src/cpu/sparc/vm/stubGenerator_sparc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2978
d83ac25d0304
child 3092
baf763f388e6
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_sparc.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef COMPILER2
    48 #include "opto/runtime.hpp"
    49 #endif
    51 // Declaration and definition of StubGenerator (no .hpp file).
    52 // For a more detailed description of the stub routine structure
    53 // see the comment in stubRoutines.hpp.
    55 #define __ _masm->
    57 #ifdef PRODUCT
    58 #define BLOCK_COMMENT(str) /* nothing */
    59 #else
    60 #define BLOCK_COMMENT(str) __ block_comment(str)
    61 #endif
    63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    65 // Note:  The register L7 is used as L7_thread_cache, and may not be used
    66 //        any other way within this module.
    69 static const Register& Lstub_temp = L2;
    71 // -------------------------------------------------------------------------------------------------------------------------
    72 // Stub Code definitions
    74 static address handle_unsafe_access() {
    75   JavaThread* thread = JavaThread::current();
    76   address pc  = thread->saved_exception_pc();
    77   address npc = thread->saved_exception_npc();
    78   // pc is the instruction which we must emulate
    79   // doing a no-op is fine:  return garbage from the load
    81   // request an async exception
    82   thread->set_pending_unsafe_access_error();
    84   // return address of next instruction to execute
    85   return npc;
    86 }
    88 class StubGenerator: public StubCodeGenerator {
    89  private:
    91 #ifdef PRODUCT
    92 #define inc_counter_np(a,b,c) (0)
    93 #else
    94 #define inc_counter_np(counter, t1, t2) \
    95   BLOCK_COMMENT("inc_counter " #counter); \
    96   __ inc_counter(&counter, t1, t2);
    97 #endif
    99   //----------------------------------------------------------------------------------------------------
   100   // Call stubs are used to call Java from C
   102   address generate_call_stub(address& return_pc) {
   103     StubCodeMark mark(this, "StubRoutines", "call_stub");
   104     address start = __ pc();
   106     // Incoming arguments:
   107     //
   108     // o0         : call wrapper address
   109     // o1         : result (address)
   110     // o2         : result type
   111     // o3         : method
   112     // o4         : (interpreter) entry point
   113     // o5         : parameters (address)
   114     // [sp + 0x5c]: parameter size (in words)
   115     // [sp + 0x60]: thread
   116     //
   117     // +---------------+ <--- sp + 0
   118     // |               |
   119     // . reg save area .
   120     // |               |
   121     // +---------------+ <--- sp + 0x40
   122     // |               |
   123     // . extra 7 slots .
   124     // |               |
   125     // +---------------+ <--- sp + 0x5c
   126     // |  param. size  |
   127     // +---------------+ <--- sp + 0x60
   128     // |    thread     |
   129     // +---------------+
   130     // |               |
   132     // note: if the link argument position changes, adjust
   133     //       the code in frame::entry_frame_call_wrapper()
   135     const Argument link           = Argument(0, false); // used only for GC
   136     const Argument result         = Argument(1, false);
   137     const Argument result_type    = Argument(2, false);
   138     const Argument method         = Argument(3, false);
   139     const Argument entry_point    = Argument(4, false);
   140     const Argument parameters     = Argument(5, false);
   141     const Argument parameter_size = Argument(6, false);
   142     const Argument thread         = Argument(7, false);
   144     // setup thread register
   145     __ ld_ptr(thread.as_address(), G2_thread);
   146     __ reinit_heapbase();
   148 #ifdef ASSERT
   149     // make sure we have no pending exceptions
   150     { const Register t = G3_scratch;
   151       Label L;
   152       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
   153       __ br_null_short(t, Assembler::pt, L);
   154       __ stop("StubRoutines::call_stub: entered with pending exception");
   155       __ bind(L);
   156     }
   157 #endif
   159     // create activation frame & allocate space for parameters
   160     { const Register t = G3_scratch;
   161       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
   162       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
   163       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
   164       __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
   165       __ neg(t);                                                // negate so it can be used with save
   166       __ save(SP, t, SP);                                       // setup new frame
   167     }
   169     // +---------------+ <--- sp + 0
   170     // |               |
   171     // . reg save area .
   172     // |               |
   173     // +---------------+ <--- sp + 0x40
   174     // |               |
   175     // . extra 7 slots .
   176     // |               |
   177     // +---------------+ <--- sp + 0x5c
   178     // |  empty slot   |      (only if parameter size is even)
   179     // +---------------+
   180     // |               |
   181     // .  parameters   .
   182     // |               |
   183     // +---------------+ <--- fp + 0
   184     // |               |
   185     // . reg save area .
   186     // |               |
   187     // +---------------+ <--- fp + 0x40
   188     // |               |
   189     // . extra 7 slots .
   190     // |               |
   191     // +---------------+ <--- fp + 0x5c
   192     // |  param. size  |
   193     // +---------------+ <--- fp + 0x60
   194     // |    thread     |
   195     // +---------------+
   196     // |               |
   198     // pass parameters if any
   199     BLOCK_COMMENT("pass parameters if any");
   200     { const Register src = parameters.as_in().as_register();
   201       const Register dst = Lentry_args;
   202       const Register tmp = G3_scratch;
   203       const Register cnt = G4_scratch;
   205       // test if any parameters & setup of Lentry_args
   206       Label exit;
   207       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
   208       __ add( FP, STACK_BIAS, dst );
   209       __ cmp_zero_and_br(Assembler::zero, cnt, exit);
   210       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
   212       // copy parameters if any
   213       Label loop;
   214       __ BIND(loop);
   215       // Store parameter value
   216       __ ld_ptr(src, 0, tmp);
   217       __ add(src, BytesPerWord, src);
   218       __ st_ptr(tmp, dst, 0);
   219       __ deccc(cnt);
   220       __ br(Assembler::greater, false, Assembler::pt, loop);
   221       __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
   223       // done
   224       __ BIND(exit);
   225     }
   227     // setup parameters, method & call Java function
   228 #ifdef ASSERT
   229     // layout_activation_impl checks it's notion of saved SP against
   230     // this register, so if this changes update it as well.
   231     const Register saved_SP = Lscratch;
   232     __ mov(SP, saved_SP);                               // keep track of SP before call
   233 #endif
   235     // setup parameters
   236     const Register t = G3_scratch;
   237     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
   238     __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
   239     __ sub(FP, t, Gargs);                              // setup parameter pointer
   240 #ifdef _LP64
   241     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
   242 #endif
   243     __ mov(SP, O5_savedSP);
   246     // do the call
   247     //
   248     // the following register must be setup:
   249     //
   250     // G2_thread
   251     // G5_method
   252     // Gargs
   253     BLOCK_COMMENT("call Java function");
   254     __ jmpl(entry_point.as_in().as_register(), G0, O7);
   255     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
   257     BLOCK_COMMENT("call_stub_return_address:");
   258     return_pc = __ pc();
   260     // The callee, if it wasn't interpreted, can return with SP changed so
   261     // we can no longer assert of change of SP.
   263     // store result depending on type
   264     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
   265     //  is treated as T_INT)
   266     { const Register addr = result     .as_in().as_register();
   267       const Register type = result_type.as_in().as_register();
   268       Label is_long, is_float, is_double, is_object, exit;
   269       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
   270       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
   271       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
   272       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
   273       __ delayed()->nop();
   275       // store int result
   276       __ st(O0, addr, G0);
   278       __ BIND(exit);
   279       __ ret();
   280       __ delayed()->restore();
   282       __ BIND(is_object);
   283       __ ba(exit);
   284       __ delayed()->st_ptr(O0, addr, G0);
   286       __ BIND(is_float);
   287       __ ba(exit);
   288       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
   290       __ BIND(is_double);
   291       __ ba(exit);
   292       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
   294       __ BIND(is_long);
   295 #ifdef _LP64
   296       __ ba(exit);
   297       __ delayed()->st_long(O0, addr, G0);      // store entire long
   298 #else
   299 #if defined(COMPILER2)
   300   // All return values are where we want them, except for Longs.  C2 returns
   301   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   302   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   303   // build we simply always use G1.
   304   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   305   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   306   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   308       __ ba(exit);
   309       __ delayed()->stx(G1, addr, G0);  // store entire long
   310 #else
   311       __ st(O1, addr, BytesPerInt);
   312       __ ba(exit);
   313       __ delayed()->st(O0, addr, G0);
   314 #endif /* COMPILER2 */
   315 #endif /* _LP64 */
   316      }
   317      return start;
   318   }
   321   //----------------------------------------------------------------------------------------------------
   322   // Return point for a Java call if there's an exception thrown in Java code.
   323   // The exception is caught and transformed into a pending exception stored in
   324   // JavaThread that can be tested from within the VM.
   325   //
   326   // Oexception: exception oop
   328   address generate_catch_exception() {
   329     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   331     address start = __ pc();
   332     // verify that thread corresponds
   333     __ verify_thread();
   335     const Register& temp_reg = Gtemp;
   336     Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
   337     Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
   338     Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
   340     // set pending exception
   341     __ verify_oop(Oexception);
   342     __ st_ptr(Oexception, pending_exception_addr);
   343     __ set((intptr_t)__FILE__, temp_reg);
   344     __ st_ptr(temp_reg, exception_file_offset_addr);
   345     __ set((intptr_t)__LINE__, temp_reg);
   346     __ st(temp_reg, exception_line_offset_addr);
   348     // complete return to VM
   349     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
   351     AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
   352     __ jump_to(stub_ret, temp_reg);
   353     __ delayed()->nop();
   355     return start;
   356   }
   359   //----------------------------------------------------------------------------------------------------
   360   // Continuation point for runtime calls returning with a pending exception
   361   // The pending exception check happened in the runtime or native call stub
   362   // The pending exception in Thread is converted into a Java-level exception
   363   //
   364   // Contract with Java-level exception handler: O0 = exception
   365   //                                             O1 = throwing pc
   367   address generate_forward_exception() {
   368     StubCodeMark mark(this, "StubRoutines", "forward_exception");
   369     address start = __ pc();
   371     // Upon entry, O7 has the return address returning into Java
   372     // (interpreted or compiled) code; i.e. the return address
   373     // becomes the throwing pc.
   375     const Register& handler_reg = Gtemp;
   377     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   379 #ifdef ASSERT
   380     // make sure that this code is only executed if there is a pending exception
   381     { Label L;
   382       __ ld_ptr(exception_addr, Gtemp);
   383       __ br_notnull_short(Gtemp, Assembler::pt, L);
   384       __ stop("StubRoutines::forward exception: no pending exception (1)");
   385       __ bind(L);
   386     }
   387 #endif
   389     // compute exception handler into handler_reg
   390     __ get_thread();
   391     __ ld_ptr(exception_addr, Oexception);
   392     __ verify_oop(Oexception);
   393     __ save_frame(0);             // compensates for compiler weakness
   394     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
   395     BLOCK_COMMENT("call exception_handler_for_return_address");
   396     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
   397     __ mov(O0, handler_reg);
   398     __ restore();                 // compensates for compiler weakness
   400     __ ld_ptr(exception_addr, Oexception);
   401     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
   403 #ifdef ASSERT
   404     // make sure exception is set
   405     { Label L;
   406       __ br_notnull_short(Oexception, Assembler::pt, L);
   407       __ stop("StubRoutines::forward exception: no pending exception (2)");
   408       __ bind(L);
   409     }
   410 #endif
   411     // jump to exception handler
   412     __ jmp(handler_reg, 0);
   413     // clear pending exception
   414     __ delayed()->st_ptr(G0, exception_addr);
   416     return start;
   417   }
   420   //------------------------------------------------------------------------------------------------------------------------
   421   // Continuation point for throwing of implicit exceptions that are not handled in
   422   // the current activation. Fabricates an exception oop and initiates normal
   423   // exception dispatching in this frame. Only callee-saved registers are preserved
   424   // (through the normal register window / RegisterMap handling).
   425   // If the compiler needs all registers to be preserved between the fault
   426   // point and the exception handler then it must assume responsibility for that in
   427   // AbstractCompiler::continuation_for_implicit_null_exception or
   428   // continuation_for_implicit_division_by_zero_exception. All other implicit
   429   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
   430   // either at call sites or otherwise assume that stack unwinding will be initiated,
   431   // so caller saved registers were assumed volatile in the compiler.
   433   // Note that we generate only this stub into a RuntimeStub, because it needs to be
   434   // properly traversed and ignored during GC, so we change the meaning of the "__"
   435   // macro within this method.
   436 #undef __
   437 #define __ masm->
   439   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
   440                                    Register arg1 = noreg, Register arg2 = noreg) {
   441 #ifdef ASSERT
   442     int insts_size = VerifyThread ? 1 * K : 600;
   443 #else
   444     int insts_size = VerifyThread ? 1 * K : 256;
   445 #endif /* ASSERT */
   446     int locs_size  = 32;
   448     CodeBuffer      code(name, insts_size, locs_size);
   449     MacroAssembler* masm = new MacroAssembler(&code);
   451     __ verify_thread();
   453     // This is an inlined and slightly modified version of call_VM
   454     // which has the ability to fetch the return PC out of thread-local storage
   455     __ assert_not_delayed();
   457     // Note that we always push a frame because on the SPARC
   458     // architecture, for all of our implicit exception kinds at call
   459     // sites, the implicit exception is taken before the callee frame
   460     // is pushed.
   461     __ save_frame(0);
   463     int frame_complete = __ offset();
   465     if (restore_saved_exception_pc) {
   466       __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
   467       __ sub(I7, frame::pc_return_offset, I7);
   468     }
   470     // Note that we always have a runtime stub frame on the top of stack by this point
   471     Register last_java_sp = SP;
   472     // 64-bit last_java_sp is biased!
   473     __ set_last_Java_frame(last_java_sp, G0);
   474     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
   475     __ save_thread(noreg);
   476     if (arg1 != noreg) {
   477       assert(arg2 != O1, "clobbered");
   478       __ mov(arg1, O1);
   479     }
   480     if (arg2 != noreg) {
   481       __ mov(arg2, O2);
   482     }
   483     // do the call
   484     BLOCK_COMMENT("call runtime_entry");
   485     __ call(runtime_entry, relocInfo::runtime_call_type);
   486     if (!VerifyThread)
   487       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
   488     else
   489       __ delayed()->nop();             // (thread already passed)
   490     __ restore_thread(noreg);
   491     __ reset_last_Java_frame();
   493     // check for pending exceptions. use Gtemp as scratch register.
   494 #ifdef ASSERT
   495     Label L;
   497     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   498     Register scratch_reg = Gtemp;
   499     __ ld_ptr(exception_addr, scratch_reg);
   500     __ br_notnull_short(scratch_reg, Assembler::pt, L);
   501     __ should_not_reach_here();
   502     __ bind(L);
   503 #endif // ASSERT
   504     BLOCK_COMMENT("call forward_exception_entry");
   505     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   506     // we use O7 linkage so that forward_exception_entry has the issuing PC
   507     __ delayed()->restore();
   509     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
   510     return stub->entry_point();
   511   }
   513 #undef __
   514 #define __ _masm->
   517   // Generate a routine that sets all the registers so we
   518   // can tell if the stop routine prints them correctly.
   519   address generate_test_stop() {
   520     StubCodeMark mark(this, "StubRoutines", "test_stop");
   521     address start = __ pc();
   523     int i;
   525     __ save_frame(0);
   527     static jfloat zero = 0.0, one = 1.0;
   529     // put addr in L0, then load through L0 to F0
   530     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
   531     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
   533     // use add to put 2..18 in F2..F18
   534     for ( i = 2;  i <= 18;  ++i ) {
   535       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
   536     }
   538     // Now put double 2 in F16, double 18 in F18
   539     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
   540     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
   542     // use add to put 20..32 in F20..F32
   543     for (i = 20; i < 32; i += 2) {
   544       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
   545     }
   547     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
   548     for ( i = 0; i < 8; ++i ) {
   549       if (i < 6) {
   550         __ set(     i, as_iRegister(i));
   551         __ set(16 + i, as_oRegister(i));
   552         __ set(24 + i, as_gRegister(i));
   553       }
   554       __ set( 8 + i, as_lRegister(i));
   555     }
   557     __ stop("testing stop");
   560     __ ret();
   561     __ delayed()->restore();
   563     return start;
   564   }
   567   address generate_stop_subroutine() {
   568     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
   569     address start = __ pc();
   571     __ stop_subroutine();
   573     return start;
   574   }
   576   address generate_flush_callers_register_windows() {
   577     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
   578     address start = __ pc();
   580     __ flush_windows();
   581     __ retl(false);
   582     __ delayed()->add( FP, STACK_BIAS, O0 );
   583     // The returned value must be a stack pointer whose register save area
   584     // is flushed, and will stay flushed while the caller executes.
   586     return start;
   587   }
   589   // Helper functions for v8 atomic operations.
   590   //
   591   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
   592     if (mark_oop_reg == noreg) {
   593       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
   594       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   595     } else {
   596       assert(scratch_reg != noreg, "just checking");
   597       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
   598       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   599       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
   600       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
   601     }
   602   }
   604   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   606     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
   607     __ set(StubRoutines::Sparc::locked, lock_reg);
   608     // Initialize yield counter
   609     __ mov(G0,yield_reg);
   611     __ BIND(retry);
   612     __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
   614     // This code can only be called from inside the VM, this
   615     // stub is only invoked from Atomic::add().  We do not
   616     // want to use call_VM, because _last_java_sp and such
   617     // must already be set.
   618     //
   619     // Save the regs and make space for a C call
   620     __ save(SP, -96, SP);
   621     __ save_all_globals_into_locals();
   622     BLOCK_COMMENT("call os::naked_sleep");
   623     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
   624     __ delayed()->nop();
   625     __ restore_globals_from_locals();
   626     __ restore();
   627     // reset the counter
   628     __ mov(G0,yield_reg);
   630     __ BIND(dontyield);
   632     // try to get lock
   633     __ swap(lock_ptr_reg, 0, lock_reg);
   635     // did we get the lock?
   636     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
   637     __ br(Assembler::notEqual, true, Assembler::pn, retry);
   638     __ delayed()->add(yield_reg,1,yield_reg);
   640     // yes, got lock. do the operation here.
   641   }
   643   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   644     __ st(lock_reg, lock_ptr_reg, 0); // unlock
   645   }
   647   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
   648   //
   649   // Arguments :
   650   //
   651   //      exchange_value: O0
   652   //      dest:           O1
   653   //
   654   // Results:
   655   //
   656   //     O0: the value previously stored in dest
   657   //
   658   address generate_atomic_xchg() {
   659     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   660     address start = __ pc();
   662     if (UseCASForSwap) {
   663       // Use CAS instead of swap, just in case the MP hardware
   664       // prefers to work with just one kind of synch. instruction.
   665       Label retry;
   666       __ BIND(retry);
   667       __ mov(O0, O3);       // scratch copy of exchange value
   668       __ ld(O1, 0, O2);     // observe the previous value
   669       // try to replace O2 with O3
   670       __ cas_under_lock(O1, O2, O3,
   671       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   672       __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
   674       __ retl(false);
   675       __ delayed()->mov(O2, O0);  // report previous value to caller
   677     } else {
   678       if (VM_Version::v9_instructions_work()) {
   679         __ retl(false);
   680         __ delayed()->swap(O1, 0, O0);
   681       } else {
   682         const Register& lock_reg = O2;
   683         const Register& lock_ptr_reg = O3;
   684         const Register& yield_reg = O4;
   686         Label retry;
   687         Label dontyield;
   689         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   690         // got the lock, do the swap
   691         __ swap(O1, 0, O0);
   693         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   694         __ retl(false);
   695         __ delayed()->nop();
   696       }
   697     }
   699     return start;
   700   }
   703   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
   704   //
   705   // Arguments :
   706   //
   707   //      exchange_value: O0
   708   //      dest:           O1
   709   //      compare_value:  O2
   710   //
   711   // Results:
   712   //
   713   //     O0: the value previously stored in dest
   714   //
   715   // Overwrites (v8): O3,O4,O5
   716   //
   717   address generate_atomic_cmpxchg() {
   718     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   719     address start = __ pc();
   721     // cmpxchg(dest, compare_value, exchange_value)
   722     __ cas_under_lock(O1, O2, O0,
   723       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   724     __ retl(false);
   725     __ delayed()->nop();
   727     return start;
   728   }
   730   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
   731   //
   732   // Arguments :
   733   //
   734   //      exchange_value: O1:O0
   735   //      dest:           O2
   736   //      compare_value:  O4:O3
   737   //
   738   // Results:
   739   //
   740   //     O1:O0: the value previously stored in dest
   741   //
   742   // This only works on V9, on V8 we don't generate any
   743   // code and just return NULL.
   744   //
   745   // Overwrites: G1,G2,G3
   746   //
   747   address generate_atomic_cmpxchg_long() {
   748     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   749     address start = __ pc();
   751     if (!VM_Version::supports_cx8())
   752         return NULL;;
   753     __ sllx(O0, 32, O0);
   754     __ srl(O1, 0, O1);
   755     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
   756     __ sllx(O3, 32, O3);
   757     __ srl(O4, 0, O4);
   758     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
   759     __ casx(O2, O3, O0);
   760     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
   761     __ retl(false);
   762     __ delayed()->srlx(O0, 32, O0);
   764     return start;
   765   }
   768   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
   769   //
   770   // Arguments :
   771   //
   772   //      add_value: O0   (e.g., +1 or -1)
   773   //      dest:      O1
   774   //
   775   // Results:
   776   //
   777   //     O0: the new value stored in dest
   778   //
   779   // Overwrites (v9): O3
   780   // Overwrites (v8): O3,O4,O5
   781   //
   782   address generate_atomic_add() {
   783     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   784     address start = __ pc();
   785     __ BIND(_atomic_add_stub);
   787     if (VM_Version::v9_instructions_work()) {
   788       Label(retry);
   789       __ BIND(retry);
   791       __ lduw(O1, 0, O2);
   792       __ add(O0, O2, O3);
   793       __ cas(O1, O2, O3);
   794       __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
   795       __ retl(false);
   796       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
   797     } else {
   798       const Register& lock_reg = O2;
   799       const Register& lock_ptr_reg = O3;
   800       const Register& value_reg = O4;
   801       const Register& yield_reg = O5;
   803       Label(retry);
   804       Label(dontyield);
   806       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   807       // got lock, do the increment
   808       __ ld(O1, 0, value_reg);
   809       __ add(O0, value_reg, value_reg);
   810       __ st(value_reg, O1, 0);
   812       // %%% only for RMO and PSO
   813       __ membar(Assembler::StoreStore);
   815       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   817       __ retl(false);
   818       __ delayed()->mov(value_reg, O0);
   819     }
   821     return start;
   822   }
   823   Label _atomic_add_stub;  // called from other stubs
   826   //------------------------------------------------------------------------------------------------------------------------
   827   // The following routine generates a subroutine to throw an asynchronous
   828   // UnknownError when an unsafe access gets a fault that could not be
   829   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   830   //
   831   // Arguments :
   832   //
   833   //      trapping PC:    O7
   834   //
   835   // Results:
   836   //     posts an asynchronous exception, skips the trapping instruction
   837   //
   839   address generate_handler_for_unsafe_access() {
   840     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   841     address start = __ pc();
   843     const int preserve_register_words = (64 * 2);
   844     Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
   846     Register Lthread = L7_thread_cache;
   847     int i;
   849     __ save_frame(0);
   850     __ mov(G1, L1);
   851     __ mov(G2, L2);
   852     __ mov(G3, L3);
   853     __ mov(G4, L4);
   854     __ mov(G5, L5);
   855     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   856       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
   857     }
   859     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
   860     BLOCK_COMMENT("call handle_unsafe_access");
   861     __ call(entry_point, relocInfo::runtime_call_type);
   862     __ delayed()->nop();
   864     __ mov(L1, G1);
   865     __ mov(L2, G2);
   866     __ mov(L3, G3);
   867     __ mov(L4, G4);
   868     __ mov(L5, G5);
   869     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   870       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
   871     }
   873     __ verify_thread();
   875     __ jmp(O0, 0);
   876     __ delayed()->restore();
   878     return start;
   879   }
   882   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
   883   // Arguments :
   884   //
   885   //      ret  : O0, returned
   886   //      icc/xcc: set as O0 (depending on wordSize)
   887   //      sub  : O1, argument, not changed
   888   //      super: O2, argument, not changed
   889   //      raddr: O7, blown by call
   890   address generate_partial_subtype_check() {
   891     __ align(CodeEntryAlignment);
   892     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
   893     address start = __ pc();
   894     Label miss;
   896 #if defined(COMPILER2) && !defined(_LP64)
   897     // Do not use a 'save' because it blows the 64-bit O registers.
   898     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
   899     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
   900     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
   901     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
   902     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
   903     Register Rret   = O0;
   904     Register Rsub   = O1;
   905     Register Rsuper = O2;
   906 #else
   907     __ save_frame(0);
   908     Register Rret   = I0;
   909     Register Rsub   = I1;
   910     Register Rsuper = I2;
   911 #endif
   913     Register L0_ary_len = L0;
   914     Register L1_ary_ptr = L1;
   915     Register L2_super   = L2;
   916     Register L3_index   = L3;
   918     __ check_klass_subtype_slow_path(Rsub, Rsuper,
   919                                      L0, L1, L2, L3,
   920                                      NULL, &miss);
   922     // Match falls through here.
   923     __ addcc(G0,0,Rret);        // set Z flags, Z result
   925 #if defined(COMPILER2) && !defined(_LP64)
   926     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   927     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   928     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   929     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   930     __ retl();                  // Result in Rret is zero; flags set to Z
   931     __ delayed()->add(SP,4*wordSize,SP);
   932 #else
   933     __ ret();                   // Result in Rret is zero; flags set to Z
   934     __ delayed()->restore();
   935 #endif
   937     __ BIND(miss);
   938     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
   940 #if defined(COMPILER2) && !defined(_LP64)
   941     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   942     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   943     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   944     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   945     __ retl();                  // Result in Rret is != 0; flags set to NZ
   946     __ delayed()->add(SP,4*wordSize,SP);
   947 #else
   948     __ ret();                   // Result in Rret is != 0; flags set to NZ
   949     __ delayed()->restore();
   950 #endif
   952     return start;
   953   }
   956   // Called from MacroAssembler::verify_oop
   957   //
   958   address generate_verify_oop_subroutine() {
   959     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
   961     address start = __ pc();
   963     __ verify_oop_subroutine();
   965     return start;
   966   }
   969   //
   970   // Verify that a register contains clean 32-bits positive value
   971   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
   972   //
   973   //  Input:
   974   //    Rint  -  32-bits value
   975   //    Rtmp  -  scratch
   976   //
   977   void assert_clean_int(Register Rint, Register Rtmp) {
   978 #if defined(ASSERT) && defined(_LP64)
   979     __ signx(Rint, Rtmp);
   980     __ cmp(Rint, Rtmp);
   981     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
   982 #endif
   983   }
   985   //
   986   //  Generate overlap test for array copy stubs
   987   //
   988   //  Input:
   989   //    O0    -  array1
   990   //    O1    -  array2
   991   //    O2    -  element count
   992   //
   993   //  Kills temps:  O3, O4
   994   //
   995   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
   996     assert(no_overlap_target != NULL, "must be generated");
   997     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
   998   }
   999   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
  1000     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
  1002   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
  1003     const Register from       = O0;
  1004     const Register to         = O1;
  1005     const Register count      = O2;
  1006     const Register to_from    = O3; // to - from
  1007     const Register byte_count = O4; // count << log2_elem_size
  1009       __ subcc(to, from, to_from);
  1010       __ sll_ptr(count, log2_elem_size, byte_count);
  1011       if (NOLp == NULL)
  1012         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1013       else
  1014         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
  1015       __ delayed()->cmp(to_from, byte_count);
  1016       if (NOLp == NULL)
  1017         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1018       else
  1019         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
  1020       __ delayed()->nop();
  1023   //
  1024   //  Generate pre-write barrier for array.
  1025   //
  1026   //  Input:
  1027   //     addr     - register containing starting address
  1028   //     count    - register containing element count
  1029   //     tmp      - scratch register
  1030   //
  1031   //  The input registers are overwritten.
  1032   //
  1033   void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
  1034     BarrierSet* bs = Universe::heap()->barrier_set();
  1035     switch (bs->kind()) {
  1036       case BarrierSet::G1SATBCT:
  1037       case BarrierSet::G1SATBCTLogging:
  1038         // With G1, don't generate the call if we statically know that the target in uninitialized
  1039         if (!dest_uninitialized) {
  1040           __ save_frame(0);
  1041           // Save the necessary global regs... will be used after.
  1042           if (addr->is_global()) {
  1043             __ mov(addr, L0);
  1045           if (count->is_global()) {
  1046             __ mov(count, L1);
  1048           __ mov(addr->after_save(), O0);
  1049           // Get the count into O1
  1050           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
  1051           __ delayed()->mov(count->after_save(), O1);
  1052           if (addr->is_global()) {
  1053             __ mov(L0, addr);
  1055           if (count->is_global()) {
  1056             __ mov(L1, count);
  1058           __ restore();
  1060         break;
  1061       case BarrierSet::CardTableModRef:
  1062       case BarrierSet::CardTableExtension:
  1063       case BarrierSet::ModRef:
  1064         break;
  1065       default:
  1066         ShouldNotReachHere();
  1069   //
  1070   //  Generate post-write barrier for array.
  1071   //
  1072   //  Input:
  1073   //     addr     - register containing starting address
  1074   //     count    - register containing element count
  1075   //     tmp      - scratch register
  1076   //
  1077   //  The input registers are overwritten.
  1078   //
  1079   void gen_write_ref_array_post_barrier(Register addr, Register count,
  1080                                         Register tmp) {
  1081     BarrierSet* bs = Universe::heap()->barrier_set();
  1083     switch (bs->kind()) {
  1084       case BarrierSet::G1SATBCT:
  1085       case BarrierSet::G1SATBCTLogging:
  1087           // Get some new fresh output registers.
  1088           __ save_frame(0);
  1089           __ mov(addr->after_save(), O0);
  1090           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1091           __ delayed()->mov(count->after_save(), O1);
  1092           __ restore();
  1094         break;
  1095       case BarrierSet::CardTableModRef:
  1096       case BarrierSet::CardTableExtension:
  1098           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1099           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1100           assert_different_registers(addr, count, tmp);
  1102           Label L_loop;
  1104           __ sll_ptr(count, LogBytesPerHeapOop, count);
  1105           __ sub(count, BytesPerHeapOop, count);
  1106           __ add(count, addr, count);
  1107           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1108           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
  1109           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
  1110           __ sub(count, addr, count);
  1111           AddressLiteral rs(ct->byte_map_base);
  1112           __ set(rs, tmp);
  1113         __ BIND(L_loop);
  1114           __ stb(G0, tmp, addr);
  1115           __ subcc(count, 1, count);
  1116           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1117           __ delayed()->add(addr, 1, addr);
  1119         break;
  1120       case BarrierSet::ModRef:
  1121         break;
  1122       default:
  1123         ShouldNotReachHere();
  1128   // Copy big chunks forward with shift
  1129   //
  1130   // Inputs:
  1131   //   from      - source arrays
  1132   //   to        - destination array aligned to 8-bytes
  1133   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1134   //   count_dec - elements count's decrement equivalent to 16 bytes
  1135   //   L_copy_bytes - copy exit label
  1136   //
  1137   void copy_16_bytes_forward_with_shift(Register from, Register to,
  1138                      Register count, int count_dec, Label& L_copy_bytes) {
  1139     Label L_loop, L_aligned_copy, L_copy_last_bytes;
  1141     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1142       __ andcc(from, 7, G1); // misaligned bytes
  1143       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1144       __ delayed()->nop();
  1146     const Register left_shift  = G1; // left  shift bit counter
  1147     const Register right_shift = G5; // right shift bit counter
  1149       __ sll(G1, LogBitsPerByte, left_shift);
  1150       __ mov(64, right_shift);
  1151       __ sub(right_shift, left_shift, right_shift);
  1153     //
  1154     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1155     // to form 2 aligned 8-bytes chunks to store.
  1156     //
  1157       __ deccc(count, count_dec); // Pre-decrement 'count'
  1158       __ andn(from, 7, from);     // Align address
  1159       __ ldx(from, 0, O3);
  1160       __ inc(from, 8);
  1161       __ align(OptoLoopAlignment);
  1162     __ BIND(L_loop);
  1163       __ ldx(from, 0, O4);
  1164       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1165       __ ldx(from, 8, G4);
  1166       __ inc(to, 16);
  1167       __ inc(from, 16);
  1168       __ sllx(O3, left_shift,  O3);
  1169       __ srlx(O4, right_shift, G3);
  1170       __ bset(G3, O3);
  1171       __ stx(O3, to, -16);
  1172       __ sllx(O4, left_shift,  O4);
  1173       __ srlx(G4, right_shift, G3);
  1174       __ bset(G3, O4);
  1175       __ stx(O4, to, -8);
  1176       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1177       __ delayed()->mov(G4, O3);
  1179       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1180       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1181       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1183       // copy 8 bytes, part of them already loaded in O3
  1184       __ ldx(from, 0, O4);
  1185       __ inc(to, 8);
  1186       __ inc(from, 8);
  1187       __ sllx(O3, left_shift,  O3);
  1188       __ srlx(O4, right_shift, G3);
  1189       __ bset(O3, G3);
  1190       __ stx(G3, to, -8);
  1192     __ BIND(L_copy_last_bytes);
  1193       __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
  1194       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1195       __ delayed()->sub(from, right_shift, from);       // restore address
  1197     __ BIND(L_aligned_copy);
  1200   // Copy big chunks backward with shift
  1201   //
  1202   // Inputs:
  1203   //   end_from  - source arrays end address
  1204   //   end_to    - destination array end address aligned to 8-bytes
  1205   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1206   //   count_dec - elements count's decrement equivalent to 16 bytes
  1207   //   L_aligned_copy - aligned copy exit label
  1208   //   L_copy_bytes   - copy exit label
  1209   //
  1210   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
  1211                      Register count, int count_dec,
  1212                      Label& L_aligned_copy, Label& L_copy_bytes) {
  1213     Label L_loop, L_copy_last_bytes;
  1215     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1216       __ andcc(end_from, 7, G1); // misaligned bytes
  1217       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1218       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
  1220     const Register left_shift  = G1; // left  shift bit counter
  1221     const Register right_shift = G5; // right shift bit counter
  1223       __ sll(G1, LogBitsPerByte, left_shift);
  1224       __ mov(64, right_shift);
  1225       __ sub(right_shift, left_shift, right_shift);
  1227     //
  1228     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1229     // to form 2 aligned 8-bytes chunks to store.
  1230     //
  1231       __ andn(end_from, 7, end_from);     // Align address
  1232       __ ldx(end_from, 0, O3);
  1233       __ align(OptoLoopAlignment);
  1234     __ BIND(L_loop);
  1235       __ ldx(end_from, -8, O4);
  1236       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1237       __ ldx(end_from, -16, G4);
  1238       __ dec(end_to, 16);
  1239       __ dec(end_from, 16);
  1240       __ srlx(O3, right_shift, O3);
  1241       __ sllx(O4, left_shift,  G3);
  1242       __ bset(G3, O3);
  1243       __ stx(O3, end_to, 8);
  1244       __ srlx(O4, right_shift, O4);
  1245       __ sllx(G4, left_shift,  G3);
  1246       __ bset(G3, O4);
  1247       __ stx(O4, end_to, 0);
  1248       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1249       __ delayed()->mov(G4, O3);
  1251       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1252       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1253       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1255       // copy 8 bytes, part of them already loaded in O3
  1256       __ ldx(end_from, -8, O4);
  1257       __ dec(end_to, 8);
  1258       __ dec(end_from, 8);
  1259       __ srlx(O3, right_shift, O3);
  1260       __ sllx(O4, left_shift,  G3);
  1261       __ bset(O3, G3);
  1262       __ stx(G3, end_to, 0);
  1264     __ BIND(L_copy_last_bytes);
  1265       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
  1266       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1267       __ delayed()->add(end_from, left_shift, end_from); // restore address
  1270   //
  1271   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  1272   //  "from" and "to" addresses are assumed to be heapword aligned.
  1273   //
  1274   // Arguments for generated stub:
  1275   //      from:  O0
  1276   //      to:    O1
  1277   //      count: O2 treated as signed
  1278   //
  1279   address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
  1280     __ align(CodeEntryAlignment);
  1281     StubCodeMark mark(this, "StubRoutines", name);
  1282     address start = __ pc();
  1284     Label L_skip_alignment, L_align;
  1285     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1287     const Register from      = O0;   // source array address
  1288     const Register to        = O1;   // destination array address
  1289     const Register count     = O2;   // elements count
  1290     const Register offset    = O5;   // offset from start of arrays
  1291     // O3, O4, G3, G4 are used as temp registers
  1293     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1295     if (entry != NULL) {
  1296       *entry = __ pc();
  1297       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1298       BLOCK_COMMENT("Entry:");
  1301     // for short arrays, just do single element copy
  1302     __ cmp(count, 23); // 16 + 7
  1303     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1304     __ delayed()->mov(G0, offset);
  1306     if (aligned) {
  1307       // 'aligned' == true when it is known statically during compilation
  1308       // of this arraycopy call site that both 'from' and 'to' addresses
  1309       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1310       //
  1311       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1312       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
  1313       //
  1314 #ifndef _LP64
  1315       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
  1316       __ andcc(to, 7, G0);
  1317       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
  1318       __ delayed()->ld(from, 0, O3);
  1319       __ inc(from, 4);
  1320       __ inc(to, 4);
  1321       __ dec(count, 4);
  1322       __ st(O3, to, -4);
  1323     __ BIND(L_skip_alignment);
  1324 #endif
  1325     } else {
  1326       // copy bytes to align 'to' on 8 byte boundary
  1327       __ andcc(to, 7, G1); // misaligned bytes
  1328       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1329       __ delayed()->neg(G1);
  1330       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
  1331       __ sub(count, G1, count);
  1332     __ BIND(L_align);
  1333       __ ldub(from, 0, O3);
  1334       __ deccc(G1);
  1335       __ inc(from);
  1336       __ stb(O3, to, 0);
  1337       __ br(Assembler::notZero, false, Assembler::pt, L_align);
  1338       __ delayed()->inc(to);
  1339     __ BIND(L_skip_alignment);
  1341 #ifdef _LP64
  1342     if (!aligned)
  1343 #endif
  1345       // Copy with shift 16 bytes per iteration if arrays do not have
  1346       // the same alignment mod 8, otherwise fall through to the next
  1347       // code for aligned copy.
  1348       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
  1349       // Also jump over aligned copy after the copy with shift completed.
  1351       copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
  1354     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1355       __ and3(count, 7, G4); // Save count
  1356       __ srl(count, 3, count);
  1357      generate_disjoint_long_copy_core(aligned);
  1358       __ mov(G4, count);     // Restore count
  1360     // copy tailing bytes
  1361     __ BIND(L_copy_byte);
  1362       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1363       __ align(OptoLoopAlignment);
  1364     __ BIND(L_copy_byte_loop);
  1365       __ ldub(from, offset, O3);
  1366       __ deccc(count);
  1367       __ stb(O3, to, offset);
  1368       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
  1369       __ delayed()->inc(offset);
  1371     __ BIND(L_exit);
  1372       // O3, O4 are used as temp registers
  1373       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1374       __ retl();
  1375       __ delayed()->mov(G0, O0); // return 0
  1376     return start;
  1379   //
  1380   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  1381   //  "from" and "to" addresses are assumed to be heapword aligned.
  1382   //
  1383   // Arguments for generated stub:
  1384   //      from:  O0
  1385   //      to:    O1
  1386   //      count: O2 treated as signed
  1387   //
  1388   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
  1389                                       address *entry, const char *name) {
  1390     // Do reverse copy.
  1392     __ align(CodeEntryAlignment);
  1393     StubCodeMark mark(this, "StubRoutines", name);
  1394     address start = __ pc();
  1396     Label L_skip_alignment, L_align, L_aligned_copy;
  1397     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1399     const Register from      = O0;   // source array address
  1400     const Register to        = O1;   // destination array address
  1401     const Register count     = O2;   // elements count
  1402     const Register end_from  = from; // source array end address
  1403     const Register end_to    = to;   // destination array end address
  1405     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1407     if (entry != NULL) {
  1408       *entry = __ pc();
  1409       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1410       BLOCK_COMMENT("Entry:");
  1413     array_overlap_test(nooverlap_target, 0);
  1415     __ add(to, count, end_to);       // offset after last copied element
  1417     // for short arrays, just do single element copy
  1418     __ cmp(count, 23); // 16 + 7
  1419     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1420     __ delayed()->add(from, count, end_from);
  1423       // Align end of arrays since they could be not aligned even
  1424       // when arrays itself are aligned.
  1426       // copy bytes to align 'end_to' on 8 byte boundary
  1427       __ andcc(end_to, 7, G1); // misaligned bytes
  1428       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1429       __ delayed()->nop();
  1430       __ sub(count, G1, count);
  1431     __ BIND(L_align);
  1432       __ dec(end_from);
  1433       __ dec(end_to);
  1434       __ ldub(end_from, 0, O3);
  1435       __ deccc(G1);
  1436       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
  1437       __ delayed()->stb(O3, end_to, 0);
  1438     __ BIND(L_skip_alignment);
  1440 #ifdef _LP64
  1441     if (aligned) {
  1442       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1443       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1444       // in unaligned case.
  1445       __ dec(count, 16);
  1446     } else
  1447 #endif
  1449       // Copy with shift 16 bytes per iteration if arrays do not have
  1450       // the same alignment mod 8, otherwise jump to the next
  1451       // code for aligned copy (and substracting 16 from 'count' before jump).
  1452       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1453       // Also jump over aligned copy after the copy with shift completed.
  1455       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
  1456                                         L_aligned_copy, L_copy_byte);
  1458     // copy 4 elements (16 bytes) at a time
  1459       __ align(OptoLoopAlignment);
  1460     __ BIND(L_aligned_copy);
  1461       __ dec(end_from, 16);
  1462       __ ldx(end_from, 8, O3);
  1463       __ ldx(end_from, 0, O4);
  1464       __ dec(end_to, 16);
  1465       __ deccc(count, 16);
  1466       __ stx(O3, end_to, 8);
  1467       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1468       __ delayed()->stx(O4, end_to, 0);
  1469       __ inc(count, 16);
  1471     // copy 1 element (2 bytes) at a time
  1472     __ BIND(L_copy_byte);
  1473       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1474       __ align(OptoLoopAlignment);
  1475     __ BIND(L_copy_byte_loop);
  1476       __ dec(end_from);
  1477       __ dec(end_to);
  1478       __ ldub(end_from, 0, O4);
  1479       __ deccc(count);
  1480       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
  1481       __ delayed()->stb(O4, end_to, 0);
  1483     __ BIND(L_exit);
  1484     // O3, O4 are used as temp registers
  1485     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1486     __ retl();
  1487     __ delayed()->mov(G0, O0); // return 0
  1488     return start;
  1491   //
  1492   //  Generate stub for disjoint short copy.  If "aligned" is true, the
  1493   //  "from" and "to" addresses are assumed to be heapword aligned.
  1494   //
  1495   // Arguments for generated stub:
  1496   //      from:  O0
  1497   //      to:    O1
  1498   //      count: O2 treated as signed
  1499   //
  1500   address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
  1501     __ align(CodeEntryAlignment);
  1502     StubCodeMark mark(this, "StubRoutines", name);
  1503     address start = __ pc();
  1505     Label L_skip_alignment, L_skip_alignment2;
  1506     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1508     const Register from      = O0;   // source array address
  1509     const Register to        = O1;   // destination array address
  1510     const Register count     = O2;   // elements count
  1511     const Register offset    = O5;   // offset from start of arrays
  1512     // O3, O4, G3, G4 are used as temp registers
  1514     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1516     if (entry != NULL) {
  1517       *entry = __ pc();
  1518       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1519       BLOCK_COMMENT("Entry:");
  1522     // for short arrays, just do single element copy
  1523     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1524     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1525     __ delayed()->mov(G0, offset);
  1527     if (aligned) {
  1528       // 'aligned' == true when it is known statically during compilation
  1529       // of this arraycopy call site that both 'from' and 'to' addresses
  1530       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1531       //
  1532       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1533       // and 8 bytes - in 64-bits VM.
  1534       //
  1535 #ifndef _LP64
  1536       // copy a 2-elements word if necessary to align 'to' to 8 bytes
  1537       __ andcc(to, 7, G0);
  1538       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1539       __ delayed()->ld(from, 0, O3);
  1540       __ inc(from, 4);
  1541       __ inc(to, 4);
  1542       __ dec(count, 2);
  1543       __ st(O3, to, -4);
  1544     __ BIND(L_skip_alignment);
  1545 #endif
  1546     } else {
  1547       // copy 1 element if necessary to align 'to' on an 4 bytes
  1548       __ andcc(to, 3, G0);
  1549       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1550       __ delayed()->lduh(from, 0, O3);
  1551       __ inc(from, 2);
  1552       __ inc(to, 2);
  1553       __ dec(count);
  1554       __ sth(O3, to, -2);
  1555     __ BIND(L_skip_alignment);
  1557       // copy 2 elements to align 'to' on an 8 byte boundary
  1558       __ andcc(to, 7, G0);
  1559       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1560       __ delayed()->lduh(from, 0, O3);
  1561       __ dec(count, 2);
  1562       __ lduh(from, 2, O4);
  1563       __ inc(from, 4);
  1564       __ inc(to, 4);
  1565       __ sth(O3, to, -4);
  1566       __ sth(O4, to, -2);
  1567     __ BIND(L_skip_alignment2);
  1569 #ifdef _LP64
  1570     if (!aligned)
  1571 #endif
  1573       // Copy with shift 16 bytes per iteration if arrays do not have
  1574       // the same alignment mod 8, otherwise fall through to the next
  1575       // code for aligned copy.
  1576       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1577       // Also jump over aligned copy after the copy with shift completed.
  1579       copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
  1582     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1583       __ and3(count, 3, G4); // Save
  1584       __ srl(count, 2, count);
  1585      generate_disjoint_long_copy_core(aligned);
  1586       __ mov(G4, count); // restore
  1588     // copy 1 element at a time
  1589     __ BIND(L_copy_2_bytes);
  1590       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1591       __ align(OptoLoopAlignment);
  1592     __ BIND(L_copy_2_bytes_loop);
  1593       __ lduh(from, offset, O3);
  1594       __ deccc(count);
  1595       __ sth(O3, to, offset);
  1596       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
  1597       __ delayed()->inc(offset, 2);
  1599     __ BIND(L_exit);
  1600       // O3, O4 are used as temp registers
  1601       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1602       __ retl();
  1603       __ delayed()->mov(G0, O0); // return 0
  1604     return start;
  1607   //
  1608   //  Generate stub for disjoint short fill.  If "aligned" is true, the
  1609   //  "to" address is assumed to be heapword aligned.
  1610   //
  1611   // Arguments for generated stub:
  1612   //      to:    O0
  1613   //      value: O1
  1614   //      count: O2 treated as signed
  1615   //
  1616   address generate_fill(BasicType t, bool aligned, const char* name) {
  1617     __ align(CodeEntryAlignment);
  1618     StubCodeMark mark(this, "StubRoutines", name);
  1619     address start = __ pc();
  1621     const Register to        = O0;   // source array address
  1622     const Register value     = O1;   // fill value
  1623     const Register count     = O2;   // elements count
  1624     // O3 is used as a temp register
  1626     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1628     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  1629     Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
  1631     int shift = -1;
  1632     switch (t) {
  1633        case T_BYTE:
  1634         shift = 2;
  1635         break;
  1636        case T_SHORT:
  1637         shift = 1;
  1638         break;
  1639       case T_INT:
  1640          shift = 0;
  1641         break;
  1642       default: ShouldNotReachHere();
  1645     BLOCK_COMMENT("Entry:");
  1647     if (t == T_BYTE) {
  1648       // Zero extend value
  1649       __ and3(value, 0xff, value);
  1650       __ sllx(value, 8, O3);
  1651       __ or3(value, O3, value);
  1653     if (t == T_SHORT) {
  1654       // Zero extend value
  1655       __ sllx(value, 48, value);
  1656       __ srlx(value, 48, value);
  1658     if (t == T_BYTE || t == T_SHORT) {
  1659       __ sllx(value, 16, O3);
  1660       __ or3(value, O3, value);
  1663     __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  1664     __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
  1665     __ delayed()->andcc(count, 1, G0);
  1667     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
  1668       // align source address at 4 bytes address boundary
  1669       if (t == T_BYTE) {
  1670         // One byte misalignment happens only for byte arrays
  1671         __ andcc(to, 1, G0);
  1672         __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
  1673         __ delayed()->nop();
  1674         __ stb(value, to, 0);
  1675         __ inc(to, 1);
  1676         __ dec(count, 1);
  1677         __ BIND(L_skip_align1);
  1679       // Two bytes misalignment happens only for byte and short (char) arrays
  1680       __ andcc(to, 2, G0);
  1681       __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
  1682       __ delayed()->nop();
  1683       __ sth(value, to, 0);
  1684       __ inc(to, 2);
  1685       __ dec(count, 1 << (shift - 1));
  1686       __ BIND(L_skip_align2);
  1688 #ifdef _LP64
  1689     if (!aligned) {
  1690 #endif
  1691     // align to 8 bytes, we know we are 4 byte aligned to start
  1692     __ andcc(to, 7, G0);
  1693     __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
  1694     __ delayed()->nop();
  1695     __ stw(value, to, 0);
  1696     __ inc(to, 4);
  1697     __ dec(count, 1 << shift);
  1698     __ BIND(L_fill_32_bytes);
  1699 #ifdef _LP64
  1701 #endif
  1703     if (t == T_INT) {
  1704       // Zero extend value
  1705       __ srl(value, 0, value);
  1707     if (t == T_BYTE || t == T_SHORT || t == T_INT) {
  1708       __ sllx(value, 32, O3);
  1709       __ or3(value, O3, value);
  1712     Label L_check_fill_8_bytes;
  1713     // Fill 32-byte chunks
  1714     __ subcc(count, 8 << shift, count);
  1715     __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
  1716     __ delayed()->nop();
  1718     Label L_fill_32_bytes_loop, L_fill_4_bytes;
  1719     __ align(16);
  1720     __ BIND(L_fill_32_bytes_loop);
  1722     __ stx(value, to, 0);
  1723     __ stx(value, to, 8);
  1724     __ stx(value, to, 16);
  1725     __ stx(value, to, 24);
  1727     __ subcc(count, 8 << shift, count);
  1728     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
  1729     __ delayed()->add(to, 32, to);
  1731     __ BIND(L_check_fill_8_bytes);
  1732     __ addcc(count, 8 << shift, count);
  1733     __ brx(Assembler::zero, false, Assembler::pn, L_exit);
  1734     __ delayed()->subcc(count, 1 << (shift + 1), count);
  1735     __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
  1736     __ delayed()->andcc(count, 1<<shift, G0);
  1738     //
  1739     // length is too short, just fill 8 bytes at a time
  1740     //
  1741     Label L_fill_8_bytes_loop;
  1742     __ BIND(L_fill_8_bytes_loop);
  1743     __ stx(value, to, 0);
  1744     __ subcc(count, 1 << (shift + 1), count);
  1745     __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
  1746     __ delayed()->add(to, 8, to);
  1748     // fill trailing 4 bytes
  1749     __ andcc(count, 1<<shift, G0);  // in delay slot of branches
  1750     if (t == T_INT) {
  1751       __ BIND(L_fill_elements);
  1753     __ BIND(L_fill_4_bytes);
  1754     __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
  1755     if (t == T_BYTE || t == T_SHORT) {
  1756       __ delayed()->andcc(count, 1<<(shift-1), G0);
  1757     } else {
  1758       __ delayed()->nop();
  1760     __ stw(value, to, 0);
  1761     if (t == T_BYTE || t == T_SHORT) {
  1762       __ inc(to, 4);
  1763       // fill trailing 2 bytes
  1764       __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
  1765       __ BIND(L_fill_2_bytes);
  1766       __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
  1767       __ delayed()->andcc(count, 1, count);
  1768       __ sth(value, to, 0);
  1769       if (t == T_BYTE) {
  1770         __ inc(to, 2);
  1771         // fill trailing byte
  1772         __ andcc(count, 1, count);  // in delay slot of branches
  1773         __ BIND(L_fill_byte);
  1774         __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1775         __ delayed()->nop();
  1776         __ stb(value, to, 0);
  1777       } else {
  1778         __ BIND(L_fill_byte);
  1780     } else {
  1781       __ BIND(L_fill_2_bytes);
  1783     __ BIND(L_exit);
  1784     __ retl();
  1785     __ delayed()->nop();
  1787     // Handle copies less than 8 bytes.  Int is handled elsewhere.
  1788     if (t == T_BYTE) {
  1789       __ BIND(L_fill_elements);
  1790       Label L_fill_2, L_fill_4;
  1791       // in delay slot __ andcc(count, 1, G0);
  1792       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
  1793       __ delayed()->andcc(count, 2, G0);
  1794       __ stb(value, to, 0);
  1795       __ inc(to, 1);
  1796       __ BIND(L_fill_2);
  1797       __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
  1798       __ delayed()->andcc(count, 4, G0);
  1799       __ stb(value, to, 0);
  1800       __ stb(value, to, 1);
  1801       __ inc(to, 2);
  1802       __ BIND(L_fill_4);
  1803       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1804       __ delayed()->nop();
  1805       __ stb(value, to, 0);
  1806       __ stb(value, to, 1);
  1807       __ stb(value, to, 2);
  1808       __ retl();
  1809       __ delayed()->stb(value, to, 3);
  1812     if (t == T_SHORT) {
  1813       Label L_fill_2;
  1814       __ BIND(L_fill_elements);
  1815       // in delay slot __ andcc(count, 1, G0);
  1816       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
  1817       __ delayed()->andcc(count, 2, G0);
  1818       __ sth(value, to, 0);
  1819       __ inc(to, 2);
  1820       __ BIND(L_fill_2);
  1821       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
  1822       __ delayed()->nop();
  1823       __ sth(value, to, 0);
  1824       __ retl();
  1825       __ delayed()->sth(value, to, 2);
  1827     return start;
  1830   //
  1831   //  Generate stub for conjoint short copy.  If "aligned" is true, the
  1832   //  "from" and "to" addresses are assumed to be heapword aligned.
  1833   //
  1834   // Arguments for generated stub:
  1835   //      from:  O0
  1836   //      to:    O1
  1837   //      count: O2 treated as signed
  1838   //
  1839   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
  1840                                        address *entry, const char *name) {
  1841     // Do reverse copy.
  1843     __ align(CodeEntryAlignment);
  1844     StubCodeMark mark(this, "StubRoutines", name);
  1845     address start = __ pc();
  1847     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
  1848     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1850     const Register from      = O0;   // source array address
  1851     const Register to        = O1;   // destination array address
  1852     const Register count     = O2;   // elements count
  1853     const Register end_from  = from; // source array end address
  1854     const Register end_to    = to;   // destination array end address
  1856     const Register byte_count = O3;  // bytes count to copy
  1858     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1860     if (entry != NULL) {
  1861       *entry = __ pc();
  1862       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1863       BLOCK_COMMENT("Entry:");
  1866     array_overlap_test(nooverlap_target, 1);
  1868     __ sllx(count, LogBytesPerShort, byte_count);
  1869     __ add(to, byte_count, end_to);  // offset after last copied element
  1871     // for short arrays, just do single element copy
  1872     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1873     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1874     __ delayed()->add(from, byte_count, end_from);
  1877       // Align end of arrays since they could be not aligned even
  1878       // when arrays itself are aligned.
  1880       // copy 1 element if necessary to align 'end_to' on an 4 bytes
  1881       __ andcc(end_to, 3, G0);
  1882       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1883       __ delayed()->lduh(end_from, -2, O3);
  1884       __ dec(end_from, 2);
  1885       __ dec(end_to, 2);
  1886       __ dec(count);
  1887       __ sth(O3, end_to, 0);
  1888     __ BIND(L_skip_alignment);
  1890       // copy 2 elements to align 'end_to' on an 8 byte boundary
  1891       __ andcc(end_to, 7, G0);
  1892       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1893       __ delayed()->lduh(end_from, -2, O3);
  1894       __ dec(count, 2);
  1895       __ lduh(end_from, -4, O4);
  1896       __ dec(end_from, 4);
  1897       __ dec(end_to, 4);
  1898       __ sth(O3, end_to, 2);
  1899       __ sth(O4, end_to, 0);
  1900     __ BIND(L_skip_alignment2);
  1902 #ifdef _LP64
  1903     if (aligned) {
  1904       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1905       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1906       // in unaligned case.
  1907       __ dec(count, 8);
  1908     } else
  1909 #endif
  1911       // Copy with shift 16 bytes per iteration if arrays do not have
  1912       // the same alignment mod 8, otherwise jump to the next
  1913       // code for aligned copy (and substracting 8 from 'count' before jump).
  1914       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1915       // Also jump over aligned copy after the copy with shift completed.
  1917       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
  1918                                         L_aligned_copy, L_copy_2_bytes);
  1920     // copy 4 elements (16 bytes) at a time
  1921       __ align(OptoLoopAlignment);
  1922     __ BIND(L_aligned_copy);
  1923       __ dec(end_from, 16);
  1924       __ ldx(end_from, 8, O3);
  1925       __ ldx(end_from, 0, O4);
  1926       __ dec(end_to, 16);
  1927       __ deccc(count, 8);
  1928       __ stx(O3, end_to, 8);
  1929       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1930       __ delayed()->stx(O4, end_to, 0);
  1931       __ inc(count, 8);
  1933     // copy 1 element (2 bytes) at a time
  1934     __ BIND(L_copy_2_bytes);
  1935       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  1936     __ BIND(L_copy_2_bytes_loop);
  1937       __ dec(end_from, 2);
  1938       __ dec(end_to, 2);
  1939       __ lduh(end_from, 0, O4);
  1940       __ deccc(count);
  1941       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
  1942       __ delayed()->sth(O4, end_to, 0);
  1944     __ BIND(L_exit);
  1945     // O3, O4 are used as temp registers
  1946     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1947     __ retl();
  1948     __ delayed()->mov(G0, O0); // return 0
  1949     return start;
  1952   //
  1953   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  1954   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1955   //  to be heapword aligned.
  1956   //
  1957   // Arguments:
  1958   //      from:  O0
  1959   //      to:    O1
  1960   //      count: O2 treated as signed
  1961   //
  1962   void generate_disjoint_int_copy_core(bool aligned) {
  1964     Label L_skip_alignment, L_aligned_copy;
  1965     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1967     const Register from      = O0;   // source array address
  1968     const Register to        = O1;   // destination array address
  1969     const Register count     = O2;   // elements count
  1970     const Register offset    = O5;   // offset from start of arrays
  1971     // O3, O4, G3, G4 are used as temp registers
  1973     // 'aligned' == true when it is known statically during compilation
  1974     // of this arraycopy call site that both 'from' and 'to' addresses
  1975     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1976     //
  1977     // Aligned arrays have 4 bytes alignment in 32-bits VM
  1978     // and 8 bytes - in 64-bits VM.
  1979     //
  1980 #ifdef _LP64
  1981     if (!aligned)
  1982 #endif
  1984       // The next check could be put under 'ifndef' since the code in
  1985       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
  1987       // for short arrays, just do single element copy
  1988       __ cmp(count, 5); // 4 + 1 (20 bytes)
  1989       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1990       __ delayed()->mov(G0, offset);
  1992       // copy 1 element to align 'to' on an 8 byte boundary
  1993       __ andcc(to, 7, G0);
  1994       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1995       __ delayed()->ld(from, 0, O3);
  1996       __ inc(from, 4);
  1997       __ inc(to, 4);
  1998       __ dec(count);
  1999       __ st(O3, to, -4);
  2000     __ BIND(L_skip_alignment);
  2002     // if arrays have same alignment mod 8, do 4 elements copy
  2003       __ andcc(from, 7, G0);
  2004       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  2005       __ delayed()->ld(from, 0, O3);
  2007     //
  2008     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  2009     // to form 2 aligned 8-bytes chunks to store.
  2010     //
  2011     // copy_16_bytes_forward_with_shift() is not used here since this
  2012     // code is more optimal.
  2014     // copy with shift 4 elements (16 bytes) at a time
  2015       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
  2017       __ align(OptoLoopAlignment);
  2018     __ BIND(L_copy_16_bytes);
  2019       __ ldx(from, 4, O4);
  2020       __ deccc(count, 4); // Can we do next iteration after this one?
  2021       __ ldx(from, 12, G4);
  2022       __ inc(to, 16);
  2023       __ inc(from, 16);
  2024       __ sllx(O3, 32, O3);
  2025       __ srlx(O4, 32, G3);
  2026       __ bset(G3, O3);
  2027       __ stx(O3, to, -16);
  2028       __ sllx(O4, 32, O4);
  2029       __ srlx(G4, 32, G3);
  2030       __ bset(G3, O4);
  2031       __ stx(O4, to, -8);
  2032       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2033       __ delayed()->mov(G4, O3);
  2035       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2036       __ delayed()->inc(count, 4); // restore 'count'
  2038     __ BIND(L_aligned_copy);
  2040     // copy 4 elements (16 bytes) at a time
  2041       __ and3(count, 1, G4); // Save
  2042       __ srl(count, 1, count);
  2043      generate_disjoint_long_copy_core(aligned);
  2044       __ mov(G4, count);     // Restore
  2046     // copy 1 element at a time
  2047     __ BIND(L_copy_4_bytes);
  2048       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  2049     __ BIND(L_copy_4_bytes_loop);
  2050       __ ld(from, offset, O3);
  2051       __ deccc(count);
  2052       __ st(O3, to, offset);
  2053       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
  2054       __ delayed()->inc(offset, 4);
  2055     __ BIND(L_exit);
  2058   //
  2059   //  Generate stub for disjoint int copy.  If "aligned" is true, the
  2060   //  "from" and "to" addresses are assumed to be heapword aligned.
  2061   //
  2062   // Arguments for generated stub:
  2063   //      from:  O0
  2064   //      to:    O1
  2065   //      count: O2 treated as signed
  2066   //
  2067   address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
  2068     __ align(CodeEntryAlignment);
  2069     StubCodeMark mark(this, "StubRoutines", name);
  2070     address start = __ pc();
  2072     const Register count = O2;
  2073     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2075     if (entry != NULL) {
  2076       *entry = __ pc();
  2077       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2078       BLOCK_COMMENT("Entry:");
  2081     generate_disjoint_int_copy_core(aligned);
  2083     // O3, O4 are used as temp registers
  2084     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2085     __ retl();
  2086     __ delayed()->mov(G0, O0); // return 0
  2087     return start;
  2090   //
  2091   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  2092   //  If "aligned" is true, the "from" and "to" addresses are assumed
  2093   //  to be heapword aligned.
  2094   //
  2095   // Arguments:
  2096   //      from:  O0
  2097   //      to:    O1
  2098   //      count: O2 treated as signed
  2099   //
  2100   void generate_conjoint_int_copy_core(bool aligned) {
  2101     // Do reverse copy.
  2103     Label L_skip_alignment, L_aligned_copy;
  2104     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  2106     const Register from      = O0;   // source array address
  2107     const Register to        = O1;   // destination array address
  2108     const Register count     = O2;   // elements count
  2109     const Register end_from  = from; // source array end address
  2110     const Register end_to    = to;   // destination array end address
  2111     // O3, O4, O5, G3 are used as temp registers
  2113     const Register byte_count = O3;  // bytes count to copy
  2115       __ sllx(count, LogBytesPerInt, byte_count);
  2116       __ add(to, byte_count, end_to); // offset after last copied element
  2118       __ cmp(count, 5); // for short arrays, just do single element copy
  2119       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  2120       __ delayed()->add(from, byte_count, end_from);
  2122     // copy 1 element to align 'to' on an 8 byte boundary
  2123       __ andcc(end_to, 7, G0);
  2124       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  2125       __ delayed()->nop();
  2126       __ dec(count);
  2127       __ dec(end_from, 4);
  2128       __ dec(end_to,   4);
  2129       __ ld(end_from, 0, O4);
  2130       __ st(O4, end_to, 0);
  2131     __ BIND(L_skip_alignment);
  2133     // Check if 'end_from' and 'end_to' has the same alignment.
  2134       __ andcc(end_from, 7, G0);
  2135       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  2136       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
  2138     // copy with shift 4 elements (16 bytes) at a time
  2139     //
  2140     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  2141     // to form 2 aligned 8-bytes chunks to store.
  2142     //
  2143       __ ldx(end_from, -4, O3);
  2144       __ align(OptoLoopAlignment);
  2145     __ BIND(L_copy_16_bytes);
  2146       __ ldx(end_from, -12, O4);
  2147       __ deccc(count, 4);
  2148       __ ldx(end_from, -20, O5);
  2149       __ dec(end_to, 16);
  2150       __ dec(end_from, 16);
  2151       __ srlx(O3, 32, O3);
  2152       __ sllx(O4, 32, G3);
  2153       __ bset(G3, O3);
  2154       __ stx(O3, end_to, 8);
  2155       __ srlx(O4, 32, O4);
  2156       __ sllx(O5, 32, G3);
  2157       __ bset(O4, G3);
  2158       __ stx(G3, end_to, 0);
  2159       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2160       __ delayed()->mov(O5, O3);
  2162       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2163       __ delayed()->inc(count, 4);
  2165     // copy 4 elements (16 bytes) at a time
  2166       __ align(OptoLoopAlignment);
  2167     __ BIND(L_aligned_copy);
  2168       __ dec(end_from, 16);
  2169       __ ldx(end_from, 8, O3);
  2170       __ ldx(end_from, 0, O4);
  2171       __ dec(end_to, 16);
  2172       __ deccc(count, 4);
  2173       __ stx(O3, end_to, 8);
  2174       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  2175       __ delayed()->stx(O4, end_to, 0);
  2176       __ inc(count, 4);
  2178     // copy 1 element (4 bytes) at a time
  2179     __ BIND(L_copy_4_bytes);
  2180       __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
  2181     __ BIND(L_copy_4_bytes_loop);
  2182       __ dec(end_from, 4);
  2183       __ dec(end_to, 4);
  2184       __ ld(end_from, 0, O4);
  2185       __ deccc(count);
  2186       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
  2187       __ delayed()->st(O4, end_to, 0);
  2188     __ BIND(L_exit);
  2191   //
  2192   //  Generate stub for conjoint int copy.  If "aligned" is true, the
  2193   //  "from" and "to" addresses are assumed to be heapword aligned.
  2194   //
  2195   // Arguments for generated stub:
  2196   //      from:  O0
  2197   //      to:    O1
  2198   //      count: O2 treated as signed
  2199   //
  2200   address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
  2201                                      address *entry, const char *name) {
  2202     __ align(CodeEntryAlignment);
  2203     StubCodeMark mark(this, "StubRoutines", name);
  2204     address start = __ pc();
  2206     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2208     if (entry != NULL) {
  2209       *entry = __ pc();
  2210       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2211       BLOCK_COMMENT("Entry:");
  2214     array_overlap_test(nooverlap_target, 2);
  2216     generate_conjoint_int_copy_core(aligned);
  2218     // O3, O4 are used as temp registers
  2219     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2220     __ retl();
  2221     __ delayed()->mov(G0, O0); // return 0
  2222     return start;
  2225   //
  2226   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  2227   //  "aligned" is ignored, because we must make the stronger
  2228   //  assumption that both addresses are always 64-bit aligned.
  2229   //
  2230   // Arguments:
  2231   //      from:  O0
  2232   //      to:    O1
  2233   //      count: O2 treated as signed
  2234   //
  2235   // count -= 2;
  2236   // if ( count >= 0 ) { // >= 2 elements
  2237   //   if ( count > 6) { // >= 8 elements
  2238   //     count -= 6; // original count - 8
  2239   //     do {
  2240   //       copy_8_elements;
  2241   //       count -= 8;
  2242   //     } while ( count >= 0 );
  2243   //     count += 6;
  2244   //   }
  2245   //   if ( count >= 0 ) { // >= 2 elements
  2246   //     do {
  2247   //       copy_2_elements;
  2248   //     } while ( (count=count-2) >= 0 );
  2249   //   }
  2250   // }
  2251   // count += 2;
  2252   // if ( count != 0 ) { // 1 element left
  2253   //   copy_1_element;
  2254   // }
  2255   //
  2256   void generate_disjoint_long_copy_core(bool aligned) {
  2257     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2258     const Register from    = O0;  // source array address
  2259     const Register to      = O1;  // destination array address
  2260     const Register count   = O2;  // elements count
  2261     const Register offset0 = O4;  // element offset
  2262     const Register offset8 = O5;  // next element offset
  2264       __ deccc(count, 2);
  2265       __ mov(G0, offset0);   // offset from start of arrays (0)
  2266       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2267       __ delayed()->add(offset0, 8, offset8);
  2269     // Copy by 64 bytes chunks
  2270     Label L_copy_64_bytes;
  2271     const Register from64 = O3;  // source address
  2272     const Register to64   = G3;  // destination address
  2273       __ subcc(count, 6, O3);
  2274       __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
  2275       __ delayed()->mov(to,   to64);
  2276       // Now we can use O4(offset0), O5(offset8) as temps
  2277       __ mov(O3, count);
  2278       __ mov(from, from64);
  2280       __ align(OptoLoopAlignment);
  2281     __ BIND(L_copy_64_bytes);
  2282       for( int off = 0; off < 64; off += 16 ) {
  2283         __ ldx(from64,  off+0, O4);
  2284         __ ldx(from64,  off+8, O5);
  2285         __ stx(O4, to64,  off+0);
  2286         __ stx(O5, to64,  off+8);
  2288       __ deccc(count, 8);
  2289       __ inc(from64, 64);
  2290       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
  2291       __ delayed()->inc(to64, 64);
  2293       // Restore O4(offset0), O5(offset8)
  2294       __ sub(from64, from, offset0);
  2295       __ inccc(count, 6);
  2296       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2297       __ delayed()->add(offset0, 8, offset8);
  2299       // Copy by 16 bytes chunks
  2300       __ align(OptoLoopAlignment);
  2301     __ BIND(L_copy_16_bytes);
  2302       __ ldx(from, offset0, O3);
  2303       __ ldx(from, offset8, G3);
  2304       __ deccc(count, 2);
  2305       __ stx(O3, to, offset0);
  2306       __ inc(offset0, 16);
  2307       __ stx(G3, to, offset8);
  2308       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2309       __ delayed()->inc(offset8, 16);
  2311       // Copy last 8 bytes
  2312     __ BIND(L_copy_8_bytes);
  2313       __ inccc(count, 2);
  2314       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
  2315       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
  2316       __ ldx(from, offset0, O3);
  2317       __ stx(O3, to, offset0);
  2318     __ BIND(L_exit);
  2321   //
  2322   //  Generate stub for disjoint long copy.
  2323   //  "aligned" is ignored, because we must make the stronger
  2324   //  assumption that both addresses are always 64-bit aligned.
  2325   //
  2326   // Arguments for generated stub:
  2327   //      from:  O0
  2328   //      to:    O1
  2329   //      count: O2 treated as signed
  2330   //
  2331   address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
  2332     __ align(CodeEntryAlignment);
  2333     StubCodeMark mark(this, "StubRoutines", name);
  2334     address start = __ pc();
  2336     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2338     if (entry != NULL) {
  2339       *entry = __ pc();
  2340       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2341       BLOCK_COMMENT("Entry:");
  2344     generate_disjoint_long_copy_core(aligned);
  2346     // O3, O4 are used as temp registers
  2347     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2348     __ retl();
  2349     __ delayed()->mov(G0, O0); // return 0
  2350     return start;
  2353   //
  2354   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  2355   //  "aligned" is ignored, because we must make the stronger
  2356   //  assumption that both addresses are always 64-bit aligned.
  2357   //
  2358   // Arguments:
  2359   //      from:  O0
  2360   //      to:    O1
  2361   //      count: O2 treated as signed
  2362   //
  2363   void generate_conjoint_long_copy_core(bool aligned) {
  2364     // Do reverse copy.
  2365     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2366     const Register from    = O0;  // source array address
  2367     const Register to      = O1;  // destination array address
  2368     const Register count   = O2;  // elements count
  2369     const Register offset8 = O4;  // element offset
  2370     const Register offset0 = O5;  // previous element offset
  2372       __ subcc(count, 1, count);
  2373       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
  2374       __ delayed()->sllx(count, LogBytesPerLong, offset8);
  2375       __ sub(offset8, 8, offset0);
  2376       __ align(OptoLoopAlignment);
  2377     __ BIND(L_copy_16_bytes);
  2378       __ ldx(from, offset8, O2);
  2379       __ ldx(from, offset0, O3);
  2380       __ stx(O2, to, offset8);
  2381       __ deccc(offset8, 16);      // use offset8 as counter
  2382       __ stx(O3, to, offset0);
  2383       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
  2384       __ delayed()->dec(offset0, 16);
  2386     __ BIND(L_copy_8_bytes);
  2387       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
  2388       __ delayed()->nop();
  2389       __ ldx(from, 0, O3);
  2390       __ stx(O3, to, 0);
  2391     __ BIND(L_exit);
  2394   //  Generate stub for conjoint long copy.
  2395   //  "aligned" is ignored, because we must make the stronger
  2396   //  assumption that both addresses are always 64-bit aligned.
  2397   //
  2398   // Arguments for generated stub:
  2399   //      from:  O0
  2400   //      to:    O1
  2401   //      count: O2 treated as signed
  2402   //
  2403   address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
  2404                                       address *entry, const char *name) {
  2405     __ align(CodeEntryAlignment);
  2406     StubCodeMark mark(this, "StubRoutines", name);
  2407     address start = __ pc();
  2409     assert(aligned, "Should always be aligned");
  2411     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2413     if (entry != NULL) {
  2414       *entry = __ pc();
  2415       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2416       BLOCK_COMMENT("Entry:");
  2419     array_overlap_test(nooverlap_target, 3);
  2421     generate_conjoint_long_copy_core(aligned);
  2423     // O3, O4 are used as temp registers
  2424     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2425     __ retl();
  2426     __ delayed()->mov(G0, O0); // return 0
  2427     return start;
  2430   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  2431   //  "from" and "to" addresses are assumed to be heapword aligned.
  2432   //
  2433   // Arguments for generated stub:
  2434   //      from:  O0
  2435   //      to:    O1
  2436   //      count: O2 treated as signed
  2437   //
  2438   address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
  2439                                      bool dest_uninitialized = false) {
  2441     const Register from  = O0;  // source array address
  2442     const Register to    = O1;  // destination array address
  2443     const Register count = O2;  // elements count
  2445     __ align(CodeEntryAlignment);
  2446     StubCodeMark mark(this, "StubRoutines", name);
  2447     address start = __ pc();
  2449     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2451     if (entry != NULL) {
  2452       *entry = __ pc();
  2453       // caller can pass a 64-bit byte count here
  2454       BLOCK_COMMENT("Entry:");
  2457     // save arguments for barrier generation
  2458     __ mov(to, G1);
  2459     __ mov(count, G5);
  2460     gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
  2461   #ifdef _LP64
  2462     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2463     if (UseCompressedOops) {
  2464       generate_disjoint_int_copy_core(aligned);
  2465     } else {
  2466       generate_disjoint_long_copy_core(aligned);
  2468   #else
  2469     generate_disjoint_int_copy_core(aligned);
  2470   #endif
  2471     // O0 is used as temp register
  2472     gen_write_ref_array_post_barrier(G1, G5, O0);
  2474     // O3, O4 are used as temp registers
  2475     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2476     __ retl();
  2477     __ delayed()->mov(G0, O0); // return 0
  2478     return start;
  2481   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  2482   //  "from" and "to" addresses are assumed to be heapword aligned.
  2483   //
  2484   // Arguments for generated stub:
  2485   //      from:  O0
  2486   //      to:    O1
  2487   //      count: O2 treated as signed
  2488   //
  2489   address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
  2490                                      address *entry, const char *name,
  2491                                      bool dest_uninitialized = false) {
  2493     const Register from  = O0;  // source array address
  2494     const Register to    = O1;  // destination array address
  2495     const Register count = O2;  // elements count
  2497     __ align(CodeEntryAlignment);
  2498     StubCodeMark mark(this, "StubRoutines", name);
  2499     address start = __ pc();
  2501     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2503     if (entry != NULL) {
  2504       *entry = __ pc();
  2505       // caller can pass a 64-bit byte count here
  2506       BLOCK_COMMENT("Entry:");
  2509     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
  2511     // save arguments for barrier generation
  2512     __ mov(to, G1);
  2513     __ mov(count, G5);
  2514     gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
  2516   #ifdef _LP64
  2517     if (UseCompressedOops) {
  2518       generate_conjoint_int_copy_core(aligned);
  2519     } else {
  2520       generate_conjoint_long_copy_core(aligned);
  2522   #else
  2523     generate_conjoint_int_copy_core(aligned);
  2524   #endif
  2526     // O0 is used as temp register
  2527     gen_write_ref_array_post_barrier(G1, G5, O0);
  2529     // O3, O4 are used as temp registers
  2530     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2531     __ retl();
  2532     __ delayed()->mov(G0, O0); // return 0
  2533     return start;
  2537   // Helper for generating a dynamic type check.
  2538   // Smashes only the given temp registers.
  2539   void generate_type_check(Register sub_klass,
  2540                            Register super_check_offset,
  2541                            Register super_klass,
  2542                            Register temp,
  2543                            Label& L_success) {
  2544     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
  2546     BLOCK_COMMENT("type_check:");
  2548     Label L_miss, L_pop_to_miss;
  2550     assert_clean_int(super_check_offset, temp);
  2552     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
  2553                                      &L_success, &L_miss, NULL,
  2554                                      super_check_offset);
  2556     BLOCK_COMMENT("type_check_slow_path:");
  2557     __ save_frame(0);
  2558     __ check_klass_subtype_slow_path(sub_klass->after_save(),
  2559                                      super_klass->after_save(),
  2560                                      L0, L1, L2, L4,
  2561                                      NULL, &L_pop_to_miss);
  2562     __ ba(L_success);
  2563     __ delayed()->restore();
  2565     __ bind(L_pop_to_miss);
  2566     __ restore();
  2568     // Fall through on failure!
  2569     __ BIND(L_miss);
  2573   //  Generate stub for checked oop copy.
  2574   //
  2575   // Arguments for generated stub:
  2576   //      from:  O0
  2577   //      to:    O1
  2578   //      count: O2 treated as signed
  2579   //      ckoff: O3 (super_check_offset)
  2580   //      ckval: O4 (super_klass)
  2581   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  2582   //
  2583   address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
  2585     const Register O0_from   = O0;      // source array address
  2586     const Register O1_to     = O1;      // destination array address
  2587     const Register O2_count  = O2;      // elements count
  2588     const Register O3_ckoff  = O3;      // super_check_offset
  2589     const Register O4_ckval  = O4;      // super_klass
  2591     const Register O5_offset = O5;      // loop var, with stride wordSize
  2592     const Register G1_remain = G1;      // loop var, with stride -1
  2593     const Register G3_oop    = G3;      // actual oop copied
  2594     const Register G4_klass  = G4;      // oop._klass
  2595     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
  2597     __ align(CodeEntryAlignment);
  2598     StubCodeMark mark(this, "StubRoutines", name);
  2599     address start = __ pc();
  2601 #ifdef ASSERT
  2602     // We sometimes save a frame (see generate_type_check below).
  2603     // If this will cause trouble, let's fail now instead of later.
  2604     __ save_frame(0);
  2605     __ restore();
  2606 #endif
  2608     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
  2610 #ifdef ASSERT
  2611     // caller guarantees that the arrays really are different
  2612     // otherwise, we would have to make conjoint checks
  2613     { Label L;
  2614       __ mov(O3, G1);           // spill: overlap test smashes O3
  2615       __ mov(O4, G4);           // spill: overlap test smashes O4
  2616       array_overlap_test(L, LogBytesPerHeapOop);
  2617       __ stop("checkcast_copy within a single array");
  2618       __ bind(L);
  2619       __ mov(G1, O3);
  2620       __ mov(G4, O4);
  2622 #endif //ASSERT
  2624     if (entry != NULL) {
  2625       *entry = __ pc();
  2626       // caller can pass a 64-bit byte count here (from generic stub)
  2627       BLOCK_COMMENT("Entry:");
  2629     gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
  2631     Label load_element, store_element, do_card_marks, fail, done;
  2632     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
  2633     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
  2634     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
  2636     // Empty array:  Nothing to do.
  2637     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2638     __ retl();
  2639     __ delayed()->set(0, O0);           // return 0 on (trivial) success
  2641     // ======== begin loop ========
  2642     // (Loop is rotated; its entry is load_element.)
  2643     // Loop variables:
  2644     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
  2645     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
  2646     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
  2647     __ align(OptoLoopAlignment);
  2649     __ BIND(store_element);
  2650     __ deccc(G1_remain);                // decrement the count
  2651     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
  2652     __ inc(O5_offset, heapOopSize);     // step to next offset
  2653     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
  2654     __ delayed()->set(0, O0);           // return -1 on success
  2656     // ======== loop entry is here ========
  2657     __ BIND(load_element);
  2658     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
  2659     __ br_null_short(G3_oop, Assembler::pt, store_element);
  2661     __ load_klass(G3_oop, G4_klass); // query the object klass
  2663     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
  2664                         // branch to this on success:
  2665                         store_element);
  2666     // ======== end loop ========
  2668     // It was a real error; we must depend on the caller to finish the job.
  2669     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
  2670     // Emit GC store barriers for the oops we have copied (O2 minus G1),
  2671     // and report their number to the caller.
  2672     __ BIND(fail);
  2673     __ subcc(O2_count, G1_remain, O2_count);
  2674     __ brx(Assembler::zero, false, Assembler::pt, done);
  2675     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
  2677     __ BIND(do_card_marks);
  2678     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
  2680     __ BIND(done);
  2681     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2682     __ retl();
  2683     __ delayed()->nop();             // return value in 00
  2685     return start;
  2689   //  Generate 'unsafe' array copy stub
  2690   //  Though just as safe as the other stubs, it takes an unscaled
  2691   //  size_t argument instead of an element count.
  2692   //
  2693   // Arguments for generated stub:
  2694   //      from:  O0
  2695   //      to:    O1
  2696   //      count: O2 byte count, treated as ssize_t, can be zero
  2697   //
  2698   // Examines the alignment of the operands and dispatches
  2699   // to a long, int, short, or byte copy loop.
  2700   //
  2701   address generate_unsafe_copy(const char* name,
  2702                                address byte_copy_entry,
  2703                                address short_copy_entry,
  2704                                address int_copy_entry,
  2705                                address long_copy_entry) {
  2707     const Register O0_from   = O0;      // source array address
  2708     const Register O1_to     = O1;      // destination array address
  2709     const Register O2_count  = O2;      // elements count
  2711     const Register G1_bits   = G1;      // test copy of low bits
  2713     __ align(CodeEntryAlignment);
  2714     StubCodeMark mark(this, "StubRoutines", name);
  2715     address start = __ pc();
  2717     // bump this on entry, not on exit:
  2718     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
  2720     __ or3(O0_from, O1_to, G1_bits);
  2721     __ or3(O2_count,       G1_bits, G1_bits);
  2723     __ btst(BytesPerLong-1, G1_bits);
  2724     __ br(Assembler::zero, true, Assembler::pt,
  2725           long_copy_entry, relocInfo::runtime_call_type);
  2726     // scale the count on the way out:
  2727     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
  2729     __ btst(BytesPerInt-1, G1_bits);
  2730     __ br(Assembler::zero, true, Assembler::pt,
  2731           int_copy_entry, relocInfo::runtime_call_type);
  2732     // scale the count on the way out:
  2733     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
  2735     __ btst(BytesPerShort-1, G1_bits);
  2736     __ br(Assembler::zero, true, Assembler::pt,
  2737           short_copy_entry, relocInfo::runtime_call_type);
  2738     // scale the count on the way out:
  2739     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
  2741     __ br(Assembler::always, false, Assembler::pt,
  2742           byte_copy_entry, relocInfo::runtime_call_type);
  2743     __ delayed()->nop();
  2745     return start;
  2749   // Perform range checks on the proposed arraycopy.
  2750   // Kills the two temps, but nothing else.
  2751   // Also, clean the sign bits of src_pos and dst_pos.
  2752   void arraycopy_range_checks(Register src,     // source array oop (O0)
  2753                               Register src_pos, // source position (O1)
  2754                               Register dst,     // destination array oo (O2)
  2755                               Register dst_pos, // destination position (O3)
  2756                               Register length,  // length of copy (O4)
  2757                               Register temp1, Register temp2,
  2758                               Label& L_failed) {
  2759     BLOCK_COMMENT("arraycopy_range_checks:");
  2761     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  2763     const Register array_length = temp1;  // scratch
  2764     const Register end_pos      = temp2;  // scratch
  2766     // Note:  This next instruction may be in the delay slot of a branch:
  2767     __ add(length, src_pos, end_pos);  // src_pos + length
  2768     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
  2769     __ cmp(end_pos, array_length);
  2770     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2772     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  2773     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
  2774     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
  2775     __ cmp(end_pos, array_length);
  2776     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2778     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2779     // Move with sign extension can be used since they are positive.
  2780     __ delayed()->signx(src_pos, src_pos);
  2781     __ signx(dst_pos, dst_pos);
  2783     BLOCK_COMMENT("arraycopy_range_checks done");
  2787   //
  2788   //  Generate generic array copy stubs
  2789   //
  2790   //  Input:
  2791   //    O0    -  src oop
  2792   //    O1    -  src_pos
  2793   //    O2    -  dst oop
  2794   //    O3    -  dst_pos
  2795   //    O4    -  element count
  2796   //
  2797   //  Output:
  2798   //    O0 ==  0  -  success
  2799   //    O0 == -1  -  need to call System.arraycopy
  2800   //
  2801   address generate_generic_copy(const char *name,
  2802                                 address entry_jbyte_arraycopy,
  2803                                 address entry_jshort_arraycopy,
  2804                                 address entry_jint_arraycopy,
  2805                                 address entry_oop_arraycopy,
  2806                                 address entry_jlong_arraycopy,
  2807                                 address entry_checkcast_arraycopy) {
  2808     Label L_failed, L_objArray;
  2810     // Input registers
  2811     const Register src      = O0;  // source array oop
  2812     const Register src_pos  = O1;  // source position
  2813     const Register dst      = O2;  // destination array oop
  2814     const Register dst_pos  = O3;  // destination position
  2815     const Register length   = O4;  // elements count
  2817     // registers used as temp
  2818     const Register G3_src_klass = G3; // source array klass
  2819     const Register G4_dst_klass = G4; // destination array klass
  2820     const Register G5_lh        = G5; // layout handler
  2821     const Register O5_temp      = O5;
  2823     __ align(CodeEntryAlignment);
  2824     StubCodeMark mark(this, "StubRoutines", name);
  2825     address start = __ pc();
  2827     // bump this on entry, not on exit:
  2828     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
  2830     // In principle, the int arguments could be dirty.
  2831     //assert_clean_int(src_pos, G1);
  2832     //assert_clean_int(dst_pos, G1);
  2833     //assert_clean_int(length, G1);
  2835     //-----------------------------------------------------------------------
  2836     // Assembler stubs will be used for this call to arraycopy
  2837     // if the following conditions are met:
  2838     //
  2839     // (1) src and dst must not be null.
  2840     // (2) src_pos must not be negative.
  2841     // (3) dst_pos must not be negative.
  2842     // (4) length  must not be negative.
  2843     // (5) src klass and dst klass should be the same and not NULL.
  2844     // (6) src and dst should be arrays.
  2845     // (7) src_pos + length must not exceed length of src.
  2846     // (8) dst_pos + length must not exceed length of dst.
  2847     BLOCK_COMMENT("arraycopy initial argument checks");
  2849     //  if (src == NULL) return -1;
  2850     __ br_null(src, false, Assembler::pn, L_failed);
  2852     //  if (src_pos < 0) return -1;
  2853     __ delayed()->tst(src_pos);
  2854     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2855     __ delayed()->nop();
  2857     //  if (dst == NULL) return -1;
  2858     __ br_null(dst, false, Assembler::pn, L_failed);
  2860     //  if (dst_pos < 0) return -1;
  2861     __ delayed()->tst(dst_pos);
  2862     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2864     //  if (length < 0) return -1;
  2865     __ delayed()->tst(length);
  2866     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2868     BLOCK_COMMENT("arraycopy argument klass checks");
  2869     //  get src->klass()
  2870     if (UseCompressedOops) {
  2871       __ delayed()->nop(); // ??? not good
  2872       __ load_klass(src, G3_src_klass);
  2873     } else {
  2874       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
  2877 #ifdef ASSERT
  2878     //  assert(src->klass() != NULL);
  2879     BLOCK_COMMENT("assert klasses not null");
  2880     { Label L_a, L_b;
  2881       __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
  2882       __ bind(L_a);
  2883       __ stop("broken null klass");
  2884       __ bind(L_b);
  2885       __ load_klass(dst, G4_dst_klass);
  2886       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
  2887       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
  2888       BLOCK_COMMENT("assert done");
  2890 #endif
  2892     // Load layout helper
  2893     //
  2894     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2895     // 32        30    24            16              8     2                 0
  2896     //
  2897     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2898     //
  2900     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2901                     Klass::layout_helper_offset_in_bytes();
  2903     // Load 32-bits signed value. Use br() instruction with it to check icc.
  2904     __ lduw(G3_src_klass, lh_offset, G5_lh);
  2906     if (UseCompressedOops) {
  2907       __ load_klass(dst, G4_dst_klass);
  2909     // Handle objArrays completely differently...
  2910     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2911     __ set(objArray_lh, O5_temp);
  2912     __ cmp(G5_lh,       O5_temp);
  2913     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
  2914     if (UseCompressedOops) {
  2915       __ delayed()->nop();
  2916     } else {
  2917       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
  2920     //  if (src->klass() != dst->klass()) return -1;
  2921     __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
  2923     //  if (!src->is_Array()) return -1;
  2924     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
  2925     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
  2927     // At this point, it is known to be a typeArray (array_tag 0x3).
  2928 #ifdef ASSERT
  2929     __ delayed()->nop();
  2930     { Label L;
  2931       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
  2932       __ set(lh_prim_tag_in_place, O5_temp);
  2933       __ cmp(G5_lh,                O5_temp);
  2934       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
  2935       __ delayed()->nop();
  2936       __ stop("must be a primitive array");
  2937       __ bind(L);
  2939 #else
  2940     __ delayed();                               // match next insn to prev branch
  2941 #endif
  2943     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2944                            O5_temp, G4_dst_klass, L_failed);
  2946     // typeArrayKlass
  2947     //
  2948     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2949     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2950     //
  2952     const Register G4_offset = G4_dst_klass;    // array offset
  2953     const Register G3_elsize = G3_src_klass;    // log2 element size
  2955     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
  2956     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
  2957     __ add(src, G4_offset, src);       // src array offset
  2958     __ add(dst, G4_offset, dst);       // dst array offset
  2959     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
  2961     // next registers should be set before the jump to corresponding stub
  2962     const Register from     = O0;  // source array address
  2963     const Register to       = O1;  // destination array address
  2964     const Register count    = O2;  // elements count
  2966     // 'from', 'to', 'count' registers should be set in this order
  2967     // since they are the same as 'src', 'src_pos', 'dst'.
  2969     BLOCK_COMMENT("scale indexes to element size");
  2970     __ sll_ptr(src_pos, G3_elsize, src_pos);
  2971     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
  2972     __ add(src, src_pos, from);       // src_addr
  2973     __ add(dst, dst_pos, to);         // dst_addr
  2975     BLOCK_COMMENT("choose copy loop based on element size");
  2976     __ cmp(G3_elsize, 0);
  2977     __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
  2978     __ delayed()->signx(length, count); // length
  2980     __ cmp(G3_elsize, LogBytesPerShort);
  2981     __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
  2982     __ delayed()->signx(length, count); // length
  2984     __ cmp(G3_elsize, LogBytesPerInt);
  2985     __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
  2986     __ delayed()->signx(length, count); // length
  2987 #ifdef ASSERT
  2988     { Label L;
  2989       __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
  2990       __ stop("must be long copy, but elsize is wrong");
  2991       __ bind(L);
  2993 #endif
  2994     __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
  2995     __ delayed()->signx(length, count); // length
  2997     // objArrayKlass
  2998   __ BIND(L_objArray);
  2999     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
  3001     Label L_plain_copy, L_checkcast_copy;
  3002     //  test array classes for subtyping
  3003     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
  3004     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
  3005     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
  3007     // Identically typed arrays can be copied without element-wise checks.
  3008     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3009                            O5_temp, G5_lh, L_failed);
  3011     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  3012     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  3013     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  3014     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  3015     __ add(src, src_pos, from);       // src_addr
  3016     __ add(dst, dst_pos, to);         // dst_addr
  3017   __ BIND(L_plain_copy);
  3018     __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
  3019     __ delayed()->signx(length, count); // length
  3021   __ BIND(L_checkcast_copy);
  3022     // live at this point:  G3_src_klass, G4_dst_klass
  3024       // Before looking at dst.length, make sure dst is also an objArray.
  3025       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
  3026       __ cmp(G5_lh,                    O5_temp);
  3027       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
  3029       // It is safe to examine both src.length and dst.length.
  3030       __ delayed();                             // match next insn to prev branch
  3031       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  3032                              O5_temp, G5_lh, L_failed);
  3034       // Marshal the base address arguments now, freeing registers.
  3035       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  3036       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  3037       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  3038       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  3039       __ add(src, src_pos, from);               // src_addr
  3040       __ add(dst, dst_pos, to);                 // dst_addr
  3041       __ signx(length, count);                  // length (reloaded)
  3043       Register sco_temp = O3;                   // this register is free now
  3044       assert_different_registers(from, to, count, sco_temp,
  3045                                  G4_dst_klass, G3_src_klass);
  3047       // Generate the type check.
  3048       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  3049                         Klass::super_check_offset_offset_in_bytes());
  3050       __ lduw(G4_dst_klass, sco_offset, sco_temp);
  3051       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
  3052                           O5_temp, L_plain_copy);
  3054       // Fetch destination element klass from the objArrayKlass header.
  3055       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  3056                        objArrayKlass::element_klass_offset_in_bytes());
  3058       // the checkcast_copy loop needs two extra arguments:
  3059       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
  3060       // lduw(O4, sco_offset, O3);              // sco of elem klass
  3062       __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
  3063       __ delayed()->lduw(O4, sco_offset, O3);
  3066   __ BIND(L_failed);
  3067     __ retl();
  3068     __ delayed()->sub(G0, 1, O0); // return -1
  3069     return start;
  3072   void generate_arraycopy_stubs() {
  3073     address entry;
  3074     address entry_jbyte_arraycopy;
  3075     address entry_jshort_arraycopy;
  3076     address entry_jint_arraycopy;
  3077     address entry_oop_arraycopy;
  3078     address entry_jlong_arraycopy;
  3079     address entry_checkcast_arraycopy;
  3081     //*** jbyte
  3082     // Always need aligned and unaligned versions
  3083     StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
  3084                                                                                   "jbyte_disjoint_arraycopy");
  3085     StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
  3086                                                                                   &entry_jbyte_arraycopy,
  3087                                                                                   "jbyte_arraycopy");
  3088     StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
  3089                                                                                   "arrayof_jbyte_disjoint_arraycopy");
  3090     StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
  3091                                                                                   "arrayof_jbyte_arraycopy");
  3093     //*** jshort
  3094     // Always need aligned and unaligned versions
  3095     StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
  3096                                                                                     "jshort_disjoint_arraycopy");
  3097     StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
  3098                                                                                     &entry_jshort_arraycopy,
  3099                                                                                     "jshort_arraycopy");
  3100     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
  3101                                                                                     "arrayof_jshort_disjoint_arraycopy");
  3102     StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
  3103                                                                                     "arrayof_jshort_arraycopy");
  3105     //*** jint
  3106     // Aligned versions
  3107     StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
  3108                                                                                 "arrayof_jint_disjoint_arraycopy");
  3109     StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
  3110                                                                                 "arrayof_jint_arraycopy");
  3111 #ifdef _LP64
  3112     // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
  3113     // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
  3114     StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
  3115                                                                                 "jint_disjoint_arraycopy");
  3116     StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
  3117                                                                                 &entry_jint_arraycopy,
  3118                                                                                 "jint_arraycopy");
  3119 #else
  3120     // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
  3121     // (in fact in 32bit we always have a pre-loop part even in the aligned version,
  3122     //  because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
  3123     StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
  3124     StubRoutines::_jint_arraycopy          = StubRoutines::_arrayof_jint_arraycopy;
  3125 #endif
  3128     //*** jlong
  3129     // It is always aligned
  3130     StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
  3131                                                                                   "arrayof_jlong_disjoint_arraycopy");
  3132     StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
  3133                                                                                   "arrayof_jlong_arraycopy");
  3134     StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
  3135     StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;
  3138     //*** oops
  3139     // Aligned versions
  3140     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, &entry,
  3141                                                                                       "arrayof_oop_disjoint_arraycopy");
  3142     StubRoutines::_arrayof_oop_arraycopy                 = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
  3143                                                                                       "arrayof_oop_arraycopy");
  3144     // Aligned versions without pre-barriers
  3145     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
  3146                                                                                       "arrayof_oop_disjoint_arraycopy_uninit",
  3147                                                                                       /*dest_uninitialized*/true);
  3148     StubRoutines::_arrayof_oop_arraycopy_uninit          = generate_conjoint_oop_copy(true, entry, NULL,
  3149                                                                                       "arrayof_oop_arraycopy_uninit",
  3150                                                                                       /*dest_uninitialized*/true);
  3151 #ifdef _LP64
  3152     if (UseCompressedOops) {
  3153       // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
  3154       StubRoutines::_oop_disjoint_arraycopy            = generate_disjoint_oop_copy(false, &entry,
  3155                                                                                     "oop_disjoint_arraycopy");
  3156       StubRoutines::_oop_arraycopy                     = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
  3157                                                                                     "oop_arraycopy");
  3158       // Unaligned versions without pre-barriers
  3159       StubRoutines::_oop_disjoint_arraycopy_uninit     = generate_disjoint_oop_copy(false, &entry,
  3160                                                                                     "oop_disjoint_arraycopy_uninit",
  3161                                                                                     /*dest_uninitialized*/true);
  3162       StubRoutines::_oop_arraycopy_uninit              = generate_conjoint_oop_copy(false, entry, NULL,
  3163                                                                                     "oop_arraycopy_uninit",
  3164                                                                                     /*dest_uninitialized*/true);
  3165     } else
  3166 #endif
  3168       // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
  3169       StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
  3170       StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
  3171       StubRoutines::_oop_disjoint_arraycopy_uninit     = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
  3172       StubRoutines::_oop_arraycopy_uninit              = StubRoutines::_arrayof_oop_arraycopy_uninit;
  3175     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  3176     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
  3177                                                                         /*dest_uninitialized*/true);
  3179     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
  3180                                                               entry_jbyte_arraycopy,
  3181                                                               entry_jshort_arraycopy,
  3182                                                               entry_jint_arraycopy,
  3183                                                               entry_jlong_arraycopy);
  3184     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
  3185                                                                entry_jbyte_arraycopy,
  3186                                                                entry_jshort_arraycopy,
  3187                                                                entry_jint_arraycopy,
  3188                                                                entry_oop_arraycopy,
  3189                                                                entry_jlong_arraycopy,
  3190                                                                entry_checkcast_arraycopy);
  3192     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  3193     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  3194     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  3195     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  3196     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  3197     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  3200   void generate_initial() {
  3201     // Generates all stubs and initializes the entry points
  3203     //------------------------------------------------------------------------------------------------------------------------
  3204     // entry points that exist in all platforms
  3205     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  3206     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  3207     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
  3209     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
  3210     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
  3212     //------------------------------------------------------------------------------------------------------------------------
  3213     // entry points that are platform specific
  3214     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
  3216     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
  3217     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
  3219 #if !defined(COMPILER2) && !defined(_LP64)
  3220     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  3221     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  3222     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  3223     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
  3224     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
  3225     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  3226     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
  3227 #endif  // COMPILER2 !=> _LP64
  3229     // Build this early so it's available for the interpreter.  The
  3230     // stub expects the required and actual type to already be in O1
  3231     // and O2 respectively.
  3232     StubRoutines::_throw_WrongMethodTypeException_entry =
  3233       generate_throw_exception("WrongMethodTypeException throw_exception",
  3234                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
  3235                                false, G5_method_type, G3_method_handle);
  3239   void generate_all() {
  3240     // Generates all stubs and initializes the entry points
  3242     // Generate partial_subtype_check first here since its code depends on
  3243     // UseZeroBaseCompressedOops which is defined after heap initialization.
  3244     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
  3245     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  3246     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  3247     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  3248     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  3249     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  3250     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  3251     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  3253     StubRoutines::_handler_for_unsafe_access_entry =
  3254       generate_handler_for_unsafe_access();
  3256     // support for verify_oop (must happen after universe_init)
  3257     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
  3259     // arraycopy stubs used by compilers
  3260     generate_arraycopy_stubs();
  3262     // Don't initialize the platform math functions since sparc
  3263     // doesn't have intrinsics for these operations.
  3267  public:
  3268   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3269     // replace the standard masm with a special one:
  3270     _masm = new MacroAssembler(code);
  3272     _stub_count = !all ? 0x100 : 0x200;
  3273     if (all) {
  3274       generate_all();
  3275     } else {
  3276       generate_initial();
  3279     // make sure this stub is available for all local calls
  3280     if (_atomic_add_stub.is_unbound()) {
  3281       // generate a second time, if necessary
  3282       (void) generate_atomic_add();
  3287  private:
  3288   int _stub_count;
  3289   void stub_prolog(StubCodeDesc* cdesc) {
  3290     # ifdef ASSERT
  3291       // put extra information in the stub code, to make it more readable
  3292 #ifdef _LP64
  3293 // Write the high part of the address
  3294 // [RGV] Check if there is a dependency on the size of this prolog
  3295       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
  3296 #endif
  3297       __ emit_data((intptr_t)cdesc,    relocInfo::none);
  3298       __ emit_data(++_stub_count, relocInfo::none);
  3299     # endif
  3300     align(true);
  3303   void align(bool at_header = false) {
  3304     // %%%%% move this constant somewhere else
  3305     // UltraSPARC cache line size is 8 instructions:
  3306     const unsigned int icache_line_size = 32;
  3307     const unsigned int icache_half_line_size = 16;
  3309     if (at_header) {
  3310       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
  3311         __ emit_data(0, relocInfo::none);
  3313     } else {
  3314       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
  3315         __ nop();
  3320 }; // end class declaration
  3322 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3323   StubGenerator g(code, all);

mercurial