src/share/vm/gc_implementation/g1/heapRegion.hpp

Fri, 09 Sep 2011 05:20:58 -0400

author
tonyp
date
Fri, 09 Sep 2011 05:20:58 -0400
changeset 3121
3bddbf0f57d6
parent 3028
f44782f04dd4
child 3175
4dfb2df418f2
permissions
-rw-r--r--

7087717: G1: make the G1PrintRegionLivenessInfo parameter diagnostic
Reviewed-by: brutisso, ysr

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
tonyp@2472 54
tonyp@2963 55 #define HR_FORMAT SIZE_FORMAT":(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 56 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 57 (_hr_)->hrs_index(), \
tonyp@2963 58 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
tonyp@2963 59 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 60
ysr@777 61 // A dirty card to oop closure for heap regions. It
ysr@777 62 // knows how to get the G1 heap and how to use the bitmap
ysr@777 63 // in the concurrent marker used by G1 to filter remembered
ysr@777 64 // sets.
ysr@777 65
ysr@777 66 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 67 public:
ysr@777 68 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 69 enum FilterKind {
ysr@777 70 NoFilterKind,
ysr@777 71 IntoCSFilterKind,
ysr@777 72 OutOfRegionFilterKind
ysr@777 73 };
ysr@777 74
ysr@777 75 protected:
ysr@777 76 HeapRegion* _hr;
ysr@777 77 FilterKind _fk;
ysr@777 78 G1CollectedHeap* _g1;
ysr@777 79
ysr@777 80 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 81 HeapWord* bottom, HeapWord* top,
ysr@777 82 OopClosure* cl);
ysr@777 83
ysr@777 84 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 85 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 86 // warning.
ysr@777 87 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 88 HeapWord* bottom, HeapWord* top,
ysr@777 89 FilteringClosure* cl) {
ysr@777 90 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 91 (OopClosure*)cl);
ysr@777 92 }
ysr@777 93
ysr@777 94 // Get the actual top of the area on which the closure will
ysr@777 95 // operate, given where the top is assumed to be (the end of the
ysr@777 96 // memory region passed to do_MemRegion) and where the object
ysr@777 97 // at the top is assumed to start. For example, an object may
ysr@777 98 // start at the top but actually extend past the assumed top,
ysr@777 99 // in which case the top becomes the end of the object.
ysr@777 100 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 101 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 102 }
ysr@777 103
ysr@777 104 // Walk the given memory region from bottom to (actual) top
ysr@777 105 // looking for objects and applying the oop closure (_cl) to
ysr@777 106 // them. The base implementation of this treats the area as
ysr@777 107 // blocks, where a block may or may not be an object. Sub-
ysr@777 108 // classes should override this to provide more accurate
ysr@777 109 // or possibly more efficient walking.
ysr@777 110 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 111 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 112 }
ysr@777 113
ysr@777 114 public:
ysr@777 115 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 116 HeapRegion* hr, OopClosure* cl,
ysr@777 117 CardTableModRefBS::PrecisionStyle precision,
ysr@777 118 FilterKind fk);
ysr@777 119 };
ysr@777 120
ysr@777 121
ysr@777 122 // The complicating factor is that BlockOffsetTable diverged
ysr@777 123 // significantly, and we need functionality that is only in the G1 version.
ysr@777 124 // So I copied that code, which led to an alternate G1 version of
ysr@777 125 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 126 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 127
ysr@777 128 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 129 // all regions at every GC pause is time consuming (if I remember
ysr@777 130 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 131 // that are GC alloc regions. To achieve this, we use time
ysr@777 132 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 133 // unique time stamp (essentially a counter that gets
ysr@777 134 // incremented). Every time we want to call save_marks on a region,
ysr@777 135 // we set the saved_mark_word to top and also copy the current GC
ysr@777 136 // time stamp to the time stamp field of the space. Reading the
ysr@777 137 // saved_mark_word involves checking the time stamp of the
ysr@777 138 // region. If it is the same as the current GC time stamp, then we
ysr@777 139 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 140 // time stamp of the region is not the same as the current GC time
ysr@777 141 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 142 // invalid. Time stamps (on the regions and also on the
ysr@777 143 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 144 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 145 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 146 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 147
ysr@777 148 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 149 friend class VMStructs;
ysr@777 150 protected:
ysr@777 151 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 152 Mutex _par_alloc_lock;
ysr@777 153 volatile unsigned _gc_time_stamp;
tonyp@2715 154 // When we need to retire an allocation region, while other threads
tonyp@2715 155 // are also concurrently trying to allocate into it, we typically
tonyp@2715 156 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 157 // no more allocations can take place in it. However, sometimes we
tonyp@2715 158 // want to know where the end of the last "real" object we allocated
tonyp@2715 159 // into the region was and this is what this keeps track.
