src/share/vm/gc_implementation/g1/heapRegion.hpp

Thu, 22 Sep 2011 10:57:37 -0700

author
johnc
date
Thu, 22 Sep 2011 10:57:37 -0700
changeset 3175
4dfb2df418f2
parent 3028
f44782f04dd4
child 3176
8229bd737950
permissions
-rw-r--r--

6484982: G1: process references during evacuation pauses
Summary: G1 now uses two reference processors - one is used by concurrent marking and the other is used by STW GCs (both full and incremental evacuation pauses). In an evacuation pause, the reference processor is embedded into the closures used to scan objects. Doing so causes causes reference objects to be 'discovered' by the reference processor. At the end of the evacuation pause, these discovered reference objects are processed - preserving (and copying) referent objects (and their reachable graphs) as appropriate.
Reviewed-by: ysr, jwilhelm, brutisso, stefank, tonyp

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
tonyp@2472 54
tonyp@2963 55 #define HR_FORMAT SIZE_FORMAT":(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 56 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 57 (_hr_)->hrs_index(), \
tonyp@2963 58 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
tonyp@2963 59 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 60
ysr@777 61 // A dirty card to oop closure for heap regions. It
ysr@777 62 // knows how to get the G1 heap and how to use the bitmap
ysr@777 63 // in the concurrent marker used by G1 to filter remembered
ysr@777 64 // sets.
ysr@777 65
ysr@777 66 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 67 public:
ysr@777 68 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 69 enum FilterKind {
ysr@777 70 NoFilterKind,
ysr@777 71 IntoCSFilterKind,
ysr@777 72 OutOfRegionFilterKind
ysr@777 73 };
ysr@777 74
ysr@777 75 protected:
ysr@777 76 HeapRegion* _hr;
ysr@777 77 FilterKind _fk;
ysr@777 78 G1CollectedHeap* _g1;
ysr@777 79
ysr@777 80 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 81 HeapWord* bottom, HeapWord* top,
ysr@777 82 OopClosure* cl);
ysr@777 83
ysr@777 84 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 85 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 86 // warning.
ysr@777 87 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 88 HeapWord* bottom, HeapWord* top,
ysr@777 89 FilteringClosure* cl) {
ysr@777 90 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 91 (OopClosure*)cl);
ysr@777 92 }
ysr@777 93
ysr@777 94 // Get the actual top of the area on which the closure will
ysr@777 95 // operate, given where the top is assumed to be (the end of the
ysr@777 96 // memory region passed to do_MemRegion) and where the object
ysr@777 97 // at the top is assumed to start. For example, an object may
ysr@777 98 // start at the top but actually extend past the assumed top,
ysr@777 99 // in which case the top becomes the end of the object.
ysr@777 100 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 101 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 102 }
ysr@777 103
ysr@777 104 // Walk the given memory region from bottom to (actual) top
ysr@777 105 // looking for objects and applying the oop closure (_cl) to
ysr@777 106 // them. The base implementation of this treats the area as
ysr@777 107 // blocks, where a block may or may not be an object. Sub-
ysr@777 108 // classes should override this to provide more accurate
ysr@777 109 // or possibly more efficient walking.
ysr@777 110 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 111 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 112 }
ysr@777 113
ysr@777 114 public:
ysr@777 115 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 116 HeapRegion* hr, OopClosure* cl,
ysr@777 117 CardTableModRefBS::PrecisionStyle precision,
ysr@777 118 FilterKind fk);
ysr@777 119 };
ysr@777 120
ysr@777 121 // The complicating factor is that BlockOffsetTable diverged
ysr@777 122 // significantly, and we need functionality that is only in the G1 version.
