src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3787
6759698e3140
child 4037
da91efe96a93
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
never@3156 50 #ifdef TARGET_OS_FAMILY_bsd
never@3156 51 # include "thread_bsd.inline.hpp"
never@3156 52 #endif
stefank@2314 53 #ifdef COMPILER2
stefank@2314 54 #include "opto/runtime.hpp"
stefank@2314 55 #endif
duke@435 56
duke@435 57 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 58 // For a more detailed description of the stub routine structure
duke@435 59 // see the comment in stubRoutines.hpp
duke@435 60
duke@435 61 #define __ _masm->
coleenp@548 62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 63 #define a__ ((Assembler*)_masm)->
duke@435 64
duke@435 65 #ifdef PRODUCT
duke@435 66 #define BLOCK_COMMENT(str) /* nothing */
duke@435 67 #else
duke@435 68 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 69 #endif
duke@435 70
duke@435 71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 72 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 73
duke@435 74 // Stub Code definitions
duke@435 75
duke@435 76 static address handle_unsafe_access() {
duke@435 77 JavaThread* thread = JavaThread::current();
duke@435 78 address pc = thread->saved_exception_pc();
duke@435 79 // pc is the instruction which we must emulate
duke@435 80 // doing a no-op is fine: return garbage from the load
duke@435 81 // therefore, compute npc
duke@435 82 address npc = Assembler::locate_next_instruction(pc);
duke@435 83
duke@435 84 // request an async exception
duke@435 85 thread->set_pending_unsafe_access_error();
duke@435 86
duke@435 87 // return address of next instruction to execute
duke@435 88 return npc;
duke@435 89 }
duke@435 90
duke@435 91 class StubGenerator: public StubCodeGenerator {
duke@435 92 private:
duke@435 93
duke@435 94 #ifdef PRODUCT
duke@435 95 #define inc_counter_np(counter) (0)
duke@435 96 #else
duke@435 97 void inc_counter_np_(int& counter) {
never@3314 98 // This can destroy rscratch1 if counter is far from the code cache
duke@435 99 __ incrementl(ExternalAddress((address)&counter));
duke@435 100 }
duke@435 101 #define inc_counter_np(counter) \
duke@435 102 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 103 inc_counter_np_(counter);
duke@435 104 #endif
duke@435 105
duke@435 106 // Call stubs are used to call Java from C
duke@435 107 //
duke@435 108 // Linux Arguments:
duke@435 109 // c_rarg0: call wrapper address address
duke@435 110 // c_rarg1: result address
duke@435 111 // c_rarg2: result type BasicType
duke@435 112 // c_rarg3: method methodOop
duke@435 113 // c_rarg4: (interpreter) entry point address
duke@435 114 // c_rarg5: parameters intptr_t*
duke@435 115 // 16(rbp): parameter size (in words) int
duke@435 116 // 24(rbp): thread Thread*
duke@435 117 //
duke@435 118 // [ return_from_Java ] <--- rsp
duke@435 119 // [ argument word n ]
duke@435 120 // ...
duke@435 121 // -12 [ argument word 1 ]
duke@435 122 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 123 // -10 [ saved r14 ]
duke@435 124 // -9 [ saved r13 ]
duke@435 125 // -8 [ saved r12 ]
duke@435 126 // -7 [ saved rbx ]
duke@435 127 // -6 [ call wrapper ]
duke@435 128 // -5 [ result ]
duke@435 129 // -4 [ result type ]
duke@435 130 // -3 [ method ]
duke@435 131 // -2 [ entry point ]
duke@435 132 // -1 [ parameters ]
duke@435 133 // 0 [ saved rbp ] <--- rbp
duke@435 134 // 1 [ return address ]
duke@435 135 // 2 [ parameter size ]
duke@435 136 // 3 [ thread ]
duke@435 137 //
duke@435 138 // Windows Arguments:
duke@435 139 // c_rarg0: call wrapper address address
duke@435 140 // c_rarg1: result address
duke@435 141 // c_rarg2: result type BasicType
duke@435 142 // c_rarg3: method methodOop
duke@435 143 // 48(rbp): (interpreter) entry point address
duke@435 144 // 56(rbp): parameters intptr_t*
duke@435 145 // 64(rbp): parameter size (in words) int
duke@435 146 // 72(rbp): thread Thread*
duke@435 147 //
duke@435 148 // [ return_from_Java ] <--- rsp
duke@435 149 // [ argument word n ]
duke@435 150 // ...
iveresov@2689 151 // -28 [ argument word 1 ]
iveresov@2689 152 // -27 [ saved xmm15 ] <--- rsp_after_call
iveresov@2689 153 // [ saved xmm7-xmm14 ]
iveresov@2689 154 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
iveresov@2689 155 // -7 [ saved r15 ]
duke@435 156 // -6 [ saved r14 ]
duke@435 157 // -5 [ saved r13 ]
duke@435 158 // -4 [ saved r12 ]
duke@435 159 // -3 [ saved rdi ]
duke@435 160 // -2 [ saved rsi ]
duke@435 161 // -1 [ saved rbx ]
duke@435 162 // 0 [ saved rbp ] <--- rbp
duke@435 163 // 1 [ return address ]
duke@435 164 // 2 [ call wrapper ]
duke@435 165 // 3 [ result ]
duke@435 166 // 4 [ result type ]
duke@435 167 // 5 [ method ]
duke@435 168 // 6 [ entry point ]
duke@435 169 // 7 [ parameters ]
duke@435 170 // 8 [ parameter size ]
duke@435 171 // 9 [ thread ]
duke@435 172 //
duke@435 173 // Windows reserves the callers stack space for arguments 1-4.
duke@435 174 // We spill c_rarg0-c_rarg3 to this space.
duke@435 175
duke@435 176 // Call stub stack layout word offsets from rbp
duke@435 177 enum call_stub_layout {
duke@435 178 #ifdef _WIN64
iveresov@2689 179 xmm_save_first = 6, // save from xmm6
iveresov@2689 180 xmm_save_last = 15, // to xmm15
iveresov@2689 181 xmm_save_base = -9,
iveresov@2689 182 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
iveresov@2689 183 r15_off = -7,
duke@435 184 r14_off = -6,
duke@435 185 r13_off = -5,
duke@435 186 r12_off = -4,
duke@435 187 rdi_off = -3,
duke@435 188 rsi_off = -2,
duke@435 189 rbx_off = -1,
duke@435 190 rbp_off = 0,
duke@435 191 retaddr_off = 1,
duke@435 192 call_wrapper_off = 2,
duke@435 193 result_off = 3,
duke@435 194 result_type_off = 4,
duke@435 195 method_off = 5,
duke@435 196 entry_point_off = 6,
duke@435 197 parameters_off = 7,
duke@435 198 parameter_size_off = 8,
duke@435 199 thread_off = 9
duke@435 200 #else
duke@435 201 rsp_after_call_off = -12,
duke@435 202 mxcsr_off = rsp_after_call_off,
duke@435 203 r15_off = -11,
duke@435 204 r14_off = -10,
duke@435 205 r13_off = -9,
duke@435 206 r12_off = -8,
duke@435 207 rbx_off = -7,
duke@435 208 call_wrapper_off = -6,
duke@435 209 result_off = -5,
duke@435 210 result_type_off = -4,
duke@435 211 method_off = -3,
duke@435 212 entry_point_off = -2,
duke@435 213 parameters_off = -1,
duke@435 214 rbp_off = 0,
duke@435 215 retaddr_off = 1,
duke@435 216 parameter_size_off = 2,
duke@435 217 thread_off = 3
duke@435 218 #endif
duke@435 219 };
duke@435 220
iveresov@2689 221 #ifdef _WIN64
iveresov@2689 222 Address xmm_save(int reg) {
iveresov@2689 223 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
iveresov@2689 224 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
iveresov@2689 225 }
iveresov@2689 226 #endif
iveresov@2689 227
duke@435 228 address generate_call_stub(address& return_address) {
duke@435 229 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 230 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 231 "adjust this code");
duke@435 232 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 233 address start = __ pc();
duke@435 234
duke@435 235 // same as in generate_catch_exception()!
duke@435 236 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 237
duke@435 238 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 239 const Address result (rbp, result_off * wordSize);
duke@435 240 const Address result_type (rbp, result_type_off * wordSize);
duke@435 241 const Address method (rbp, method_off * wordSize);
duke@435 242 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 243 const Address parameters (rbp, parameters_off * wordSize);
duke@435 244 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 245
duke@435 246 // same as in generate_catch_exception()!
duke@435 247 const Address thread (rbp, thread_off * wordSize);
duke@435 248
duke@435 249 const Address r15_save(rbp, r15_off * wordSize);
duke@435 250 const Address r14_save(rbp, r14_off * wordSize);
duke@435 251 const Address r13_save(rbp, r13_off * wordSize);
duke@435 252 const Address r12_save(rbp, r12_off * wordSize);
duke@435 253 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 254
duke@435 255 // stub code
duke@435 256 __ enter();
never@739 257 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 258
duke@435 259 // save register parameters
duke@435 260 #ifndef _WIN64
never@739 261 __ movptr(parameters, c_rarg5); // parameters
never@739 262 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 263 #endif
duke@435 264
never@739 265 __ movptr(method, c_rarg3); // method
never@739 266 __ movl(result_type, c_rarg2); // result type
never@739 267 __ movptr(result, c_rarg1); // result
never@739 268 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 269
duke@435 270 // save regs belonging to calling function
never@739 271 __ movptr(rbx_save, rbx);
never@739 272 __ movptr(r12_save, r12);
never@739 273 __ movptr(r13_save, r13);
never@739 274 __ movptr(r14_save, r14);
never@739 275 __ movptr(r15_save, r15);
duke@435 276 #ifdef _WIN64
iveresov@2689 277 for (int i = 6; i <= 15; i++) {
iveresov@2689 278 __ movdqu(xmm_save(i), as_XMMRegister(i));
iveresov@2689 279 }
iveresov@2689 280
duke@435 281 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 282 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 283
never@739 284 __ movptr(rsi_save, rsi);
never@739 285 __ movptr(rdi_save, rdi);
duke@435 286 #else
duke@435 287 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 288 {
duke@435 289 Label skip_ldmx;
duke@435 290 __ stmxcsr(mxcsr_save);
duke@435 291 __ movl(rax, mxcsr_save);
duke@435 292 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 293 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 294 __ cmp32(rax, mxcsr_std);
duke@435 295 __ jcc(Assembler::equal, skip_ldmx);
duke@435 296 __ ldmxcsr(mxcsr_std);
duke@435 297 __ bind(skip_ldmx);
duke@435 298 }
duke@435 299 #endif
duke@435 300
duke@435 301 // Load up thread register
never@739 302 __ movptr(r15_thread, thread);
coleenp@548 303 __ reinit_heapbase();
duke@435 304
duke@435 305 #ifdef ASSERT
duke@435 306 // make sure we have no pending exceptions
duke@435 307 {
duke@435 308 Label L;
never@739 309 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 310 __ jcc(Assembler::equal, L);
duke@435 311 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 312 __ bind(L);
duke@435 313 }
duke@435 314 #endif
duke@435 315
duke@435 316 // pass parameters if any
duke@435 317 BLOCK_COMMENT("pass parameters if any");
duke@435 318 Label parameters_done;
duke@435 319 __ movl(c_rarg3, parameter_size);
duke@435 320 __ testl(c_rarg3, c_rarg3);
duke@435 321 __ jcc(Assembler::zero, parameters_done);
duke@435 322
duke@435 323 Label loop;
never@739 324 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 325 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 326 __ BIND(loop);
never@739 327 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 328 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 329 __ decrementl(c_rarg1); // decrement counter
never@739 330 __ push(rax); // pass parameter
duke@435 331 __ jcc(Assembler::notZero, loop);
duke@435 332
duke@435 333 // call Java function
duke@435 334 __ BIND(parameters_done);
never@739 335 __ movptr(rbx, method); // get methodOop
never@739 336 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 337 __ mov(r13, rsp); // set sender sp
duke@435 338 BLOCK_COMMENT("call Java function");
duke@435 339 __ call(c_rarg1);
duke@435 340
duke@435 341 BLOCK_COMMENT("call_stub_return_address:");
duke@435 342 return_address = __ pc();
duke@435 343
duke@435 344 // store result depending on type (everything that is not
duke@435 345 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 346 __ movptr(c_rarg0, result);
duke@435 347 Label is_long, is_float, is_double, exit;
duke@435 348 __ movl(c_rarg1, result_type);
duke@435 349 __ cmpl(c_rarg1, T_OBJECT);
duke@435 350 __ jcc(Assembler::equal, is_long);
duke@435 351 __ cmpl(c_rarg1, T_LONG);
duke@435 352 __ jcc(Assembler::equal, is_long);
duke@435 353 __ cmpl(c_rarg1, T_FLOAT);
duke@435 354 __ jcc(Assembler::equal, is_float);
duke@435 355 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 356 __ jcc(Assembler::equal, is_double);
duke@435 357
duke@435 358 // handle T_INT case
duke@435 359 __ movl(Address(c_rarg0, 0), rax);
duke@435 360
duke@435 361 __ BIND(exit);
duke@435 362
duke@435 363 // pop parameters
never@739 364 __ lea(rsp, rsp_after_call);
duke@435 365
duke@435 366 #ifdef ASSERT
duke@435 367 // verify that threads correspond
duke@435 368 {
duke@435 369 Label L, S;
never@739 370 __ cmpptr(r15_thread, thread);
duke@435 371 __ jcc(Assembler::notEqual, S);
duke@435 372 __ get_thread(rbx);
never@739 373 __ cmpptr(r15_thread, rbx);
duke@435 374 __ jcc(Assembler::equal, L);
duke@435 375 __ bind(S);
duke@435 376 __ jcc(Assembler::equal, L);
duke@435 377 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 378 __ bind(L);
duke@435 379 }
duke@435 380 #endif
duke@435 381
duke@435 382 // restore regs belonging to calling function
iveresov@2689 383 #ifdef _WIN64
iveresov@2689 384 for (int i = 15; i >= 6; i--) {
iveresov@2689 385 __ movdqu(as_XMMRegister(i), xmm_save(i));
iveresov@2689 386 }
iveresov@2689 387 #endif
never@739 388 __ movptr(r15, r15_save);
never@739 389 __ movptr(r14, r14_save);
never@739 390 __ movptr(r13, r13_save);
never@739 391 __ movptr(r12, r12_save);
never@739 392 __ movptr(rbx, rbx_save);
duke@435 393
duke@435 394 #ifdef _WIN64
never@739 395 __ movptr(rdi, rdi_save);
never@739 396 __ movptr(rsi, rsi_save);
duke@435 397 #else
duke@435 398 __ ldmxcsr(mxcsr_save);
duke@435 399 #endif
duke@435 400
duke@435 401 // restore rsp
never@739 402 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 403
duke@435 404 // return
never@739 405 __ pop(rbp);
duke@435 406 __ ret(0);
duke@435 407
duke@435 408 // handle return types different from T_INT
duke@435 409 __ BIND(is_long);
duke@435 410 __ movq(Address(c_rarg0, 0), rax);
duke@435 411 __ jmp(exit);
duke@435 412
duke@435 413 __ BIND(is_float);
duke@435 414 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 415 __ jmp(exit);
duke@435 416
duke@435 417 __ BIND(is_double);
duke@435 418 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 419 __ jmp(exit);
duke@435 420
duke@435 421 return start;
duke@435 422 }
duke@435 423
duke@435 424 // Return point for a Java call if there's an exception thrown in
duke@435 425 // Java code. The exception is caught and transformed into a
duke@435 426 // pending exception stored in JavaThread that can be tested from
duke@435 427 // within the VM.
duke@435 428 //
duke@435 429 // Note: Usually the parameters are removed by the callee. In case
duke@435 430 // of an exception crossing an activation frame boundary, that is
duke@435 431 // not the case if the callee is compiled code => need to setup the
duke@435 432 // rsp.
duke@435 433 //
duke@435 434 // rax: exception oop
duke@435 435
duke@435 436 address generate_catch_exception() {
duke@435 437 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 438 address start = __ pc();
duke@435 439
duke@435 440 // same as in generate_call_stub():
duke@435 441 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 442 const Address thread (rbp, thread_off * wordSize);
duke@435 443
duke@435 444 #ifdef ASSERT
duke@435 445 // verify that threads correspond
duke@435 446 {
duke@435 447 Label L, S;
never@739 448 __ cmpptr(r15_thread, thread);
duke@435 449 __ jcc(Assembler::notEqual, S);
duke@435 450 __ get_thread(rbx);
never@739 451 __ cmpptr(r15_thread, rbx);
duke@435 452 __ jcc(Assembler::equal, L);
duke@435 453 __ bind(S);
duke@435 454 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 455 __ bind(L);
duke@435 456 }
duke@435 457 #endif
duke@435 458
duke@435 459 // set pending exception
duke@435 460 __ verify_oop(rax);
duke@435 461
never@739 462 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 463 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 464 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 465 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 466
duke@435 467 // complete return to VM
duke@435 468 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 469 "_call_stub_return_address must have been generated before");
duke@435 470 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 471
duke@435 472 return start;
duke@435 473 }
duke@435 474
duke@435 475 // Continuation point for runtime calls returning with a pending
duke@435 476 // exception. The pending exception check happened in the runtime
duke@435 477 // or native call stub. The pending exception in Thread is
duke@435 478 // converted into a Java-level exception.
duke@435 479 //
duke@435 480 // Contract with Java-level exception handlers:
duke@435 481 // rax: exception
duke@435 482 // rdx: throwing pc
duke@435 483 //
duke@435 484 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 485
duke@435 486 address generate_forward_exception() {
duke@435 487 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 488 address start = __ pc();
duke@435 489
duke@435 490 // Upon entry, the sp points to the return address returning into
duke@435 491 // Java (interpreted or compiled) code; i.e., the return address
duke@435 492 // becomes the throwing pc.
duke@435 493 //
duke@435 494 // Arguments pushed before the runtime call are still on the stack
duke@435 495 // but the exception handler will reset the stack pointer ->
duke@435 496 // ignore them. A potential result in registers can be ignored as
duke@435 497 // well.
duke@435 498
duke@435 499 #ifdef ASSERT
duke@435 500 // make sure this code is only executed if there is a pending exception
duke@435 501 {
duke@435 502 Label L;
never@739 503 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 504 __ jcc(Assembler::notEqual, L);
duke@435 505 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 506 __ bind(L);
duke@435 507 }
duke@435 508 #endif
duke@435 509
duke@435 510 // compute exception handler into rbx
never@739 511 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 512 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 513 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 514 SharedRuntime::exception_handler_for_return_address),
twisti@1730 515 r15_thread, c_rarg0);
never@739 516 __ mov(rbx, rax);
duke@435 517
duke@435 518 // setup rax & rdx, remove return address & clear pending exception
never@739 519 __ pop(rdx);
never@739 520 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 521 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 522
duke@435 523 #ifdef ASSERT
duke@435 524 // make sure exception is set
duke@435 525 {
duke@435 526 Label L;
never@739 527 __ testptr(rax, rax);
duke@435 528 __ jcc(Assembler::notEqual, L);
duke@435 529 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 530 __ bind(L);
duke@435 531 }
duke@435 532 #endif
duke@435 533
duke@435 534 // continue at exception handler (return address removed)
duke@435 535 // rax: exception
duke@435 536 // rbx: exception handler
duke@435 537 // rdx: throwing pc
duke@435 538 __ verify_oop(rax);
duke@435 539 __ jmp(rbx);
duke@435 540
duke@435 541 return start;
duke@435 542 }
duke@435 543
duke@435 544 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 545 //
duke@435 546 // Arguments :
duke@435 547 // c_rarg0: exchange_value
duke@435 548 // c_rarg0: dest
duke@435 549 //
duke@435 550 // Result:
duke@435 551 // *dest <- ex, return (orig *dest)
duke@435 552 address generate_atomic_xchg() {
duke@435 553 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 554 address start = __ pc();
duke@435 555
duke@435 556 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 557 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 558 __ ret(0);
duke@435 559
duke@435 560 return start;
duke@435 561 }
duke@435 562
duke@435 563 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 564 //
duke@435 565 // Arguments :
duke@435 566 // c_rarg0: exchange_value
duke@435 567 // c_rarg1: dest
duke@435 568 //
duke@435 569 // Result:
duke@435 570 // *dest <- ex, return (orig *dest)
duke@435 571 address generate_atomic_xchg_ptr() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 573 address start = __ pc();
duke@435 574
never@739 575 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 576 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 577 __ ret(0);
duke@435 578
duke@435 579 return start;
duke@435 580 }
duke@435 581
duke@435 582 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 583 // jint compare_value)
duke@435 584 //
duke@435 585 // Arguments :
duke@435 586 // c_rarg0: exchange_value
duke@435 587 // c_rarg1: dest
duke@435 588 // c_rarg2: compare_value
duke@435 589 //
duke@435 590 // Result:
duke@435 591 // if ( compare_value == *dest ) {
duke@435 592 // *dest = exchange_value
duke@435 593 // return compare_value;
duke@435 594 // else
duke@435 595 // return *dest;
duke@435 596 address generate_atomic_cmpxchg() {
duke@435 597 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 598 address start = __ pc();
duke@435 599
duke@435 600 __ movl(rax, c_rarg2);
duke@435 601 if ( os::is_MP() ) __ lock();
duke@435 602 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 603 __ ret(0);
duke@435 604
duke@435 605 return start;
duke@435 606 }
duke@435 607
duke@435 608 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 609 // volatile jlong* dest,
duke@435 610 // jlong compare_value)
duke@435 611 // Arguments :
duke@435 612 // c_rarg0: exchange_value
duke@435 613 // c_rarg1: dest
duke@435 614 // c_rarg2: compare_value
duke@435 615 //
duke@435 616 // Result:
duke@435 617 // if ( compare_value == *dest ) {
duke@435 618 // *dest = exchange_value
duke@435 619 // return compare_value;
duke@435 620 // else
duke@435 621 // return *dest;
duke@435 622 address generate_atomic_cmpxchg_long() {
duke@435 623 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 624 address start = __ pc();
duke@435 625
duke@435 626 __ movq(rax, c_rarg2);
duke@435 627 if ( os::is_MP() ) __ lock();
duke@435 628 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 629 __ ret(0);
duke@435 630
duke@435 631 return start;
duke@435 632 }
duke@435 633
duke@435 634 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 635 //
duke@435 636 // Arguments :
duke@435 637 // c_rarg0: add_value
duke@435 638 // c_rarg1: dest
duke@435 639 //
duke@435 640 // Result:
duke@435 641 // *dest += add_value
duke@435 642 // return *dest;
duke@435 643 address generate_atomic_add() {
duke@435 644 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 645 address start = __ pc();
duke@435 646
duke@435 647 __ movl(rax, c_rarg0);
duke@435 648 if ( os::is_MP() ) __ lock();
duke@435 649 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 650 __ addl(rax, c_rarg0);
duke@435 651 __ ret(0);
duke@435 652
duke@435 653 return start;
duke@435 654 }
duke@435 655
duke@435 656 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 657 //
duke@435 658 // Arguments :
duke@435 659 // c_rarg0: add_value
duke@435 660 // c_rarg1: dest
duke@435 661 //
duke@435 662 // Result:
duke@435 663 // *dest += add_value
duke@435 664 // return *dest;
duke@435 665 address generate_atomic_add_ptr() {
duke@435 666 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 667 address start = __ pc();
duke@435 668
never@739 669 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 670 if ( os::is_MP() ) __ lock();
never@739 671 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 672 __ addptr(rax, c_rarg0);
duke@435 673 __ ret(0);
duke@435 674
duke@435 675 return start;
duke@435 676 }
duke@435 677
duke@435 678 // Support for intptr_t OrderAccess::fence()
duke@435 679 //
duke@435 680 // Arguments :
duke@435 681 //
duke@435 682 // Result:
duke@435 683 address generate_orderaccess_fence() {
duke@435 684 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 685 address start = __ pc();
never@1106 686 __ membar(Assembler::StoreLoad);
duke@435 687 __ ret(0);
duke@435 688
duke@435 689 return start;
duke@435 690 }
duke@435 691
duke@435 692 // Support for intptr_t get_previous_fp()
duke@435 693 //
duke@435 694 // This routine is used to find the previous frame pointer for the
duke@435 695 // caller (current_frame_guess). This is used as part of debugging
duke@435 696 // ps() is seemingly lost trying to find frames.
duke@435 697 // This code assumes that caller current_frame_guess) has a frame.
duke@435 698 address generate_get_previous_fp() {
duke@435 699 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 700 const Address old_fp(rbp, 0);
duke@435 701 const Address older_fp(rax, 0);
duke@435 702 address start = __ pc();
duke@435 703
duke@435 704 __ enter();
never@739 705 __ movptr(rax, old_fp); // callers fp
never@739 706 __ movptr(rax, older_fp); // the frame for ps()
never@739 707 __ pop(rbp);
duke@435 708 __ ret(0);
duke@435 709
duke@435 710 return start;
duke@435 711 }
duke@435 712
roland@3606 713 // Support for intptr_t get_previous_sp()
roland@3606 714 //
roland@3606 715 // This routine is used to find the previous stack pointer for the
roland@3606 716 // caller.
roland@3606 717 address generate_get_previous_sp() {
roland@3606 718 StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
roland@3606 719 address start = __ pc();
roland@3606 720
roland@3606 721 __ movptr(rax, rsp);
roland@3606 722 __ addptr(rax, 8); // return address is at the top of the stack.
roland@3606 723 __ ret(0);
roland@3606 724
roland@3606 725 return start;
roland@3606 726 }
roland@3606 727
duke@435 728 //----------------------------------------------------------------------------------------------------
duke@435 729 // Support for void verify_mxcsr()
duke@435 730 //
duke@435 731 // This routine is used with -Xcheck:jni to verify that native
duke@435 732 // JNI code does not return to Java code without restoring the
duke@435 733 // MXCSR register to our expected state.
duke@435 734
duke@435 735 address generate_verify_mxcsr() {
duke@435 736 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 737 address start = __ pc();
duke@435 738
duke@435 739 const Address mxcsr_save(rsp, 0);
duke@435 740
duke@435 741 if (CheckJNICalls) {
duke@435 742 Label ok_ret;
never@739 743 __ push(rax);
never@739 744 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 745 __ stmxcsr(mxcsr_save);
duke@435 746 __ movl(rax, mxcsr_save);
duke@435 747 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 748 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 749 __ jcc(Assembler::equal, ok_ret);
duke@435 750
duke@435 751 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 752
never@739 753 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 754
duke@435 755 __ bind(ok_ret);
never@739 756 __ addptr(rsp, wordSize);
never@739 757 __ pop(rax);
duke@435 758 }
duke@435 759
duke@435 760 __ ret(0);
duke@435 761
duke@435 762 return start;
duke@435 763 }
duke@435 764
duke@435 765 address generate_f2i_fixup() {
duke@435 766 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 767 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 768
duke@435 769 address start = __ pc();
duke@435 770
duke@435 771 Label L;
duke@435 772
never@739 773 __ push(rax);
never@739 774 __ push(c_rarg3);
never@739 775 __ push(c_rarg2);
never@739 776 __ push(c_rarg1);
duke@435 777
duke@435 778 __ movl(rax, 0x7f800000);
duke@435 779 __ xorl(c_rarg3, c_rarg3);
duke@435 780 __ movl(c_rarg2, inout);
duke@435 781 __ movl(c_rarg1, c_rarg2);
duke@435 782 __ andl(c_rarg1, 0x7fffffff);
duke@435 783 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 784 __ jcc(Assembler::negative, L);
duke@435 785 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 786 __ movl(c_rarg3, 0x80000000);
duke@435 787 __ movl(rax, 0x7fffffff);
duke@435 788 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 789
duke@435 790 __ bind(L);
never@739 791 __ movptr(inout, c_rarg3);
never@739 792
never@739 793 __ pop(c_rarg1);
never@739 794 __ pop(c_rarg2);
never@739 795 __ pop(c_rarg3);
never@739 796 __ pop(rax);
duke@435 797
duke@435 798 __ ret(0);
duke@435 799
duke@435 800 return start;
duke@435 801 }
duke@435 802
duke@435 803 address generate_f2l_fixup() {
duke@435 804 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 805 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 806 address start = __ pc();
duke@435 807
duke@435 808 Label L;
duke@435 809
never@739 810 __ push(rax);
never@739 811 __ push(c_rarg3);
never@739 812 __ push(c_rarg2);
never@739 813 __ push(c_rarg1);
duke@435 814
duke@435 815 __ movl(rax, 0x7f800000);
duke@435 816 __ xorl(c_rarg3, c_rarg3);
duke@435 817 __ movl(c_rarg2, inout);
duke@435 818 __ movl(c_rarg1, c_rarg2);
duke@435 819 __ andl(c_rarg1, 0x7fffffff);
duke@435 820 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 821 __ jcc(Assembler::negative, L);
duke@435 822 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 823 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 824 __ mov64(rax, 0x7fffffffffffffff);
never@739 825 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 826
duke@435 827 __ bind(L);
never@739 828 __ movptr(inout, c_rarg3);
never@739 829
never@739 830 __ pop(c_rarg1);
never@739 831 __ pop(c_rarg2);
never@739 832 __ pop(c_rarg3);
never@739 833 __ pop(rax);
duke@435 834
duke@435 835 __ ret(0);
duke@435 836
duke@435 837 return start;
duke@435 838 }
duke@435 839
duke@435 840 address generate_d2i_fixup() {
duke@435 841 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 842 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 843
duke@435 844 address start = __ pc();
duke@435 845
duke@435 846 Label L;
duke@435 847
never@739 848 __ push(rax);
never@739 849 __ push(c_rarg3);
never@739 850 __ push(c_rarg2);
never@739 851 __ push(c_rarg1);
never@739 852 __ push(c_rarg0);
duke@435 853
duke@435 854 __ movl(rax, 0x7ff00000);
duke@435 855 __ movq(c_rarg2, inout);
duke@435 856 __ movl(c_rarg3, c_rarg2);
never@739 857 __ mov(c_rarg1, c_rarg2);
never@739 858 __ mov(c_rarg0, c_rarg2);
duke@435 859 __ negl(c_rarg3);
never@739 860 __ shrptr(c_rarg1, 0x20);
duke@435 861 __ orl(c_rarg3, c_rarg2);
duke@435 862 __ andl(c_rarg1, 0x7fffffff);
duke@435 863 __ xorl(c_rarg2, c_rarg2);
duke@435 864 __ shrl(c_rarg3, 0x1f);
duke@435 865 __ orl(c_rarg1, c_rarg3);
duke@435 866 __ cmpl(rax, c_rarg1);
duke@435 867 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 868 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 869 __ movl(c_rarg2, 0x80000000);
duke@435 870 __ movl(rax, 0x7fffffff);
never@739 871 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 872
duke@435 873 __ bind(L);
never@739 874 __ movptr(inout, c_rarg2);
never@739 875
never@739 876 __ pop(c_rarg0);
never@739 877 __ pop(c_rarg1);
never@739 878 __ pop(c_rarg2);
never@739 879 __ pop(c_rarg3);
never@739 880 __ pop(rax);
duke@435 881
duke@435 882 __ ret(0);
duke@435 883
duke@435 884 return start;
duke@435 885 }
duke@435 886
duke@435 887 address generate_d2l_fixup() {
duke@435 888 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 889 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 890
duke@435 891 address start = __ pc();
duke@435 892
duke@435 893 Label L;
duke@435 894
never@739 895 __ push(rax);
never@739 896 __ push(c_rarg3);
never@739 897 __ push(c_rarg2);
never@739 898 __ push(c_rarg1);
never@739 899 __ push(c_rarg0);
duke@435 900
duke@435 901 __ movl(rax, 0x7ff00000);
duke@435 902 __ movq(c_rarg2, inout);
duke@435 903 __ movl(c_rarg3, c_rarg2);
never@739 904 __ mov(c_rarg1, c_rarg2);
never@739 905 __ mov(c_rarg0, c_rarg2);
duke@435 906 __ negl(c_rarg3);
never@739 907 __ shrptr(c_rarg1, 0x20);
duke@435 908 __ orl(c_rarg3, c_rarg2);
duke@435 909 __ andl(c_rarg1, 0x7fffffff);
duke@435 910 __ xorl(c_rarg2, c_rarg2);
duke@435 911 __ shrl(c_rarg3, 0x1f);
duke@435 912 __ orl(c_rarg1, c_rarg3);
duke@435 913 __ cmpl(rax, c_rarg1);
duke@435 914 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 915 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 916 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 917 __ mov64(rax, 0x7fffffffffffffff);
duke@435 918 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 919
duke@435 920 __ bind(L);
duke@435 921 __ movq(inout, c_rarg2);
duke@435 922
never@739 923 __ pop(c_rarg0);
never@739 924 __ pop(c_rarg1);
never@739 925 __ pop(c_rarg2);
never@739 926 __ pop(c_rarg3);
never@739 927 __ pop(rax);
duke@435 928
duke@435 929 __ ret(0);
duke@435 930
duke@435 931 return start;
duke@435 932 }
duke@435 933
duke@435 934 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 935 __ align(CodeEntryAlignment);
duke@435 936 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 937 address start = __ pc();
duke@435 938
duke@435 939 __ emit_data64( mask, relocInfo::none );
duke@435 940 __ emit_data64( mask, relocInfo::none );
duke@435 941
duke@435 942 return start;
duke@435 943 }
duke@435 944
duke@435 945 // The following routine generates a subroutine to throw an
duke@435 946 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 947 // could not be reasonably prevented by the programmer. (Example:
duke@435 948 // SIGBUS/OBJERR.)
duke@435 949 address generate_handler_for_unsafe_access() {
duke@435 950 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 951 address start = __ pc();
duke@435 952
never@739 953 __ push(0); // hole for return address-to-be
never@739 954 __ pusha(); // push registers
duke@435 955 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 956
never@3136 957 // FIXME: this probably needs alignment logic
never@3136 958
never@739 959 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 960 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 961 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 962 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 963
never@739 964 __ movptr(next_pc, rax); // stuff next address
never@739 965 __ popa();
duke@435 966 __ ret(0); // jump to next address
duke@435 967
duke@435 968 return start;
duke@435 969 }
duke@435 970
duke@435 971 // Non-destructive plausibility checks for oops
duke@435 972 //
duke@435 973 // Arguments:
duke@435 974 // all args on stack!
duke@435 975 //
duke@435 976 // Stack after saving c_rarg3:
duke@435 977 // [tos + 0]: saved c_rarg3
duke@435 978 // [tos + 1]: saved c_rarg2
kvn@559 979 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 980 // [tos + 3]: saved flags
kvn@559 981 // [tos + 4]: return address
kvn@559 982 // * [tos + 5]: error message (char*)
kvn@559 983 // * [tos + 6]: object to verify (oop)
kvn@559 984 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 985 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 986 // * = popped on exit
duke@435 987 address generate_verify_oop() {
duke@435 988 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 989 address start = __ pc();
duke@435 990
duke@435 991 Label exit, error;
duke@435 992
never@739 993 __ pushf();
duke@435 994 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 995
never@739 996 __ push(r12);
kvn@559 997
duke@435 998 // save c_rarg2 and c_rarg3
never@739 999 __ push(c_rarg2);
never@739 1000 __ push(c_rarg3);
duke@435 1001
kvn@559 1002 enum {
kvn@559 1003 // After previous pushes.
kvn@559 1004 oop_to_verify = 6 * wordSize,
kvn@559 1005 saved_rax = 7 * wordSize,
kvn@1938 1006 saved_r10 = 8 * wordSize,
kvn@559 1007
kvn@559 1008 // Before the call to MacroAssembler::debug(), see below.
kvn@559 1009 return_addr = 16 * wordSize,
kvn@559 1010 error_msg = 17 * wordSize
kvn@559 1011 };
kvn@559 1012
duke@435 1013 // get object
never@739 1014 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 1015
duke@435 1016 // make sure object is 'reasonable'
never@739 1017 __ testptr(rax, rax);
duke@435 1018 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 1019 // Check if the oop is in the right area of memory
never@739 1020 __ movptr(c_rarg2, rax);
xlu@947 1021 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 1022 __ andptr(c_rarg2, c_rarg3);
xlu@947 1023 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 1024 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1025 __ jcc(Assembler::notZero, error);
duke@435 1026
kvn@559 1027 // set r12 to heapbase for load_klass()
kvn@559 1028 __ reinit_heapbase();
kvn@559 1029
duke@435 1030 // make sure klass is 'reasonable'
coleenp@548 1031 __ load_klass(rax, rax); // get klass
never@739 1032 __ testptr(rax, rax);
duke@435 1033 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 1034 // Check if the klass is in the right area of memory
never@739 1035 __ mov(c_rarg2, rax);
xlu@947 1036 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1037 __ andptr(c_rarg2, c_rarg3);
xlu@947 1038 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1039 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1040 __ jcc(Assembler::notZero, error);
duke@435 1041
duke@435 1042 // make sure klass' klass is 'reasonable'
coleenp@548 1043 __ load_klass(rax, rax);
never@739 1044 __ testptr(rax, rax);
duke@435 1045 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 1046 // Check if the klass' klass is in the right area of memory
xlu@947 1047 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1048 __ andptr(rax, c_rarg3);
xlu@947 1049 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1050 __ cmpptr(rax, c_rarg3);
duke@435 1051 __ jcc(Assembler::notZero, error);
duke@435 1052
duke@435 1053 // return if everything seems ok
duke@435 1054 __ bind(exit);
never@739 1055 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1056 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1057 __ pop(c_rarg3); // restore c_rarg3
never@739 1058 __ pop(c_rarg2); // restore c_rarg2
never@739 1059 __ pop(r12); // restore r12
never@739 1060 __ popf(); // restore flags
kvn@1938 1061 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1062
duke@435 1063 // handle errors
duke@435 1064 __ bind(error);
never@739 1065 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1066 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1067 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1068 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1069 __ pop(r12); // get saved r12 back
never@739 1070 __ popf(); // get saved flags off stack --
duke@435 1071 // will be ignored
duke@435 1072
never@739 1073 __ pusha(); // push registers
duke@435 1074 // (rip is already
duke@435 1075 // already pushed)
kvn@559 1076 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1077 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1078 // pushed all the registers, so now the stack looks like:
duke@435 1079 // [tos + 0] 16 saved registers
duke@435 1080 // [tos + 16] return address
kvn@559 1081 // * [tos + 17] error message (char*)
kvn@559 1082 // * [tos + 18] object to verify (oop)
kvn@559 1083 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1084 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1085 // * = popped on exit
kvn@559 1086
never@739 1087 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1088 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1089 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1090 __ mov(r12, rsp); // remember rsp
never@739 1091 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1092 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1093 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1094 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1095 __ mov(rsp, r12); // restore rsp
never@739 1096 __ popa(); // pop registers (includes r12)
kvn@1938 1097 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1098
duke@435 1099 return start;
duke@435 1100 }
duke@435 1101
duke@435 1102 //
duke@435 1103 // Verify that a register contains clean 32-bits positive value
duke@435 1104 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1105 //
duke@435 1106 // Input:
duke@435 1107 // Rint - 32-bits value
duke@435 1108 // Rtmp - scratch
duke@435 1109 //
duke@435 1110 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1111 #ifdef ASSERT
duke@435 1112 Label L;
duke@435 1113 assert_different_registers(Rtmp, Rint);
duke@435 1114 __ movslq(Rtmp, Rint);
duke@435 1115 __ cmpq(Rtmp, Rint);
kvn@559 1116 __ jcc(Assembler::equal, L);
duke@435 1117 __ stop("high 32-bits of int value are not 0");
duke@435 1118 __ bind(L);
duke@435 1119 #endif
duke@435 1120 }
duke@435 1121
duke@435 1122 // Generate overlap test for array copy stubs
duke@435 1123 //
duke@435 1124 // Input:
duke@435 1125 // c_rarg0 - from
duke@435 1126 // c_rarg1 - to
duke@435 1127 // c_rarg2 - element count
duke@435 1128 //
duke@435 1129 // Output:
duke@435 1130 // rax - &from[element count - 1]
duke@435 1131 //
duke@435 1132 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1133 assert(no_overlap_target != NULL, "must be generated");
duke@435 1134 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1135 }
duke@435 1136 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1137 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1138 }
duke@435 1139 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1140 const Register from = c_rarg0;
duke@435 1141 const Register to = c_rarg1;
duke@435 1142 const Register count = c_rarg2;
duke@435 1143 const Register end_from = rax;
duke@435 1144
never@739 1145 __ cmpptr(to, from);
never@739 1146 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1147 if (NOLp == NULL) {
duke@435 1148 ExternalAddress no_overlap(no_overlap_target);
duke@435 1149 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1150 __ cmpptr(to, end_from);
duke@435 1151 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1152 } else {
duke@435 1153 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1154 __ cmpptr(to, end_from);
duke@435 1155 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1156 }
duke@435 1157 }
duke@435 1158
duke@435 1159 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1160 //
duke@435 1161 // Outputs:
duke@435 1162 // rdi - rcx
duke@435 1163 // rsi - rdx
duke@435 1164 // rdx - r8
duke@435 1165 // rcx - r9
duke@435 1166 //
duke@435 1167 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1168 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1169 //
duke@435 1170 void setup_arg_regs(int nargs = 3) {
duke@435 1171 const Register saved_rdi = r9;
duke@435 1172 const Register saved_rsi = r10;
duke@435 1173 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1174 #ifdef _WIN64
duke@435 1175 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1176 "unexpected argument registers");
duke@435 1177 if (nargs >= 4)
never@739 1178 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1179 __ movptr(saved_rdi, rdi);
never@739 1180 __ movptr(saved_rsi, rsi);
never@739 1181 __ mov(rdi, rcx); // c_rarg0
never@739 1182 __ mov(rsi, rdx); // c_rarg1
never@739 1183 __ mov(rdx, r8); // c_rarg2
duke@435 1184 if (nargs >= 4)
never@739 1185 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1186 #else
duke@435 1187 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1188 "unexpected argument registers");
duke@435 1189 #endif
duke@435 1190 }
duke@435 1191
duke@435 1192 void restore_arg_regs() {
duke@435 1193 const Register saved_rdi = r9;
duke@435 1194 const Register saved_rsi = r10;
duke@435 1195 #ifdef _WIN64
never@739 1196 __ movptr(rdi, saved_rdi);
never@739 1197 __ movptr(rsi, saved_rsi);
duke@435 1198 #endif
duke@435 1199 }
duke@435 1200
duke@435 1201 // Generate code for an array write pre barrier
duke@435 1202 //
duke@435 1203 // addr - starting address
iveresov@2606 1204 // count - element count
iveresov@2606 1205 // tmp - scratch register
duke@435 1206 //
duke@435 1207 // Destroy no registers!
duke@435 1208 //
iveresov@2606 1209 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1210 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1211 switch (bs->kind()) {
duke@435 1212 case BarrierSet::G1SATBCT:
duke@435 1213 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1214 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1215 if (!dest_uninitialized) {
iveresov@2606 1216 __ pusha(); // push registers
iveresov@2606 1217 if (count == c_rarg0) {
iveresov@2606 1218 if (addr == c_rarg1) {
iveresov@2606 1219 // exactly backwards!!
iveresov@2606 1220 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1221 } else {
iveresov@2606 1222 __ movptr(c_rarg1, count);
iveresov@2606 1223 __ movptr(c_rarg0, addr);
iveresov@2606 1224 }
iveresov@2606 1225 } else {
iveresov@2606 1226 __ movptr(c_rarg0, addr);
iveresov@2606 1227 __ movptr(c_rarg1, count);
iveresov@2606 1228 }
iveresov@2606 1229 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1230 __ popa();
duke@435 1231 }
iveresov@2606 1232 break;
duke@435 1233 case BarrierSet::CardTableModRef:
duke@435 1234 case BarrierSet::CardTableExtension:
duke@435 1235 case BarrierSet::ModRef:
duke@435 1236 break;
ysr@777 1237 default:
duke@435 1238 ShouldNotReachHere();
duke@435 1239
duke@435 1240 }
duke@435 1241 }
duke@435 1242
duke@435 1243 //
duke@435 1244 // Generate code for an array write post barrier
duke@435 1245 //
duke@435 1246 // Input:
duke@435 1247 // start - register containing starting address of destination array
duke@435 1248 // end - register containing ending address of destination array
duke@435 1249 // scratch - scratch register
duke@435 1250 //
duke@435 1251 // The input registers are overwritten.
duke@435 1252 // The ending address is inclusive.
duke@435 1253 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1254 assert_different_registers(start, end, scratch);
duke@435 1255 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1256 switch (bs->kind()) {
duke@435 1257 case BarrierSet::G1SATBCT:
duke@435 1258 case BarrierSet::G1SATBCTLogging:
duke@435 1259
duke@435 1260 {
never@739 1261 __ pusha(); // push registers (overkill)
duke@435 1262 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1263 assert_different_registers(start, end, scratch);
ysr@1280 1264 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1265 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1266 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1267 __ mov(c_rarg0, start);
never@739 1268 __ mov(c_rarg1, scratch);
apetrusenko@1627 1269 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1270 __ popa();
duke@435 1271 }
duke@435 1272 break;
duke@435 1273 case BarrierSet::CardTableModRef:
duke@435 1274 case BarrierSet::CardTableExtension:
duke@435 1275 {
duke@435 1276 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1277 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1278
duke@435 1279 Label L_loop;
duke@435 1280
never@739 1281 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1282 __ addptr(end, BytesPerHeapOop);
never@739 1283 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1284 __ subptr(end, start); // number of bytes to copy
duke@435 1285
never@684 1286 intptr_t disp = (intptr_t) ct->byte_map_base;
twisti@3310 1287 if (Assembler::is_simm32(disp)) {
never@684 1288 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1289 __ lea(scratch, cardtable);
never@684 1290 } else {
never@684 1291 ExternalAddress cardtable((address)disp);
never@684 1292 __ lea(scratch, cardtable);
never@684 1293 }
never@684 1294
duke@435 1295 const Register count = end; // 'end' register contains bytes count now
never@739 1296 __ addptr(start, scratch);
duke@435 1297 __ BIND(L_loop);
duke@435 1298 __ movb(Address(start, count, Address::times_1), 0);
never@739 1299 __ decrement(count);
duke@435 1300 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1301 }
ysr@777 1302 break;
ysr@777 1303 default:
ysr@777 1304 ShouldNotReachHere();
ysr@777 1305
ysr@777 1306 }
ysr@777 1307 }
duke@435 1308
kvn@840 1309
duke@435 1310 // Copy big chunks forward
duke@435 1311 //
duke@435 1312 // Inputs:
duke@435 1313 // end_from - source arrays end address
duke@435 1314 // end_to - destination array end address
duke@435 1315 // qword_count - 64-bits element count, negative
duke@435 1316 // to - scratch
duke@435 1317 // L_copy_32_bytes - entry label
duke@435 1318 // L_copy_8_bytes - exit label
duke@435 1319 //
duke@435 1320 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1321 Register qword_count, Register to,
duke@435 1322 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1323 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1324 Label L_loop;
kvn@1800 1325 __ align(OptoLoopAlignment);
duke@435 1326 __ BIND(L_loop);
kvn@840 1327 if(UseUnalignedLoadStores) {
kvn@840 1328 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1329 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1330 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1331 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1332
kvn@840 1333 } else {
kvn@840 1334 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1335 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1336 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1337 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1338 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1339 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1340 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1341 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1342 }
duke@435 1343 __ BIND(L_copy_32_bytes);
never@739 1344 __ addptr(qword_count, 4);
duke@435 1345 __ jcc(Assembler::lessEqual, L_loop);
never@739 1346 __ subptr(qword_count, 4);
duke@435 1347 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1348 }
duke@435 1349
duke@435 1350
duke@435 1351 // Copy big chunks backward
duke@435 1352 //
duke@435 1353 // Inputs:
duke@435 1354 // from - source arrays address
duke@435 1355 // dest - destination array address
duke@435 1356 // qword_count - 64-bits element count
duke@435 1357 // to - scratch
duke@435 1358 // L_copy_32_bytes - entry label
duke@435 1359 // L_copy_8_bytes - exit label
duke@435 1360 //
duke@435 1361 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1362 Register qword_count, Register to,
duke@435 1363 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1364 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1365 Label L_loop;
kvn@1800 1366 __ align(OptoLoopAlignment);
duke@435 1367 __ BIND(L_loop);
kvn@840 1368 if(UseUnalignedLoadStores) {
kvn@840 1369 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1370 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1371 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1372 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1373
kvn@840 1374 } else {
kvn@840 1375 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1376 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1377 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1378 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1379 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1380 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1381 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1382 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1383 }
duke@435 1384 __ BIND(L_copy_32_bytes);
never@739 1385 __ subptr(qword_count, 4);
duke@435 1386 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1387 __ addptr(qword_count, 4);
duke@435 1388 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1389 }
duke@435 1390
duke@435 1391
duke@435 1392 // Arguments:
duke@435 1393 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1394 // ignored
duke@435 1395 // name - stub name string
duke@435 1396 //
duke@435 1397 // Inputs:
duke@435 1398 // c_rarg0 - source array address
duke@435 1399 // c_rarg1 - destination array address
duke@435 1400 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1401 //
duke@435 1402 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1403 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1404 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1405 // and stored atomically.
duke@435 1406 //
duke@435 1407 // Side Effects:
duke@435 1408 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1409 // used by generate_conjoint_byte_copy().
duke@435 1410 //
iveresov@2595 1411 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1412 __ align(CodeEntryAlignment);
duke@435 1413 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1414 address start = __ pc();
duke@435 1415
duke@435 1416 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1417 Label L_copy_byte, L_exit;
duke@435 1418 const Register from = rdi; // source array address
duke@435 1419 const Register to = rsi; // destination array address
duke@435 1420 const Register count = rdx; // elements count
duke@435 1421 const Register byte_count = rcx;
duke@435 1422 const Register qword_count = count;
duke@435 1423 const Register end_from = from; // source array end address
duke@435 1424 const Register end_to = to; // destination array end address
duke@435 1425 // End pointers are inclusive, and if count is not zero they point
duke@435 1426 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1427
duke@435 1428 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1429 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1430
iveresov@2595 1431 if (entry != NULL) {
iveresov@2595 1432 *entry = __ pc();
iveresov@2595 1433 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1434 BLOCK_COMMENT("Entry:");
iveresov@2595 1435 }
duke@435 1436
duke@435 1437 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1438 // r9 and r10 may be used to save non-volatile registers
duke@435 1439
duke@435 1440 // 'from', 'to' and 'count' are now valid
never@739 1441 __ movptr(byte_count, count);
never@739 1442 __ shrptr(count, 3); // count => qword_count
duke@435 1443
duke@435 1444 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1445 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1446 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1447 __ negptr(qword_count); // make the count negative
duke@435 1448 __ jmp(L_copy_32_bytes);
duke@435 1449
duke@435 1450 // Copy trailing qwords
duke@435 1451 __ BIND(L_copy_8_bytes);
duke@435 1452 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1453 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1454 __ increment(qword_count);
duke@435 1455 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1456
duke@435 1457 // Check for and copy trailing dword
duke@435 1458 __ BIND(L_copy_4_bytes);
never@739 1459 __ testl(byte_count, 4);
duke@435 1460 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1461 __ movl(rax, Address(end_from, 8));
duke@435 1462 __ movl(Address(end_to, 8), rax);
duke@435 1463
never@739 1464 __ addptr(end_from, 4);
never@739 1465 __ addptr(end_to, 4);
duke@435 1466
duke@435 1467 // Check for and copy trailing word
duke@435 1468 __ BIND(L_copy_2_bytes);
never@739 1469 __ testl(byte_count, 2);
duke@435 1470 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1471 __ movw(rax, Address(end_from, 8));
duke@435 1472 __ movw(Address(end_to, 8), rax);
duke@435 1473
never@739 1474 __ addptr(end_from, 2);
never@739 1475 __ addptr(end_to, 2);
duke@435 1476
duke@435 1477 // Check for and copy trailing byte
duke@435 1478 __ BIND(L_copy_byte);
never@739 1479 __ testl(byte_count, 1);
duke@435 1480 __ jccb(Assembler::zero, L_exit);
duke@435 1481 __ movb(rax, Address(end_from, 8));
duke@435 1482 __ movb(Address(end_to, 8), rax);
duke@435 1483
duke@435 1484 __ BIND(L_exit);
duke@435 1485 restore_arg_regs();
never@3314 1486 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1487 __ xorptr(rax, rax); // return 0
duke@435 1488 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1489 __ ret(0);
duke@435 1490
duke@435 1491 // Copy in 32-bytes chunks
duke@435 1492 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1493 __ jmp(L_copy_4_bytes);
duke@435 1494
duke@435 1495 return start;
duke@435 1496 }
duke@435 1497
duke@435 1498 // Arguments:
duke@435 1499 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1500 // ignored
duke@435 1501 // name - stub name string
duke@435 1502 //
duke@435 1503 // Inputs:
duke@435 1504 // c_rarg0 - source array address
duke@435 1505 // c_rarg1 - destination array address
duke@435 1506 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1507 //
duke@435 1508 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1509 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1510 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1511 // and stored atomically.
duke@435 1512 //
iveresov@2595 1513 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1514 address* entry, const char *name) {
duke@435 1515 __ align(CodeEntryAlignment);
duke@435 1516 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1517 address start = __ pc();
duke@435 1518
duke@435 1519 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1520 const Register from = rdi; // source array address
duke@435 1521 const Register to = rsi; // destination array address
duke@435 1522 const Register count = rdx; // elements count
duke@435 1523 const Register byte_count = rcx;
duke@435 1524 const Register qword_count = count;
duke@435 1525
duke@435 1526 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1527 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1528
iveresov@2595 1529 if (entry != NULL) {
iveresov@2595 1530 *entry = __ pc();
iveresov@2595 1531 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1532 BLOCK_COMMENT("Entry:");
iveresov@2595 1533 }
iveresov@2595 1534
iveresov@2595 1535 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1536 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1537 // r9 and r10 may be used to save non-volatile registers
duke@435 1538
duke@435 1539 // 'from', 'to' and 'count' are now valid
never@739 1540 __ movptr(byte_count, count);
never@739 1541 __ shrptr(count, 3); // count => qword_count
duke@435 1542
duke@435 1543 // Copy from high to low addresses.
duke@435 1544
duke@435 1545 // Check for and copy trailing byte
never@739 1546 __ testl(byte_count, 1);
duke@435 1547 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1548 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1549 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1550 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1551
duke@435 1552 // Check for and copy trailing word
duke@435 1553 __ BIND(L_copy_2_bytes);
never@739 1554 __ testl(byte_count, 2);
duke@435 1555 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1556 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1557 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1558
duke@435 1559 // Check for and copy trailing dword
duke@435 1560 __ BIND(L_copy_4_bytes);
never@739 1561 __ testl(byte_count, 4);
duke@435 1562 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1563 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1564 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1565 __ jmp(L_copy_32_bytes);
duke@435 1566
duke@435 1567 // Copy trailing qwords
duke@435 1568 __ BIND(L_copy_8_bytes);
duke@435 1569 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1570 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1571 __ decrement(qword_count);
duke@435 1572 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1573
duke@435 1574 restore_arg_regs();
never@3314 1575 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1576 __ xorptr(rax, rax); // return 0
duke@435 1577 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1578 __ ret(0);
duke@435 1579
duke@435 1580 // Copy in 32-bytes chunks
duke@435 1581 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1582
duke@435 1583 restore_arg_regs();
never@3314 1584 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1585 __ xorptr(rax, rax); // return 0
duke@435 1586 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1587 __ ret(0);
duke@435 1588
duke@435 1589 return start;
duke@435 1590 }
duke@435 1591
duke@435 1592 // Arguments:
duke@435 1593 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1594 // ignored
duke@435 1595 // name - stub name string
duke@435 1596 //
duke@435 1597 // Inputs:
duke@435 1598 // c_rarg0 - source array address
duke@435 1599 // c_rarg1 - destination array address
duke@435 1600 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1601 //
duke@435 1602 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1603 // let the hardware handle it. The two or four words within dwords
duke@435 1604 // or qwords that span cache line boundaries will still be loaded
duke@435 1605 // and stored atomically.
duke@435 1606 //
duke@435 1607 // Side Effects:
duke@435 1608 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1609 // used by generate_conjoint_short_copy().
duke@435 1610 //
iveresov@2595 1611 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1612 __ align(CodeEntryAlignment);
duke@435 1613 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1614 address start = __ pc();
duke@435 1615
duke@435 1616 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1617 const Register from = rdi; // source array address
duke@435 1618 const Register to = rsi; // destination array address
duke@435 1619 const Register count = rdx; // elements count
duke@435 1620 const Register word_count = rcx;
duke@435 1621 const Register qword_count = count;
duke@435 1622 const Register end_from = from; // source array end address
duke@435 1623 const Register end_to = to; // destination array end address
duke@435 1624 // End pointers are inclusive, and if count is not zero they point
duke@435 1625 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1626
duke@435 1627 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1628 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1629
iveresov@2595 1630 if (entry != NULL) {
iveresov@2595 1631 *entry = __ pc();
iveresov@2595 1632 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1633 BLOCK_COMMENT("Entry:");
iveresov@2595 1634 }
duke@435 1635
duke@435 1636 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1637 // r9 and r10 may be used to save non-volatile registers
duke@435 1638
duke@435 1639 // 'from', 'to' and 'count' are now valid
never@739 1640 __ movptr(word_count, count);
never@739 1641 __ shrptr(count, 2); // count => qword_count
duke@435 1642
duke@435 1643 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1644 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1645 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1646 __ negptr(qword_count);
duke@435 1647 __ jmp(L_copy_32_bytes);
duke@435 1648
duke@435 1649 // Copy trailing qwords
duke@435 1650 __ BIND(L_copy_8_bytes);
duke@435 1651 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1652 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1653 __ increment(qword_count);
duke@435 1654 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1655
duke@435 1656 // Original 'dest' is trashed, so we can't use it as a
duke@435 1657 // base register for a possible trailing word copy
duke@435 1658
duke@435 1659 // Check for and copy trailing dword
duke@435 1660 __ BIND(L_copy_4_bytes);
never@739 1661 __ testl(word_count, 2);
duke@435 1662 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1663 __ movl(rax, Address(end_from, 8));
duke@435 1664 __ movl(Address(end_to, 8), rax);
duke@435 1665
never@739 1666 __ addptr(end_from, 4);
never@739 1667 __ addptr(end_to, 4);
duke@435 1668
duke@435 1669 // Check for and copy trailing word
duke@435 1670 __ BIND(L_copy_2_bytes);
never@739 1671 __ testl(word_count, 1);
duke@435 1672 __ jccb(Assembler::zero, L_exit);
duke@435 1673 __ movw(rax, Address(end_from, 8));
duke@435 1674 __ movw(Address(end_to, 8), rax);
duke@435 1675
duke@435 1676 __ BIND(L_exit);
duke@435 1677 restore_arg_regs();
never@3314 1678 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1679 __ xorptr(rax, rax); // return 0
duke@435 1680 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1681 __ ret(0);
duke@435 1682
duke@435 1683 // Copy in 32-bytes chunks
duke@435 1684 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1685 __ jmp(L_copy_4_bytes);
duke@435 1686
duke@435 1687 return start;
duke@435 1688 }
duke@435 1689
never@2118 1690 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1691 __ align(CodeEntryAlignment);
never@2118 1692 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1693 address start = __ pc();
never@2118 1694
never@2118 1695 BLOCK_COMMENT("Entry:");
never@2118 1696
never@2118 1697 const Register to = c_rarg0; // source array address
never@2118 1698 const Register value = c_rarg1; // value
never@2118 1699 const Register count = c_rarg2; // elements count
never@2118 1700
never@2118 1701 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1702
never@2118 1703 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1704
never@2118 1705 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1706 __ ret(0);
never@2118 1707 return start;
never@2118 1708 }
never@2118 1709
duke@435 1710 // Arguments:
duke@435 1711 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1712 // ignored
duke@435 1713 // name - stub name string
duke@435 1714 //
duke@435 1715 // Inputs:
duke@435 1716 // c_rarg0 - source array address
duke@435 1717 // c_rarg1 - destination array address
duke@435 1718 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1719 //
duke@435 1720 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1721 // let the hardware handle it. The two or four words within dwords
duke@435 1722 // or qwords that span cache line boundaries will still be loaded
duke@435 1723 // and stored atomically.
duke@435 1724 //
iveresov@2595 1725 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1726 address *entry, const char *name) {
duke@435 1727 __ align(CodeEntryAlignment);
duke@435 1728 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1729 address start = __ pc();
duke@435 1730
duke@435 1731 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1732 const Register from = rdi; // source array address
duke@435 1733 const Register to = rsi; // destination array address
duke@435 1734 const Register count = rdx; // elements count
duke@435 1735 const Register word_count = rcx;
duke@435 1736 const Register qword_count = count;
duke@435 1737
duke@435 1738 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1739 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1740
iveresov@2595 1741 if (entry != NULL) {
iveresov@2595 1742 *entry = __ pc();
iveresov@2595 1743 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1744 BLOCK_COMMENT("Entry:");
iveresov@2595 1745 }
iveresov@2595 1746
iveresov@2595 1747 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1748 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1749 // r9 and r10 may be used to save non-volatile registers
duke@435 1750
duke@435 1751 // 'from', 'to' and 'count' are now valid
never@739 1752 __ movptr(word_count, count);
never@739 1753 __ shrptr(count, 2); // count => qword_count
duke@435 1754
duke@435 1755 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1756
duke@435 1757 // Check for and copy trailing word
never@739 1758 __ testl(word_count, 1);
duke@435 1759 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1760 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1761 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1762
duke@435 1763 // Check for and copy trailing dword
duke@435 1764 __ BIND(L_copy_4_bytes);
never@739 1765 __ testl(word_count, 2);
duke@435 1766 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1767 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1768 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1769 __ jmp(L_copy_32_bytes);
duke@435 1770
duke@435 1771 // Copy trailing qwords
duke@435 1772 __ BIND(L_copy_8_bytes);
duke@435 1773 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1774 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1775 __ decrement(qword_count);
duke@435 1776 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1777
duke@435 1778 restore_arg_regs();
never@3314 1779 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1780 __ xorptr(rax, rax); // return 0
duke@435 1781 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1782 __ ret(0);
duke@435 1783
duke@435 1784 // Copy in 32-bytes chunks
duke@435 1785 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1786
duke@435 1787 restore_arg_regs();
never@3314 1788 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1789 __ xorptr(rax, rax); // return 0
duke@435 1790 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1791 __ ret(0);
duke@435 1792
duke@435 1793 return start;
duke@435 1794 }
duke@435 1795
duke@435 1796 // Arguments:
duke@435 1797 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1798 // ignored
coleenp@548 1799 // is_oop - true => oop array, so generate store check code
duke@435 1800 // name - stub name string
duke@435 1801 //
duke@435 1802 // Inputs:
duke@435 1803 // c_rarg0 - source array address
duke@435 1804 // c_rarg1 - destination array address
duke@435 1805 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1806 //
duke@435 1807 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1808 // the hardware handle it. The two dwords within qwords that span
duke@435 1809 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1810 //
duke@435 1811 // Side Effects:
duke@435 1812 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1813 // used by generate_conjoint_int_oop_copy().
duke@435 1814 //
iveresov@2606 1815 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1816 const char *name, bool dest_uninitialized = false) {
duke@435 1817 __ align(CodeEntryAlignment);
duke@435 1818 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1819 address start = __ pc();
duke@435 1820
duke@435 1821 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1822 const Register from = rdi; // source array address
duke@435 1823 const Register to = rsi; // destination array address
duke@435 1824 const Register count = rdx; // elements count
duke@435 1825 const Register dword_count = rcx;
duke@435 1826 const Register qword_count = count;
duke@435 1827 const Register end_from = from; // source array end address
duke@435 1828 const Register end_to = to; // destination array end address
coleenp@548 1829 const Register saved_to = r11; // saved destination array address
duke@435 1830 // End pointers are inclusive, and if count is not zero they point
duke@435 1831 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1832
duke@435 1833 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1834 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1835
iveresov@2595 1836 if (entry != NULL) {
iveresov@2595 1837 *entry = __ pc();
iveresov@2595 1838 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1839 BLOCK_COMMENT("Entry:");
coleenp@548 1840 }
coleenp@548 1841
duke@435 1842 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1843 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1844 if (is_oop) {
coleenp@548 1845 __ movq(saved_to, to);
iveresov@2606 1846 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1847 }
coleenp@548 1848
duke@435 1849 // 'from', 'to' and 'count' are now valid
never@739 1850 __ movptr(dword_count, count);
never@739 1851 __ shrptr(count, 1); // count => qword_count
duke@435 1852
duke@435 1853 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1854 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1855 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1856 __ negptr(qword_count);
duke@435 1857 __ jmp(L_copy_32_bytes);
duke@435 1858
duke@435 1859 // Copy trailing qwords
duke@435 1860 __ BIND(L_copy_8_bytes);
duke@435 1861 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1862 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1863 __ increment(qword_count);
duke@435 1864 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1865
duke@435 1866 // Check for and copy trailing dword
duke@435 1867 __ BIND(L_copy_4_bytes);
never@739 1868 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1869 __ jccb(Assembler::zero, L_exit);
duke@435 1870 __ movl(rax, Address(end_from, 8));
duke@435 1871 __ movl(Address(end_to, 8), rax);
duke@435 1872
duke@435 1873 __ BIND(L_exit);
coleenp@548 1874 if (is_oop) {
coleenp@548 1875 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1876 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1877 }
duke@435 1878 restore_arg_regs();
never@3314 1879 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1880 __ xorptr(rax, rax); // return 0
duke@435 1881 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1882 __ ret(0);
duke@435 1883
duke@435 1884 // Copy 32-bytes chunks
duke@435 1885 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1886 __ jmp(L_copy_4_bytes);
duke@435 1887
duke@435 1888 return start;
duke@435 1889 }
duke@435 1890
duke@435 1891 // Arguments:
duke@435 1892 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1893 // ignored
coleenp@548 1894 // is_oop - true => oop array, so generate store check code
duke@435 1895 // name - stub name string
duke@435 1896 //
duke@435 1897 // Inputs:
duke@435 1898 // c_rarg0 - source array address
duke@435 1899 // c_rarg1 - destination array address
duke@435 1900 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1901 //
duke@435 1902 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1903 // the hardware handle it. The two dwords within qwords that span
duke@435 1904 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1905 //
iveresov@2595 1906 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1907 address *entry, const char *name,
iveresov@2606 1908 bool dest_uninitialized = false) {
duke@435 1909 __ align(CodeEntryAlignment);
duke@435 1910 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1911 address start = __ pc();
duke@435 1912
coleenp@548 1913 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1914 const Register from = rdi; // source array address
duke@435 1915 const Register to = rsi; // destination array address
duke@435 1916 const Register count = rdx; // elements count
duke@435 1917 const Register dword_count = rcx;
duke@435 1918 const Register qword_count = count;
duke@435 1919
duke@435 1920 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1921 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1922
iveresov@2595 1923 if (entry != NULL) {
iveresov@2595 1924 *entry = __ pc();
iveresov@2595 1925 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1926 BLOCK_COMMENT("Entry:");
iveresov@2595 1927 }
iveresov@2595 1928
iveresov@2595 1929 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1930 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1931 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1932
coleenp@548 1933 if (is_oop) {
coleenp@548 1934 // no registers are destroyed by this call
iveresov@2606 1935 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1936 }
coleenp@548 1937
coleenp@548 1938 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1939 // 'from', 'to' and 'count' are now valid
never@739 1940 __ movptr(dword_count, count);
never@739 1941 __ shrptr(count, 1); // count => qword_count
duke@435 1942
duke@435 1943 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1944
duke@435 1945 // Check for and copy trailing dword
never@739 1946 __ testl(dword_count, 1);
duke@435 1947 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1948 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1949 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1950 __ jmp(L_copy_32_bytes);
duke@435 1951
duke@435 1952 // Copy trailing qwords
duke@435 1953 __ BIND(L_copy_8_bytes);
duke@435 1954 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1955 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1956 __ decrement(qword_count);
duke@435 1957 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1958
coleenp@548 1959 if (is_oop) {
coleenp@548 1960 __ jmp(L_exit);
coleenp@548 1961 }
duke@435 1962 restore_arg_regs();
never@3314 1963 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1964 __ xorptr(rax, rax); // return 0
duke@435 1965 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1966 __ ret(0);
duke@435 1967
duke@435 1968 // Copy in 32-bytes chunks
duke@435 1969 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1970
coleenp@548 1971 __ bind(L_exit);
coleenp@548 1972 if (is_oop) {
coleenp@548 1973 Register end_to = rdx;
coleenp@548 1974 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1975 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1976 }
duke@435 1977 restore_arg_regs();
never@3314 1978 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1979 __ xorptr(rax, rax); // return 0
duke@435 1980 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1981 __ ret(0);
duke@435 1982
duke@435 1983 return start;
duke@435 1984 }
duke@435 1985
duke@435 1986 // Arguments:
duke@435 1987 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1988 // ignored
duke@435 1989 // is_oop - true => oop array, so generate store check code
duke@435 1990 // name - stub name string
duke@435 1991 //
duke@435 1992 // Inputs:
duke@435 1993 // c_rarg0 - source array address
duke@435 1994 // c_rarg1 - destination array address
duke@435 1995 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1996 //
coleenp@548 1997 // Side Effects:
duke@435 1998 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1999 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 2000 //
iveresov@2606 2001 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 2002 const char *name, bool dest_uninitialized = false) {
duke@435 2003 __ align(CodeEntryAlignment);
duke@435 2004 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2005 address start = __ pc();
duke@435 2006
duke@435 2007 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2008 const Register from = rdi; // source array address
duke@435 2009 const Register to = rsi; // destination array address
duke@435 2010 const Register qword_count = rdx; // elements count
duke@435 2011 const Register end_from = from; // source array end address
duke@435 2012 const Register end_to = rcx; // destination array end address
duke@435 2013 const Register saved_to = to;
duke@435 2014 // End pointers are inclusive, and if count is not zero they point
duke@435 2015 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2016
duke@435 2017 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2018 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 2019 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2020
iveresov@2595 2021 if (entry != NULL) {
iveresov@2595 2022 *entry = __ pc();
iveresov@2595 2023 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2024 BLOCK_COMMENT("Entry:");
duke@435 2025 }
duke@435 2026
duke@435 2027 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2028 // r9 and r10 may be used to save non-volatile registers
duke@435 2029 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 2030 if (is_oop) {
iveresov@2595 2031 // no registers are destroyed by this call
iveresov@2606 2032 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 2033 }
duke@435 2034
duke@435 2035 // Copy from low to high addresses. Use 'to' as scratch.
never@739 2036 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 2037 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 2038 __ negptr(qword_count);
duke@435 2039 __ jmp(L_copy_32_bytes);
duke@435 2040
duke@435 2041 // Copy trailing qwords
duke@435 2042 __ BIND(L_copy_8_bytes);
duke@435 2043 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2044 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2045 __ increment(qword_count);
duke@435 2046 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2047
duke@435 2048 if (is_oop) {
duke@435 2049 __ jmp(L_exit);
duke@435 2050 } else {
duke@435 2051 restore_arg_regs();
never@3314 2052 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2053 __ xorptr(rax, rax); // return 0
duke@435 2054 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2055 __ ret(0);
duke@435 2056 }
duke@435 2057
duke@435 2058 // Copy 64-byte chunks
duke@435 2059 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2060
duke@435 2061 if (is_oop) {
duke@435 2062 __ BIND(L_exit);
duke@435 2063 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2064 }
duke@435 2065 restore_arg_regs();
never@3314 2066 if (is_oop) {
never@3314 2067 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2068 } else {
never@3314 2069 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2070 }
never@739 2071 __ xorptr(rax, rax); // return 0
duke@435 2072 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2073 __ ret(0);
duke@435 2074
duke@435 2075 return start;
duke@435 2076 }
duke@435 2077
duke@435 2078 // Arguments:
duke@435 2079 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2080 // ignored
duke@435 2081 // is_oop - true => oop array, so generate store check code
duke@435 2082 // name - stub name string
duke@435 2083 //
duke@435 2084 // Inputs:
duke@435 2085 // c_rarg0 - source array address
duke@435 2086 // c_rarg1 - destination array address
duke@435 2087 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2088 //
iveresov@2606 2089 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2090 address nooverlap_target, address *entry,
iveresov@2606 2091 const char *name, bool dest_uninitialized = false) {
duke@435 2092 __ align(CodeEntryAlignment);
duke@435 2093 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2094 address start = __ pc();
duke@435 2095
duke@435 2096 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2097 const Register from = rdi; // source array address
duke@435 2098 const Register to = rsi; // destination array address
duke@435 2099 const Register qword_count = rdx; // elements count
duke@435 2100 const Register saved_count = rcx;
duke@435 2101
duke@435 2102 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2103 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2104
iveresov@2595 2105 if (entry != NULL) {
iveresov@2595 2106 *entry = __ pc();
iveresov@2595 2107 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2108 BLOCK_COMMENT("Entry:");
duke@435 2109 }
iveresov@2595 2110
iveresov@2595 2111 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2112 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2113 // r9 and r10 may be used to save non-volatile registers
duke@435 2114 // 'from', 'to' and 'qword_count' are now valid
duke@435 2115 if (is_oop) {
duke@435 2116 // Save to and count for store barrier
never@739 2117 __ movptr(saved_count, qword_count);
duke@435 2118 // No registers are destroyed by this call
iveresov@2606 2119 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2120 }
duke@435 2121
duke@435 2122 __ jmp(L_copy_32_bytes);
duke@435 2123
duke@435 2124 // Copy trailing qwords
duke@435 2125 __ BIND(L_copy_8_bytes);
duke@435 2126 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2127 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2128 __ decrement(qword_count);
duke@435 2129 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2130
duke@435 2131 if (is_oop) {
duke@435 2132 __ jmp(L_exit);
duke@435 2133 } else {
duke@435 2134 restore_arg_regs();
never@3314 2135 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2136 __ xorptr(rax, rax); // return 0
duke@435 2137 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2138 __ ret(0);
duke@435 2139 }
duke@435 2140
duke@435 2141 // Copy in 32-bytes chunks
duke@435 2142 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2143
duke@435 2144 if (is_oop) {
duke@435 2145 __ BIND(L_exit);
never@739 2146 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2147 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2148 }
duke@435 2149 restore_arg_regs();
never@3314 2150 if (is_oop) {
never@3314 2151 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2152 } else {
never@3314 2153 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2154 }
never@739 2155 __ xorptr(rax, rax); // return 0
duke@435 2156 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2157 __ ret(0);
duke@435 2158
duke@435 2159 return start;
duke@435 2160 }
duke@435 2161
duke@435 2162
duke@435 2163 // Helper for generating a dynamic type check.
duke@435 2164 // Smashes no registers.
duke@435 2165 void generate_type_check(Register sub_klass,
duke@435 2166 Register super_check_offset,
duke@435 2167 Register super_klass,
duke@435 2168 Label& L_success) {
duke@435 2169 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2170
duke@435 2171 BLOCK_COMMENT("type_check:");
duke@435 2172
duke@435 2173 Label L_miss;
duke@435 2174
jrose@1079 2175 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2176 super_check_offset);
jrose@1079 2177 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2178
duke@435 2179 // Fall through on failure!
duke@435 2180 __ BIND(L_miss);
duke@435 2181 }
duke@435 2182
duke@435 2183 //
duke@435 2184 // Generate checkcasting array copy stub
duke@435 2185 //
duke@435 2186 // Input:
duke@435 2187 // c_rarg0 - source array address
duke@435 2188 // c_rarg1 - destination array address
duke@435 2189 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2190 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2191 // not Win64
duke@435 2192 // c_rarg4 - oop ckval (super_klass)
duke@435 2193 // Win64
duke@435 2194 // rsp+40 - oop ckval (super_klass)
duke@435 2195 //
duke@435 2196 // Output:
duke@435 2197 // rax == 0 - success
duke@435 2198 // rax == -1^K - failure, where K is partial transfer count
duke@435 2199 //
iveresov@2606 2200 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2201 bool dest_uninitialized = false) {
duke@435 2202
duke@435 2203 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2204
duke@435 2205 // Input registers (after setup_arg_regs)
duke@435 2206 const Register from = rdi; // source array address
duke@435 2207 const Register to = rsi; // destination array address
duke@435 2208 const Register length = rdx; // elements count
duke@435 2209 const Register ckoff = rcx; // super_check_offset
duke@435 2210 const Register ckval = r8; // super_klass
duke@435 2211
duke@435 2212 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2213 const Register end_from = from; // source array end address
duke@435 2214 const Register end_to = r13; // destination array end address
duke@435 2215 const Register count = rdx; // -(count_remaining)
duke@435 2216 const Register r14_length = r14; // saved copy of length
duke@435 2217 // End pointers are inclusive, and if length is not zero they point
duke@435 2218 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2219
duke@435 2220 const Register rax_oop = rax; // actual oop copied
duke@435 2221 const Register r11_klass = r11; // oop._klass
duke@435 2222
duke@435 2223 //---------------------------------------------------------------
duke@435 2224 // Assembler stub will be used for this call to arraycopy
duke@435 2225 // if the two arrays are subtypes of Object[] but the
duke@435 2226 // destination array type is not equal to or a supertype
duke@435 2227 // of the source type. Each element must be separately
duke@435 2228 // checked.
duke@435 2229
duke@435 2230 __ align(CodeEntryAlignment);
duke@435 2231 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2232 address start = __ pc();
duke@435 2233
duke@435 2234 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2235
duke@435 2236 #ifdef ASSERT
duke@435 2237 // caller guarantees that the arrays really are different
duke@435 2238 // otherwise, we would have to make conjoint checks
duke@435 2239 { Label L;
coleenp@548 2240 array_overlap_test(L, TIMES_OOP);
duke@435 2241 __ stop("checkcast_copy within a single array");
duke@435 2242 __ bind(L);
duke@435 2243 }
duke@435 2244 #endif //ASSERT
duke@435 2245
duke@435 2246 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2247 // ckoff => rcx, ckval => r8
duke@435 2248 // r9 and r10 may be used to save non-volatile registers
duke@435 2249 #ifdef _WIN64
duke@435 2250 // last argument (#4) is on stack on Win64
twisti@2348 2251 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2252 #endif
duke@435 2253
twisti@2348 2254 // Caller of this entry point must set up the argument registers.
iveresov@2595 2255 if (entry != NULL) {
iveresov@2595 2256 *entry = __ pc();
iveresov@2595 2257 BLOCK_COMMENT("Entry:");
iveresov@2595 2258 }
twisti@2348 2259
twisti@2348 2260 // allocate spill slots for r13, r14
twisti@2348 2261 enum {
twisti@2348 2262 saved_r13_offset,
twisti@2348 2263 saved_r14_offset,
twisti@2348 2264 saved_rbp_offset
twisti@2348 2265 };
twisti@2348 2266 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2267 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2268 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2269
duke@435 2270 // check that int operands are properly extended to size_t
duke@435 2271 assert_clean_int(length, rax);
duke@435 2272 assert_clean_int(ckoff, rax);
duke@435 2273
duke@435 2274 #ifdef ASSERT
duke@435 2275 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2276 // The ckoff and ckval must be mutually consistent,
duke@435 2277 // even though caller generates both.
duke@435 2278 { Label L;
stefank@3391 2279 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2280 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2281 __ jcc(Assembler::equal, L);
duke@435 2282 __ stop("super_check_offset inconsistent");
duke@435 2283 __ bind(L);
duke@435 2284 }
duke@435 2285 #endif //ASSERT
duke@435 2286
duke@435 2287 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2288 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2289 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2290 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2291 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2292 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2293
iveresov@2606 2294 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2295
duke@435 2296 // Copy from low to high addresses, indexed from the end of each array.
never@739 2297 __ lea(end_from, end_from_addr);
never@739 2298 __ lea(end_to, end_to_addr);
never@739 2299 __ movptr(r14_length, length); // save a copy of the length
never@739 2300 assert(length == count, ""); // else fix next line:
never@739 2301 __ negptr(count); // negate and test the length
duke@435 2302 __ jcc(Assembler::notZero, L_load_element);
duke@435 2303
duke@435 2304 // Empty array: Nothing to do.
never@739 2305 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2306 __ jmp(L_done);
duke@435 2307
duke@435 2308 // ======== begin loop ========
duke@435 2309 // (Loop is rotated; its entry is L_load_element.)
duke@435 2310 // Loop control:
duke@435 2311 // for (count = -count; count != 0; count++)
duke@435 2312 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2313 __ align(OptoLoopAlignment);
duke@435 2314
duke@435 2315 __ BIND(L_store_element);
coleenp@548 2316 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2317 __ increment(count); // increment the count toward zero
duke@435 2318 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2319
duke@435 2320 // ======== loop entry is here ========
duke@435 2321 __ BIND(L_load_element);
coleenp@548 2322 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2323 __ testptr(rax_oop, rax_oop);
duke@435 2324 __ jcc(Assembler::zero, L_store_element);
duke@435 2325
coleenp@548 2326 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2327 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2328 // ======== end loop ========
duke@435 2329
duke@435 2330 // It was a real error; we must depend on the caller to finish the job.
duke@435 2331 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2332 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2333 // and report their number to the caller.
duke@435 2334 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2335 __ lea(end_to, to_element_addr);
ysr@1280 2336 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2337 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2338 __ movptr(rax, r14_length); // original oops
never@739 2339 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2340 __ notptr(rax); // report (-1^K) to caller
duke@435 2341 __ jmp(L_done);
duke@435 2342
duke@435 2343 // Come here on success only.
duke@435 2344 __ BIND(L_do_card_marks);
ysr@1280 2345 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2346 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2347 __ xorptr(rax, rax); // return 0 on success
duke@435 2348
duke@435 2349 // Common exit point (success or failure).
duke@435 2350 __ BIND(L_done);
never@739 2351 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2352 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2353 restore_arg_regs();
never@3314 2354 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
duke@435 2355 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2356 __ ret(0);
duke@435 2357
duke@435 2358 return start;
duke@435 2359 }
duke@435 2360
duke@435 2361 //
duke@435 2362 // Generate 'unsafe' array copy stub
duke@435 2363 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2364 // size_t argument instead of an element count.
duke@435 2365 //
duke@435 2366 // Input:
duke@435 2367 // c_rarg0 - source array address
duke@435 2368 // c_rarg1 - destination array address
duke@435 2369 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2370 //
duke@435 2371 // Examines the alignment of the operands and dispatches
duke@435 2372 // to a long, int, short, or byte copy loop.
duke@435 2373 //
iveresov@2595 2374 address generate_unsafe_copy(const char *name,
iveresov@2595 2375 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2376 address int_copy_entry, address long_copy_entry) {
duke@435 2377
duke@435 2378 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2379
duke@435 2380 // Input registers (before setup_arg_regs)
duke@435 2381 const Register from = c_rarg0; // source array address
duke@435 2382 const Register to = c_rarg1; // destination array address
duke@435 2383 const Register size = c_rarg2; // byte count (size_t)
duke@435 2384
duke@435 2385 // Register used as a temp
duke@435 2386 const Register bits = rax; // test copy of low bits
duke@435 2387
duke@435 2388 __ align(CodeEntryAlignment);
duke@435 2389 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2390 address start = __ pc();
duke@435 2391
duke@435 2392 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2393
duke@435 2394 // bump this on entry, not on exit:
duke@435 2395 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2396
never@739 2397 __ mov(bits, from);
never@739 2398 __ orptr(bits, to);
never@739 2399 __ orptr(bits, size);
duke@435 2400
duke@435 2401 __ testb(bits, BytesPerLong-1);
duke@435 2402 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2403
duke@435 2404 __ testb(bits, BytesPerInt-1);
duke@435 2405 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2406
duke@435 2407 __ testb(bits, BytesPerShort-1);
duke@435 2408 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2409
duke@435 2410 __ BIND(L_short_aligned);
never@739 2411 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2412 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2413
duke@435 2414 __ BIND(L_int_aligned);
never@739 2415 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2416 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2417
duke@435 2418 __ BIND(L_long_aligned);
never@739 2419 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2420 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2421
duke@435 2422 return start;
duke@435 2423 }
duke@435 2424
duke@435 2425 // Perform range checks on the proposed arraycopy.
duke@435 2426 // Kills temp, but nothing else.
duke@435 2427 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2428 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2429 Register src_pos, // source position (c_rarg1)
duke@435 2430 Register dst, // destination array oo (c_rarg2)
duke@435 2431 Register dst_pos, // destination position (c_rarg3)
duke@435 2432 Register length,
duke@435 2433 Register temp,
duke@435 2434 Label& L_failed) {
duke@435 2435 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2436
duke@435 2437 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2438 __ movl(temp, length);
duke@435 2439 __ addl(temp, src_pos); // src_pos + length
duke@435 2440 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2441 __ jcc(Assembler::above, L_failed);
duke@435 2442
duke@435 2443 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2444 __ movl(temp, length);
duke@435 2445 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2446 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2447 __ jcc(Assembler::above, L_failed);
duke@435 2448
duke@435 2449 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2450 // Move with sign extension can be used since they are positive.
duke@435 2451 __ movslq(src_pos, src_pos);
duke@435 2452 __ movslq(dst_pos, dst_pos);
duke@435 2453
duke@435 2454 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2455 }
duke@435 2456
duke@435 2457 //
duke@435 2458 // Generate generic array copy stubs
duke@435 2459 //
duke@435 2460 // Input:
duke@435 2461 // c_rarg0 - src oop
duke@435 2462 // c_rarg1 - src_pos (32-bits)
duke@435 2463 // c_rarg2 - dst oop
duke@435 2464 // c_rarg3 - dst_pos (32-bits)
duke@435 2465 // not Win64
duke@435 2466 // c_rarg4 - element count (32-bits)
duke@435 2467 // Win64
duke@435 2468 // rsp+40 - element count (32-bits)
duke@435 2469 //
duke@435 2470 // Output:
duke@435 2471 // rax == 0 - success
duke@435 2472 // rax == -1^K - failure, where K is partial transfer count
duke@435 2473 //
iveresov@2595 2474 address generate_generic_copy(const char *name,
iveresov@2595 2475 address byte_copy_entry, address short_copy_entry,
iveresov@2691 2476 address int_copy_entry, address oop_copy_entry,
iveresov@2691 2477 address long_copy_entry, address checkcast_copy_entry) {
duke@435 2478
duke@435 2479 Label L_failed, L_failed_0, L_objArray;
duke@435 2480 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2481
duke@435 2482 // Input registers
duke@435 2483 const Register src = c_rarg0; // source array oop
duke@435 2484 const Register src_pos = c_rarg1; // source position
duke@435 2485 const Register dst = c_rarg2; // destination array oop
duke@435 2486 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2487 #ifndef _WIN64
twisti@2348 2488 const Register length = c_rarg4;
duke@435 2489 #else
twisti@2348 2490 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2491 #endif
duke@435 2492
duke@435 2493 { int modulus = CodeEntryAlignment;
duke@435 2494 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2495 int advance = target - (__ offset() % modulus);
duke@435 2496 if (advance < 0) advance += modulus;
duke@435 2497 if (advance > 0) __ nop(advance);
duke@435 2498 }
duke@435 2499 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2500
duke@435 2501 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2502 __ BIND(L_failed_0);
duke@435 2503 __ jmp(L_failed);
duke@435 2504 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2505
duke@435 2506 __ align(CodeEntryAlignment);
duke@435 2507 address start = __ pc();
duke@435 2508
duke@435 2509 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2510
duke@435 2511 // bump this on entry, not on exit:
duke@435 2512 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2513
duke@435 2514 //-----------------------------------------------------------------------
duke@435 2515 // Assembler stub will be used for this call to arraycopy
duke@435 2516 // if the following conditions are met:
duke@435 2517 //
duke@435 2518 // (1) src and dst must not be null.
duke@435 2519 // (2) src_pos must not be negative.
duke@435 2520 // (3) dst_pos must not be negative.
duke@435 2521 // (4) length must not be negative.
duke@435 2522 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2523 // (6) src and dst should be arrays.
duke@435 2524 // (7) src_pos + length must not exceed length of src.
duke@435 2525 // (8) dst_pos + length must not exceed length of dst.
duke@435 2526 //
duke@435 2527
duke@435 2528 // if (src == NULL) return -1;
never@739 2529 __ testptr(src, src); // src oop
duke@435 2530 size_t j1off = __ offset();
duke@435 2531 __ jccb(Assembler::zero, L_failed_0);
duke@435 2532
duke@435 2533 // if (src_pos < 0) return -1;
duke@435 2534 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2535 __ jccb(Assembler::negative, L_failed_0);
duke@435 2536
duke@435 2537 // if (dst == NULL) return -1;
never@739 2538 __ testptr(dst, dst); // dst oop
duke@435 2539 __ jccb(Assembler::zero, L_failed_0);
duke@435 2540
duke@435 2541 // if (dst_pos < 0) return -1;
duke@435 2542 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2543 size_t j4off = __ offset();
duke@435 2544 __ jccb(Assembler::negative, L_failed_0);
duke@435 2545
duke@435 2546 // The first four tests are very dense code,
duke@435 2547 // but not quite dense enough to put four
duke@435 2548 // jumps in a 16-byte instruction fetch buffer.
duke@435 2549 // That's good, because some branch predicters
duke@435 2550 // do not like jumps so close together.
duke@435 2551 // Make sure of this.
duke@435 2552 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2553
duke@435 2554 // registers used as temp
duke@435 2555 const Register r11_length = r11; // elements count to copy
duke@435 2556 const Register r10_src_klass = r10; // array klass
duke@435 2557
duke@435 2558 // if (length < 0) return -1;
twisti@2348 2559 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2560 __ testl(r11_length, r11_length);
duke@435 2561 __ jccb(Assembler::negative, L_failed_0);
duke@435 2562
coleenp@548 2563 __ load_klass(r10_src_klass, src);
duke@435 2564 #ifdef ASSERT
duke@435 2565 // assert(src->klass() != NULL);
twisti@2348 2566 {
twisti@2348 2567 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2568 Label L1, L2;
never@739 2569 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2570 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2571 __ bind(L1);
duke@435 2572 __ stop("broken null klass");
duke@435 2573 __ bind(L2);
twisti@2348 2574 __ load_klass(rax, dst);
twisti@2348 2575 __ cmpq(rax, 0);
duke@435 2576 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2577 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2578 }
duke@435 2579 #endif
duke@435 2580
duke@435 2581 // Load layout helper (32-bits)
duke@435 2582 //
duke@435 2583 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2584 // 32 30 24 16 8 2 0
duke@435 2585 //
duke@435 2586 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2587 //
duke@435 2588
stefank@3391 2589 const int lh_offset = in_bytes(Klass::layout_helper_offset());
twisti@2348 2590
twisti@2348 2591 // Handle objArrays completely differently...
twisti@2348 2592 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2593 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2594 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2595
twisti@2348 2596 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2597 __ load_klass(rax, dst);
twisti@2348 2598 __ cmpq(r10_src_klass, rax);
twisti@2348 2599 __ jcc(Assembler::notEqual, L_failed);
duke@435 2600
duke@435 2601 const Register rax_lh = rax; // layout helper
duke@435 2602 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2603
duke@435 2604 // if (!src->is_Array()) return -1;
duke@435 2605 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2606 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2607
duke@435 2608 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2609 #ifdef ASSERT
twisti@2348 2610 {
twisti@2348 2611 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2612 Label L;
duke@435 2613 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2614 __ jcc(Assembler::greaterEqual, L);
duke@435 2615 __ stop("must be a primitive array");
duke@435 2616 __ bind(L);
twisti@2348 2617 BLOCK_COMMENT("} assert primitive array done");
duke@435 2618 }
duke@435 2619 #endif
duke@435 2620
duke@435 2621 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2622 r10, L_failed);
duke@435 2623
duke@435 2624 // typeArrayKlass
duke@435 2625 //
duke@435 2626 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2627 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2628 //
duke@435 2629
duke@435 2630 const Register r10_offset = r10; // array offset
duke@435 2631 const Register rax_elsize = rax_lh; // element size
duke@435 2632
duke@435 2633 __ movl(r10_offset, rax_lh);
duke@435 2634 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2635 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2636 __ addptr(src, r10_offset); // src array offset
never@739 2637 __ addptr(dst, r10_offset); // dst array offset
duke@435 2638 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2639 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2640
duke@435 2641 // next registers should be set before the jump to corresponding stub
duke@435 2642 const Register from = c_rarg0; // source array address
duke@435 2643 const Register to = c_rarg1; // destination array address
duke@435 2644 const Register count = c_rarg2; // elements count
duke@435 2645
duke@435 2646 // 'from', 'to', 'count' registers should be set in such order
duke@435 2647 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2648
duke@435 2649 __ BIND(L_copy_bytes);
duke@435 2650 __ cmpl(rax_elsize, 0);
duke@435 2651 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2652 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2653 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2654 __ movl2ptr(count, r11_length); // length
duke@435 2655 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2656
duke@435 2657 __ BIND(L_copy_shorts);
duke@435 2658 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2659 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2660 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2661 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2662 __ movl2ptr(count, r11_length); // length
duke@435 2663 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2664
duke@435 2665 __ BIND(L_copy_ints);
duke@435 2666 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2667 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2668 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2669 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2670 __ movl2ptr(count, r11_length); // length
duke@435 2671 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2672
duke@435 2673 __ BIND(L_copy_longs);
duke@435 2674 #ifdef ASSERT
twisti@2348 2675 {
twisti@2348 2676 BLOCK_COMMENT("assert long copy {");
twisti@2348 2677 Label L;
duke@435 2678 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2679 __ jcc(Assembler::equal, L);
duke@435 2680 __ stop("must be long copy, but elsize is wrong");
duke@435 2681 __ bind(L);
twisti@2348 2682 BLOCK_COMMENT("} assert long copy done");
duke@435 2683 }
duke@435 2684 #endif
never@739 2685 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2686 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2687 __ movl2ptr(count, r11_length); // length
duke@435 2688 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2689
duke@435 2690 // objArrayKlass
duke@435 2691 __ BIND(L_objArray);
twisti@2348 2692 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2693
duke@435 2694 Label L_plain_copy, L_checkcast_copy;
duke@435 2695 // test array classes for subtyping
twisti@2348 2696 __ load_klass(rax, dst);
twisti@2348 2697 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2698 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2699
duke@435 2700 // Identically typed arrays can be copied without element-wise checks.
duke@435 2701 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2702 r10, L_failed);
duke@435 2703
never@739 2704 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2705 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2706 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2707 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2708 __ movl2ptr(count, r11_length); // length
duke@435 2709 __ BIND(L_plain_copy);
duke@435 2710 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2711
duke@435 2712 __ BIND(L_checkcast_copy);
twisti@2348 2713 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2714 {
duke@435 2715 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2716 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2717 __ jcc(Assembler::notEqual, L_failed);
duke@435 2718
duke@435 2719 // It is safe to examine both src.length and dst.length.
duke@435 2720 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2721 rax, L_failed);
twisti@2348 2722
twisti@2348 2723 const Register r11_dst_klass = r11;
coleenp@548 2724 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2725
duke@435 2726 // Marshal the base address arguments now, freeing registers.
never@739 2727 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2728 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2729 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2730 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2731 __ movl(count, length); // length (reloaded)
duke@435 2732 Register sco_temp = c_rarg3; // this register is free now
duke@435 2733 assert_different_registers(from, to, count, sco_temp,
duke@435 2734 r11_dst_klass, r10_src_klass);
duke@435 2735 assert_clean_int(count, sco_temp);
duke@435 2736
duke@435 2737 // Generate the type check.
stefank@3391 2738 const int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2739 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2740 assert_clean_int(sco_temp, rax);
duke@435 2741 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2742
duke@435 2743 // Fetch destination element klass from the objArrayKlass header.
stefank@3391 2744 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
never@739 2745 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2746 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2747 assert_clean_int(sco_temp, rax);
duke@435 2748
duke@435 2749 // the checkcast_copy loop needs two extra arguments:
duke@435 2750 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2751 // Set up arguments for checkcast_copy_entry.
twisti@2348 2752 setup_arg_regs(4);
twisti@2348 2753 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2754 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2755 }
duke@435 2756
duke@435 2757 __ BIND(L_failed);
never@739 2758 __ xorptr(rax, rax);
never@739 2759 __ notptr(rax); // return -1
duke@435 2760 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2761 __ ret(0);
duke@435 2762
duke@435 2763 return start;
duke@435 2764 }
duke@435 2765
duke@435 2766 void generate_arraycopy_stubs() {
iveresov@2595 2767 address entry;
iveresov@2595 2768 address entry_jbyte_arraycopy;
iveresov@2595 2769 address entry_jshort_arraycopy;
iveresov@2595 2770 address entry_jint_arraycopy;
iveresov@2595 2771 address entry_oop_arraycopy;
iveresov@2595 2772 address entry_jlong_arraycopy;
iveresov@2595 2773 address entry_checkcast_arraycopy;
iveresov@2595 2774
iveresov@2595 2775 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2776 "jbyte_disjoint_arraycopy");
iveresov@2595 2777 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2778 "jbyte_arraycopy");
iveresov@2595 2779
iveresov@2595 2780 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2781 "jshort_disjoint_arraycopy");
iveresov@2595 2782 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2783 "jshort_arraycopy");
iveresov@2595 2784
iveresov@2595 2785 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2786 "jint_disjoint_arraycopy");
iveresov@2595 2787 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2788 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2789
iveresov@2595 2790 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2791 "jlong_disjoint_arraycopy");
iveresov@2595 2792 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2793 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2794
coleenp@548 2795
coleenp@548 2796 if (UseCompressedOops) {
iveresov@2595 2797 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2798 "oop_disjoint_arraycopy");
iveresov@2595 2799 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2800 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2801 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2802 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2803 /*dest_uninitialized*/true);
iveresov@2606 2804 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2805 NULL, "oop_arraycopy_uninit",
iveresov@2606 2806 /*dest_uninitialized*/true);
coleenp@548 2807 } else {
iveresov@2595 2808 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2809 "oop_disjoint_arraycopy");
iveresov@2595 2810 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2811 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2812 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2813 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2814 /*dest_uninitialized*/true);
iveresov@2606 2815 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2816 NULL, "oop_arraycopy_uninit",
iveresov@2606 2817 /*dest_uninitialized*/true);
coleenp@548 2818 }
duke@435 2819
iveresov@2606 2820 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2821 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2822 /*dest_uninitialized*/true);
iveresov@2606 2823
iveresov@2595 2824 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2825 entry_jbyte_arraycopy,
iveresov@2595 2826 entry_jshort_arraycopy,
iveresov@2595 2827 entry_jint_arraycopy,
iveresov@2595 2828 entry_jlong_arraycopy);
iveresov@2595 2829 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2830 entry_jbyte_arraycopy,
iveresov@2595 2831 entry_jshort_arraycopy,
iveresov@2595 2832 entry_jint_arraycopy,
iveresov@2595 2833 entry_oop_arraycopy,
iveresov@2595 2834 entry_jlong_arraycopy,
iveresov@2595 2835 entry_checkcast_arraycopy);
duke@435 2836
never@2118 2837 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2838 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2839 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2840 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2841 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2842 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2843
duke@435 2844 // We don't generate specialized code for HeapWord-aligned source
duke@435 2845 // arrays, so just use the code we've already generated
duke@435 2846 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2847 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2848
duke@435 2849 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2850 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2851
duke@435 2852 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2853 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2854
duke@435 2855 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2856 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2857
duke@435 2858 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2859 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2860
iveresov@2606 2861 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2862 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2863 }
duke@435 2864
never@1609 2865 void generate_math_stubs() {
never@1609 2866 {
never@1609 2867 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2868 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2869
never@1609 2870 __ subq(rsp, 8);
never@1609 2871 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2872 __ fld_d(Address(rsp, 0));
never@1609 2873 __ flog();
never@1609 2874 __ fstp_d(Address(rsp, 0));
never@1609 2875 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2876 __ addq(rsp, 8);
never@1609 2877 __ ret(0);
never@1609 2878 }
never@1609 2879 {
never@1609 2880 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2881 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2882
never@1609 2883 __ subq(rsp, 8);
never@1609 2884 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2885 __ fld_d(Address(rsp, 0));
never@1609 2886 __ flog10();
never@1609 2887 __ fstp_d(Address(rsp, 0));
never@1609 2888 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2889 __ addq(rsp, 8);
never@1609 2890 __ ret(0);
never@1609 2891 }
never@1609 2892 {
never@1609 2893 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2894 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2895
never@1609 2896 __ subq(rsp, 8);
never@1609 2897 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2898 __ fld_d(Address(rsp, 0));
never@1609 2899 __ trigfunc('s');
never@1609 2900 __ fstp_d(Address(rsp, 0));
never@1609 2901 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2902 __ addq(rsp, 8);
never@1609 2903 __ ret(0);
never@1609 2904 }
never@1609 2905 {
never@1609 2906 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2907 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2908
never@1609 2909 __ subq(rsp, 8);
never@1609 2910 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2911 __ fld_d(Address(rsp, 0));
never@1609 2912 __ trigfunc('c');
never@1609 2913 __ fstp_d(Address(rsp, 0));
never@1609 2914 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2915 __ addq(rsp, 8);
never@1609 2916 __ ret(0);
never@1609 2917 }
never@1609 2918 {
never@1609 2919 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2920 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2921
never@1609 2922 __ subq(rsp, 8);
never@1609 2923 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2924 __ fld_d(Address(rsp, 0));
never@1609 2925 __ trigfunc('t');
never@1609 2926 __ fstp_d(Address(rsp, 0));
never@1609 2927 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2928 __ addq(rsp, 8);
never@1609 2929 __ ret(0);
never@1609 2930 }
roland@3787 2931 {
roland@3787 2932 StubCodeMark mark(this, "StubRoutines", "exp");
roland@3787 2933 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
roland@3787 2934
roland@3787 2935 __ subq(rsp, 8);
roland@3787 2936 __ movdbl(Address(rsp, 0), xmm0);
roland@3787 2937 __ fld_d(Address(rsp, 0));
roland@3787 2938 __ exp_with_fallback(0);
roland@3787 2939 __ fstp_d(Address(rsp, 0));
roland@3787 2940 __ movdbl(xmm0, Address(rsp, 0));
roland@3787 2941 __ addq(rsp, 8);
roland@3787 2942 __ ret(0);
roland@3787 2943 }
roland@3787 2944 {
roland@3787 2945 StubCodeMark mark(this, "StubRoutines", "pow");
roland@3787 2946 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
roland@3787 2947
roland@3787 2948 __ subq(rsp, 8);
roland@3787 2949 __ movdbl(Address(rsp, 0), xmm1);
roland@3787 2950 __ fld_d(Address(rsp, 0));
roland@3787 2951 __ movdbl(Address(rsp, 0), xmm0);
roland@3787 2952 __ fld_d(Address(rsp, 0));
roland@3787 2953 __ pow_with_fallback(0);
roland@3787 2954 __ fstp_d(Address(rsp, 0));
roland@3787 2955 __ movdbl(xmm0, Address(rsp, 0));
roland@3787 2956 __ addq(rsp, 8);
roland@3787 2957 __ ret(0);
roland@3787 2958 }
never@1609 2959 }
never@1609 2960
duke@435 2961 #undef __
duke@435 2962 #define __ masm->
duke@435 2963
duke@435 2964 // Continuation point for throwing of implicit exceptions that are
duke@435 2965 // not handled in the current activation. Fabricates an exception
duke@435 2966 // oop and initiates normal exception dispatching in this
duke@435 2967 // frame. Since we need to preserve callee-saved values (currently
duke@435 2968 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2969 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2970 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2971 // be preserved between the fault point and the exception handler
duke@435 2972 // then it must assume responsibility for that in
duke@435 2973 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2974 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2975 // implicit exceptions (e.g., NullPointerException or
duke@435 2976 // AbstractMethodError on entry) are either at call sites or
duke@435 2977 // otherwise assume that stack unwinding will be initiated, so
duke@435 2978 // caller saved registers were assumed volatile in the compiler.
duke@435 2979 address generate_throw_exception(const char* name,
duke@435 2980 address runtime_entry,
never@2978 2981 Register arg1 = noreg,
never@2978 2982 Register arg2 = noreg) {
duke@435 2983 // Information about frame layout at time of blocking runtime call.
duke@435 2984 // Note that we only have to preserve callee-saved registers since
duke@435 2985 // the compilers are responsible for supplying a continuation point
duke@435 2986 // if they expect all registers to be preserved.
duke@435 2987 enum layout {
duke@435 2988 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2989 rbp_off2,
duke@435 2990 return_off,
duke@435 2991 return_off2,
duke@435 2992 framesize // inclusive of return address
duke@435 2993 };
duke@435 2994
duke@435 2995 int insts_size = 512;
duke@435 2996 int locs_size = 64;
duke@435 2997
duke@435 2998 CodeBuffer code(name, insts_size, locs_size);
duke@435 2999 OopMapSet* oop_maps = new OopMapSet();
duke@435 3000 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 3001
duke@435 3002 address start = __ pc();
duke@435 3003
duke@435 3004 // This is an inlined and slightly modified version of call_VM
duke@435 3005 // which has the ability to fetch the return PC out of
duke@435 3006 // thread-local storage and also sets up last_Java_sp slightly
duke@435 3007 // differently than the real call_VM
duke@435 3008
duke@435 3009 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 3010
duke@435 3011 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 3012
duke@435 3013 // return address and rbp are already in place
never@739 3014 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 3015
duke@435 3016 int frame_complete = __ pc() - start;
duke@435 3017
duke@435 3018 // Set up last_Java_sp and last_Java_fp
roland@3522 3019 address the_pc = __ pc();
roland@3522 3020 __ set_last_Java_frame(rsp, rbp, the_pc);
roland@3522 3021 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 3022
duke@435 3023 // Call runtime
never@2978 3024 if (arg1 != noreg) {
never@2978 3025 assert(arg2 != c_rarg1, "clobbered");
never@2978 3026 __ movptr(c_rarg1, arg1);
never@2978 3027 }
never@2978 3028 if (arg2 != noreg) {
never@2978 3029 __ movptr(c_rarg2, arg2);
never@2978 3030 }
never@739 3031 __ movptr(c_rarg0, r15_thread);
duke@435 3032 BLOCK_COMMENT("call runtime_entry");
duke@435 3033 __ call(RuntimeAddress(runtime_entry));
duke@435 3034
duke@435 3035 // Generate oop map
duke@435 3036 OopMap* map = new OopMap(framesize, 0);
duke@435 3037
roland@3568 3038 oop_maps->add_gc_map(the_pc - start, map);
duke@435 3039
roland@3522 3040 __ reset_last_Java_frame(true, true);
duke@435 3041
duke@435 3042 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 3043
duke@435 3044 // check for pending exceptions
duke@435 3045 #ifdef ASSERT
duke@435 3046 Label L;
never@739 3047 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 3048 (int32_t) NULL_WORD);
duke@435 3049 __ jcc(Assembler::notEqual, L);
duke@435 3050 __ should_not_reach_here();
duke@435 3051 __ bind(L);
duke@435 3052 #endif // ASSERT
duke@435 3053 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3054
duke@435 3055
duke@435 3056 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 3057 RuntimeStub* stub =
duke@435 3058 RuntimeStub::new_runtime_stub(name,
duke@435 3059 &code,
duke@435 3060 frame_complete,
duke@435 3061 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 3062 oop_maps, false);
duke@435 3063 return stub->entry_point();
duke@435 3064 }
duke@435 3065
duke@435 3066 // Initialization
duke@435 3067 void generate_initial() {
duke@435 3068 // Generates all stubs and initializes the entry points
duke@435 3069
duke@435 3070 // This platform-specific stub is needed by generate_call_stub()
never@739 3071 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 3072
duke@435 3073 // entry points that exist in all platforms Note: This is code
duke@435 3074 // that could be shared among different platforms - however the
duke@435 3075 // benefit seems to be smaller than the disadvantage of having a
duke@435 3076 // much more complicated generator structure. See also comment in
duke@435 3077 // stubRoutines.hpp.
duke@435 3078
duke@435 3079 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3080
duke@435 3081 StubRoutines::_call_stub_entry =
duke@435 3082 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3083
duke@435 3084 // is referenced by megamorphic call
duke@435 3085 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3086
duke@435 3087 // atomic calls
duke@435 3088 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3089 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3090 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3091 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3092 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3093 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3094 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3095
duke@435 3096 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3097 generate_handler_for_unsafe_access();
duke@435 3098
duke@435 3099 // platform dependent
never@739 3100 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
roland@3606 3101 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
never@739 3102
never@739 3103 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@2978 3104
bdelsart@3372 3105 // Build this early so it's available for the interpreter.
bdelsart@3372 3106 StubRoutines::_throw_StackOverflowError_entry =
bdelsart@3372 3107 generate_throw_exception("StackOverflowError throw_exception",
bdelsart@3372 3108 CAST_FROM_FN_PTR(address,
bdelsart@3372 3109 SharedRuntime::
bdelsart@3372 3110 throw_StackOverflowError));
duke@435 3111 }
duke@435 3112
duke@435 3113 void generate_all() {
duke@435 3114 // Generates all stubs and initializes the entry points
duke@435 3115
duke@435 3116 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3117 // non-core builds and need to be relocatable, so they each
duke@435 3118 // fabricate a RuntimeStub internally.
duke@435 3119 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3120 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3121 CAST_FROM_FN_PTR(address,
duke@435 3122 SharedRuntime::
never@3136 3123 throw_AbstractMethodError));
duke@435 3124
dcubed@451 3125 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3126 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3127 CAST_FROM_FN_PTR(address,
dcubed@451 3128 SharedRuntime::
never@3136 3129 throw_IncompatibleClassChangeError));
duke@435 3130
duke@435 3131 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3132 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3133 CAST_FROM_FN_PTR(address,
duke@435 3134 SharedRuntime::
never@3136 3135 throw_NullPointerException_at_call));
duke@435 3136
duke@435 3137 // entry points that are platform specific
never@739 3138 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3139 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3140 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3141 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3142
never@739 3143 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3144 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3145 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3146 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3147
duke@435 3148 // support for verify_oop (must happen after universe_init)
duke@435 3149 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3150
duke@435 3151 // arraycopy stubs used by compilers
duke@435 3152 generate_arraycopy_stubs();
twisti@1543 3153
never@1609 3154 generate_math_stubs();
duke@435 3155 }
duke@435 3156
duke@435 3157 public:
duke@435 3158 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3159 if (all) {
duke@435 3160 generate_all();
duke@435 3161 } else {
duke@435 3162 generate_initial();
duke@435 3163 }
duke@435 3164 }
duke@435 3165 }; // end class declaration
duke@435 3166
duke@435 3167 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3168 StubGenerator g(code, all);
duke@435 3169 }

mercurial