tonyp@2715 160 HeapWord* _pre_dummy_top;
ysr@777 161
ysr@777 162 public:
ysr@777 163 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 164 // assumed to contain zeros.
ysr@777 165 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 166 MemRegion mr, bool is_zeroed = false);
ysr@777 167
ysr@777 168 void set_bottom(HeapWord* value);
ysr@777 169 void set_end(HeapWord* value);
ysr@777 170
ysr@777 171 virtual HeapWord* saved_mark_word() const;
ysr@777 172 virtual void set_saved_mark();
ysr@777 173 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 174
tonyp@2715 175 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 176 // explanation of what it is.
tonyp@2715 177 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 178 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 179 _pre_dummy_top = pre_dummy_top;
tonyp@2715 180 }
tonyp@2715 181 HeapWord* pre_dummy_top() {
tonyp@2715 182 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 183 }
tonyp@2715 184 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 185
tonyp@791 186 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 187 virtual void clear(bool mangle_space);
ysr@777 188
ysr@777 189 HeapWord* block_start(const void* p);
ysr@777 190 HeapWord* block_start_const(const void* p) const;
ysr@777 191
ysr@777 192 // Add offset table update.
ysr@777 193 virtual HeapWord* allocate(size_t word_size);
ysr@777 194 HeapWord* par_allocate(size_t word_size);
ysr@777 195
ysr@777 196 // MarkSweep support phase3
ysr@777 197 virtual HeapWord* initialize_threshold();
ysr@777 198 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 199
ysr@777 200 virtual void print() const;
tonyp@2453 201
tonyp@2453 202 void reset_bot() {
tonyp@2453 203 _offsets.zero_bottom_entry();
tonyp@2453 204 _offsets.initialize_threshold();
tonyp@2453 205 }
tonyp@2453 206
tonyp@2453 207 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 208 _offsets.alloc_block(start, word_size);
tonyp@2453 209 }
tonyp@2453 210
tonyp@2453 211 void print_bot_on(outputStream* out) {
tonyp@2453 212 _offsets.print_on(out);
tonyp@2453 213 }
ysr@777 214 };
ysr@777 215
ysr@777 216 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 217 friend class VMStructs;
ysr@777 218 private:
ysr@777 219
tonyp@790 220 enum HumongousType {
tonyp@790 221 NotHumongous = 0,
tonyp@790 222 StartsHumongous,
tonyp@790 223 ContinuesHumongous
tonyp@790 224 };
tonyp@790 225
ysr@777 226 // The next filter kind that should be used for a "new_dcto_cl" call with
ysr@777 227 // the "traditional" signature.
ysr@777 228 HeapRegionDCTOC::FilterKind _next_fk;
ysr@777 229
ysr@777 230 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 231 // with an object.
ysr@777 232 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 233
ysr@777 234 // The remembered set for this region.
ysr@777 235 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 236 // issues.)
ysr@777 237 HeapRegionRemSet* _rem_set;
ysr@777 238
ysr@777 239 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 240
ysr@777 241 protected:
tonyp@2963 242 // The index of this region in the heap region sequence.
tonyp@2963 243 size_t _hrs_index;
ysr@777 244
tonyp@790 245 HumongousType _humongous_type;
ysr@777 246 // For a humongous region, region in which it starts.
ysr@777 247 HeapRegion* _humongous_start_region;
ysr@777 248 // For the start region of a humongous sequence, it's original end().
ysr@777 249 HeapWord* _orig_end;
ysr@777 250
ysr@777 251 // True iff the region is in current collection_set.
ysr@777 252 bool _in_collection_set;
ysr@777 253
ysr@777 254 // True iff an attempt to evacuate an object in the region failed.
ysr@777 255 bool _evacuation_failed;
ysr@777 256
ysr@777 257 // A heap region may be a member one of a number of special subsets, each
ysr@777 258 // represented as linked lists through the field below. Currently, these
ysr@777 259 // sets include:
ysr@777 260 // The collection set.
ysr@777 261 // The set of allocation regions used in a collection pause.
ysr@777 262 // Spaces that may contain gray objects.
ysr@777 263 HeapRegion* _next_in_special_set;
ysr@777 264
ysr@777 265 // next region in the young "generation" region set
ysr@777 266 HeapRegion* _next_young_region;
ysr@777 267
apetrusenko@1231 268 // Next region whose cards need cleaning
apetrusenko@1231 269 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 270
tonyp@2472 271 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 272 HeapRegion* _next;
tonyp@2472 273 #ifdef ASSERT
tonyp@2472 274 HeapRegionSetBase* _containing_set;
tonyp@2472 275 #endif // ASSERT
tonyp@2472 276 bool _pending_removal;
tonyp@2472 277
ysr@777 278 // For parallel heapRegion traversal.
ysr@777 279 jint _claimed;
ysr@777 280
ysr@777 281 // We use concurrent marking to determine the amount of live data
ysr@777 282 // in each heap region.
ysr@777 283 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 284 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 285
ysr@777 286 // See "sort_index" method. -1 means is not in the array.
ysr@777 287 int _sort_index;
ysr@777 288
ysr@777 289 // <PREDICTION>
ysr@777 290 double _gc_efficiency;
ysr@777 291 // </PREDICTION>
ysr@777 292
ysr@777 293 enum YoungType {
ysr@777 294 NotYoung, // a region is not young
ysr@777 295 Young, // a region is young
tonyp@2963 296 Survivor // a region is young and it contains survivors
ysr@777 297 };
ysr@777 298
johnc@2021 299 volatile YoungType _young_type;
ysr@777 300 int _young_index_in_cset;
ysr@777 301 SurvRateGroup* _surv_rate_group;
ysr@777 302 int _age_index;
ysr@777 303
ysr@777 304 // The start of the unmarked area. The unmarked area extends from this
ysr@777 305 // word until the top and/or end of the region, and is the part
ysr@777 306 // of the region for which no marking was done, i.e. objects may
ysr@777 307 // have been allocated in this part since the last mark phase.
ysr@777 308 // "prev" is the top at the start of the last completed marking.
ysr@777 309 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 310 HeapWord* _prev_top_at_mark_start;
ysr@777 311 HeapWord* _next_top_at_mark_start;
ysr@777 312 // If a collection pause is in progress, this is the top at the start
ysr@777 313 // of that pause.
ysr@777 314
ysr@777 315 // We've counted the marked bytes of objects below here.
ysr@777 316 HeapWord* _top_at_conc_mark_count;
ysr@777 317
ysr@777 318 void init_top_at_mark_start() {
ysr@777 319 assert(_prev_marked_bytes == 0 &&
ysr@777 320 _next_marked_bytes == 0,
ysr@777 321 "Must be called after zero_marked_bytes.");
ysr@777 322 HeapWord* bot = bottom();
ysr@777 323 _prev_top_at_mark_start = bot;
ysr@777 324 _next_top_at_mark_start = bot;
ysr@777 325 _top_at_conc_mark_count = bot;
ysr@777 326 }
ysr@777 327
ysr@777 328 void set_young_type(YoungType new_type) {
ysr@777 329 //assert(_young_type != new_type, "setting the same type" );
ysr@777 330 // TODO: add more assertions here
ysr@777 331 _young_type = new_type;
ysr@777 332 }
ysr@777 333
johnc@1829 334 // Cached attributes used in the collection set policy information
johnc@1829 335
johnc@1829 336 // The RSet length that was added to the total value
johnc@1829 337 // for the collection set.
johnc@1829 338 size_t _recorded_rs_length;
johnc@1829 339
johnc@1829 340 // The predicted elapsed time that was added to total value
johnc@1829 341 // for the collection set.
johnc@1829 342 double _predicted_elapsed_time_ms;
johnc@1829 343
johnc@1829 344 // The predicted number of bytes to copy that was added to
johnc@1829 345 // the total value for the collection set.
johnc@1829 346 size_t _predicted_bytes_to_copy;
johnc@1829 347
ysr@777 348 public:
ysr@777 349 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
tonyp@2963 350 HeapRegion(size_t hrs_index,
tonyp@2963 351 G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 352 MemRegion mr, bool is_zeroed);
ysr@777 353
tonyp@1377 354 static int LogOfHRGrainBytes;
tonyp@1377 355 static int LogOfHRGrainWords;
tonyp@1377 356 // The normal type of these should be size_t. However, they used to
tonyp@1377 357 // be members of an enum before and they are assumed by the
tonyp@1377 358 // compilers to be ints. To avoid going and fixing all their uses,
tonyp@1377 359 // I'm declaring them as ints. I'm not anticipating heap region
tonyp@1377 360 // sizes to reach anywhere near 2g, so using an int here is safe.
tonyp@1377 361 static int GrainBytes;
tonyp@1377 362 static int GrainWords;
tonyp@1377 363 static int CardsPerRegion;
tonyp@1377 364
tonyp@1377 365 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 366 // well as other related fields that are based on the heap region
tonyp@1377 367 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 368 // CardsPerRegion). All those fields are considered constant
tonyp@1377 369 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 370 // up once during initialization time.
tonyp@1377 371 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 372
tonyp@790 373 enum ClaimValues {
tonyp@790 374 InitialClaimValue = 0,
tonyp@790 375 FinalCountClaimValue = 1,
tonyp@790 376 NoteEndClaimValue = 2,
tonyp@825 377 ScrubRemSetClaimValue = 3,
apetrusenko@1061 378 ParVerifyClaimValue = 4,
apetrusenko@1061 379 RebuildRSClaimValue = 5
tonyp@790 380 };
tonyp@790 381
tonyp@2454 382 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 383 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 384 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 385 }
tonyp@2454 386 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 387 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 388 return ContiguousSpace::allocate(word_size);
tonyp@2454 389 }
tonyp@2454 390
ysr@777 391 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 392 // sequence, otherwise -1.
tonyp@2963 393 size_t hrs_index() const { return _hrs_index; }
ysr@777 394
ysr@777 395 // The number of bytes marked live in the region in the last marking phase.
ysr@777 396 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 397 size_t live_bytes() {
tonyp@2717 398 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 399 }
tonyp@2717 400
ysr@777 401 // The number of bytes counted in the next marking.
ysr@777 402 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 403 // The number of bytes live wrt the next marking.
ysr@777 404 size_t next_live_bytes() {
tonyp@2717 405 return
tonyp@2717 406 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 407 }
ysr@777 408
ysr@777 409 // A lower bound on the amount of garbage bytes in the region.
ysr@777 410 size_t garbage_bytes() {
ysr@777 411 size_t used_at_mark_start_bytes =
ysr@777 412 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 413 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 414 "Can't mark more than we have.");
ysr@777 415 return used_at_mark_start_bytes - marked_bytes();
ysr@777 416 }
ysr@777 417
ysr@777 418 // An upper bound on the number of live bytes in the region.
ysr@777 419 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 420
ysr@777 421 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 422 _next_marked_bytes = _next_marked_bytes + incr_bytes;
ysr@777 423 guarantee( _next_marked_bytes <= used(), "invariant" );
ysr@777 424 }
ysr@777 425
ysr@777 426 void zero_marked_bytes() {
ysr@777 427 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 428 }
ysr@777 429
tonyp@790 430 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 431 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 432 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 433 // For a humongous region, region in which it starts.
ysr@777 434 HeapRegion* humongous_start_region() const {
ysr@777 435 return _humongous_start_region;
ysr@777 436 }
ysr@777 437
tonyp@2453 438 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 439 // the first region in a series of one or more contiguous regions
tonyp@2453 440 // that will contain a single "humongous" object. The two parameters
tonyp@2453 441 // are as follows:
tonyp@2453 442 //
tonyp@2453 443 // new_top : The new value of the top field of this region which
tonyp@2453 444 // points to the end of the humongous object that's being
tonyp@2453 445 // allocated. If there is more than one region in the series, top
tonyp@2453 446 // will lie beyond this region's original end field and on the last
tonyp@2453 447 // region in the series.
tonyp@2453 448 //
tonyp@2453 449 // new_end : The new value of the end field of this region which
tonyp@2453 450 // points to the end of the last region in the series. If there is
tonyp@2453 451 // one region in the series (namely: this one) end will be the same
tonyp@2453 452 // as the original end of this region.