ysr@777 123 // So I copied that code, which led to an alternate G1 version of
ysr@777 124 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 125 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 126
ysr@777 127 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 128 // all regions at every GC pause is time consuming (if I remember
ysr@777 129 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 130 // that are GC alloc regions. To achieve this, we use time
ysr@777 131 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 132 // unique time stamp (essentially a counter that gets
ysr@777 133 // incremented). Every time we want to call save_marks on a region,
ysr@777 134 // we set the saved_mark_word to top and also copy the current GC
ysr@777 135 // time stamp to the time stamp field of the space. Reading the
ysr@777 136 // saved_mark_word involves checking the time stamp of the
ysr@777 137 // region. If it is the same as the current GC time stamp, then we
ysr@777 138 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 139 // time stamp of the region is not the same as the current GC time
ysr@777 140 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 141 // invalid. Time stamps (on the regions and also on the
ysr@777 142 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 143 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 144 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 145 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 146
ysr@777 147 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 148 friend class VMStructs;
ysr@777 149 protected:
ysr@777 150 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 151 Mutex _par_alloc_lock;
ysr@777 152 volatile unsigned _gc_time_stamp;
tonyp@2715 153 // When we need to retire an allocation region, while other threads
tonyp@2715 154 // are also concurrently trying to allocate into it, we typically
tonyp@2715 155 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 156 // no more allocations can take place in it. However, sometimes we
tonyp@2715 157 // want to know where the end of the last "real" object we allocated
tonyp@2715 158 // into the region was and this is what this keeps track.
tonyp@2715 159 HeapWord* _pre_dummy_top;
ysr@777 160
ysr@777 161 public:
ysr@777 162 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 163 // assumed to contain zeros.
ysr@777 164 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 165 MemRegion mr, bool is_zeroed = false);
ysr@777 166
ysr@777 167 void set_bottom(HeapWord* value);
ysr@777 168 void set_end(HeapWord* value);
ysr@777 169
ysr@777 170 virtual HeapWord* saved_mark_word() const;
ysr@777 171 virtual void set_saved_mark();
ysr@777 172 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 173
tonyp@2715 174 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 175 // explanation of what it is.
tonyp@2715 176 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 177 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 178 _pre_dummy_top = pre_dummy_top;
tonyp@2715 179 }
tonyp@2715 180 HeapWord* pre_dummy_top() {
tonyp@2715 181 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 182 }
tonyp@2715 183 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 184
tonyp@791 185 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 186 virtual void clear(bool mangle_space);
ysr@777 187
ysr@777 188 HeapWord* block_start(const void* p);
ysr@777 189 HeapWord* block_start_const(const void* p) const;
ysr@777 190
ysr@777 191 // Add offset table update.
ysr@777 192 virtual HeapWord* allocate(size_t word_size);
ysr@777 193 HeapWord* par_allocate(size_t word_size);
ysr@777 194
ysr@777 195 // MarkSweep support phase3
ysr@777 196 virtual HeapWord* initialize_threshold();
ysr@777 197 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 198
ysr@777 199 virtual void print() const;
tonyp@2453 200
tonyp@2453 201 void reset_bot() {
tonyp@2453 202 _offsets.zero_bottom_entry();
tonyp@2453 203 _offsets.initialize_threshold();
tonyp@2453 204 }
tonyp@2453 205
tonyp@2453 206 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 207 _offsets.alloc_block(start, word_size);
tonyp@2453 208 }
tonyp@2453 209
tonyp@2453 210 void print_bot_on(outputStream* out) {
tonyp@2453 211 _offsets.print_on(out);
tonyp@2453 212 }
ysr@777 213 };
ysr@777 214
ysr@777 215 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 216 friend class VMStructs;
ysr@777 217 private:
ysr@777 218
tonyp@790 219 enum HumongousType {
tonyp@790 220 NotHumongous = 0,
tonyp@790 221 StartsHumongous,
tonyp@790 222 ContinuesHumongous
tonyp@790 223 };
tonyp@790 224
ysr@777 225 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 226 // with an object.
ysr@777 227 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 228
ysr@777 229 // The remembered set for this region.
ysr@777 230 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 231 // issues.)
ysr@777 232 HeapRegionRemSet* _rem_set;
ysr@777 233
ysr@777 234 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 235
ysr@777 236 protected:
tonyp@2963 237 // The index of this region in the heap region sequence.
tonyp@2963 238 size_t _hrs_index;
ysr@777 239
tonyp@790 240 HumongousType _humongous_type;
ysr@777 241 // For a humongous region, region in which it starts.
ysr@777 242 HeapRegion* _humongous_start_region;
ysr@777 243 // For the start region of a humongous sequence, it's original end().
ysr@777 244 HeapWord* _orig_end;
ysr@777 245
ysr@777 246 // True iff the region is in current collection_set.
ysr@777 247 bool _in_collection_set;
ysr@777 248
ysr@777 249 // True iff an attempt to evacuate an object in the region failed.
ysr@777 250 bool _evacuation_failed;
ysr@777 251
ysr@777 252 // A heap region may be a member one of a number of special subsets, each
ysr@777 253 // represented as linked lists through the field below. Currently, these
ysr@777 254 // sets include:
ysr@777 255 // The collection set.
ysr@777 256 // The set of allocation regions used in a collection pause.
ysr@777 257 // Spaces that may contain gray objects.
ysr@777 258 HeapRegion* _next_in_special_set;
ysr@777 259
ysr@777 260 // next region in the young "generation" region set
ysr@777 261 HeapRegion* _next_young_region;
ysr@777 262
apetrusenko@1231 263 // Next region whose cards need cleaning
apetrusenko@1231 264 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 265
tonyp@2472 266 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 267 HeapRegion* _next;
tonyp@2472 268 #ifdef ASSERT
tonyp@2472 269 HeapRegionSetBase* _containing_set;
tonyp@2472 270 #endif // ASSERT
tonyp@2472 271 bool _pending_removal;
tonyp@2472 272
ysr@777 273 // For parallel heapRegion traversal.
ysr@777 274 jint _claimed;
ysr@777 275
ysr@777 276 // We use concurrent marking to determine the amount of live data
ysr@777 277 // in each heap region.
ysr@777 278 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 279 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 280
ysr@777 281 // See "sort_index" method. -1 means is not in the array.
ysr@777 282 int _sort_index;
ysr@777 283
ysr@777 284 // <PREDICTION>
ysr@777 285 double _gc_efficiency;
ysr@777 286 // </PREDICTION>
ysr@777 287
ysr@777 288 enum YoungType {
ysr@777 289 NotYoung, // a region is not young
ysr@777 290 Young, // a region is young
tonyp@2963 291 Survivor // a region is young and it contains survivors
ysr@777 292 };
ysr@777 293
johnc@2021 294 volatile YoungType _young_type;
ysr@777 295 int _young_index_in_cset;
ysr@777 296 SurvRateGroup* _surv_rate_group;
ysr@777 297 int _age_index;
ysr@777 298
ysr@777 299 // The start of the unmarked area. The unmarked area extends from this
ysr@777 300 // word until the top and/or end of the region, and is the part
ysr@777 301 // of the region for which no marking was done, i.e. objects may
ysr@777 302 // have been allocated in this part since the last mark phase.
ysr@777 303 // "prev" is the top at the start of the last completed marking.
ysr@777 304 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 305 HeapWord* _prev_top_at_mark_start;
ysr@777 306 HeapWord* _next_top_at_mark_start;
ysr@777 307 // If a collection pause is in progress, this is the top at the start
ysr@777 308 // of that pause.
ysr@777 309
ysr@777 310 // We've counted the marked bytes of objects below here.
ysr@777 311 HeapWord* _top_at_conc_mark_count;
ysr@777 312
ysr@777 313 void init_top_at_mark_start() {
ysr@777 314 assert(_prev_marked_bytes == 0 &&
ysr@777 315 _next_marked_bytes == 0,
ysr@777 316 "Must be called after zero_marked_bytes.");
ysr@777 317 HeapWord* bot = bottom();
ysr@777 318 _prev_top_at_mark_start = bot;
ysr@777 319 _next_top_at_mark_start = bot;
ysr@777 320 _top_at_conc_mark_count = bot;
ysr@777 321 }
ysr@777 322
ysr@777 323 void set_young_type(YoungType new_type) {
ysr@777 324 //assert(_young_type != new_type, "setting the same type" );
ysr@777 325 // TODO: add more assertions here
ysr@777 326 _young_type = new_type;
ysr@777 327 }
ysr@777 328
johnc@1829 329 // Cached attributes used in the collection set policy information
johnc@1829 330
johnc@1829 331 // The RSet length that was added to the total value
johnc@1829 332 // for the collection set.
johnc@1829 333 size_t _recorded_rs_length;
johnc@1829 334
johnc@1829 335 // The predicted elapsed time that was added to total value
johnc@1829 336 // for the collection set.
johnc@1829 337 double _predicted_elapsed_time_ms;
johnc@1829 338
johnc@1829 339 // The predicted number of bytes to copy that was added to
johnc@1829 340 // the total value for the collection set.
johnc@1829 341 size_t _predicted_bytes_to_copy;
johnc@1829 342
ysr@777 343 public:
ysr@777 344 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
tonyp@2963 345 HeapRegion(size_t hrs_index,
tonyp@2963 346 G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 347 MemRegion mr, bool is_zeroed);
ysr@777 348
tonyp@1377 349 static int LogOfHRGrainBytes;
tonyp@1377 350 static int LogOfHRGrainWords;
tonyp@1377 351 // The normal type of these should be size_t. However, they used to
tonyp@1377 352 // be members of an enum before and they are assumed by the
tonyp@1377 353 // compilers to be ints. To avoid going and fixing all their uses,
tonyp@1377 354 // I'm declaring them as ints. I'm not anticipating heap region
tonyp@1377 355 // sizes to reach anywhere near 2g, so using an int here is safe.
tonyp@1377 356 static int GrainBytes;
tonyp@1377 357 static int GrainWords;
tonyp@1377 358 static int CardsPerRegion;
tonyp@1377 359
tonyp@1377 360 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 361 // well as other related fields that are based on the heap region
tonyp@1377 362 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 363 // CardsPerRegion). All those fields are considered constant
tonyp@1377 364 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 365 // up once during initialization time.
tonyp@1377 366 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 367
tonyp@790 368 enum ClaimValues {
tonyp@790 369 InitialClaimValue = 0,
tonyp@790 370 FinalCountClaimValue = 1,
tonyp@790 371 NoteEndClaimValue = 2,
tonyp@825 372 ScrubRemSetClaimValue = 3,
apetrusenko@1061 373 ParVerifyClaimValue = 4,
apetrusenko@1061 374 RebuildRSClaimValue = 5
tonyp@790 375 };
tonyp@790 376
tonyp@2454 377 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 378 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 379 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 380 }
tonyp@2454 381 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 382 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 383 return ContiguousSpace::allocate(word_size);
tonyp@2454 384 }
tonyp@2454 385
ysr@777 386 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 387 // sequence, otherwise -1.
tonyp@2963 388 size_t hrs_index() const { return _hrs_index; }
ysr@777 389
ysr@777 390 // The number of bytes marked live in the region in the last marking phase.
ysr@777 391 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 392 size_t live_bytes() {
tonyp@2717 393 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 394 }
tonyp@2717 395
ysr@777 396 // The number of bytes counted in the next marking.
ysr@777 397 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 398 // The number of bytes live wrt the next marking.
ysr@777 399 size_t next_live_bytes() {
tonyp@2717 400 return
tonyp@2717 401 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 402 }
ysr@777 403
ysr@777 404 // A lower bound on the amount of garbage bytes in the region.
ysr@777 405 size_t garbage_bytes() {
ysr@777 406 size_t used_at_mark_start_bytes =
ysr@777 407 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 408 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 409 "Can't mark more than we have.");
ysr@777 410 return used_at_mark_start_bytes - marked_bytes();
ysr@777 411 }
ysr@777 412
ysr@777 413 // An upper bound on the number of live bytes in the region.
ysr@777 414 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 415
ysr@777 416 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 417 _next_marked_bytes = _next_marked_bytes + incr_bytes;
ysr@777 418 guarantee( _next_marked_bytes <= used(), "invariant" );
ysr@777 419 }
ysr@777 420
ysr@777 421 void zero_marked_bytes() {
ysr@777 422 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 423 }
ysr@777 424
tonyp@790 425 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 426 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 427 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 428 // For a humongous region, region in which it starts.
ysr@777 429 HeapRegion* humongous_start_region() const {
ysr@777 430 return _humongous_start_region;
ysr@777 431 }
ysr@777 432
tonyp@2453 433 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 434 // the first region in a series of one or more contiguous regions
tonyp@2453 435 // that will contain a single "humongous" object. The two parameters
tonyp@2453 436 // are as follows:
tonyp@2453 437 //
tonyp@2453 438 // new_top : The new value of the top field of this region which
tonyp@2453 439 // points to the end of the humongous object that's being
tonyp@2453 440 // allocated. If there is more than one region in the series, top
tonyp@2453 441 // will lie beyond this region's original end field and on the last
tonyp@2453 442 // region in the series.
tonyp@2453 443 //
tonyp@2453 444 // new_end : The new value of the end field of this region which
tonyp@2453 445 // points to the end of the last region in the series. If there is
tonyp@2453 446 // one region in the series (namely: this one) end will be the same
tonyp@2453 447 // as the original end of this region.
tonyp@2453 448 //
tonyp@2453 449 // Updating top and end as described above makes this region look as
tonyp@2453 450 // if it spans the entire space taken up by all the regions in the
tonyp@2453 451 // series and an single allocation moved its top to new_top. This
tonyp@2453 452 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 453 // humongous regions can be calculated by just looking at the
tonyp@2453 454 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 455 // humongous" regions.
tonyp@2453 456 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 457
tonyp@2453 458 // Makes the current region be a "continues humongous'
tonyp@2453 459 // region. first_hr is the "start humongous" region of the series
tonyp@2453 460 // which this region will be part of.
tonyp@2453 461 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 462
tonyp@2472 463 // Unsets the humongous-related fields on the region.
tonyp@2472 464 void set_notHumongous();
tonyp@2472 465
ysr@777 466 // If the region has a remembered set, return a pointer to it.
ysr@777 467 HeapRegionRemSet* rem_set() const {
ysr@777 468 return _rem_set;
ysr@777 469 }
ysr@777 470
ysr@777 471 // True iff the region is in current collection_set.
ysr@777 472 bool in_collection_set() const {
ysr@777 473 return _in_collection_set;
ysr@777 474 }
ysr@777 475 void set_in_collection_set(bool b) {
ysr@777 476 _in_collection_set = b;
ysr@777 477 }
ysr@777 478 HeapRegion* next_in_collection_set() {
ysr@777 479 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 480 assert(_next_in_special_set == NULL ||
ysr@777 481 _next_in_special_set->in_collection_set(),
ysr@777 482 "Malformed CS.");
ysr@777 483 return _next_in_special_set;
ysr@777 484 }
ysr@777 485 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 486 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 487 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 488 _next_in_special_set = r;
ysr@777 489 }
ysr@777 490
tonyp@2472 491 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 492
tonyp@2472 493 // Getter and setter for the next field used to link regions into
tonyp@2472 494 // linked lists.
tonyp@2472 495 HeapRegion* next() { return _next; }
tonyp@2472 496
tonyp@2472 497 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 498
tonyp@2472 499 // Every region added to a set is tagged with a reference to that
tonyp@2472 500 // set. This is used for doing consistency checking to make sure that
tonyp@2472 501 // the contents of a set are as they should be and it's only
tonyp@2472 502 // available in non-product builds.
tonyp@2472 503 #ifdef ASSERT
tonyp@2472 504 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 505 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 506 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 507 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 508 "_containing_set: "PTR_FORMAT,
tonyp@2472 509 containing_set, _containing_set));
tonyp@2472 510
tonyp@2472 511 _containing_set = containing_set;
tonyp@2643 512 }
tonyp@2472 513
tonyp@2472 514 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 515 #else // ASSERT
tonyp@2472 516 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 517
tonyp@2643 518 // containing_set() is only used in asserts so there's no reason
tonyp@2472 519 // to provide a dummy version of it.
tonyp@2472 520 #endif // ASSERT
tonyp@2472 521
tonyp@2472 522 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 523 // them with the pending_removal tag and call the
tonyp@2472 524 // remove_all_pending() method on the list.
tonyp@2472 525
tonyp@2472 526 bool pending_removal() { return _pending_removal; }
tonyp@2472 527
tonyp@2472 528 void set_pending_removal(bool pending_removal) {
tonyp@2643 529 if (pending_removal) {
tonyp@2643 530 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 531 "can only set pending removal to true if it's false and "
tonyp@2643 532 "the region belongs to a region set");
tonyp@2643 533 } else {
tonyp@2643 534 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 535 "can only set pending removal to false if it's true and "
tonyp@2643 536 "the region does not belong to a region set");
tonyp@2643 537 }
tonyp@2472 538
tonyp@2472 539 _pending_removal = pending_removal;
ysr@777 540 }
ysr@777 541
ysr@777 542 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 543 void set_next_young_region(HeapRegion* hr) {
ysr@777 544 _next_young_region = hr;
ysr@777 545 }
ysr@777 546
apetrusenko@1231 547 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 548 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 549 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 550 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 551
tonyp@2963 552 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 553
ysr@777 554 // Allows logical separation between objects allocated before and after.
ysr@777 555 void save_marks();
ysr@777 556
ysr@777 557 // Reset HR stuff to default values.
ysr@777 558 void hr_clear(bool par, bool clear_space);
tonyp@2849 559 void par_clear();
ysr@777 560
tonyp@791 561 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 562
ysr@777 563 // Get the start of the unmarked area in this region.
ysr@777 564 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 565 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 566
ysr@777 567 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 568 // allocated in the current region before the last call to "save_mark".
ysr@777 569 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 570
ysr@777 571 DirtyCardToOopClosure*
ysr@777 572 new_dcto_closure(OopClosure* cl,
ysr@777 573 CardTableModRefBS::PrecisionStyle precision,
ysr@777 574 HeapRegionDCTOC::FilterKind fk);
ysr@777 575
ysr@777 576 // Note the start or end of marking. This tells the heap region
ysr@777 577 // that the collector is about to start or has finished (concurrently)
ysr@777 578 // marking the heap.
ysr@777 579
ysr@777 580 // Note the start of a marking phase. Record the
ysr@777 581 // start of the unmarked area of the region here.
ysr@777 582 void note_start_of_marking(bool during_initial_mark) {
ysr@777 583 init_top_at_conc_mark_count();
ysr@777 584 _next_marked_bytes = 0;
ysr@777 585 if (during_initial_mark && is_young() && !is_survivor())
ysr@777 586 _next_top_at_mark_start = bottom();
ysr@777 587 else
ysr@777 588 _next_top_at_mark_start = top();
ysr@777 589 }
ysr@777 590
ysr@777 591 // Note the end of a marking phase. Install the start of
ysr@777 592 // the unmarked area that was captured at start of marking.
ysr@777 593 void note_end_of_marking() {
ysr@777 594 _prev_top_at_mark_start = _next_top_at_mark_start;
ysr@777 595 _prev_marked_bytes = _next_marked_bytes;
ysr@777 596 _next_marked_bytes = 0;
ysr@777 597
ysr@777 598 guarantee(_prev_marked_bytes <=
ysr@777 599 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
ysr@777 600 "invariant");
ysr@777 601 }
ysr@777 602
ysr@777 603 // After an evacuation, we need to update _next_top_at_mark_start
ysr@777 604 // to be the current top. Note this is only valid if we have only
ysr@777 605 // ever evacuated into this region. If we evacuate, allocate, and
ysr@777 606 // then evacuate we are in deep doodoo.
ysr@777 607 void note_end_of_copying() {
tonyp@1456 608 assert(top() >= _next_top_at_mark_start, "Increase only");
tonyp@1456 609 _next_top_at_mark_start = top();
ysr@777 610 }
ysr@777 611
ysr@777 612 // Returns "false" iff no object in the region was allocated when the
ysr@777 613 // last mark phase ended.
ysr@777 614 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 615
ysr@777 616 // If "is_marked()" is true, then this is the index of the region in
ysr@777 617 // an array constructed at the end of marking of the regions in a
ysr@777 618 // "desirability" order.
ysr@777 619 int sort_index() {
ysr@777 620 return _sort_index;
ysr@777 621 }
ysr@777 622 void set_sort_index(int i) {
ysr@777 623 _sort_index = i;
ysr@777 624 }
ysr@777 625
ysr@777 626 void init_top_at_conc_mark_count() {
ysr@777 627 _top_at_conc_mark_count = bottom();
ysr@777 628 }
ysr@777 629
ysr@777 630 void set_top_at_conc_mark_count(HeapWord *cur) {
ysr@777 631 assert(bottom() <= cur && cur <= end(), "Sanity.");
ysr@777 632 _top_at_conc_mark_count = cur;
ysr@777 633 }
ysr@777 634
ysr@777 635 HeapWord* top_at_conc_mark_count() {
ysr@777 636 return _top_at_conc_mark_count;
ysr@777 637 }
ysr@777 638
ysr@777 639 void reset_during_compaction() {
ysr@777 640 guarantee( isHumongous() && startsHumongous(),
ysr@777 641 "should only be called for humongous regions");
ysr@777 642
ysr@777 643 zero_marked_bytes();
ysr@777 644 init_top_at_mark_start();
ysr@777 645 }
ysr@777 646
ysr@777 647 // <PREDICTION>
ysr@777 648 void calc_gc_efficiency(void);
ysr@777 649 double gc_efficiency() { return _gc_efficiency;}
ysr@777 650 // </PREDICTION>
ysr@777 651
ysr@777 652 bool is_young() const { return _young_type != NotYoung; }
ysr@777 653 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 654
ysr@777 655 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 656 void set_young_index_in_cset(int index) {
ysr@777 657 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 658 _young_index_in_cset = index;
ysr@777 659 }
ysr@777 660
ysr@777 661 int age_in_surv_rate_group() {
ysr@777 662 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 663 assert( _age_index > -1, "pre-condition" );
ysr@777 664 return _surv_rate_group->age_in_group(_age_index);
ysr@777 665 }
ysr@777 666
ysr@777 667 void record_surv_words_in_group(size_t words_survived) {
ysr@777 668 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 669 assert( _age_index > -1, "pre-condition" );
ysr@777 670 int age_in_group = age_in_surv_rate_group();
ysr@777 671 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 672 }
ysr@777 673
ysr@777 674 int age_in_surv_rate_group_cond() {
ysr@777 675 if (_surv_rate_group != NULL)
ysr@777 676 return age_in_surv_rate_group();
ysr@777 677 else
ysr@777 678 return -1;
ysr@777 679 }
ysr@777 680
ysr@777 681 SurvRateGroup* surv_rate_group() {
ysr@777 682 return _surv_rate_group;
ysr@777 683 }
ysr@777 684
ysr@777 685 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 686 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 687 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 688 assert( is_young(), "pre-condition" );
ysr@777 689
ysr@777 690 _surv_rate_group = surv_rate_group;
ysr@777 691 _age_index = surv_rate_group->next_age_index();
ysr@777 692 }
ysr@777 693
ysr@777 694 void uninstall_surv_rate_group() {
ysr@777 695 if (_surv_rate_group != NULL) {
ysr@777 696 assert( _age_index > -1, "pre-condition" );
ysr@777 697 assert( is_young(), "pre-condition" );
ysr@777 698
ysr@777 699 _surv_rate_group = NULL;
ysr@777 700 _age_index = -1;
ysr@777 701 } else {
ysr@777 702 assert( _age_index == -1, "pre-condition" );
ysr@777 703 }
ysr@777 704 }
ysr@777 705
ysr@777 706 void set_young() { set_young_type(Young); }
ysr@777 707
ysr@777 708 void set_survivor() { set_young_type(Survivor); }
ysr@777 709
ysr@777 710 void set_not_young() { set_young_type(NotYoung); }
ysr@777 711
ysr@777 712 // Determine if an object has been allocated since the last
ysr@777 713 // mark performed by the collector. This returns true iff the object
ysr@777 714 // is within the unmarked area of the region.
ysr@777 715 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 716 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 717 }
ysr@777 718 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 719 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 720 }
ysr@777 721
ysr@777 722 // For parallel heapRegion traversal.
ysr@777 723 bool claimHeapRegion(int claimValue);
ysr@777 724 jint claim_value() { return _claimed; }
ysr@777 725 // Use this carefully: only when you're sure no one is claiming...
ysr@777 726 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 727
ysr@777 728 // Returns the "evacuation_failed" property of the region.
ysr@777 729 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 730
ysr@777 731 // Sets the "evacuation_failed" property of the region.
ysr@777 732 void set_evacuation_failed(bool b) {
ysr@777 733 _evacuation_failed = b;
ysr@777 734
ysr@777 735 if (b) {
ysr@777 736 init_top_at_conc_mark_count();
ysr@777 737 _next_marked_bytes = 0;
ysr@777 738 }
ysr@777 739 }
ysr@777 740
ysr@777 741 // Requires that "mr" be entirely within the region.
ysr@777 742 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 743 // If the iteration encounters an unparseable portion of the region,
ysr@777 744 // or if "cl->abort()" is true after a closure application,
ysr@777 745 // terminate the iteration and return the address of the start of the
ysr@777 746 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 747 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 748 // completed.
ysr@777 749 HeapWord*
ysr@777 750 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 751
tonyp@2849 752 // filter_young: if true and the region is a young region then we
tonyp@2849 753 // skip the iteration.
tonyp@2849 754 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 755 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 756 // iteration.
ysr@777 757 HeapWord*
ysr@777 758 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 759 FilterOutOfRegionClosure* cl,
tonyp@2849 760 bool filter_young,
tonyp@2849 761 jbyte* card_ptr);
ysr@777 762
ysr@777 763 // A version of block start that is guaranteed to find *some* block
ysr@777 764 // boundary at or before "p", but does not object iteration, and may
ysr@777 765 // therefore be used safely when the heap is unparseable.
ysr@777 766 HeapWord* block_start_careful(const void* p) const {
ysr@777 767 return _offsets.block_start_careful(p);
ysr@777 768 }
ysr@777 769
ysr@777 770 // Requires that "addr" is within the region. Returns the start of the
ysr@777 771 // first ("careful") block that starts at or after "addr", or else the
ysr@777 772 // "end" of the region if there is no such block.
ysr@777 773 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 774
johnc@1829 775 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 776 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 777 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 778
johnc@1829 779 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 780 _recorded_rs_length = rs_length;
johnc@1829 781 }
johnc@1829 782
johnc@1829 783 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 784 _predicted_elapsed_time_ms = ms;
johnc@1829 785 }
johnc@1829 786
johnc@1829 787 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 788 _predicted_bytes_to_copy = bytes;
johnc@1829 789 }
johnc@1829 790
ysr@777 791 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 792 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 793 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 794
ysr@777 795 CompactibleSpace* next_compaction_space() const;
ysr@777 796
ysr@777 797 virtual void reset_after_compaction();
ysr@777 798
ysr@777 799 void print() const;
ysr@777 800 void print_on(outputStream* st) const;
ysr@777 801
johnc@2969 802 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 803 // vo == UseNextMarking -> use "next" marking information
johnc@2969 804 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 805 //
tonyp@1246 806 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 807 // consistent most of the time, so most calls to this should use
johnc@2969 808 // vo == UsePrevMarking.
johnc@2969 809 // Currently, there is only one case where this is called with
johnc@2969 810 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 811 // information at the end of remark.
johnc@2969 812 // Currently there is only one place where this is called with
johnc@2969 813 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 814 // full GC.
johnc@2969 815 void verify(bool allow_dirty, VerifyOption vo, bool *failures) const;
tonyp@1246 816
tonyp@1246 817 // Override; it uses the "prev" marking information
ysr@777 818 virtual void verify(bool allow_dirty) const;
ysr@777 819 };
ysr@777 820
ysr@777 821 // HeapRegionClosure is used for iterating over regions.
ysr@777 822 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 823 class HeapRegionClosure : public StackObj {
ysr@777 824 friend class HeapRegionSeq;
ysr@777 825 friend class G1CollectedHeap;
ysr@777 826
ysr@777 827 bool _complete;
ysr@777 828 void incomplete() { _complete = false; }
ysr@777 829
ysr@777 830 public:
ysr@777 831 HeapRegionClosure(): _complete(true) {}
ysr@777 832
ysr@777 833 // Typically called on each region until it returns true.
ysr@777 834 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 835
ysr@777 836 // True after iteration if the closure was applied to all heap regions
ysr@777 837 // and returned "false" in all cases.
ysr@777 838 bool complete() { return _complete; }
ysr@777 839 };
ysr@777 840
ysr@777 841 #endif // SERIALGC
stefank@2314 842
stefank@2314 843 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial