src/cpu/x86/vm/stubGenerator_x86_64.cpp

Fri, 27 Aug 2010 17:33:49 -0700

author
never
date
Fri, 27 Aug 2010 17:33:49 -0700
changeset 2118
d6f45b55c972
parent 1938
02e771df338e
child 2314
f95d63e2154a
permissions
-rw-r--r--

4809552: Optimize Arrays.fill(...)
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_64.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
coleenp@548 33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 34 #define a__ ((Assembler*)_masm)->
duke@435 35
duke@435 36 #ifdef PRODUCT
duke@435 37 #define BLOCK_COMMENT(str) /* nothing */
duke@435 38 #else
duke@435 39 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 40 #endif
duke@435 41
duke@435 42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 43 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 44
duke@435 45 // Stub Code definitions
duke@435 46
duke@435 47 static address handle_unsafe_access() {
duke@435 48 JavaThread* thread = JavaThread::current();
duke@435 49 address pc = thread->saved_exception_pc();
duke@435 50 // pc is the instruction which we must emulate
duke@435 51 // doing a no-op is fine: return garbage from the load
duke@435 52 // therefore, compute npc
duke@435 53 address npc = Assembler::locate_next_instruction(pc);
duke@435 54
duke@435 55 // request an async exception
duke@435 56 thread->set_pending_unsafe_access_error();
duke@435 57
duke@435 58 // return address of next instruction to execute
duke@435 59 return npc;
duke@435 60 }
duke@435 61
duke@435 62 class StubGenerator: public StubCodeGenerator {
duke@435 63 private:
duke@435 64
duke@435 65 #ifdef PRODUCT
duke@435 66 #define inc_counter_np(counter) (0)
duke@435 67 #else
duke@435 68 void inc_counter_np_(int& counter) {
duke@435 69 __ incrementl(ExternalAddress((address)&counter));
duke@435 70 }
duke@435 71 #define inc_counter_np(counter) \
duke@435 72 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 73 inc_counter_np_(counter);
duke@435 74 #endif
duke@435 75
duke@435 76 // Call stubs are used to call Java from C
duke@435 77 //
duke@435 78 // Linux Arguments:
duke@435 79 // c_rarg0: call wrapper address address
duke@435 80 // c_rarg1: result address
duke@435 81 // c_rarg2: result type BasicType
duke@435 82 // c_rarg3: method methodOop
duke@435 83 // c_rarg4: (interpreter) entry point address
duke@435 84 // c_rarg5: parameters intptr_t*
duke@435 85 // 16(rbp): parameter size (in words) int
duke@435 86 // 24(rbp): thread Thread*
duke@435 87 //
duke@435 88 // [ return_from_Java ] <--- rsp
duke@435 89 // [ argument word n ]
duke@435 90 // ...
duke@435 91 // -12 [ argument word 1 ]
duke@435 92 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 93 // -10 [ saved r14 ]
duke@435 94 // -9 [ saved r13 ]
duke@435 95 // -8 [ saved r12 ]
duke@435 96 // -7 [ saved rbx ]
duke@435 97 // -6 [ call wrapper ]
duke@435 98 // -5 [ result ]
duke@435 99 // -4 [ result type ]
duke@435 100 // -3 [ method ]
duke@435 101 // -2 [ entry point ]
duke@435 102 // -1 [ parameters ]
duke@435 103 // 0 [ saved rbp ] <--- rbp
duke@435 104 // 1 [ return address ]
duke@435 105 // 2 [ parameter size ]
duke@435 106 // 3 [ thread ]
duke@435 107 //
duke@435 108 // Windows Arguments:
duke@435 109 // c_rarg0: call wrapper address address
duke@435 110 // c_rarg1: result address
duke@435 111 // c_rarg2: result type BasicType
duke@435 112 // c_rarg3: method methodOop
duke@435 113 // 48(rbp): (interpreter) entry point address
duke@435 114 // 56(rbp): parameters intptr_t*
duke@435 115 // 64(rbp): parameter size (in words) int
duke@435 116 // 72(rbp): thread Thread*
duke@435 117 //
duke@435 118 // [ return_from_Java ] <--- rsp
duke@435 119 // [ argument word n ]
duke@435 120 // ...
duke@435 121 // -8 [ argument word 1 ]
duke@435 122 // -7 [ saved r15 ] <--- rsp_after_call
duke@435 123 // -6 [ saved r14 ]
duke@435 124 // -5 [ saved r13 ]
duke@435 125 // -4 [ saved r12 ]
duke@435 126 // -3 [ saved rdi ]
duke@435 127 // -2 [ saved rsi ]
duke@435 128 // -1 [ saved rbx ]
duke@435 129 // 0 [ saved rbp ] <--- rbp
duke@435 130 // 1 [ return address ]
duke@435 131 // 2 [ call wrapper ]
duke@435 132 // 3 [ result ]
duke@435 133 // 4 [ result type ]
duke@435 134 // 5 [ method ]
duke@435 135 // 6 [ entry point ]
duke@435 136 // 7 [ parameters ]
duke@435 137 // 8 [ parameter size ]
duke@435 138 // 9 [ thread ]
duke@435 139 //
duke@435 140 // Windows reserves the callers stack space for arguments 1-4.
duke@435 141 // We spill c_rarg0-c_rarg3 to this space.
duke@435 142
duke@435 143 // Call stub stack layout word offsets from rbp
duke@435 144 enum call_stub_layout {
duke@435 145 #ifdef _WIN64
duke@435 146 rsp_after_call_off = -7,
duke@435 147 r15_off = rsp_after_call_off,
duke@435 148 r14_off = -6,
duke@435 149 r13_off = -5,
duke@435 150 r12_off = -4,
duke@435 151 rdi_off = -3,
duke@435 152 rsi_off = -2,
duke@435 153 rbx_off = -1,
duke@435 154 rbp_off = 0,
duke@435 155 retaddr_off = 1,
duke@435 156 call_wrapper_off = 2,
duke@435 157 result_off = 3,
duke@435 158 result_type_off = 4,
duke@435 159 method_off = 5,
duke@435 160 entry_point_off = 6,
duke@435 161 parameters_off = 7,
duke@435 162 parameter_size_off = 8,
duke@435 163 thread_off = 9
duke@435 164 #else
duke@435 165 rsp_after_call_off = -12,
duke@435 166 mxcsr_off = rsp_after_call_off,
duke@435 167 r15_off = -11,
duke@435 168 r14_off = -10,
duke@435 169 r13_off = -9,
duke@435 170 r12_off = -8,
duke@435 171 rbx_off = -7,
duke@435 172 call_wrapper_off = -6,
duke@435 173 result_off = -5,
duke@435 174 result_type_off = -4,
duke@435 175 method_off = -3,
duke@435 176 entry_point_off = -2,
duke@435 177 parameters_off = -1,
duke@435 178 rbp_off = 0,
duke@435 179 retaddr_off = 1,
duke@435 180 parameter_size_off = 2,
duke@435 181 thread_off = 3
duke@435 182 #endif
duke@435 183 };
duke@435 184
duke@435 185 address generate_call_stub(address& return_address) {
duke@435 186 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 187 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 188 "adjust this code");
duke@435 189 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 190 address start = __ pc();
duke@435 191
duke@435 192 // same as in generate_catch_exception()!
duke@435 193 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 194
duke@435 195 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 196 const Address result (rbp, result_off * wordSize);
duke@435 197 const Address result_type (rbp, result_type_off * wordSize);
duke@435 198 const Address method (rbp, method_off * wordSize);
duke@435 199 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 200 const Address parameters (rbp, parameters_off * wordSize);
duke@435 201 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 202
duke@435 203 // same as in generate_catch_exception()!
duke@435 204 const Address thread (rbp, thread_off * wordSize);
duke@435 205
duke@435 206 const Address r15_save(rbp, r15_off * wordSize);
duke@435 207 const Address r14_save(rbp, r14_off * wordSize);
duke@435 208 const Address r13_save(rbp, r13_off * wordSize);
duke@435 209 const Address r12_save(rbp, r12_off * wordSize);
duke@435 210 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 211
duke@435 212 // stub code
duke@435 213 __ enter();
never@739 214 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 215
duke@435 216 // save register parameters
duke@435 217 #ifndef _WIN64
never@739 218 __ movptr(parameters, c_rarg5); // parameters
never@739 219 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 220 #endif
duke@435 221
never@739 222 __ movptr(method, c_rarg3); // method
never@739 223 __ movl(result_type, c_rarg2); // result type
never@739 224 __ movptr(result, c_rarg1); // result
never@739 225 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 226
duke@435 227 // save regs belonging to calling function
never@739 228 __ movptr(rbx_save, rbx);
never@739 229 __ movptr(r12_save, r12);
never@739 230 __ movptr(r13_save, r13);
never@739 231 __ movptr(r14_save, r14);
never@739 232 __ movptr(r15_save, r15);
duke@435 233
duke@435 234 #ifdef _WIN64
duke@435 235 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 236 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 237
never@739 238 __ movptr(rsi_save, rsi);
never@739 239 __ movptr(rdi_save, rdi);
duke@435 240 #else
duke@435 241 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 242 {
duke@435 243 Label skip_ldmx;
duke@435 244 __ stmxcsr(mxcsr_save);
duke@435 245 __ movl(rax, mxcsr_save);
duke@435 246 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 247 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 248 __ cmp32(rax, mxcsr_std);
duke@435 249 __ jcc(Assembler::equal, skip_ldmx);
duke@435 250 __ ldmxcsr(mxcsr_std);
duke@435 251 __ bind(skip_ldmx);
duke@435 252 }
duke@435 253 #endif
duke@435 254
duke@435 255 // Load up thread register
never@739 256 __ movptr(r15_thread, thread);
coleenp@548 257 __ reinit_heapbase();
duke@435 258
duke@435 259 #ifdef ASSERT
duke@435 260 // make sure we have no pending exceptions
duke@435 261 {
duke@435 262 Label L;
never@739 263 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 264 __ jcc(Assembler::equal, L);
duke@435 265 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 266 __ bind(L);
duke@435 267 }
duke@435 268 #endif
duke@435 269
duke@435 270 // pass parameters if any
duke@435 271 BLOCK_COMMENT("pass parameters if any");
duke@435 272 Label parameters_done;
duke@435 273 __ movl(c_rarg3, parameter_size);
duke@435 274 __ testl(c_rarg3, c_rarg3);
duke@435 275 __ jcc(Assembler::zero, parameters_done);
duke@435 276
duke@435 277 Label loop;
never@739 278 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 279 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 280 __ BIND(loop);
never@739 281 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 282 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 283 __ decrementl(c_rarg1); // decrement counter
never@739 284 __ push(rax); // pass parameter
duke@435 285 __ jcc(Assembler::notZero, loop);
duke@435 286
duke@435 287 // call Java function
duke@435 288 __ BIND(parameters_done);
never@739 289 __ movptr(rbx, method); // get methodOop
never@739 290 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 291 __ mov(r13, rsp); // set sender sp
duke@435 292 BLOCK_COMMENT("call Java function");
duke@435 293 __ call(c_rarg1);
duke@435 294
duke@435 295 BLOCK_COMMENT("call_stub_return_address:");
duke@435 296 return_address = __ pc();
duke@435 297
duke@435 298 // store result depending on type (everything that is not
duke@435 299 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 300 __ movptr(c_rarg0, result);
duke@435 301 Label is_long, is_float, is_double, exit;
duke@435 302 __ movl(c_rarg1, result_type);
duke@435 303 __ cmpl(c_rarg1, T_OBJECT);
duke@435 304 __ jcc(Assembler::equal, is_long);
duke@435 305 __ cmpl(c_rarg1, T_LONG);
duke@435 306 __ jcc(Assembler::equal, is_long);
duke@435 307 __ cmpl(c_rarg1, T_FLOAT);
duke@435 308 __ jcc(Assembler::equal, is_float);
duke@435 309 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 310 __ jcc(Assembler::equal, is_double);
duke@435 311
duke@435 312 // handle T_INT case
duke@435 313 __ movl(Address(c_rarg0, 0), rax);
duke@435 314
duke@435 315 __ BIND(exit);
duke@435 316
duke@435 317 // pop parameters
never@739 318 __ lea(rsp, rsp_after_call);
duke@435 319
duke@435 320 #ifdef ASSERT
duke@435 321 // verify that threads correspond
duke@435 322 {
duke@435 323 Label L, S;
never@739 324 __ cmpptr(r15_thread, thread);
duke@435 325 __ jcc(Assembler::notEqual, S);
duke@435 326 __ get_thread(rbx);
never@739 327 __ cmpptr(r15_thread, rbx);
duke@435 328 __ jcc(Assembler::equal, L);
duke@435 329 __ bind(S);
duke@435 330 __ jcc(Assembler::equal, L);
duke@435 331 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 332 __ bind(L);
duke@435 333 }
duke@435 334 #endif
duke@435 335
duke@435 336 // restore regs belonging to calling function
never@739 337 __ movptr(r15, r15_save);
never@739 338 __ movptr(r14, r14_save);
never@739 339 __ movptr(r13, r13_save);
never@739 340 __ movptr(r12, r12_save);
never@739 341 __ movptr(rbx, rbx_save);
duke@435 342
duke@435 343 #ifdef _WIN64
never@739 344 __ movptr(rdi, rdi_save);
never@739 345 __ movptr(rsi, rsi_save);
duke@435 346 #else
duke@435 347 __ ldmxcsr(mxcsr_save);
duke@435 348 #endif
duke@435 349
duke@435 350 // restore rsp
never@739 351 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 352
duke@435 353 // return
never@739 354 __ pop(rbp);
duke@435 355 __ ret(0);
duke@435 356
duke@435 357 // handle return types different from T_INT
duke@435 358 __ BIND(is_long);
duke@435 359 __ movq(Address(c_rarg0, 0), rax);
duke@435 360 __ jmp(exit);
duke@435 361
duke@435 362 __ BIND(is_float);
duke@435 363 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 364 __ jmp(exit);
duke@435 365
duke@435 366 __ BIND(is_double);
duke@435 367 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 368 __ jmp(exit);
duke@435 369
duke@435 370 return start;
duke@435 371 }
duke@435 372
duke@435 373 // Return point for a Java call if there's an exception thrown in
duke@435 374 // Java code. The exception is caught and transformed into a
duke@435 375 // pending exception stored in JavaThread that can be tested from
duke@435 376 // within the VM.
duke@435 377 //
duke@435 378 // Note: Usually the parameters are removed by the callee. In case
duke@435 379 // of an exception crossing an activation frame boundary, that is
duke@435 380 // not the case if the callee is compiled code => need to setup the
duke@435 381 // rsp.
duke@435 382 //
duke@435 383 // rax: exception oop
duke@435 384
duke@435 385 address generate_catch_exception() {
duke@435 386 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 387 address start = __ pc();
duke@435 388
duke@435 389 // same as in generate_call_stub():
duke@435 390 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 391 const Address thread (rbp, thread_off * wordSize);
duke@435 392
duke@435 393 #ifdef ASSERT
duke@435 394 // verify that threads correspond
duke@435 395 {
duke@435 396 Label L, S;
never@739 397 __ cmpptr(r15_thread, thread);
duke@435 398 __ jcc(Assembler::notEqual, S);
duke@435 399 __ get_thread(rbx);
never@739 400 __ cmpptr(r15_thread, rbx);
duke@435 401 __ jcc(Assembler::equal, L);
duke@435 402 __ bind(S);
duke@435 403 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 404 __ bind(L);
duke@435 405 }
duke@435 406 #endif
duke@435 407
duke@435 408 // set pending exception
duke@435 409 __ verify_oop(rax);
duke@435 410
never@739 411 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 412 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 413 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 414 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 415
duke@435 416 // complete return to VM
duke@435 417 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 418 "_call_stub_return_address must have been generated before");
duke@435 419 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 420
duke@435 421 return start;
duke@435 422 }
duke@435 423
duke@435 424 // Continuation point for runtime calls returning with a pending
duke@435 425 // exception. The pending exception check happened in the runtime
duke@435 426 // or native call stub. The pending exception in Thread is
duke@435 427 // converted into a Java-level exception.
duke@435 428 //
duke@435 429 // Contract with Java-level exception handlers:
duke@435 430 // rax: exception
duke@435 431 // rdx: throwing pc
duke@435 432 //
duke@435 433 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 434
duke@435 435 address generate_forward_exception() {
duke@435 436 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 437 address start = __ pc();
duke@435 438
duke@435 439 // Upon entry, the sp points to the return address returning into
duke@435 440 // Java (interpreted or compiled) code; i.e., the return address
duke@435 441 // becomes the throwing pc.
duke@435 442 //
duke@435 443 // Arguments pushed before the runtime call are still on the stack
duke@435 444 // but the exception handler will reset the stack pointer ->
duke@435 445 // ignore them. A potential result in registers can be ignored as
duke@435 446 // well.
duke@435 447
duke@435 448 #ifdef ASSERT
duke@435 449 // make sure this code is only executed if there is a pending exception
duke@435 450 {
duke@435 451 Label L;
never@739 452 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 453 __ jcc(Assembler::notEqual, L);
duke@435 454 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 455 __ bind(L);
duke@435 456 }
duke@435 457 #endif
duke@435 458
duke@435 459 // compute exception handler into rbx
never@739 460 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 461 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 462 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 463 SharedRuntime::exception_handler_for_return_address),
twisti@1730 464 r15_thread, c_rarg0);
never@739 465 __ mov(rbx, rax);
duke@435 466
duke@435 467 // setup rax & rdx, remove return address & clear pending exception
never@739 468 __ pop(rdx);
never@739 469 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 470 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 471
duke@435 472 #ifdef ASSERT
duke@435 473 // make sure exception is set
duke@435 474 {
duke@435 475 Label L;
never@739 476 __ testptr(rax, rax);
duke@435 477 __ jcc(Assembler::notEqual, L);
duke@435 478 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 479 __ bind(L);
duke@435 480 }
duke@435 481 #endif
duke@435 482
duke@435 483 // continue at exception handler (return address removed)
duke@435 484 // rax: exception
duke@435 485 // rbx: exception handler
duke@435 486 // rdx: throwing pc
duke@435 487 __ verify_oop(rax);
duke@435 488 __ jmp(rbx);
duke@435 489
duke@435 490 return start;
duke@435 491 }
duke@435 492
duke@435 493 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 494 //
duke@435 495 // Arguments :
duke@435 496 // c_rarg0: exchange_value
duke@435 497 // c_rarg0: dest
duke@435 498 //
duke@435 499 // Result:
duke@435 500 // *dest <- ex, return (orig *dest)
duke@435 501 address generate_atomic_xchg() {
duke@435 502 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 503 address start = __ pc();
duke@435 504
duke@435 505 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 506 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 507 __ ret(0);
duke@435 508
duke@435 509 return start;
duke@435 510 }
duke@435 511
duke@435 512 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 513 //
duke@435 514 // Arguments :
duke@435 515 // c_rarg0: exchange_value
duke@435 516 // c_rarg1: dest
duke@435 517 //
duke@435 518 // Result:
duke@435 519 // *dest <- ex, return (orig *dest)
duke@435 520 address generate_atomic_xchg_ptr() {
duke@435 521 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 522 address start = __ pc();
duke@435 523
never@739 524 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 525 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 526 __ ret(0);
duke@435 527
duke@435 528 return start;
duke@435 529 }
duke@435 530
duke@435 531 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 532 // jint compare_value)
duke@435 533 //
duke@435 534 // Arguments :
duke@435 535 // c_rarg0: exchange_value
duke@435 536 // c_rarg1: dest
duke@435 537 // c_rarg2: compare_value
duke@435 538 //
duke@435 539 // Result:
duke@435 540 // if ( compare_value == *dest ) {
duke@435 541 // *dest = exchange_value
duke@435 542 // return compare_value;
duke@435 543 // else
duke@435 544 // return *dest;
duke@435 545 address generate_atomic_cmpxchg() {
duke@435 546 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 547 address start = __ pc();
duke@435 548
duke@435 549 __ movl(rax, c_rarg2);
duke@435 550 if ( os::is_MP() ) __ lock();
duke@435 551 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 552 __ ret(0);
duke@435 553
duke@435 554 return start;
duke@435 555 }
duke@435 556
duke@435 557 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 558 // volatile jlong* dest,
duke@435 559 // jlong compare_value)
duke@435 560 // Arguments :
duke@435 561 // c_rarg0: exchange_value
duke@435 562 // c_rarg1: dest
duke@435 563 // c_rarg2: compare_value
duke@435 564 //
duke@435 565 // Result:
duke@435 566 // if ( compare_value == *dest ) {
duke@435 567 // *dest = exchange_value
duke@435 568 // return compare_value;
duke@435 569 // else
duke@435 570 // return *dest;
duke@435 571 address generate_atomic_cmpxchg_long() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 573 address start = __ pc();
duke@435 574
duke@435 575 __ movq(rax, c_rarg2);
duke@435 576 if ( os::is_MP() ) __ lock();
duke@435 577 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 578 __ ret(0);
duke@435 579
duke@435 580 return start;
duke@435 581 }
duke@435 582
duke@435 583 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 584 //
duke@435 585 // Arguments :
duke@435 586 // c_rarg0: add_value
duke@435 587 // c_rarg1: dest
duke@435 588 //
duke@435 589 // Result:
duke@435 590 // *dest += add_value
duke@435 591 // return *dest;
duke@435 592 address generate_atomic_add() {
duke@435 593 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 594 address start = __ pc();
duke@435 595
duke@435 596 __ movl(rax, c_rarg0);
duke@435 597 if ( os::is_MP() ) __ lock();
duke@435 598 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 599 __ addl(rax, c_rarg0);
duke@435 600 __ ret(0);
duke@435 601
duke@435 602 return start;
duke@435 603 }
duke@435 604
duke@435 605 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 606 //
duke@435 607 // Arguments :
duke@435 608 // c_rarg0: add_value
duke@435 609 // c_rarg1: dest
duke@435 610 //
duke@435 611 // Result:
duke@435 612 // *dest += add_value
duke@435 613 // return *dest;
duke@435 614 address generate_atomic_add_ptr() {
duke@435 615 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 616 address start = __ pc();
duke@435 617
never@739 618 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 619 if ( os::is_MP() ) __ lock();
never@739 620 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 621 __ addptr(rax, c_rarg0);
duke@435 622 __ ret(0);
duke@435 623
duke@435 624 return start;
duke@435 625 }
duke@435 626
duke@435 627 // Support for intptr_t OrderAccess::fence()
duke@435 628 //
duke@435 629 // Arguments :
duke@435 630 //
duke@435 631 // Result:
duke@435 632 address generate_orderaccess_fence() {
duke@435 633 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 634 address start = __ pc();
never@1106 635 __ membar(Assembler::StoreLoad);
duke@435 636 __ ret(0);
duke@435 637
duke@435 638 return start;
duke@435 639 }
duke@435 640
duke@435 641 // Support for intptr_t get_previous_fp()
duke@435 642 //
duke@435 643 // This routine is used to find the previous frame pointer for the
duke@435 644 // caller (current_frame_guess). This is used as part of debugging
duke@435 645 // ps() is seemingly lost trying to find frames.
duke@435 646 // This code assumes that caller current_frame_guess) has a frame.
duke@435 647 address generate_get_previous_fp() {
duke@435 648 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 649 const Address old_fp(rbp, 0);
duke@435 650 const Address older_fp(rax, 0);
duke@435 651 address start = __ pc();
duke@435 652
duke@435 653 __ enter();
never@739 654 __ movptr(rax, old_fp); // callers fp
never@739 655 __ movptr(rax, older_fp); // the frame for ps()
never@739 656 __ pop(rbp);
duke@435 657 __ ret(0);
duke@435 658
duke@435 659 return start;
duke@435 660 }
duke@435 661
duke@435 662 //----------------------------------------------------------------------------------------------------
duke@435 663 // Support for void verify_mxcsr()
duke@435 664 //
duke@435 665 // This routine is used with -Xcheck:jni to verify that native
duke@435 666 // JNI code does not return to Java code without restoring the
duke@435 667 // MXCSR register to our expected state.
duke@435 668
duke@435 669 address generate_verify_mxcsr() {
duke@435 670 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 671 address start = __ pc();
duke@435 672
duke@435 673 const Address mxcsr_save(rsp, 0);
duke@435 674
duke@435 675 if (CheckJNICalls) {
duke@435 676 Label ok_ret;
never@739 677 __ push(rax);
never@739 678 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 679 __ stmxcsr(mxcsr_save);
duke@435 680 __ movl(rax, mxcsr_save);
duke@435 681 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 682 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 683 __ jcc(Assembler::equal, ok_ret);
duke@435 684
duke@435 685 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 686
never@739 687 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 688
duke@435 689 __ bind(ok_ret);
never@739 690 __ addptr(rsp, wordSize);
never@739 691 __ pop(rax);
duke@435 692 }
duke@435 693
duke@435 694 __ ret(0);
duke@435 695
duke@435 696 return start;
duke@435 697 }
duke@435 698
duke@435 699 address generate_f2i_fixup() {
duke@435 700 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 701 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 702
duke@435 703 address start = __ pc();
duke@435 704
duke@435 705 Label L;
duke@435 706
never@739 707 __ push(rax);
never@739 708 __ push(c_rarg3);
never@739 709 __ push(c_rarg2);
never@739 710 __ push(c_rarg1);
duke@435 711
duke@435 712 __ movl(rax, 0x7f800000);
duke@435 713 __ xorl(c_rarg3, c_rarg3);
duke@435 714 __ movl(c_rarg2, inout);
duke@435 715 __ movl(c_rarg1, c_rarg2);
duke@435 716 __ andl(c_rarg1, 0x7fffffff);
duke@435 717 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 718 __ jcc(Assembler::negative, L);
duke@435 719 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 720 __ movl(c_rarg3, 0x80000000);
duke@435 721 __ movl(rax, 0x7fffffff);
duke@435 722 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 723
duke@435 724 __ bind(L);
never@739 725 __ movptr(inout, c_rarg3);
never@739 726
never@739 727 __ pop(c_rarg1);
never@739 728 __ pop(c_rarg2);
never@739 729 __ pop(c_rarg3);
never@739 730 __ pop(rax);
duke@435 731
duke@435 732 __ ret(0);
duke@435 733
duke@435 734 return start;
duke@435 735 }
duke@435 736
duke@435 737 address generate_f2l_fixup() {
duke@435 738 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 739 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 740 address start = __ pc();
duke@435 741
duke@435 742 Label L;
duke@435 743
never@739 744 __ push(rax);
never@739 745 __ push(c_rarg3);
never@739 746 __ push(c_rarg2);
never@739 747 __ push(c_rarg1);
duke@435 748
duke@435 749 __ movl(rax, 0x7f800000);
duke@435 750 __ xorl(c_rarg3, c_rarg3);
duke@435 751 __ movl(c_rarg2, inout);
duke@435 752 __ movl(c_rarg1, c_rarg2);
duke@435 753 __ andl(c_rarg1, 0x7fffffff);
duke@435 754 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 755 __ jcc(Assembler::negative, L);
duke@435 756 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 757 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 758 __ mov64(rax, 0x7fffffffffffffff);
never@739 759 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 760
duke@435 761 __ bind(L);
never@739 762 __ movptr(inout, c_rarg3);
never@739 763
never@739 764 __ pop(c_rarg1);
never@739 765 __ pop(c_rarg2);
never@739 766 __ pop(c_rarg3);
never@739 767 __ pop(rax);
duke@435 768
duke@435 769 __ ret(0);
duke@435 770
duke@435 771 return start;
duke@435 772 }
duke@435 773
duke@435 774 address generate_d2i_fixup() {
duke@435 775 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 776 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 777
duke@435 778 address start = __ pc();
duke@435 779
duke@435 780 Label L;
duke@435 781
never@739 782 __ push(rax);
never@739 783 __ push(c_rarg3);
never@739 784 __ push(c_rarg2);
never@739 785 __ push(c_rarg1);
never@739 786 __ push(c_rarg0);
duke@435 787
duke@435 788 __ movl(rax, 0x7ff00000);
duke@435 789 __ movq(c_rarg2, inout);
duke@435 790 __ movl(c_rarg3, c_rarg2);
never@739 791 __ mov(c_rarg1, c_rarg2);
never@739 792 __ mov(c_rarg0, c_rarg2);
duke@435 793 __ negl(c_rarg3);
never@739 794 __ shrptr(c_rarg1, 0x20);
duke@435 795 __ orl(c_rarg3, c_rarg2);
duke@435 796 __ andl(c_rarg1, 0x7fffffff);
duke@435 797 __ xorl(c_rarg2, c_rarg2);
duke@435 798 __ shrl(c_rarg3, 0x1f);
duke@435 799 __ orl(c_rarg1, c_rarg3);
duke@435 800 __ cmpl(rax, c_rarg1);
duke@435 801 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 802 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 803 __ movl(c_rarg2, 0x80000000);
duke@435 804 __ movl(rax, 0x7fffffff);
never@739 805 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 806
duke@435 807 __ bind(L);
never@739 808 __ movptr(inout, c_rarg2);
never@739 809
never@739 810 __ pop(c_rarg0);
never@739 811 __ pop(c_rarg1);
never@739 812 __ pop(c_rarg2);
never@739 813 __ pop(c_rarg3);
never@739 814 __ pop(rax);
duke@435 815
duke@435 816 __ ret(0);
duke@435 817
duke@435 818 return start;
duke@435 819 }
duke@435 820
duke@435 821 address generate_d2l_fixup() {
duke@435 822 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 823 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 824
duke@435 825 address start = __ pc();
duke@435 826
duke@435 827 Label L;
duke@435 828
never@739 829 __ push(rax);
never@739 830 __ push(c_rarg3);
never@739 831 __ push(c_rarg2);
never@739 832 __ push(c_rarg1);
never@739 833 __ push(c_rarg0);
duke@435 834
duke@435 835 __ movl(rax, 0x7ff00000);
duke@435 836 __ movq(c_rarg2, inout);
duke@435 837 __ movl(c_rarg3, c_rarg2);
never@739 838 __ mov(c_rarg1, c_rarg2);
never@739 839 __ mov(c_rarg0, c_rarg2);
duke@435 840 __ negl(c_rarg3);
never@739 841 __ shrptr(c_rarg1, 0x20);
duke@435 842 __ orl(c_rarg3, c_rarg2);
duke@435 843 __ andl(c_rarg1, 0x7fffffff);
duke@435 844 __ xorl(c_rarg2, c_rarg2);
duke@435 845 __ shrl(c_rarg3, 0x1f);
duke@435 846 __ orl(c_rarg1, c_rarg3);
duke@435 847 __ cmpl(rax, c_rarg1);
duke@435 848 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 849 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 850 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 851 __ mov64(rax, 0x7fffffffffffffff);
duke@435 852 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 853
duke@435 854 __ bind(L);
duke@435 855 __ movq(inout, c_rarg2);
duke@435 856
never@739 857 __ pop(c_rarg0);
never@739 858 __ pop(c_rarg1);
never@739 859 __ pop(c_rarg2);
never@739 860 __ pop(c_rarg3);
never@739 861 __ pop(rax);
duke@435 862
duke@435 863 __ ret(0);
duke@435 864
duke@435 865 return start;
duke@435 866 }
duke@435 867
duke@435 868 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 869 __ align(CodeEntryAlignment);
duke@435 870 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 871 address start = __ pc();
duke@435 872
duke@435 873 __ emit_data64( mask, relocInfo::none );
duke@435 874 __ emit_data64( mask, relocInfo::none );
duke@435 875
duke@435 876 return start;
duke@435 877 }
duke@435 878
duke@435 879 // The following routine generates a subroutine to throw an
duke@435 880 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 881 // could not be reasonably prevented by the programmer. (Example:
duke@435 882 // SIGBUS/OBJERR.)
duke@435 883 address generate_handler_for_unsafe_access() {
duke@435 884 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 885 address start = __ pc();
duke@435 886
never@739 887 __ push(0); // hole for return address-to-be
never@739 888 __ pusha(); // push registers
duke@435 889 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 890
never@739 891 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 892 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 893 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 894 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 895
never@739 896 __ movptr(next_pc, rax); // stuff next address
never@739 897 __ popa();
duke@435 898 __ ret(0); // jump to next address
duke@435 899
duke@435 900 return start;
duke@435 901 }
duke@435 902
duke@435 903 // Non-destructive plausibility checks for oops
duke@435 904 //
duke@435 905 // Arguments:
duke@435 906 // all args on stack!
duke@435 907 //
duke@435 908 // Stack after saving c_rarg3:
duke@435 909 // [tos + 0]: saved c_rarg3
duke@435 910 // [tos + 1]: saved c_rarg2
kvn@559 911 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 912 // [tos + 3]: saved flags
kvn@559 913 // [tos + 4]: return address
kvn@559 914 // * [tos + 5]: error message (char*)
kvn@559 915 // * [tos + 6]: object to verify (oop)
kvn@559 916 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 917 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 918 // * = popped on exit
duke@435 919 address generate_verify_oop() {
duke@435 920 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 921 address start = __ pc();
duke@435 922
duke@435 923 Label exit, error;
duke@435 924
never@739 925 __ pushf();
duke@435 926 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 927
never@739 928 __ push(r12);
kvn@559 929
duke@435 930 // save c_rarg2 and c_rarg3
never@739 931 __ push(c_rarg2);
never@739 932 __ push(c_rarg3);
duke@435 933
kvn@559 934 enum {
kvn@559 935 // After previous pushes.
kvn@559 936 oop_to_verify = 6 * wordSize,
kvn@559 937 saved_rax = 7 * wordSize,
kvn@1938 938 saved_r10 = 8 * wordSize,
kvn@559 939
kvn@559 940 // Before the call to MacroAssembler::debug(), see below.
kvn@559 941 return_addr = 16 * wordSize,
kvn@559 942 error_msg = 17 * wordSize
kvn@559 943 };
kvn@559 944
duke@435 945 // get object
never@739 946 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 947
duke@435 948 // make sure object is 'reasonable'
never@739 949 __ testptr(rax, rax);
duke@435 950 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 951 // Check if the oop is in the right area of memory
never@739 952 __ movptr(c_rarg2, rax);
xlu@947 953 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 954 __ andptr(c_rarg2, c_rarg3);
xlu@947 955 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 956 __ cmpptr(c_rarg2, c_rarg3);
duke@435 957 __ jcc(Assembler::notZero, error);
duke@435 958
kvn@559 959 // set r12 to heapbase for load_klass()
kvn@559 960 __ reinit_heapbase();
kvn@559 961
duke@435 962 // make sure klass is 'reasonable'
coleenp@548 963 __ load_klass(rax, rax); // get klass
never@739 964 __ testptr(rax, rax);
duke@435 965 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 966 // Check if the klass is in the right area of memory
never@739 967 __ mov(c_rarg2, rax);
xlu@947 968 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 969 __ andptr(c_rarg2, c_rarg3);
xlu@947 970 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 971 __ cmpptr(c_rarg2, c_rarg3);
duke@435 972 __ jcc(Assembler::notZero, error);
duke@435 973
duke@435 974 // make sure klass' klass is 'reasonable'
coleenp@548 975 __ load_klass(rax, rax);
never@739 976 __ testptr(rax, rax);
duke@435 977 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 978 // Check if the klass' klass is in the right area of memory
xlu@947 979 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 980 __ andptr(rax, c_rarg3);
xlu@947 981 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 982 __ cmpptr(rax, c_rarg3);
duke@435 983 __ jcc(Assembler::notZero, error);
duke@435 984
duke@435 985 // return if everything seems ok
duke@435 986 __ bind(exit);
never@739 987 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 988 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 989 __ pop(c_rarg3); // restore c_rarg3
never@739 990 __ pop(c_rarg2); // restore c_rarg2
never@739 991 __ pop(r12); // restore r12
never@739 992 __ popf(); // restore flags
kvn@1938 993 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 994
duke@435 995 // handle errors
duke@435 996 __ bind(error);
never@739 997 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 998 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 999 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1000 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1001 __ pop(r12); // get saved r12 back
never@739 1002 __ popf(); // get saved flags off stack --
duke@435 1003 // will be ignored
duke@435 1004
never@739 1005 __ pusha(); // push registers
duke@435 1006 // (rip is already
duke@435 1007 // already pushed)
kvn@559 1008 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1009 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1010 // pushed all the registers, so now the stack looks like:
duke@435 1011 // [tos + 0] 16 saved registers
duke@435 1012 // [tos + 16] return address
kvn@559 1013 // * [tos + 17] error message (char*)
kvn@559 1014 // * [tos + 18] object to verify (oop)
kvn@559 1015 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1016 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1017 // * = popped on exit
kvn@559 1018
never@739 1019 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1020 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1021 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1022 __ mov(r12, rsp); // remember rsp
never@739 1023 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1024 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1025 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1026 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1027 __ mov(rsp, r12); // restore rsp
never@739 1028 __ popa(); // pop registers (includes r12)
kvn@1938 1029 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1030
duke@435 1031 return start;
duke@435 1032 }
duke@435 1033
duke@435 1034 static address disjoint_byte_copy_entry;
duke@435 1035 static address disjoint_short_copy_entry;
duke@435 1036 static address disjoint_int_copy_entry;
duke@435 1037 static address disjoint_long_copy_entry;
duke@435 1038 static address disjoint_oop_copy_entry;
duke@435 1039
duke@435 1040 static address byte_copy_entry;
duke@435 1041 static address short_copy_entry;
duke@435 1042 static address int_copy_entry;
duke@435 1043 static address long_copy_entry;
duke@435 1044 static address oop_copy_entry;
duke@435 1045
duke@435 1046 static address checkcast_copy_entry;
duke@435 1047
duke@435 1048 //
duke@435 1049 // Verify that a register contains clean 32-bits positive value
duke@435 1050 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1051 //
duke@435 1052 // Input:
duke@435 1053 // Rint - 32-bits value
duke@435 1054 // Rtmp - scratch
duke@435 1055 //
duke@435 1056 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1057 #ifdef ASSERT
duke@435 1058 Label L;
duke@435 1059 assert_different_registers(Rtmp, Rint);
duke@435 1060 __ movslq(Rtmp, Rint);
duke@435 1061 __ cmpq(Rtmp, Rint);
kvn@559 1062 __ jcc(Assembler::equal, L);
duke@435 1063 __ stop("high 32-bits of int value are not 0");
duke@435 1064 __ bind(L);
duke@435 1065 #endif
duke@435 1066 }
duke@435 1067
duke@435 1068 // Generate overlap test for array copy stubs
duke@435 1069 //
duke@435 1070 // Input:
duke@435 1071 // c_rarg0 - from
duke@435 1072 // c_rarg1 - to
duke@435 1073 // c_rarg2 - element count
duke@435 1074 //
duke@435 1075 // Output:
duke@435 1076 // rax - &from[element count - 1]
duke@435 1077 //
duke@435 1078 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1079 assert(no_overlap_target != NULL, "must be generated");
duke@435 1080 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1081 }
duke@435 1082 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1083 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1084 }
duke@435 1085 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1086 const Register from = c_rarg0;
duke@435 1087 const Register to = c_rarg1;
duke@435 1088 const Register count = c_rarg2;
duke@435 1089 const Register end_from = rax;
duke@435 1090
never@739 1091 __ cmpptr(to, from);
never@739 1092 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1093 if (NOLp == NULL) {
duke@435 1094 ExternalAddress no_overlap(no_overlap_target);
duke@435 1095 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1096 __ cmpptr(to, end_from);
duke@435 1097 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1098 } else {
duke@435 1099 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1100 __ cmpptr(to, end_from);
duke@435 1101 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1102 }
duke@435 1103 }
duke@435 1104
duke@435 1105 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1106 //
duke@435 1107 // Outputs:
duke@435 1108 // rdi - rcx
duke@435 1109 // rsi - rdx
duke@435 1110 // rdx - r8
duke@435 1111 // rcx - r9
duke@435 1112 //
duke@435 1113 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1114 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1115 //
duke@435 1116 void setup_arg_regs(int nargs = 3) {
duke@435 1117 const Register saved_rdi = r9;
duke@435 1118 const Register saved_rsi = r10;
duke@435 1119 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1120 #ifdef _WIN64
duke@435 1121 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1122 "unexpected argument registers");
duke@435 1123 if (nargs >= 4)
never@739 1124 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1125 __ movptr(saved_rdi, rdi);
never@739 1126 __ movptr(saved_rsi, rsi);
never@739 1127 __ mov(rdi, rcx); // c_rarg0
never@739 1128 __ mov(rsi, rdx); // c_rarg1
never@739 1129 __ mov(rdx, r8); // c_rarg2
duke@435 1130 if (nargs >= 4)
never@739 1131 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1132 #else
duke@435 1133 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1134 "unexpected argument registers");
duke@435 1135 #endif
duke@435 1136 }
duke@435 1137
duke@435 1138 void restore_arg_regs() {
duke@435 1139 const Register saved_rdi = r9;
duke@435 1140 const Register saved_rsi = r10;
duke@435 1141 #ifdef _WIN64
never@739 1142 __ movptr(rdi, saved_rdi);
never@739 1143 __ movptr(rsi, saved_rsi);
duke@435 1144 #endif
duke@435 1145 }
duke@435 1146
duke@435 1147 // Generate code for an array write pre barrier
duke@435 1148 //
duke@435 1149 // addr - starting address
duke@435 1150 // count - element count
duke@435 1151 //
duke@435 1152 // Destroy no registers!
duke@435 1153 //
duke@435 1154 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1155 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1156 switch (bs->kind()) {
duke@435 1157 case BarrierSet::G1SATBCT:
duke@435 1158 case BarrierSet::G1SATBCTLogging:
duke@435 1159 {
never@739 1160 __ pusha(); // push registers
ysr@777 1161 if (count == c_rarg0) {
ysr@777 1162 if (addr == c_rarg1) {
ysr@777 1163 // exactly backwards!!
apetrusenko@797 1164 __ xchgptr(c_rarg1, c_rarg0);
ysr@777 1165 } else {
apetrusenko@797 1166 __ movptr(c_rarg1, count);
apetrusenko@797 1167 __ movptr(c_rarg0, addr);
ysr@777 1168 }
ysr@777 1169
ysr@777 1170 } else {
apetrusenko@797 1171 __ movptr(c_rarg0, addr);
apetrusenko@797 1172 __ movptr(c_rarg1, count);
ysr@777 1173 }
apetrusenko@1627 1174 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
never@739 1175 __ popa();
duke@435 1176 }
duke@435 1177 break;
duke@435 1178 case BarrierSet::CardTableModRef:
duke@435 1179 case BarrierSet::CardTableExtension:
duke@435 1180 case BarrierSet::ModRef:
duke@435 1181 break;
ysr@777 1182 default:
duke@435 1183 ShouldNotReachHere();
duke@435 1184
duke@435 1185 }
duke@435 1186 }
duke@435 1187
duke@435 1188 //
duke@435 1189 // Generate code for an array write post barrier
duke@435 1190 //
duke@435 1191 // Input:
duke@435 1192 // start - register containing starting address of destination array
duke@435 1193 // end - register containing ending address of destination array
duke@435 1194 // scratch - scratch register
duke@435 1195 //
duke@435 1196 // The input registers are overwritten.
duke@435 1197 // The ending address is inclusive.
duke@435 1198 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1199 assert_different_registers(start, end, scratch);
duke@435 1200 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1201 switch (bs->kind()) {
duke@435 1202 case BarrierSet::G1SATBCT:
duke@435 1203 case BarrierSet::G1SATBCTLogging:
duke@435 1204
duke@435 1205 {
never@739 1206 __ pusha(); // push registers (overkill)
duke@435 1207 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1208 assert_different_registers(start, end, scratch);
ysr@1280 1209 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1210 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1211 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1212 __ mov(c_rarg0, start);
never@739 1213 __ mov(c_rarg1, scratch);
apetrusenko@1627 1214 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1215 __ popa();
duke@435 1216 }
duke@435 1217 break;
duke@435 1218 case BarrierSet::CardTableModRef:
duke@435 1219 case BarrierSet::CardTableExtension:
duke@435 1220 {
duke@435 1221 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1222 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1223
duke@435 1224 Label L_loop;
duke@435 1225
never@739 1226 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1227 __ addptr(end, BytesPerHeapOop);
never@739 1228 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1229 __ subptr(end, start); // number of bytes to copy
duke@435 1230
never@684 1231 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1232 if (__ is_simm32(disp)) {
never@684 1233 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1234 __ lea(scratch, cardtable);
never@684 1235 } else {
never@684 1236 ExternalAddress cardtable((address)disp);
never@684 1237 __ lea(scratch, cardtable);
never@684 1238 }
never@684 1239
duke@435 1240 const Register count = end; // 'end' register contains bytes count now
never@739 1241 __ addptr(start, scratch);
duke@435 1242 __ BIND(L_loop);
duke@435 1243 __ movb(Address(start, count, Address::times_1), 0);
never@739 1244 __ decrement(count);
duke@435 1245 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1246 }
ysr@777 1247 break;
ysr@777 1248 default:
ysr@777 1249 ShouldNotReachHere();
ysr@777 1250
ysr@777 1251 }
ysr@777 1252 }
duke@435 1253
kvn@840 1254
duke@435 1255 // Copy big chunks forward
duke@435 1256 //
duke@435 1257 // Inputs:
duke@435 1258 // end_from - source arrays end address
duke@435 1259 // end_to - destination array end address
duke@435 1260 // qword_count - 64-bits element count, negative
duke@435 1261 // to - scratch
duke@435 1262 // L_copy_32_bytes - entry label
duke@435 1263 // L_copy_8_bytes - exit label
duke@435 1264 //
duke@435 1265 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1266 Register qword_count, Register to,
duke@435 1267 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1268 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1269 Label L_loop;
kvn@1800 1270 __ align(OptoLoopAlignment);
duke@435 1271 __ BIND(L_loop);
kvn@840 1272 if(UseUnalignedLoadStores) {
kvn@840 1273 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1274 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1275 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1276 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1277
kvn@840 1278 } else {
kvn@840 1279 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1280 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1281 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1282 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1283 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1284 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1285 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1286 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1287 }
duke@435 1288 __ BIND(L_copy_32_bytes);
never@739 1289 __ addptr(qword_count, 4);
duke@435 1290 __ jcc(Assembler::lessEqual, L_loop);
never@739 1291 __ subptr(qword_count, 4);
duke@435 1292 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1293 }
duke@435 1294
duke@435 1295
duke@435 1296 // Copy big chunks backward
duke@435 1297 //
duke@435 1298 // Inputs:
duke@435 1299 // from - source arrays address
duke@435 1300 // dest - destination array address
duke@435 1301 // qword_count - 64-bits element count
duke@435 1302 // to - scratch
duke@435 1303 // L_copy_32_bytes - entry label
duke@435 1304 // L_copy_8_bytes - exit label
duke@435 1305 //
duke@435 1306 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1307 Register qword_count, Register to,
duke@435 1308 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1309 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1310 Label L_loop;
kvn@1800 1311 __ align(OptoLoopAlignment);
duke@435 1312 __ BIND(L_loop);
kvn@840 1313 if(UseUnalignedLoadStores) {
kvn@840 1314 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1315 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1316 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1317 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1318
kvn@840 1319 } else {
kvn@840 1320 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1321 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1322 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1323 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1324 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1325 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1326 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1327 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1328 }
duke@435 1329 __ BIND(L_copy_32_bytes);
never@739 1330 __ subptr(qword_count, 4);
duke@435 1331 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1332 __ addptr(qword_count, 4);
duke@435 1333 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1334 }
duke@435 1335
duke@435 1336
duke@435 1337 // Arguments:
duke@435 1338 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1339 // ignored
duke@435 1340 // name - stub name string
duke@435 1341 //
duke@435 1342 // Inputs:
duke@435 1343 // c_rarg0 - source array address
duke@435 1344 // c_rarg1 - destination array address
duke@435 1345 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1346 //
duke@435 1347 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1348 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1349 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1350 // and stored atomically.
duke@435 1351 //
duke@435 1352 // Side Effects:
duke@435 1353 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1354 // used by generate_conjoint_byte_copy().
duke@435 1355 //
duke@435 1356 address generate_disjoint_byte_copy(bool aligned, const char *name) {
duke@435 1357 __ align(CodeEntryAlignment);
duke@435 1358 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1359 address start = __ pc();
duke@435 1360
duke@435 1361 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1362 Label L_copy_byte, L_exit;
duke@435 1363 const Register from = rdi; // source array address
duke@435 1364 const Register to = rsi; // destination array address
duke@435 1365 const Register count = rdx; // elements count
duke@435 1366 const Register byte_count = rcx;
duke@435 1367 const Register qword_count = count;
duke@435 1368 const Register end_from = from; // source array end address
duke@435 1369 const Register end_to = to; // destination array end address
duke@435 1370 // End pointers are inclusive, and if count is not zero they point
duke@435 1371 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1372
duke@435 1373 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1374 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1375
duke@435 1376 disjoint_byte_copy_entry = __ pc();
duke@435 1377 BLOCK_COMMENT("Entry:");
duke@435 1378 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1379
duke@435 1380 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1381 // r9 and r10 may be used to save non-volatile registers
duke@435 1382
duke@435 1383 // 'from', 'to' and 'count' are now valid
never@739 1384 __ movptr(byte_count, count);
never@739 1385 __ shrptr(count, 3); // count => qword_count
duke@435 1386
duke@435 1387 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1388 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1389 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1390 __ negptr(qword_count); // make the count negative
duke@435 1391 __ jmp(L_copy_32_bytes);
duke@435 1392
duke@435 1393 // Copy trailing qwords
duke@435 1394 __ BIND(L_copy_8_bytes);
duke@435 1395 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1396 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1397 __ increment(qword_count);
duke@435 1398 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1399
duke@435 1400 // Check for and copy trailing dword
duke@435 1401 __ BIND(L_copy_4_bytes);
never@739 1402 __ testl(byte_count, 4);
duke@435 1403 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1404 __ movl(rax, Address(end_from, 8));
duke@435 1405 __ movl(Address(end_to, 8), rax);
duke@435 1406
never@739 1407 __ addptr(end_from, 4);
never@739 1408 __ addptr(end_to, 4);
duke@435 1409
duke@435 1410 // Check for and copy trailing word
duke@435 1411 __ BIND(L_copy_2_bytes);
never@739 1412 __ testl(byte_count, 2);
duke@435 1413 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1414 __ movw(rax, Address(end_from, 8));
duke@435 1415 __ movw(Address(end_to, 8), rax);
duke@435 1416
never@739 1417 __ addptr(end_from, 2);
never@739 1418 __ addptr(end_to, 2);
duke@435 1419
duke@435 1420 // Check for and copy trailing byte
duke@435 1421 __ BIND(L_copy_byte);
never@739 1422 __ testl(byte_count, 1);
duke@435 1423 __ jccb(Assembler::zero, L_exit);
duke@435 1424 __ movb(rax, Address(end_from, 8));
duke@435 1425 __ movb(Address(end_to, 8), rax);
duke@435 1426
duke@435 1427 __ BIND(L_exit);
duke@435 1428 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1429 restore_arg_regs();
never@739 1430 __ xorptr(rax, rax); // return 0
duke@435 1431 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1432 __ ret(0);
duke@435 1433
duke@435 1434 // Copy in 32-bytes chunks
duke@435 1435 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1436 __ jmp(L_copy_4_bytes);
duke@435 1437
duke@435 1438 return start;
duke@435 1439 }
duke@435 1440
duke@435 1441 // Arguments:
duke@435 1442 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1443 // ignored
duke@435 1444 // name - stub name string
duke@435 1445 //
duke@435 1446 // Inputs:
duke@435 1447 // c_rarg0 - source array address
duke@435 1448 // c_rarg1 - destination array address
duke@435 1449 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1450 //
duke@435 1451 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1452 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1453 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1454 // and stored atomically.
duke@435 1455 //
duke@435 1456 address generate_conjoint_byte_copy(bool aligned, const char *name) {
duke@435 1457 __ align(CodeEntryAlignment);
duke@435 1458 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1459 address start = __ pc();
duke@435 1460
duke@435 1461 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1462 const Register from = rdi; // source array address
duke@435 1463 const Register to = rsi; // destination array address
duke@435 1464 const Register count = rdx; // elements count
duke@435 1465 const Register byte_count = rcx;
duke@435 1466 const Register qword_count = count;
duke@435 1467
duke@435 1468 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1469 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1470
duke@435 1471 byte_copy_entry = __ pc();
duke@435 1472 BLOCK_COMMENT("Entry:");
duke@435 1473 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1474
duke@435 1475 array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
duke@435 1476 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1477 // r9 and r10 may be used to save non-volatile registers
duke@435 1478
duke@435 1479 // 'from', 'to' and 'count' are now valid
never@739 1480 __ movptr(byte_count, count);
never@739 1481 __ shrptr(count, 3); // count => qword_count
duke@435 1482
duke@435 1483 // Copy from high to low addresses.
duke@435 1484
duke@435 1485 // Check for and copy trailing byte
never@739 1486 __ testl(byte_count, 1);
duke@435 1487 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1488 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1489 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1490 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1491
duke@435 1492 // Check for and copy trailing word
duke@435 1493 __ BIND(L_copy_2_bytes);
never@739 1494 __ testl(byte_count, 2);
duke@435 1495 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1496 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1497 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1498
duke@435 1499 // Check for and copy trailing dword
duke@435 1500 __ BIND(L_copy_4_bytes);
never@739 1501 __ testl(byte_count, 4);
duke@435 1502 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1503 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1504 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1505 __ jmp(L_copy_32_bytes);
duke@435 1506
duke@435 1507 // Copy trailing qwords
duke@435 1508 __ BIND(L_copy_8_bytes);
duke@435 1509 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1510 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1511 __ decrement(qword_count);
duke@435 1512 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1513
duke@435 1514 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1515 restore_arg_regs();
never@739 1516 __ xorptr(rax, rax); // return 0
duke@435 1517 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1518 __ ret(0);
duke@435 1519
duke@435 1520 // Copy in 32-bytes chunks
duke@435 1521 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1522
duke@435 1523 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1524 restore_arg_regs();
never@739 1525 __ xorptr(rax, rax); // return 0
duke@435 1526 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1527 __ ret(0);
duke@435 1528
duke@435 1529 return start;
duke@435 1530 }
duke@435 1531
duke@435 1532 // Arguments:
duke@435 1533 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1534 // ignored
duke@435 1535 // name - stub name string
duke@435 1536 //
duke@435 1537 // Inputs:
duke@435 1538 // c_rarg0 - source array address
duke@435 1539 // c_rarg1 - destination array address
duke@435 1540 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1541 //
duke@435 1542 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1543 // let the hardware handle it. The two or four words within dwords
duke@435 1544 // or qwords that span cache line boundaries will still be loaded
duke@435 1545 // and stored atomically.
duke@435 1546 //
duke@435 1547 // Side Effects:
duke@435 1548 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1549 // used by generate_conjoint_short_copy().
duke@435 1550 //
duke@435 1551 address generate_disjoint_short_copy(bool aligned, const char *name) {
duke@435 1552 __ align(CodeEntryAlignment);
duke@435 1553 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1554 address start = __ pc();
duke@435 1555
duke@435 1556 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1557 const Register from = rdi; // source array address
duke@435 1558 const Register to = rsi; // destination array address
duke@435 1559 const Register count = rdx; // elements count
duke@435 1560 const Register word_count = rcx;
duke@435 1561 const Register qword_count = count;
duke@435 1562 const Register end_from = from; // source array end address
duke@435 1563 const Register end_to = to; // destination array end address
duke@435 1564 // End pointers are inclusive, and if count is not zero they point
duke@435 1565 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1566
duke@435 1567 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1568 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1569
duke@435 1570 disjoint_short_copy_entry = __ pc();
duke@435 1571 BLOCK_COMMENT("Entry:");
duke@435 1572 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1573
duke@435 1574 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1575 // r9 and r10 may be used to save non-volatile registers
duke@435 1576
duke@435 1577 // 'from', 'to' and 'count' are now valid
never@739 1578 __ movptr(word_count, count);
never@739 1579 __ shrptr(count, 2); // count => qword_count
duke@435 1580
duke@435 1581 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1582 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1583 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1584 __ negptr(qword_count);
duke@435 1585 __ jmp(L_copy_32_bytes);
duke@435 1586
duke@435 1587 // Copy trailing qwords
duke@435 1588 __ BIND(L_copy_8_bytes);
duke@435 1589 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1590 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1591 __ increment(qword_count);
duke@435 1592 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1593
duke@435 1594 // Original 'dest' is trashed, so we can't use it as a
duke@435 1595 // base register for a possible trailing word copy
duke@435 1596
duke@435 1597 // Check for and copy trailing dword
duke@435 1598 __ BIND(L_copy_4_bytes);
never@739 1599 __ testl(word_count, 2);
duke@435 1600 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1601 __ movl(rax, Address(end_from, 8));
duke@435 1602 __ movl(Address(end_to, 8), rax);
duke@435 1603
never@739 1604 __ addptr(end_from, 4);
never@739 1605 __ addptr(end_to, 4);
duke@435 1606
duke@435 1607 // Check for and copy trailing word
duke@435 1608 __ BIND(L_copy_2_bytes);
never@739 1609 __ testl(word_count, 1);
duke@435 1610 __ jccb(Assembler::zero, L_exit);
duke@435 1611 __ movw(rax, Address(end_from, 8));
duke@435 1612 __ movw(Address(end_to, 8), rax);
duke@435 1613
duke@435 1614 __ BIND(L_exit);
duke@435 1615 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1616 restore_arg_regs();
never@739 1617 __ xorptr(rax, rax); // return 0
duke@435 1618 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1619 __ ret(0);
duke@435 1620
duke@435 1621 // Copy in 32-bytes chunks
duke@435 1622 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1623 __ jmp(L_copy_4_bytes);
duke@435 1624
duke@435 1625 return start;
duke@435 1626 }
duke@435 1627
never@2118 1628 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1629 __ align(CodeEntryAlignment);
never@2118 1630 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1631 address start = __ pc();
never@2118 1632
never@2118 1633 BLOCK_COMMENT("Entry:");
never@2118 1634
never@2118 1635 const Register to = c_rarg0; // source array address
never@2118 1636 const Register value = c_rarg1; // value
never@2118 1637 const Register count = c_rarg2; // elements count
never@2118 1638
never@2118 1639 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1640
never@2118 1641 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1642
never@2118 1643 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1644 __ ret(0);
never@2118 1645 return start;
never@2118 1646 }
never@2118 1647
duke@435 1648 // Arguments:
duke@435 1649 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1650 // ignored
duke@435 1651 // name - stub name string
duke@435 1652 //
duke@435 1653 // Inputs:
duke@435 1654 // c_rarg0 - source array address
duke@435 1655 // c_rarg1 - destination array address
duke@435 1656 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1657 //
duke@435 1658 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1659 // let the hardware handle it. The two or four words within dwords
duke@435 1660 // or qwords that span cache line boundaries will still be loaded
duke@435 1661 // and stored atomically.
duke@435 1662 //
duke@435 1663 address generate_conjoint_short_copy(bool aligned, const char *name) {
duke@435 1664 __ align(CodeEntryAlignment);
duke@435 1665 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1666 address start = __ pc();
duke@435 1667
duke@435 1668 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1669 const Register from = rdi; // source array address
duke@435 1670 const Register to = rsi; // destination array address
duke@435 1671 const Register count = rdx; // elements count
duke@435 1672 const Register word_count = rcx;
duke@435 1673 const Register qword_count = count;
duke@435 1674
duke@435 1675 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1676 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1677
duke@435 1678 short_copy_entry = __ pc();
duke@435 1679 BLOCK_COMMENT("Entry:");
duke@435 1680 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1681
duke@435 1682 array_overlap_test(disjoint_short_copy_entry, Address::times_2);
duke@435 1683 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1684 // r9 and r10 may be used to save non-volatile registers
duke@435 1685
duke@435 1686 // 'from', 'to' and 'count' are now valid
never@739 1687 __ movptr(word_count, count);
never@739 1688 __ shrptr(count, 2); // count => qword_count
duke@435 1689
duke@435 1690 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1691
duke@435 1692 // Check for and copy trailing word
never@739 1693 __ testl(word_count, 1);
duke@435 1694 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1695 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1696 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1697
duke@435 1698 // Check for and copy trailing dword
duke@435 1699 __ BIND(L_copy_4_bytes);
never@739 1700 __ testl(word_count, 2);
duke@435 1701 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1702 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1703 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1704 __ jmp(L_copy_32_bytes);
duke@435 1705
duke@435 1706 // Copy trailing qwords
duke@435 1707 __ BIND(L_copy_8_bytes);
duke@435 1708 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1709 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1710 __ decrement(qword_count);
duke@435 1711 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1712
duke@435 1713 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1714 restore_arg_regs();
never@739 1715 __ xorptr(rax, rax); // return 0
duke@435 1716 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1717 __ ret(0);
duke@435 1718
duke@435 1719 // Copy in 32-bytes chunks
duke@435 1720 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1721
duke@435 1722 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1723 restore_arg_regs();
never@739 1724 __ xorptr(rax, rax); // return 0
duke@435 1725 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1726 __ ret(0);
duke@435 1727
duke@435 1728 return start;
duke@435 1729 }
duke@435 1730
duke@435 1731 // Arguments:
duke@435 1732 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1733 // ignored
coleenp@548 1734 // is_oop - true => oop array, so generate store check code
duke@435 1735 // name - stub name string
duke@435 1736 //
duke@435 1737 // Inputs:
duke@435 1738 // c_rarg0 - source array address
duke@435 1739 // c_rarg1 - destination array address
duke@435 1740 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1741 //
duke@435 1742 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1743 // the hardware handle it. The two dwords within qwords that span
duke@435 1744 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1745 //
duke@435 1746 // Side Effects:
duke@435 1747 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1748 // used by generate_conjoint_int_oop_copy().
duke@435 1749 //
coleenp@548 1750 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1751 __ align(CodeEntryAlignment);
duke@435 1752 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1753 address start = __ pc();
duke@435 1754
duke@435 1755 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1756 const Register from = rdi; // source array address
duke@435 1757 const Register to = rsi; // destination array address
duke@435 1758 const Register count = rdx; // elements count
duke@435 1759 const Register dword_count = rcx;
duke@435 1760 const Register qword_count = count;
duke@435 1761 const Register end_from = from; // source array end address
duke@435 1762 const Register end_to = to; // destination array end address
coleenp@548 1763 const Register saved_to = r11; // saved destination array address
duke@435 1764 // End pointers are inclusive, and if count is not zero they point
duke@435 1765 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1766
duke@435 1767 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1768 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1769
coleenp@548 1770 (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
coleenp@548 1771
coleenp@548 1772 if (is_oop) {
coleenp@548 1773 // no registers are destroyed by this call
coleenp@548 1774 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1775 }
coleenp@548 1776
duke@435 1777 BLOCK_COMMENT("Entry:");
duke@435 1778 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1779
duke@435 1780 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1781 // r9 and r10 may be used to save non-volatile registers
duke@435 1782
coleenp@548 1783 if (is_oop) {
coleenp@548 1784 __ movq(saved_to, to);
coleenp@548 1785 }
coleenp@548 1786
duke@435 1787 // 'from', 'to' and 'count' are now valid
never@739 1788 __ movptr(dword_count, count);
never@739 1789 __ shrptr(count, 1); // count => qword_count
duke@435 1790
duke@435 1791 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1792 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1793 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1794 __ negptr(qword_count);
duke@435 1795 __ jmp(L_copy_32_bytes);
duke@435 1796
duke@435 1797 // Copy trailing qwords
duke@435 1798 __ BIND(L_copy_8_bytes);
duke@435 1799 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1800 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1801 __ increment(qword_count);
duke@435 1802 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1803
duke@435 1804 // Check for and copy trailing dword
duke@435 1805 __ BIND(L_copy_4_bytes);
never@739 1806 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1807 __ jccb(Assembler::zero, L_exit);
duke@435 1808 __ movl(rax, Address(end_from, 8));
duke@435 1809 __ movl(Address(end_to, 8), rax);
duke@435 1810
duke@435 1811 __ BIND(L_exit);
coleenp@548 1812 if (is_oop) {
coleenp@548 1813 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1814 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1815 }
duke@435 1816 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1817 restore_arg_regs();
never@739 1818 __ xorptr(rax, rax); // return 0
duke@435 1819 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1820 __ ret(0);
duke@435 1821
duke@435 1822 // Copy 32-bytes chunks
duke@435 1823 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1824 __ jmp(L_copy_4_bytes);
duke@435 1825
duke@435 1826 return start;
duke@435 1827 }
duke@435 1828
duke@435 1829 // Arguments:
duke@435 1830 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1831 // ignored
coleenp@548 1832 // is_oop - true => oop array, so generate store check code
duke@435 1833 // name - stub name string
duke@435 1834 //
duke@435 1835 // Inputs:
duke@435 1836 // c_rarg0 - source array address
duke@435 1837 // c_rarg1 - destination array address
duke@435 1838 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1839 //
duke@435 1840 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1841 // the hardware handle it. The two dwords within qwords that span
duke@435 1842 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1843 //
coleenp@548 1844 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1845 __ align(CodeEntryAlignment);
duke@435 1846 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1847 address start = __ pc();
duke@435 1848
coleenp@548 1849 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1850 const Register from = rdi; // source array address
duke@435 1851 const Register to = rsi; // destination array address
duke@435 1852 const Register count = rdx; // elements count
duke@435 1853 const Register dword_count = rcx;
duke@435 1854 const Register qword_count = count;
duke@435 1855
duke@435 1856 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1857 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1858
coleenp@548 1859 if (is_oop) {
coleenp@548 1860 // no registers are destroyed by this call
coleenp@548 1861 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1862 }
coleenp@548 1863
coleenp@548 1864 (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
duke@435 1865 BLOCK_COMMENT("Entry:");
duke@435 1866 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1867
coleenp@548 1868 array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
coleenp@548 1869 Address::times_4);
duke@435 1870 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1871 // r9 and r10 may be used to save non-volatile registers
duke@435 1872
coleenp@548 1873 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1874 // 'from', 'to' and 'count' are now valid
never@739 1875 __ movptr(dword_count, count);
never@739 1876 __ shrptr(count, 1); // count => qword_count
duke@435 1877
duke@435 1878 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1879
duke@435 1880 // Check for and copy trailing dword
never@739 1881 __ testl(dword_count, 1);
duke@435 1882 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1883 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1884 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1885 __ jmp(L_copy_32_bytes);
duke@435 1886
duke@435 1887 // Copy trailing qwords
duke@435 1888 __ BIND(L_copy_8_bytes);
duke@435 1889 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1890 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1891 __ decrement(qword_count);
duke@435 1892 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1893
duke@435 1894 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1895 if (is_oop) {
coleenp@548 1896 __ jmp(L_exit);
coleenp@548 1897 }
duke@435 1898 restore_arg_regs();
never@739 1899 __ xorptr(rax, rax); // return 0
duke@435 1900 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1901 __ ret(0);
duke@435 1902
duke@435 1903 // Copy in 32-bytes chunks
duke@435 1904 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1905
coleenp@548 1906 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1907 __ bind(L_exit);
coleenp@548 1908 if (is_oop) {
coleenp@548 1909 Register end_to = rdx;
coleenp@548 1910 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1911 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1912 }
duke@435 1913 restore_arg_regs();
never@739 1914 __ xorptr(rax, rax); // return 0
duke@435 1915 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1916 __ ret(0);
duke@435 1917
duke@435 1918 return start;
duke@435 1919 }
duke@435 1920
duke@435 1921 // Arguments:
duke@435 1922 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1923 // ignored
duke@435 1924 // is_oop - true => oop array, so generate store check code
duke@435 1925 // name - stub name string
duke@435 1926 //
duke@435 1927 // Inputs:
duke@435 1928 // c_rarg0 - source array address
duke@435 1929 // c_rarg1 - destination array address
duke@435 1930 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1931 //
coleenp@548 1932 // Side Effects:
duke@435 1933 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1934 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1935 //
duke@435 1936 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1937 __ align(CodeEntryAlignment);
duke@435 1938 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1939 address start = __ pc();
duke@435 1940
duke@435 1941 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1942 const Register from = rdi; // source array address
duke@435 1943 const Register to = rsi; // destination array address
duke@435 1944 const Register qword_count = rdx; // elements count
duke@435 1945 const Register end_from = from; // source array end address
duke@435 1946 const Register end_to = rcx; // destination array end address
duke@435 1947 const Register saved_to = to;
duke@435 1948 // End pointers are inclusive, and if count is not zero they point
duke@435 1949 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1950
duke@435 1951 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1952 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1953 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1954
duke@435 1955 if (is_oop) {
duke@435 1956 disjoint_oop_copy_entry = __ pc();
duke@435 1957 // no registers are destroyed by this call
duke@435 1958 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
duke@435 1959 } else {
duke@435 1960 disjoint_long_copy_entry = __ pc();
duke@435 1961 }
duke@435 1962 BLOCK_COMMENT("Entry:");
duke@435 1963 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1964
duke@435 1965 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1966 // r9 and r10 may be used to save non-volatile registers
duke@435 1967
duke@435 1968 // 'from', 'to' and 'qword_count' are now valid
duke@435 1969
duke@435 1970 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1971 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1972 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1973 __ negptr(qword_count);
duke@435 1974 __ jmp(L_copy_32_bytes);
duke@435 1975
duke@435 1976 // Copy trailing qwords
duke@435 1977 __ BIND(L_copy_8_bytes);
duke@435 1978 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1979 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1980 __ increment(qword_count);
duke@435 1981 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1982
duke@435 1983 if (is_oop) {
duke@435 1984 __ jmp(L_exit);
duke@435 1985 } else {
duke@435 1986 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 1987 restore_arg_regs();
never@739 1988 __ xorptr(rax, rax); // return 0
duke@435 1989 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1990 __ ret(0);
duke@435 1991 }
duke@435 1992
duke@435 1993 // Copy 64-byte chunks
duke@435 1994 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1995
duke@435 1996 if (is_oop) {
duke@435 1997 __ BIND(L_exit);
duke@435 1998 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 1999 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2000 } else {
duke@435 2001 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2002 }
duke@435 2003 restore_arg_regs();
never@739 2004 __ xorptr(rax, rax); // return 0
duke@435 2005 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2006 __ ret(0);
duke@435 2007
duke@435 2008 return start;
duke@435 2009 }
duke@435 2010
duke@435 2011 // Arguments:
duke@435 2012 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2013 // ignored
duke@435 2014 // is_oop - true => oop array, so generate store check code
duke@435 2015 // name - stub name string
duke@435 2016 //
duke@435 2017 // Inputs:
duke@435 2018 // c_rarg0 - source array address
duke@435 2019 // c_rarg1 - destination array address
duke@435 2020 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2021 //
duke@435 2022 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 2023 __ align(CodeEntryAlignment);
duke@435 2024 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2025 address start = __ pc();
duke@435 2026
duke@435 2027 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2028 const Register from = rdi; // source array address
duke@435 2029 const Register to = rsi; // destination array address
duke@435 2030 const Register qword_count = rdx; // elements count
duke@435 2031 const Register saved_count = rcx;
duke@435 2032
duke@435 2033 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2034 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2035
duke@435 2036 address disjoint_copy_entry = NULL;
duke@435 2037 if (is_oop) {
coleenp@548 2038 assert(!UseCompressedOops, "shouldn't be called for compressed oops");
duke@435 2039 disjoint_copy_entry = disjoint_oop_copy_entry;
duke@435 2040 oop_copy_entry = __ pc();
coleenp@548 2041 array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
duke@435 2042 } else {
duke@435 2043 disjoint_copy_entry = disjoint_long_copy_entry;
duke@435 2044 long_copy_entry = __ pc();
coleenp@548 2045 array_overlap_test(disjoint_long_copy_entry, Address::times_8);
duke@435 2046 }
duke@435 2047 BLOCK_COMMENT("Entry:");
duke@435 2048 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2049
duke@435 2050 array_overlap_test(disjoint_copy_entry, Address::times_8);
duke@435 2051 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2052 // r9 and r10 may be used to save non-volatile registers
duke@435 2053
duke@435 2054 // 'from', 'to' and 'qword_count' are now valid
duke@435 2055
duke@435 2056 if (is_oop) {
duke@435 2057 // Save to and count for store barrier
never@739 2058 __ movptr(saved_count, qword_count);
duke@435 2059 // No registers are destroyed by this call
duke@435 2060 gen_write_ref_array_pre_barrier(to, saved_count);
duke@435 2061 }
duke@435 2062
duke@435 2063 __ jmp(L_copy_32_bytes);
duke@435 2064
duke@435 2065 // Copy trailing qwords
duke@435 2066 __ BIND(L_copy_8_bytes);
duke@435 2067 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2068 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2069 __ decrement(qword_count);
duke@435 2070 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2071
duke@435 2072 if (is_oop) {
duke@435 2073 __ jmp(L_exit);
duke@435 2074 } else {
duke@435 2075 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2076 restore_arg_regs();
never@739 2077 __ xorptr(rax, rax); // return 0
duke@435 2078 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2079 __ ret(0);
duke@435 2080 }
duke@435 2081
duke@435 2082 // Copy in 32-bytes chunks
duke@435 2083 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2084
duke@435 2085 if (is_oop) {
duke@435 2086 __ BIND(L_exit);
never@739 2087 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2088 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2089 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2090 } else {
duke@435 2091 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2092 }
duke@435 2093 restore_arg_regs();
never@739 2094 __ xorptr(rax, rax); // return 0
duke@435 2095 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2096 __ ret(0);
duke@435 2097
duke@435 2098 return start;
duke@435 2099 }
duke@435 2100
duke@435 2101
duke@435 2102 // Helper for generating a dynamic type check.
duke@435 2103 // Smashes no registers.
duke@435 2104 void generate_type_check(Register sub_klass,
duke@435 2105 Register super_check_offset,
duke@435 2106 Register super_klass,
duke@435 2107 Label& L_success) {
duke@435 2108 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2109
duke@435 2110 BLOCK_COMMENT("type_check:");
duke@435 2111
duke@435 2112 Label L_miss;
duke@435 2113
jrose@1079 2114 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2115 super_check_offset);
jrose@1079 2116 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2117
duke@435 2118 // Fall through on failure!
duke@435 2119 __ BIND(L_miss);
duke@435 2120 }
duke@435 2121
duke@435 2122 //
duke@435 2123 // Generate checkcasting array copy stub
duke@435 2124 //
duke@435 2125 // Input:
duke@435 2126 // c_rarg0 - source array address
duke@435 2127 // c_rarg1 - destination array address
duke@435 2128 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2129 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2130 // not Win64
duke@435 2131 // c_rarg4 - oop ckval (super_klass)
duke@435 2132 // Win64
duke@435 2133 // rsp+40 - oop ckval (super_klass)
duke@435 2134 //
duke@435 2135 // Output:
duke@435 2136 // rax == 0 - success
duke@435 2137 // rax == -1^K - failure, where K is partial transfer count
duke@435 2138 //
duke@435 2139 address generate_checkcast_copy(const char *name) {
duke@435 2140
duke@435 2141 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2142
duke@435 2143 // Input registers (after setup_arg_regs)
duke@435 2144 const Register from = rdi; // source array address
duke@435 2145 const Register to = rsi; // destination array address
duke@435 2146 const Register length = rdx; // elements count
duke@435 2147 const Register ckoff = rcx; // super_check_offset
duke@435 2148 const Register ckval = r8; // super_klass
duke@435 2149
duke@435 2150 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2151 const Register end_from = from; // source array end address
duke@435 2152 const Register end_to = r13; // destination array end address
duke@435 2153 const Register count = rdx; // -(count_remaining)
duke@435 2154 const Register r14_length = r14; // saved copy of length
duke@435 2155 // End pointers are inclusive, and if length is not zero they point
duke@435 2156 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2157
duke@435 2158 const Register rax_oop = rax; // actual oop copied
duke@435 2159 const Register r11_klass = r11; // oop._klass
duke@435 2160
duke@435 2161 //---------------------------------------------------------------
duke@435 2162 // Assembler stub will be used for this call to arraycopy
duke@435 2163 // if the two arrays are subtypes of Object[] but the
duke@435 2164 // destination array type is not equal to or a supertype
duke@435 2165 // of the source type. Each element must be separately
duke@435 2166 // checked.
duke@435 2167
duke@435 2168 __ align(CodeEntryAlignment);
duke@435 2169 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2170 address start = __ pc();
duke@435 2171
duke@435 2172 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2173
duke@435 2174 checkcast_copy_entry = __ pc();
duke@435 2175 BLOCK_COMMENT("Entry:");
duke@435 2176
duke@435 2177 #ifdef ASSERT
duke@435 2178 // caller guarantees that the arrays really are different
duke@435 2179 // otherwise, we would have to make conjoint checks
duke@435 2180 { Label L;
coleenp@548 2181 array_overlap_test(L, TIMES_OOP);
duke@435 2182 __ stop("checkcast_copy within a single array");
duke@435 2183 __ bind(L);
duke@435 2184 }
duke@435 2185 #endif //ASSERT
duke@435 2186
duke@435 2187 // allocate spill slots for r13, r14
duke@435 2188 enum {
duke@435 2189 saved_r13_offset,
duke@435 2190 saved_r14_offset,
duke@435 2191 saved_rbp_offset,
duke@435 2192 saved_rip_offset,
duke@435 2193 saved_rarg0_offset
duke@435 2194 };
never@739 2195 __ subptr(rsp, saved_rbp_offset * wordSize);
never@739 2196 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
never@739 2197 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
duke@435 2198 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2199 // ckoff => rcx, ckval => r8
duke@435 2200 // r9 and r10 may be used to save non-volatile registers
duke@435 2201 #ifdef _WIN64
duke@435 2202 // last argument (#4) is on stack on Win64
duke@435 2203 const int ckval_offset = saved_rarg0_offset + 4;
never@739 2204 __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
duke@435 2205 #endif
duke@435 2206
duke@435 2207 // check that int operands are properly extended to size_t
duke@435 2208 assert_clean_int(length, rax);
duke@435 2209 assert_clean_int(ckoff, rax);
duke@435 2210
duke@435 2211 #ifdef ASSERT
duke@435 2212 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2213 // The ckoff and ckval must be mutually consistent,
duke@435 2214 // even though caller generates both.
duke@435 2215 { Label L;
duke@435 2216 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2217 Klass::super_check_offset_offset_in_bytes());
duke@435 2218 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2219 __ jcc(Assembler::equal, L);
duke@435 2220 __ stop("super_check_offset inconsistent");
duke@435 2221 __ bind(L);
duke@435 2222 }
duke@435 2223 #endif //ASSERT
duke@435 2224
duke@435 2225 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2226 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2227 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2228 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2229 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2230 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2231
duke@435 2232 gen_write_ref_array_pre_barrier(to, count);
duke@435 2233
duke@435 2234 // Copy from low to high addresses, indexed from the end of each array.
never@739 2235 __ lea(end_from, end_from_addr);
never@739 2236 __ lea(end_to, end_to_addr);
never@739 2237 __ movptr(r14_length, length); // save a copy of the length
never@739 2238 assert(length == count, ""); // else fix next line:
never@739 2239 __ negptr(count); // negate and test the length
duke@435 2240 __ jcc(Assembler::notZero, L_load_element);
duke@435 2241
duke@435 2242 // Empty array: Nothing to do.
never@739 2243 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2244 __ jmp(L_done);
duke@435 2245
duke@435 2246 // ======== begin loop ========
duke@435 2247 // (Loop is rotated; its entry is L_load_element.)
duke@435 2248 // Loop control:
duke@435 2249 // for (count = -count; count != 0; count++)
duke@435 2250 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2251 __ align(OptoLoopAlignment);
duke@435 2252
duke@435 2253 __ BIND(L_store_element);
coleenp@548 2254 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2255 __ increment(count); // increment the count toward zero
duke@435 2256 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2257
duke@435 2258 // ======== loop entry is here ========
duke@435 2259 __ BIND(L_load_element);
coleenp@548 2260 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2261 __ testptr(rax_oop, rax_oop);
duke@435 2262 __ jcc(Assembler::zero, L_store_element);
duke@435 2263
coleenp@548 2264 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2265 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2266 // ======== end loop ========
duke@435 2267
duke@435 2268 // It was a real error; we must depend on the caller to finish the job.
duke@435 2269 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2270 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2271 // and report their number to the caller.
duke@435 2272 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2273 __ lea(end_to, to_element_addr);
ysr@1280 2274 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2275 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2276 __ movptr(rax, r14_length); // original oops
never@739 2277 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2278 __ notptr(rax); // report (-1^K) to caller
duke@435 2279 __ jmp(L_done);
duke@435 2280
duke@435 2281 // Come here on success only.
duke@435 2282 __ BIND(L_do_card_marks);
ysr@1280 2283 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2284 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2285 __ xorptr(rax, rax); // return 0 on success
duke@435 2286
duke@435 2287 // Common exit point (success or failure).
duke@435 2288 __ BIND(L_done);
never@739 2289 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2290 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2291 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2292 restore_arg_regs();
duke@435 2293 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2294 __ ret(0);
duke@435 2295
duke@435 2296 return start;
duke@435 2297 }
duke@435 2298
duke@435 2299 //
duke@435 2300 // Generate 'unsafe' array copy stub
duke@435 2301 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2302 // size_t argument instead of an element count.
duke@435 2303 //
duke@435 2304 // Input:
duke@435 2305 // c_rarg0 - source array address
duke@435 2306 // c_rarg1 - destination array address
duke@435 2307 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2308 //
duke@435 2309 // Examines the alignment of the operands and dispatches
duke@435 2310 // to a long, int, short, or byte copy loop.
duke@435 2311 //
duke@435 2312 address generate_unsafe_copy(const char *name) {
duke@435 2313
duke@435 2314 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2315
duke@435 2316 // Input registers (before setup_arg_regs)
duke@435 2317 const Register from = c_rarg0; // source array address
duke@435 2318 const Register to = c_rarg1; // destination array address
duke@435 2319 const Register size = c_rarg2; // byte count (size_t)
duke@435 2320
duke@435 2321 // Register used as a temp
duke@435 2322 const Register bits = rax; // test copy of low bits
duke@435 2323
duke@435 2324 __ align(CodeEntryAlignment);
duke@435 2325 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2326 address start = __ pc();
duke@435 2327
duke@435 2328 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2329
duke@435 2330 // bump this on entry, not on exit:
duke@435 2331 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2332
never@739 2333 __ mov(bits, from);
never@739 2334 __ orptr(bits, to);
never@739 2335 __ orptr(bits, size);
duke@435 2336
duke@435 2337 __ testb(bits, BytesPerLong-1);
duke@435 2338 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2339
duke@435 2340 __ testb(bits, BytesPerInt-1);
duke@435 2341 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2342
duke@435 2343 __ testb(bits, BytesPerShort-1);
duke@435 2344 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2345
duke@435 2346 __ BIND(L_short_aligned);
never@739 2347 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2348 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2349
duke@435 2350 __ BIND(L_int_aligned);
never@739 2351 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2352 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2353
duke@435 2354 __ BIND(L_long_aligned);
never@739 2355 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2356 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2357
duke@435 2358 return start;
duke@435 2359 }
duke@435 2360
duke@435 2361 // Perform range checks on the proposed arraycopy.
duke@435 2362 // Kills temp, but nothing else.
duke@435 2363 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2364 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2365 Register src_pos, // source position (c_rarg1)
duke@435 2366 Register dst, // destination array oo (c_rarg2)
duke@435 2367 Register dst_pos, // destination position (c_rarg3)
duke@435 2368 Register length,
duke@435 2369 Register temp,
duke@435 2370 Label& L_failed) {
duke@435 2371 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2372
duke@435 2373 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2374 __ movl(temp, length);
duke@435 2375 __ addl(temp, src_pos); // src_pos + length
duke@435 2376 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2377 __ jcc(Assembler::above, L_failed);
duke@435 2378
duke@435 2379 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2380 __ movl(temp, length);
duke@435 2381 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2382 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2383 __ jcc(Assembler::above, L_failed);
duke@435 2384
duke@435 2385 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2386 // Move with sign extension can be used since they are positive.
duke@435 2387 __ movslq(src_pos, src_pos);
duke@435 2388 __ movslq(dst_pos, dst_pos);
duke@435 2389
duke@435 2390 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2391 }
duke@435 2392
duke@435 2393 //
duke@435 2394 // Generate generic array copy stubs
duke@435 2395 //
duke@435 2396 // Input:
duke@435 2397 // c_rarg0 - src oop
duke@435 2398 // c_rarg1 - src_pos (32-bits)
duke@435 2399 // c_rarg2 - dst oop
duke@435 2400 // c_rarg3 - dst_pos (32-bits)
duke@435 2401 // not Win64
duke@435 2402 // c_rarg4 - element count (32-bits)
duke@435 2403 // Win64
duke@435 2404 // rsp+40 - element count (32-bits)
duke@435 2405 //
duke@435 2406 // Output:
duke@435 2407 // rax == 0 - success
duke@435 2408 // rax == -1^K - failure, where K is partial transfer count
duke@435 2409 //
duke@435 2410 address generate_generic_copy(const char *name) {
duke@435 2411
duke@435 2412 Label L_failed, L_failed_0, L_objArray;
duke@435 2413 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2414
duke@435 2415 // Input registers
duke@435 2416 const Register src = c_rarg0; // source array oop
duke@435 2417 const Register src_pos = c_rarg1; // source position
duke@435 2418 const Register dst = c_rarg2; // destination array oop
duke@435 2419 const Register dst_pos = c_rarg3; // destination position
duke@435 2420 // elements count is on stack on Win64
duke@435 2421 #ifdef _WIN64
duke@435 2422 #define C_RARG4 Address(rsp, 6 * wordSize)
duke@435 2423 #else
duke@435 2424 #define C_RARG4 c_rarg4
duke@435 2425 #endif
duke@435 2426
duke@435 2427 { int modulus = CodeEntryAlignment;
duke@435 2428 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2429 int advance = target - (__ offset() % modulus);
duke@435 2430 if (advance < 0) advance += modulus;
duke@435 2431 if (advance > 0) __ nop(advance);
duke@435 2432 }
duke@435 2433 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2434
duke@435 2435 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2436 __ BIND(L_failed_0);
duke@435 2437 __ jmp(L_failed);
duke@435 2438 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2439
duke@435 2440 __ align(CodeEntryAlignment);
duke@435 2441 address start = __ pc();
duke@435 2442
duke@435 2443 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2444
duke@435 2445 // bump this on entry, not on exit:
duke@435 2446 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2447
duke@435 2448 //-----------------------------------------------------------------------
duke@435 2449 // Assembler stub will be used for this call to arraycopy
duke@435 2450 // if the following conditions are met:
duke@435 2451 //
duke@435 2452 // (1) src and dst must not be null.
duke@435 2453 // (2) src_pos must not be negative.
duke@435 2454 // (3) dst_pos must not be negative.
duke@435 2455 // (4) length must not be negative.
duke@435 2456 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2457 // (6) src and dst should be arrays.
duke@435 2458 // (7) src_pos + length must not exceed length of src.
duke@435 2459 // (8) dst_pos + length must not exceed length of dst.
duke@435 2460 //
duke@435 2461
duke@435 2462 // if (src == NULL) return -1;
never@739 2463 __ testptr(src, src); // src oop
duke@435 2464 size_t j1off = __ offset();
duke@435 2465 __ jccb(Assembler::zero, L_failed_0);
duke@435 2466
duke@435 2467 // if (src_pos < 0) return -1;
duke@435 2468 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2469 __ jccb(Assembler::negative, L_failed_0);
duke@435 2470
duke@435 2471 // if (dst == NULL) return -1;
never@739 2472 __ testptr(dst, dst); // dst oop
duke@435 2473 __ jccb(Assembler::zero, L_failed_0);
duke@435 2474
duke@435 2475 // if (dst_pos < 0) return -1;
duke@435 2476 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2477 size_t j4off = __ offset();
duke@435 2478 __ jccb(Assembler::negative, L_failed_0);
duke@435 2479
duke@435 2480 // The first four tests are very dense code,
duke@435 2481 // but not quite dense enough to put four
duke@435 2482 // jumps in a 16-byte instruction fetch buffer.
duke@435 2483 // That's good, because some branch predicters
duke@435 2484 // do not like jumps so close together.
duke@435 2485 // Make sure of this.
duke@435 2486 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2487
duke@435 2488 // registers used as temp
duke@435 2489 const Register r11_length = r11; // elements count to copy
duke@435 2490 const Register r10_src_klass = r10; // array klass
coleenp@548 2491 const Register r9_dst_klass = r9; // dest array klass
duke@435 2492
duke@435 2493 // if (length < 0) return -1;
duke@435 2494 __ movl(r11_length, C_RARG4); // length (elements count, 32-bits value)
duke@435 2495 __ testl(r11_length, r11_length);
duke@435 2496 __ jccb(Assembler::negative, L_failed_0);
duke@435 2497
coleenp@548 2498 __ load_klass(r10_src_klass, src);
duke@435 2499 #ifdef ASSERT
duke@435 2500 // assert(src->klass() != NULL);
duke@435 2501 BLOCK_COMMENT("assert klasses not null");
duke@435 2502 { Label L1, L2;
never@739 2503 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2504 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2505 __ bind(L1);
duke@435 2506 __ stop("broken null klass");
duke@435 2507 __ bind(L2);
coleenp@548 2508 __ load_klass(r9_dst_klass, dst);
coleenp@548 2509 __ cmpq(r9_dst_klass, 0);
duke@435 2510 __ jcc(Assembler::equal, L1); // this would be broken also
duke@435 2511 BLOCK_COMMENT("assert done");
duke@435 2512 }
duke@435 2513 #endif
duke@435 2514
duke@435 2515 // Load layout helper (32-bits)
duke@435 2516 //
duke@435 2517 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2518 // 32 30 24 16 8 2 0
duke@435 2519 //
duke@435 2520 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2521 //
duke@435 2522
duke@435 2523 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2524 Klass::layout_helper_offset_in_bytes();
duke@435 2525
duke@435 2526 const Register rax_lh = rax; // layout helper
duke@435 2527
duke@435 2528 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2529
duke@435 2530 // Handle objArrays completely differently...
duke@435 2531 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2532 __ cmpl(rax_lh, objArray_lh);
duke@435 2533 __ jcc(Assembler::equal, L_objArray);
duke@435 2534
duke@435 2535 // if (src->klass() != dst->klass()) return -1;
coleenp@548 2536 __ load_klass(r9_dst_klass, dst);
coleenp@548 2537 __ cmpq(r10_src_klass, r9_dst_klass);
duke@435 2538 __ jcc(Assembler::notEqual, L_failed);
duke@435 2539
duke@435 2540 // if (!src->is_Array()) return -1;
duke@435 2541 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2542 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2543
duke@435 2544 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2545 #ifdef ASSERT
duke@435 2546 { Label L;
duke@435 2547 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2548 __ jcc(Assembler::greaterEqual, L);
duke@435 2549 __ stop("must be a primitive array");
duke@435 2550 __ bind(L);
duke@435 2551 }
duke@435 2552 #endif
duke@435 2553
duke@435 2554 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2555 r10, L_failed);
duke@435 2556
duke@435 2557 // typeArrayKlass
duke@435 2558 //
duke@435 2559 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2560 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2561 //
duke@435 2562
duke@435 2563 const Register r10_offset = r10; // array offset
duke@435 2564 const Register rax_elsize = rax_lh; // element size
duke@435 2565
duke@435 2566 __ movl(r10_offset, rax_lh);
duke@435 2567 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2568 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2569 __ addptr(src, r10_offset); // src array offset
never@739 2570 __ addptr(dst, r10_offset); // dst array offset
duke@435 2571 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2572 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2573
duke@435 2574 // next registers should be set before the jump to corresponding stub
duke@435 2575 const Register from = c_rarg0; // source array address
duke@435 2576 const Register to = c_rarg1; // destination array address
duke@435 2577 const Register count = c_rarg2; // elements count
duke@435 2578
duke@435 2579 // 'from', 'to', 'count' registers should be set in such order
duke@435 2580 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2581
duke@435 2582 __ BIND(L_copy_bytes);
duke@435 2583 __ cmpl(rax_elsize, 0);
duke@435 2584 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2585 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2586 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2587 __ movl2ptr(count, r11_length); // length
duke@435 2588 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2589
duke@435 2590 __ BIND(L_copy_shorts);
duke@435 2591 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2592 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2593 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2594 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2595 __ movl2ptr(count, r11_length); // length
duke@435 2596 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2597
duke@435 2598 __ BIND(L_copy_ints);
duke@435 2599 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2600 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2601 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2602 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2603 __ movl2ptr(count, r11_length); // length
duke@435 2604 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2605
duke@435 2606 __ BIND(L_copy_longs);
duke@435 2607 #ifdef ASSERT
duke@435 2608 { Label L;
duke@435 2609 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2610 __ jcc(Assembler::equal, L);
duke@435 2611 __ stop("must be long copy, but elsize is wrong");
duke@435 2612 __ bind(L);
duke@435 2613 }
duke@435 2614 #endif
never@739 2615 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2616 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2617 __ movl2ptr(count, r11_length); // length
duke@435 2618 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2619
duke@435 2620 // objArrayKlass
duke@435 2621 __ BIND(L_objArray);
duke@435 2622 // live at this point: r10_src_klass, src[_pos], dst[_pos]
duke@435 2623
duke@435 2624 Label L_plain_copy, L_checkcast_copy;
duke@435 2625 // test array classes for subtyping
coleenp@548 2626 __ load_klass(r9_dst_klass, dst);
coleenp@548 2627 __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
duke@435 2628 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2629
duke@435 2630 // Identically typed arrays can be copied without element-wise checks.
duke@435 2631 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2632 r10, L_failed);
duke@435 2633
never@739 2634 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2635 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2636 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2637 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2638 __ movl2ptr(count, r11_length); // length
duke@435 2639 __ BIND(L_plain_copy);
duke@435 2640 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2641
duke@435 2642 __ BIND(L_checkcast_copy);
duke@435 2643 // live at this point: r10_src_klass, !r11_length
duke@435 2644 {
duke@435 2645 // assert(r11_length == C_RARG4); // will reload from here
duke@435 2646 Register r11_dst_klass = r11;
coleenp@548 2647 __ load_klass(r11_dst_klass, dst);
duke@435 2648
duke@435 2649 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2650 __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
duke@435 2651 __ jcc(Assembler::notEqual, L_failed);
duke@435 2652
duke@435 2653 // It is safe to examine both src.length and dst.length.
duke@435 2654 #ifndef _WIN64
duke@435 2655 arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
duke@435 2656 rax, L_failed);
duke@435 2657 #else
duke@435 2658 __ movl(r11_length, C_RARG4); // reload
duke@435 2659 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2660 rax, L_failed);
coleenp@548 2661 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2662 #endif
duke@435 2663
duke@435 2664 // Marshal the base address arguments now, freeing registers.
never@739 2665 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2666 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2667 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2668 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
duke@435 2669 __ movl(count, C_RARG4); // length (reloaded)
duke@435 2670 Register sco_temp = c_rarg3; // this register is free now
duke@435 2671 assert_different_registers(from, to, count, sco_temp,
duke@435 2672 r11_dst_klass, r10_src_klass);
duke@435 2673 assert_clean_int(count, sco_temp);
duke@435 2674
duke@435 2675 // Generate the type check.
duke@435 2676 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2677 Klass::super_check_offset_offset_in_bytes());
duke@435 2678 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2679 assert_clean_int(sco_temp, rax);
duke@435 2680 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2681
duke@435 2682 // Fetch destination element klass from the objArrayKlass header.
duke@435 2683 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2684 objArrayKlass::element_klass_offset_in_bytes());
never@739 2685 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
duke@435 2686 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2687 assert_clean_int(sco_temp, rax);
duke@435 2688
duke@435 2689 // the checkcast_copy loop needs two extra arguments:
duke@435 2690 assert(c_rarg3 == sco_temp, "#3 already in place");
never@739 2691 __ movptr(C_RARG4, r11_dst_klass); // dst.klass.element_klass
duke@435 2692 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2693 }
duke@435 2694
duke@435 2695 __ BIND(L_failed);
never@739 2696 __ xorptr(rax, rax);
never@739 2697 __ notptr(rax); // return -1
duke@435 2698 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2699 __ ret(0);
duke@435 2700
duke@435 2701 return start;
duke@435 2702 }
duke@435 2703
duke@435 2704 #undef length_arg
duke@435 2705
duke@435 2706 void generate_arraycopy_stubs() {
duke@435 2707 // Call the conjoint generation methods immediately after
duke@435 2708 // the disjoint ones so that short branches from the former
duke@435 2709 // to the latter can be generated.
duke@435 2710 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2711 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2712
duke@435 2713 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2714 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2715
coleenp@548 2716 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
coleenp@548 2717 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
duke@435 2718
duke@435 2719 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
duke@435 2720 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
duke@435 2721
coleenp@548 2722
coleenp@548 2723 if (UseCompressedOops) {
coleenp@548 2724 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2725 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2726 } else {
coleenp@548 2727 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2728 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2729 }
duke@435 2730
duke@435 2731 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2732 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2733 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2734
never@2118 2735 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2736 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2737 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2738 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2739 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2740 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2741
duke@435 2742 // We don't generate specialized code for HeapWord-aligned source
duke@435 2743 // arrays, so just use the code we've already generated
duke@435 2744 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2745 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2746
duke@435 2747 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2748 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2749
duke@435 2750 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2751 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2752
duke@435 2753 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2754 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2755
duke@435 2756 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2757 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2758 }
duke@435 2759
never@1609 2760 void generate_math_stubs() {
never@1609 2761 {
never@1609 2762 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2763 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2764
never@1609 2765 __ subq(rsp, 8);
never@1609 2766 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2767 __ fld_d(Address(rsp, 0));
never@1609 2768 __ flog();
never@1609 2769 __ fstp_d(Address(rsp, 0));
never@1609 2770 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2771 __ addq(rsp, 8);
never@1609 2772 __ ret(0);
never@1609 2773 }
never@1609 2774 {
never@1609 2775 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2776 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2777
never@1609 2778 __ subq(rsp, 8);
never@1609 2779 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2780 __ fld_d(Address(rsp, 0));
never@1609 2781 __ flog10();
never@1609 2782 __ fstp_d(Address(rsp, 0));
never@1609 2783 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2784 __ addq(rsp, 8);
never@1609 2785 __ ret(0);
never@1609 2786 }
never@1609 2787 {
never@1609 2788 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2789 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2790
never@1609 2791 __ subq(rsp, 8);
never@1609 2792 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2793 __ fld_d(Address(rsp, 0));
never@1609 2794 __ trigfunc('s');
never@1609 2795 __ fstp_d(Address(rsp, 0));
never@1609 2796 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2797 __ addq(rsp, 8);
never@1609 2798 __ ret(0);
never@1609 2799 }
never@1609 2800 {
never@1609 2801 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2802 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2803
never@1609 2804 __ subq(rsp, 8);
never@1609 2805 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2806 __ fld_d(Address(rsp, 0));
never@1609 2807 __ trigfunc('c');
never@1609 2808 __ fstp_d(Address(rsp, 0));
never@1609 2809 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2810 __ addq(rsp, 8);
never@1609 2811 __ ret(0);
never@1609 2812 }
never@1609 2813 {
never@1609 2814 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2815 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2816
never@1609 2817 __ subq(rsp, 8);
never@1609 2818 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2819 __ fld_d(Address(rsp, 0));
never@1609 2820 __ trigfunc('t');
never@1609 2821 __ fstp_d(Address(rsp, 0));
never@1609 2822 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2823 __ addq(rsp, 8);
never@1609 2824 __ ret(0);
never@1609 2825 }
never@1609 2826
never@1609 2827 // The intrinsic version of these seem to return the same value as
never@1609 2828 // the strict version.
never@1609 2829 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2830 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2831 }
never@1609 2832
duke@435 2833 #undef __
duke@435 2834 #define __ masm->
duke@435 2835
duke@435 2836 // Continuation point for throwing of implicit exceptions that are
duke@435 2837 // not handled in the current activation. Fabricates an exception
duke@435 2838 // oop and initiates normal exception dispatching in this
duke@435 2839 // frame. Since we need to preserve callee-saved values (currently
duke@435 2840 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2841 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2842 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2843 // be preserved between the fault point and the exception handler
duke@435 2844 // then it must assume responsibility for that in
duke@435 2845 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2846 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2847 // implicit exceptions (e.g., NullPointerException or
duke@435 2848 // AbstractMethodError on entry) are either at call sites or
duke@435 2849 // otherwise assume that stack unwinding will be initiated, so
duke@435 2850 // caller saved registers were assumed volatile in the compiler.
duke@435 2851 address generate_throw_exception(const char* name,
duke@435 2852 address runtime_entry,
duke@435 2853 bool restore_saved_exception_pc) {
duke@435 2854 // Information about frame layout at time of blocking runtime call.
duke@435 2855 // Note that we only have to preserve callee-saved registers since
duke@435 2856 // the compilers are responsible for supplying a continuation point
duke@435 2857 // if they expect all registers to be preserved.
duke@435 2858 enum layout {
duke@435 2859 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2860 rbp_off2,
duke@435 2861 return_off,
duke@435 2862 return_off2,
duke@435 2863 framesize // inclusive of return address
duke@435 2864 };
duke@435 2865
duke@435 2866 int insts_size = 512;
duke@435 2867 int locs_size = 64;
duke@435 2868
duke@435 2869 CodeBuffer code(name, insts_size, locs_size);
duke@435 2870 OopMapSet* oop_maps = new OopMapSet();
duke@435 2871 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2872
duke@435 2873 address start = __ pc();
duke@435 2874
duke@435 2875 // This is an inlined and slightly modified version of call_VM
duke@435 2876 // which has the ability to fetch the return PC out of
duke@435 2877 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2878 // differently than the real call_VM
duke@435 2879 if (restore_saved_exception_pc) {
never@739 2880 __ movptr(rax,
never@739 2881 Address(r15_thread,
never@739 2882 in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2883 __ push(rax);
duke@435 2884 }
duke@435 2885
duke@435 2886 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2887
duke@435 2888 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2889
duke@435 2890 // return address and rbp are already in place
never@739 2891 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2892
duke@435 2893 int frame_complete = __ pc() - start;
duke@435 2894
duke@435 2895 // Set up last_Java_sp and last_Java_fp
duke@435 2896 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2897
duke@435 2898 // Call runtime
never@739 2899 __ movptr(c_rarg0, r15_thread);
duke@435 2900 BLOCK_COMMENT("call runtime_entry");
duke@435 2901 __ call(RuntimeAddress(runtime_entry));
duke@435 2902
duke@435 2903 // Generate oop map
duke@435 2904 OopMap* map = new OopMap(framesize, 0);
duke@435 2905
duke@435 2906 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2907
duke@435 2908 __ reset_last_Java_frame(true, false);
duke@435 2909
duke@435 2910 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2911
duke@435 2912 // check for pending exceptions
duke@435 2913 #ifdef ASSERT
duke@435 2914 Label L;
never@739 2915 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 2916 (int32_t) NULL_WORD);
duke@435 2917 __ jcc(Assembler::notEqual, L);
duke@435 2918 __ should_not_reach_here();
duke@435 2919 __ bind(L);
duke@435 2920 #endif // ASSERT
duke@435 2921 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2922
duke@435 2923
duke@435 2924 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 2925 RuntimeStub* stub =
duke@435 2926 RuntimeStub::new_runtime_stub(name,
duke@435 2927 &code,
duke@435 2928 frame_complete,
duke@435 2929 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 2930 oop_maps, false);
duke@435 2931 return stub->entry_point();
duke@435 2932 }
duke@435 2933
duke@435 2934 // Initialization
duke@435 2935 void generate_initial() {
duke@435 2936 // Generates all stubs and initializes the entry points
duke@435 2937
duke@435 2938 // This platform-specific stub is needed by generate_call_stub()
never@739 2939 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 2940
duke@435 2941 // entry points that exist in all platforms Note: This is code
duke@435 2942 // that could be shared among different platforms - however the
duke@435 2943 // benefit seems to be smaller than the disadvantage of having a
duke@435 2944 // much more complicated generator structure. See also comment in
duke@435 2945 // stubRoutines.hpp.
duke@435 2946
duke@435 2947 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2948
duke@435 2949 StubRoutines::_call_stub_entry =
duke@435 2950 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2951
duke@435 2952 // is referenced by megamorphic call
duke@435 2953 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2954
duke@435 2955 // atomic calls
duke@435 2956 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2957 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 2958 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2959 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2960 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2961 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 2962 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 2963
duke@435 2964 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2965 generate_handler_for_unsafe_access();
duke@435 2966
duke@435 2967 // platform dependent
never@739 2968 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 2969
never@739 2970 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 2971 }
duke@435 2972
duke@435 2973 void generate_all() {
duke@435 2974 // Generates all stubs and initializes the entry points
duke@435 2975
duke@435 2976 // These entry points require SharedInfo::stack0 to be set up in
duke@435 2977 // non-core builds and need to be relocatable, so they each
duke@435 2978 // fabricate a RuntimeStub internally.
duke@435 2979 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 2980 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 2981 CAST_FROM_FN_PTR(address,
duke@435 2982 SharedRuntime::
duke@435 2983 throw_AbstractMethodError),
duke@435 2984 false);
duke@435 2985
dcubed@451 2986 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 2987 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 2988 CAST_FROM_FN_PTR(address,
dcubed@451 2989 SharedRuntime::
dcubed@451 2990 throw_IncompatibleClassChangeError),
dcubed@451 2991 false);
dcubed@451 2992
duke@435 2993 StubRoutines::_throw_ArithmeticException_entry =
duke@435 2994 generate_throw_exception("ArithmeticException throw_exception",
duke@435 2995 CAST_FROM_FN_PTR(address,
duke@435 2996 SharedRuntime::
duke@435 2997 throw_ArithmeticException),
duke@435 2998 true);
duke@435 2999
duke@435 3000 StubRoutines::_throw_NullPointerException_entry =
duke@435 3001 generate_throw_exception("NullPointerException throw_exception",
duke@435 3002 CAST_FROM_FN_PTR(address,
duke@435 3003 SharedRuntime::
duke@435 3004 throw_NullPointerException),
duke@435 3005 true);
duke@435 3006
duke@435 3007 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3008 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3009 CAST_FROM_FN_PTR(address,
duke@435 3010 SharedRuntime::
duke@435 3011 throw_NullPointerException_at_call),
duke@435 3012 false);
duke@435 3013
duke@435 3014 StubRoutines::_throw_StackOverflowError_entry =
duke@435 3015 generate_throw_exception("StackOverflowError throw_exception",
duke@435 3016 CAST_FROM_FN_PTR(address,
duke@435 3017 SharedRuntime::
duke@435 3018 throw_StackOverflowError),
duke@435 3019 false);
duke@435 3020
duke@435 3021 // entry points that are platform specific
never@739 3022 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3023 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3024 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3025 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3026
never@739 3027 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3028 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3029 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3030 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3031
duke@435 3032 // support for verify_oop (must happen after universe_init)
duke@435 3033 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3034
duke@435 3035 // arraycopy stubs used by compilers
duke@435 3036 generate_arraycopy_stubs();
twisti@1543 3037
never@1609 3038 generate_math_stubs();
duke@435 3039 }
duke@435 3040
duke@435 3041 public:
duke@435 3042 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3043 if (all) {
duke@435 3044 generate_all();
duke@435 3045 } else {
duke@435 3046 generate_initial();
duke@435 3047 }
duke@435 3048 }
duke@435 3049 }; // end class declaration
duke@435 3050
duke@435 3051 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 3052 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 3053 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 3054 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 3055 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 3056
duke@435 3057 address StubGenerator::byte_copy_entry = NULL;
duke@435 3058 address StubGenerator::short_copy_entry = NULL;
duke@435 3059 address StubGenerator::int_copy_entry = NULL;
duke@435 3060 address StubGenerator::long_copy_entry = NULL;
duke@435 3061 address StubGenerator::oop_copy_entry = NULL;
duke@435 3062
duke@435 3063 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3064
duke@435 3065 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3066 StubGenerator g(code, all);
duke@435 3067 }

mercurial