src/share/vm/opto/matcher.cpp

Mon, 18 Jun 2018 14:39:46 -0700

author
kevinw
date
Mon, 18 Jun 2018 14:39:46 -0700
changeset 9333
2fccf735a116
parent 9055
e4e58811ed1b
child 9448
73d689add964
child 9513
e044997c2eda
permissions
-rw-r--r--

8160748: Inconsistent types for ideal_reg
Summary: Made ideal_reg consistently uint.
Reviewed-by: kvn, iveresov

duke@435 1 /*
kevinw@9333 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/idealGraphPrinter.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/memnode.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
stefank@2314 36 #include "opto/runtime.hpp"
stefank@2314 37 #include "opto/type.hpp"
kvn@3882 38 #include "opto/vectornode.hpp"
stefank@2314 39 #include "runtime/atomic.hpp"
stefank@2314 40 #include "runtime/os.hpp"
dlong@7598 41 #if defined AD_MD_HPP
dlong@7598 42 # include AD_MD_HPP
dlong@7598 43 #elif defined TARGET_ARCH_MODEL_x86_32
stefank@2314 44 # include "adfiles/ad_x86_32.hpp"
dlong@7598 45 #elif defined TARGET_ARCH_MODEL_x86_64
stefank@2314 46 # include "adfiles/ad_x86_64.hpp"
dlong@7598 47 #elif defined TARGET_ARCH_MODEL_sparc
stefank@2314 48 # include "adfiles/ad_sparc.hpp"
dlong@7598 49 #elif defined TARGET_ARCH_MODEL_zero
stefank@2314 50 # include "adfiles/ad_zero.hpp"
dlong@7598 51 #elif defined TARGET_ARCH_MODEL_ppc_64
goetz@6441 52 # include "adfiles/ad_ppc_64.hpp"
jcoomes@2993 53 #endif
duke@435 54
duke@435 55 OptoReg::Name OptoReg::c_frame_pointer;
duke@435 56
duke@435 57 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
duke@435 58 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
duke@435 59 RegMask Matcher::STACK_ONLY_mask;
duke@435 60 RegMask Matcher::c_frame_ptr_mask;
duke@435 61 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
duke@435 62 const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
duke@435 63
duke@435 64 //---------------------------Matcher-------------------------------------------
adlertz@5539 65 Matcher::Matcher()
adlertz@5539 66 : PhaseTransform( Phase::Ins_Select ),
duke@435 67 #ifdef ASSERT
duke@435 68 _old2new_map(C->comp_arena()),
never@657 69 _new2old_map(C->comp_arena()),
duke@435 70 #endif
kvn@603 71 _shared_nodes(C->comp_arena()),
duke@435 72 _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
duke@435 73 _swallowed(swallowed),
duke@435 74 _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
duke@435 75 _end_inst_chain_rule(_END_INST_CHAIN_RULE),
adlertz@5539 76 _must_clone(must_clone),
duke@435 77 _register_save_policy(register_save_policy),
duke@435 78 _c_reg_save_policy(c_reg_save_policy),
duke@435 79 _register_save_type(register_save_type),
duke@435 80 _ruleName(ruleName),
duke@435 81 _allocation_started(false),
zgu@9055 82 _states_arena(Chunk::medium_size, mtCompiler),
duke@435 83 _visited(&_states_arena),
duke@435 84 _shared(&_states_arena),
duke@435 85 _dontcare(&_states_arena) {
duke@435 86 C->set_matcher(this);
duke@435 87
twisti@1572 88 idealreg2spillmask [Op_RegI] = NULL;
twisti@1572 89 idealreg2spillmask [Op_RegN] = NULL;
twisti@1572 90 idealreg2spillmask [Op_RegL] = NULL;
twisti@1572 91 idealreg2spillmask [Op_RegF] = NULL;
twisti@1572 92 idealreg2spillmask [Op_RegD] = NULL;
twisti@1572 93 idealreg2spillmask [Op_RegP] = NULL;
kvn@3882 94 idealreg2spillmask [Op_VecS] = NULL;
kvn@3882 95 idealreg2spillmask [Op_VecD] = NULL;
kvn@3882 96 idealreg2spillmask [Op_VecX] = NULL;
kvn@3882 97 idealreg2spillmask [Op_VecY] = NULL;
duke@435 98
twisti@1572 99 idealreg2debugmask [Op_RegI] = NULL;
twisti@1572 100 idealreg2debugmask [Op_RegN] = NULL;
twisti@1572 101 idealreg2debugmask [Op_RegL] = NULL;
twisti@1572 102 idealreg2debugmask [Op_RegF] = NULL;
twisti@1572 103 idealreg2debugmask [Op_RegD] = NULL;
twisti@1572 104 idealreg2debugmask [Op_RegP] = NULL;
kvn@3882 105 idealreg2debugmask [Op_VecS] = NULL;
kvn@3882 106 idealreg2debugmask [Op_VecD] = NULL;
kvn@3882 107 idealreg2debugmask [Op_VecX] = NULL;
kvn@3882 108 idealreg2debugmask [Op_VecY] = NULL;
twisti@1572 109
twisti@1572 110 idealreg2mhdebugmask[Op_RegI] = NULL;
twisti@1572 111 idealreg2mhdebugmask[Op_RegN] = NULL;
twisti@1572 112 idealreg2mhdebugmask[Op_RegL] = NULL;
twisti@1572 113 idealreg2mhdebugmask[Op_RegF] = NULL;
twisti@1572 114 idealreg2mhdebugmask[Op_RegD] = NULL;
twisti@1572 115 idealreg2mhdebugmask[Op_RegP] = NULL;
kvn@3882 116 idealreg2mhdebugmask[Op_VecS] = NULL;
kvn@3882 117 idealreg2mhdebugmask[Op_VecD] = NULL;
kvn@3882 118 idealreg2mhdebugmask[Op_VecX] = NULL;
kvn@3882 119 idealreg2mhdebugmask[Op_VecY] = NULL;
twisti@1572 120
kvn@651 121 debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
duke@435 122 }
duke@435 123
duke@435 124 //------------------------------warp_incoming_stk_arg------------------------
duke@435 125 // This warps a VMReg into an OptoReg::Name
duke@435 126 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
duke@435 127 OptoReg::Name warped;
duke@435 128 if( reg->is_stack() ) { // Stack slot argument?
duke@435 129 warped = OptoReg::add(_old_SP, reg->reg2stack() );
duke@435 130 warped = OptoReg::add(warped, C->out_preserve_stack_slots());
duke@435 131 if( warped >= _in_arg_limit )
duke@435 132 _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
kvn@3882 133 if (!RegMask::can_represent_arg(warped)) {
duke@435 134 // the compiler cannot represent this method's calling sequence
duke@435 135 C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
duke@435 136 return OptoReg::Bad;
duke@435 137 }
duke@435 138 return warped;
duke@435 139 }
duke@435 140 return OptoReg::as_OptoReg(reg);
duke@435 141 }
duke@435 142
duke@435 143 //---------------------------compute_old_SP------------------------------------
duke@435 144 OptoReg::Name Compile::compute_old_SP() {
duke@435 145 int fixed = fixed_slots();
duke@435 146 int preserve = in_preserve_stack_slots();
duke@435 147 return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
duke@435 148 }
duke@435 149
duke@435 150
duke@435 151
duke@435 152 #ifdef ASSERT
duke@435 153 void Matcher::verify_new_nodes_only(Node* xroot) {
duke@435 154 // Make sure that the new graph only references new nodes
duke@435 155 ResourceMark rm;
duke@435 156 Unique_Node_List worklist;
duke@435 157 VectorSet visited(Thread::current()->resource_area());
duke@435 158 worklist.push(xroot);
duke@435 159 while (worklist.size() > 0) {
duke@435 160 Node* n = worklist.pop();
duke@435 161 visited <<= n->_idx;
duke@435 162 assert(C->node_arena()->contains(n), "dead node");
duke@435 163 for (uint j = 0; j < n->req(); j++) {
duke@435 164 Node* in = n->in(j);
duke@435 165 if (in != NULL) {
duke@435 166 assert(C->node_arena()->contains(in), "dead node");
duke@435 167 if (!visited.test(in->_idx)) {
duke@435 168 worklist.push(in);
duke@435 169 }
duke@435 170 }
duke@435 171 }
duke@435 172 }
duke@435 173 }
duke@435 174 #endif
duke@435 175
duke@435 176
duke@435 177 //---------------------------match---------------------------------------------
duke@435 178 void Matcher::match( ) {
kvn@1258 179 if( MaxLabelRootDepth < 100 ) { // Too small?
kvn@1258 180 assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
kvn@1258 181 MaxLabelRootDepth = 100;
kvn@1258 182 }
duke@435 183 // One-time initialization of some register masks.
duke@435 184 init_spill_mask( C->root()->in(1) );
duke@435 185 _return_addr_mask = return_addr();
duke@435 186 #ifdef _LP64
duke@435 187 // Pointers take 2 slots in 64-bit land
duke@435 188 _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
duke@435 189 #endif
duke@435 190
duke@435 191 // Map a Java-signature return type into return register-value
duke@435 192 // machine registers for 0, 1 and 2 returned values.
duke@435 193 const TypeTuple *range = C->tf()->range();
duke@435 194 if( range->cnt() > TypeFunc::Parms ) { // If not a void function
duke@435 195 // Get ideal-register return type
kevinw@9333 196 uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
duke@435 197 // Get machine return register
duke@435 198 uint sop = C->start()->Opcode();
duke@435 199 OptoRegPair regs = return_value(ireg, false);
duke@435 200
duke@435 201 // And mask for same
duke@435 202 _return_value_mask = RegMask(regs.first());
duke@435 203 if( OptoReg::is_valid(regs.second()) )
duke@435 204 _return_value_mask.Insert(regs.second());
duke@435 205 }
duke@435 206
duke@435 207 // ---------------
duke@435 208 // Frame Layout
duke@435 209
duke@435 210 // Need the method signature to determine the incoming argument types,
duke@435 211 // because the types determine which registers the incoming arguments are
duke@435 212 // in, and this affects the matched code.
duke@435 213 const TypeTuple *domain = C->tf()->domain();
duke@435 214 uint argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 215 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 216 VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 217 _parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
duke@435 218 _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
duke@435 219 uint i;
duke@435 220 for( i = 0; i<argcnt; i++ ) {
duke@435 221 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 222 }
duke@435 223
duke@435 224 // Pass array of ideal registers and length to USER code (from the AD file)
duke@435 225 // that will convert this to an array of register numbers.
duke@435 226 const StartNode *start = C->start();
duke@435 227 start->calling_convention( sig_bt, vm_parm_regs, argcnt );
duke@435 228 #ifdef ASSERT
duke@435 229 // Sanity check users' calling convention. Real handy while trying to
duke@435 230 // get the initial port correct.
duke@435 231 { for (uint i = 0; i<argcnt; i++) {
duke@435 232 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 233 assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
duke@435 234 _parm_regs[i].set_bad();
duke@435 235 continue;
duke@435 236 }
duke@435 237 VMReg parm_reg = vm_parm_regs[i].first();
duke@435 238 assert(parm_reg->is_valid(), "invalid arg?");
duke@435 239 if (parm_reg->is_reg()) {
duke@435 240 OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
duke@435 241 assert(can_be_java_arg(opto_parm_reg) ||
duke@435 242 C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
duke@435 243 opto_parm_reg == inline_cache_reg(),
duke@435 244 "parameters in register must be preserved by runtime stubs");
duke@435 245 }
duke@435 246 for (uint j = 0; j < i; j++) {
duke@435 247 assert(parm_reg != vm_parm_regs[j].first(),
duke@435 248 "calling conv. must produce distinct regs");
duke@435 249 }
duke@435 250 }
duke@435 251 }
duke@435 252 #endif
duke@435 253
duke@435 254 // Do some initial frame layout.
duke@435 255
duke@435 256 // Compute the old incoming SP (may be called FP) as
duke@435 257 // OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
duke@435 258 _old_SP = C->compute_old_SP();
duke@435 259 assert( is_even(_old_SP), "must be even" );
duke@435 260
duke@435 261 // Compute highest incoming stack argument as
duke@435 262 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 263 _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
duke@435 264 assert( is_even(_in_arg_limit), "out_preserve must be even" );
duke@435 265 for( i = 0; i < argcnt; i++ ) {
duke@435 266 // Permit args to have no register
duke@435 267 _calling_convention_mask[i].Clear();
duke@435 268 if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
duke@435 269 continue;
duke@435 270 }
duke@435 271 // calling_convention returns stack arguments as a count of
duke@435 272 // slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
duke@435 273 // the allocators point of view, taking into account all the
duke@435 274 // preserve area, locks & pad2.
duke@435 275
duke@435 276 OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
duke@435 277 if( OptoReg::is_valid(reg1))
duke@435 278 _calling_convention_mask[i].Insert(reg1);
duke@435 279
duke@435 280 OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
duke@435 281 if( OptoReg::is_valid(reg2))
duke@435 282 _calling_convention_mask[i].Insert(reg2);
duke@435 283
duke@435 284 // Saved biased stack-slot register number
duke@435 285 _parm_regs[i].set_pair(reg2, reg1);
duke@435 286 }
duke@435 287
duke@435 288 // Finally, make sure the incoming arguments take up an even number of
duke@435 289 // words, in case the arguments or locals need to contain doubleword stack
duke@435 290 // slots. The rest of the system assumes that stack slot pairs (in
duke@435 291 // particular, in the spill area) which look aligned will in fact be
duke@435 292 // aligned relative to the stack pointer in the target machine. Double
duke@435 293 // stack slots will always be allocated aligned.
duke@435 294 _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
duke@435 295
duke@435 296 // Compute highest outgoing stack argument as
duke@435 297 // _new_SP + out_preserve_stack_slots + max(outgoing argument size).
duke@435 298 _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 299 assert( is_even(_out_arg_limit), "out_preserve must be even" );
duke@435 300
kvn@3882 301 if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
duke@435 302 // the compiler cannot represent this method's calling sequence
duke@435 303 C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
duke@435 304 }
duke@435 305
duke@435 306 if (C->failing()) return; // bailed out on incoming arg failure
duke@435 307
duke@435 308 // ---------------
duke@435 309 // Collect roots of matcher trees. Every node for which
duke@435 310 // _shared[_idx] is cleared is guaranteed to not be shared, and thus
duke@435 311 // can be a valid interior of some tree.
duke@435 312 find_shared( C->root() );
duke@435 313 find_shared( C->top() );
duke@435 314
sla@5237 315 C->print_method(PHASE_BEFORE_MATCHING);
duke@435 316
kvn@1164 317 // Create new ideal node ConP #NULL even if it does exist in old space
kvn@1164 318 // to avoid false sharing if the corresponding mach node is not used.
kvn@1164 319 // The corresponding mach node is only used in rare cases for derived
kvn@1164 320 // pointers.
kvn@1164 321 Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
kvn@1164 322
duke@435 323 // Swap out to old-space; emptying new-space
duke@435 324 Arena *old = C->node_arena()->move_contents(C->old_arena());
duke@435 325
duke@435 326 // Save debug and profile information for nodes in old space:
duke@435 327 _old_node_note_array = C->node_note_array();
duke@435 328 if (_old_node_note_array != NULL) {
duke@435 329 C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
duke@435 330 (C->comp_arena(), _old_node_note_array->length(),
duke@435 331 0, NULL));
duke@435 332 }
duke@435 333
duke@435 334 // Pre-size the new_node table to avoid the need for range checks.
duke@435 335 grow_new_node_array(C->unique());
duke@435 336
duke@435 337 // Reset node counter so MachNodes start with _idx at 0
zmajo@8068 338 int live_nodes = C->live_nodes();
duke@435 339 C->set_unique(0);
bharadwaj@4315 340 C->reset_dead_node_list();
duke@435 341
duke@435 342 // Recursively match trees from old space into new space.
duke@435 343 // Correct leaves of new-space Nodes; they point to old-space.
duke@435 344 _visited.Clear(); // Clear visit bits for xform call
zmajo@8068 345 C->set_cached_top_node(xform( C->top(), live_nodes));
duke@435 346 if (!C->failing()) {
duke@435 347 Node* xroot = xform( C->root(), 1 );
duke@435 348 if (xroot == NULL) {
duke@435 349 Matcher::soft_match_failure(); // recursive matching process failed
duke@435 350 C->record_method_not_compilable("instruction match failed");
duke@435 351 } else {
duke@435 352 // During matching shared constants were attached to C->root()
duke@435 353 // because xroot wasn't available yet, so transfer the uses to
duke@435 354 // the xroot.
duke@435 355 for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
duke@435 356 Node* n = C->root()->fast_out(j);
duke@435 357 if (C->node_arena()->contains(n)) {
duke@435 358 assert(n->in(0) == C->root(), "should be control user");
duke@435 359 n->set_req(0, xroot);
duke@435 360 --j;
duke@435 361 --jmax;
duke@435 362 }
duke@435 363 }
duke@435 364
kvn@1164 365 // Generate new mach node for ConP #NULL
kvn@1164 366 assert(new_ideal_null != NULL, "sanity");
kvn@1164 367 _mach_null = match_tree(new_ideal_null);
kvn@1164 368 // Don't set control, it will confuse GCM since there are no uses.
kvn@1164 369 // The control will be set when this node is used first time
kvn@1164 370 // in find_base_for_derived().
kvn@1164 371 assert(_mach_null != NULL, "");
kvn@1164 372
duke@435 373 C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
kvn@1164 374
duke@435 375 #ifdef ASSERT
duke@435 376 verify_new_nodes_only(xroot);
duke@435 377 #endif
duke@435 378 }
duke@435 379 }
duke@435 380 if (C->top() == NULL || C->root() == NULL) {
duke@435 381 C->record_method_not_compilable("graph lost"); // %%% cannot happen?
duke@435 382 }
duke@435 383 if (C->failing()) {
duke@435 384 // delete old;
duke@435 385 old->destruct_contents();
duke@435 386 return;
duke@435 387 }
duke@435 388 assert( C->top(), "" );
duke@435 389 assert( C->root(), "" );
duke@435 390 validate_null_checks();
duke@435 391
duke@435 392 // Now smoke old-space
duke@435 393 NOT_DEBUG( old->destruct_contents() );
duke@435 394
duke@435 395 // ------------------------
duke@435 396 // Set up save-on-entry registers
duke@435 397 Fixup_Save_On_Entry( );
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 //------------------------------Fixup_Save_On_Entry----------------------------
duke@435 402 // The stated purpose of this routine is to take care of save-on-entry
duke@435 403 // registers. However, the overall goal of the Match phase is to convert into
duke@435 404 // machine-specific instructions which have RegMasks to guide allocation.
duke@435 405 // So what this procedure really does is put a valid RegMask on each input
duke@435 406 // to the machine-specific variations of all Return, TailCall and Halt
duke@435 407 // instructions. It also adds edgs to define the save-on-entry values (and of
duke@435 408 // course gives them a mask).
duke@435 409
duke@435 410 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
duke@435 411 RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
duke@435 412 // Do all the pre-defined register masks
duke@435 413 rms[TypeFunc::Control ] = RegMask::Empty;
duke@435 414 rms[TypeFunc::I_O ] = RegMask::Empty;
duke@435 415 rms[TypeFunc::Memory ] = RegMask::Empty;
duke@435 416 rms[TypeFunc::ReturnAdr] = ret_adr;
duke@435 417 rms[TypeFunc::FramePtr ] = fp;
duke@435 418 return rms;
duke@435 419 }
duke@435 420
duke@435 421 //---------------------------init_first_stack_mask-----------------------------
duke@435 422 // Create the initial stack mask used by values spilling to the stack.
duke@435 423 // Disallow any debug info in outgoing argument areas by setting the
duke@435 424 // initial mask accordingly.
duke@435 425 void Matcher::init_first_stack_mask() {
duke@435 426
duke@435 427 // Allocate storage for spill masks as masks for the appropriate load type.
kvn@3882 428 RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
twisti@1572 429
twisti@1572 430 idealreg2spillmask [Op_RegN] = &rms[0];
twisti@1572 431 idealreg2spillmask [Op_RegI] = &rms[1];
twisti@1572 432 idealreg2spillmask [Op_RegL] = &rms[2];
twisti@1572 433 idealreg2spillmask [Op_RegF] = &rms[3];
twisti@1572 434 idealreg2spillmask [Op_RegD] = &rms[4];
twisti@1572 435 idealreg2spillmask [Op_RegP] = &rms[5];
twisti@1572 436
twisti@1572 437 idealreg2debugmask [Op_RegN] = &rms[6];
twisti@1572 438 idealreg2debugmask [Op_RegI] = &rms[7];
twisti@1572 439 idealreg2debugmask [Op_RegL] = &rms[8];
twisti@1572 440 idealreg2debugmask [Op_RegF] = &rms[9];
twisti@1572 441 idealreg2debugmask [Op_RegD] = &rms[10];
twisti@1572 442 idealreg2debugmask [Op_RegP] = &rms[11];
twisti@1572 443
twisti@1572 444 idealreg2mhdebugmask[Op_RegN] = &rms[12];
twisti@1572 445 idealreg2mhdebugmask[Op_RegI] = &rms[13];
twisti@1572 446 idealreg2mhdebugmask[Op_RegL] = &rms[14];
twisti@1572 447 idealreg2mhdebugmask[Op_RegF] = &rms[15];
twisti@1572 448 idealreg2mhdebugmask[Op_RegD] = &rms[16];
twisti@1572 449 idealreg2mhdebugmask[Op_RegP] = &rms[17];
duke@435 450
kvn@3882 451 idealreg2spillmask [Op_VecS] = &rms[18];
kvn@3882 452 idealreg2spillmask [Op_VecD] = &rms[19];
kvn@3882 453 idealreg2spillmask [Op_VecX] = &rms[20];
kvn@3882 454 idealreg2spillmask [Op_VecY] = &rms[21];
kvn@3882 455
duke@435 456 OptoReg::Name i;
duke@435 457
duke@435 458 // At first, start with the empty mask
duke@435 459 C->FIRST_STACK_mask().Clear();
duke@435 460
duke@435 461 // Add in the incoming argument area
kvn@6098 462 OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
kvn@6098 463 for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
duke@435 464 C->FIRST_STACK_mask().Insert(i);
kvn@6098 465 }
duke@435 466 // Add in all bits past the outgoing argument area
kvn@3882 467 guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
duke@435 468 "must be able to represent all call arguments in reg mask");
kvn@6098 469 OptoReg::Name init = _out_arg_limit;
kvn@6098 470 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
duke@435 471 C->FIRST_STACK_mask().Insert(i);
kvn@6098 472 }
duke@435 473 // Finally, set the "infinite stack" bit.
duke@435 474 C->FIRST_STACK_mask().set_AllStack();
duke@435 475
duke@435 476 // Make spill masks. Registers for their class, plus FIRST_STACK_mask.
kvn@3882 477 RegMask aligned_stack_mask = C->FIRST_STACK_mask();
kvn@3882 478 // Keep spill masks aligned.
kvn@3882 479 aligned_stack_mask.clear_to_pairs();
kvn@3882 480 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 481
kvn@3882 482 *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
coleenp@548 483 #ifdef _LP64
coleenp@548 484 *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
coleenp@548 485 idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
kvn@3882 486 idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
kvn@3882 487 #else
kvn@3882 488 idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
coleenp@548 489 #endif
duke@435 490 *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
duke@435 491 idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
duke@435 492 *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
kvn@3882 493 idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
duke@435 494 *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
duke@435 495 idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
duke@435 496 *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
kvn@3882 497 idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
duke@435 498
kvn@3882 499 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 500 *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
kvn@3882 501 idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
kvn@3882 502 }
kvn@3882 503 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@6098 504 // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
kvn@6098 505 // RA guarantees such alignment since it is needed for Double and Long values.
kvn@3882 506 *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
kvn@3882 507 idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
kvn@3882 508 }
kvn@3882 509 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@6098 510 // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
kvn@6098 511 //
kvn@6098 512 // RA can use input arguments stack slots for spills but until RA
kvn@6098 513 // we don't know frame size and offset of input arg stack slots.
kvn@6098 514 //
kvn@6098 515 // Exclude last input arg stack slots to avoid spilling vectors there
kvn@6098 516 // otherwise vector spills could stomp over stack slots in caller frame.
kvn@6098 517 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
kvn@6098 518 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
kvn@6098 519 aligned_stack_mask.Remove(in);
kvn@6098 520 in = OptoReg::add(in, -1);
kvn@6098 521 }
kvn@3882 522 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
kvn@3882 523 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 524 *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
kvn@3882 525 idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
kvn@3882 526 }
kvn@3882 527 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@6098 528 // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
kvn@6098 529 OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
kvn@6098 530 for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
kvn@6098 531 aligned_stack_mask.Remove(in);
kvn@6098 532 in = OptoReg::add(in, -1);
kvn@6098 533 }
kvn@3882 534 aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
kvn@3882 535 assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
kvn@3882 536 *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
kvn@3882 537 idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
kvn@3882 538 }
never@2085 539 if (UseFPUForSpilling) {
never@2085 540 // This mask logic assumes that the spill operations are
never@2085 541 // symmetric and that the registers involved are the same size.
never@2085 542 // On sparc for instance we may have to use 64 bit moves will
never@2085 543 // kill 2 registers when used with F0-F31.
never@2085 544 idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
never@2085 545 idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
never@2085 546 #ifdef _LP64
never@2085 547 idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
never@2085 548 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
never@2085 549 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
never@2085 550 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
never@2085 551 #else
never@2085 552 idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
roland@3109 553 #ifdef ARM
roland@3109 554 // ARM has support for moving 64bit values between a pair of
roland@3109 555 // integer registers and a double register
roland@3109 556 idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
roland@3109 557 idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
roland@3109 558 #endif
never@2085 559 #endif
never@2085 560 }
never@2085 561
duke@435 562 // Make up debug masks. Any spill slot plus callee-save registers.
duke@435 563 // Caller-save registers are assumed to be trashable by the various
duke@435 564 // inline-cache fixup routines.
twisti@1572 565 *idealreg2debugmask [Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 566 *idealreg2debugmask [Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 567 *idealreg2debugmask [Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 568 *idealreg2debugmask [Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 569 *idealreg2debugmask [Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 570 *idealreg2debugmask [Op_RegP]= *idealreg2spillmask[Op_RegP];
twisti@1572 571
twisti@1572 572 *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
twisti@1572 573 *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
twisti@1572 574 *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
twisti@1572 575 *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
twisti@1572 576 *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
twisti@1572 577 *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
duke@435 578
duke@435 579 // Prevent stub compilations from attempting to reference
duke@435 580 // callee-saved registers from debug info
duke@435 581 bool exclude_soe = !Compile::current()->is_method_compilation();
duke@435 582
duke@435 583 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 584 // registers the caller has to save do not work
duke@435 585 if( _register_save_policy[i] == 'C' ||
duke@435 586 _register_save_policy[i] == 'A' ||
duke@435 587 (_register_save_policy[i] == 'E' && exclude_soe) ) {
twisti@1572 588 idealreg2debugmask [Op_RegN]->Remove(i);
twisti@1572 589 idealreg2debugmask [Op_RegI]->Remove(i); // Exclude save-on-call
twisti@1572 590 idealreg2debugmask [Op_RegL]->Remove(i); // registers from debug
twisti@1572 591 idealreg2debugmask [Op_RegF]->Remove(i); // masks
twisti@1572 592 idealreg2debugmask [Op_RegD]->Remove(i);
twisti@1572 593 idealreg2debugmask [Op_RegP]->Remove(i);
twisti@1572 594
twisti@1572 595 idealreg2mhdebugmask[Op_RegN]->Remove(i);
twisti@1572 596 idealreg2mhdebugmask[Op_RegI]->Remove(i);
twisti@1572 597 idealreg2mhdebugmask[Op_RegL]->Remove(i);
twisti@1572 598 idealreg2mhdebugmask[Op_RegF]->Remove(i);
twisti@1572 599 idealreg2mhdebugmask[Op_RegD]->Remove(i);
twisti@1572 600 idealreg2mhdebugmask[Op_RegP]->Remove(i);
duke@435 601 }
duke@435 602 }
twisti@1572 603
twisti@1572 604 // Subtract the register we use to save the SP for MethodHandle
twisti@1572 605 // invokes to from the debug mask.
twisti@1572 606 const RegMask save_mask = method_handle_invoke_SP_save_mask();
twisti@1572 607 idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
twisti@1572 608 idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
twisti@1572 609 idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
twisti@1572 610 idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
twisti@1572 611 idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
twisti@1572 612 idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
duke@435 613 }
duke@435 614
duke@435 615 //---------------------------is_save_on_entry----------------------------------
duke@435 616 bool Matcher::is_save_on_entry( int reg ) {
duke@435 617 return
duke@435 618 _register_save_policy[reg] == 'E' ||
duke@435 619 _register_save_policy[reg] == 'A' || // Save-on-entry register?
duke@435 620 // Also save argument registers in the trampolining stubs
duke@435 621 (C->save_argument_registers() && is_spillable_arg(reg));
duke@435 622 }
duke@435 623
duke@435 624 //---------------------------Fixup_Save_On_Entry-------------------------------
duke@435 625 void Matcher::Fixup_Save_On_Entry( ) {
duke@435 626 init_first_stack_mask();
duke@435 627
duke@435 628 Node *root = C->root(); // Short name for root
duke@435 629 // Count number of save-on-entry registers.
duke@435 630 uint soe_cnt = number_of_saved_registers();
duke@435 631 uint i;
duke@435 632
duke@435 633 // Find the procedure Start Node
duke@435 634 StartNode *start = C->start();
duke@435 635 assert( start, "Expect a start node" );
duke@435 636
duke@435 637 // Save argument registers in the trampolining stubs
duke@435 638 if( C->save_argument_registers() )
duke@435 639 for( i = 0; i < _last_Mach_Reg; i++ )
duke@435 640 if( is_spillable_arg(i) )
duke@435 641 soe_cnt++;
duke@435 642
duke@435 643 // Input RegMask array shared by all Returns.
duke@435 644 // The type for doubles and longs has a count of 2, but
duke@435 645 // there is only 1 returned value
duke@435 646 uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
duke@435 647 RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 648 // Returns have 0 or 1 returned values depending on call signature.
duke@435 649 // Return register is specified by return_value in the AD file.
duke@435 650 if (ret_edge_cnt > TypeFunc::Parms)
duke@435 651 ret_rms[TypeFunc::Parms+0] = _return_value_mask;
duke@435 652
duke@435 653 // Input RegMask array shared by all Rethrows.
duke@435 654 uint reth_edge_cnt = TypeFunc::Parms+1;
duke@435 655 RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 656 // Rethrow takes exception oop only, but in the argument 0 slot.
duke@435 657 reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
duke@435 658 #ifdef _LP64
duke@435 659 // Need two slots for ptrs in 64-bit land
duke@435 660 reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
duke@435 661 #endif
duke@435 662
duke@435 663 // Input RegMask array shared by all TailCalls
duke@435 664 uint tail_call_edge_cnt = TypeFunc::Parms+2;
duke@435 665 RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 666
duke@435 667 // Input RegMask array shared by all TailJumps
duke@435 668 uint tail_jump_edge_cnt = TypeFunc::Parms+2;
duke@435 669 RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 670
duke@435 671 // TailCalls have 2 returned values (target & moop), whose masks come
duke@435 672 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 673 // TailCall to extract these masks and put the correct masks into
duke@435 674 // the tail_call_rms array.
duke@435 675 for( i=1; i < root->req(); i++ ) {
duke@435 676 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 677 if( m->ideal_Opcode() == Op_TailCall ) {
duke@435 678 tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 679 tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 680 break;
duke@435 681 }
duke@435 682 }
duke@435 683
duke@435 684 // TailJumps have 2 returned values (target & ex_oop), whose masks come
duke@435 685 // from the usual MachNode/MachOper mechanism. Find a sample
duke@435 686 // TailJump to extract these masks and put the correct masks into
duke@435 687 // the tail_jump_rms array.
duke@435 688 for( i=1; i < root->req(); i++ ) {
duke@435 689 MachReturnNode *m = root->in(i)->as_MachReturn();
duke@435 690 if( m->ideal_Opcode() == Op_TailJump ) {
duke@435 691 tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
duke@435 692 tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
duke@435 693 break;
duke@435 694 }
duke@435 695 }
duke@435 696
duke@435 697 // Input RegMask array shared by all Halts
duke@435 698 uint halt_edge_cnt = TypeFunc::Parms;
duke@435 699 RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
duke@435 700
duke@435 701 // Capture the return input masks into each exit flavor
duke@435 702 for( i=1; i < root->req(); i++ ) {
duke@435 703 MachReturnNode *exit = root->in(i)->as_MachReturn();
duke@435 704 switch( exit->ideal_Opcode() ) {
duke@435 705 case Op_Return : exit->_in_rms = ret_rms; break;
duke@435 706 case Op_Rethrow : exit->_in_rms = reth_rms; break;
duke@435 707 case Op_TailCall : exit->_in_rms = tail_call_rms; break;
duke@435 708 case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
duke@435 709 case Op_Halt : exit->_in_rms = halt_rms; break;
duke@435 710 default : ShouldNotReachHere();
duke@435 711 }
duke@435 712 }
duke@435 713
duke@435 714 // Next unused projection number from Start.
duke@435 715 int proj_cnt = C->tf()->domain()->cnt();
duke@435 716
duke@435 717 // Do all the save-on-entry registers. Make projections from Start for
duke@435 718 // them, and give them a use at the exit points. To the allocator, they
duke@435 719 // look like incoming register arguments.
duke@435 720 for( i = 0; i < _last_Mach_Reg; i++ ) {
duke@435 721 if( is_save_on_entry(i) ) {
duke@435 722
duke@435 723 // Add the save-on-entry to the mask array
duke@435 724 ret_rms [ ret_edge_cnt] = mreg2regmask[i];
duke@435 725 reth_rms [ reth_edge_cnt] = mreg2regmask[i];
duke@435 726 tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
duke@435 727 tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
duke@435 728 // Halts need the SOE registers, but only in the stack as debug info.
duke@435 729 // A just-prior uncommon-trap or deoptimization will use the SOE regs.
duke@435 730 halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
duke@435 731
duke@435 732 Node *mproj;
duke@435 733
duke@435 734 // Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
duke@435 735 // into a single RegD.
duke@435 736 if( (i&1) == 0 &&
duke@435 737 _register_save_type[i ] == Op_RegF &&
duke@435 738 _register_save_type[i+1] == Op_RegF &&
duke@435 739 is_save_on_entry(i+1) ) {
duke@435 740 // Add other bit for double
duke@435 741 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 742 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 743 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 744 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 745 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 746 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
duke@435 747 proj_cnt += 2; // Skip 2 for doubles
duke@435 748 }
duke@435 749 else if( (i&1) == 1 && // Else check for high half of double
duke@435 750 _register_save_type[i-1] == Op_RegF &&
duke@435 751 _register_save_type[i ] == Op_RegF &&
duke@435 752 is_save_on_entry(i-1) ) {
duke@435 753 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 754 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 755 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 756 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 757 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 758 mproj = C->top();
duke@435 759 }
duke@435 760 // Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
duke@435 761 // into a single RegL.
duke@435 762 else if( (i&1) == 0 &&
duke@435 763 _register_save_type[i ] == Op_RegI &&
duke@435 764 _register_save_type[i+1] == Op_RegI &&
duke@435 765 is_save_on_entry(i+1) ) {
duke@435 766 // Add other bit for long
duke@435 767 ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 768 reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 769 tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 770 tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
duke@435 771 halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
kvn@4115 772 mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
duke@435 773 proj_cnt += 2; // Skip 2 for longs
duke@435 774 }
duke@435 775 else if( (i&1) == 1 && // Else check for high half of long
duke@435 776 _register_save_type[i-1] == Op_RegI &&
duke@435 777 _register_save_type[i ] == Op_RegI &&
duke@435 778 is_save_on_entry(i-1) ) {
duke@435 779 ret_rms [ ret_edge_cnt] = RegMask::Empty;
duke@435 780 reth_rms [ reth_edge_cnt] = RegMask::Empty;
duke@435 781 tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
duke@435 782 tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
duke@435 783 halt_rms [ halt_edge_cnt] = RegMask::Empty;
duke@435 784 mproj = C->top();
duke@435 785 } else {
duke@435 786 // Make a projection for it off the Start
kvn@4115 787 mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
duke@435 788 }
duke@435 789
duke@435 790 ret_edge_cnt ++;
duke@435 791 reth_edge_cnt ++;
duke@435 792 tail_call_edge_cnt ++;
duke@435 793 tail_jump_edge_cnt ++;
duke@435 794 halt_edge_cnt ++;
duke@435 795
duke@435 796 // Add a use of the SOE register to all exit paths
duke@435 797 for( uint j=1; j < root->req(); j++ )
duke@435 798 root->in(j)->add_req(mproj);
duke@435 799 } // End of if a save-on-entry register
duke@435 800 } // End of for all machine registers
duke@435 801 }
duke@435 802
duke@435 803 //------------------------------init_spill_mask--------------------------------
duke@435 804 void Matcher::init_spill_mask( Node *ret ) {
duke@435 805 if( idealreg2regmask[Op_RegI] ) return; // One time only init
duke@435 806
duke@435 807 OptoReg::c_frame_pointer = c_frame_pointer();
duke@435 808 c_frame_ptr_mask = c_frame_pointer();
duke@435 809 #ifdef _LP64
duke@435 810 // pointers are twice as big
duke@435 811 c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
duke@435 812 #endif
duke@435 813
duke@435 814 // Start at OptoReg::stack0()
duke@435 815 STACK_ONLY_mask.Clear();
duke@435 816 OptoReg::Name init = OptoReg::stack2reg(0);
duke@435 817 // STACK_ONLY_mask is all stack bits
duke@435 818 OptoReg::Name i;
duke@435 819 for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
duke@435 820 STACK_ONLY_mask.Insert(i);
duke@435 821 // Also set the "infinite stack" bit.
duke@435 822 STACK_ONLY_mask.set_AllStack();
duke@435 823
duke@435 824 // Copy the register names over into the shared world
duke@435 825 for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
duke@435 826 // SharedInfo::regName[i] = regName[i];
duke@435 827 // Handy RegMasks per machine register
duke@435 828 mreg2regmask[i].Insert(i);
duke@435 829 }
duke@435 830
duke@435 831 // Grab the Frame Pointer
duke@435 832 Node *fp = ret->in(TypeFunc::FramePtr);
duke@435 833 Node *mem = ret->in(TypeFunc::Memory);
duke@435 834 const TypePtr* atp = TypePtr::BOTTOM;
duke@435 835 // Share frame pointer while making spill ops
duke@435 836 set_shared(fp);
duke@435 837
duke@435 838 // Compute generic short-offset Loads
coleenp@548 839 #ifdef _LP64
goetz@6479 840 MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
coleenp@548 841 #endif
goetz@6479 842 MachNode *spillI = match_tree(new (C) LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
roland@7859 843 MachNode *spillL = match_tree(new (C) LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest,false));
goetz@6479 844 MachNode *spillF = match_tree(new (C) LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
goetz@6479 845 MachNode *spillD = match_tree(new (C) LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
goetz@6479 846 MachNode *spillP = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
duke@435 847 assert(spillI != NULL && spillL != NULL && spillF != NULL &&
duke@435 848 spillD != NULL && spillP != NULL, "");
duke@435 849 // Get the ADLC notion of the right regmask, for each basic type.
coleenp@548 850 #ifdef _LP64
coleenp@548 851 idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
coleenp@548 852 #endif
duke@435 853 idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
duke@435 854 idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
duke@435 855 idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
duke@435 856 idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
duke@435 857 idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
kvn@3882 858
kvn@3882 859 // Vector regmasks.
kvn@3882 860 if (Matcher::vector_size_supported(T_BYTE,4)) {
kvn@3882 861 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
kvn@4115 862 MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
kvn@3882 863 idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
kvn@3882 864 }
kvn@3882 865 if (Matcher::vector_size_supported(T_FLOAT,2)) {
kvn@4115 866 MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
kvn@3882 867 idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
kvn@3882 868 }
kvn@3882 869 if (Matcher::vector_size_supported(T_FLOAT,4)) {
kvn@4115 870 MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
kvn@3882 871 idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
kvn@3882 872 }
kvn@3882 873 if (Matcher::vector_size_supported(T_FLOAT,8)) {
kvn@4115 874 MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
kvn@3882 875 idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
kvn@3882 876 }
duke@435 877 }
duke@435 878
duke@435 879 #ifdef ASSERT
duke@435 880 static void match_alias_type(Compile* C, Node* n, Node* m) {
duke@435 881 if (!VerifyAliases) return; // do not go looking for trouble by default
duke@435 882 const TypePtr* nat = n->adr_type();
duke@435 883 const TypePtr* mat = m->adr_type();
duke@435 884 int nidx = C->get_alias_index(nat);
duke@435 885 int midx = C->get_alias_index(mat);
duke@435 886 // Detune the assert for cases like (AndI 0xFF (LoadB p)).
duke@435 887 if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
duke@435 888 for (uint i = 1; i < n->req(); i++) {
duke@435 889 Node* n1 = n->in(i);
duke@435 890 const TypePtr* n1at = n1->adr_type();
duke@435 891 if (n1at != NULL) {
duke@435 892 nat = n1at;
duke@435 893 nidx = C->get_alias_index(n1at);
duke@435 894 }
duke@435 895 }
duke@435 896 }
duke@435 897 // %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
duke@435 898 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
duke@435 899 switch (n->Opcode()) {
duke@435 900 case Op_PrefetchRead:
duke@435 901 case Op_PrefetchWrite:
kvn@3052 902 case Op_PrefetchAllocation:
duke@435 903 nidx = Compile::AliasIdxRaw;
duke@435 904 nat = TypeRawPtr::BOTTOM;
duke@435 905 break;
duke@435 906 }
duke@435 907 }
duke@435 908 if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
duke@435 909 switch (n->Opcode()) {
duke@435 910 case Op_ClearArray:
duke@435 911 midx = Compile::AliasIdxRaw;
duke@435 912 mat = TypeRawPtr::BOTTOM;
duke@435 913 break;
duke@435 914 }
duke@435 915 }
duke@435 916 if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
duke@435 917 switch (n->Opcode()) {
duke@435 918 case Op_Return:
duke@435 919 case Op_Rethrow:
duke@435 920 case Op_Halt:
duke@435 921 case Op_TailCall:
duke@435 922 case Op_TailJump:
duke@435 923 nidx = Compile::AliasIdxBot;
duke@435 924 nat = TypePtr::BOTTOM;
duke@435 925 break;
duke@435 926 }
duke@435 927 }
duke@435 928 if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
duke@435 929 switch (n->Opcode()) {
duke@435 930 case Op_StrComp:
cfang@1116 931 case Op_StrEquals:
cfang@1116 932 case Op_StrIndexOf:
rasbold@604 933 case Op_AryEq:
duke@435 934 case Op_MemBarVolatile:
duke@435 935 case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
kvn@4479 936 case Op_EncodeISOArray:
duke@435 937 nidx = Compile::AliasIdxTop;
duke@435 938 nat = NULL;
duke@435 939 break;
duke@435 940 }
duke@435 941 }
duke@435 942 if (nidx != midx) {
duke@435 943 if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
duke@435 944 tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
duke@435 945 n->dump();
duke@435 946 m->dump();
duke@435 947 }
duke@435 948 assert(C->subsume_loads() && C->must_alias(nat, midx),
duke@435 949 "must not lose alias info when matching");
duke@435 950 }
duke@435 951 }
duke@435 952 #endif
duke@435 953
duke@435 954
duke@435 955 //------------------------------MStack-----------------------------------------
duke@435 956 // State and MStack class used in xform() and find_shared() iterative methods.
duke@435 957 enum Node_State { Pre_Visit, // node has to be pre-visited
duke@435 958 Visit, // visit node
duke@435 959 Post_Visit, // post-visit node
duke@435 960 Alt_Post_Visit // alternative post-visit path
duke@435 961 };
duke@435 962
duke@435 963 class MStack: public Node_Stack {
duke@435 964 public:
duke@435 965 MStack(int size) : Node_Stack(size) { }
duke@435 966
duke@435 967 void push(Node *n, Node_State ns) {
duke@435 968 Node_Stack::push(n, (uint)ns);
duke@435 969 }
duke@435 970 void push(Node *n, Node_State ns, Node *parent, int indx) {
duke@435 971 ++_inode_top;
duke@435 972 if ((_inode_top + 1) >= _inode_max) grow();
duke@435 973 _inode_top->node = parent;
duke@435 974 _inode_top->indx = (uint)indx;
duke@435 975 ++_inode_top;
duke@435 976 _inode_top->node = n;
duke@435 977 _inode_top->indx = (uint)ns;
duke@435 978 }
duke@435 979 Node *parent() {
duke@435 980 pop();
duke@435 981 return node();
duke@435 982 }
duke@435 983 Node_State state() const {
duke@435 984 return (Node_State)index();
duke@435 985 }
duke@435 986 void set_state(Node_State ns) {
duke@435 987 set_index((uint)ns);
duke@435 988 }
duke@435 989 };
duke@435 990
duke@435 991
duke@435 992 //------------------------------xform------------------------------------------
duke@435 993 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
duke@435 994 // Node in new-space. Given a new-space Node, recursively walk his children.
duke@435 995 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
duke@435 996 Node *Matcher::xform( Node *n, int max_stack ) {
duke@435 997 // Use one stack to keep both: child's node/state and parent's node/index
zmajo@8068 998 MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
duke@435 999 mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
duke@435 1000
duke@435 1001 while (mstack.is_nonempty()) {
drchase@5285 1002 C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
drchase@5285 1003 if (C->failing()) return NULL;
duke@435 1004 n = mstack.node(); // Leave node on stack
duke@435 1005 Node_State nstate = mstack.state();
duke@435 1006 if (nstate == Visit) {
duke@435 1007 mstack.set_state(Post_Visit);
duke@435 1008 Node *oldn = n;
duke@435 1009 // Old-space or new-space check
duke@435 1010 if (!C->node_arena()->contains(n)) {
duke@435 1011 // Old space!
duke@435 1012 Node* m;
duke@435 1013 if (has_new_node(n)) { // Not yet Label/Reduced
duke@435 1014 m = new_node(n);
duke@435 1015 } else {
duke@435 1016 if (!is_dontcare(n)) { // Matcher can match this guy
duke@435 1017 // Calls match special. They match alone with no children.
duke@435 1018 // Their children, the incoming arguments, match normally.
duke@435 1019 m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
duke@435 1020 if (C->failing()) return NULL;
duke@435 1021 if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
duke@435 1022 } else { // Nothing the matcher cares about
thartmann@8771 1023 if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) { // Projections?
duke@435 1024 // Convert to machine-dependent projection
duke@435 1025 m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
never@657 1026 #ifdef ASSERT
never@657 1027 _new2old_map.map(m->_idx, n);
never@657 1028 #endif
duke@435 1029 if (m->in(0) != NULL) // m might be top
kvn@803 1030 collect_null_checks(m, n);
duke@435 1031 } else { // Else just a regular 'ol guy
duke@435 1032 m = n->clone(); // So just clone into new-space
never@657 1033 #ifdef ASSERT
never@657 1034 _new2old_map.map(m->_idx, n);
never@657 1035 #endif
duke@435 1036 // Def-Use edges will be added incrementally as Uses
duke@435 1037 // of this node are matched.
duke@435 1038 assert(m->outcnt() == 0, "no Uses of this clone yet");
duke@435 1039 }
duke@435 1040 }
duke@435 1041
duke@435 1042 set_new_node(n, m); // Map old to new
duke@435 1043 if (_old_node_note_array != NULL) {
duke@435 1044 Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
duke@435 1045 n->_idx);
duke@435 1046 C->set_node_notes_at(m->_idx, nn);
duke@435 1047 }
duke@435 1048 debug_only(match_alias_type(C, n, m));
duke@435 1049 }
duke@435 1050 n = m; // n is now a new-space node
duke@435 1051 mstack.set_node(n);
duke@435 1052 }
duke@435 1053
duke@435 1054 // New space!
duke@435 1055 if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
duke@435 1056
duke@435 1057 int i;
duke@435 1058 // Put precedence edges on stack first (match them last).
duke@435 1059 for (i = oldn->req(); (uint)i < oldn->len(); i++) {
duke@435 1060 Node *m = oldn->in(i);
duke@435 1061 if (m == NULL) break;
duke@435 1062 // set -1 to call add_prec() instead of set_req() during Step1
duke@435 1063 mstack.push(m, Visit, n, -1);
duke@435 1064 }
duke@435 1065
duke@435 1066 // For constant debug info, I'd rather have unmatched constants.
duke@435 1067 int cnt = n->req();
duke@435 1068 JVMState* jvms = n->jvms();
duke@435 1069 int debug_cnt = jvms ? jvms->debug_start() : cnt;
duke@435 1070
duke@435 1071 // Now do only debug info. Clone constants rather than matching.
duke@435 1072 // Constants are represented directly in the debug info without
duke@435 1073 // the need for executable machine instructions.
duke@435 1074 // Monitor boxes are also represented directly.
duke@435 1075 for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
duke@435 1076 Node *m = n->in(i); // Get input
duke@435 1077 int op = m->Opcode();
duke@435 1078 assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
roland@4159 1079 if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
duke@435 1080 op == Op_ConF || op == Op_ConD || op == Op_ConL
duke@435 1081 // || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
duke@435 1082 ) {
duke@435 1083 m = m->clone();
never@657 1084 #ifdef ASSERT
never@657 1085 _new2old_map.map(m->_idx, n);
never@657 1086 #endif
twisti@1040 1087 mstack.push(m, Post_Visit, n, i); // Don't need to visit
duke@435 1088 mstack.push(m->in(0), Visit, m, 0);
duke@435 1089 } else {
duke@435 1090 mstack.push(m, Visit, n, i);
duke@435 1091 }
duke@435 1092 }
duke@435 1093
duke@435 1094 // And now walk his children, and convert his inputs to new-space.
duke@435 1095 for( ; i >= 0; --i ) { // For all normal inputs do
duke@435 1096 Node *m = n->in(i); // Get input
duke@435 1097 if(m != NULL)
duke@435 1098 mstack.push(m, Visit, n, i);
duke@435 1099 }
duke@435 1100
duke@435 1101 }
duke@435 1102 else if (nstate == Post_Visit) {
duke@435 1103 // Set xformed input
duke@435 1104 Node *p = mstack.parent();
duke@435 1105 if (p != NULL) { // root doesn't have parent
duke@435 1106 int i = (int)mstack.index();
duke@435 1107 if (i >= 0)
duke@435 1108 p->set_req(i, n); // required input
duke@435 1109 else if (i == -1)
duke@435 1110 p->add_prec(n); // precedence input
duke@435 1111 else
duke@435 1112 ShouldNotReachHere();
duke@435 1113 }
duke@435 1114 mstack.pop(); // remove processed node from stack
duke@435 1115 }
duke@435 1116 else {
duke@435 1117 ShouldNotReachHere();
duke@435 1118 }
duke@435 1119 } // while (mstack.is_nonempty())
duke@435 1120 return n; // Return new-space Node
duke@435 1121 }
duke@435 1122
duke@435 1123 //------------------------------warp_outgoing_stk_arg------------------------
duke@435 1124 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
duke@435 1125 // Convert outgoing argument location to a pre-biased stack offset
duke@435 1126 if (reg->is_stack()) {
duke@435 1127 OptoReg::Name warped = reg->reg2stack();
duke@435 1128 // Adjust the stack slot offset to be the register number used
duke@435 1129 // by the allocator.
duke@435 1130 warped = OptoReg::add(begin_out_arg_area, warped);
duke@435 1131 // Keep track of the largest numbered stack slot used for an arg.
duke@435 1132 // Largest used slot per call-site indicates the amount of stack
duke@435 1133 // that is killed by the call.
duke@435 1134 if( warped >= out_arg_limit_per_call )
duke@435 1135 out_arg_limit_per_call = OptoReg::add(warped,1);
kvn@3882 1136 if (!RegMask::can_represent_arg(warped)) {
duke@435 1137 C->record_method_not_compilable_all_tiers("unsupported calling sequence");
duke@435 1138 return OptoReg::Bad;
duke@435 1139 }
duke@435 1140 return warped;
duke@435 1141 }
duke@435 1142 return OptoReg::as_OptoReg(reg);
duke@435 1143 }
duke@435 1144
duke@435 1145
duke@435 1146 //------------------------------match_sfpt-------------------------------------
duke@435 1147 // Helper function to match call instructions. Calls match special.
duke@435 1148 // They match alone with no children. Their children, the incoming
duke@435 1149 // arguments, match normally.
duke@435 1150 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
duke@435 1151 MachSafePointNode *msfpt = NULL;
duke@435 1152 MachCallNode *mcall = NULL;
duke@435 1153 uint cnt;
duke@435 1154 // Split out case for SafePoint vs Call
duke@435 1155 CallNode *call;
duke@435 1156 const TypeTuple *domain;
duke@435 1157 ciMethod* method = NULL;
twisti@1572 1158 bool is_method_handle_invoke = false; // for special kill effects
duke@435 1159 if( sfpt->is_Call() ) {
duke@435 1160 call = sfpt->as_Call();
duke@435 1161 domain = call->tf()->domain();
duke@435 1162 cnt = domain->cnt();
duke@435 1163
duke@435 1164 // Match just the call, nothing else
duke@435 1165 MachNode *m = match_tree(call);
duke@435 1166 if (C->failing()) return NULL;
duke@435 1167 if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
duke@435 1168
duke@435 1169 // Copy data from the Ideal SafePoint to the machine version
duke@435 1170 mcall = m->as_MachCall();
duke@435 1171
duke@435 1172 mcall->set_tf( call->tf());
duke@435 1173 mcall->set_entry_point(call->entry_point());
duke@435 1174 mcall->set_cnt( call->cnt());
duke@435 1175
duke@435 1176 if( mcall->is_MachCallJava() ) {
duke@435 1177 MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
duke@435 1178 const CallJavaNode *call_java = call->as_CallJava();
duke@435 1179 method = call_java->method();
duke@435 1180 mcall_java->_method = method;
duke@435 1181 mcall_java->_bci = call_java->_bci;
duke@435 1182 mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
twisti@1572 1183 is_method_handle_invoke = call_java->is_method_handle_invoke();
twisti@1572 1184 mcall_java->_method_handle_invoke = is_method_handle_invoke;
never@3105 1185 if (is_method_handle_invoke) {
never@3105 1186 C->set_has_method_handle_invokes(true);
never@3105 1187 }
duke@435 1188 if( mcall_java->is_MachCallStaticJava() )
duke@435 1189 mcall_java->as_MachCallStaticJava()->_name =
duke@435 1190 call_java->as_CallStaticJava()->_name;
duke@435 1191 if( mcall_java->is_MachCallDynamicJava() )
duke@435 1192 mcall_java->as_MachCallDynamicJava()->_vtable_index =
duke@435 1193 call_java->as_CallDynamicJava()->_vtable_index;
duke@435 1194 }
duke@435 1195 else if( mcall->is_MachCallRuntime() ) {
duke@435 1196 mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
duke@435 1197 }
duke@435 1198 msfpt = mcall;
duke@435 1199 }
duke@435 1200 // This is a non-call safepoint
duke@435 1201 else {
duke@435 1202 call = NULL;
duke@435 1203 domain = NULL;
duke@435 1204 MachNode *mn = match_tree(sfpt);
duke@435 1205 if (C->failing()) return NULL;
duke@435 1206 msfpt = mn->as_MachSafePoint();
duke@435 1207 cnt = TypeFunc::Parms;
duke@435 1208 }
duke@435 1209
duke@435 1210 // Advertise the correct memory effects (for anti-dependence computation).
duke@435 1211 msfpt->set_adr_type(sfpt->adr_type());
duke@435 1212
duke@435 1213 // Allocate a private array of RegMasks. These RegMasks are not shared.
duke@435 1214 msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
duke@435 1215 // Empty them all.
duke@435 1216 memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
duke@435 1217
duke@435 1218 // Do all the pre-defined non-Empty register masks
duke@435 1219 msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
duke@435 1220 msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
duke@435 1221
duke@435 1222 // Place first outgoing argument can possibly be put.
duke@435 1223 OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
duke@435 1224 assert( is_even(begin_out_arg_area), "" );
duke@435 1225 // Compute max outgoing register number per call site.
duke@435 1226 OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
duke@435 1227 // Calls to C may hammer extra stack slots above and beyond any arguments.
duke@435 1228 // These are usually backing store for register arguments for varargs.
duke@435 1229 if( call != NULL && call->is_CallRuntime() )
duke@435 1230 out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
duke@435 1231
duke@435 1232
duke@435 1233 // Do the normal argument list (parameters) register masks
duke@435 1234 int argcnt = cnt - TypeFunc::Parms;
duke@435 1235 if( argcnt > 0 ) { // Skip it all if we have no args
duke@435 1236 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
duke@435 1237 VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
duke@435 1238 int i;
duke@435 1239 for( i = 0; i < argcnt; i++ ) {
duke@435 1240 sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
duke@435 1241 }
duke@435 1242 // V-call to pick proper calling convention
duke@435 1243 call->calling_convention( sig_bt, parm_regs, argcnt );
duke@435 1244
duke@435 1245 #ifdef ASSERT
duke@435 1246 // Sanity check users' calling convention. Really handy during
duke@435 1247 // the initial porting effort. Fairly expensive otherwise.
duke@435 1248 { for (int i = 0; i<argcnt; i++) {
duke@435 1249 if( !parm_regs[i].first()->is_valid() &&
duke@435 1250 !parm_regs[i].second()->is_valid() ) continue;
duke@435 1251 VMReg reg1 = parm_regs[i].first();
duke@435 1252 VMReg reg2 = parm_regs[i].second();
duke@435 1253 for (int j = 0; j < i; j++) {
duke@435 1254 if( !parm_regs[j].first()->is_valid() &&
duke@435 1255 !parm_regs[j].second()->is_valid() ) continue;
duke@435 1256 VMReg reg3 = parm_regs[j].first();
duke@435 1257 VMReg reg4 = parm_regs[j].second();
duke@435 1258 if( !reg1->is_valid() ) {
duke@435 1259 assert( !reg2->is_valid(), "valid halvsies" );
duke@435 1260 } else if( !reg3->is_valid() ) {
duke@435 1261 assert( !reg4->is_valid(), "valid halvsies" );
duke@435 1262 } else {
duke@435 1263 assert( reg1 != reg2, "calling conv. must produce distinct regs");
duke@435 1264 assert( reg1 != reg3, "calling conv. must produce distinct regs");
duke@435 1265 assert( reg1 != reg4, "calling conv. must produce distinct regs");
duke@435 1266 assert( reg2 != reg3, "calling conv. must produce distinct regs");
duke@435 1267 assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
duke@435 1268 assert( reg3 != reg4, "calling conv. must produce distinct regs");
duke@435 1269 }
duke@435 1270 }
duke@435 1271 }
duke@435 1272 }
duke@435 1273 #endif
duke@435 1274
duke@435 1275 // Visit each argument. Compute its outgoing register mask.
duke@435 1276 // Return results now can have 2 bits returned.
duke@435 1277 // Compute max over all outgoing arguments both per call-site
duke@435 1278 // and over the entire method.
duke@435 1279 for( i = 0; i < argcnt; i++ ) {
duke@435 1280 // Address of incoming argument mask to fill in
duke@435 1281 RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
duke@435 1282 if( !parm_regs[i].first()->is_valid() &&
duke@435 1283 !parm_regs[i].second()->is_valid() ) {
duke@435 1284 continue; // Avoid Halves
duke@435 1285 }
duke@435 1286 // Grab first register, adjust stack slots and insert in mask.
duke@435 1287 OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1288 if (OptoReg::is_valid(reg1))
duke@435 1289 rm->Insert( reg1 );
duke@435 1290 // Grab second register (if any), adjust stack slots and insert in mask.
duke@435 1291 OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
duke@435 1292 if (OptoReg::is_valid(reg2))
duke@435 1293 rm->Insert( reg2 );
duke@435 1294 } // End of for all arguments
duke@435 1295
duke@435 1296 // Compute number of stack slots needed to restore stack in case of
duke@435 1297 // Pascal-style argument popping.
duke@435 1298 mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
duke@435 1299 }
duke@435 1300
duke@435 1301 // Compute the max stack slot killed by any call. These will not be
duke@435 1302 // available for debug info, and will be used to adjust FIRST_STACK_mask
duke@435 1303 // after all call sites have been visited.
duke@435 1304 if( _out_arg_limit < out_arg_limit_per_call)
duke@435 1305 _out_arg_limit = out_arg_limit_per_call;
duke@435 1306
duke@435 1307 if (mcall) {
duke@435 1308 // Kill the outgoing argument area, including any non-argument holes and
duke@435 1309 // any legacy C-killed slots. Use Fat-Projections to do the killing.
duke@435 1310 // Since the max-per-method covers the max-per-call-site and debug info
duke@435 1311 // is excluded on the max-per-method basis, debug info cannot land in
duke@435 1312 // this killed area.
duke@435 1313 uint r_cnt = mcall->tf()->range()->cnt();
kvn@4115 1314 MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
kvn@3882 1315 if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
duke@435 1316 C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
duke@435 1317 } else {
duke@435 1318 for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
duke@435 1319 proj->_rout.Insert(OptoReg::Name(i));
duke@435 1320 }
adlertz@5539 1321 if (proj->_rout.is_NotEmpty()) {
adlertz@5539 1322 push_projection(proj);
adlertz@5539 1323 }
duke@435 1324 }
duke@435 1325 // Transfer the safepoint information from the call to the mcall
duke@435 1326 // Move the JVMState list
duke@435 1327 msfpt->set_jvms(sfpt->jvms());
duke@435 1328 for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
duke@435 1329 jvms->set_map(sfpt);
duke@435 1330 }
duke@435 1331
duke@435 1332 // Debug inputs begin just after the last incoming parameter
goetz@6499 1333 assert((mcall == NULL) || (mcall->jvms() == NULL) ||
goetz@6499 1334 (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
duke@435 1335
duke@435 1336 // Move the OopMap
duke@435 1337 msfpt->_oop_map = sfpt->_oop_map;
duke@435 1338
goetz@6499 1339 // Add additional edges.
goetz@6499 1340 if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
goetz@6499 1341 // For these calls we can not add MachConstantBase in expand(), as the
goetz@6499 1342 // ins are not complete then.
goetz@6499 1343 msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
goetz@6499 1344 if (msfpt->jvms() &&
goetz@6499 1345 msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
goetz@6499 1346 // We added an edge before jvms, so we must adapt the position of the ins.
goetz@6499 1347 msfpt->jvms()->adapt_position(+1);
goetz@6499 1348 }
goetz@6499 1349 }
goetz@6499 1350
duke@435 1351 // Registers killed by the call are set in the local scheduling pass
duke@435 1352 // of Global Code Motion.
duke@435 1353 return msfpt;
duke@435 1354 }
duke@435 1355
duke@435 1356 //---------------------------match_tree----------------------------------------
duke@435 1357 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
duke@435 1358 // of the whole-sale conversion from Ideal to Mach Nodes. Also used for
duke@435 1359 // making GotoNodes while building the CFG and in init_spill_mask() to identify
duke@435 1360 // a Load's result RegMask for memoization in idealreg2regmask[]
duke@435 1361 MachNode *Matcher::match_tree( const Node *n ) {
duke@435 1362 assert( n->Opcode() != Op_Phi, "cannot match" );
duke@435 1363 assert( !n->is_block_start(), "cannot match" );
duke@435 1364 // Set the mark for all locally allocated State objects.
duke@435 1365 // When this call returns, the _states_arena arena will be reset
duke@435 1366 // freeing all State objects.
duke@435 1367 ResourceMark rm( &_states_arena );
duke@435 1368
duke@435 1369 LabelRootDepth = 0;
duke@435 1370
duke@435 1371 // StoreNodes require their Memory input to match any LoadNodes
duke@435 1372 Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
kvn@651 1373 #ifdef ASSERT
kvn@651 1374 Node* save_mem_node = _mem_node;
kvn@651 1375 _mem_node = n->is_Store() ? (Node*)n : NULL;
kvn@651 1376 #endif
duke@435 1377 // State object for root node of match tree
duke@435 1378 // Allocate it on _states_arena - stack allocation can cause stack overflow.
duke@435 1379 State *s = new (&_states_arena) State;
duke@435 1380 s->_kids[0] = NULL;
duke@435 1381 s->_kids[1] = NULL;
duke@435 1382 s->_leaf = (Node*)n;
duke@435 1383 // Label the input tree, allocating labels from top-level arena
duke@435 1384 Label_Root( n, s, n->in(0), mem );
duke@435 1385 if (C->failing()) return NULL;
duke@435 1386
duke@435 1387 // The minimum cost match for the whole tree is found at the root State
duke@435 1388 uint mincost = max_juint;
duke@435 1389 uint cost = max_juint;
duke@435 1390 uint i;
duke@435 1391 for( i = 0; i < NUM_OPERANDS; i++ ) {
duke@435 1392 if( s->valid(i) && // valid entry and
duke@435 1393 s->_cost[i] < cost && // low cost and
duke@435 1394 s->_rule[i] >= NUM_OPERANDS ) // not an operand
duke@435 1395 cost = s->_cost[mincost=i];
duke@435 1396 }
duke@435 1397 if (mincost == max_juint) {
duke@435 1398 #ifndef PRODUCT
duke@435 1399 tty->print("No matching rule for:");
duke@435 1400 s->dump();
duke@435 1401 #endif
duke@435 1402 Matcher::soft_match_failure();
duke@435 1403 return NULL;
duke@435 1404 }
duke@435 1405 // Reduce input tree based upon the state labels to machine Nodes
duke@435 1406 MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
duke@435 1407 #ifdef ASSERT
duke@435 1408 _old2new_map.map(n->_idx, m);
never@657 1409 _new2old_map.map(m->_idx, (Node*)n);
duke@435 1410 #endif
duke@435 1411
duke@435 1412 // Add any Matcher-ignored edges
duke@435 1413 uint cnt = n->req();
duke@435 1414 uint start = 1;
duke@435 1415 if( mem != (Node*)1 ) start = MemNode::Memory+1;
kvn@603 1416 if( n->is_AddP() ) {
duke@435 1417 assert( mem == (Node*)1, "" );
duke@435 1418 start = AddPNode::Base+1;
duke@435 1419 }
duke@435 1420 for( i = start; i < cnt; i++ ) {
duke@435 1421 if( !n->match_edge(i) ) {
duke@435 1422 if( i < m->req() )
duke@435 1423 m->ins_req( i, n->in(i) );
duke@435 1424 else
duke@435 1425 m->add_req( n->in(i) );
duke@435 1426 }
duke@435 1427 }
duke@435 1428
kvn@651 1429 debug_only( _mem_node = save_mem_node; )
duke@435 1430 return m;
duke@435 1431 }
duke@435 1432
duke@435 1433
duke@435 1434 //------------------------------match_into_reg---------------------------------
duke@435 1435 // Choose to either match this Node in a register or part of the current
duke@435 1436 // match tree. Return true for requiring a register and false for matching
duke@435 1437 // as part of the current match tree.
duke@435 1438 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
duke@435 1439
duke@435 1440 const Type *t = m->bottom_type();
duke@435 1441
kvn@3390 1442 if (t->singleton()) {
duke@435 1443 // Never force constants into registers. Allow them to match as
duke@435 1444 // constants or registers. Copies of the same value will share
kvn@603 1445 // the same register. See find_shared_node.
duke@435 1446 return false;
duke@435 1447 } else { // Not a constant
duke@435 1448 // Stop recursion if they have different Controls.
kvn@3390 1449 Node* m_control = m->in(0);
kvn@3390 1450 // Control of load's memory can post-dominates load's control.
kvn@3390 1451 // So use it since load can't float above its memory.
kvn@3390 1452 Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
kvn@3390 1453 if (control && m_control && control != m_control && control != mem_control) {
duke@435 1454
duke@435 1455 // Actually, we can live with the most conservative control we
duke@435 1456 // find, if it post-dominates the others. This allows us to
duke@435 1457 // pick up load/op/store trees where the load can float a little
duke@435 1458 // above the store.
duke@435 1459 Node *x = control;
kvn@3390 1460 const uint max_scan = 6; // Arbitrary scan cutoff
duke@435 1461 uint j;
kvn@3390 1462 for (j=0; j<max_scan; j++) {
kvn@3390 1463 if (x->is_Region()) // Bail out at merge points
duke@435 1464 return true;
duke@435 1465 x = x->in(0);
kvn@3390 1466 if (x == m_control) // Does 'control' post-dominate
duke@435 1467 break; // m->in(0)? If so, we can use it
kvn@3390 1468 if (x == mem_control) // Does 'control' post-dominate
kvn@3390 1469 break; // mem_control? If so, we can use it
duke@435 1470 }
kvn@3390 1471 if (j == max_scan) // No post-domination before scan end?
duke@435 1472 return true; // Then break the match tree up
duke@435 1473 }
roland@4159 1474 if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
roland@4159 1475 (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
coleenp@548 1476 // These are commonly used in address expressions and can
kvn@603 1477 // efficiently fold into them on X64 in some cases.
kvn@603 1478 return false;
coleenp@548 1479 }
duke@435 1480 }
duke@435 1481
twisti@1040 1482 // Not forceable cloning. If shared, put it into a register.
duke@435 1483 return shared;
duke@435 1484 }
duke@435 1485
duke@435 1486
duke@435 1487 //------------------------------Instruction Selection--------------------------
duke@435 1488 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
duke@435 1489 // ideal nodes to machine instructions. Trees are delimited by shared Nodes,
duke@435 1490 // things the Matcher does not match (e.g., Memory), and things with different
duke@435 1491 // Controls (hence forced into different blocks). We pass in the Control
duke@435 1492 // selected for this entire State tree.
duke@435 1493
duke@435 1494 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
duke@435 1495 // Store and the Load must have identical Memories (as well as identical
duke@435 1496 // pointers). Since the Matcher does not have anything for Memory (and
duke@435 1497 // does not handle DAGs), I have to match the Memory input myself. If the
duke@435 1498 // Tree root is a Store, I require all Loads to have the identical memory.
duke@435 1499 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
duke@435 1500 // Since Label_Root is a recursive function, its possible that we might run
duke@435 1501 // out of stack space. See bugs 6272980 & 6227033 for more info.
duke@435 1502 LabelRootDepth++;
duke@435 1503 if (LabelRootDepth > MaxLabelRootDepth) {
duke@435 1504 C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
duke@435 1505 return NULL;
duke@435 1506 }
duke@435 1507 uint care = 0; // Edges matcher cares about
duke@435 1508 uint cnt = n->req();
duke@435 1509 uint i = 0;
duke@435 1510
duke@435 1511 // Examine children for memory state
duke@435 1512 // Can only subsume a child into your match-tree if that child's memory state
duke@435 1513 // is not modified along the path to another input.
duke@435 1514 // It is unsafe even if the other inputs are separate roots.
duke@435 1515 Node *input_mem = NULL;
duke@435 1516 for( i = 1; i < cnt; i++ ) {
duke@435 1517 if( !n->match_edge(i) ) continue;
duke@435 1518 Node *m = n->in(i); // Get ith input
duke@435 1519 assert( m, "expect non-null children" );
duke@435 1520 if( m->is_Load() ) {
duke@435 1521 if( input_mem == NULL ) {
duke@435 1522 input_mem = m->in(MemNode::Memory);
duke@435 1523 } else if( input_mem != m->in(MemNode::Memory) ) {
duke@435 1524 input_mem = NodeSentinel;
duke@435 1525 }
duke@435 1526 }
duke@435 1527 }
duke@435 1528
duke@435 1529 for( i = 1; i < cnt; i++ ){// For my children
duke@435 1530 if( !n->match_edge(i) ) continue;
duke@435 1531 Node *m = n->in(i); // Get ith input
duke@435 1532 // Allocate states out of a private arena
duke@435 1533 State *s = new (&_states_arena) State;
duke@435 1534 svec->_kids[care++] = s;
duke@435 1535 assert( care <= 2, "binary only for now" );
duke@435 1536
duke@435 1537 // Recursively label the State tree.
duke@435 1538 s->_kids[0] = NULL;
duke@435 1539 s->_kids[1] = NULL;
duke@435 1540 s->_leaf = m;
duke@435 1541
duke@435 1542 // Check for leaves of the State Tree; things that cannot be a part of
duke@435 1543 // the current tree. If it finds any, that value is matched as a
duke@435 1544 // register operand. If not, then the normal matching is used.
duke@435 1545 if( match_into_reg(n, m, control, i, is_shared(m)) ||
duke@435 1546 //
duke@435 1547 // Stop recursion if this is LoadNode and the root of this tree is a
duke@435 1548 // StoreNode and the load & store have different memories.
duke@435 1549 ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
duke@435 1550 // Can NOT include the match of a subtree when its memory state
duke@435 1551 // is used by any of the other subtrees
duke@435 1552 (input_mem == NodeSentinel) ) {
duke@435 1553 #ifndef PRODUCT
duke@435 1554 // Print when we exclude matching due to different memory states at input-loads
duke@435 1555 if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
duke@435 1556 && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
duke@435 1557 tty->print_cr("invalid input_mem");
duke@435 1558 }
duke@435 1559 #endif
duke@435 1560 // Switch to a register-only opcode; this value must be in a register
duke@435 1561 // and cannot be subsumed as part of a larger instruction.
duke@435 1562 s->DFA( m->ideal_reg(), m );
duke@435 1563
duke@435 1564 } else {
duke@435 1565 // If match tree has no control and we do, adopt it for entire tree
duke@435 1566 if( control == NULL && m->in(0) != NULL && m->req() > 1 )
duke@435 1567 control = m->in(0); // Pick up control
duke@435 1568 // Else match as a normal part of the match tree.
duke@435 1569 control = Label_Root(m,s,control,mem);
duke@435 1570 if (C->failing()) return NULL;
duke@435 1571 }
duke@435 1572 }
duke@435 1573
duke@435 1574
duke@435 1575 // Call DFA to match this node, and return
duke@435 1576 svec->DFA( n->Opcode(), n );
duke@435 1577
duke@435 1578 #ifdef ASSERT
duke@435 1579 uint x;
duke@435 1580 for( x = 0; x < _LAST_MACH_OPER; x++ )
duke@435 1581 if( svec->valid(x) )
duke@435 1582 break;
duke@435 1583
duke@435 1584 if (x >= _LAST_MACH_OPER) {
duke@435 1585 n->dump();
duke@435 1586 svec->dump();
duke@435 1587 assert( false, "bad AD file" );
duke@435 1588 }
duke@435 1589 #endif
duke@435 1590 return control;
duke@435 1591 }
duke@435 1592
duke@435 1593
duke@435 1594 // Con nodes reduced using the same rule can share their MachNode
duke@435 1595 // which reduces the number of copies of a constant in the final
duke@435 1596 // program. The register allocator is free to split uses later to
duke@435 1597 // split live ranges.
kvn@603 1598 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
roland@4159 1599 if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
duke@435 1600
duke@435 1601 // See if this Con has already been reduced using this rule.
kvn@603 1602 if (_shared_nodes.Size() <= leaf->_idx) return NULL;
kvn@603 1603 MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
duke@435 1604 if (last != NULL && rule == last->rule()) {
kvn@603 1605 // Don't expect control change for DecodeN
roland@4159 1606 if (leaf->is_DecodeNarrowPtr())
kvn@603 1607 return last;
duke@435 1608 // Get the new space root.
duke@435 1609 Node* xroot = new_node(C->root());
duke@435 1610 if (xroot == NULL) {
duke@435 1611 // This shouldn't happen give the order of matching.
duke@435 1612 return NULL;
duke@435 1613 }
duke@435 1614
duke@435 1615 // Shared constants need to have their control be root so they
duke@435 1616 // can be scheduled properly.
duke@435 1617 Node* control = last->in(0);
duke@435 1618 if (control != xroot) {
duke@435 1619 if (control == NULL || control == C->root()) {
duke@435 1620 last->set_req(0, xroot);
duke@435 1621 } else {
duke@435 1622 assert(false, "unexpected control");
duke@435 1623 return NULL;
duke@435 1624 }
duke@435 1625 }
duke@435 1626 return last;
duke@435 1627 }
duke@435 1628 return NULL;
duke@435 1629 }
duke@435 1630
duke@435 1631
duke@435 1632 //------------------------------ReduceInst-------------------------------------
duke@435 1633 // Reduce a State tree (with given Control) into a tree of MachNodes.
duke@435 1634 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
duke@435 1635 // complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
duke@435 1636 // Each MachNode has a number of complicated MachOper operands; each
duke@435 1637 // MachOper also covers a further tree of Ideal Nodes.
duke@435 1638
duke@435 1639 // The root of the Ideal match tree is always an instruction, so we enter
duke@435 1640 // the recursion here. After building the MachNode, we need to recurse
duke@435 1641 // the tree checking for these cases:
duke@435 1642 // (1) Child is an instruction -
duke@435 1643 // Build the instruction (recursively), add it as an edge.
duke@435 1644 // Build a simple operand (register) to hold the result of the instruction.
duke@435 1645 // (2) Child is an interior part of an instruction -
duke@435 1646 // Skip over it (do nothing)
duke@435 1647 // (3) Child is the start of a operand -
duke@435 1648 // Build the operand, place it inside the instruction
duke@435 1649 // Call ReduceOper.
duke@435 1650 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
duke@435 1651 assert( rule >= NUM_OPERANDS, "called with operand rule" );
duke@435 1652
kvn@603 1653 MachNode* shared_node = find_shared_node(s->_leaf, rule);
kvn@603 1654 if (shared_node != NULL) {
kvn@603 1655 return shared_node;
duke@435 1656 }
duke@435 1657
duke@435 1658 // Build the object to represent this state & prepare for recursive calls
duke@435 1659 MachNode *mach = s->MachNodeGenerator( rule, C );
thartmann@8770 1660 guarantee(mach != NULL, "Missing MachNode");
duke@435 1661 mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
duke@435 1662 assert( mach->_opnds[0] != NULL, "Missing result operand" );
duke@435 1663 Node *leaf = s->_leaf;
duke@435 1664 // Check for instruction or instruction chain rule
duke@435 1665 if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
never@744 1666 assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
never@744 1667 "duplicating node that's already been matched");
duke@435 1668 // Instruction
duke@435 1669 mach->add_req( leaf->in(0) ); // Set initial control
duke@435 1670 // Reduce interior of complex instruction
duke@435 1671 ReduceInst_Interior( s, rule, mem, mach, 1 );
duke@435 1672 } else {
duke@435 1673 // Instruction chain rules are data-dependent on their inputs
duke@435 1674 mach->add_req(0); // Set initial control to none
duke@435 1675 ReduceInst_Chain_Rule( s, rule, mem, mach );
duke@435 1676 }
duke@435 1677
duke@435 1678 // If a Memory was used, insert a Memory edge
kvn@651 1679 if( mem != (Node*)1 ) {
duke@435 1680 mach->ins_req(MemNode::Memory,mem);
kvn@651 1681 #ifdef ASSERT
kvn@651 1682 // Verify adr type after matching memory operation
kvn@651 1683 const MachOper* oper = mach->memory_operand();
kvn@1286 1684 if (oper != NULL && oper != (MachOper*)-1) {
kvn@651 1685 // It has a unique memory operand. Find corresponding ideal mem node.
kvn@651 1686 Node* m = NULL;
kvn@651 1687 if (leaf->is_Mem()) {
kvn@651 1688 m = leaf;
kvn@651 1689 } else {
kvn@651 1690 m = _mem_node;
kvn@651 1691 assert(m != NULL && m->is_Mem(), "expecting memory node");
kvn@651 1692 }
kvn@803 1693 const Type* mach_at = mach->adr_type();
kvn@803 1694 // DecodeN node consumed by an address may have different type
kvn@803 1695 // then its input. Don't compare types for such case.
kvn@1077 1696 if (m->adr_type() != mach_at &&
roland@4159 1697 (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1698 m->in(MemNode::Address)->is_AddP() &&
roland@4159 1699 m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
kvn@1077 1700 m->in(MemNode::Address)->is_AddP() &&
kvn@1077 1701 m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
roland@4159 1702 m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
kvn@803 1703 mach_at = m->adr_type();
kvn@803 1704 }
kvn@803 1705 if (m->adr_type() != mach_at) {
kvn@651 1706 m->dump();
kvn@651 1707 tty->print_cr("mach:");
kvn@651 1708 mach->dump(1);
kvn@651 1709 }
kvn@803 1710 assert(m->adr_type() == mach_at, "matcher should not change adr type");
kvn@651 1711 }
kvn@651 1712 #endif
kvn@651 1713 }
duke@435 1714
duke@435 1715 // If the _leaf is an AddP, insert the base edge
adlertz@5539 1716 if (leaf->is_AddP()) {
duke@435 1717 mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
adlertz@5539 1718 }
duke@435 1719
adlertz@5539 1720 uint number_of_projections_prior = number_of_projections();
duke@435 1721
duke@435 1722 // Perform any 1-to-many expansions required
adlertz@5539 1723 MachNode *ex = mach->Expand(s, _projection_list, mem);
adlertz@5539 1724 if (ex != mach) {
duke@435 1725 assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
duke@435 1726 if( ex->in(1)->is_Con() )
duke@435 1727 ex->in(1)->set_req(0, C->root());
duke@435 1728 // Remove old node from the graph
duke@435 1729 for( uint i=0; i<mach->req(); i++ ) {
duke@435 1730 mach->set_req(i,NULL);
duke@435 1731 }
never@657 1732 #ifdef ASSERT
never@657 1733 _new2old_map.map(ex->_idx, s->_leaf);
never@657 1734 #endif
duke@435 1735 }
duke@435 1736
duke@435 1737 // PhaseChaitin::fixup_spills will sometimes generate spill code
duke@435 1738 // via the matcher. By the time, nodes have been wired into the CFG,
duke@435 1739 // and any further nodes generated by expand rules will be left hanging
duke@435 1740 // in space, and will not get emitted as output code. Catch this.
duke@435 1741 // Also, catch any new register allocation constraints ("projections")
duke@435 1742 // generated belatedly during spill code generation.
duke@435 1743 if (_allocation_started) {
duke@435 1744 guarantee(ex == mach, "no expand rules during spill generation");
adlertz@5539 1745 guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
duke@435 1746 }
duke@435 1747
roland@4159 1748 if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
duke@435 1749 // Record the con for sharing
kvn@603 1750 _shared_nodes.map(leaf->_idx, ex);
duke@435 1751 }
duke@435 1752
duke@435 1753 return ex;
duke@435 1754 }
duke@435 1755
duke@435 1756 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1757 // 'op' is what I am expecting to receive
duke@435 1758 int op = _leftOp[rule];
duke@435 1759 // Operand type to catch childs result
duke@435 1760 // This is what my child will give me.
duke@435 1761 int opnd_class_instance = s->_rule[op];
duke@435 1762 // Choose between operand class or not.
twisti@1040 1763 // This is what I will receive.
duke@435 1764 int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1765 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1766 int newrule = s->_rule[catch_op];
duke@435 1767
duke@435 1768 if( newrule < NUM_OPERANDS ) {
duke@435 1769 // Chain from operand or operand class, may be output of shared node
duke@435 1770 assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
duke@435 1771 "Bad AD file: Instruction chain rule must chain from operand");
duke@435 1772 // Insert operand into array of operands for this instruction
duke@435 1773 mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
duke@435 1774
duke@435 1775 ReduceOper( s, newrule, mem, mach );
duke@435 1776 } else {
duke@435 1777 // Chain from the result of an instruction
duke@435 1778 assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
duke@435 1779 mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1780 Node *mem1 = (Node*)1;
kvn@651 1781 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1782 mach->add_req( ReduceInst(s, newrule, mem1) );
kvn@651 1783 debug_only(_mem_node = save_mem_node;)
duke@435 1784 }
duke@435 1785 return;
duke@435 1786 }
duke@435 1787
duke@435 1788
duke@435 1789 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
duke@435 1790 if( s->_leaf->is_Load() ) {
duke@435 1791 Node *mem2 = s->_leaf->in(MemNode::Memory);
duke@435 1792 assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
kvn@651 1793 debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
duke@435 1794 mem = mem2;
duke@435 1795 }
duke@435 1796 if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
duke@435 1797 if( mach->in(0) == NULL )
duke@435 1798 mach->set_req(0, s->_leaf->in(0));
duke@435 1799 }
duke@435 1800
duke@435 1801 // Now recursively walk the state tree & add operand list.
duke@435 1802 for( uint i=0; i<2; i++ ) { // binary tree
duke@435 1803 State *newstate = s->_kids[i];
duke@435 1804 if( newstate == NULL ) break; // Might only have 1 child
duke@435 1805 // 'op' is what I am expecting to receive
duke@435 1806 int op;
duke@435 1807 if( i == 0 ) {
duke@435 1808 op = _leftOp[rule];
duke@435 1809 } else {
duke@435 1810 op = _rightOp[rule];
duke@435 1811 }
duke@435 1812 // Operand type to catch childs result
duke@435 1813 // This is what my child will give me.
duke@435 1814 int opnd_class_instance = newstate->_rule[op];
duke@435 1815 // Choose between operand class or not.
duke@435 1816 // This is what I will receive.
duke@435 1817 int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
duke@435 1818 // New rule for child. Chase operand classes to get the actual rule.
duke@435 1819 int newrule = newstate->_rule[catch_op];
duke@435 1820
duke@435 1821 if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
duke@435 1822 // Operand/operandClass
duke@435 1823 // Insert operand into array of operands for this instruction
duke@435 1824 mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
duke@435 1825 ReduceOper( newstate, newrule, mem, mach );
duke@435 1826
duke@435 1827 } else { // Child is internal operand or new instruction
duke@435 1828 if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
duke@435 1829 // internal operand --> call ReduceInst_Interior
duke@435 1830 // Interior of complex instruction. Do nothing but recurse.
duke@435 1831 num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
duke@435 1832 } else {
duke@435 1833 // instruction --> call build operand( ) to catch result
duke@435 1834 // --> ReduceInst( newrule )
duke@435 1835 mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
duke@435 1836 Node *mem1 = (Node*)1;
kvn@651 1837 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1838 mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
kvn@651 1839 debug_only(_mem_node = save_mem_node;)
duke@435 1840 }
duke@435 1841 }
duke@435 1842 assert( mach->_opnds[num_opnds-1], "" );
duke@435 1843 }
duke@435 1844 return num_opnds;
duke@435 1845 }
duke@435 1846
duke@435 1847 // This routine walks the interior of possible complex operands.
duke@435 1848 // At each point we check our children in the match tree:
duke@435 1849 // (1) No children -
duke@435 1850 // We are a leaf; add _leaf field as an input to the MachNode
duke@435 1851 // (2) Child is an internal operand -
duke@435 1852 // Skip over it ( do nothing )
duke@435 1853 // (3) Child is an instruction -
duke@435 1854 // Call ReduceInst recursively and
duke@435 1855 // and instruction as an input to the MachNode
duke@435 1856 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
duke@435 1857 assert( rule < _LAST_MACH_OPER, "called with operand rule" );
duke@435 1858 State *kid = s->_kids[0];
duke@435 1859 assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
duke@435 1860
duke@435 1861 // Leaf? And not subsumed?
duke@435 1862 if( kid == NULL && !_swallowed[rule] ) {
duke@435 1863 mach->add_req( s->_leaf ); // Add leaf pointer
duke@435 1864 return; // Bail out
duke@435 1865 }
duke@435 1866
duke@435 1867 if( s->_leaf->is_Load() ) {
duke@435 1868 assert( mem == (Node*)1, "multiple Memories being matched at once?" );
duke@435 1869 mem = s->_leaf->in(MemNode::Memory);
kvn@651 1870 debug_only(_mem_node = s->_leaf;)
duke@435 1871 }
duke@435 1872 if( s->_leaf->in(0) && s->_leaf->req() > 1) {
duke@435 1873 if( !mach->in(0) )
duke@435 1874 mach->set_req(0,s->_leaf->in(0));
duke@435 1875 else {
duke@435 1876 assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
duke@435 1877 }
duke@435 1878 }
duke@435 1879
duke@435 1880 for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) { // binary tree
duke@435 1881 int newrule;
sla@5237 1882 if( i == 0)
duke@435 1883 newrule = kid->_rule[_leftOp[rule]];
duke@435 1884 else
duke@435 1885 newrule = kid->_rule[_rightOp[rule]];
duke@435 1886
duke@435 1887 if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
duke@435 1888 // Internal operand; recurse but do nothing else
duke@435 1889 ReduceOper( kid, newrule, mem, mach );
duke@435 1890
duke@435 1891 } else { // Child is a new instruction
duke@435 1892 // Reduce the instruction, and add a direct pointer from this
duke@435 1893 // machine instruction to the newly reduced one.
duke@435 1894 Node *mem1 = (Node*)1;
kvn@651 1895 debug_only(Node *save_mem_node = _mem_node;)
duke@435 1896 mach->add_req( ReduceInst( kid, newrule, mem1 ) );
kvn@651 1897 debug_only(_mem_node = save_mem_node;)
duke@435 1898 }
duke@435 1899 }
duke@435 1900 }
duke@435 1901
duke@435 1902
duke@435 1903 // -------------------------------------------------------------------------
duke@435 1904 // Java-Java calling convention
duke@435 1905 // (what you use when Java calls Java)
duke@435 1906
duke@435 1907 //------------------------------find_receiver----------------------------------
duke@435 1908 // For a given signature, return the OptoReg for parameter 0.
duke@435 1909 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
duke@435 1910 VMRegPair regs;
duke@435 1911 BasicType sig_bt = T_OBJECT;
duke@435 1912 calling_convention(&sig_bt, &regs, 1, is_outgoing);
duke@435 1913 // Return argument 0 register. In the LP64 build pointers
duke@435 1914 // take 2 registers, but the VM wants only the 'main' name.
duke@435 1915 return OptoReg::as_OptoReg(regs.first());
duke@435 1916 }
duke@435 1917
iveresov@6378 1918 // This function identifies sub-graphs in which a 'load' node is
iveresov@6378 1919 // input to two different nodes, and such that it can be matched
iveresov@6378 1920 // with BMI instructions like blsi, blsr, etc.
iveresov@6378 1921 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
iveresov@6378 1922 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
iveresov@6378 1923 // refers to the same node.
iveresov@6378 1924 #ifdef X86
iveresov@6378 1925 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
iveresov@6378 1926 // This is a temporary solution until we make DAGs expressible in ADL.
iveresov@6378 1927 template<typename ConType>
iveresov@6378 1928 class FusedPatternMatcher {
iveresov@6378 1929 Node* _op1_node;
iveresov@6378 1930 Node* _mop_node;
iveresov@6378 1931 int _con_op;
iveresov@6378 1932
iveresov@6378 1933 static int match_next(Node* n, int next_op, int next_op_idx) {
iveresov@6378 1934 if (n->in(1) == NULL || n->in(2) == NULL) {
iveresov@6378 1935 return -1;
iveresov@6378 1936 }
iveresov@6378 1937
iveresov@6378 1938 if (next_op_idx == -1) { // n is commutative, try rotations
iveresov@6378 1939 if (n->in(1)->Opcode() == next_op) {
iveresov@6378 1940 return 1;
iveresov@6378 1941 } else if (n->in(2)->Opcode() == next_op) {
iveresov@6378 1942 return 2;
iveresov@6378 1943 }
iveresov@6378 1944 } else {
iveresov@6378 1945 assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
iveresov@6378 1946 if (n->in(next_op_idx)->Opcode() == next_op) {
iveresov@6378 1947 return next_op_idx;
iveresov@6378 1948 }
iveresov@6378 1949 }
iveresov@6378 1950 return -1;
iveresov@6378 1951 }
iveresov@6378 1952 public:
iveresov@6378 1953 FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
iveresov@6378 1954 _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
iveresov@6378 1955
iveresov@6378 1956 bool match(int op1, int op1_op2_idx, // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
iveresov@6378 1957 int op2, int op2_con_idx, // op2 and the index of the op2->con edge, -1 if op2 is commutative
iveresov@6378 1958 typename ConType::NativeType con_value) {
iveresov@6378 1959 if (_op1_node->Opcode() != op1) {
iveresov@6378 1960 return false;
iveresov@6378 1961 }
iveresov@6378 1962 if (_mop_node->outcnt() > 2) {
iveresov@6378 1963 return false;
iveresov@6378 1964 }
iveresov@6378 1965 op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
iveresov@6378 1966 if (op1_op2_idx == -1) {
iveresov@6378 1967 return false;
iveresov@6378 1968 }
iveresov@6378 1969 // Memory operation must be the other edge
iveresov@6378 1970 int op1_mop_idx = (op1_op2_idx & 1) + 1;
iveresov@6378 1971
iveresov@6378 1972 // Check that the mop node is really what we want
iveresov@6378 1973 if (_op1_node->in(op1_mop_idx) == _mop_node) {
iveresov@6378 1974 Node *op2_node = _op1_node->in(op1_op2_idx);
iveresov@6378 1975 if (op2_node->outcnt() > 1) {
iveresov@6378 1976 return false;
iveresov@6378 1977 }
iveresov@6378 1978 assert(op2_node->Opcode() == op2, "Should be");
iveresov@6378 1979 op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
iveresov@6378 1980 if (op2_con_idx == -1) {
iveresov@6378 1981 return false;
iveresov@6378 1982 }
iveresov@6378 1983 // Memory operation must be the other edge
iveresov@6378 1984 int op2_mop_idx = (op2_con_idx & 1) + 1;
iveresov@6378 1985 // Check that the memory operation is the same node
iveresov@6378 1986 if (op2_node->in(op2_mop_idx) == _mop_node) {
iveresov@6378 1987 // Now check the constant
iveresov@6378 1988 const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
iveresov@6378 1989 if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
iveresov@6378 1990 return true;
iveresov@6378 1991 }
iveresov@6378 1992 }
iveresov@6378 1993 }
iveresov@6378 1994 return false;
iveresov@6378 1995 }
iveresov@6378 1996 };
iveresov@6378 1997
iveresov@6378 1998
iveresov@6378 1999 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
iveresov@6378 2000 if (n != NULL && m != NULL) {
iveresov@6378 2001 if (m->Opcode() == Op_LoadI) {
iveresov@6378 2002 FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
iveresov@6378 2003 return bmii.match(Op_AndI, -1, Op_SubI, 1, 0) ||
iveresov@6378 2004 bmii.match(Op_AndI, -1, Op_AddI, -1, -1) ||
iveresov@6378 2005 bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
iveresov@6378 2006 } else if (m->Opcode() == Op_LoadL) {
iveresov@6378 2007 FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
iveresov@6378 2008 return bmil.match(Op_AndL, -1, Op_SubL, 1, 0) ||
iveresov@6378 2009 bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
iveresov@6378 2010 bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
iveresov@6378 2011 }
iveresov@6378 2012 }
iveresov@6378 2013 return false;
iveresov@6378 2014 }
iveresov@6378 2015 #endif // X86
iveresov@6378 2016
duke@435 2017 // A method-klass-holder may be passed in the inline_cache_reg
duke@435 2018 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 2019 // defined in ad_<arch>.cpp
duke@435 2020
duke@435 2021
duke@435 2022 //------------------------------find_shared------------------------------------
duke@435 2023 // Set bits if Node is shared or otherwise a root
duke@435 2024 void Matcher::find_shared( Node *n ) {
zmajo@8068 2025 // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
zmajo@8068 2026 MStack mstack(C->live_nodes() * 2);
kvn@1021 2027 // Mark nodes as address_visited if they are inputs to an address expression
kvn@1021 2028 VectorSet address_visited(Thread::current()->resource_area());
duke@435 2029 mstack.push(n, Visit); // Don't need to pre-visit root node
duke@435 2030 while (mstack.is_nonempty()) {
duke@435 2031 n = mstack.node(); // Leave node on stack
duke@435 2032 Node_State nstate = mstack.state();
kvn@1021 2033 uint nop = n->Opcode();
duke@435 2034 if (nstate == Pre_Visit) {
kvn@1021 2035 if (address_visited.test(n->_idx)) { // Visited in address already?
kvn@1021 2036 // Flag as visited and shared now.
kvn@1021 2037 set_visited(n);
kvn@1021 2038 }
duke@435 2039 if (is_visited(n)) { // Visited already?
duke@435 2040 // Node is shared and has no reason to clone. Flag it as shared.
duke@435 2041 // This causes it to match into a register for the sharing.
duke@435 2042 set_shared(n); // Flag as shared and
duke@435 2043 mstack.pop(); // remove node from stack
duke@435 2044 continue;
duke@435 2045 }
duke@435 2046 nstate = Visit; // Not already visited; so visit now
duke@435 2047 }
duke@435 2048 if (nstate == Visit) {
duke@435 2049 mstack.set_state(Post_Visit);
duke@435 2050 set_visited(n); // Flag as visited now
duke@435 2051 bool mem_op = false;
duke@435 2052
kvn@1021 2053 switch( nop ) { // Handle some opcodes special
duke@435 2054 case Op_Phi: // Treat Phis as shared roots
duke@435 2055 case Op_Parm:
duke@435 2056 case Op_Proj: // All handled specially during matching
kvn@498 2057 case Op_SafePointScalarObject:
duke@435 2058 set_shared(n);
duke@435 2059 set_dontcare(n);
duke@435 2060 break;
duke@435 2061 case Op_If:
duke@435 2062 case Op_CountedLoopEnd:
duke@435 2063 mstack.set_state(Alt_Post_Visit); // Alternative way
duke@435 2064 // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
duke@435 2065 // with matching cmp/branch in 1 instruction. The Matcher needs the
duke@435 2066 // Bool and CmpX side-by-side, because it can only get at constants
duke@435 2067 // that are at the leaves of Match trees, and the Bool's condition acts
duke@435 2068 // as a constant here.
duke@435 2069 mstack.push(n->in(1), Visit); // Clone the Bool
duke@435 2070 mstack.push(n->in(0), Pre_Visit); // Visit control input
duke@435 2071 continue; // while (mstack.is_nonempty())
duke@435 2072 case Op_ConvI2D: // These forms efficiently match with a prior
duke@435 2073 case Op_ConvI2F: // Load but not a following Store
duke@435 2074 if( n->in(1)->is_Load() && // Prior load
duke@435 2075 n->outcnt() == 1 && // Not already shared
duke@435 2076 n->unique_out()->is_Store() ) // Following store
duke@435 2077 set_shared(n); // Force it to be a root
duke@435 2078 break;
duke@435 2079 case Op_ReverseBytesI:
duke@435 2080 case Op_ReverseBytesL:
duke@435 2081 if( n->in(1)->is_Load() && // Prior load
duke@435 2082 n->outcnt() == 1 ) // Not already shared
duke@435 2083 set_shared(n); // Force it to be a root
duke@435 2084 break;
duke@435 2085 case Op_BoxLock: // Cant match until we get stack-regs in ADLC
duke@435 2086 case Op_IfFalse:
duke@435 2087 case Op_IfTrue:
duke@435 2088 case Op_MachProj:
duke@435 2089 case Op_MergeMem:
duke@435 2090 case Op_Catch:
duke@435 2091 case Op_CatchProj:
duke@435 2092 case Op_CProj:
duke@435 2093 case Op_JumpProj:
duke@435 2094 case Op_JProj:
duke@435 2095 case Op_NeverBranch:
duke@435 2096 set_dontcare(n);
duke@435 2097 break;
duke@435 2098 case Op_Jump:
kvn@3260 2099 mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
duke@435 2100 mstack.push(n->in(0), Pre_Visit); // Visit Control input
duke@435 2101 continue; // while (mstack.is_nonempty())
duke@435 2102 case Op_StrComp:
cfang@1116 2103 case Op_StrEquals:
cfang@1116 2104 case Op_StrIndexOf:
rasbold@604 2105 case Op_AryEq:
kvn@4479 2106 case Op_EncodeISOArray:
duke@435 2107 set_shared(n); // Force result into register (it will be anyways)
duke@435 2108 break;
duke@435 2109 case Op_ConP: { // Convert pointers above the centerline to NUL
duke@435 2110 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
duke@435 2111 const TypePtr* tp = tn->type()->is_ptr();
duke@435 2112 if (tp->_ptr == TypePtr::AnyNull) {
duke@435 2113 tn->set_type(TypePtr::NULL_PTR);
duke@435 2114 }
duke@435 2115 break;
duke@435 2116 }
kvn@598 2117 case Op_ConN: { // Convert narrow pointers above the centerline to NUL
kvn@598 2118 TypeNode *tn = n->as_Type(); // Constants derive from type nodes
kvn@656 2119 const TypePtr* tp = tn->type()->make_ptr();
kvn@656 2120 if (tp && tp->_ptr == TypePtr::AnyNull) {
kvn@598 2121 tn->set_type(TypeNarrowOop::NULL_PTR);
kvn@598 2122 }
kvn@598 2123 break;
kvn@598 2124 }
duke@435 2125 case Op_Binary: // These are introduced in the Post_Visit state.
duke@435 2126 ShouldNotReachHere();
duke@435 2127 break;
duke@435 2128 case Op_ClearArray:
duke@435 2129 case Op_SafePoint:
duke@435 2130 mem_op = true;
duke@435 2131 break;
kvn@1496 2132 default:
kvn@1496 2133 if( n->is_Store() ) {
kvn@1496 2134 // Do match stores, despite no ideal reg
kvn@1496 2135 mem_op = true;
kvn@1496 2136 break;
kvn@1496 2137 }
kvn@1496 2138 if( n->is_Mem() ) { // Loads and LoadStores
kvn@1496 2139 mem_op = true;
kvn@1496 2140 // Loads must be root of match tree due to prior load conflict
kvn@1496 2141 if( C->subsume_loads() == false )
kvn@1496 2142 set_shared(n);
duke@435 2143 }
duke@435 2144 // Fall into default case
duke@435 2145 if( !n->ideal_reg() )
duke@435 2146 set_dontcare(n); // Unmatchable Nodes
duke@435 2147 } // end_switch
duke@435 2148
duke@435 2149 for(int i = n->req() - 1; i >= 0; --i) { // For my children
duke@435 2150 Node *m = n->in(i); // Get ith input
duke@435 2151 if (m == NULL) continue; // Ignore NULLs
duke@435 2152 uint mop = m->Opcode();
duke@435 2153
duke@435 2154 // Must clone all producers of flags, or we will not match correctly.
duke@435 2155 // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
duke@435 2156 // then it will match into an ideal Op_RegFlags. Alas, the fp-flags
duke@435 2157 // are also there, so we may match a float-branch to int-flags and
duke@435 2158 // expect the allocator to haul the flags from the int-side to the
duke@435 2159 // fp-side. No can do.
duke@435 2160 if( _must_clone[mop] ) {
duke@435 2161 mstack.push(m, Visit);
duke@435 2162 continue; // for(int i = ...)
duke@435 2163 }
duke@435 2164
roland@4159 2165 if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
kvn@1496 2166 // Bases used in addresses must be shared but since
kvn@1496 2167 // they are shared through a DecodeN they may appear
kvn@1496 2168 // to have a single use so force sharing here.
kvn@1496 2169 set_shared(m->in(AddPNode::Base)->in(1));
kvn@1496 2170 }
kvn@1496 2171
iveresov@6378 2172 // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
iveresov@6378 2173 #ifdef X86
iveresov@6378 2174 if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
iveresov@6378 2175 mstack.push(m, Visit);
iveresov@6378 2176 continue;
iveresov@6378 2177 }
iveresov@6378 2178 #endif
iveresov@6378 2179
kvn@1496 2180 // Clone addressing expressions as they are "free" in memory access instructions
duke@435 2181 if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
kvn@1021 2182 // Some inputs for address expression are not put on stack
kvn@1021 2183 // to avoid marking them as shared and forcing them into register
kvn@1021 2184 // if they are used only in address expressions.
kvn@1021 2185 // But they should be marked as shared if there are other uses
kvn@1021 2186 // besides address expressions.
kvn@1021 2187
duke@435 2188 Node *off = m->in(AddPNode::Offset);
kvn@1021 2189 if( off->is_Con() &&
kvn@1021 2190 // When there are other uses besides address expressions
kvn@1021 2191 // put it on stack and mark as shared.
kvn@1021 2192 !is_visited(m) ) {
kvn@1021 2193 address_visited.test_set(m->_idx); // Flag as address_visited
duke@435 2194 Node *adr = m->in(AddPNode::Address);
duke@435 2195
duke@435 2196 // Intel, ARM and friends can handle 2 adds in addressing mode
kvn@603 2197 if( clone_shift_expressions && adr->is_AddP() &&
duke@435 2198 // AtomicAdd is not an addressing expression.
duke@435 2199 // Cheap to find it by looking for screwy base.
kvn@1021 2200 !adr->in(AddPNode::Base)->is_top() &&
kvn@1021 2201 // Are there other uses besides address expressions?
kvn@1021 2202 !is_visited(adr) ) {
kvn@1021 2203 address_visited.set(adr->_idx); // Flag as address_visited
duke@435 2204 Node *shift = adr->in(AddPNode::Offset);
duke@435 2205 // Check for shift by small constant as well
duke@435 2206 if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
kvn@1021 2207 shift->in(2)->get_int() <= 3 &&
kvn@1021 2208 // Are there other uses besides address expressions?
kvn@1021 2209 !is_visited(shift) ) {
kvn@1021 2210 address_visited.set(shift->_idx); // Flag as address_visited
duke@435 2211 mstack.push(shift->in(2), Visit);
kvn@1021 2212 Node *conv = shift->in(1);
duke@435 2213 #ifdef _LP64
duke@435 2214 // Allow Matcher to match the rule which bypass
duke@435 2215 // ConvI2L operation for an array index on LP64
duke@435 2216 // if the index value is positive.
kvn@1021 2217 if( conv->Opcode() == Op_ConvI2L &&
kvn@1021 2218 conv->as_Type()->type()->is_long()->_lo >= 0 &&
kvn@1021 2219 // Are there other uses besides address expressions?
kvn@1021 2220 !is_visited(conv) ) {
kvn@1021 2221 address_visited.set(conv->_idx); // Flag as address_visited
kvn@1021 2222 mstack.push(conv->in(1), Pre_Visit);
duke@435 2223 } else
duke@435 2224 #endif
kvn@1021 2225 mstack.push(conv, Pre_Visit);
duke@435 2226 } else {
duke@435 2227 mstack.push(shift, Pre_Visit);
duke@435 2228 }
duke@435 2229 mstack.push(adr->in(AddPNode::Address), Pre_Visit);
duke@435 2230 mstack.push(adr->in(AddPNode::Base), Pre_Visit);
duke@435 2231 } else { // Sparc, Alpha, PPC and friends
duke@435 2232 mstack.push(adr, Pre_Visit);
duke@435 2233 }
duke@435 2234
duke@435 2235 // Clone X+offset as it also folds into most addressing expressions
duke@435 2236 mstack.push(off, Visit);
duke@435 2237 mstack.push(m->in(AddPNode::Base), Pre_Visit);
duke@435 2238 continue; // for(int i = ...)
duke@435 2239 } // if( off->is_Con() )
duke@435 2240 } // if( mem_op &&
duke@435 2241 mstack.push(m, Pre_Visit);
duke@435 2242 } // for(int i = ...)
duke@435 2243 }
duke@435 2244 else if (nstate == Alt_Post_Visit) {
duke@435 2245 mstack.pop(); // Remove node from stack
duke@435 2246 // We cannot remove the Cmp input from the Bool here, as the Bool may be
duke@435 2247 // shared and all users of the Bool need to move the Cmp in parallel.
duke@435 2248 // This leaves both the Bool and the If pointing at the Cmp. To
duke@435 2249 // prevent the Matcher from trying to Match the Cmp along both paths
duke@435 2250 // BoolNode::match_edge always returns a zero.
duke@435 2251
duke@435 2252 // We reorder the Op_If in a pre-order manner, so we can visit without
twisti@1040 2253 // accidentally sharing the Cmp (the Bool and the If make 2 users).
duke@435 2254 n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
duke@435 2255 }
duke@435 2256 else if (nstate == Post_Visit) {
duke@435 2257 mstack.pop(); // Remove node from stack
duke@435 2258
duke@435 2259 // Now hack a few special opcodes
duke@435 2260 switch( n->Opcode() ) { // Handle some opcodes special
duke@435 2261 case Op_StorePConditional:
kvn@855 2262 case Op_StoreIConditional:
duke@435 2263 case Op_StoreLConditional:
duke@435 2264 case Op_CompareAndSwapI:
duke@435 2265 case Op_CompareAndSwapL:
coleenp@548 2266 case Op_CompareAndSwapP:
coleenp@548 2267 case Op_CompareAndSwapN: { // Convert trinary to binary-tree
duke@435 2268 Node *newval = n->in(MemNode::ValueIn );
roland@4106 2269 Node *oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
kvn@4115 2270 Node *pair = new (C) BinaryNode( oldval, newval );
duke@435 2271 n->set_req(MemNode::ValueIn,pair);
roland@4106 2272 n->del_req(LoadStoreConditionalNode::ExpectedIn);
duke@435 2273 break;
duke@435 2274 }
duke@435 2275 case Op_CMoveD: // Convert trinary to binary-tree
duke@435 2276 case Op_CMoveF:
duke@435 2277 case Op_CMoveI:
duke@435 2278 case Op_CMoveL:
kvn@599 2279 case Op_CMoveN:
duke@435 2280 case Op_CMoveP: {
duke@435 2281 // Restructure into a binary tree for Matching. It's possible that
duke@435 2282 // we could move this code up next to the graph reshaping for IfNodes
duke@435 2283 // or vice-versa, but I do not want to debug this for Ladybird.
duke@435 2284 // 10/2/2000 CNC.
kvn@4115 2285 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
duke@435 2286 n->set_req(1,pair1);
kvn@4115 2287 Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
duke@435 2288 n->set_req(2,pair2);
duke@435 2289 n->del_req(3);
duke@435 2290 break;
duke@435 2291 }
kvn@2877 2292 case Op_LoopLimit: {
kvn@4115 2293 Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
kvn@2877 2294 n->set_req(1,pair1);
kvn@2877 2295 n->set_req(2,n->in(3));
kvn@2877 2296 n->del_req(3);
kvn@2877 2297 break;
kvn@2877 2298 }
kvn@1421 2299 case Op_StrEquals: {
kvn@4115 2300 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2301 n->set_req(2,pair1);
kvn@1421 2302 n->set_req(3,n->in(4));
kvn@1421 2303 n->del_req(4);
kvn@1421 2304 break;
kvn@1421 2305 }
kvn@1421 2306 case Op_StrComp:
kvn@1421 2307 case Op_StrIndexOf: {
kvn@4115 2308 Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
kvn@1421 2309 n->set_req(2,pair1);
kvn@4115 2310 Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
kvn@1421 2311 n->set_req(3,pair2);
kvn@1421 2312 n->del_req(5);
kvn@1421 2313 n->del_req(4);
kvn@1421 2314 break;
kvn@1421 2315 }
kvn@4479 2316 case Op_EncodeISOArray: {
kvn@4479 2317 // Restructure into a binary tree for Matching.
kvn@4479 2318 Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
kvn@4479 2319 n->set_req(3, pair);
kvn@4479 2320 n->del_req(4);
kvn@4479 2321 break;
kvn@4479 2322 }
duke@435 2323 default:
duke@435 2324 break;
duke@435 2325 }
duke@435 2326 }
duke@435 2327 else {
duke@435 2328 ShouldNotReachHere();
duke@435 2329 }
duke@435 2330 } // end of while (mstack.is_nonempty())
duke@435 2331 }
duke@435 2332
duke@435 2333 #ifdef ASSERT
duke@435 2334 // machine-independent root to machine-dependent root
duke@435 2335 void Matcher::dump_old2new_map() {
duke@435 2336 _old2new_map.dump();
duke@435 2337 }
duke@435 2338 #endif
duke@435 2339
duke@435 2340 //---------------------------collect_null_checks-------------------------------
duke@435 2341 // Find null checks in the ideal graph; write a machine-specific node for
duke@435 2342 // it. Used by later implicit-null-check handling. Actually collects
duke@435 2343 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
duke@435 2344 // value being tested.
kvn@803 2345 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
duke@435 2346 Node *iff = proj->in(0);
duke@435 2347 if( iff->Opcode() == Op_If ) {
duke@435 2348 // During matching If's have Bool & Cmp side-by-side
duke@435 2349 BoolNode *b = iff->in(1)->as_Bool();
duke@435 2350 Node *cmp = iff->in(2);
coleenp@548 2351 int opc = cmp->Opcode();
coleenp@548 2352 if (opc != Op_CmpP && opc != Op_CmpN) return;
duke@435 2353
coleenp@548 2354 const Type* ct = cmp->in(2)->bottom_type();
coleenp@548 2355 if (ct == TypePtr::NULL_PTR ||
coleenp@548 2356 (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
coleenp@548 2357
kvn@803 2358 bool push_it = false;
coleenp@548 2359 if( proj->Opcode() == Op_IfTrue ) {
coleenp@548 2360 extern int all_null_checks_found;
coleenp@548 2361 all_null_checks_found++;
coleenp@548 2362 if( b->_test._test == BoolTest::ne ) {
kvn@803 2363 push_it = true;
coleenp@548 2364 }
coleenp@548 2365 } else {
coleenp@548 2366 assert( proj->Opcode() == Op_IfFalse, "" );
coleenp@548 2367 if( b->_test._test == BoolTest::eq ) {
kvn@803 2368 push_it = true;
duke@435 2369 }
duke@435 2370 }
kvn@803 2371 if( push_it ) {
kvn@803 2372 _null_check_tests.push(proj);
kvn@803 2373 Node* val = cmp->in(1);
kvn@803 2374 #ifdef _LP64
kvn@1930 2375 if (val->bottom_type()->isa_narrowoop() &&
kvn@1930 2376 !Matcher::narrow_oop_use_complex_address()) {
kvn@803 2377 //
kvn@803 2378 // Look for DecodeN node which should be pinned to orig_proj.
kvn@803 2379 // On platforms (Sparc) which can not handle 2 adds
kvn@803 2380 // in addressing mode we have to keep a DecodeN node and
kvn@803 2381 // use it to do implicit NULL check in address.
kvn@803 2382 //
kvn@803 2383 // DecodeN node was pinned to non-null path (orig_proj) during
kvn@803 2384 // CastPP transformation in final_graph_reshaping_impl().
kvn@803 2385 //
kvn@803 2386 uint cnt = orig_proj->outcnt();
kvn@803 2387 for (uint i = 0; i < orig_proj->outcnt(); i++) {
kvn@803 2388 Node* d = orig_proj->raw_out(i);
kvn@803 2389 if (d->is_DecodeN() && d->in(1) == val) {
kvn@803 2390 val = d;
kvn@803 2391 val->set_req(0, NULL); // Unpin now.
kvn@1930 2392 // Mark this as special case to distinguish from
kvn@1930 2393 // a regular case: CmpP(DecodeN, NULL).
kvn@1930 2394 val = (Node*)(((intptr_t)val) | 1);
kvn@803 2395 break;
kvn@803 2396 }
kvn@803 2397 }
kvn@803 2398 }
kvn@803 2399 #endif
kvn@803 2400 _null_check_tests.push(val);
kvn@803 2401 }
duke@435 2402 }
duke@435 2403 }
duke@435 2404 }
duke@435 2405
duke@435 2406 //---------------------------validate_null_checks------------------------------
duke@435 2407 // Its possible that the value being NULL checked is not the root of a match
duke@435 2408 // tree. If so, I cannot use the value in an implicit null check.
duke@435 2409 void Matcher::validate_null_checks( ) {
duke@435 2410 uint cnt = _null_check_tests.size();
duke@435 2411 for( uint i=0; i < cnt; i+=2 ) {
duke@435 2412 Node *test = _null_check_tests[i];
duke@435 2413 Node *val = _null_check_tests[i+1];
kvn@1930 2414 bool is_decoden = ((intptr_t)val) & 1;
kvn@1930 2415 val = (Node*)(((intptr_t)val) & ~1);
duke@435 2416 if (has_new_node(val)) {
kvn@1930 2417 Node* new_val = new_node(val);
kvn@1930 2418 if (is_decoden) {
roland@4159 2419 assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
kvn@1930 2420 // Note: new_val may have a control edge if
kvn@1930 2421 // the original ideal node DecodeN was matched before
kvn@1930 2422 // it was unpinned in Matcher::collect_null_checks().
kvn@1930 2423 // Unpin the mach node and mark it.
kvn@1930 2424 new_val->set_req(0, NULL);
kvn@1930 2425 new_val = (Node*)(((intptr_t)new_val) | 1);
kvn@1930 2426 }
duke@435 2427 // Is a match-tree root, so replace with the matched value
kvn@1930 2428 _null_check_tests.map(i+1, new_val);
duke@435 2429 } else {
duke@435 2430 // Yank from candidate list
duke@435 2431 _null_check_tests.map(i+1,_null_check_tests[--cnt]);
duke@435 2432 _null_check_tests.map(i,_null_check_tests[--cnt]);
duke@435 2433 _null_check_tests.pop();
duke@435 2434 _null_check_tests.pop();
duke@435 2435 i-=2;
duke@435 2436 }
duke@435 2437 }
duke@435 2438 }
duke@435 2439
duke@435 2440 // Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
duke@435 2441 // atomic instruction acting as a store_load barrier without any
duke@435 2442 // intervening volatile load, and thus we don't need a barrier here.
duke@435 2443 // We retain the Node to act as a compiler ordering barrier.
kvn@5437 2444 bool Matcher::post_store_load_barrier(const Node* vmb) {
kvn@5437 2445 Compile* C = Compile::current();
kvn@5437 2446 assert(vmb->is_MemBar(), "");
goetz@6489 2447 assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
kvn@5437 2448 const MemBarNode* membar = vmb->as_MemBar();
duke@435 2449
kvn@5437 2450 // Get the Ideal Proj node, ctrl, that can be used to iterate forward
kvn@5437 2451 Node* ctrl = NULL;
kvn@5437 2452 for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
kvn@5437 2453 Node* p = membar->fast_out(i);
kvn@5437 2454 assert(p->is_Proj(), "only projections here");
kvn@5437 2455 if ((p->as_Proj()->_con == TypeFunc::Control) &&
kvn@5437 2456 !C->node_arena()->contains(p)) { // Unmatched old-space only
kvn@5437 2457 ctrl = p;
duke@435 2458 break;
kvn@5437 2459 }
duke@435 2460 }
kvn@5437 2461 assert((ctrl != NULL), "missing control projection");
duke@435 2462
kvn@5437 2463 for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
duke@435 2464 Node *x = ctrl->fast_out(j);
duke@435 2465 int xop = x->Opcode();
duke@435 2466
duke@435 2467 // We don't need current barrier if we see another or a lock
duke@435 2468 // before seeing volatile load.
duke@435 2469 //
duke@435 2470 // Op_Fastunlock previously appeared in the Op_* list below.
duke@435 2471 // With the advent of 1-0 lock operations we're no longer guaranteed
duke@435 2472 // that a monitor exit operation contains a serializing instruction.
duke@435 2473
duke@435 2474 if (xop == Op_MemBarVolatile ||
duke@435 2475 xop == Op_CompareAndSwapL ||
duke@435 2476 xop == Op_CompareAndSwapP ||
coleenp@548 2477 xop == Op_CompareAndSwapN ||
kvn@5437 2478 xop == Op_CompareAndSwapI) {
duke@435 2479 return true;
kvn@5437 2480 }
kvn@5437 2481
kvn@5437 2482 // Op_FastLock previously appeared in the Op_* list above.
kvn@5437 2483 // With biased locking we're no longer guaranteed that a monitor
kvn@5437 2484 // enter operation contains a serializing instruction.
kvn@5437 2485 if ((xop == Op_FastLock) && !UseBiasedLocking) {
kvn@5437 2486 return true;
kvn@5437 2487 }
duke@435 2488
duke@435 2489 if (x->is_MemBar()) {
duke@435 2490 // We must retain this membar if there is an upcoming volatile
kvn@5437 2491 // load, which will be followed by acquire membar.
goetz@6489 2492 if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
duke@435 2493 return false;
kvn@5437 2494 } else {
kvn@5437 2495 // For other kinds of barriers, check by pretending we
kvn@5437 2496 // are them, and seeing if we can be removed.
kvn@5437 2497 return post_store_load_barrier(x->as_MemBar());
kvn@5437 2498 }
duke@435 2499 }
duke@435 2500
kvn@5437 2501 // probably not necessary to check for these
kvn@5437 2502 if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
kvn@5437 2503 return false;
duke@435 2504 }
duke@435 2505 }
duke@435 2506 return false;
duke@435 2507 }
duke@435 2508
goetz@6490 2509 // Check whether node n is a branch to an uncommon trap that we could
goetz@6490 2510 // optimize as test with very high branch costs in case of going to
goetz@6490 2511 // the uncommon trap. The code must be able to be recompiled to use
goetz@6490 2512 // a cheaper test.
goetz@6490 2513 bool Matcher::branches_to_uncommon_trap(const Node *n) {
goetz@6490 2514 // Don't do it for natives, adapters, or runtime stubs
goetz@6490 2515 Compile *C = Compile::current();
goetz@6490 2516 if (!C->is_method_compilation()) return false;
goetz@6490 2517
goetz@6490 2518 assert(n->is_If(), "You should only call this on if nodes.");
goetz@6490 2519 IfNode *ifn = n->as_If();
goetz@6490 2520
goetz@6490 2521 Node *ifFalse = NULL;
goetz@6490 2522 for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
goetz@6490 2523 if (ifn->fast_out(i)->is_IfFalse()) {
goetz@6490 2524 ifFalse = ifn->fast_out(i);
goetz@6490 2525 break;
goetz@6490 2526 }
goetz@6490 2527 }
goetz@6490 2528 assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
goetz@6490 2529
goetz@6490 2530 Node *reg = ifFalse;
goetz@6490 2531 int cnt = 4; // We must protect against cycles. Limit to 4 iterations.
goetz@6490 2532 // Alternatively use visited set? Seems too expensive.
goetz@6490 2533 while (reg != NULL && cnt > 0) {
goetz@6490 2534 CallNode *call = NULL;
goetz@6490 2535 RegionNode *nxt_reg = NULL;
goetz@6490 2536 for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
goetz@6490 2537 Node *o = reg->fast_out(i);
goetz@6490 2538 if (o->is_Call()) {
goetz@6490 2539 call = o->as_Call();
goetz@6490 2540 }
goetz@6490 2541 if (o->is_Region()) {
goetz@6490 2542 nxt_reg = o->as_Region();
goetz@6490 2543 }
goetz@6490 2544 }
goetz@6490 2545
goetz@6490 2546 if (call &&
goetz@6490 2547 call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
goetz@6490 2548 const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
goetz@6490 2549 if (trtype->isa_int() && trtype->is_int()->is_con()) {
goetz@6490 2550 jint tr_con = trtype->is_int()->get_con();
goetz@6490 2551 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
goetz@6490 2552 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
goetz@6490 2553 assert((int)reason < (int)BitsPerInt, "recode bit map");
goetz@6490 2554
goetz@6490 2555 if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
goetz@6490 2556 && action != Deoptimization::Action_none) {
goetz@6490 2557 // This uncommon trap is sure to recompile, eventually.
goetz@6490 2558 // When that happens, C->too_many_traps will prevent
goetz@6490 2559 // this transformation from happening again.
goetz@6490 2560 return true;
goetz@6490 2561 }
goetz@6490 2562 }
goetz@6490 2563 }
goetz@6490 2564
goetz@6490 2565 reg = nxt_reg;
goetz@6490 2566 cnt--;
goetz@6490 2567 }
goetz@6490 2568
goetz@6490 2569 return false;
goetz@6490 2570 }
goetz@6490 2571
duke@435 2572 //=============================================================================
duke@435 2573 //---------------------------State---------------------------------------------
duke@435 2574 State::State(void) {
duke@435 2575 #ifdef ASSERT
duke@435 2576 _id = 0;
duke@435 2577 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2578 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2579 //memset(_cost, -1, sizeof(_cost));
duke@435 2580 //memset(_rule, -1, sizeof(_rule));
duke@435 2581 #endif
duke@435 2582 memset(_valid, 0, sizeof(_valid));
duke@435 2583 }
duke@435 2584
duke@435 2585 #ifdef ASSERT
duke@435 2586 State::~State() {
duke@435 2587 _id = 99;
duke@435 2588 _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
duke@435 2589 _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
duke@435 2590 memset(_cost, -3, sizeof(_cost));
duke@435 2591 memset(_rule, -3, sizeof(_rule));
duke@435 2592 }
duke@435 2593 #endif
duke@435 2594
duke@435 2595 #ifndef PRODUCT
duke@435 2596 //---------------------------dump----------------------------------------------
duke@435 2597 void State::dump() {
duke@435 2598 tty->print("\n");
duke@435 2599 dump(0);
duke@435 2600 }
duke@435 2601
duke@435 2602 void State::dump(int depth) {
duke@435 2603 for( int j = 0; j < depth; j++ )
duke@435 2604 tty->print(" ");
duke@435 2605 tty->print("--N: ");
duke@435 2606 _leaf->dump();
duke@435 2607 uint i;
duke@435 2608 for( i = 0; i < _LAST_MACH_OPER; i++ )
duke@435 2609 // Check for valid entry
duke@435 2610 if( valid(i) ) {
duke@435 2611 for( int j = 0; j < depth; j++ )
duke@435 2612 tty->print(" ");
duke@435 2613 assert(_cost[i] != max_juint, "cost must be a valid value");
duke@435 2614 assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
duke@435 2615 tty->print_cr("%s %d %s",
duke@435 2616 ruleName[i], _cost[i], ruleName[_rule[i]] );
duke@435 2617 }
drchase@6680 2618 tty->cr();
duke@435 2619
duke@435 2620 for( i=0; i<2; i++ )
duke@435 2621 if( _kids[i] )
duke@435 2622 _kids[i]->dump(depth+1);
duke@435 2623 }
duke@435 2624 #endif

mercurial