 1277 if (in == NULL || phase->type(in) == Type::TOP)
kvn@5110 1278 return false; // Wait stable graph
kvn@5110 1279 }
kvn@5110 1280 return true;
kvn@5110 1281 }
kvn@5110 1282 //------------------------------split_through_phi------------------------------
kvn@5110 1283 // Split instance or boxed field load through Phi.
kvn@5110 1284 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
kvn@5110 1285 Node* mem = in(Memory);
kvn@5110 1286 Node* address = in(Address);
kvn@5110 1287 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
kvn@5110 1288
kvn@5110 1289 assert((t_oop != NULL) &&
kvn@5110 1290 (t_oop->is_known_instance_field() ||
kvn@5110 1291 t_oop->is_ptr_to_boxed_value()), "invalide conditions");
kvn@5110 1292
kvn@5110 1293 Compile* C = phase->C;
kvn@5110 1294 intptr_t ignore = 0;
kvn@5110 1295 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@5110 1296 bool base_is_phi = (base != NULL) && base->is_Phi();
kvn@5110 1297 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
kvn@5110 1298 (base != NULL) && (base == address->in(AddPNode::Base)) &&
kvn@5110 1299 phase->type(base)->higher_equal(TypePtr::NOTNULL);
kvn@5110 1300
kvn@5110 1301 if (!((mem->is_Phi() || base_is_phi) &&
kvn@5110 1302 (load_boxed_values || t_oop->is_known_instance_field()))) {
kvn@5110 1303 return NULL; // memory is not Phi
kvn@5110 1304 }
kvn@5110 1305
kvn@5110 1306 if (mem->is_Phi()) {
kvn@5110 1307 if (!stable_phi(mem->as_Phi(), phase)) {
kvn@598 1308 return NULL; // Wait stable graph
kvn@598 1309 }
kvn@5110 1310 uint cnt = mem->req();
kvn@5110 1311 // Check for loop invariant memory.
kvn@5110 1312 if (cnt == 3) {
kvn@5110 1313 for (uint i = 1; i < cnt; i++) {
kvn@5110 1314 Node* in = mem->in(i);
kvn@5110 1315 Node* m = optimize_memory_chain(in, t_oop, this, phase);
kvn@5110 1316 if (m == mem) {
kvn@5110 1317 set_req(Memory, mem->in(cnt - i));
kvn@5110 1318 return this; // made change
kvn@5110 1319 }
kvn@598 1320 }
kvn@598 1321 }
kvn@598 1322 }
kvn@5110 1323 if (base_is_phi) {
kvn@5110 1324 if (!stable_phi(base->as_Phi(), phase)) {
kvn@5110 1325 return NULL; // Wait stable graph
kvn@5110 1326 }
kvn@5110 1327 uint cnt = base->req();
kvn@5110 1328 // Check for loop invariant memory.
kvn@5110 1329 if (cnt == 3) {
kvn@5110 1330 for (uint i = 1; i < cnt; i++) {
kvn@5110 1331 if (base->in(i) == base) {
kvn@5110 1332 return NULL; // Wait stable graph
kvn@5110 1333 }
kvn@5110 1334 }
kvn@5110 1335 }
kvn@5110 1336 }
kvn@5110 1337
kvn@5110 1338 bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
kvn@5110 1339
kvn@598 1340 // Split through Phi (see original code in loopopts.cpp).
kvn@5110 1341 assert(C->have_alias_type(t_oop), "instance should have alias type");
kvn@598 1342
kvn@598 1343 // Do nothing here if Identity will find a value
kvn@598 1344 // (to avoid infinite chain of value phis generation).
kvn@2810 1345 if (!phase->eqv(this, this->Identity(phase)))
kvn@598 1346 return NULL;
kvn@598 1347
kvn@5110 1348 // Select Region to split through.
kvn@5110 1349 Node* region;
kvn@5110 1350 if (!base_is_phi) {
kvn@5110 1351 assert(mem->is_Phi(), "sanity");
kvn@5110 1352 region = mem->in(0);
kvn@5110 1353 // Skip if the region dominates some control edge of the address.
kvn@5110 1354 if (!MemNode::all_controls_dominate(address, region))
kvn@5110 1355 return NULL;
kvn@5110 1356 } else if (!mem->is_Phi()) {
kvn@5110 1357 assert(base_is_phi, "sanity");
kvn@5110 1358 region = base->in(0);
kvn@5110 1359 // Skip if the region dominates some control edge of the memory.
kvn@5110 1360 if (!MemNode::all_controls_dominate(mem, region))
kvn@5110 1361 return NULL;
kvn@5110 1362 } else if (base->in(0) != mem->in(0)) {
kvn@5110 1363 assert(base_is_phi && mem->is_Phi(), "sanity");
kvn@5110 1364 if (MemNode::all_controls_dominate(mem, base->in(0))) {
kvn@5110 1365 region = base->in(0);
kvn@5110 1366 } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
kvn@5110 1367 region = mem->in(0);
kvn@5110 1368 } else {
kvn@5110 1369 return NULL; // complex graph
kvn@5110 1370 }
kvn@5110 1371 } else {
kvn@5110 1372 assert(base->in(0) == mem->in(0), "sanity");
kvn@5110 1373 region = mem->in(0);
kvn@5110 1374 }
kvn@598 1375
kvn@598 1376 const Type* this_type = this->bottom_type();
kvn@5110 1377 int this_index = C->get_alias_index(t_oop);
kvn@5110 1378 int this_offset = t_oop->offset();
kvn@5110 1379 int this_iid = t_oop->instance_id();
kvn@5110 1380 if (!t_oop->is_known_instance() && load_boxed_values) {
kvn@5110 1381 // Use _idx of address base for boxed values.
kvn@5110 1382 this_iid = base->_idx;
kvn@5110 1383 }
kvn@5110 1384 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@5110 1385 Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
kvn@2810 1386 for (uint i = 1; i < region->req(); i++) {
kvn@5110 1387 Node* x;
kvn@598 1388 Node* the_clone = NULL;
kvn@5110 1389 if (region->in(i) == C->top()) {
kvn@5110 1390 x = C->top(); // Dead path? Use a dead data op
kvn@598 1391 } else {
kvn@598 1392 x = this->clone(); // Else clone up the data op
kvn@598 1393 the_clone = x; // Remember for possible deletion.
kvn@598 1394 // Alter data node to use pre-phi inputs
kvn@2810 1395 if (this->in(0) == region) {
kvn@2810 1396 x->set_req(0, region->in(i));
kvn@598 1397 } else {
kvn@2810 1398 x->set_req(0, NULL);
kvn@598 1399 }
kvn@5110 1400 if (mem->is_Phi() && (mem->in(0) == region)) {
kvn@5110 1401 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
kvn@5110 1402 }
kvn@5110 1403 if (address->is_Phi() && address->in(0) == region) {
kvn@5110 1404 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
kvn@5110 1405 }
kvn@5110 1406 if (base_is_phi && (base->in(0) == region)) {
kvn@5110 1407 Node* base_x = base->in(i); // Clone address for loads from boxed objects.
kvn@5110 1408 Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
kvn@5110 1409 x->set_req(Address, adr_x);
kvn@598 1410 }
kvn@598 1411 }
kvn@598 1412 // Check for a 'win' on some paths
kvn@598 1413 const Type *t = x->Value(igvn);
kvn@598 1414
kvn@598 1415 bool singleton = t->singleton();
kvn@598 1416
kvn@598 1417 // See comments in PhaseIdealLoop::split_thru_phi().
kvn@2810 1418 if (singleton && t == Type::TOP) {
kvn@598 1419 singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
kvn@598 1420 }
kvn@598 1421
kvn@2810 1422 if (singleton) {
kvn@598 1423 x = igvn->makecon(t);
kvn@598 1424 } else {
kvn@598 1425 // We now call Identity to try to simplify the cloned node.
kvn@598 1426 // Note that some Identity methods call phase->type(this).
kvn@598 1427 // Make sure that the type array is big enough for
kvn@598 1428 // our new node, even though we may throw the node away.
kvn@598 1429 // (This tweaking with igvn only works because x is a new node.)
kvn@598 1430 igvn->set_type(x, t);
kvn@728 1431 // If x is a TypeNode, capture any more-precise type permanently into Node
twisti@1040 1432 // otherwise it will be not updated during igvn->transform since
kvn@728 1433 // igvn->type(x) is set to x->Value() already.
kvn@728 1434 x->raise_bottom_type(t);
kvn@598 1435 Node *y = x->Identity(igvn);
kvn@2810 1436 if (y != x) {
kvn@598 1437 x = y;
kvn@598 1438 } else {
kvn@5110 1439 y = igvn->hash_find_insert(x);
kvn@2810 1440 if (y) {
kvn@598 1441 x = y;
kvn@598 1442 } else {
kvn@598 1443 // Else x is a new node we are keeping
kvn@598 1444 // We do not need register_new_node_with_optimizer
kvn@598 1445 // because set_type has already been called.
kvn@598 1446 igvn->_worklist.push(x);
kvn@598 1447 }
kvn@598 1448 }
kvn@598 1449 }
kvn@5110 1450 if (x != the_clone && the_clone != NULL) {
kvn@598 1451 igvn->remove_dead_node(the_clone);
kvn@5110 1452 }
kvn@598 1453 phi->set_req(i, x);
kvn@598 1454 }
kvn@2810 1455 // Record Phi
kvn@2810 1456 igvn->register_new_node_with_optimizer(phi);
kvn@2810 1457 return phi;
kvn@598 1458 }
never@452 1459
duke@435 1460 //------------------------------Ideal------------------------------------------
duke@435 1461 // If the load is from Field memory and the pointer is non-null, we can
duke@435 1462 // zero out the control input.
duke@435 1463 // If the offset is constant and the base is an object allocation,
duke@435 1464 // try to hook me up to the exact initializing store.
duke@435 1465 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1466 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 1467 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 1468
duke@435 1469 Node* ctrl = in(MemNode::Control);
duke@435 1470 Node* address = in(MemNode::Address);
duke@435 1471
duke@435 1472 // Skip up past a SafePoint control. Cannot do this for Stores because
duke@435 1473 // pointer stores & cardmarks must stay on the same side of a SafePoint.
duke@435 1474 if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
duke@435 1475 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
duke@435 1476 ctrl = ctrl->in(0);
duke@435 1477 set_req(MemNode::Control,ctrl);
duke@435 1478 }
duke@435 1479
kvn@1143 1480 intptr_t ignore = 0;
kvn@1143 1481 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
kvn@1143 1482 if (base != NULL
kvn@1143 1483 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
kvn@1143 1484 // Check for useless control edge in some common special cases
kvn@1143 1485 if (in(MemNode::Control) != NULL
duke@435 1486 && phase->type(base)->higher_equal(TypePtr::NOTNULL)
kvn@554 1487 && all_controls_dominate(base, phase->C->start())) {
duke@435 1488 // A method-invariant, non-null address (constant or 'this' argument).
duke@435 1489 set_req(MemNode::Control, NULL);
duke@435 1490 }
never@452 1491 }
never@452 1492
kvn@509 1493 Node* mem = in(MemNode::Memory);
kvn@509 1494 const TypePtr *addr_t = phase->type(address)->isa_ptr();
kvn@509 1495
kvn@5110 1496 if (can_reshape && (addr_t != NULL)) {
kvn@509 1497 // try to optimize our memory input
kvn@5110 1498 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
kvn@509 1499 if (opt_mem != mem) {
kvn@509 1500 set_req(MemNode::Memory, opt_mem);
kvn@740 1501 if (phase->type( opt_mem ) == Type::TOP) return NULL;
kvn@509 1502 return this;
kvn@509 1503 }
kvn@509 1504 const TypeOopPtr *t_oop = addr_t->isa_oopptr();
kvn@5110 1505 if ((t_oop != NULL) &&
kvn@5110 1506 (t_oop->is_known_instance_field() ||
kvn@5110 1507 t_oop->is_ptr_to_boxed_value())) {
kvn@3260 1508 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@3260 1509 if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
kvn@3260 1510 // Delay this transformation until memory Phi is processed.
kvn@3260 1511 phase->is_IterGVN()->_worklist.push(this);
kvn@3260 1512 return NULL;
kvn@3260 1513 }
kvn@598 1514 // Split instance field load through Phi.
kvn@598 1515 Node* result = split_through_phi(phase);
kvn@598 1516 if (result != NULL) return result;
kvn@5110 1517
kvn@5110 1518 if (t_oop->is_ptr_to_boxed_value()) {
kvn@5110 1519 Node* result = eliminate_autobox(phase);
kvn@5110 1520 if (result != NULL) return result;
kvn@5110 1521 }
kvn@509 1522 }
kvn@509 1523 }
kvn@509 1524
duke@435 1525 // Check for prior store with a different base or offset; make Load
duke@435 1526 // independent. Skip through any number of them. Bail out if the stores
duke@435 1527 // are in an endless dead cycle and report no progress. This is a key
duke@435 1528 // transform for Reflection. However, if after skipping through the Stores
duke@435 1529 // we can't then fold up against a prior store do NOT do the transform as
duke@435 1530 // this amounts to using the 'Oracle' model of aliasing. It leaves the same
duke@435 1531 // array memory alive twice: once for the hoisted Load and again after the
duke@435 1532 // bypassed Store. This situation only works if EVERYBODY who does
duke@435 1533 // anti-dependence work knows how to bypass. I.e. we need all
duke@435 1534 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is
duke@435 1535 // the alias index stuff. So instead, peek through Stores and IFF we can
duke@435 1536 // fold up, do so.
duke@435 1537 Node* prev_mem = find_previous_store(phase);
duke@435 1538 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 1539 if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
duke@435 1540 // (c) See if we can fold up on the spot, but don't fold up here.
twisti@993 1541 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
duke@435 1542 // just return a prior value, which is done by Identity calls.
duke@435 1543 if (can_see_stored_value(prev_mem, phase)) {
duke@435 1544 // Make ready for step (d):
duke@435 1545 set_req(MemNode::Memory, prev_mem);
duke@435 1546 return this;
duke@435 1547 }
duke@435 1548 }
duke@435 1549
duke@435 1550 return NULL; // No further progress
duke@435 1551 }
duke@435 1552
duke@435 1553 // Helper to recognize certain Klass fields which are invariant across
duke@435 1554 // some group of array types (e.g., int[] or all T[] where T < Object).
duke@435 1555 const Type*
duke@435 1556 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
duke@435 1557 ciKlass* klass) const {
stefank@3391 1558 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
duke@435 1559 // The field is Klass::_modifier_flags. Return its (constant) value.
duke@435 1560 // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
duke@435 1561 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
duke@435 1562 return TypeInt::make(klass->modifier_flags());
duke@435 1563 }
stefank@3391 1564 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
duke@435 1565 // The field is Klass::_access_flags. Return its (constant) value.
duke@435 1566 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
duke@435 1567 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
duke@435 1568 return TypeInt::make(klass->access_flags());
duke@435 1569 }
stefank@3391 1570 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
duke@435 1571 // The field is Klass::_layout_helper. Return its constant value if known.
duke@435 1572 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1573 return TypeInt::make(klass->layout_helper());
duke@435 1574 }
duke@435 1575
duke@435 1576 // No match.
duke@435 1577 return NULL;
duke@435 1578 }
duke@435 1579
duke@435 1580 //------------------------------Value-----------------------------------------
duke@435 1581 const Type *LoadNode::Value( PhaseTransform *phase ) const {
duke@435 1582 // Either input is TOP ==> the result is TOP
duke@435 1583 Node* mem = in(MemNode::Memory);
duke@435 1584 const Type *t1 = phase->type(mem);
duke@435 1585 if (t1 == Type::TOP) return Type::TOP;
duke@435 1586 Node* adr = in(MemNode::Address);
duke@435 1587 const TypePtr* tp = phase->type(adr)->isa_ptr();
duke@435 1588 if (tp == NULL || tp->empty()) return Type::TOP;
duke@435 1589 int off = tp->offset();
duke@435 1590 assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
twisti@3102 1591 Compile* C = phase->C;
duke@435 1592
duke@435 1593 // Try to guess loaded type from pointer type
duke@435 1594 if (tp->base() == Type::AryPtr) {
duke@435 1595 const Type *t = tp->is_aryptr()->elem();
duke@435 1596 // Don't do this for integer types. There is only potential profit if
duke@435 1597 // the element type t is lower than _type; that is, for int types, if _type is
duke@435 1598 // more restrictive than t. This only happens here if one is short and the other
duke@435 1599 // char (both 16 bits), and in those cases we've made an intentional decision
duke@435 1600 // to use one kind of load over the other. See AndINode::Ideal and 4965907.
duke@435 1601 // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
duke@435 1602 //
duke@435 1603 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
duke@435 1604 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier
duke@435 1605 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
duke@435 1606 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed,
duke@435 1607 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
duke@435 1608 // In fact, that could have been the original type of p1, and p1 could have
duke@435 1609 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
duke@435 1610 // expression (LShiftL quux 3) independently optimized to the constant 8.
duke@435 1611 if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
kvn@3882 1612 && (_type->isa_vect() == NULL)
kvn@728 1613 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
duke@435 1614 // t might actually be lower than _type, if _type is a unique
duke@435 1615 // concrete subclass of abstract class t.
duke@435 1616 // Make sure the reference is not into the header, by comparing
duke@435 1617 // the offset against the offset of the start of the array's data.
duke@435 1618 // Different array types begin at slightly different offsets (12 vs. 16).
duke@435 1619 // We choose T_BYTE as an example base type that is least restrictive
duke@435 1620 // as to alignment, which will therefore produce the smallest
duke@435 1621 // possible base offset.
duke@435 1622 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1623 if ((uint)off >= (uint)min_base_off) { // is the offset beyond the header?
duke@435 1624 const Type* jt = t->join(_type);
duke@435 1625 // In any case, do not allow the join, per se, to empty out the type.
duke@435 1626 if (jt->empty() && !t->empty()) {
duke@435 1627 // This can happen if a interface-typed array narrows to a class type.
duke@435 1628 jt = _type;
duke@435 1629 }
kvn@5110 1630 #ifdef ASSERT
kvn@5110 1631 if (phase->C->eliminate_boxing() && adr->is_AddP()) {
never@452 1632 // The pointers in the autobox arrays are always non-null
kvn@1143 1633 Node* base = adr->in(AddPNode::Base);
kvn@5110 1634 if ((base != NULL) && base->is_DecodeN()) {
kvn@5110 1635 // Get LoadN node which loads IntegerCache.cache field
kvn@5110 1636 base = base->in(1);
kvn@5110 1637 }
kvn@5110 1638 if ((base != NULL) && base->is_Con()) {
kvn@5110 1639 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
kvn@5110 1640 if ((base_type != NULL) && base_type->is_autobox_cache()) {
kvn@5110 1641 // It could be narrow oop
kvn@5110 1642 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
never@452 1643 }
never@452 1644 }
never@452 1645 }
kvn@5110 1646 #endif
duke@435 1647 return jt;
duke@435 1648 }
duke@435 1649 }
duke@435 1650 } else if (tp->base() == Type::InstPtr) {
twisti@3102 1651 ciEnv* env = C->env();
never@1515 1652 const TypeInstPtr* tinst = tp->is_instptr();
never@1515 1653 ciKlass* klass = tinst->klass();
duke@435 1654 assert( off != Type::OffsetBot ||
duke@435 1655 // arrays can be cast to Objects
duke@435 1656 tp->is_oopptr()->klass()->is_java_lang_Object() ||
duke@435 1657 // unsafe field access may not have a constant offset
twisti@3102 1658 C->has_unsafe_access(),
duke@435 1659 "Field accesses must be precise" );
duke@435 1660 // For oop loads, we expect the _type to be precise
twisti@3102 1661 if (klass == env->String_klass() &&
never@1515 1662 adr->is_AddP() && off != Type::OffsetBot) {
kvn@2602 1663 // For constant Strings treat the final fields as compile time constants.
never@1515 1664 Node* base = adr->in(AddPNode::Base);
never@2121 1665 const TypeOopPtr* t = phase->type(base)->isa_oopptr();
never@2121 1666 if (t != NULL && t->singleton()) {
twisti@3102 1667 ciField* field = env->String_klass()->get_field_by_offset(off, false);
kvn@2602 1668 if (field != NULL && field->is_final()) {
kvn@2602 1669 ciObject* string = t->const_oop();
kvn@2602 1670 ciConstant constant = string->as_instance()->field_value(field);
kvn@2602 1671 if (constant.basic_type() == T_INT) {
kvn@2602 1672 return TypeInt::make(constant.as_int());
kvn@2602 1673 } else if (constant.basic_type() == T_ARRAY) {
kvn@2602 1674 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
jcoomes@2661 1675 return TypeNarrowOop::make_from_constant(constant.as_object(), true);
kvn@2602 1676 } else {
jcoomes@2661 1677 return TypeOopPtr::make_from_constant(constant.as_object(), true);
kvn@2602 1678 }
never@1515 1679 }
never@1515 1680 }
never@1515 1681 }
never@1515 1682 }
twisti@3102 1683 // Optimizations for constant objects
twisti@3102 1684 ciObject* const_oop = tinst->const_oop();
twisti@3102 1685 if (const_oop != NULL) {
kvn@5110 1686 // For constant Boxed value treat the target field as a compile time constant.
kvn@5110 1687 if (tinst->is_ptr_to_boxed_value()) {
kvn@5110 1688 return tinst->get_const_boxed_value();
kvn@5110 1689 } else
twisti@3102 1690 // For constant CallSites treat the target field as a compile time constant.
twisti@3102 1691 if (const_oop->is_call_site()) {
twisti@3102 1692 ciCallSite* call_site = const_oop->as_call_site();
twisti@3102 1693 ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
twisti@3102 1694 if (field != NULL && field->is_call_site_target()) {
twisti@3102 1695 ciMethodHandle* target = call_site->get_target();
twisti@3102 1696 if (target != NULL) { // just in case
twisti@3102 1697 ciConstant constant(T_OBJECT, target);
twisti@3102 1698 const Type* t;
twisti@3102 1699 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
twisti@3102 1700 t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
twisti@3102 1701 } else {
twisti@3102 1702 t = TypeOopPtr::make_from_constant(constant.as_object(), true);
twisti@3102 1703 }
twisti@3102 1704 // Add a dependence for invalidation of the optimization.
twisti@3102 1705 if (!call_site->is_constant_call_site()) {
twisti@3102 1706 C->dependencies()->assert_call_site_target_value(call_site, target);
twisti@3102 1707 }
twisti@3102 1708 return t;
twisti@3102 1709 }
twisti@3102 1710 }
twisti@3102 1711 }
twisti@3102 1712 }
duke@435 1713 } else if (tp->base() == Type::KlassPtr) {
duke@435 1714 assert( off != Type::OffsetBot ||
duke@435 1715 // arrays can be cast to Objects
duke@435 1716 tp->is_klassptr()->klass()->is_java_lang_Object() ||
duke@435 1717 // also allow array-loading from the primary supertype
duke@435 1718 // array during subtype checks
duke@435 1719 Opcode() == Op_LoadKlass,
duke@435 1720 "Field accesses must be precise" );
duke@435 1721 // For klass/static loads, we expect the _type to be precise
duke@435 1722 }
duke@435 1723
duke@435 1724 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 1725 if (tkls != NULL && !StressReflectiveCode) {
duke@435 1726 ciKlass* klass = tkls->klass();
duke@435 1727 if (klass->is_loaded() && tkls->klass_is_exact()) {
duke@435 1728 // We are loading a field from a Klass metaobject whose identity
duke@435 1729 // is known at compile time (the type is "exact" or "precise").
duke@435 1730 // Check for fields we know are maintained as constants by the VM.
stefank@3391 1731 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
duke@435 1732 // The field is Klass::_super_check_offset. Return its (constant) value.
duke@435 1733 // (Folds up type checking code.)
duke@435 1734 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
duke@435 1735 return TypeInt::make(klass->super_check_offset());
duke@435 1736 }
duke@435 1737 // Compute index into primary_supers array
coleenp@4037 1738 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1739 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1740 if( depth < ciKlass::primary_super_limit() ) {
duke@435 1741 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1742 // (Folds up type checking code.)
duke@435 1743 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1744 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1745 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1746 }
duke@435 1747 const Type* aift = load_array_final_field(tkls, klass);
duke@435 1748 if (aift != NULL) return aift;
coleenp@4142 1749 if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
duke@435 1750 && klass->is_array_klass()) {
coleenp@4142 1751 // The field is ArrayKlass::_component_mirror. Return its (constant) value.
duke@435 1752 // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
duke@435 1753 assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
duke@435 1754 return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
duke@435 1755 }
stefank@3391 1756 if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
duke@435 1757 // The field is Klass::_java_mirror. Return its (constant) value.
duke@435 1758 // (Folds up the 2nd indirection in anObjConstant.getClass().)
duke@435 1759 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
duke@435 1760 return TypeInstPtr::make(klass->java_mirror());
duke@435 1761 }
duke@435 1762 }
duke@435 1763
duke@435 1764 // We can still check if we are loading from the primary_supers array at a
duke@435 1765 // shallow enough depth. Even though the klass is not exact, entries less
duke@435 1766 // than or equal to its super depth are correct.
duke@435 1767 if (klass->is_loaded() ) {
coleenp@4037 1768 ciType *inner = klass;
duke@435 1769 while( inner->is_obj_array_klass() )
duke@435 1770 inner = inner->as_obj_array_klass()->base_element_type();
duke@435 1771 if( inner->is_instance_klass() &&
duke@435 1772 !inner->as_instance_klass()->flags().is_interface() ) {
duke@435 1773 // Compute index into primary_supers array
coleenp@4037 1774 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
duke@435 1775 // Check for overflowing; use unsigned compare to handle the negative case.
duke@435 1776 if( depth < ciKlass::primary_super_limit() &&
duke@435 1777 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
duke@435 1778 // The field is an element of Klass::_primary_supers. Return its (constant) value.
duke@435 1779 // (Folds up type checking code.)
duke@435 1780 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
duke@435 1781 ciKlass *ss = klass->super_of_depth(depth);
duke@435 1782 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
duke@435 1783 }
duke@435 1784 }
duke@435 1785 }
duke@435 1786
duke@435 1787 // If the type is enough to determine that the thing is not an array,
duke@435 1788 // we can give the layout_helper a positive interval type.
duke@435 1789 // This will help short-circuit some reflective code.
stefank@3391 1790 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
duke@435 1791 && !klass->is_array_klass() // not directly typed as an array
duke@435 1792 && !klass->is_interface() // specifically not Serializable & Cloneable
duke@435 1793 && !klass->is_java_lang_Object() // not the supertype of all T[]
duke@435 1794 ) {
duke@435 1795 // Note: When interfaces are reliable, we can narrow the interface
duke@435 1796 // test to (klass != Serializable && klass != Cloneable).
duke@435 1797 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
duke@435 1798 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
duke@435 1799 // The key property of this type is that it folds up tests
duke@435 1800 // for array-ness, since it proves that the layout_helper is positive.
duke@435 1801 // Thus, a generic value like the basic object layout helper works fine.
duke@435 1802 return TypeInt::make(min_size, max_jint, Type::WidenMin);
duke@435 1803 }
duke@435 1804 }
duke@435 1805
duke@435 1806 // If we are loading from a freshly-allocated object, produce a zero,
duke@435 1807 // if the load is provably beyond the header of the object.
duke@435 1808 // (Also allow a variable load from a fresh array to produce zero.)
kvn@2810 1809 const TypeOopPtr *tinst = tp->isa_oopptr();
kvn@2810 1810 bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
kvn@5110 1811 bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
kvn@5110 1812 if (ReduceFieldZeroing || is_instance || is_boxed_value) {
duke@435 1813 Node* value = can_see_stored_value(mem,phase);
kvn@3442 1814 if (value != NULL && value->is_Con()) {
kvn@3442 1815 assert(value->bottom_type()->higher_equal(_type),"sanity");
duke@435 1816 return value->bottom_type();
kvn@3442 1817 }
duke@435 1818 }
duke@435 1819
kvn@2810 1820 if (is_instance) {
kvn@499 1821 // If we have an instance type and our memory input is the
kvn@499 1822 // programs's initial memory state, there is no matching store,
kvn@499 1823 // so just return a zero of the appropriate type
kvn@499 1824 Node *mem = in(MemNode::Memory);
kvn@499 1825 if (mem->is_Parm() && mem->in(0)->is_Start()) {
kvn@499 1826 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
kvn@499 1827 return Type::get_zero_type(_type->basic_type());
kvn@499 1828 }
kvn@499 1829 }
duke@435 1830 return _type;
duke@435 1831 }
duke@435 1832
duke@435 1833 //------------------------------match_edge-------------------------------------
duke@435 1834 // Do we Match on this edge index or not? Match only the address.
duke@435 1835 uint LoadNode::match_edge(uint idx) const {
duke@435 1836 return idx == MemNode::Address;
duke@435 1837 }
duke@435 1838
duke@435 1839 //--------------------------LoadBNode::Ideal--------------------------------------
duke@435 1840 //
duke@435 1841 // If the previous store is to the same address as this load,
duke@435 1842 // and the value stored was larger than a byte, replace this load
duke@435 1843 // with the value stored truncated to a byte. If no truncation is
duke@435 1844 // needed, the replacement is done in LoadNode::Identity().
duke@435 1845 //
duke@435 1846 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1847 Node* mem = in(MemNode::Memory);
duke@435 1848 Node* value = can_see_stored_value(mem,phase);
duke@435 1849 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1850 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
kvn@4115 1851 return new (phase->C) RShiftINode(result, phase->intcon(24));
duke@435 1852 }
duke@435 1853 // Identity call will handle the case where truncation is not needed.
duke@435 1854 return LoadNode::Ideal(phase, can_reshape);
duke@435 1855 }
duke@435 1856
kvn@3442 1857 const Type* LoadBNode::Value(PhaseTransform *phase) const {
kvn@3442 1858 Node* mem = in(MemNode::Memory);
kvn@3442 1859 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1860 if (value != NULL && value->is_Con() &&
kvn@3448 1861 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1862 // If the input to the store does not fit with the load's result type,
kvn@3442 1863 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1864 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1865 int con = value->get_int();
kvn@3442 1866 return TypeInt::make((con << 24) >> 24);
kvn@3442 1867 }
kvn@3442 1868 return LoadNode::Value(phase);
kvn@3442 1869 }
kvn@3442 1870
twisti@1059 1871 //--------------------------LoadUBNode::Ideal-------------------------------------
twisti@1059 1872 //
twisti@1059 1873 // If the previous store is to the same address as this load,
twisti@1059 1874 // and the value stored was larger than a byte, replace this load
twisti@1059 1875 // with the value stored truncated to a byte. If no truncation is
twisti@1059 1876 // needed, the replacement is done in LoadNode::Identity().
twisti@1059 1877 //
twisti@1059 1878 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
twisti@1059 1879 Node* mem = in(MemNode::Memory);
twisti@1059 1880 Node* value = can_see_stored_value(mem, phase);
twisti@1059 1881 if (value && !phase->type(value)->higher_equal(_type))
kvn@4115 1882 return new (phase->C) AndINode(value, phase->intcon(0xFF));
twisti@1059 1883 // Identity call will handle the case where truncation is not needed.
twisti@1059 1884 return LoadNode::Ideal(phase, can_reshape);
twisti@1059 1885 }
twisti@1059 1886
kvn@3442 1887 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
kvn@3442 1888 Node* mem = in(MemNode::Memory);
kvn@3442 1889 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1890 if (value != NULL && value->is_Con() &&
kvn@3448 1891 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1892 // If the input to the store does not fit with the load's result type,
kvn@3442 1893 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1894 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1895 int con = value->get_int();
kvn@3442 1896 return TypeInt::make(con & 0xFF);
kvn@3442 1897 }
kvn@3442 1898 return LoadNode::Value(phase);
kvn@3442 1899 }
kvn@3442 1900
twisti@993 1901 //--------------------------LoadUSNode::Ideal-------------------------------------
duke@435 1902 //
duke@435 1903 // If the previous store is to the same address as this load,
duke@435 1904 // and the value stored was larger than a char, replace this load
duke@435 1905 // with the value stored truncated to a char. If no truncation is
duke@435 1906 // needed, the replacement is done in LoadNode::Identity().
duke@435 1907 //
twisti@993 1908 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1909 Node* mem = in(MemNode::Memory);
duke@435 1910 Node* value = can_see_stored_value(mem,phase);
duke@435 1911 if( value && !phase->type(value)->higher_equal( _type ) )
kvn@4115 1912 return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
duke@435 1913 // Identity call will handle the case where truncation is not needed.
duke@435 1914 return LoadNode::Ideal(phase, can_reshape);
duke@435 1915 }
duke@435 1916
kvn@3442 1917 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
kvn@3442 1918 Node* mem = in(MemNode::Memory);
kvn@3442 1919 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1920 if (value != NULL && value->is_Con() &&
kvn@3448 1921 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1922 // If the input to the store does not fit with the load's result type,
kvn@3442 1923 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1924 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1925 int con = value->get_int();
kvn@3442 1926 return TypeInt::make(con & 0xFFFF);
kvn@3442 1927 }
kvn@3442 1928 return LoadNode::Value(phase);
kvn@3442 1929 }
kvn@3442 1930
duke@435 1931 //--------------------------LoadSNode::Ideal--------------------------------------
duke@435 1932 //
duke@435 1933 // If the previous store is to the same address as this load,
duke@435 1934 // and the value stored was larger than a short, replace this load
duke@435 1935 // with the value stored truncated to a short. If no truncation is
duke@435 1936 // needed, the replacement is done in LoadNode::Identity().
duke@435 1937 //
duke@435 1938 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1939 Node* mem = in(MemNode::Memory);
duke@435 1940 Node* value = can_see_stored_value(mem,phase);
duke@435 1941 if( value && !phase->type(value)->higher_equal( _type ) ) {
kvn@4115 1942 Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
kvn@4115 1943 return new (phase->C) RShiftINode(result, phase->intcon(16));
duke@435 1944 }
duke@435 1945 // Identity call will handle the case where truncation is not needed.
duke@435 1946 return LoadNode::Ideal(phase, can_reshape);
duke@435 1947 }
duke@435 1948
kvn@3442 1949 const Type* LoadSNode::Value(PhaseTransform *phase) const {
kvn@3442 1950 Node* mem = in(MemNode::Memory);
kvn@3442 1951 Node* value = can_see_stored_value(mem,phase);
kvn@3448 1952 if (value != NULL && value->is_Con() &&
kvn@3448 1953 !value->bottom_type()->higher_equal(_type)) {
kvn@3442 1954 // If the input to the store does not fit with the load's result type,
kvn@3442 1955 // it must be truncated. We can't delay until Ideal call since
kvn@3442 1956 // a singleton Value is needed for split_thru_phi optimization.
kvn@3442 1957 int con = value->get_int();
kvn@3442 1958 return TypeInt::make((con << 16) >> 16);
kvn@3442 1959 }
kvn@3442 1960 return LoadNode::Value(phase);
kvn@3442 1961 }
kvn@3442 1962
duke@435 1963 //=============================================================================
kvn@599 1964 //----------------------------LoadKlassNode::make------------------------------
kvn@599 1965 // Polymorphic factory method:
kvn@599 1966 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
kvn@599 1967 Compile* C = gvn.C;
kvn@599 1968 Node *ctl = NULL;
kvn@599 1969 // sanity check the alias category against the created node type
coleenp@4037 1970 const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
coleenp@4037 1971 assert(adr_type != NULL, "expecting TypeKlassPtr");
kvn@599 1972 #ifdef _LP64
roland@4159 1973 if (adr_type->is_ptr_to_narrowklass()) {
coleenp@4037 1974 assert(UseCompressedKlassPointers, "no compressed klasses");
roland@4159 1975 Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
roland@4159 1976 return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
kvn@603 1977 }
kvn@599 1978 #endif
roland@4159 1979 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
kvn@4115 1980 return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
kvn@599 1981 }
kvn@599 1982
duke@435 1983 //------------------------------Value------------------------------------------
duke@435 1984 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 1985 return klass_value_common(phase);
kvn@599 1986 }
kvn@599 1987
kvn@599 1988 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
duke@435 1989 // Either input is TOP ==> the result is TOP
duke@435 1990 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 1991 if (t1 == Type::TOP) return Type::TOP;
duke@435 1992 Node *adr = in(MemNode::Address);
duke@435 1993 const Type *t2 = phase->type( adr );
duke@435 1994 if (t2 == Type::TOP) return Type::TOP;
duke@435 1995 const TypePtr *tp = t2->is_ptr();
duke@435 1996 if (TypePtr::above_centerline(tp->ptr()) ||
duke@435 1997 tp->ptr() == TypePtr::Null) return Type::TOP;
duke@435 1998
duke@435 1999 // Return a more precise klass, if possible
duke@435 2000 const TypeInstPtr *tinst = tp->isa_instptr();
duke@435 2001 if (tinst != NULL) {
duke@435 2002 ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
duke@435 2003 int offset = tinst->offset();
duke@435 2004 if (ik == phase->C->env()->Class_klass()
duke@435 2005 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 2006 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 2007 // We are loading a special hidden field from a Class mirror object,
duke@435 2008 // the field which points to the VM's Klass metaobject.
duke@435 2009 ciType* t = tinst->java_mirror_type();
duke@435 2010 // java_mirror_type returns non-null for compile-time Class constants.
duke@435 2011 if (t != NULL) {
duke@435 2012 // constant oop => constant klass
duke@435 2013 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
duke@435 2014 return TypeKlassPtr::make(ciArrayKlass::make(t));
duke@435 2015 }
duke@435 2016 if (!t->is_klass()) {
duke@435 2017 // a primitive Class (e.g., int.class) has NULL for a klass field
duke@435 2018 return TypePtr::NULL_PTR;
duke@435 2019 }
duke@435 2020 // (Folds up the 1st indirection in aClassConstant.getModifiers().)
duke@435 2021 return TypeKlassPtr::make(t->as_klass());
duke@435 2022 }
duke@435 2023 // non-constant mirror, so we can't tell what's going on
duke@435 2024 }
duke@435 2025 if( !ik->is_loaded() )
duke@435 2026 return _type; // Bail out if not loaded
duke@435 2027 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 2028 if (tinst->klass_is_exact()) {
duke@435 2029 return TypeKlassPtr::make(ik);
duke@435 2030 }
duke@435 2031 // See if we can become precise: no subklasses and no interface
duke@435 2032 // (Note: We need to support verified interfaces.)
duke@435 2033 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2034 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2035 // Add a dependence; if any subclass added we need to recompile
duke@435 2036 if (!ik->is_final()) {
duke@435 2037 // %%% should use stronger assert_unique_concrete_subtype instead
duke@435 2038 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 2039 }
duke@435 2040 // Return precise klass
duke@435 2041 return TypeKlassPtr::make(ik);
duke@435 2042 }
duke@435 2043
duke@435 2044 // Return root of possible klass
duke@435 2045 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
duke@435 2046 }
duke@435 2047 }
duke@435 2048
duke@435 2049 // Check for loading klass from an array
duke@435 2050 const TypeAryPtr *tary = tp->isa_aryptr();
duke@435 2051 if( tary != NULL ) {
duke@435 2052 ciKlass *tary_klass = tary->klass();
duke@435 2053 if (tary_klass != NULL // can be NULL when at BOTTOM or TOP
duke@435 2054 && tary->offset() == oopDesc::klass_offset_in_bytes()) {
duke@435 2055 if (tary->klass_is_exact()) {
duke@435 2056 return TypeKlassPtr::make(tary_klass);
duke@435 2057 }
duke@435 2058 ciArrayKlass *ak = tary->klass()->as_array_klass();
duke@435 2059 // If the klass is an object array, we defer the question to the
duke@435 2060 // array component klass.
duke@435 2061 if( ak->is_obj_array_klass() ) {
duke@435 2062 assert( ak->is_loaded(), "" );
duke@435 2063 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
duke@435 2064 if( base_k->is_loaded() && base_k->is_instance_klass() ) {
duke@435 2065 ciInstanceKlass* ik = base_k->as_instance_klass();
duke@435 2066 // See if we can become precise: no subklasses and no interface
duke@435 2067 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2068 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2069 // Add a dependence; if any subclass added we need to recompile
duke@435 2070 if (!ik->is_final()) {
duke@435 2071 phase->C->dependencies()->assert_leaf_type(ik);
duke@435 2072 }
duke@435 2073 // Return precise array klass
duke@435 2074 return TypeKlassPtr::make(ak);
duke@435 2075 }
duke@435 2076 }
duke@435 2077 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
duke@435 2078 } else { // Found a type-array?
duke@435 2079 //assert(!UseExactTypes, "this code should be useless with exact types");
duke@435 2080 assert( ak->is_type_array_klass(), "" );
duke@435 2081 return TypeKlassPtr::make(ak); // These are always precise
duke@435 2082 }
duke@435 2083 }
duke@435 2084 }
duke@435 2085
duke@435 2086 // Check for loading klass from an array klass
duke@435 2087 const TypeKlassPtr *tkls = tp->isa_klassptr();
duke@435 2088 if (tkls != NULL && !StressReflectiveCode) {
duke@435 2089 ciKlass* klass = tkls->klass();
duke@435 2090 if( !klass->is_loaded() )
duke@435 2091 return _type; // Bail out if not loaded
duke@435 2092 if( klass->is_obj_array_klass() &&
coleenp@4142 2093 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
duke@435 2094 ciKlass* elem = klass->as_obj_array_klass()->element_klass();
duke@435 2095 // // Always returning precise element type is incorrect,
duke@435 2096 // // e.g., element type could be object and array may contain strings
duke@435 2097 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
duke@435 2098
duke@435 2099 // The array's TypeKlassPtr was declared 'precise' or 'not precise'
duke@435 2100 // according to the element type's subclassing.
duke@435 2101 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
duke@435 2102 }
duke@435 2103 if( klass->is_instance_klass() && tkls->klass_is_exact() &&
stefank@3391 2104 tkls->offset() == in_bytes(Klass::super_offset())) {
duke@435 2105 ciKlass* sup = klass->as_instance_klass()->super();
duke@435 2106 // The field is Klass::_super. Return its (constant) value.
duke@435 2107 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
duke@435 2108 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
duke@435 2109 }
duke@435 2110 }
duke@435 2111
duke@435 2112 // Bailout case
duke@435 2113 return LoadNode::Value(phase);
duke@435 2114 }
duke@435 2115
duke@435 2116 //------------------------------Identity---------------------------------------
duke@435 2117 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
duke@435 2118 // Also feed through the klass in Allocate(...klass...)._klass.
duke@435 2119 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2120 return klass_identity_common(phase);
kvn@599 2121 }
kvn@599 2122
kvn@599 2123 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
duke@435 2124 Node* x = LoadNode::Identity(phase);
duke@435 2125 if (x != this) return x;
duke@435 2126
duke@435 2127 // Take apart the address into an oop and and offset.
duke@435 2128 // Return 'this' if we cannot.
duke@435 2129 Node* adr = in(MemNode::Address);
duke@435 2130 intptr_t offset = 0;
duke@435 2131 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2132 if (base == NULL) return this;
duke@435 2133 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
duke@435 2134 if (toop == NULL) return this;
duke@435 2135
duke@435 2136 // We can fetch the klass directly through an AllocateNode.
duke@435 2137 // This works even if the klass is not constant (clone or newArray).
duke@435 2138 if (offset == oopDesc::klass_offset_in_bytes()) {
duke@435 2139 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
duke@435 2140 if (allocated_klass != NULL) {
duke@435 2141 return allocated_klass;
duke@435 2142 }
duke@435 2143 }
duke@435 2144
coleenp@4037 2145 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
coleenp@4142 2146 // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
duke@435 2147 // See inline_native_Class_query for occurrences of these patterns.
duke@435 2148 // Java Example: x.getClass().isAssignableFrom(y)
duke@435 2149 // Java Example: Array.newInstance(x.getClass().getComponentType(), n)
duke@435 2150 //
duke@435 2151 // This improves reflective code, often making the Class
duke@435 2152 // mirror go completely dead. (Current exception: Class
duke@435 2153 // mirrors may appear in debug info, but we could clean them out by
coleenp@4037 2154 // introducing a new debug info operator for Klass*.java_mirror).
duke@435 2155 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
duke@435 2156 && (offset == java_lang_Class::klass_offset_in_bytes() ||
duke@435 2157 offset == java_lang_Class::array_klass_offset_in_bytes())) {
duke@435 2158 // We are loading a special hidden field from a Class mirror,
coleenp@4142 2159 // the field which points to its Klass or ArrayKlass metaobject.
duke@435 2160 if (base->is_Load()) {
duke@435 2161 Node* adr2 = base->in(MemNode::Address);
duke@435 2162 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
duke@435 2163 if (tkls != NULL && !tkls->empty()
duke@435 2164 && (tkls->klass()->is_instance_klass() ||
duke@435 2165 tkls->klass()->is_array_klass())
duke@435 2166 && adr2->is_AddP()
duke@435 2167 ) {
stefank@3391 2168 int mirror_field = in_bytes(Klass::java_mirror_offset());
duke@435 2169 if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
coleenp@4142 2170 mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
duke@435 2171 }
stefank@3391 2172 if (tkls->offset() == mirror_field) {
duke@435 2173 return adr2->in(AddPNode::Base);
duke@435 2174 }
duke@435 2175 }
duke@435 2176 }
duke@435 2177 }
duke@435 2178
duke@435 2179 return this;
duke@435 2180 }
duke@435 2181
kvn@599 2182
kvn@599 2183 //------------------------------Value------------------------------------------
kvn@599 2184 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
kvn@599 2185 const Type *t = klass_value_common(phase);
kvn@656 2186 if (t == Type::TOP)
kvn@656 2187 return t;
kvn@656 2188
roland@4159 2189 return t->make_narrowklass();
kvn@599 2190 }
kvn@599 2191
kvn@599 2192 //------------------------------Identity---------------------------------------
kvn@599 2193 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
kvn@599 2194 // Also feed through the klass in Allocate(...klass...)._klass.
kvn@599 2195 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
kvn@599 2196 Node *x = klass_identity_common(phase);
kvn@599 2197
kvn@599 2198 const Type *t = phase->type( x );
kvn@599 2199 if( t == Type::TOP ) return x;
roland@4159 2200 if( t->isa_narrowklass()) return x;
roland@4159 2201 assert (!t->isa_narrowoop(), "no narrow oop here");
roland@4159 2202
roland@4159 2203 return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
kvn@599 2204 }
kvn@599 2205
duke@435 2206 //------------------------------Value-----------------------------------------
duke@435 2207 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
duke@435 2208 // Either input is TOP ==> the result is TOP
duke@435 2209 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2210 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2211 Node *adr = in(MemNode::Address);
duke@435 2212 const Type *t2 = phase->type( adr );
duke@435 2213 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2214 const TypePtr *tp = t2->is_ptr();
duke@435 2215 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP;
duke@435 2216 const TypeAryPtr *tap = tp->isa_aryptr();
duke@435 2217 if( !tap ) return _type;
duke@435 2218 return tap->size();
duke@435 2219 }
duke@435 2220
rasbold@801 2221 //-------------------------------Ideal---------------------------------------
rasbold@801 2222 // Feed through the length in AllocateArray(...length...)._length.
rasbold@801 2223 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
rasbold@801 2224 Node* p = MemNode::Ideal_common(phase, can_reshape);
rasbold@801 2225 if (p) return (p == NodeSentinel) ? NULL : p;
rasbold@801 2226
rasbold@801 2227 // Take apart the address into an oop and and offset.
rasbold@801 2228 // Return 'this' if we cannot.
rasbold@801 2229 Node* adr = in(MemNode::Address);
rasbold@801 2230 intptr_t offset = 0;
rasbold@801 2231 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
rasbold@801 2232 if (base == NULL) return NULL;
rasbold@801 2233 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
rasbold@801 2234 if (tary == NULL) return NULL;
rasbold@801 2235
rasbold@801 2236 // We can fetch the length directly through an AllocateArrayNode.
rasbold@801 2237 // This works even if the length is not constant (clone or newArray).
rasbold@801 2238 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2239 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2240 if (alloc != NULL) {
rasbold@801 2241 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2242 Node* len = alloc->make_ideal_length(tary, phase);
rasbold@801 2243 if (allocated_length != len) {
rasbold@801 2244 // New CastII improves on this.
rasbold@801 2245 return len;
rasbold@801 2246 }
rasbold@801 2247 }
rasbold@801 2248 }
rasbold@801 2249
rasbold@801 2250 return NULL;
rasbold@801 2251 }
rasbold@801 2252
duke@435 2253 //------------------------------Identity---------------------------------------
duke@435 2254 // Feed through the length in AllocateArray(...length...)._length.
duke@435 2255 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
duke@435 2256 Node* x = LoadINode::Identity(phase);
duke@435 2257 if (x != this) return x;
duke@435 2258
duke@435 2259 // Take apart the address into an oop and and offset.
duke@435 2260 // Return 'this' if we cannot.
duke@435 2261 Node* adr = in(MemNode::Address);
duke@435 2262 intptr_t offset = 0;
duke@435 2263 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
duke@435 2264 if (base == NULL) return this;
duke@435 2265 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
duke@435 2266 if (tary == NULL) return this;
duke@435 2267
duke@435 2268 // We can fetch the length directly through an AllocateArrayNode.
duke@435 2269 // This works even if the length is not constant (clone or newArray).
duke@435 2270 if (offset == arrayOopDesc::length_offset_in_bytes()) {
rasbold@801 2271 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
rasbold@801 2272 if (alloc != NULL) {
rasbold@801 2273 Node* allocated_length = alloc->Ideal_length();
rasbold@801 2274 // Do not allow make_ideal_length to allocate a CastII node.
rasbold@801 2275 Node* len = alloc->make_ideal_length(tary, phase, false);
rasbold@801 2276 if (allocated_length == len) {
rasbold@801 2277 // Return allocated_length only if it would not be improved by a CastII.
rasbold@801 2278 return allocated_length;
rasbold@801 2279 }
duke@435 2280 }
duke@435 2281 }
duke@435 2282
duke@435 2283 return this;
duke@435 2284
duke@435 2285 }
rasbold@801 2286
duke@435 2287 //=============================================================================
duke@435 2288 //---------------------------StoreNode::make-----------------------------------
duke@435 2289 // Polymorphic factory method:
coleenp@548 2290 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
coleenp@548 2291 Compile* C = gvn.C;
kvn@1964 2292 assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
kvn@1964 2293 ctl != NULL, "raw memory operations should have control edge");
coleenp@548 2294
duke@435 2295 switch (bt) {
duke@435 2296 case T_BOOLEAN:
kvn@4115 2297 case T_BYTE: return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
kvn@4115 2298 case T_INT: return new (C) StoreINode(ctl, mem, adr, adr_type, val);
duke@435 2299 case T_CHAR:
kvn@4115 2300 case T_SHORT: return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
kvn@4115 2301 case T_LONG: return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
kvn@4115 2302 case T_FLOAT: return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
kvn@4115 2303 case T_DOUBLE: return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
coleenp@4037 2304 case T_METADATA:
duke@435 2305 case T_ADDRESS:
coleenp@548 2306 case T_OBJECT:
coleenp@548 2307 #ifdef _LP64
roland@4159 2308 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@4115 2309 val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
kvn@4115 2310 return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
roland@4159 2311 } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
roland@4159 2312 (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
roland@4159 2313 adr->bottom_type()->isa_rawptr())) {
roland@4159 2314 val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
roland@4159 2315 return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
roland@4159 2316 }
coleenp@548 2317 #endif
kvn@656 2318 {
kvn@4115 2319 return new (C) StorePNode(ctl, mem, adr, adr_type, val);
kvn@656 2320 }
duke@435 2321 }
duke@435 2322 ShouldNotReachHere();
duke@435 2323 return (StoreNode*)NULL;
duke@435 2324 }
duke@435 2325
duke@435 2326 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
duke@435 2327 bool require_atomic = true;
kvn@4115 2328 return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
duke@435 2329 }
duke@435 2330
duke@435 2331
duke@435 2332 //--------------------------bottom_type----------------------------------------
duke@435 2333 const Type *StoreNode::bottom_type() const {
duke@435 2334 return Type::MEMORY;
duke@435 2335 }
duke@435 2336
duke@435 2337 //------------------------------hash-------------------------------------------
duke@435 2338 uint StoreNode::hash() const {
duke@435 2339 // unroll addition of interesting fields
duke@435 2340 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
duke@435 2341
duke@435 2342 // Since they are not commoned, do not hash them:
duke@435 2343 return NO_HASH;
duke@435 2344 }
duke@435 2345
duke@435 2346 //------------------------------Ideal------------------------------------------
duke@435 2347 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
duke@435 2348 // When a store immediately follows a relevant allocation/initialization,
duke@435 2349 // try to capture it into the initialization, or hoist it above.
duke@435 2350 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2351 Node* p = MemNode::Ideal_common(phase, can_reshape);
duke@435 2352 if (p) return (p == NodeSentinel) ? NULL : p;
duke@435 2353
duke@435 2354 Node* mem = in(MemNode::Memory);
duke@435 2355 Node* address = in(MemNode::Address);
duke@435 2356
never@2780 2357 // Back-to-back stores to same address? Fold em up. Generally
never@2780 2358 // unsafe if I have intervening uses... Also disallowed for StoreCM
never@2780 2359 // since they must follow each StoreP operation. Redundant StoreCMs
never@2780 2360 // are eliminated just before matching in final_graph_reshape.
kvn@3407 2361 if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
never@2780 2362 mem->Opcode() != Op_StoreCM) {
duke@435 2363 // Looking at a dead closed cycle of memory?
duke@435 2364 assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
duke@435 2365
duke@435 2366 assert(Opcode() == mem->Opcode() ||
duke@435 2367 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
duke@435 2368 "no mismatched stores, except on raw memory");
duke@435 2369
duke@435 2370 if (mem->outcnt() == 1 && // check for intervening uses
duke@435 2371 mem->as_Store()->memory_size() <= this->memory_size()) {
duke@435 2372 // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
duke@435 2373 // For example, 'mem' might be the final state at a conditional return.
duke@435 2374 // Or, 'mem' might be used by some node which is live at the same time
duke@435 2375 // 'this' is live, which might be unschedulable. So, require exactly
duke@435 2376 // ONE user, the 'this' store, until such time as we clone 'mem' for
duke@435 2377 // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
duke@435 2378 if (can_reshape) { // (%%% is this an anachronism?)
duke@435 2379 set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
duke@435 2380 phase->is_IterGVN());
duke@435 2381 } else {
duke@435 2382 // It's OK to do this in the parser, since DU info is always accurate,
duke@435 2383 // and the parser always refers to nodes via SafePointNode maps.
duke@435 2384 set_req(MemNode::Memory, mem->in(MemNode::Memory));
duke@435 2385 }
duke@435 2386 return this;
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 // Capture an unaliased, unconditional, simple store into an initializer.
duke@435 2391 // Or, if it is independent of the allocation, hoist it above the allocation.
duke@435 2392 if (ReduceFieldZeroing && /*can_reshape &&*/
duke@435 2393 mem->is_Proj() && mem->in(0)->is_Initialize()) {
duke@435 2394 InitializeNode* init = mem->in(0)->as_Initialize();
roland@4657 2395 intptr_t offset = init->can_capture_store(this, phase, can_reshape);
duke@435 2396 if (offset > 0) {
roland@4657 2397 Node* moved = init->capture_store(this, offset, phase, can_reshape);
duke@435 2398 // If the InitializeNode captured me, it made a raw copy of me,
duke@435 2399 // and I need to disappear.
duke@435 2400 if (moved != NULL) {
duke@435 2401 // %%% hack to ensure that Ideal returns a new node:
duke@435 2402 mem = MergeMemNode::make(phase->C, mem);
duke@435 2403 return mem; // fold me away
duke@435 2404 }
duke@435 2405 }
duke@435 2406 }
duke@435 2407
duke@435 2408 return NULL; // No further progress
duke@435 2409 }
duke@435 2410
duke@435 2411 //------------------------------Value-----------------------------------------
duke@435 2412 const Type *StoreNode::Value( PhaseTransform *phase ) const {
duke@435 2413 // Either input is TOP ==> the result is TOP
duke@435 2414 const Type *t1 = phase->type( in(MemNode::Memory) );
duke@435 2415 if( t1 == Type::TOP ) return Type::TOP;
duke@435 2416 const Type *t2 = phase->type( in(MemNode::Address) );
duke@435 2417 if( t2 == Type::TOP ) return Type::TOP;
duke@435 2418 const Type *t3 = phase->type( in(MemNode::ValueIn) );
duke@435 2419 if( t3 == Type::TOP ) return Type::TOP;
duke@435 2420 return Type::MEMORY;
duke@435 2421 }
duke@435 2422
duke@435 2423 //------------------------------Identity---------------------------------------
duke@435 2424 // Remove redundant stores:
duke@435 2425 // Store(m, p, Load(m, p)) changes to m.
duke@435 2426 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
duke@435 2427 Node *StoreNode::Identity( PhaseTransform *phase ) {
duke@435 2428 Node* mem = in(MemNode::Memory);
duke@435 2429 Node* adr = in(MemNode::Address);
duke@435 2430 Node* val = in(MemNode::ValueIn);
duke@435 2431
duke@435 2432 // Load then Store? Then the Store is useless
duke@435 2433 if (val->is_Load() &&
kvn@3407 2434 val->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2435 val->in(MemNode::Memory )->eqv_uncast(mem) &&
duke@435 2436 val->as_Load()->store_Opcode() == Opcode()) {
duke@435 2437 return mem;
duke@435 2438 }
duke@435 2439
duke@435 2440 // Two stores in a row of the same value?
duke@435 2441 if (mem->is_Store() &&
kvn@3407 2442 mem->in(MemNode::Address)->eqv_uncast(adr) &&
kvn@3407 2443 mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
duke@435 2444 mem->Opcode() == Opcode()) {
duke@435 2445 return mem;
duke@435 2446 }
duke@435 2447
duke@435 2448 // Store of zero anywhere into a freshly-allocated object?
duke@435 2449 // Then the store is useless.
duke@435 2450 // (It must already have been captured by the InitializeNode.)
duke@435 2451 if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
duke@435 2452 // a newly allocated object is already all-zeroes everywhere
duke@435 2453 if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
duke@435 2454 return mem;
duke@435 2455 }
duke@435 2456
duke@435 2457 // the store may also apply to zero-bits in an earlier object
duke@435 2458 Node* prev_mem = find_previous_store(phase);
duke@435 2459 // Steps (a), (b): Walk past independent stores to find an exact match.
duke@435 2460 if (prev_mem != NULL) {
duke@435 2461 Node* prev_val = can_see_stored_value(prev_mem, phase);
duke@435 2462 if (prev_val != NULL && phase->eqv(prev_val, val)) {
duke@435 2463 // prev_val and val might differ by a cast; it would be good
duke@435 2464 // to keep the more informative of the two.
duke@435 2465 return mem;
duke@435 2466 }
duke@435 2467 }
duke@435 2468 }
duke@435 2469
duke@435 2470 return this;
duke@435 2471 }
duke@435 2472
duke@435 2473 //------------------------------match_edge-------------------------------------
duke@435 2474 // Do we Match on this edge index or not? Match only memory & value
duke@435 2475 uint StoreNode::match_edge(uint idx) const {
duke@435 2476 return idx == MemNode::Address || idx == MemNode::ValueIn;
duke@435 2477 }
duke@435 2478
duke@435 2479 //------------------------------cmp--------------------------------------------
duke@435 2480 // Do not common stores up together. They generally have to be split
duke@435 2481 // back up anyways, so do not bother.
duke@435 2482 uint StoreNode::cmp( const Node &n ) const {
duke@435 2483 return (&n == this); // Always fail except on self
duke@435 2484 }
duke@435 2485
duke@435 2486 //------------------------------Ideal_masked_input-----------------------------
duke@435 2487 // Check for a useless mask before a partial-word store
duke@435 2488 // (StoreB ... (AndI valIn conIa) )
duke@435 2489 // If (conIa & mask == mask) this simplifies to
duke@435 2490 // (StoreB ... (valIn) )
duke@435 2491 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
duke@435 2492 Node *val = in(MemNode::ValueIn);
duke@435 2493 if( val->Opcode() == Op_AndI ) {
duke@435 2494 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2495 if( t && t->is_con() && (t->get_con() & mask) == mask ) {
duke@435 2496 set_req(MemNode::ValueIn, val->in(1));
duke@435 2497 return this;
duke@435 2498 }
duke@435 2499 }
duke@435 2500 return NULL;
duke@435 2501 }
duke@435 2502
duke@435 2503
duke@435 2504 //------------------------------Ideal_sign_extended_input----------------------
duke@435 2505 // Check for useless sign-extension before a partial-word store
duke@435 2506 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
duke@435 2507 // If (conIL == conIR && conIR <= num_bits) this simplifies to
duke@435 2508 // (StoreB ... (valIn) )
duke@435 2509 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
duke@435 2510 Node *val = in(MemNode::ValueIn);
duke@435 2511 if( val->Opcode() == Op_RShiftI ) {
duke@435 2512 const TypeInt *t = phase->type( val->in(2) )->isa_int();
duke@435 2513 if( t && t->is_con() && (t->get_con() <= num_bits) ) {
duke@435 2514 Node *shl = val->in(1);
duke@435 2515 if( shl->Opcode() == Op_LShiftI ) {
duke@435 2516 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
duke@435 2517 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
duke@435 2518 set_req(MemNode::ValueIn, shl->in(1));
duke@435 2519 return this;
duke@435 2520 }
duke@435 2521 }
duke@435 2522 }
duke@435 2523 }
duke@435 2524 return NULL;
duke@435 2525 }
duke@435 2526
duke@435 2527 //------------------------------value_never_loaded-----------------------------------
duke@435 2528 // Determine whether there are any possible loads of the value stored.
duke@435 2529 // For simplicity, we actually check if there are any loads from the
duke@435 2530 // address stored to, not just for loads of the value stored by this node.
duke@435 2531 //
duke@435 2532 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
duke@435 2533 Node *adr = in(Address);
duke@435 2534 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
duke@435 2535 if (adr_oop == NULL)
duke@435 2536 return false;
kvn@658 2537 if (!adr_oop->is_known_instance_field())
duke@435 2538 return false; // if not a distinct instance, there may be aliases of the address
duke@435 2539 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
duke@435 2540 Node *use = adr->fast_out(i);
duke@435 2541 int opc = use->Opcode();
duke@435 2542 if (use->is_Load() || use->is_LoadStore()) {
duke@435 2543 return false;
duke@435 2544 }
duke@435 2545 }
duke@435 2546 return true;
duke@435 2547 }
duke@435 2548
duke@435 2549 //=============================================================================
duke@435 2550 //------------------------------Ideal------------------------------------------
duke@435 2551 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2552 // we can skip the AND operation. If the store is from a sign-extension
duke@435 2553 // (a left shift, then right shift) we can skip both.
duke@435 2554 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2555 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
duke@435 2556 if( progress != NULL ) return progress;
duke@435 2557
duke@435 2558 progress = StoreNode::Ideal_sign_extended_input(phase, 24);
duke@435 2559 if( progress != NULL ) return progress;
duke@435 2560
duke@435 2561 // Finally check the default case
duke@435 2562 return StoreNode::Ideal(phase, can_reshape);
duke@435 2563 }
duke@435 2564
duke@435 2565 //=============================================================================
duke@435 2566 //------------------------------Ideal------------------------------------------
duke@435 2567 // If the store is from an AND mask that leaves the low bits untouched, then
duke@435 2568 // we can skip the AND operation
duke@435 2569 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2570 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
duke@435 2571 if( progress != NULL ) return progress;
duke@435 2572
duke@435 2573 progress = StoreNode::Ideal_sign_extended_input(phase, 16);
duke@435 2574 if( progress != NULL ) return progress;
duke@435 2575
duke@435 2576 // Finally check the default case
duke@435 2577 return StoreNode::Ideal(phase, can_reshape);
duke@435 2578 }
duke@435 2579
duke@435 2580 //=============================================================================
duke@435 2581 //------------------------------Identity---------------------------------------
duke@435 2582 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
duke@435 2583 // No need to card mark when storing a null ptr
duke@435 2584 Node* my_store = in(MemNode::OopStore);
duke@435 2585 if (my_store->is_Store()) {
duke@435 2586 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
duke@435 2587 if( t1 == TypePtr::NULL_PTR ) {
duke@435 2588 return in(MemNode::Memory);
duke@435 2589 }
duke@435 2590 }
duke@435 2591 return this;
duke@435 2592 }
duke@435 2593
cfang@1420 2594 //=============================================================================
cfang@1420 2595 //------------------------------Ideal---------------------------------------
cfang@1420 2596 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
cfang@1420 2597 Node* progress = StoreNode::Ideal(phase, can_reshape);
cfang@1420 2598 if (progress != NULL) return progress;
cfang@1420 2599
cfang@1420 2600 Node* my_store = in(MemNode::OopStore);
cfang@1420 2601 if (my_store->is_MergeMem()) {
cfang@1420 2602 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
cfang@1420 2603 set_req(MemNode::OopStore, mem);
cfang@1420 2604 return this;
cfang@1420 2605 }
cfang@1420 2606
cfang@1420 2607 return NULL;
cfang@1420 2608 }
cfang@1420 2609
duke@435 2610 //------------------------------Value-----------------------------------------
duke@435 2611 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
kvn@478 2612 // Either input is TOP ==> the result is TOP
kvn@478 2613 const Type *t = phase->type( in(MemNode::Memory) );
kvn@478 2614 if( t == Type::TOP ) return Type::TOP;
kvn@478 2615 t = phase->type( in(MemNode::Address) );
kvn@478 2616 if( t == Type::TOP ) return Type::TOP;
kvn@478 2617 t = phase->type( in(MemNode::ValueIn) );
kvn@478 2618 if( t == Type::TOP ) return Type::TOP;
duke@435 2619 // If extra input is TOP ==> the result is TOP
kvn@478 2620 t = phase->type( in(MemNode::OopStore) );
kvn@478 2621 if( t == Type::TOP ) return Type::TOP;
duke@435 2622
duke@435 2623 return StoreNode::Value( phase );
duke@435 2624 }
duke@435 2625
duke@435 2626
duke@435 2627 //=============================================================================
duke@435 2628 //----------------------------------SCMemProjNode------------------------------
duke@435 2629 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
duke@435 2630 {
duke@435 2631 return bottom_type();
duke@435 2632 }
duke@435 2633
duke@435 2634 //=============================================================================
roland@4106 2635 //----------------------------------LoadStoreNode------------------------------
roland@4106 2636 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
roland@4106 2637 : Node(required),
roland@4106 2638 _type(rt),
roland@4106 2639 _adr_type(at)
roland@4106 2640 {
duke@435 2641 init_req(MemNode::Control, c );
duke@435 2642 init_req(MemNode::Memory , mem);
duke@435 2643 init_req(MemNode::Address, adr);
duke@435 2644 init_req(MemNode::ValueIn, val);
duke@435 2645 init_class_id(Class_LoadStore);
roland@4106 2646 }
roland@4106 2647
roland@4106 2648 uint LoadStoreNode::ideal_reg() const {
roland@4106 2649 return _type->ideal_reg();
roland@4106 2650 }
roland@4106 2651
roland@4106 2652 bool LoadStoreNode::result_not_used() const {
roland@4106 2653 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
roland@4106 2654 Node *x = fast_out(i);
roland@4106 2655 if (x->Opcode() == Op_SCMemProj) continue;
roland@4106 2656 return false;
roland@4106 2657 }
roland@4106 2658 return true;
roland@4106 2659 }
roland@4106 2660
roland@4106 2661 uint LoadStoreNode::size_of() const { return sizeof(*this); }
roland@4106 2662
roland@4106 2663 //=============================================================================
roland@4106 2664 //----------------------------------LoadStoreConditionalNode--------------------
roland@4106 2665 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
roland@4106 2666 init_req(ExpectedIn, ex );
duke@435 2667 }
duke@435 2668
duke@435 2669 //=============================================================================
duke@435 2670 //-------------------------------adr_type--------------------------------------
duke@435 2671 // Do we Match on this edge index or not? Do not match memory
duke@435 2672 const TypePtr* ClearArrayNode::adr_type() const {
duke@435 2673 Node *adr = in(3);
duke@435 2674 return MemNode::calculate_adr_type(adr->bottom_type());
duke@435 2675 }
duke@435 2676
duke@435 2677 //------------------------------match_edge-------------------------------------
duke@435 2678 // Do we Match on this edge index or not? Do not match memory
duke@435 2679 uint ClearArrayNode::match_edge(uint idx) const {
duke@435 2680 return idx > 1;
duke@435 2681 }
duke@435 2682
duke@435 2683 //------------------------------Identity---------------------------------------
duke@435 2684 // Clearing a zero length array does nothing
duke@435 2685 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
never@503 2686 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this;
duke@435 2687 }
duke@435 2688
duke@435 2689 //------------------------------Idealize---------------------------------------
duke@435 2690 // Clearing a short array is faster with stores
duke@435 2691 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 2692 const int unit = BytesPerLong;
duke@435 2693 const TypeX* t = phase->type(in(2))->isa_intptr_t();
duke@435 2694 if (!t) return NULL;
duke@435 2695 if (!t->is_con()) return NULL;
duke@435 2696 intptr_t raw_count = t->get_con();
duke@435 2697 intptr_t size = raw_count;
duke@435 2698 if (!Matcher::init_array_count_is_in_bytes) size *= unit;
duke@435 2699 // Clearing nothing uses the Identity call.
duke@435 2700 // Negative clears are possible on dead ClearArrays
duke@435 2701 // (see jck test stmt114.stmt11402.val).
duke@435 2702 if (size <= 0 || size % unit != 0) return NULL;
duke@435 2703 intptr_t count = size / unit;
duke@435 2704 // Length too long; use fast hardware clear
duke@435 2705 if (size > Matcher::init_array_short_size) return NULL;
duke@435 2706 Node *mem = in(1);
duke@435 2707 if( phase->type(mem)==Type::TOP ) return NULL;
duke@435 2708 Node *adr = in(3);
duke@435 2709 const Type* at = phase->type(adr);
duke@435 2710 if( at==Type::TOP ) return NULL;
duke@435 2711 const TypePtr* atp = at->isa_ptr();
duke@435 2712 // adjust atp to be the correct array element address type
duke@435 2713 if (atp == NULL) atp = TypePtr::BOTTOM;
duke@435 2714 else atp = atp->add_offset(Type::OffsetBot);
duke@435 2715 // Get base for derived pointer purposes
duke@435 2716 if( adr->Opcode() != Op_AddP ) Unimplemented();
duke@435 2717 Node *base = adr->in(1);
duke@435 2718
duke@435 2719 Node *zero = phase->makecon(TypeLong::ZERO);
duke@435 2720 Node *off = phase->MakeConX(BytesPerLong);
kvn@4115 2721 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2722 count--;
duke@435 2723 while( count-- ) {
duke@435 2724 mem = phase->transform(mem);
kvn@4115 2725 adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
kvn@4115 2726 mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
duke@435 2727 }
duke@435 2728 return mem;
duke@435 2729 }
duke@435 2730
kvn@1535 2731 //----------------------------step_through----------------------------------
kvn@1535 2732 // Return allocation input memory edge if it is different instance
kvn@1535 2733 // or itself if it is the one we are looking for.
kvn@1535 2734 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
kvn@1535 2735 Node* n = *np;
kvn@1535 2736 assert(n->is_ClearArray(), "sanity");
kvn@1535 2737 intptr_t offset;
kvn@1535 2738 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
kvn@1535 2739 // This method is called only before Allocate nodes are expanded during
kvn@1535 2740 // macro nodes expansion. Before that ClearArray nodes are only generated
kvn@1535 2741 // in LibraryCallKit::generate_arraycopy() which follows allocations.
kvn@1535 2742 assert(alloc != NULL, "should have allocation");
kvn@1535 2743 if (alloc->_idx == instance_id) {
kvn@1535 2744 // Can not bypass initialization of the instance we are looking for.
kvn@1535 2745 return false;
kvn@1535 2746 }
kvn@1535 2747 // Otherwise skip it.
kvn@1535 2748 InitializeNode* init = alloc->initialization();
kvn@1535 2749 if (init != NULL)
kvn@1535 2750 *np = init->in(TypeFunc::Memory);
kvn@1535 2751 else
kvn@1535 2752 *np = alloc->in(TypeFunc::Memory);
kvn@1535 2753 return true;
kvn@1535 2754 }
kvn@1535 2755
duke@435 2756 //----------------------------clear_memory-------------------------------------
duke@435 2757 // Generate code to initialize object storage to zero.
duke@435 2758 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2759 intptr_t start_offset,
duke@435 2760 Node* end_offset,
duke@435 2761 PhaseGVN* phase) {
duke@435 2762 Compile* C = phase->C;
duke@435 2763 intptr_t offset = start_offset;
duke@435 2764
duke@435 2765 int unit = BytesPerLong;
duke@435 2766 if ((offset % unit) != 0) {
kvn@4115 2767 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
duke@435 2768 adr = phase->transform(adr);
duke@435 2769 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2770 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2771 mem = phase->transform(mem);
duke@435 2772 offset += BytesPerInt;
duke@435 2773 }
duke@435 2774 assert((offset % unit) == 0, "");
duke@435 2775
duke@435 2776 // Initialize the remaining stuff, if any, with a ClearArray.
duke@435 2777 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
duke@435 2778 }
duke@435 2779
duke@435 2780 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2781 Node* start_offset,
duke@435 2782 Node* end_offset,
duke@435 2783 PhaseGVN* phase) {
never@503 2784 if (start_offset == end_offset) {
never@503 2785 // nothing to do
never@503 2786 return mem;
never@503 2787 }
never@503 2788
duke@435 2789 Compile* C = phase->C;
duke@435 2790 int unit = BytesPerLong;
duke@435 2791 Node* zbase = start_offset;
duke@435 2792 Node* zend = end_offset;
duke@435 2793
duke@435 2794 // Scale to the unit required by the CPU:
duke@435 2795 if (!Matcher::init_array_count_is_in_bytes) {
duke@435 2796 Node* shift = phase->intcon(exact_log2(unit));
kvn@4115 2797 zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
kvn@4115 2798 zend = phase->transform( new(C) URShiftXNode(zend, shift) );
duke@435 2799 }
duke@435 2800
kvn@4410 2801 // Bulk clear double-words
kvn@4115 2802 Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
kvn@4115 2803 Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
kvn@4115 2804 mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
duke@435 2805 return phase->transform(mem);
duke@435 2806 }
duke@435 2807
duke@435 2808 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
duke@435 2809 intptr_t start_offset,
duke@435 2810 intptr_t end_offset,
duke@435 2811 PhaseGVN* phase) {
never@503 2812 if (start_offset == end_offset) {
never@503 2813 // nothing to do
never@503 2814 return mem;
never@503 2815 }
never@503 2816
duke@435 2817 Compile* C = phase->C;
duke@435 2818 assert((end_offset % BytesPerInt) == 0, "odd end offset");
duke@435 2819 intptr_t done_offset = end_offset;
duke@435 2820 if ((done_offset % BytesPerLong) != 0) {
duke@435 2821 done_offset -= BytesPerInt;
duke@435 2822 }
duke@435 2823 if (done_offset > start_offset) {
duke@435 2824 mem = clear_memory(ctl, mem, dest,
duke@435 2825 start_offset, phase->MakeConX(done_offset), phase);
duke@435 2826 }
duke@435 2827 if (done_offset < end_offset) { // emit the final 32-bit store
kvn@4115 2828 Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
duke@435 2829 adr = phase->transform(adr);
duke@435 2830 const TypePtr* atp = TypeRawPtr::BOTTOM;
coleenp@548 2831 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
duke@435 2832 mem = phase->transform(mem);
duke@435 2833 done_offset += BytesPerInt;
duke@435 2834 }
duke@435 2835 assert(done_offset == end_offset, "");
duke@435 2836 return mem;
duke@435 2837 }
duke@435 2838
duke@435 2839 //=============================================================================
kvn@2694 2840 // Do not match memory edge.
kvn@2694 2841 uint StrIntrinsicNode::match_edge(uint idx) const {
kvn@2694 2842 return idx == 2 || idx == 3;
duke@435 2843 }
duke@435 2844
duke@435 2845 //------------------------------Ideal------------------------------------------
duke@435 2846 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2847 // control copies
kvn@2694 2848 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2694 2849 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2850 // Don't bother trying to transform a dead node
kvn@3311 2851 if (in(0) && in(0)->is_top()) return NULL;
kvn@2694 2852
kvn@2699 2853 if (can_reshape) {
kvn@2699 2854 Node* mem = phase->transform(in(MemNode::Memory));
kvn@2699 2855 // If transformed to a MergeMem, get the desired slice
kvn@2699 2856 uint alias_idx = phase->C->get_alias_index(adr_type());
kvn@2699 2857 mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
kvn@2699 2858 if (mem != in(MemNode::Memory)) {
kvn@2699 2859 set_req(MemNode::Memory, mem);
kvn@2699 2860 return this;
kvn@2699 2861 }
kvn@2699 2862 }
kvn@2694 2863 return NULL;
rasbold@604 2864 }
rasbold@604 2865
kvn@3311 2866 //------------------------------Value------------------------------------------
kvn@3311 2867 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
kvn@3311 2868 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@3311 2869 return bottom_type();
kvn@3311 2870 }
kvn@3311 2871
duke@435 2872 //=============================================================================
kvn@4479 2873 //------------------------------match_edge-------------------------------------
kvn@4479 2874 // Do not match memory edge
kvn@4479 2875 uint EncodeISOArrayNode::match_edge(uint idx) const {
kvn@4479 2876 return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
kvn@4479 2877 }
kvn@4479 2878
kvn@4479 2879 //------------------------------Ideal------------------------------------------
kvn@4479 2880 // Return a node which is more "ideal" than the current node. Strip out
kvn@4479 2881 // control copies
kvn@4479 2882 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@4479 2883 return remove_dead_region(phase, can_reshape) ? this : NULL;
kvn@4479 2884 }
kvn@4479 2885
kvn@4479 2886 //------------------------------Value------------------------------------------
kvn@4479 2887 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
kvn@4479 2888 if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
kvn@4479 2889 return bottom_type();
kvn@4479 2890 }
kvn@4479 2891
kvn@4479 2892 //=============================================================================
duke@435 2893 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
duke@435 2894 : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
duke@435 2895 _adr_type(C->get_adr_type(alias_idx))
duke@435 2896 {
duke@435 2897 init_class_id(Class_MemBar);
duke@435 2898 Node* top = C->top();
duke@435 2899 init_req(TypeFunc::I_O,top);
duke@435 2900 init_req(TypeFunc::FramePtr,top);
duke@435 2901 init_req(TypeFunc::ReturnAdr,top);
duke@435 2902 if (precedent != NULL)
duke@435 2903 init_req(TypeFunc::Parms, precedent);
duke@435 2904 }
duke@435 2905
duke@435 2906 //------------------------------cmp--------------------------------------------
duke@435 2907 uint MemBarNode::hash() const { return NO_HASH; }
duke@435 2908 uint MemBarNode::cmp( const Node &n ) const {
duke@435 2909 return (&n == this); // Always fail except on self
duke@435 2910 }
duke@435 2911
duke@435 2912 //------------------------------make-------------------------------------------
duke@435 2913 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
duke@435 2914 switch (opcode) {
kvn@4115 2915 case Op_MemBarAcquire: return new(C) MemBarAcquireNode(C, atp, pn);
kvn@4115 2916 case Op_MemBarRelease: return new(C) MemBarReleaseNode(C, atp, pn);
kvn@4115 2917 case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
kvn@4115 2918 case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
kvn@4115 2919 case Op_MemBarVolatile: return new(C) MemBarVolatileNode(C, atp, pn);
kvn@4115 2920 case Op_MemBarCPUOrder: return new(C) MemBarCPUOrderNode(C, atp, pn);
kvn@4115 2921 case Op_Initialize: return new(C) InitializeNode(C, atp, pn);
kvn@4115 2922 case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C, atp, pn);
duke@435 2923 default: ShouldNotReachHere(); return NULL;
duke@435 2924 }
duke@435 2925 }
duke@435 2926
duke@435 2927 //------------------------------Ideal------------------------------------------
duke@435 2928 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2929 // control copies
duke@435 2930 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1535 2931 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 2932 // Don't bother trying to transform a dead node
adlertz@5291 2933 if (in(0) && in(0)->is_top()) {
adlertz@5291 2934 return NULL;
adlertz@5291 2935 }
kvn@1535 2936
kvn@1535 2937 // Eliminate volatile MemBars for scalar replaced objects.
kvn@5110 2938 if (can_reshape && req() == (Precedent+1)) {
kvn@5110 2939 bool eliminate = false;
kvn@5110 2940 int opc = Opcode();
kvn@5110 2941 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
kvn@5110 2942 // Volatile field loads and stores.
kvn@5110 2943 Node* my_mem = in(MemBarNode::Precedent);
adlertz@5291 2944 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
adlertz@5291 2945 if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
adlertz@5317 2946 // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
adlertz@5317 2947 // replace this Precedent (decodeN) with the Load instead.
adlertz@5317 2948 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) {
adlertz@5317 2949 Node* load_node = my_mem->in(1);
adlertz@5317 2950 set_req(MemBarNode::Precedent, load_node);
adlertz@5317 2951 phase->is_IterGVN()->_worklist.push(my_mem);
adlertz@5317 2952 my_mem = load_node;
adlertz@5317 2953 } else {
adlertz@5317 2954 assert(my_mem->unique_out() == this, "sanity");
adlertz@5317 2955 del_req(Precedent);
adlertz@5317 2956 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
adlertz@5317 2957 my_mem = NULL;
adlertz@5317 2958 }
adlertz@5291 2959 }
kvn@5110 2960 if (my_mem != NULL && my_mem->is_Mem()) {
kvn@5110 2961 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
kvn@5110 2962 // Check for scalar replaced object reference.
kvn@5110 2963 if( t_oop != NULL && t_oop->is_known_instance_field() &&
kvn@5110 2964 t_oop->offset() != Type::OffsetBot &&
kvn@5110 2965 t_oop->offset() != Type::OffsetTop) {
kvn@5110 2966 eliminate = true;
kvn@5110 2967 }
kvn@1535 2968 }
kvn@5110 2969 } else if (opc == Op_MemBarRelease) {
kvn@5110 2970 // Final field stores.
kvn@5110 2971 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
kvn@5110 2972 if ((alloc != NULL) && alloc->is_Allocate() &&
kvn@5110 2973 alloc->as_Allocate()->_is_non_escaping) {
kvn@5110 2974 // The allocated object does not escape.
kvn@5110 2975 eliminate = true;
kvn@5110 2976 }
kvn@5110 2977 }
kvn@5110 2978 if (eliminate) {
kvn@5110 2979 // Replace MemBar projections by its inputs.
kvn@5110 2980 PhaseIterGVN* igvn = phase->is_IterGVN();
kvn@5110 2981 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
kvn@5110 2982 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
kvn@5110 2983 // Must return either the original node (now dead) or a new node
kvn@5110 2984 // (Do not return a top here, since that would break the uniqueness of top.)
kvn@5110 2985 return new (phase->C) ConINode(TypeInt::ZERO);
kvn@1535 2986 }
kvn@1535 2987 }
kvn@1535 2988 return NULL;
duke@435 2989 }
duke@435 2990
duke@435 2991 //------------------------------Value------------------------------------------
duke@435 2992 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
duke@435 2993 if( !in(0) ) return Type::TOP;
duke@435 2994 if( phase->type(in(0)) == Type::TOP )
duke@435 2995 return Type::TOP;
duke@435 2996 return TypeTuple::MEMBAR;
duke@435 2997 }
duke@435 2998
duke@435 2999 //------------------------------match------------------------------------------
duke@435 3000 // Construct projections for memory.
duke@435 3001 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
duke@435 3002 switch (proj->_con) {
duke@435 3003 case TypeFunc::Control:
duke@435 3004 case TypeFunc::Memory:
kvn@4115 3005 return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 3006 }
duke@435 3007 ShouldNotReachHere();
duke@435 3008 return NULL;
duke@435 3009 }
duke@435 3010
duke@435 3011 //===========================InitializeNode====================================
duke@435 3012 // SUMMARY:
duke@435 3013 // This node acts as a memory barrier on raw memory, after some raw stores.
duke@435 3014 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
duke@435 3015 // The Initialize can 'capture' suitably constrained stores as raw inits.
duke@435 3016 // It can coalesce related raw stores into larger units (called 'tiles').
duke@435 3017 // It can avoid zeroing new storage for memory units which have raw inits.
duke@435 3018 // At macro-expansion, it is marked 'complete', and does not optimize further.
duke@435 3019 //
duke@435 3020 // EXAMPLE:
duke@435 3021 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
duke@435 3022 // ctl = incoming control; mem* = incoming memory
duke@435 3023 // (Note: A star * on a memory edge denotes I/O and other standard edges.)
duke@435 3024 // First allocate uninitialized memory and fill in the header:
duke@435 3025 // alloc = (Allocate ctl mem* 16 #short[].klass ...)
duke@435 3026 // ctl := alloc.Control; mem* := alloc.Memory*
duke@435 3027 // rawmem = alloc.Memory; rawoop = alloc.RawAddress
duke@435 3028 // Then initialize to zero the non-header parts of the raw memory block:
duke@435 3029 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
duke@435 3030 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
duke@435 3031 // After the initialize node executes, the object is ready for service:
duke@435 3032 // oop := (CheckCastPP init.Control alloc.RawAddress #short[])
duke@435 3033 // Suppose its body is immediately initialized as {1,2}:
duke@435 3034 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3035 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3036 // mem.SLICE(#short[*]) := store2
duke@435 3037 //
duke@435 3038 // DETAILS:
duke@435 3039 // An InitializeNode collects and isolates object initialization after
duke@435 3040 // an AllocateNode and before the next possible safepoint. As a
duke@435 3041 // memory barrier (MemBarNode), it keeps critical stores from drifting
duke@435 3042 // down past any safepoint or any publication of the allocation.
duke@435 3043 // Before this barrier, a newly-allocated object may have uninitialized bits.
duke@435 3044 // After this barrier, it may be treated as a real oop, and GC is allowed.
duke@435 3045 //
duke@435 3046 // The semantics of the InitializeNode include an implicit zeroing of
duke@435 3047 // the new object from object header to the end of the object.
duke@435 3048 // (The object header and end are determined by the AllocateNode.)
duke@435 3049 //
duke@435 3050 // Certain stores may be added as direct inputs to the InitializeNode.
duke@435 3051 // These stores must update raw memory, and they must be to addresses
duke@435 3052 // derived from the raw address produced by AllocateNode, and with
duke@435 3053 // a constant offset. They must be ordered by increasing offset.
duke@435 3054 // The first one is at in(RawStores), the last at in(req()-1).
duke@435 3055 // Unlike most memory operations, they are not linked in a chain,
duke@435 3056 // but are displayed in parallel as users of the rawmem output of
duke@435 3057 // the allocation.
duke@435 3058 //
duke@435 3059 // (See comments in InitializeNode::capture_store, which continue
duke@435 3060 // the example given above.)
duke@435 3061 //
duke@435 3062 // When the associated Allocate is macro-expanded, the InitializeNode
duke@435 3063 // may be rewritten to optimize collected stores. A ClearArrayNode
duke@435 3064 // may also be created at that point to represent any required zeroing.
duke@435 3065 // The InitializeNode is then marked 'complete', prohibiting further
duke@435 3066 // capturing of nearby memory operations.
duke@435 3067 //
duke@435 3068 // During macro-expansion, all captured initializations which store
twisti@1040 3069 // constant values of 32 bits or smaller are coalesced (if advantageous)
duke@435 3070 // into larger 'tiles' 32 or 64 bits. This allows an object to be
duke@435 3071 // initialized in fewer memory operations. Memory words which are
duke@435 3072 // covered by neither tiles nor non-constant stores are pre-zeroed
duke@435 3073 // by explicit stores of zero. (The code shape happens to do all
duke@435 3074 // zeroing first, then all other stores, with both sequences occurring
duke@435 3075 // in order of ascending offsets.)
duke@435 3076 //
duke@435 3077 // Alternatively, code may be inserted between an AllocateNode and its
duke@435 3078 // InitializeNode, to perform arbitrary initialization of the new object.
duke@435 3079 // E.g., the object copying intrinsics insert complex data transfers here.
duke@435 3080 // The initialization must then be marked as 'complete' disable the
duke@435 3081 // built-in zeroing semantics and the collection of initializing stores.
duke@435 3082 //
duke@435 3083 // While an InitializeNode is incomplete, reads from the memory state
duke@435 3084 // produced by it are optimizable if they match the control edge and
duke@435 3085 // new oop address associated with the allocation/initialization.
duke@435 3086 // They return a stored value (if the offset matches) or else zero.
duke@435 3087 // A write to the memory state, if it matches control and address,
duke@435 3088 // and if it is to a constant offset, may be 'captured' by the
duke@435 3089 // InitializeNode. It is cloned as a raw memory operation and rewired
duke@435 3090 // inside the initialization, to the raw oop produced by the allocation.
duke@435 3091 // Operations on addresses which are provably distinct (e.g., to
duke@435 3092 // other AllocateNodes) are allowed to bypass the initialization.
duke@435 3093 //
duke@435 3094 // The effect of all this is to consolidate object initialization
duke@435 3095 // (both arrays and non-arrays, both piecewise and bulk) into a
duke@435 3096 // single location, where it can be optimized as a unit.
duke@435 3097 //
duke@435 3098 // Only stores with an offset less than TrackedInitializationLimit words
duke@435 3099 // will be considered for capture by an InitializeNode. This puts a
duke@435 3100 // reasonable limit on the complexity of optimized initializations.
duke@435 3101
duke@435 3102 //---------------------------InitializeNode------------------------------------
duke@435 3103 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
roland@3392 3104 : _is_complete(Incomplete), _does_not_escape(false),
duke@435 3105 MemBarNode(C, adr_type, rawoop)
duke@435 3106 {
duke@435 3107 init_class_id(Class_Initialize);
duke@435 3108
duke@435 3109 assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
duke@435 3110 assert(in(RawAddress) == rawoop, "proper init");
duke@435 3111 // Note: allocation() can be NULL, for secondary initialization barriers
duke@435 3112 }
duke@435 3113
duke@435 3114 // Since this node is not matched, it will be processed by the
duke@435 3115 // register allocator. Declare that there are no constraints
duke@435 3116 // on the allocation of the RawAddress edge.
duke@435 3117 const RegMask &InitializeNode::in_RegMask(uint idx) const {
duke@435 3118 // This edge should be set to top, by the set_complete. But be conservative.
duke@435 3119 if (idx == InitializeNode::RawAddress)
duke@435 3120 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
duke@435 3121 return RegMask::Empty;
duke@435 3122 }
duke@435 3123
duke@435 3124 Node* InitializeNode::memory(uint alias_idx) {
duke@435 3125 Node* mem = in(Memory);
duke@435 3126 if (mem->is_MergeMem()) {
duke@435 3127 return mem->as_MergeMem()->memory_at(alias_idx);
duke@435 3128 } else {
duke@435 3129 // incoming raw memory is not split
duke@435 3130 return mem;
duke@435 3131 }
duke@435 3132 }
duke@435 3133
duke@435 3134 bool InitializeNode::is_non_zero() {
duke@435 3135 if (is_complete()) return false;
duke@435 3136 remove_extra_zeroes();
duke@435 3137 return (req() > RawStores);
duke@435 3138 }
duke@435 3139
duke@435 3140 void InitializeNode::set_complete(PhaseGVN* phase) {
duke@435 3141 assert(!is_complete(), "caller responsibility");
kvn@3157 3142 _is_complete = Complete;
duke@435 3143
duke@435 3144 // After this node is complete, it contains a bunch of
duke@435 3145 // raw-memory initializations. There is no need for
duke@435 3146 // it to have anything to do with non-raw memory effects.
duke@435 3147 // Therefore, tell all non-raw users to re-optimize themselves,
duke@435 3148 // after skipping the memory effects of this initialization.
duke@435 3149 PhaseIterGVN* igvn = phase->is_IterGVN();
duke@435 3150 if (igvn) igvn->add_users_to_worklist(this);
duke@435 3151 }
duke@435 3152
duke@435 3153 // convenience function
duke@435 3154 // return false if the init contains any stores already
duke@435 3155 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
duke@435 3156 InitializeNode* init = initialization();
duke@435 3157 if (init == NULL || init->is_complete()) return false;
duke@435 3158 init->remove_extra_zeroes();
duke@435 3159 // for now, if this allocation has already collected any inits, bail:
duke@435 3160 if (init->is_non_zero()) return false;
duke@435 3161 init->set_complete(phase);
duke@435 3162 return true;
duke@435 3163 }
duke@435 3164
duke@435 3165 void InitializeNode::remove_extra_zeroes() {
duke@435 3166 if (req() == RawStores) return;
duke@435 3167 Node* zmem = zero_memory();
duke@435 3168 uint fill = RawStores;
duke@435 3169 for (uint i = fill; i < req(); i++) {
duke@435 3170 Node* n = in(i);
duke@435 3171 if (n->is_top() || n == zmem) continue; // skip
duke@435 3172 if (fill < i) set_req(fill, n); // compact
duke@435 3173 ++fill;
duke@435 3174 }
duke@435 3175 // delete any empty spaces created:
duke@435 3176 while (fill < req()) {
duke@435 3177 del_req(fill);
duke@435 3178 }
duke@435 3179 }
duke@435 3180
duke@435 3181 // Helper for remembering which stores go with which offsets.
duke@435 3182 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
duke@435 3183 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node
duke@435 3184 intptr_t offset = -1;
duke@435 3185 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
duke@435 3186 phase, offset);
duke@435 3187 if (base == NULL) return -1; // something is dead,
duke@435 3188 if (offset < 0) return -1; // dead, dead
duke@435 3189 return offset;
duke@435 3190 }
duke@435 3191
duke@435 3192 // Helper for proving that an initialization expression is
duke@435 3193 // "simple enough" to be folded into an object initialization.
duke@435 3194 // Attempts to prove that a store's initial value 'n' can be captured
duke@435 3195 // within the initialization without creating a vicious cycle, such as:
duke@435 3196 // { Foo p = new Foo(); p.next = p; }
duke@435 3197 // True for constants and parameters and small combinations thereof.
kvn@5110 3198 bool InitializeNode::detect_init_independence(Node* n, int& count) {
duke@435 3199 if (n == NULL) return true; // (can this really happen?)
duke@435 3200 if (n->is_Proj()) n = n->in(0);
duke@435 3201 if (n == this) return false; // found a cycle
duke@435 3202 if (n->is_Con()) return true;
duke@435 3203 if (n->is_Start()) return true; // params, etc., are OK
duke@435 3204 if (n->is_Root()) return true; // even better
duke@435 3205
duke@435 3206 Node* ctl = n->in(0);
duke@435 3207 if (ctl != NULL && !ctl->is_top()) {
duke@435 3208 if (ctl->is_Proj()) ctl = ctl->in(0);
duke@435 3209 if (ctl == this) return false;
duke@435 3210
duke@435 3211 // If we already know that the enclosing memory op is pinned right after
duke@435 3212 // the init, then any control flow that the store has picked up
duke@435 3213 // must have preceded the init, or else be equal to the init.
duke@435 3214 // Even after loop optimizations (which might change control edges)
duke@435 3215 // a store is never pinned *before* the availability of its inputs.
kvn@554 3216 if (!MemNode::all_controls_dominate(n, this))
duke@435 3217 return false; // failed to prove a good control
duke@435 3218 }
duke@435 3219
duke@435 3220 // Check data edges for possible dependencies on 'this'.
duke@435 3221 if ((count += 1) > 20) return false; // complexity limit
duke@435 3222 for (uint i = 1; i < n->req(); i++) {
duke@435 3223 Node* m = n->in(i);
duke@435 3224 if (m == NULL || m == n || m->is_top()) continue;
duke@435 3225 uint first_i = n->find_edge(m);
duke@435 3226 if (i != first_i) continue; // process duplicate edge just once
kvn@5110 3227 if (!detect_init_independence(m, count)) {
duke@435 3228 return false;
duke@435 3229 }
duke@435 3230 }
duke@435 3231
duke@435 3232 return true;
duke@435 3233 }
duke@435 3234
duke@435 3235 // Here are all the checks a Store must pass before it can be moved into
duke@435 3236 // an initialization. Returns zero if a check fails.
duke@435 3237 // On success, returns the (constant) offset to which the store applies,
duke@435 3238 // within the initialized memory.
roland@4657 3239 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
duke@435 3240 const int FAIL = 0;
duke@435 3241 if (st->req() != MemNode::ValueIn + 1)
duke@435 3242 return FAIL; // an inscrutable StoreNode (card mark?)
duke@435 3243 Node* ctl = st->in(MemNode::Control);
duke@435 3244 if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
duke@435 3245 return FAIL; // must be unconditional after the initialization
duke@435 3246 Node* mem = st->in(MemNode::Memory);
duke@435 3247 if (!(mem->is_Proj() && mem->in(0) == this))
duke@435 3248 return FAIL; // must not be preceded by other stores
duke@435 3249 Node* adr = st->in(MemNode::Address);
duke@435 3250 intptr_t offset;
duke@435 3251 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
duke@435 3252 if (alloc == NULL)
duke@435 3253 return FAIL; // inscrutable address
duke@435 3254 if (alloc != allocation())
duke@435 3255 return FAIL; // wrong allocation! (store needs to float up)
duke@435 3256 Node* val = st->in(MemNode::ValueIn);
duke@435 3257 int complexity_count = 0;
kvn@5110 3258 if (!detect_init_independence(val, complexity_count))
duke@435 3259 return FAIL; // stored value must be 'simple enough'
duke@435 3260
roland@4657 3261 // The Store can be captured only if nothing after the allocation
roland@4657 3262 // and before the Store is using the memory location that the store
roland@4657 3263 // overwrites.
roland@4657 3264 bool failed = false;
roland@4657 3265 // If is_complete_with_arraycopy() is true the shape of the graph is
roland@4657 3266 // well defined and is safe so no need for extra checks.
roland@4657 3267 if (!is_complete_with_arraycopy()) {
roland@4657 3268 // We are going to look at each use of the memory state following
roland@4657 3269 // the allocation to make sure nothing reads the memory that the
roland@4657 3270 // Store writes.
roland@4657 3271 const TypePtr* t_adr = phase->type(adr)->isa_ptr();
roland@4657 3272 int alias_idx = phase->C->get_alias_index(t_adr);
roland@4657 3273 ResourceMark rm;
roland@4657 3274 Unique_Node_List mems;
roland@4657 3275 mems.push(mem);
roland@4657 3276 Node* unique_merge = NULL;
roland@4657 3277 for (uint next = 0; next < mems.size(); ++next) {
roland@4657 3278 Node *m = mems.at(next);
roland@4657 3279 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
roland@4657 3280 Node *n = m->fast_out(j);
roland@4657 3281 if (n->outcnt() == 0) {
roland@4657 3282 continue;
roland@4657 3283 }
roland@4657 3284 if (n == st) {
roland@4657 3285 continue;
roland@4657 3286 } else if (n->in(0) != NULL && n->in(0) != ctl) {
roland@4657 3287 // If the control of this use is different from the control
roland@4657 3288 // of the Store which is right after the InitializeNode then
roland@4657 3289 // this node cannot be between the InitializeNode and the
roland@4657 3290 // Store.
roland@4657 3291 continue;
roland@4657 3292 } else if (n->is_MergeMem()) {
roland@4657 3293 if (n->as_MergeMem()->memory_at(alias_idx) == m) {
roland@4657 3294 // We can hit a MergeMemNode (that will likely go away
roland@4657 3295 // later) that is a direct use of the memory state
roland@4657 3296 // following the InitializeNode on the same slice as the
roland@4657 3297 // store node that we'd like to capture. We need to check
roland@4657 3298 // the uses of the MergeMemNode.
roland@4657 3299 mems.push(n);
roland@4657 3300 }
roland@4657 3301 } else if (n->is_Mem()) {
roland@4657 3302 Node* other_adr = n->in(MemNode::Address);
roland@4657 3303 if (other_adr == adr) {
roland@4657 3304 failed = true;
roland@4657 3305 break;
roland@4657 3306 } else {
roland@4657 3307 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
roland@4657 3308 if (other_t_adr != NULL) {
roland@4657 3309 int other_alias_idx = phase->C->get_alias_index(other_t_adr);
roland@4657 3310 if (other_alias_idx == alias_idx) {
roland@4657 3311 // A load from the same memory slice as the store right
roland@4657 3312 // after the InitializeNode. We check the control of the
roland@4657 3313 // object/array that is loaded from. If it's the same as
roland@4657 3314 // the store control then we cannot capture the store.
roland@4657 3315 assert(!n->is_Store(), "2 stores to same slice on same control?");
roland@4657 3316 Node* base = other_adr;
roland@4657 3317 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
roland@4657 3318 base = base->in(AddPNode::Base);
roland@4657 3319 if (base != NULL) {
roland@4657 3320 base = base->uncast();
roland@4657 3321 if (base->is_Proj() && base->in(0) == alloc) {
roland@4657 3322 failed = true;
roland@4657 3323 break;
roland@4657 3324 }
roland@4657 3325 }
roland@4657 3326 }
roland@4657 3327 }
roland@4657 3328 }
roland@4657 3329 } else {
roland@4657 3330 failed = true;
roland@4657 3331 break;
roland@4657 3332 }
roland@4657 3333 }
roland@4657 3334 }
roland@4657 3335 }
roland@4657 3336 if (failed) {
roland@4657 3337 if (!can_reshape) {
roland@4657 3338 // We decided we couldn't capture the store during parsing. We
roland@4657 3339 // should try again during the next IGVN once the graph is
roland@4657 3340 // cleaner.
roland@4657 3341 phase->C->record_for_igvn(st);
roland@4657 3342 }
roland@4657 3343 return FAIL;
roland@4657 3344 }
roland@4657 3345
duke@435 3346 return offset; // success
duke@435 3347 }
duke@435 3348
duke@435 3349 // Find the captured store in(i) which corresponds to the range
duke@435 3350 // [start..start+size) in the initialized object.
duke@435 3351 // If there is one, return its index i. If there isn't, return the
duke@435 3352 // negative of the index where it should be inserted.
duke@435 3353 // Return 0 if the queried range overlaps an initialization boundary
duke@435 3354 // or if dead code is encountered.
duke@435 3355 // If size_in_bytes is zero, do not bother with overlap checks.
duke@435 3356 int InitializeNode::captured_store_insertion_point(intptr_t start,
duke@435 3357 int size_in_bytes,
duke@435 3358 PhaseTransform* phase) {
duke@435 3359 const int FAIL = 0, MAX_STORE = BytesPerLong;
duke@435 3360
duke@435 3361 if (is_complete())
duke@435 3362 return FAIL; // arraycopy got here first; punt
duke@435 3363
duke@435 3364 assert(allocation() != NULL, "must be present");
duke@435 3365
duke@435 3366 // no negatives, no header fields:
coleenp@548 3367 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL;
duke@435 3368
duke@435 3369 // after a certain size, we bail out on tracking all the stores:
duke@435 3370 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3371 if (start >= ti_limit) return FAIL;
duke@435 3372
duke@435 3373 for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
duke@435 3374 if (i >= limit) return -(int)i; // not found; here is where to put it
duke@435 3375
duke@435 3376 Node* st = in(i);
duke@435 3377 intptr_t st_off = get_store_offset(st, phase);
duke@435 3378 if (st_off < 0) {
duke@435 3379 if (st != zero_memory()) {
duke@435 3380 return FAIL; // bail out if there is dead garbage
duke@435 3381 }
duke@435 3382 } else if (st_off > start) {
duke@435 3383 // ...we are done, since stores are ordered
duke@435 3384 if (st_off < start + size_in_bytes) {
duke@435 3385 return FAIL; // the next store overlaps
duke@435 3386 }
duke@435 3387 return -(int)i; // not found; here is where to put it
duke@435 3388 } else if (st_off < start) {
duke@435 3389 if (size_in_bytes != 0 &&
duke@435 3390 start < st_off + MAX_STORE &&
duke@435 3391 start < st_off + st->as_Store()->memory_size()) {
duke@435 3392 return FAIL; // the previous store overlaps
duke@435 3393 }
duke@435 3394 } else {
duke@435 3395 if (size_in_bytes != 0 &&
duke@435 3396 st->as_Store()->memory_size() != size_in_bytes) {
duke@435 3397 return FAIL; // mismatched store size
duke@435 3398 }
duke@435 3399 return i;
duke@435 3400 }
duke@435 3401
duke@435 3402 ++i;
duke@435 3403 }
duke@435 3404 }
duke@435 3405
duke@435 3406 // Look for a captured store which initializes at the offset 'start'
duke@435 3407 // with the given size. If there is no such store, and no other
duke@435 3408 // initialization interferes, then return zero_memory (the memory
duke@435 3409 // projection of the AllocateNode).
duke@435 3410 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
duke@435 3411 PhaseTransform* phase) {
duke@435 3412 assert(stores_are_sane(phase), "");
duke@435 3413 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3414 if (i == 0) {
duke@435 3415 return NULL; // something is dead
duke@435 3416 } else if (i < 0) {
duke@435 3417 return zero_memory(); // just primordial zero bits here
duke@435 3418 } else {
duke@435 3419 Node* st = in(i); // here is the store at this position
duke@435 3420 assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
duke@435 3421 return st;
duke@435 3422 }
duke@435 3423 }
duke@435 3424
duke@435 3425 // Create, as a raw pointer, an address within my new object at 'offset'.
duke@435 3426 Node* InitializeNode::make_raw_address(intptr_t offset,
duke@435 3427 PhaseTransform* phase) {
duke@435 3428 Node* addr = in(RawAddress);
duke@435 3429 if (offset != 0) {
duke@435 3430 Compile* C = phase->C;
kvn@4115 3431 addr = phase->transform( new (C) AddPNode(C->top(), addr,
duke@435 3432 phase->MakeConX(offset)) );
duke@435 3433 }
duke@435 3434 return addr;
duke@435 3435 }
duke@435 3436
duke@435 3437 // Clone the given store, converting it into a raw store
duke@435 3438 // initializing a field or element of my new object.
duke@435 3439 // Caller is responsible for retiring the original store,
duke@435 3440 // with subsume_node or the like.
duke@435 3441 //
duke@435 3442 // From the example above InitializeNode::InitializeNode,
duke@435 3443 // here are the old stores to be captured:
duke@435 3444 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
duke@435 3445 // store2 = (StoreC init.Control store1 (+ oop 14) 2)
duke@435 3446 //
duke@435 3447 // Here is the changed code; note the extra edges on init:
duke@435 3448 // alloc = (Allocate ...)
duke@435 3449 // rawoop = alloc.RawAddress
duke@435 3450 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
duke@435 3451 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
duke@435 3452 // init = (Initialize alloc.Control alloc.Memory rawoop
duke@435 3453 // rawstore1 rawstore2)
duke@435 3454 //
duke@435 3455 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
roland@4657 3456 PhaseTransform* phase, bool can_reshape) {
duke@435 3457 assert(stores_are_sane(phase), "");
duke@435 3458
duke@435 3459 if (start < 0) return NULL;
roland@4657 3460 assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
duke@435 3461
duke@435 3462 Compile* C = phase->C;
duke@435 3463 int size_in_bytes = st->memory_size();
duke@435 3464 int i = captured_store_insertion_point(start, size_in_bytes, phase);
duke@435 3465 if (i == 0) return NULL; // bail out
duke@435 3466 Node* prev_mem = NULL; // raw memory for the captured store
duke@435 3467 if (i > 0) {
duke@435 3468 prev_mem = in(i); // there is a pre-existing store under this one
duke@435 3469 set_req(i, C->top()); // temporarily disconnect it
duke@435 3470 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
duke@435 3471 } else {
duke@435 3472 i = -i; // no pre-existing store
duke@435 3473 prev_mem = zero_memory(); // a slice of the newly allocated object
duke@435 3474 if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
duke@435 3475 set_req(--i, C->top()); // reuse this edge; it has been folded away
duke@435 3476 else
duke@435 3477 ins_req(i, C->top()); // build a new edge
duke@435 3478 }
duke@435 3479 Node* new_st = st->clone();
duke@435 3480 new_st->set_req(MemNode::Control, in(Control));
duke@435 3481 new_st->set_req(MemNode::Memory, prev_mem);
duke@435 3482 new_st->set_req(MemNode::Address, make_raw_address(start, phase));
duke@435 3483 new_st = phase->transform(new_st);
duke@435 3484
duke@435 3485 // At this point, new_st might have swallowed a pre-existing store
duke@435 3486 // at the same offset, or perhaps new_st might have disappeared,
duke@435 3487 // if it redundantly stored the same value (or zero to fresh memory).
duke@435 3488
duke@435 3489 // In any case, wire it in:
duke@435 3490 set_req(i, new_st);
duke@435 3491
duke@435 3492 // The caller may now kill the old guy.
duke@435 3493 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
duke@435 3494 assert(check_st == new_st || check_st == NULL, "must be findable");
duke@435 3495 assert(!is_complete(), "");
duke@435 3496 return new_st;
duke@435 3497 }
duke@435 3498
duke@435 3499 static bool store_constant(jlong* tiles, int num_tiles,
duke@435 3500 intptr_t st_off, int st_size,
duke@435 3501 jlong con) {
duke@435 3502 if ((st_off & (st_size-1)) != 0)
duke@435 3503 return false; // strange store offset (assume size==2**N)
duke@435 3504 address addr = (address)tiles + st_off;
duke@435 3505 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
duke@435 3506 switch (st_size) {
duke@435 3507 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break;
duke@435 3508 case sizeof(jchar): *(jchar*) addr = (jchar) con; break;
duke@435 3509 case sizeof(jint): *(jint*) addr = (jint) con; break;
duke@435 3510 case sizeof(jlong): *(jlong*) addr = (jlong) con; break;
duke@435 3511 default: return false; // strange store size (detect size!=2**N here)
duke@435 3512 }
duke@435 3513 return true; // return success to caller
duke@435 3514 }
duke@435 3515
duke@435 3516 // Coalesce subword constants into int constants and possibly
duke@435 3517 // into long constants. The goal, if the CPU permits,
duke@435 3518 // is to initialize the object with a small number of 64-bit tiles.
duke@435 3519 // Also, convert floating-point constants to bit patterns.
duke@435 3520 // Non-constants are not relevant to this pass.
duke@435 3521 //
duke@435 3522 // In terms of the running example on InitializeNode::InitializeNode
duke@435 3523 // and InitializeNode::capture_store, here is the transformation
duke@435 3524 // of rawstore1 and rawstore2 into rawstore12:
duke@435 3525 // alloc = (Allocate ...)
duke@435 3526 // rawoop = alloc.RawAddress
duke@435 3527 // tile12 = 0x00010002
duke@435 3528 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
duke@435 3529 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
duke@435 3530 //
duke@435 3531 void
duke@435 3532 InitializeNode::coalesce_subword_stores(intptr_t header_size,
duke@435 3533 Node* size_in_bytes,
duke@435 3534 PhaseGVN* phase) {
duke@435 3535 Compile* C = phase->C;
duke@435 3536
duke@435 3537 assert(stores_are_sane(phase), "");
duke@435 3538 // Note: After this pass, they are not completely sane,
duke@435 3539 // since there may be some overlaps.
duke@435 3540
duke@435 3541 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
duke@435 3542
duke@435 3543 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
duke@435 3544 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
duke@435 3545 size_limit = MIN2(size_limit, ti_limit);
duke@435 3546 size_limit = align_size_up(size_limit, BytesPerLong);
duke@435 3547 int num_tiles = size_limit / BytesPerLong;
duke@435 3548
duke@435 3549 // allocate space for the tile map:
duke@435 3550 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
duke@435 3551 jlong tiles_buf[small_len];
duke@435 3552 Node* nodes_buf[small_len];
duke@435 3553 jlong inits_buf[small_len];
duke@435 3554 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
duke@435 3555 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3556 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
duke@435 3557 : NEW_RESOURCE_ARRAY(Node*, num_tiles));
duke@435 3558 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
duke@435 3559 : NEW_RESOURCE_ARRAY(jlong, num_tiles));
duke@435 3560 // tiles: exact bitwise model of all primitive constants
duke@435 3561 // nodes: last constant-storing node subsumed into the tiles model
duke@435 3562 // inits: which bytes (in each tile) are touched by any initializations
duke@435 3563
duke@435 3564 //// Pass A: Fill in the tile model with any relevant stores.
duke@435 3565
duke@435 3566 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
duke@435 3567 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
duke@435 3568 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
duke@435 3569 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3570 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3571 Node* st = in(i);
duke@435 3572 intptr_t st_off = get_store_offset(st, phase);
duke@435 3573
duke@435 3574 // Figure out the store's offset and constant value:
duke@435 3575 if (st_off < header_size) continue; //skip (ignore header)
duke@435 3576 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain)
duke@435 3577 int st_size = st->as_Store()->memory_size();
duke@435 3578 if (st_off + st_size > size_limit) break;
duke@435 3579
duke@435 3580 // Record which bytes are touched, whether by constant or not.
duke@435 3581 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
duke@435 3582 continue; // skip (strange store size)
duke@435 3583
duke@435 3584 const Type* val = phase->type(st->in(MemNode::ValueIn));
duke@435 3585 if (!val->singleton()) continue; //skip (non-con store)
duke@435 3586 BasicType type = val->basic_type();
duke@435 3587
duke@435 3588 jlong con = 0;
duke@435 3589 switch (type) {
duke@435 3590 case T_INT: con = val->is_int()->get_con(); break;
duke@435 3591 case T_LONG: con = val->is_long()->get_con(); break;
duke@435 3592 case T_FLOAT: con = jint_cast(val->getf()); break;
duke@435 3593 case T_DOUBLE: con = jlong_cast(val->getd()); break;
duke@435 3594 default: continue; //skip (odd store type)
duke@435 3595 }
duke@435 3596
duke@435 3597 if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
duke@435 3598 st->Opcode() == Op_StoreL) {
duke@435 3599 continue; // This StoreL is already optimal.
duke@435 3600 }
duke@435 3601
duke@435 3602 // Store down the constant.
duke@435 3603 store_constant(tiles, num_tiles, st_off, st_size, con);
duke@435 3604
duke@435 3605 intptr_t j = st_off >> LogBytesPerLong;
duke@435 3606
duke@435 3607 if (type == T_INT && st_size == BytesPerInt
duke@435 3608 && (st_off & BytesPerInt) == BytesPerInt) {
duke@435 3609 jlong lcon = tiles[j];
duke@435 3610 if (!Matcher::isSimpleConstant64(lcon) &&
duke@435 3611 st->Opcode() == Op_StoreI) {
duke@435 3612 // This StoreI is already optimal by itself.
duke@435 3613 jint* intcon = (jint*) &tiles[j];
duke@435 3614 intcon[1] = 0; // undo the store_constant()
duke@435 3615
duke@435 3616 // If the previous store is also optimal by itself, back up and
duke@435 3617 // undo the action of the previous loop iteration... if we can.
duke@435 3618 // But if we can't, just let the previous half take care of itself.
duke@435 3619 st = nodes[j];
duke@435 3620 st_off -= BytesPerInt;
duke@435 3621 con = intcon[0];
duke@435 3622 if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
duke@435 3623 assert(st_off >= header_size, "still ignoring header");
duke@435 3624 assert(get_store_offset(st, phase) == st_off, "must be");
duke@435 3625 assert(in(i-1) == zmem, "must be");
duke@435 3626 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
duke@435 3627 assert(con == tcon->is_int()->get_con(), "must be");
duke@435 3628 // Undo the effects of the previous loop trip, which swallowed st:
duke@435 3629 intcon[0] = 0; // undo store_constant()
duke@435 3630 set_req(i-1, st); // undo set_req(i, zmem)
duke@435 3631 nodes[j] = NULL; // undo nodes[j] = st
duke@435 3632 --old_subword; // undo ++old_subword
duke@435 3633 }
duke@435 3634 continue; // This StoreI is already optimal.
duke@435 3635 }
duke@435 3636 }
duke@435 3637
duke@435 3638 // This store is not needed.
duke@435 3639 set_req(i, zmem);
duke@435 3640 nodes[j] = st; // record for the moment
duke@435 3641 if (st_size < BytesPerLong) // something has changed
duke@435 3642 ++old_subword; // includes int/float, but who's counting...
duke@435 3643 else ++old_long;
duke@435 3644 }
duke@435 3645
duke@435 3646 if ((old_subword + old_long) == 0)
duke@435 3647 return; // nothing more to do
duke@435 3648
duke@435 3649 //// Pass B: Convert any non-zero tiles into optimal constant stores.
duke@435 3650 // Be sure to insert them before overlapping non-constant stores.
duke@435 3651 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.)
duke@435 3652 for (int j = 0; j < num_tiles; j++) {
duke@435 3653 jlong con = tiles[j];
duke@435 3654 jlong init = inits[j];
duke@435 3655 if (con == 0) continue;
duke@435 3656 jint con0, con1; // split the constant, address-wise
duke@435 3657 jint init0, init1; // split the init map, address-wise
duke@435 3658 { union { jlong con; jint intcon[2]; } u;
duke@435 3659 u.con = con;
duke@435 3660 con0 = u.intcon[0];
duke@435 3661 con1 = u.intcon[1];
duke@435 3662 u.con = init;
duke@435 3663 init0 = u.intcon[0];
duke@435 3664 init1 = u.intcon[1];
duke@435 3665 }
duke@435 3666
duke@435 3667 Node* old = nodes[j];
duke@435 3668 assert(old != NULL, "need the prior store");
duke@435 3669 intptr_t offset = (j * BytesPerLong);
duke@435 3670
duke@435 3671 bool split = !Matcher::isSimpleConstant64(con);
duke@435 3672
duke@435 3673 if (offset < header_size) {
duke@435 3674 assert(offset + BytesPerInt >= header_size, "second int counts");
duke@435 3675 assert(*(jint*)&tiles[j] == 0, "junk in header");
duke@435 3676 split = true; // only the second word counts
duke@435 3677 // Example: int a[] = { 42 ... }
duke@435 3678 } else if (con0 == 0 && init0 == -1) {
duke@435 3679 split = true; // first word is covered by full inits
duke@435 3680 // Example: int a[] = { ... foo(), 42 ... }
duke@435 3681 } else if (con1 == 0 && init1 == -1) {
duke@435 3682 split = true; // second word is covered by full inits
duke@435 3683 // Example: int a[] = { ... 42, foo() ... }
duke@435 3684 }
duke@435 3685
duke@435 3686 // Here's a case where init0 is neither 0 nor -1:
duke@435 3687 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... }
duke@435 3688 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
duke@435 3689 // In this case the tile is not split; it is (jlong)42.
duke@435 3690 // The big tile is stored down, and then the foo() value is inserted.
duke@435 3691 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
duke@435 3692
duke@435 3693 Node* ctl = old->in(MemNode::Control);
duke@435 3694 Node* adr = make_raw_address(offset, phase);
duke@435 3695 const TypePtr* atp = TypeRawPtr::BOTTOM;
duke@435 3696
duke@435 3697 // One or two coalesced stores to plop down.
duke@435 3698 Node* st[2];
duke@435 3699 intptr_t off[2];
duke@435 3700 int nst = 0;
duke@435 3701 if (!split) {
duke@435 3702 ++new_long;
duke@435 3703 off[nst] = offset;
coleenp@548 3704 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3705 phase->longcon(con), T_LONG);
duke@435 3706 } else {
duke@435 3707 // Omit either if it is a zero.
duke@435 3708 if (con0 != 0) {
duke@435 3709 ++new_int;
duke@435 3710 off[nst] = offset;
coleenp@548 3711 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3712 phase->intcon(con0), T_INT);
duke@435 3713 }
duke@435 3714 if (con1 != 0) {
duke@435 3715 ++new_int;
duke@435 3716 offset += BytesPerInt;
duke@435 3717 adr = make_raw_address(offset, phase);
duke@435 3718 off[nst] = offset;
coleenp@548 3719 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
duke@435 3720 phase->intcon(con1), T_INT);
duke@435 3721 }
duke@435 3722 }
duke@435 3723
duke@435 3724 // Insert second store first, then the first before the second.
duke@435 3725 // Insert each one just before any overlapping non-constant stores.
duke@435 3726 while (nst > 0) {
duke@435 3727 Node* st1 = st[--nst];
duke@435 3728 C->copy_node_notes_to(st1, old);
duke@435 3729 st1 = phase->transform(st1);
duke@435 3730 offset = off[nst];
duke@435 3731 assert(offset >= header_size, "do not smash header");
duke@435 3732 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
duke@435 3733 guarantee(ins_idx != 0, "must re-insert constant store");
duke@435 3734 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap
duke@435 3735 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
duke@435 3736 set_req(--ins_idx, st1);
duke@435 3737 else
duke@435 3738 ins_req(ins_idx, st1);
duke@435 3739 }
duke@435 3740 }
duke@435 3741
duke@435 3742 if (PrintCompilation && WizardMode)
duke@435 3743 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
duke@435 3744 old_subword, old_long, new_int, new_long);
duke@435 3745 if (C->log() != NULL)
duke@435 3746 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
duke@435 3747 old_subword, old_long, new_int, new_long);
duke@435 3748
duke@435 3749 // Clean up any remaining occurrences of zmem:
duke@435 3750 remove_extra_zeroes();
duke@435 3751 }
duke@435 3752
duke@435 3753 // Explore forward from in(start) to find the first fully initialized
duke@435 3754 // word, and return its offset. Skip groups of subword stores which
duke@435 3755 // together initialize full words. If in(start) is itself part of a
duke@435 3756 // fully initialized word, return the offset of in(start). If there
duke@435 3757 // are no following full-word stores, or if something is fishy, return
duke@435 3758 // a negative value.
duke@435 3759 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
duke@435 3760 int int_map = 0;
duke@435 3761 intptr_t int_map_off = 0;
duke@435 3762 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for
duke@435 3763
duke@435 3764 for (uint i = start, limit = req(); i < limit; i++) {
duke@435 3765 Node* st = in(i);
duke@435 3766
duke@435 3767 intptr_t st_off = get_store_offset(st, phase);
duke@435 3768 if (st_off < 0) break; // return conservative answer
duke@435 3769
duke@435 3770 int st_size = st->as_Store()->memory_size();
duke@435 3771 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
duke@435 3772 return st_off; // we found a complete word init
duke@435 3773 }
duke@435 3774
duke@435 3775 // update the map:
duke@435 3776
duke@435 3777 intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
duke@435 3778 if (this_int_off != int_map_off) {
duke@435 3779 // reset the map:
duke@435 3780 int_map = 0;
duke@435 3781 int_map_off = this_int_off;
duke@435 3782 }
duke@435 3783
duke@435 3784 int subword_off = st_off - this_int_off;
duke@435 3785 int_map |= right_n_bits(st_size) << subword_off;
duke@435 3786 if ((int_map & FULL_MAP) == FULL_MAP) {
duke@435 3787 return this_int_off; // we found a complete word init
duke@435 3788 }
duke@435 3789
duke@435 3790 // Did this store hit or cross the word boundary?
duke@435 3791 intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
duke@435 3792 if (next_int_off == this_int_off + BytesPerInt) {
duke@435 3793 // We passed the current int, without fully initializing it.
duke@435 3794 int_map_off = next_int_off;
duke@435 3795 int_map >>= BytesPerInt;
duke@435 3796 } else if (next_int_off > this_int_off + BytesPerInt) {
duke@435 3797 // We passed the current and next int.
duke@435 3798 return this_int_off + BytesPerInt;
duke@435 3799 }
duke@435 3800 }
duke@435 3801
duke@435 3802 return -1;
duke@435 3803 }
duke@435 3804
duke@435 3805
duke@435 3806 // Called when the associated AllocateNode is expanded into CFG.
duke@435 3807 // At this point, we may perform additional optimizations.
duke@435 3808 // Linearize the stores by ascending offset, to make memory
duke@435 3809 // activity as coherent as possible.
duke@435 3810 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 3811 intptr_t header_size,
duke@435 3812 Node* size_in_bytes,
duke@435 3813 PhaseGVN* phase) {
duke@435 3814 assert(!is_complete(), "not already complete");
duke@435 3815 assert(stores_are_sane(phase), "");
duke@435 3816 assert(allocation() != NULL, "must be present");
duke@435 3817
duke@435 3818 remove_extra_zeroes();
duke@435 3819
duke@435 3820 if (ReduceFieldZeroing || ReduceBulkZeroing)
duke@435 3821 // reduce instruction count for common initialization patterns
duke@435 3822 coalesce_subword_stores(header_size, size_in_bytes, phase);
duke@435 3823
duke@435 3824 Node* zmem = zero_memory(); // initially zero memory state
duke@435 3825 Node* inits = zmem; // accumulating a linearized chain of inits
duke@435 3826 #ifdef ASSERT
coleenp@548 3827 intptr_t first_offset = allocation()->minimum_header_size();
coleenp@548 3828 intptr_t last_init_off = first_offset; // previous init offset
coleenp@548 3829 intptr_t last_init_end = first_offset; // previous init offset+size
coleenp@548 3830 intptr_t last_tile_end = first_offset; // previous tile offset+size
duke@435 3831 #endif
duke@435 3832 intptr_t zeroes_done = header_size;
duke@435 3833
duke@435 3834 bool do_zeroing = true; // we might give up if inits are very sparse
duke@435 3835 int big_init_gaps = 0; // how many large gaps have we seen?
duke@435 3836
duke@435 3837 if (ZeroTLAB) do_zeroing = false;
duke@435 3838 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false;
duke@435 3839
duke@435 3840 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
duke@435 3841 Node* st = in(i);
duke@435 3842 intptr_t st_off = get_store_offset(st, phase);
duke@435 3843 if (st_off < 0)
duke@435 3844 break; // unknown junk in the inits
duke@435 3845 if (st->in(MemNode::Memory) != zmem)
duke@435 3846 break; // complicated store chains somehow in list
duke@435 3847
duke@435 3848 int st_size = st->as_Store()->memory_size();
duke@435 3849 intptr_t next_init_off = st_off + st_size;
duke@435 3850
duke@435 3851 if (do_zeroing && zeroes_done < next_init_off) {
duke@435 3852 // See if this store needs a zero before it or under it.
duke@435 3853 intptr_t zeroes_needed = st_off;
duke@435 3854
duke@435 3855 if (st_size < BytesPerInt) {
duke@435 3856 // Look for subword stores which only partially initialize words.
duke@435 3857 // If we find some, we must lay down some word-level zeroes first,
duke@435 3858 // underneath the subword stores.
duke@435 3859 //
duke@435 3860 // Examples:
duke@435 3861 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s
duke@435 3862 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y
duke@435 3863 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z
duke@435 3864 //
duke@435 3865 // Note: coalesce_subword_stores may have already done this,
duke@435 3866 // if it was prompted by constant non-zero subword initializers.
duke@435 3867 // But this case can still arise with non-constant stores.
duke@435 3868
duke@435 3869 intptr_t next_full_store = find_next_fullword_store(i, phase);
duke@435 3870
duke@435 3871 // In the examples above:
duke@435 3872 // in(i) p q r s x y z
duke@435 3873 // st_off 12 13 14 15 12 13 14
duke@435 3874 // st_size 1 1 1 1 1 1 1
duke@435 3875 // next_full_s. 12 16 16 16 16 16 16
duke@435 3876 // z's_done 12 16 16 16 12 16 12
duke@435 3877 // z's_needed 12 16 16 16 16 16 16
duke@435 3878 // zsize 0 0 0 0 4 0 4
duke@435 3879 if (next_full_store < 0) {
duke@435 3880 // Conservative tack: Zero to end of current word.
duke@435 3881 zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
duke@435 3882 } else {
duke@435 3883 // Zero to beginning of next fully initialized word.
duke@435 3884 // Or, don't zero at all, if we are already in that word.
duke@435 3885 assert(next_full_store >= zeroes_needed, "must go forward");
duke@435 3886 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
duke@435 3887 zeroes_needed = next_full_store;
duke@435 3888 }
duke@435 3889 }
duke@435 3890
duke@435 3891 if (zeroes_needed > zeroes_done) {
duke@435 3892 intptr_t zsize = zeroes_needed - zeroes_done;
duke@435 3893 // Do some incremental zeroing on rawmem, in parallel with inits.
duke@435 3894 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3895 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3896 zeroes_done, zeroes_needed,
duke@435 3897 phase);
duke@435 3898 zeroes_done = zeroes_needed;
duke@435 3899 if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
duke@435 3900 do_zeroing = false; // leave the hole, next time
duke@435 3901 }
duke@435 3902 }
duke@435 3903
duke@435 3904 // Collect the store and move on:
duke@435 3905 st->set_req(MemNode::Memory, inits);
duke@435 3906 inits = st; // put it on the linearized chain
duke@435 3907 set_req(i, zmem); // unhook from previous position
duke@435 3908
duke@435 3909 if (zeroes_done == st_off)
duke@435 3910 zeroes_done = next_init_off;
duke@435 3911
duke@435 3912 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
duke@435 3913
duke@435 3914 #ifdef ASSERT
duke@435 3915 // Various order invariants. Weaker than stores_are_sane because
duke@435 3916 // a large constant tile can be filled in by smaller non-constant stores.
duke@435 3917 assert(st_off >= last_init_off, "inits do not reverse");
duke@435 3918 last_init_off = st_off;
duke@435 3919 const Type* val = NULL;
duke@435 3920 if (st_size >= BytesPerInt &&
duke@435 3921 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
duke@435 3922 (int)val->basic_type() < (int)T_OBJECT) {
duke@435 3923 assert(st_off >= last_tile_end, "tiles do not overlap");
duke@435 3924 assert(st_off >= last_init_end, "tiles do not overwrite inits");
duke@435 3925 last_tile_end = MAX2(last_tile_end, next_init_off);
duke@435 3926 } else {
duke@435 3927 intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
duke@435 3928 assert(st_tile_end >= last_tile_end, "inits stay with tiles");
duke@435 3929 assert(st_off >= last_init_end, "inits do not overlap");
duke@435 3930 last_init_end = next_init_off; // it's a non-tile
duke@435 3931 }
duke@435 3932 #endif //ASSERT
duke@435 3933 }
duke@435 3934
duke@435 3935 remove_extra_zeroes(); // clear out all the zmems left over
duke@435 3936 add_req(inits);
duke@435 3937
duke@435 3938 if (!ZeroTLAB) {
duke@435 3939 // If anything remains to be zeroed, zero it all now.
duke@435 3940 zeroes_done = align_size_down(zeroes_done, BytesPerInt);
duke@435 3941 // if it is the last unused 4 bytes of an instance, forget about it
duke@435 3942 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
duke@435 3943 if (zeroes_done + BytesPerLong >= size_limit) {
duke@435 3944 assert(allocation() != NULL, "");
never@2346 3945 if (allocation()->Opcode() == Op_Allocate) {
never@2346 3946 Node* klass_node = allocation()->in(AllocateNode::KlassNode);
never@2346 3947 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
never@2346 3948 if (zeroes_done == k->layout_helper())
never@2346 3949 zeroes_done = size_limit;
never@2346 3950 }
duke@435 3951 }
duke@435 3952 if (zeroes_done < size_limit) {
duke@435 3953 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
duke@435 3954 zeroes_done, size_in_bytes, phase);
duke@435 3955 }
duke@435 3956 }
duke@435 3957
duke@435 3958 set_complete(phase);
duke@435 3959 return rawmem;
duke@435 3960 }
duke@435 3961
duke@435 3962
duke@435 3963 #ifdef ASSERT
duke@435 3964 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
duke@435 3965 if (is_complete())
duke@435 3966 return true; // stores could be anything at this point
coleenp@548 3967 assert(allocation() != NULL, "must be present");
coleenp@548 3968 intptr_t last_off = allocation()->minimum_header_size();
duke@435 3969 for (uint i = InitializeNode::RawStores; i < req(); i++) {
duke@435 3970 Node* st = in(i);
duke@435 3971 intptr_t st_off = get_store_offset(st, phase);
duke@435 3972 if (st_off < 0) continue; // ignore dead garbage
duke@435 3973 if (last_off > st_off) {
duke@435 3974 tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
duke@435 3975 this->dump(2);
duke@435 3976 assert(false, "ascending store offsets");
duke@435 3977 return false;
duke@435 3978 }
duke@435 3979 last_off = st_off + st->as_Store()->memory_size();
duke@435 3980 }
duke@435 3981 return true;
duke@435 3982 }
duke@435 3983 #endif //ASSERT
duke@435 3984
duke@435 3985
duke@435 3986
duke@435 3987
duke@435 3988 //============================MergeMemNode=====================================
duke@435 3989 //
duke@435 3990 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several
duke@435 3991 // contributing store or call operations. Each contributor provides the memory
duke@435 3992 // state for a particular "alias type" (see Compile::alias_type). For example,
duke@435 3993 // if a MergeMem has an input X for alias category #6, then any memory reference
duke@435 3994 // to alias category #6 may use X as its memory state input, as an exact equivalent
duke@435 3995 // to using the MergeMem as a whole.
duke@435 3996 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
duke@435 3997 //
duke@435 3998 // (Here, the <N> notation gives the index of the relevant adr_type.)
duke@435 3999 //
duke@435 4000 // In one special case (and more cases in the future), alias categories overlap.
duke@435 4001 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
duke@435 4002 // states. Therefore, if a MergeMem has only one contributing input W for Bot,
duke@435 4003 // it is exactly equivalent to that state W:
duke@435 4004 // MergeMem(<Bot>: W) <==> W
duke@435 4005 //
duke@435 4006 // Usually, the merge has more than one input. In that case, where inputs
duke@435 4007 // overlap (i.e., one is Bot), the narrower alias type determines the memory
duke@435 4008 // state for that type, and the wider alias type (Bot) fills in everywhere else:
duke@435 4009 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
duke@435 4010 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
duke@435 4011 //
duke@435 4012 // A merge can take a "wide" memory state as one of its narrow inputs.
duke@435 4013 // This simply means that the merge observes out only the relevant parts of
duke@435 4014 // the wide input. That is, wide memory states arriving at narrow merge inputs
duke@435 4015 // are implicitly "filtered" or "sliced" as necessary. (This is rare.)
duke@435 4016 //
duke@435 4017 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
duke@435 4018 // and that memory slices "leak through":
duke@435 4019 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
duke@435 4020 //
duke@435 4021 // But, in such a cascade, repeated memory slices can "block the leak":
duke@435 4022 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
duke@435 4023 //
duke@435 4024 // In the last example, Y is not part of the combined memory state of the
duke@435 4025 // outermost MergeMem. The system must, of course, prevent unschedulable
duke@435 4026 // memory states from arising, so you can be sure that the state Y is somehow
duke@435 4027 // a precursor to state Y'.
duke@435 4028 //
duke@435 4029 //
duke@435 4030 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
duke@435 4031 // of each MergeMemNode array are exactly the numerical alias indexes, including
duke@435 4032 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions
duke@435 4033 // Compile::alias_type (and kin) produce and manage these indexes.
duke@435 4034 //
duke@435 4035 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
duke@435 4036 // (Note that this provides quick access to the top node inside MergeMem methods,
duke@435 4037 // without the need to reach out via TLS to Compile::current.)
duke@435 4038 //
duke@435 4039 // As a consequence of what was just described, a MergeMem that represents a full
duke@435 4040 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
duke@435 4041 // containing all alias categories.
duke@435 4042 //
duke@435 4043 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
duke@435 4044 //
duke@435 4045 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
duke@435 4046 // a memory state for the alias type <N>, or else the top node, meaning that
duke@435 4047 // there is no particular input for that alias type. Note that the length of
duke@435 4048 // a MergeMem is variable, and may be extended at any time to accommodate new
duke@435 4049 // memory states at larger alias indexes. When merges grow, they are of course
duke@435 4050 // filled with "top" in the unused in() positions.
duke@435 4051 //
duke@435 4052 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
duke@435 4053 // (Top was chosen because it works smoothly with passes like GCM.)
duke@435 4054 //
duke@435 4055 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is
duke@435 4056 // the type of random VM bits like TLS references.) Since it is always the
duke@435 4057 // first non-Bot memory slice, some low-level loops use it to initialize an
duke@435 4058 // index variable: for (i = AliasIdxRaw; i < req(); i++).
duke@435 4059 //
duke@435 4060 //
duke@435 4061 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns
duke@435 4062 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns
duke@435 4063 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
duke@435 4064 // it returns the base memory. To prevent bugs, memory_at does not accept <Top>
duke@435 4065 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over
duke@435 4066 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
duke@435 4067 //
duke@435 4068 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
duke@435 4069 // really that different from the other memory inputs. An abbreviation called
duke@435 4070 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
duke@435 4071 //
duke@435 4072 //
duke@435 4073 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent
duke@435 4074 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi
duke@435 4075 // that "emerges though" the base memory will be marked as excluding the alias types
duke@435 4076 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
duke@435 4077 //
duke@435 4078 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
duke@435 4079 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
duke@435 4080 //
duke@435 4081 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
duke@435 4082 // (It is currently unimplemented.) As you can see, the resulting merge is
duke@435 4083 // actually a disjoint union of memory states, rather than an overlay.
duke@435 4084 //
duke@435 4085
duke@435 4086 //------------------------------MergeMemNode-----------------------------------
duke@435 4087 Node* MergeMemNode::make_empty_memory() {
duke@435 4088 Node* empty_memory = (Node*) Compile::current()->top();
duke@435 4089 assert(empty_memory->is_top(), "correct sentinel identity");
duke@435 4090 return empty_memory;
duke@435 4091 }
duke@435 4092
duke@435 4093 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
duke@435 4094 init_class_id(Class_MergeMem);
duke@435 4095 // all inputs are nullified in Node::Node(int)
duke@435 4096 // set_input(0, NULL); // no control input
duke@435 4097
duke@435 4098 // Initialize the edges uniformly to top, for starters.
duke@435 4099 Node* empty_mem = make_empty_memory();
duke@435 4100 for (uint i = Compile::AliasIdxTop; i < req(); i++) {
duke@435 4101 init_req(i,empty_mem);
duke@435 4102 }
duke@435 4103 assert(empty_memory() == empty_mem, "");
duke@435 4104
duke@435 4105 if( new_base != NULL && new_base->is_MergeMem() ) {
duke@435 4106 MergeMemNode* mdef = new_base->as_MergeMem();
duke@435 4107 assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
duke@435 4108 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
duke@435 4109 mms.set_memory(mms.memory2());
duke@435 4110 }
duke@435 4111 assert(base_memory() == mdef->base_memory(), "");
duke@435 4112 } else {
duke@435 4113 set_base_memory(new_base);
duke@435 4114 }
duke@435 4115 }
duke@435 4116
duke@435 4117 // Make a new, untransformed MergeMem with the same base as 'mem'.
duke@435 4118 // If mem is itself a MergeMem, populate the result with the same edges.
duke@435 4119 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
kvn@4115 4120 return new(C) MergeMemNode(mem);
duke@435 4121 }
duke@435 4122
duke@435 4123 //------------------------------cmp--------------------------------------------
duke@435 4124 uint MergeMemNode::hash() const { return NO_HASH; }
duke@435 4125 uint MergeMemNode::cmp( const Node &n ) const {
duke@435 4126 return (&n == this); // Always fail except on self
duke@435 4127 }
duke@435 4128
duke@435 4129 //------------------------------Identity---------------------------------------
duke@435 4130 Node* MergeMemNode::Identity(PhaseTransform *phase) {
duke@435 4131 // Identity if this merge point does not record any interesting memory
duke@435 4132 // disambiguations.
duke@435 4133 Node* base_mem = base_memory();
duke@435 4134 Node* empty_mem = empty_memory();
duke@435 4135 if (base_mem != empty_mem) { // Memory path is not dead?
duke@435 4136 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4137 Node* mem = in(i);
duke@435 4138 if (mem != empty_mem && mem != base_mem) {
duke@435 4139 return this; // Many memory splits; no change
duke@435 4140 }
duke@435 4141 }
duke@435 4142 }
duke@435 4143 return base_mem; // No memory splits; ID on the one true input
duke@435 4144 }
duke@435 4145
duke@435 4146 //------------------------------Ideal------------------------------------------
duke@435 4147 // This method is invoked recursively on chains of MergeMem nodes
duke@435 4148 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 4149 // Remove chain'd MergeMems
duke@435 4150 //
duke@435 4151 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
duke@435 4152 // relative to the "in(Bot)". Since we are patching both at the same time,
duke@435 4153 // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
duke@435 4154 // but rewrite each "in(i)" relative to the new "in(Bot)".
duke@435 4155 Node *progress = NULL;
duke@435 4156
duke@435 4157
duke@435 4158 Node* old_base = base_memory();
duke@435 4159 Node* empty_mem = empty_memory();
duke@435 4160 if (old_base == empty_mem)
duke@435 4161 return NULL; // Dead memory path.
duke@435 4162
duke@435 4163 MergeMemNode* old_mbase;
duke@435 4164 if (old_base != NULL && old_base->is_MergeMem())
duke@435 4165 old_mbase = old_base->as_MergeMem();
duke@435 4166 else
duke@435 4167 old_mbase = NULL;
duke@435 4168 Node* new_base = old_base;
duke@435 4169
duke@435 4170 // simplify stacked MergeMems in base memory
duke@435 4171 if (old_mbase) new_base = old_mbase->base_memory();
duke@435 4172
duke@435 4173 // the base memory might contribute new slices beyond my req()
duke@435 4174 if (old_mbase) grow_to_match(old_mbase);
duke@435 4175
duke@435 4176 // Look carefully at the base node if it is a phi.
duke@435 4177 PhiNode* phi_base;
duke@435 4178 if (new_base != NULL && new_base->is_Phi())
duke@435 4179 phi_base = new_base->as_Phi();
duke@435 4180 else
duke@435 4181 phi_base = NULL;
duke@435 4182
duke@435 4183 Node* phi_reg = NULL;
duke@435 4184 uint phi_len = (uint)-1;
duke@435 4185 if (phi_base != NULL && !phi_base->is_copy()) {
duke@435 4186 // do not examine phi if degraded to a copy
duke@435 4187 phi_reg = phi_base->region();
duke@435 4188 phi_len = phi_base->req();
duke@435 4189 // see if the phi is unfinished
duke@435 4190 for (uint i = 1; i < phi_len; i++) {
duke@435 4191 if (phi_base->in(i) == NULL) {
duke@435 4192 // incomplete phi; do not look at it yet!
duke@435 4193 phi_reg = NULL;
duke@435 4194 phi_len = (uint)-1;
duke@435 4195 break;
duke@435 4196 }
duke@435 4197 }
duke@435 4198 }
duke@435 4199
duke@435 4200 // Note: We do not call verify_sparse on entry, because inputs
duke@435 4201 // can normalize to the base_memory via subsume_node or similar
duke@435 4202 // mechanisms. This method repairs that damage.
duke@435 4203
duke@435 4204 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4205
duke@435 4206 // Look at each slice.
duke@435 4207 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4208 Node* old_in = in(i);
duke@435 4209 // calculate the old memory value
duke@435 4210 Node* old_mem = old_in;
duke@435 4211 if (old_mem == empty_mem) old_mem = old_base;
duke@435 4212 assert(old_mem == memory_at(i), "");
duke@435 4213
duke@435 4214 // maybe update (reslice) the old memory value
duke@435 4215
duke@435 4216 // simplify stacked MergeMems
duke@435 4217 Node* new_mem = old_mem;
duke@435 4218 MergeMemNode* old_mmem;
duke@435 4219 if (old_mem != NULL && old_mem->is_MergeMem())
duke@435 4220 old_mmem = old_mem->as_MergeMem();
duke@435 4221 else
duke@435 4222 old_mmem = NULL;
duke@435 4223 if (old_mmem == this) {
duke@435 4224 // This can happen if loops break up and safepoints disappear.
duke@435 4225 // A merge of BotPtr (default) with a RawPtr memory derived from a
duke@435 4226 // safepoint can be rewritten to a merge of the same BotPtr with
duke@435 4227 // the BotPtr phi coming into the loop. If that phi disappears
duke@435 4228 // also, we can end up with a self-loop of the mergemem.
duke@435 4229 // In general, if loops degenerate and memory effects disappear,
duke@435 4230 // a mergemem can be left looking at itself. This simply means
duke@435 4231 // that the mergemem's default should be used, since there is
duke@435 4232 // no longer any apparent effect on this slice.
duke@435 4233 // Note: If a memory slice is a MergeMem cycle, it is unreachable
duke@435 4234 // from start. Update the input to TOP.
duke@435 4235 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
duke@435 4236 }
duke@435 4237 else if (old_mmem != NULL) {
duke@435 4238 new_mem = old_mmem->memory_at(i);
duke@435 4239 }
twisti@1040 4240 // else preceding memory was not a MergeMem
duke@435 4241
duke@435 4242 // replace equivalent phis (unfortunately, they do not GVN together)
duke@435 4243 if (new_mem != NULL && new_mem != new_base &&
duke@435 4244 new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
duke@435 4245 if (new_mem->is_Phi()) {
duke@435 4246 PhiNode* phi_mem = new_mem->as_Phi();
duke@435 4247 for (uint i = 1; i < phi_len; i++) {
duke@435 4248 if (phi_base->in(i) != phi_mem->in(i)) {
duke@435 4249 phi_mem = NULL;
duke@435 4250 break;
duke@435 4251 }
duke@435 4252 }
duke@435 4253 if (phi_mem != NULL) {
duke@435 4254 // equivalent phi nodes; revert to the def
duke@435 4255 new_mem = new_base;
duke@435 4256 }
duke@435 4257 }
duke@435 4258 }
duke@435 4259
duke@435 4260 // maybe store down a new value
duke@435 4261 Node* new_in = new_mem;
duke@435 4262 if (new_in == new_base) new_in = empty_mem;
duke@435 4263
duke@435 4264 if (new_in != old_in) {
duke@435 4265 // Warning: Do not combine this "if" with the previous "if"
duke@435 4266 // A memory slice might have be be rewritten even if it is semantically
duke@435 4267 // unchanged, if the base_memory value has changed.
duke@435 4268 set_req(i, new_in);
duke@435 4269 progress = this; // Report progress
duke@435 4270 }
duke@435 4271 }
duke@435 4272
duke@435 4273 if (new_base != old_base) {
duke@435 4274 set_req(Compile::AliasIdxBot, new_base);
duke@435 4275 // Don't use set_base_memory(new_base), because we need to update du.
duke@435 4276 assert(base_memory() == new_base, "");
duke@435 4277 progress = this;
duke@435 4278 }
duke@435 4279
duke@435 4280 if( base_memory() == this ) {
duke@435 4281 // a self cycle indicates this memory path is dead
duke@435 4282 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4283 }
duke@435 4284
duke@435 4285 // Resolve external cycles by calling Ideal on a MergeMem base_memory
duke@435 4286 // Recursion must occur after the self cycle check above
duke@435 4287 if( base_memory()->is_MergeMem() ) {
duke@435 4288 MergeMemNode *new_mbase = base_memory()->as_MergeMem();
duke@435 4289 Node *m = phase->transform(new_mbase); // Rollup any cycles
duke@435 4290 if( m != NULL && (m->is_top() ||
duke@435 4291 m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
duke@435 4292 // propagate rollup of dead cycle to self
duke@435 4293 set_req(Compile::AliasIdxBot, empty_mem);
duke@435 4294 }
duke@435 4295 }
duke@435 4296
duke@435 4297 if( base_memory() == empty_mem ) {
duke@435 4298 progress = this;
duke@435 4299 // Cut inputs during Parse phase only.
duke@435 4300 // During Optimize phase a dead MergeMem node will be subsumed by Top.
duke@435 4301 if( !can_reshape ) {
duke@435 4302 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4303 if( in(i) != empty_mem ) { set_req(i, empty_mem); }
duke@435 4304 }
duke@435 4305 }
duke@435 4306 }
duke@435 4307
duke@435 4308 if( !progress && base_memory()->is_Phi() && can_reshape ) {
duke@435 4309 // Check if PhiNode::Ideal's "Split phis through memory merges"
duke@435 4310 // transform should be attempted. Look for this->phi->this cycle.
duke@435 4311 uint merge_width = req();
duke@435 4312 if (merge_width > Compile::AliasIdxRaw) {
duke@435 4313 PhiNode* phi = base_memory()->as_Phi();
duke@435 4314 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
duke@435 4315 if (phi->in(i) == this) {
duke@435 4316 phase->is_IterGVN()->_worklist.push(phi);
duke@435 4317 break;
duke@435 4318 }
duke@435 4319 }
duke@435 4320 }
duke@435 4321 }
duke@435 4322
kvn@499 4323 assert(progress || verify_sparse(), "please, no dups of base");
duke@435 4324 return progress;
duke@435 4325 }
duke@435 4326
duke@435 4327 //-------------------------set_base_memory-------------------------------------
duke@435 4328 void MergeMemNode::set_base_memory(Node *new_base) {
duke@435 4329 Node* empty_mem = empty_memory();
duke@435 4330 set_req(Compile::AliasIdxBot, new_base);
duke@435 4331 assert(memory_at(req()) == new_base, "must set default memory");
duke@435 4332 // Clear out other occurrences of new_base:
duke@435 4333 if (new_base != empty_mem) {
duke@435 4334 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4335 if (in(i) == new_base) set_req(i, empty_mem);
duke@435 4336 }
duke@435 4337 }
duke@435 4338 }
duke@435 4339
duke@435 4340 //------------------------------out_RegMask------------------------------------
duke@435 4341 const RegMask &MergeMemNode::out_RegMask() const {
duke@435 4342 return RegMask::Empty;
duke@435 4343 }
duke@435 4344
duke@435 4345 //------------------------------dump_spec--------------------------------------
duke@435 4346 #ifndef PRODUCT
duke@435 4347 void MergeMemNode::dump_spec(outputStream *st) const {
duke@435 4348 st->print(" {");
duke@435 4349 Node* base_mem = base_memory();
duke@435 4350 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
duke@435 4351 Node* mem = memory_at(i);
duke@435 4352 if (mem == base_mem) { st->print(" -"); continue; }
duke@435 4353 st->print( " N%d:", mem->_idx );
duke@435 4354 Compile::current()->get_adr_type(i)->dump_on(st);
duke@435 4355 }
duke@435 4356 st->print(" }");
duke@435 4357 }
duke@435 4358 #endif // !PRODUCT
duke@435 4359
duke@435 4360
duke@435 4361 #ifdef ASSERT
duke@435 4362 static bool might_be_same(Node* a, Node* b) {
duke@435 4363 if (a == b) return true;
duke@435 4364 if (!(a->is_Phi() || b->is_Phi())) return false;
duke@435 4365 // phis shift around during optimization
duke@435 4366 return true; // pretty stupid...
duke@435 4367 }
duke@435 4368
duke@435 4369 // verify a narrow slice (either incoming or outgoing)
duke@435 4370 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
duke@435 4371 if (!VerifyAliases) return; // don't bother to verify unless requested
duke@435 4372 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 4373 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 4374 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
duke@435 4375 assert(n != NULL, "");
duke@435 4376 // Elide intervening MergeMem's
duke@435 4377 while (n->is_MergeMem()) {
duke@435 4378 n = n->as_MergeMem()->memory_at(alias_idx);
duke@435 4379 }
duke@435 4380 Compile* C = Compile::current();
duke@435 4381 const TypePtr* n_adr_type = n->adr_type();
duke@435 4382 if (n == m->empty_memory()) {
duke@435 4383 // Implicit copy of base_memory()
duke@435 4384 } else if (n_adr_type != TypePtr::BOTTOM) {
duke@435 4385 assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
duke@435 4386 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
duke@435 4387 } else {
duke@435 4388 // A few places like make_runtime_call "know" that VM calls are narrow,
duke@435 4389 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
duke@435 4390 bool expected_wide_mem = false;
duke@435 4391 if (n == m->base_memory()) {
duke@435 4392 expected_wide_mem = true;
duke@435 4393 } else if (alias_idx == Compile::AliasIdxRaw ||
duke@435 4394 n == m->memory_at(Compile::AliasIdxRaw)) {
duke@435 4395 expected_wide_mem = true;
duke@435 4396 } else if (!C->alias_type(alias_idx)->is_rewritable()) {
duke@435 4397 // memory can "leak through" calls on channels that
duke@435 4398 // are write-once. Allow this also.
duke@435 4399 expected_wide_mem = true;
duke@435 4400 }
duke@435 4401 assert(expected_wide_mem, "expected narrow slice replacement");
duke@435 4402 }
duke@435 4403 }
duke@435 4404 #else // !ASSERT
ccheung@5259 4405 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op
duke@435 4406 #endif
duke@435 4407
duke@435 4408
duke@435 4409 //-----------------------------memory_at---------------------------------------
duke@435 4410 Node* MergeMemNode::memory_at(uint alias_idx) const {
duke@435 4411 assert(alias_idx >= Compile::AliasIdxRaw ||
duke@435 4412 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
duke@435 4413 "must avoid base_memory and AliasIdxTop");
duke@435 4414
duke@435 4415 // Otherwise, it is a narrow slice.
duke@435 4416 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
duke@435 4417 Compile *C = Compile::current();
duke@435 4418 if (is_empty_memory(n)) {
duke@435 4419 // the array is sparse; empty slots are the "top" node
duke@435 4420 n = base_memory();
duke@435 4421 assert(Node::in_dump()
duke@435 4422 || n == NULL || n->bottom_type() == Type::TOP
kvn@2599 4423 || n->adr_type() == NULL // address is TOP
duke@435 4424 || n->adr_type() == TypePtr::BOTTOM
duke@435 4425 || n->adr_type() == TypeRawPtr::BOTTOM
duke@435 4426 || Compile::current()->AliasLevel() == 0,
duke@435 4427 "must be a wide memory");
duke@435 4428 // AliasLevel == 0 if we are organizing the memory states manually.
duke@435 4429 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
duke@435 4430 } else {
duke@435 4431 // make sure the stored slice is sane
duke@435 4432 #ifdef ASSERT
duke@435 4433 if (is_error_reported() || Node::in_dump()) {
duke@435 4434 } else if (might_be_same(n, base_memory())) {
duke@435 4435 // Give it a pass: It is a mostly harmless repetition of the base.
duke@435 4436 // This can arise normally from node subsumption during optimization.
duke@435 4437 } else {
duke@435 4438 verify_memory_slice(this, alias_idx, n);
duke@435 4439 }
duke@435 4440 #endif
duke@435 4441 }
duke@435 4442 return n;
duke@435 4443 }
duke@435 4444
duke@435 4445 //---------------------------set_memory_at-------------------------------------
duke@435 4446 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
duke@435 4447 verify_memory_slice(this, alias_idx, n);
duke@435 4448 Node* empty_mem = empty_memory();
duke@435 4449 if (n == base_memory()) n = empty_mem; // collapse default
duke@435 4450 uint need_req = alias_idx+1;
duke@435 4451 if (req() < need_req) {
duke@435 4452 if (n == empty_mem) return; // already the default, so do not grow me
duke@435 4453 // grow the sparse array
duke@435 4454 do {
duke@435 4455 add_req(empty_mem);
duke@435 4456 } while (req() < need_req);
duke@435 4457 }
duke@435 4458 set_req( alias_idx, n );
duke@435 4459 }
duke@435 4460
duke@435 4461
duke@435 4462
duke@435 4463 //--------------------------iteration_setup------------------------------------
duke@435 4464 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
duke@435 4465 if (other != NULL) {
duke@435 4466 grow_to_match(other);
duke@435 4467 // invariant: the finite support of mm2 is within mm->req()
duke@435 4468 #ifdef ASSERT
duke@435 4469 for (uint i = req(); i < other->req(); i++) {
duke@435 4470 assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
duke@435 4471 }
duke@435 4472 #endif
duke@435 4473 }
duke@435 4474 // Replace spurious copies of base_memory by top.
duke@435 4475 Node* base_mem = base_memory();
duke@435 4476 if (base_mem != NULL && !base_mem->is_top()) {
duke@435 4477 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
duke@435 4478 if (in(i) == base_mem)
duke@435 4479 set_req(i, empty_memory());
duke@435 4480 }
duke@435 4481 }
duke@435 4482 }
duke@435 4483
duke@435 4484 //---------------------------grow_to_match-------------------------------------
duke@435 4485 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
duke@435 4486 Node* empty_mem = empty_memory();
duke@435 4487 assert(other->is_empty_memory(empty_mem), "consistent sentinels");
duke@435 4488 // look for the finite support of the other memory
duke@435 4489 for (uint i = other->req(); --i >= req(); ) {
duke@435 4490 if (other->in(i) != empty_mem) {
duke@435 4491 uint new_len = i+1;
duke@435 4492 while (req() < new_len) add_req(empty_mem);
duke@435 4493 break;
duke@435 4494 }
duke@435 4495 }
duke@435 4496 }
duke@435 4497
duke@435 4498 //---------------------------verify_sparse-------------------------------------
duke@435 4499 #ifndef PRODUCT
duke@435 4500 bool MergeMemNode::verify_sparse() const {
duke@435 4501 assert(is_empty_memory(make_empty_memory()), "sane sentinel");
duke@435 4502 Node* base_mem = base_memory();
duke@435 4503 // The following can happen in degenerate cases, since empty==top.
duke@435 4504 if (is_empty_memory(base_mem)) return true;
duke@435 4505 for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
duke@435 4506 assert(in(i) != NULL, "sane slice");
duke@435 4507 if (in(i) == base_mem) return false; // should have been the sentinel value!
duke@435 4508 }
duke@435 4509 return true;
duke@435 4510 }
duke@435 4511
duke@435 4512 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
duke@435 4513 Node* n;
duke@435 4514 n = mm->in(idx);
duke@435 4515 if (mem == n) return true; // might be empty_memory()
duke@435 4516 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
duke@435 4517 if (mem == n) return true;
duke@435 4518 while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
duke@435 4519 if (mem == n) return true;
duke@435 4520 if (n == NULL) break;
duke@435 4521 }
duke@435 4522 return false;
duke@435 4523 }
duke@435 4524 #endif // !PRODUCT

mercurial