tonyp@2453 453 //
tonyp@2453 454 // Updating top and end as described above makes this region look as
tonyp@2453 455 // if it spans the entire space taken up by all the regions in the
tonyp@2453 456 // series and an single allocation moved its top to new_top. This
tonyp@2453 457 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 458 // humongous regions can be calculated by just looking at the
tonyp@2453 459 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 460 // humongous" regions.
tonyp@2453 461 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 462
tonyp@2453 463 // Makes the current region be a "continues humongous'
tonyp@2453 464 // region. first_hr is the "start humongous" region of the series
tonyp@2453 465 // which this region will be part of.
tonyp@2453 466 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 467
tonyp@2472 468 // Unsets the humongous-related fields on the region.
tonyp@2472 469 void set_notHumongous();
tonyp@2472 470
ysr@777 471 // If the region has a remembered set, return a pointer to it.
ysr@777 472 HeapRegionRemSet* rem_set() const {
ysr@777 473 return _rem_set;
ysr@777 474 }
ysr@777 475
ysr@777 476 // True iff the region is in current collection_set.
ysr@777 477 bool in_collection_set() const {
ysr@777 478 return _in_collection_set;
ysr@777 479 }
ysr@777 480 void set_in_collection_set(bool b) {
ysr@777 481 _in_collection_set = b;
ysr@777 482 }
ysr@777 483 HeapRegion* next_in_collection_set() {
ysr@777 484 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 485 assert(_next_in_special_set == NULL ||
ysr@777 486 _next_in_special_set->in_collection_set(),
ysr@777 487 "Malformed CS.");
ysr@777 488 return _next_in_special_set;
ysr@777 489 }
ysr@777 490 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 491 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 492 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 493 _next_in_special_set = r;
ysr@777 494 }
ysr@777 495
tonyp@2472 496 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 497
tonyp@2472 498 // Getter and setter for the next field used to link regions into
tonyp@2472 499 // linked lists.
tonyp@2472 500 HeapRegion* next() { return _next; }
tonyp@2472 501
tonyp@2472 502 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 503
tonyp@2472 504 // Every region added to a set is tagged with a reference to that
tonyp@2472 505 // set. This is used for doing consistency checking to make sure that
tonyp@2472 506 // the contents of a set are as they should be and it's only
tonyp@2472 507 // available in non-product builds.
tonyp@2472 508 #ifdef ASSERT
tonyp@2472 509 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 510 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 511 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 512 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 513 "_containing_set: "PTR_FORMAT,
tonyp@2472 514 containing_set, _containing_set));
tonyp@2472 515
tonyp@2472 516 _containing_set = containing_set;
tonyp@2643 517 }
tonyp@2472 518
tonyp@2472 519 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 520 #else // ASSERT
tonyp@2472 521 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 522
tonyp@2643 523 // containing_set() is only used in asserts so there's no reason
tonyp@2472 524 // to provide a dummy version of it.
tonyp@2472 525 #endif // ASSERT
tonyp@2472 526
tonyp@2472 527 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 528 // them with the pending_removal tag and call the
tonyp@2472 529 // remove_all_pending() method on the list.
tonyp@2472 530
tonyp@2472 531 bool pending_removal() { return _pending_removal; }
tonyp@2472 532
tonyp@2472 533 void set_pending_removal(bool pending_removal) {
tonyp@2643 534 if (pending_removal) {
tonyp@2643 535 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 536 "can only set pending removal to true if it's false and "
tonyp@2643 537 "the region belongs to a region set");
tonyp@2643 538 } else {
tonyp@2643 539 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 540 "can only set pending removal to false if it's true and "
tonyp@2643 541 "the region does not belong to a region set");
tonyp@2643 542 }
tonyp@2472 543
tonyp@2472 544 _pending_removal = pending_removal;
ysr@777 545 }
ysr@777 546
ysr@777 547 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 548 void set_next_young_region(HeapRegion* hr) {
ysr@777 549 _next_young_region = hr;
ysr@777 550 }
ysr@777 551
apetrusenko@1231 552 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 553 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 554 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 555 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 556
tonyp@2963 557 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 558
ysr@777 559 // Allows logical separation between objects allocated before and after.
ysr@777 560 void save_marks();
ysr@777 561
ysr@777 562 // Reset HR stuff to default values.
ysr@777 563 void hr_clear(bool par, bool clear_space);
tonyp@2849 564 void par_clear();
ysr@777 565
tonyp@791 566 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 567
ysr@777 568 // Get the start of the unmarked area in this region.
ysr@777 569 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 570 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 571
ysr@777 572 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 573 // allocated in the current region before the last call to "save_mark".
ysr@777 574 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 575
ysr@777 576 // This call determines the "filter kind" argument that will be used for
ysr@777 577 // the next call to "new_dcto_cl" on this region with the "traditional"
ysr@777 578 // signature (i.e., the call below.) The default, in the absence of a
ysr@777 579 // preceding call to this method, is "NoFilterKind", and a call to this
ysr@777 580 // method is necessary for each such call, or else it reverts to the
ysr@777 581 // default.
ysr@777 582 // (This is really ugly, but all other methods I could think of changed a
ysr@777 583 // lot of main-line code for G1.)
ysr@777 584 void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
ysr@777 585 _next_fk = nfk;
ysr@777 586 }
ysr@777 587
ysr@777 588 DirtyCardToOopClosure*
ysr@777 589 new_dcto_closure(OopClosure* cl,
ysr@777 590 CardTableModRefBS::PrecisionStyle precision,
ysr@777 591 HeapRegionDCTOC::FilterKind fk);
ysr@777 592
ysr@777 593 #if WHASSUP
ysr@777 594 DirtyCardToOopClosure*
ysr@777 595 new_dcto_closure(OopClosure* cl,
ysr@777 596 CardTableModRefBS::PrecisionStyle precision,
ysr@777 597 HeapWord* boundary) {
ysr@777 598 assert(boundary == NULL, "This arg doesn't make sense here.");
ysr@777 599 DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
ysr@777 600 _next_fk = HeapRegionDCTOC::NoFilterKind;
ysr@777 601 return res;
ysr@777 602 }
ysr@777 603 #endif
ysr@777 604
ysr@777 605 //
ysr@777 606 // Note the start or end of marking. This tells the heap region
ysr@777 607 // that the collector is about to start or has finished (concurrently)
ysr@777 608 // marking the heap.
ysr@777 609 //
ysr@777 610
ysr@777 611 // Note the start of a marking phase. Record the
ysr@777 612 // start of the unmarked area of the region here.
ysr@777 613 void note_start_of_marking(bool during_initial_mark) {
ysr@777 614 init_top_at_conc_mark_count();
ysr@777 615 _next_marked_bytes = 0;
ysr@777 616 if (during_initial_mark && is_young() && !is_survivor())
ysr@777 617 _next_top_at_mark_start = bottom();
ysr@777 618 else
ysr@777 619 _next_top_at_mark_start = top();
ysr@777 620 }
ysr@777 621
ysr@777 622 // Note the end of a marking phase. Install the start of
ysr@777 623 // the unmarked area that was captured at start of marking.
ysr@777 624 void note_end_of_marking() {
ysr@777 625 _prev_top_at_mark_start = _next_top_at_mark_start;
ysr@777 626 _prev_marked_bytes = _next_marked_bytes;
ysr@777 627 _next_marked_bytes = 0;
ysr@777 628
ysr@777 629 guarantee(_prev_marked_bytes <=
ysr@777 630 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
ysr@777 631 "invariant");
ysr@777 632 }
ysr@777 633
ysr@777 634 // After an evacuation, we need to update _next_top_at_mark_start
ysr@777 635 // to be the current top. Note this is only valid if we have only
ysr@777 636 // ever evacuated into this region. If we evacuate, allocate, and
ysr@777 637 // then evacuate we are in deep doodoo.
ysr@777 638 void note_end_of_copying() {
tonyp@1456 639 assert(top() >= _next_top_at_mark_start, "Increase only");
tonyp@1456 640 _next_top_at_mark_start = top();
ysr@777 641 }
ysr@777 642
ysr@777 643 // Returns "false" iff no object in the region was allocated when the
ysr@777 644 // last mark phase ended.
ysr@777 645 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 646
ysr@777 647 // If "is_marked()" is true, then this is the index of the region in
ysr@777 648 // an array constructed at the end of marking of the regions in a
ysr@777 649 // "desirability" order.
ysr@777 650 int sort_index() {
ysr@777 651 return _sort_index;
ysr@777 652 }
ysr@777 653 void set_sort_index(int i) {
ysr@777 654 _sort_index = i;
ysr@777 655 }
ysr@777 656
ysr@777 657 void init_top_at_conc_mark_count() {
ysr@777 658 _top_at_conc_mark_count = bottom();
ysr@777 659 }
ysr@777 660
ysr@777 661 void set_top_at_conc_mark_count(HeapWord *cur) {
ysr@777 662 assert(bottom() <= cur && cur <= end(), "Sanity.");
ysr@777 663 _top_at_conc_mark_count = cur;
ysr@777 664 }
ysr@777 665
ysr@777 666 HeapWord* top_at_conc_mark_count() {
ysr@777 667 return _top_at_conc_mark_count;
ysr@777 668 }
ysr@777 669
ysr@777 670 void reset_during_compaction() {
ysr@777 671 guarantee( isHumongous() && startsHumongous(),
ysr@777 672 "should only be called for humongous regions");
ysr@777 673
ysr@777 674 zero_marked_bytes();
ysr@777 675 init_top_at_mark_start();
ysr@777 676 }
ysr@777 677
ysr@777 678 // <PREDICTION>
ysr@777 679 void calc_gc_efficiency(void);
ysr@777 680 double gc_efficiency() { return _gc_efficiency;}
ysr@777 681 // </PREDICTION>
ysr@777 682
ysr@777 683 bool is_young() const { return _young_type != NotYoung; }
ysr@777 684 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 685
ysr@777 686 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 687 void set_young_index_in_cset(int index) {
ysr@777 688 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 689 _young_index_in_cset = index;
ysr@777 690 }
ysr@777 691
ysr@777 692 int age_in_surv_rate_group() {
ysr@777 693 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 694 assert( _age_index > -1, "pre-condition" );
ysr@777 695 return _surv_rate_group->age_in_group(_age_index);
ysr@777 696 }
ysr@777 697
ysr@777 698 void record_surv_words_in_group(size_t words_survived) {
ysr@777 699 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 700 assert( _age_index > -1, "pre-condition" );
ysr@777 701 int age_in_group = age_in_surv_rate_group();
ysr@777 702 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 703 }
ysr@777 704
ysr@777 705 int age_in_surv_rate_group_cond() {
ysr@777 706 if (_surv_rate_group != NULL)
ysr@777 707 return age_in_surv_rate_group();
ysr@777 708 else
ysr@777 709 return -1;
ysr@777 710 }
ysr@777 711
ysr@777 712 SurvRateGroup* surv_rate_group() {
ysr@777 713 return _surv_rate_group;
ysr@777 714 }
ysr@777 715
ysr@777 716 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 717 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 718 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 719 assert( is_young(), "pre-condition" );
ysr@777 720
ysr@777 721 _surv_rate_group = surv_rate_group;
ysr@777 722 _age_index = surv_rate_group->next_age_index();
ysr@777 723 }
ysr@777 724
ysr@777 725 void uninstall_surv_rate_group() {
ysr@777 726 if (_surv_rate_group != NULL) {
ysr@777 727 assert( _age_index > -1, "pre-condition" );
ysr@777 728 assert( is_young(), "pre-condition" );
ysr@777 729
ysr@777 730 _surv_rate_group = NULL;
ysr@777 731 _age_index = -1;
ysr@777 732 } else {
ysr@777 733 assert( _age_index == -1, "pre-condition" );
ysr@777 734 }
ysr@777 735 }
ysr@777 736
ysr@777 737 void set_young() { set_young_type(Young); }
ysr@777 738
ysr@777 739 void set_survivor() { set_young_type(Survivor); }
ysr@777 740
ysr@777 741 void set_not_young() { set_young_type(NotYoung); }
ysr@777 742
ysr@777 743 // Determine if an object has been allocated since the last
ysr@777 744 // mark performed by the collector. This returns true iff the object
ysr@777 745 // is within the unmarked area of the region.
ysr@777 746 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 747 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 748 }
ysr@777 749 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 750 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 751 }
ysr@777 752
ysr@777 753 // For parallel heapRegion traversal.
ysr@777 754 bool claimHeapRegion(int claimValue);
ysr@777 755 jint claim_value() { return _claimed; }
ysr@777 756 // Use this carefully: only when you're sure no one is claiming...
ysr@777 757 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 758
ysr@777 759 // Returns the "evacuation_failed" property of the region.
ysr@777 760 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 761
ysr@777 762 // Sets the "evacuation_failed" property of the region.
ysr@777 763 void set_evacuation_failed(bool b) {
ysr@777 764 _evacuation_failed = b;
ysr@777 765
ysr@777 766 if (b) {
ysr@777 767 init_top_at_conc_mark_count();
ysr@777 768 _next_marked_bytes = 0;
ysr@777 769 }
ysr@777 770 }
ysr@777 771
ysr@777 772 // Requires that "mr" be entirely within the region.
ysr@777 773 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 774 // If the iteration encounters an unparseable portion of the region,
ysr@777 775 // or if "cl->abort()" is true after a closure application,
ysr@777 776 // terminate the iteration and return the address of the start of the
ysr@777 777 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 778 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 779 // completed.
ysr@777 780 HeapWord*
ysr@777 781 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 782
tonyp@2849 783 // filter_young: if true and the region is a young region then we
tonyp@2849 784 // skip the iteration.
tonyp@2849 785 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 786 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 787 // iteration.
ysr@777 788 HeapWord*
ysr@777 789 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 790 FilterOutOfRegionClosure* cl,
tonyp@2849 791 bool filter_young,
tonyp@2849 792 jbyte* card_ptr);
ysr@777 793
ysr@777 794 // A version of block start that is guaranteed to find *some* block
ysr@777 795 // boundary at or before "p", but does not object iteration, and may
ysr@777 796 // therefore be used safely when the heap is unparseable.
ysr@777 797 HeapWord* block_start_careful(const void* p) const {
ysr@777 798 return _offsets.block_start_careful(p);
ysr@777 799 }
ysr@777 800
ysr@777 801 // Requires that "addr" is within the region. Returns the start of the
ysr@777 802 // first ("careful") block that starts at or after "addr", or else the
ysr@777 803 // "end" of the region if there is no such block.
ysr@777 804 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 805
johnc@1829 806 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 807 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 808 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 809
johnc@1829 810 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 811 _recorded_rs_length = rs_length;
johnc@1829 812 }
johnc@1829 813
johnc@1829 814 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 815 _predicted_elapsed_time_ms = ms;
johnc@1829 816 }
johnc@1829 817
johnc@1829 818 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 819 _predicted_bytes_to_copy = bytes;
johnc@1829 820 }
johnc@1829 821
ysr@777 822 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 823 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 824 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 825
ysr@777 826 CompactibleSpace* next_compaction_space() const;
ysr@777 827
ysr@777 828 virtual void reset_after_compaction();
ysr@777 829
ysr@777 830 void print() const;
ysr@777 831 void print_on(outputStream* st) const;
ysr@777 832
johnc@2969 833 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 834 // vo == UseNextMarking -> use "next" marking information
johnc@2969 835 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 836 //
tonyp@1246 837 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 838 // consistent most of the time, so most calls to this should use
johnc@2969 839 // vo == UsePrevMarking.
johnc@2969 840 // Currently, there is only one case where this is called with
johnc@2969 841 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 842 // information at the end of remark.
johnc@2969 843 // Currently there is only one place where this is called with
johnc@2969 844 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 845 // full GC.
johnc@2969 846 void verify(bool allow_dirty, VerifyOption vo, bool *failures) const;
tonyp@1246 847
tonyp@1246 848 // Override; it uses the "prev" marking information
ysr@777 849 virtual void verify(bool allow_dirty) const;
ysr@777 850 };
ysr@777 851
ysr@777 852 // HeapRegionClosure is used for iterating over regions.
ysr@777 853 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 854 class HeapRegionClosure : public StackObj {
ysr@777 855 friend class HeapRegionSeq;
ysr@777 856 friend class G1CollectedHeap;
ysr@777 857
ysr@777 858 bool _complete;
ysr@777 859 void incomplete() { _complete = false; }
ysr@777 860
ysr@777 861 public:
ysr@777 862 HeapRegionClosure(): _complete(true) {}
ysr@777 863
ysr@777 864 // Typically called on each region until it returns true.
ysr@777 865 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 866
ysr@777 867 // True after iteration if the closure was applied to all heap regions
ysr@777 868 // and returned "false" in all cases.
ysr@777 869 bool complete() { return _complete; }
ysr@777 870 };
ysr@777 871
ysr@777 872 #endif // SERIALGC
stefank@2314 873
stefank@2314 874 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial