src/cpu/x86/vm/stubGenerator_x86_64.cpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 3136
c565834fb592
child 3310
6729bbc1fcd6
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
never@3156 50 #ifdef TARGET_OS_FAMILY_bsd
never@3156 51 # include "thread_bsd.inline.hpp"
never@3156 52 #endif
stefank@2314 53 #ifdef COMPILER2
stefank@2314 54 #include "opto/runtime.hpp"
stefank@2314 55 #endif
duke@435 56
duke@435 57 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 58 // For a more detailed description of the stub routine structure
duke@435 59 // see the comment in stubRoutines.hpp
duke@435 60
duke@435 61 #define __ _masm->
coleenp@548 62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 63 #define a__ ((Assembler*)_masm)->
duke@435 64
duke@435 65 #ifdef PRODUCT
duke@435 66 #define BLOCK_COMMENT(str) /* nothing */
duke@435 67 #else
duke@435 68 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 69 #endif
duke@435 70
duke@435 71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 72 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 73
duke@435 74 // Stub Code definitions
duke@435 75
duke@435 76 static address handle_unsafe_access() {
duke@435 77 JavaThread* thread = JavaThread::current();
duke@435 78 address pc = thread->saved_exception_pc();
duke@435 79 // pc is the instruction which we must emulate
duke@435 80 // doing a no-op is fine: return garbage from the load
duke@435 81 // therefore, compute npc
duke@435 82 address npc = Assembler::locate_next_instruction(pc);
duke@435 83
duke@435 84 // request an async exception
duke@435 85 thread->set_pending_unsafe_access_error();
duke@435 86
duke@435 87 // return address of next instruction to execute
duke@435 88 return npc;
duke@435 89 }
duke@435 90
duke@435 91 class StubGenerator: public StubCodeGenerator {
duke@435 92 private:
duke@435 93
duke@435 94 #ifdef PRODUCT
duke@435 95 #define inc_counter_np(counter) (0)
duke@435 96 #else
duke@435 97 void inc_counter_np_(int& counter) {
duke@435 98 __ incrementl(ExternalAddress((address)&counter));
duke@435 99 }
duke@435 100 #define inc_counter_np(counter) \
duke@435 101 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 102 inc_counter_np_(counter);
duke@435 103 #endif
duke@435 104
duke@435 105 // Call stubs are used to call Java from C
duke@435 106 //
duke@435 107 // Linux Arguments:
duke@435 108 // c_rarg0: call wrapper address address
duke@435 109 // c_rarg1: result address
duke@435 110 // c_rarg2: result type BasicType
duke@435 111 // c_rarg3: method methodOop
duke@435 112 // c_rarg4: (interpreter) entry point address
duke@435 113 // c_rarg5: parameters intptr_t*
duke@435 114 // 16(rbp): parameter size (in words) int
duke@435 115 // 24(rbp): thread Thread*
duke@435 116 //
duke@435 117 // [ return_from_Java ] <--- rsp
duke@435 118 // [ argument word n ]
duke@435 119 // ...
duke@435 120 // -12 [ argument word 1 ]
duke@435 121 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 122 // -10 [ saved r14 ]
duke@435 123 // -9 [ saved r13 ]
duke@435 124 // -8 [ saved r12 ]
duke@435 125 // -7 [ saved rbx ]
duke@435 126 // -6 [ call wrapper ]
duke@435 127 // -5 [ result ]
duke@435 128 // -4 [ result type ]
duke@435 129 // -3 [ method ]
duke@435 130 // -2 [ entry point ]
duke@435 131 // -1 [ parameters ]
duke@435 132 // 0 [ saved rbp ] <--- rbp
duke@435 133 // 1 [ return address ]
duke@435 134 // 2 [ parameter size ]
duke@435 135 // 3 [ thread ]
duke@435 136 //
duke@435 137 // Windows Arguments:
duke@435 138 // c_rarg0: call wrapper address address
duke@435 139 // c_rarg1: result address
duke@435 140 // c_rarg2: result type BasicType
duke@435 141 // c_rarg3: method methodOop
duke@435 142 // 48(rbp): (interpreter) entry point address
duke@435 143 // 56(rbp): parameters intptr_t*
duke@435 144 // 64(rbp): parameter size (in words) int
duke@435 145 // 72(rbp): thread Thread*
duke@435 146 //
duke@435 147 // [ return_from_Java ] <--- rsp
duke@435 148 // [ argument word n ]
duke@435 149 // ...
iveresov@2689 150 // -28 [ argument word 1 ]
iveresov@2689 151 // -27 [ saved xmm15 ] <--- rsp_after_call
iveresov@2689 152 // [ saved xmm7-xmm14 ]
iveresov@2689 153 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
iveresov@2689 154 // -7 [ saved r15 ]
duke@435 155 // -6 [ saved r14 ]
duke@435 156 // -5 [ saved r13 ]
duke@435 157 // -4 [ saved r12 ]
duke@435 158 // -3 [ saved rdi ]
duke@435 159 // -2 [ saved rsi ]
duke@435 160 // -1 [ saved rbx ]
duke@435 161 // 0 [ saved rbp ] <--- rbp
duke@435 162 // 1 [ return address ]
duke@435 163 // 2 [ call wrapper ]
duke@435 164 // 3 [ result ]
duke@435 165 // 4 [ result type ]
duke@435 166 // 5 [ method ]
duke@435 167 // 6 [ entry point ]
duke@435 168 // 7 [ parameters ]
duke@435 169 // 8 [ parameter size ]
duke@435 170 // 9 [ thread ]
duke@435 171 //
duke@435 172 // Windows reserves the callers stack space for arguments 1-4.
duke@435 173 // We spill c_rarg0-c_rarg3 to this space.
duke@435 174
duke@435 175 // Call stub stack layout word offsets from rbp
duke@435 176 enum call_stub_layout {
duke@435 177 #ifdef _WIN64
iveresov@2689 178 xmm_save_first = 6, // save from xmm6
iveresov@2689 179 xmm_save_last = 15, // to xmm15
iveresov@2689 180 xmm_save_base = -9,
iveresov@2689 181 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
iveresov@2689 182 r15_off = -7,
duke@435 183 r14_off = -6,
duke@435 184 r13_off = -5,
duke@435 185 r12_off = -4,
duke@435 186 rdi_off = -3,
duke@435 187 rsi_off = -2,
duke@435 188 rbx_off = -1,
duke@435 189 rbp_off = 0,
duke@435 190 retaddr_off = 1,
duke@435 191 call_wrapper_off = 2,
duke@435 192 result_off = 3,
duke@435 193 result_type_off = 4,
duke@435 194 method_off = 5,
duke@435 195 entry_point_off = 6,
duke@435 196 parameters_off = 7,
duke@435 197 parameter_size_off = 8,
duke@435 198 thread_off = 9
duke@435 199 #else
duke@435 200 rsp_after_call_off = -12,
duke@435 201 mxcsr_off = rsp_after_call_off,
duke@435 202 r15_off = -11,
duke@435 203 r14_off = -10,
duke@435 204 r13_off = -9,
duke@435 205 r12_off = -8,
duke@435 206 rbx_off = -7,
duke@435 207 call_wrapper_off = -6,
duke@435 208 result_off = -5,
duke@435 209 result_type_off = -4,
duke@435 210 method_off = -3,
duke@435 211 entry_point_off = -2,
duke@435 212 parameters_off = -1,
duke@435 213 rbp_off = 0,
duke@435 214 retaddr_off = 1,
duke@435 215 parameter_size_off = 2,
duke@435 216 thread_off = 3
duke@435 217 #endif
duke@435 218 };
duke@435 219
iveresov@2689 220 #ifdef _WIN64
iveresov@2689 221 Address xmm_save(int reg) {
iveresov@2689 222 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
iveresov@2689 223 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
iveresov@2689 224 }
iveresov@2689 225 #endif
iveresov@2689 226
duke@435 227 address generate_call_stub(address& return_address) {
duke@435 228 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 229 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 230 "adjust this code");
duke@435 231 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 232 address start = __ pc();
duke@435 233
duke@435 234 // same as in generate_catch_exception()!
duke@435 235 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 236
duke@435 237 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 238 const Address result (rbp, result_off * wordSize);
duke@435 239 const Address result_type (rbp, result_type_off * wordSize);
duke@435 240 const Address method (rbp, method_off * wordSize);
duke@435 241 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 242 const Address parameters (rbp, parameters_off * wordSize);
duke@435 243 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 244
duke@435 245 // same as in generate_catch_exception()!
duke@435 246 const Address thread (rbp, thread_off * wordSize);
duke@435 247
duke@435 248 const Address r15_save(rbp, r15_off * wordSize);
duke@435 249 const Address r14_save(rbp, r14_off * wordSize);
duke@435 250 const Address r13_save(rbp, r13_off * wordSize);
duke@435 251 const Address r12_save(rbp, r12_off * wordSize);
duke@435 252 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 253
duke@435 254 // stub code
duke@435 255 __ enter();
never@739 256 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 257
duke@435 258 // save register parameters
duke@435 259 #ifndef _WIN64
never@739 260 __ movptr(parameters, c_rarg5); // parameters
never@739 261 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 262 #endif
duke@435 263
never@739 264 __ movptr(method, c_rarg3); // method
never@739 265 __ movl(result_type, c_rarg2); // result type
never@739 266 __ movptr(result, c_rarg1); // result
never@739 267 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 268
duke@435 269 // save regs belonging to calling function
never@739 270 __ movptr(rbx_save, rbx);
never@739 271 __ movptr(r12_save, r12);
never@739 272 __ movptr(r13_save, r13);
never@739 273 __ movptr(r14_save, r14);
never@739 274 __ movptr(r15_save, r15);
duke@435 275 #ifdef _WIN64
iveresov@2689 276 for (int i = 6; i <= 15; i++) {
iveresov@2689 277 __ movdqu(xmm_save(i), as_XMMRegister(i));
iveresov@2689 278 }
iveresov@2689 279
duke@435 280 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 281 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 282
never@739 283 __ movptr(rsi_save, rsi);
never@739 284 __ movptr(rdi_save, rdi);
duke@435 285 #else
duke@435 286 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 287 {
duke@435 288 Label skip_ldmx;
duke@435 289 __ stmxcsr(mxcsr_save);
duke@435 290 __ movl(rax, mxcsr_save);
duke@435 291 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 292 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 293 __ cmp32(rax, mxcsr_std);
duke@435 294 __ jcc(Assembler::equal, skip_ldmx);
duke@435 295 __ ldmxcsr(mxcsr_std);
duke@435 296 __ bind(skip_ldmx);
duke@435 297 }
duke@435 298 #endif
duke@435 299
duke@435 300 // Load up thread register
never@739 301 __ movptr(r15_thread, thread);
coleenp@548 302 __ reinit_heapbase();
duke@435 303
duke@435 304 #ifdef ASSERT
duke@435 305 // make sure we have no pending exceptions
duke@435 306 {
duke@435 307 Label L;
never@739 308 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 309 __ jcc(Assembler::equal, L);
duke@435 310 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 311 __ bind(L);
duke@435 312 }
duke@435 313 #endif
duke@435 314
duke@435 315 // pass parameters if any
duke@435 316 BLOCK_COMMENT("pass parameters if any");
duke@435 317 Label parameters_done;
duke@435 318 __ movl(c_rarg3, parameter_size);
duke@435 319 __ testl(c_rarg3, c_rarg3);
duke@435 320 __ jcc(Assembler::zero, parameters_done);
duke@435 321
duke@435 322 Label loop;
never@739 323 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 324 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 325 __ BIND(loop);
never@739 326 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 327 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 328 __ decrementl(c_rarg1); // decrement counter
never@739 329 __ push(rax); // pass parameter
duke@435 330 __ jcc(Assembler::notZero, loop);
duke@435 331
duke@435 332 // call Java function
duke@435 333 __ BIND(parameters_done);
never@739 334 __ movptr(rbx, method); // get methodOop
never@739 335 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 336 __ mov(r13, rsp); // set sender sp
duke@435 337 BLOCK_COMMENT("call Java function");
duke@435 338 __ call(c_rarg1);
duke@435 339
duke@435 340 BLOCK_COMMENT("call_stub_return_address:");
duke@435 341 return_address = __ pc();
duke@435 342
duke@435 343 // store result depending on type (everything that is not
duke@435 344 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 345 __ movptr(c_rarg0, result);
duke@435 346 Label is_long, is_float, is_double, exit;
duke@435 347 __ movl(c_rarg1, result_type);
duke@435 348 __ cmpl(c_rarg1, T_OBJECT);
duke@435 349 __ jcc(Assembler::equal, is_long);
duke@435 350 __ cmpl(c_rarg1, T_LONG);
duke@435 351 __ jcc(Assembler::equal, is_long);
duke@435 352 __ cmpl(c_rarg1, T_FLOAT);
duke@435 353 __ jcc(Assembler::equal, is_float);
duke@435 354 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 355 __ jcc(Assembler::equal, is_double);
duke@435 356
duke@435 357 // handle T_INT case
duke@435 358 __ movl(Address(c_rarg0, 0), rax);
duke@435 359
duke@435 360 __ BIND(exit);
duke@435 361
duke@435 362 // pop parameters
never@739 363 __ lea(rsp, rsp_after_call);
duke@435 364
duke@435 365 #ifdef ASSERT
duke@435 366 // verify that threads correspond
duke@435 367 {
duke@435 368 Label L, S;
never@739 369 __ cmpptr(r15_thread, thread);
duke@435 370 __ jcc(Assembler::notEqual, S);
duke@435 371 __ get_thread(rbx);
never@739 372 __ cmpptr(r15_thread, rbx);
duke@435 373 __ jcc(Assembler::equal, L);
duke@435 374 __ bind(S);
duke@435 375 __ jcc(Assembler::equal, L);
duke@435 376 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 377 __ bind(L);
duke@435 378 }
duke@435 379 #endif
duke@435 380
duke@435 381 // restore regs belonging to calling function
iveresov@2689 382 #ifdef _WIN64
iveresov@2689 383 for (int i = 15; i >= 6; i--) {
iveresov@2689 384 __ movdqu(as_XMMRegister(i), xmm_save(i));
iveresov@2689 385 }
iveresov@2689 386 #endif
never@739 387 __ movptr(r15, r15_save);
never@739 388 __ movptr(r14, r14_save);
never@739 389 __ movptr(r13, r13_save);
never@739 390 __ movptr(r12, r12_save);
never@739 391 __ movptr(rbx, rbx_save);
duke@435 392
duke@435 393 #ifdef _WIN64
never@739 394 __ movptr(rdi, rdi_save);
never@739 395 __ movptr(rsi, rsi_save);
duke@435 396 #else
duke@435 397 __ ldmxcsr(mxcsr_save);
duke@435 398 #endif
duke@435 399
duke@435 400 // restore rsp
never@739 401 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 402
duke@435 403 // return
never@739 404 __ pop(rbp);
duke@435 405 __ ret(0);
duke@435 406
duke@435 407 // handle return types different from T_INT
duke@435 408 __ BIND(is_long);
duke@435 409 __ movq(Address(c_rarg0, 0), rax);
duke@435 410 __ jmp(exit);
duke@435 411
duke@435 412 __ BIND(is_float);
duke@435 413 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 414 __ jmp(exit);
duke@435 415
duke@435 416 __ BIND(is_double);
duke@435 417 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 418 __ jmp(exit);
duke@435 419
duke@435 420 return start;
duke@435 421 }
duke@435 422
duke@435 423 // Return point for a Java call if there's an exception thrown in
duke@435 424 // Java code. The exception is caught and transformed into a
duke@435 425 // pending exception stored in JavaThread that can be tested from
duke@435 426 // within the VM.
duke@435 427 //
duke@435 428 // Note: Usually the parameters are removed by the callee. In case
duke@435 429 // of an exception crossing an activation frame boundary, that is
duke@435 430 // not the case if the callee is compiled code => need to setup the
duke@435 431 // rsp.
duke@435 432 //
duke@435 433 // rax: exception oop
duke@435 434
duke@435 435 address generate_catch_exception() {
duke@435 436 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 437 address start = __ pc();
duke@435 438
duke@435 439 // same as in generate_call_stub():
duke@435 440 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 441 const Address thread (rbp, thread_off * wordSize);
duke@435 442
duke@435 443 #ifdef ASSERT
duke@435 444 // verify that threads correspond
duke@435 445 {
duke@435 446 Label L, S;
never@739 447 __ cmpptr(r15_thread, thread);
duke@435 448 __ jcc(Assembler::notEqual, S);
duke@435 449 __ get_thread(rbx);
never@739 450 __ cmpptr(r15_thread, rbx);
duke@435 451 __ jcc(Assembler::equal, L);
duke@435 452 __ bind(S);
duke@435 453 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 454 __ bind(L);
duke@435 455 }
duke@435 456 #endif
duke@435 457
duke@435 458 // set pending exception
duke@435 459 __ verify_oop(rax);
duke@435 460
never@739 461 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 462 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 463 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 464 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 465
duke@435 466 // complete return to VM
duke@435 467 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 468 "_call_stub_return_address must have been generated before");
duke@435 469 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 470
duke@435 471 return start;
duke@435 472 }
duke@435 473
duke@435 474 // Continuation point for runtime calls returning with a pending
duke@435 475 // exception. The pending exception check happened in the runtime
duke@435 476 // or native call stub. The pending exception in Thread is
duke@435 477 // converted into a Java-level exception.
duke@435 478 //
duke@435 479 // Contract with Java-level exception handlers:
duke@435 480 // rax: exception
duke@435 481 // rdx: throwing pc
duke@435 482 //
duke@435 483 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 484
duke@435 485 address generate_forward_exception() {
duke@435 486 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 487 address start = __ pc();
duke@435 488
duke@435 489 // Upon entry, the sp points to the return address returning into
duke@435 490 // Java (interpreted or compiled) code; i.e., the return address
duke@435 491 // becomes the throwing pc.
duke@435 492 //
duke@435 493 // Arguments pushed before the runtime call are still on the stack
duke@435 494 // but the exception handler will reset the stack pointer ->
duke@435 495 // ignore them. A potential result in registers can be ignored as
duke@435 496 // well.
duke@435 497
duke@435 498 #ifdef ASSERT
duke@435 499 // make sure this code is only executed if there is a pending exception
duke@435 500 {
duke@435 501 Label L;
never@739 502 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 503 __ jcc(Assembler::notEqual, L);
duke@435 504 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 505 __ bind(L);
duke@435 506 }
duke@435 507 #endif
duke@435 508
duke@435 509 // compute exception handler into rbx
never@739 510 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 511 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 512 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 513 SharedRuntime::exception_handler_for_return_address),
twisti@1730 514 r15_thread, c_rarg0);
never@739 515 __ mov(rbx, rax);
duke@435 516
duke@435 517 // setup rax & rdx, remove return address & clear pending exception
never@739 518 __ pop(rdx);
never@739 519 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 520 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 521
duke@435 522 #ifdef ASSERT
duke@435 523 // make sure exception is set
duke@435 524 {
duke@435 525 Label L;
never@739 526 __ testptr(rax, rax);
duke@435 527 __ jcc(Assembler::notEqual, L);
duke@435 528 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 529 __ bind(L);
duke@435 530 }
duke@435 531 #endif
duke@435 532
duke@435 533 // continue at exception handler (return address removed)
duke@435 534 // rax: exception
duke@435 535 // rbx: exception handler
duke@435 536 // rdx: throwing pc
duke@435 537 __ verify_oop(rax);
duke@435 538 __ jmp(rbx);
duke@435 539
duke@435 540 return start;
duke@435 541 }
duke@435 542
duke@435 543 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 544 //
duke@435 545 // Arguments :
duke@435 546 // c_rarg0: exchange_value
duke@435 547 // c_rarg0: dest
duke@435 548 //
duke@435 549 // Result:
duke@435 550 // *dest <- ex, return (orig *dest)
duke@435 551 address generate_atomic_xchg() {
duke@435 552 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 553 address start = __ pc();
duke@435 554
duke@435 555 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 556 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 557 __ ret(0);
duke@435 558
duke@435 559 return start;
duke@435 560 }
duke@435 561
duke@435 562 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 563 //
duke@435 564 // Arguments :
duke@435 565 // c_rarg0: exchange_value
duke@435 566 // c_rarg1: dest
duke@435 567 //
duke@435 568 // Result:
duke@435 569 // *dest <- ex, return (orig *dest)
duke@435 570 address generate_atomic_xchg_ptr() {
duke@435 571 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 572 address start = __ pc();
duke@435 573
never@739 574 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 575 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 576 __ ret(0);
duke@435 577
duke@435 578 return start;
duke@435 579 }
duke@435 580
duke@435 581 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 582 // jint compare_value)
duke@435 583 //
duke@435 584 // Arguments :
duke@435 585 // c_rarg0: exchange_value
duke@435 586 // c_rarg1: dest
duke@435 587 // c_rarg2: compare_value
duke@435 588 //
duke@435 589 // Result:
duke@435 590 // if ( compare_value == *dest ) {
duke@435 591 // *dest = exchange_value
duke@435 592 // return compare_value;
duke@435 593 // else
duke@435 594 // return *dest;
duke@435 595 address generate_atomic_cmpxchg() {
duke@435 596 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 597 address start = __ pc();
duke@435 598
duke@435 599 __ movl(rax, c_rarg2);
duke@435 600 if ( os::is_MP() ) __ lock();
duke@435 601 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 602 __ ret(0);
duke@435 603
duke@435 604 return start;
duke@435 605 }
duke@435 606
duke@435 607 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 608 // volatile jlong* dest,
duke@435 609 // jlong compare_value)
duke@435 610 // Arguments :
duke@435 611 // c_rarg0: exchange_value
duke@435 612 // c_rarg1: dest
duke@435 613 // c_rarg2: compare_value
duke@435 614 //
duke@435 615 // Result:
duke@435 616 // if ( compare_value == *dest ) {
duke@435 617 // *dest = exchange_value
duke@435 618 // return compare_value;
duke@435 619 // else
duke@435 620 // return *dest;
duke@435 621 address generate_atomic_cmpxchg_long() {
duke@435 622 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 623 address start = __ pc();
duke@435 624
duke@435 625 __ movq(rax, c_rarg2);
duke@435 626 if ( os::is_MP() ) __ lock();
duke@435 627 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 628 __ ret(0);
duke@435 629
duke@435 630 return start;
duke@435 631 }
duke@435 632
duke@435 633 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 634 //
duke@435 635 // Arguments :
duke@435 636 // c_rarg0: add_value
duke@435 637 // c_rarg1: dest
duke@435 638 //
duke@435 639 // Result:
duke@435 640 // *dest += add_value
duke@435 641 // return *dest;
duke@435 642 address generate_atomic_add() {
duke@435 643 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 644 address start = __ pc();
duke@435 645
duke@435 646 __ movl(rax, c_rarg0);
duke@435 647 if ( os::is_MP() ) __ lock();
duke@435 648 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 649 __ addl(rax, c_rarg0);
duke@435 650 __ ret(0);
duke@435 651
duke@435 652 return start;
duke@435 653 }
duke@435 654
duke@435 655 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 656 //
duke@435 657 // Arguments :
duke@435 658 // c_rarg0: add_value
duke@435 659 // c_rarg1: dest
duke@435 660 //
duke@435 661 // Result:
duke@435 662 // *dest += add_value
duke@435 663 // return *dest;
duke@435 664 address generate_atomic_add_ptr() {
duke@435 665 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 666 address start = __ pc();
duke@435 667
never@739 668 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 669 if ( os::is_MP() ) __ lock();
never@739 670 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 671 __ addptr(rax, c_rarg0);
duke@435 672 __ ret(0);
duke@435 673
duke@435 674 return start;
duke@435 675 }
duke@435 676
duke@435 677 // Support for intptr_t OrderAccess::fence()
duke@435 678 //
duke@435 679 // Arguments :
duke@435 680 //
duke@435 681 // Result:
duke@435 682 address generate_orderaccess_fence() {
duke@435 683 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 684 address start = __ pc();
never@1106 685 __ membar(Assembler::StoreLoad);
duke@435 686 __ ret(0);
duke@435 687
duke@435 688 return start;
duke@435 689 }
duke@435 690
duke@435 691 // Support for intptr_t get_previous_fp()
duke@435 692 //
duke@435 693 // This routine is used to find the previous frame pointer for the
duke@435 694 // caller (current_frame_guess). This is used as part of debugging
duke@435 695 // ps() is seemingly lost trying to find frames.
duke@435 696 // This code assumes that caller current_frame_guess) has a frame.
duke@435 697 address generate_get_previous_fp() {
duke@435 698 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 699 const Address old_fp(rbp, 0);
duke@435 700 const Address older_fp(rax, 0);
duke@435 701 address start = __ pc();
duke@435 702
duke@435 703 __ enter();
never@739 704 __ movptr(rax, old_fp); // callers fp
never@739 705 __ movptr(rax, older_fp); // the frame for ps()
never@739 706 __ pop(rbp);
duke@435 707 __ ret(0);
duke@435 708
duke@435 709 return start;
duke@435 710 }
duke@435 711
duke@435 712 //----------------------------------------------------------------------------------------------------
duke@435 713 // Support for void verify_mxcsr()
duke@435 714 //
duke@435 715 // This routine is used with -Xcheck:jni to verify that native
duke@435 716 // JNI code does not return to Java code without restoring the
duke@435 717 // MXCSR register to our expected state.
duke@435 718
duke@435 719 address generate_verify_mxcsr() {
duke@435 720 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 721 address start = __ pc();
duke@435 722
duke@435 723 const Address mxcsr_save(rsp, 0);
duke@435 724
duke@435 725 if (CheckJNICalls) {
duke@435 726 Label ok_ret;
never@739 727 __ push(rax);
never@739 728 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 729 __ stmxcsr(mxcsr_save);
duke@435 730 __ movl(rax, mxcsr_save);
duke@435 731 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 732 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 733 __ jcc(Assembler::equal, ok_ret);
duke@435 734
duke@435 735 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 736
never@739 737 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 738
duke@435 739 __ bind(ok_ret);
never@739 740 __ addptr(rsp, wordSize);
never@739 741 __ pop(rax);
duke@435 742 }
duke@435 743
duke@435 744 __ ret(0);
duke@435 745
duke@435 746 return start;
duke@435 747 }
duke@435 748
duke@435 749 address generate_f2i_fixup() {
duke@435 750 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 751 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 752
duke@435 753 address start = __ pc();
duke@435 754
duke@435 755 Label L;
duke@435 756
never@739 757 __ push(rax);
never@739 758 __ push(c_rarg3);
never@739 759 __ push(c_rarg2);
never@739 760 __ push(c_rarg1);
duke@435 761
duke@435 762 __ movl(rax, 0x7f800000);
duke@435 763 __ xorl(c_rarg3, c_rarg3);
duke@435 764 __ movl(c_rarg2, inout);
duke@435 765 __ movl(c_rarg1, c_rarg2);
duke@435 766 __ andl(c_rarg1, 0x7fffffff);
duke@435 767 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 768 __ jcc(Assembler::negative, L);
duke@435 769 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 770 __ movl(c_rarg3, 0x80000000);
duke@435 771 __ movl(rax, 0x7fffffff);
duke@435 772 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 773
duke@435 774 __ bind(L);
never@739 775 __ movptr(inout, c_rarg3);
never@739 776
never@739 777 __ pop(c_rarg1);
never@739 778 __ pop(c_rarg2);
never@739 779 __ pop(c_rarg3);
never@739 780 __ pop(rax);
duke@435 781
duke@435 782 __ ret(0);
duke@435 783
duke@435 784 return start;
duke@435 785 }
duke@435 786
duke@435 787 address generate_f2l_fixup() {
duke@435 788 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 789 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 790 address start = __ pc();
duke@435 791
duke@435 792 Label L;
duke@435 793
never@739 794 __ push(rax);
never@739 795 __ push(c_rarg3);
never@739 796 __ push(c_rarg2);
never@739 797 __ push(c_rarg1);
duke@435 798
duke@435 799 __ movl(rax, 0x7f800000);
duke@435 800 __ xorl(c_rarg3, c_rarg3);
duke@435 801 __ movl(c_rarg2, inout);
duke@435 802 __ movl(c_rarg1, c_rarg2);
duke@435 803 __ andl(c_rarg1, 0x7fffffff);
duke@435 804 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 805 __ jcc(Assembler::negative, L);
duke@435 806 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 807 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 808 __ mov64(rax, 0x7fffffffffffffff);
never@739 809 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 810
duke@435 811 __ bind(L);
never@739 812 __ movptr(inout, c_rarg3);
never@739 813
never@739 814 __ pop(c_rarg1);
never@739 815 __ pop(c_rarg2);
never@739 816 __ pop(c_rarg3);
never@739 817 __ pop(rax);
duke@435 818
duke@435 819 __ ret(0);
duke@435 820
duke@435 821 return start;
duke@435 822 }
duke@435 823
duke@435 824 address generate_d2i_fixup() {
duke@435 825 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 826 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 827
duke@435 828 address start = __ pc();
duke@435 829
duke@435 830 Label L;
duke@435 831
never@739 832 __ push(rax);
never@739 833 __ push(c_rarg3);
never@739 834 __ push(c_rarg2);
never@739 835 __ push(c_rarg1);
never@739 836 __ push(c_rarg0);
duke@435 837
duke@435 838 __ movl(rax, 0x7ff00000);
duke@435 839 __ movq(c_rarg2, inout);
duke@435 840 __ movl(c_rarg3, c_rarg2);
never@739 841 __ mov(c_rarg1, c_rarg2);
never@739 842 __ mov(c_rarg0, c_rarg2);
duke@435 843 __ negl(c_rarg3);
never@739 844 __ shrptr(c_rarg1, 0x20);
duke@435 845 __ orl(c_rarg3, c_rarg2);
duke@435 846 __ andl(c_rarg1, 0x7fffffff);
duke@435 847 __ xorl(c_rarg2, c_rarg2);
duke@435 848 __ shrl(c_rarg3, 0x1f);
duke@435 849 __ orl(c_rarg1, c_rarg3);
duke@435 850 __ cmpl(rax, c_rarg1);
duke@435 851 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 852 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 853 __ movl(c_rarg2, 0x80000000);
duke@435 854 __ movl(rax, 0x7fffffff);
never@739 855 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 856
duke@435 857 __ bind(L);
never@739 858 __ movptr(inout, c_rarg2);
never@739 859
never@739 860 __ pop(c_rarg0);
never@739 861 __ pop(c_rarg1);
never@739 862 __ pop(c_rarg2);
never@739 863 __ pop(c_rarg3);
never@739 864 __ pop(rax);
duke@435 865
duke@435 866 __ ret(0);
duke@435 867
duke@435 868 return start;
duke@435 869 }
duke@435 870
duke@435 871 address generate_d2l_fixup() {
duke@435 872 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 873 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 874
duke@435 875 address start = __ pc();
duke@435 876
duke@435 877 Label L;
duke@435 878
never@739 879 __ push(rax);
never@739 880 __ push(c_rarg3);
never@739 881 __ push(c_rarg2);
never@739 882 __ push(c_rarg1);
never@739 883 __ push(c_rarg0);
duke@435 884
duke@435 885 __ movl(rax, 0x7ff00000);
duke@435 886 __ movq(c_rarg2, inout);
duke@435 887 __ movl(c_rarg3, c_rarg2);
never@739 888 __ mov(c_rarg1, c_rarg2);
never@739 889 __ mov(c_rarg0, c_rarg2);
duke@435 890 __ negl(c_rarg3);
never@739 891 __ shrptr(c_rarg1, 0x20);
duke@435 892 __ orl(c_rarg3, c_rarg2);
duke@435 893 __ andl(c_rarg1, 0x7fffffff);
duke@435 894 __ xorl(c_rarg2, c_rarg2);
duke@435 895 __ shrl(c_rarg3, 0x1f);
duke@435 896 __ orl(c_rarg1, c_rarg3);
duke@435 897 __ cmpl(rax, c_rarg1);
duke@435 898 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 899 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 900 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 901 __ mov64(rax, 0x7fffffffffffffff);
duke@435 902 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 903
duke@435 904 __ bind(L);
duke@435 905 __ movq(inout, c_rarg2);
duke@435 906
never@739 907 __ pop(c_rarg0);
never@739 908 __ pop(c_rarg1);
never@739 909 __ pop(c_rarg2);
never@739 910 __ pop(c_rarg3);
never@739 911 __ pop(rax);
duke@435 912
duke@435 913 __ ret(0);
duke@435 914
duke@435 915 return start;
duke@435 916 }
duke@435 917
duke@435 918 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 919 __ align(CodeEntryAlignment);
duke@435 920 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 921 address start = __ pc();
duke@435 922
duke@435 923 __ emit_data64( mask, relocInfo::none );
duke@435 924 __ emit_data64( mask, relocInfo::none );
duke@435 925
duke@435 926 return start;
duke@435 927 }
duke@435 928
duke@435 929 // The following routine generates a subroutine to throw an
duke@435 930 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 931 // could not be reasonably prevented by the programmer. (Example:
duke@435 932 // SIGBUS/OBJERR.)
duke@435 933 address generate_handler_for_unsafe_access() {
duke@435 934 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 935 address start = __ pc();
duke@435 936
never@739 937 __ push(0); // hole for return address-to-be
never@739 938 __ pusha(); // push registers
duke@435 939 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 940
never@3136 941 // FIXME: this probably needs alignment logic
never@3136 942
never@739 943 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 944 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 945 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 946 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 947
never@739 948 __ movptr(next_pc, rax); // stuff next address
never@739 949 __ popa();
duke@435 950 __ ret(0); // jump to next address
duke@435 951
duke@435 952 return start;
duke@435 953 }
duke@435 954
duke@435 955 // Non-destructive plausibility checks for oops
duke@435 956 //
duke@435 957 // Arguments:
duke@435 958 // all args on stack!
duke@435 959 //
duke@435 960 // Stack after saving c_rarg3:
duke@435 961 // [tos + 0]: saved c_rarg3
duke@435 962 // [tos + 1]: saved c_rarg2
kvn@559 963 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 964 // [tos + 3]: saved flags
kvn@559 965 // [tos + 4]: return address
kvn@559 966 // * [tos + 5]: error message (char*)
kvn@559 967 // * [tos + 6]: object to verify (oop)
kvn@559 968 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 969 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 970 // * = popped on exit
duke@435 971 address generate_verify_oop() {
duke@435 972 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 973 address start = __ pc();
duke@435 974
duke@435 975 Label exit, error;
duke@435 976
never@739 977 __ pushf();
duke@435 978 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 979
never@739 980 __ push(r12);
kvn@559 981
duke@435 982 // save c_rarg2 and c_rarg3
never@739 983 __ push(c_rarg2);
never@739 984 __ push(c_rarg3);
duke@435 985
kvn@559 986 enum {
kvn@559 987 // After previous pushes.
kvn@559 988 oop_to_verify = 6 * wordSize,
kvn@559 989 saved_rax = 7 * wordSize,
kvn@1938 990 saved_r10 = 8 * wordSize,
kvn@559 991
kvn@559 992 // Before the call to MacroAssembler::debug(), see below.
kvn@559 993 return_addr = 16 * wordSize,
kvn@559 994 error_msg = 17 * wordSize
kvn@559 995 };
kvn@559 996
duke@435 997 // get object
never@739 998 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 999
duke@435 1000 // make sure object is 'reasonable'
never@739 1001 __ testptr(rax, rax);
duke@435 1002 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 1003 // Check if the oop is in the right area of memory
never@739 1004 __ movptr(c_rarg2, rax);
xlu@947 1005 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 1006 __ andptr(c_rarg2, c_rarg3);
xlu@947 1007 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 1008 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1009 __ jcc(Assembler::notZero, error);
duke@435 1010
kvn@559 1011 // set r12 to heapbase for load_klass()
kvn@559 1012 __ reinit_heapbase();
kvn@559 1013
duke@435 1014 // make sure klass is 'reasonable'
coleenp@548 1015 __ load_klass(rax, rax); // get klass
never@739 1016 __ testptr(rax, rax);
duke@435 1017 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 1018 // Check if the klass is in the right area of memory
never@739 1019 __ mov(c_rarg2, rax);
xlu@947 1020 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1021 __ andptr(c_rarg2, c_rarg3);
xlu@947 1022 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1023 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1024 __ jcc(Assembler::notZero, error);
duke@435 1025
duke@435 1026 // make sure klass' klass is 'reasonable'
coleenp@548 1027 __ load_klass(rax, rax);
never@739 1028 __ testptr(rax, rax);
duke@435 1029 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 1030 // Check if the klass' klass is in the right area of memory
xlu@947 1031 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1032 __ andptr(rax, c_rarg3);
xlu@947 1033 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1034 __ cmpptr(rax, c_rarg3);
duke@435 1035 __ jcc(Assembler::notZero, error);
duke@435 1036
duke@435 1037 // return if everything seems ok
duke@435 1038 __ bind(exit);
never@739 1039 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1040 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1041 __ pop(c_rarg3); // restore c_rarg3
never@739 1042 __ pop(c_rarg2); // restore c_rarg2
never@739 1043 __ pop(r12); // restore r12
never@739 1044 __ popf(); // restore flags
kvn@1938 1045 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1046
duke@435 1047 // handle errors
duke@435 1048 __ bind(error);
never@739 1049 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1050 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1051 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1052 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1053 __ pop(r12); // get saved r12 back
never@739 1054 __ popf(); // get saved flags off stack --
duke@435 1055 // will be ignored
duke@435 1056
never@739 1057 __ pusha(); // push registers
duke@435 1058 // (rip is already
duke@435 1059 // already pushed)
kvn@559 1060 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1061 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1062 // pushed all the registers, so now the stack looks like:
duke@435 1063 // [tos + 0] 16 saved registers
duke@435 1064 // [tos + 16] return address
kvn@559 1065 // * [tos + 17] error message (char*)
kvn@559 1066 // * [tos + 18] object to verify (oop)
kvn@559 1067 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1068 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1069 // * = popped on exit
kvn@559 1070
never@739 1071 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1072 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1073 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1074 __ mov(r12, rsp); // remember rsp
never@739 1075 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1076 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1077 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1078 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1079 __ mov(rsp, r12); // restore rsp
never@739 1080 __ popa(); // pop registers (includes r12)
kvn@1938 1081 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1082
duke@435 1083 return start;
duke@435 1084 }
duke@435 1085
duke@435 1086 //
duke@435 1087 // Verify that a register contains clean 32-bits positive value
duke@435 1088 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1089 //
duke@435 1090 // Input:
duke@435 1091 // Rint - 32-bits value
duke@435 1092 // Rtmp - scratch
duke@435 1093 //
duke@435 1094 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1095 #ifdef ASSERT
duke@435 1096 Label L;
duke@435 1097 assert_different_registers(Rtmp, Rint);
duke@435 1098 __ movslq(Rtmp, Rint);
duke@435 1099 __ cmpq(Rtmp, Rint);
kvn@559 1100 __ jcc(Assembler::equal, L);
duke@435 1101 __ stop("high 32-bits of int value are not 0");
duke@435 1102 __ bind(L);
duke@435 1103 #endif
duke@435 1104 }
duke@435 1105
duke@435 1106 // Generate overlap test for array copy stubs
duke@435 1107 //
duke@435 1108 // Input:
duke@435 1109 // c_rarg0 - from
duke@435 1110 // c_rarg1 - to
duke@435 1111 // c_rarg2 - element count
duke@435 1112 //
duke@435 1113 // Output:
duke@435 1114 // rax - &from[element count - 1]
duke@435 1115 //
duke@435 1116 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1117 assert(no_overlap_target != NULL, "must be generated");
duke@435 1118 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1119 }
duke@435 1120 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1121 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1122 }
duke@435 1123 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1124 const Register from = c_rarg0;
duke@435 1125 const Register to = c_rarg1;
duke@435 1126 const Register count = c_rarg2;
duke@435 1127 const Register end_from = rax;
duke@435 1128
never@739 1129 __ cmpptr(to, from);
never@739 1130 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1131 if (NOLp == NULL) {
duke@435 1132 ExternalAddress no_overlap(no_overlap_target);
duke@435 1133 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1134 __ cmpptr(to, end_from);
duke@435 1135 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1136 } else {
duke@435 1137 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1138 __ cmpptr(to, end_from);
duke@435 1139 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1140 }
duke@435 1141 }
duke@435 1142
duke@435 1143 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1144 //
duke@435 1145 // Outputs:
duke@435 1146 // rdi - rcx
duke@435 1147 // rsi - rdx
duke@435 1148 // rdx - r8
duke@435 1149 // rcx - r9
duke@435 1150 //
duke@435 1151 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1152 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1153 //
duke@435 1154 void setup_arg_regs(int nargs = 3) {
duke@435 1155 const Register saved_rdi = r9;
duke@435 1156 const Register saved_rsi = r10;
duke@435 1157 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1158 #ifdef _WIN64
duke@435 1159 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1160 "unexpected argument registers");
duke@435 1161 if (nargs >= 4)
never@739 1162 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1163 __ movptr(saved_rdi, rdi);
never@739 1164 __ movptr(saved_rsi, rsi);
never@739 1165 __ mov(rdi, rcx); // c_rarg0
never@739 1166 __ mov(rsi, rdx); // c_rarg1
never@739 1167 __ mov(rdx, r8); // c_rarg2
duke@435 1168 if (nargs >= 4)
never@739 1169 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1170 #else
duke@435 1171 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1172 "unexpected argument registers");
duke@435 1173 #endif
duke@435 1174 }
duke@435 1175
duke@435 1176 void restore_arg_regs() {
duke@435 1177 const Register saved_rdi = r9;
duke@435 1178 const Register saved_rsi = r10;
duke@435 1179 #ifdef _WIN64
never@739 1180 __ movptr(rdi, saved_rdi);
never@739 1181 __ movptr(rsi, saved_rsi);
duke@435 1182 #endif
duke@435 1183 }
duke@435 1184
duke@435 1185 // Generate code for an array write pre barrier
duke@435 1186 //
duke@435 1187 // addr - starting address
iveresov@2606 1188 // count - element count
iveresov@2606 1189 // tmp - scratch register
duke@435 1190 //
duke@435 1191 // Destroy no registers!
duke@435 1192 //
iveresov@2606 1193 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1194 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1195 switch (bs->kind()) {
duke@435 1196 case BarrierSet::G1SATBCT:
duke@435 1197 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1198 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1199 if (!dest_uninitialized) {
iveresov@2606 1200 __ pusha(); // push registers
iveresov@2606 1201 if (count == c_rarg0) {
iveresov@2606 1202 if (addr == c_rarg1) {
iveresov@2606 1203 // exactly backwards!!
iveresov@2606 1204 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1205 } else {
iveresov@2606 1206 __ movptr(c_rarg1, count);
iveresov@2606 1207 __ movptr(c_rarg0, addr);
iveresov@2606 1208 }
iveresov@2606 1209 } else {
iveresov@2606 1210 __ movptr(c_rarg0, addr);
iveresov@2606 1211 __ movptr(c_rarg1, count);
iveresov@2606 1212 }
iveresov@2606 1213 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1214 __ popa();
duke@435 1215 }
iveresov@2606 1216 break;
duke@435 1217 case BarrierSet::CardTableModRef:
duke@435 1218 case BarrierSet::CardTableExtension:
duke@435 1219 case BarrierSet::ModRef:
duke@435 1220 break;
ysr@777 1221 default:
duke@435 1222 ShouldNotReachHere();
duke@435 1223
duke@435 1224 }
duke@435 1225 }
duke@435 1226
duke@435 1227 //
duke@435 1228 // Generate code for an array write post barrier
duke@435 1229 //
duke@435 1230 // Input:
duke@435 1231 // start - register containing starting address of destination array
duke@435 1232 // end - register containing ending address of destination array
duke@435 1233 // scratch - scratch register
duke@435 1234 //
duke@435 1235 // The input registers are overwritten.
duke@435 1236 // The ending address is inclusive.
duke@435 1237 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1238 assert_different_registers(start, end, scratch);
duke@435 1239 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1240 switch (bs->kind()) {
duke@435 1241 case BarrierSet::G1SATBCT:
duke@435 1242 case BarrierSet::G1SATBCTLogging:
duke@435 1243
duke@435 1244 {
never@739 1245 __ pusha(); // push registers (overkill)
duke@435 1246 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1247 assert_different_registers(start, end, scratch);
ysr@1280 1248 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1249 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1250 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1251 __ mov(c_rarg0, start);
never@739 1252 __ mov(c_rarg1, scratch);
apetrusenko@1627 1253 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1254 __ popa();
duke@435 1255 }
duke@435 1256 break;
duke@435 1257 case BarrierSet::CardTableModRef:
duke@435 1258 case BarrierSet::CardTableExtension:
duke@435 1259 {
duke@435 1260 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1261 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1262
duke@435 1263 Label L_loop;
duke@435 1264
never@739 1265 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1266 __ addptr(end, BytesPerHeapOop);
never@739 1267 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1268 __ subptr(end, start); // number of bytes to copy
duke@435 1269
never@684 1270 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1271 if (__ is_simm32(disp)) {
never@684 1272 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1273 __ lea(scratch, cardtable);
never@684 1274 } else {
never@684 1275 ExternalAddress cardtable((address)disp);
never@684 1276 __ lea(scratch, cardtable);
never@684 1277 }
never@684 1278
duke@435 1279 const Register count = end; // 'end' register contains bytes count now
never@739 1280 __ addptr(start, scratch);
duke@435 1281 __ BIND(L_loop);
duke@435 1282 __ movb(Address(start, count, Address::times_1), 0);
never@739 1283 __ decrement(count);
duke@435 1284 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1285 }
ysr@777 1286 break;
ysr@777 1287 default:
ysr@777 1288 ShouldNotReachHere();
ysr@777 1289
ysr@777 1290 }
ysr@777 1291 }
duke@435 1292
kvn@840 1293
duke@435 1294 // Copy big chunks forward
duke@435 1295 //
duke@435 1296 // Inputs:
duke@435 1297 // end_from - source arrays end address
duke@435 1298 // end_to - destination array end address
duke@435 1299 // qword_count - 64-bits element count, negative
duke@435 1300 // to - scratch
duke@435 1301 // L_copy_32_bytes - entry label
duke@435 1302 // L_copy_8_bytes - exit label
duke@435 1303 //
duke@435 1304 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1305 Register qword_count, Register to,
duke@435 1306 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1307 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1308 Label L_loop;
kvn@1800 1309 __ align(OptoLoopAlignment);
duke@435 1310 __ BIND(L_loop);
kvn@840 1311 if(UseUnalignedLoadStores) {
kvn@840 1312 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1313 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1314 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1315 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1316
kvn@840 1317 } else {
kvn@840 1318 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1319 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1320 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1321 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1322 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1323 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1324 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1325 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1326 }
duke@435 1327 __ BIND(L_copy_32_bytes);
never@739 1328 __ addptr(qword_count, 4);
duke@435 1329 __ jcc(Assembler::lessEqual, L_loop);
never@739 1330 __ subptr(qword_count, 4);
duke@435 1331 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1332 }
duke@435 1333
duke@435 1334
duke@435 1335 // Copy big chunks backward
duke@435 1336 //
duke@435 1337 // Inputs:
duke@435 1338 // from - source arrays address
duke@435 1339 // dest - destination array address
duke@435 1340 // qword_count - 64-bits element count
duke@435 1341 // to - scratch
duke@435 1342 // L_copy_32_bytes - entry label
duke@435 1343 // L_copy_8_bytes - exit label
duke@435 1344 //
duke@435 1345 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1346 Register qword_count, Register to,
duke@435 1347 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1348 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1349 Label L_loop;
kvn@1800 1350 __ align(OptoLoopAlignment);
duke@435 1351 __ BIND(L_loop);
kvn@840 1352 if(UseUnalignedLoadStores) {
kvn@840 1353 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1354 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1355 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1356 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1357
kvn@840 1358 } else {
kvn@840 1359 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1360 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1361 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1362 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1363 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1364 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1365 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1366 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1367 }
duke@435 1368 __ BIND(L_copy_32_bytes);
never@739 1369 __ subptr(qword_count, 4);
duke@435 1370 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1371 __ addptr(qword_count, 4);
duke@435 1372 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1373 }
duke@435 1374
duke@435 1375
duke@435 1376 // Arguments:
duke@435 1377 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1378 // ignored
duke@435 1379 // name - stub name string
duke@435 1380 //
duke@435 1381 // Inputs:
duke@435 1382 // c_rarg0 - source array address
duke@435 1383 // c_rarg1 - destination array address
duke@435 1384 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1385 //
duke@435 1386 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1387 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1388 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1389 // and stored atomically.
duke@435 1390 //
duke@435 1391 // Side Effects:
duke@435 1392 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1393 // used by generate_conjoint_byte_copy().
duke@435 1394 //
iveresov@2595 1395 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1396 __ align(CodeEntryAlignment);
duke@435 1397 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1398 address start = __ pc();
duke@435 1399
duke@435 1400 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1401 Label L_copy_byte, L_exit;
duke@435 1402 const Register from = rdi; // source array address
duke@435 1403 const Register to = rsi; // destination array address
duke@435 1404 const Register count = rdx; // elements count
duke@435 1405 const Register byte_count = rcx;
duke@435 1406 const Register qword_count = count;
duke@435 1407 const Register end_from = from; // source array end address
duke@435 1408 const Register end_to = to; // destination array end address
duke@435 1409 // End pointers are inclusive, and if count is not zero they point
duke@435 1410 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1411
duke@435 1412 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1413 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1414
iveresov@2595 1415 if (entry != NULL) {
iveresov@2595 1416 *entry = __ pc();
iveresov@2595 1417 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1418 BLOCK_COMMENT("Entry:");
iveresov@2595 1419 }
duke@435 1420
duke@435 1421 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1422 // r9 and r10 may be used to save non-volatile registers
duke@435 1423
duke@435 1424 // 'from', 'to' and 'count' are now valid
never@739 1425 __ movptr(byte_count, count);
never@739 1426 __ shrptr(count, 3); // count => qword_count
duke@435 1427
duke@435 1428 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1429 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1430 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1431 __ negptr(qword_count); // make the count negative
duke@435 1432 __ jmp(L_copy_32_bytes);
duke@435 1433
duke@435 1434 // Copy trailing qwords
duke@435 1435 __ BIND(L_copy_8_bytes);
duke@435 1436 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1437 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1438 __ increment(qword_count);
duke@435 1439 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1440
duke@435 1441 // Check for and copy trailing dword
duke@435 1442 __ BIND(L_copy_4_bytes);
never@739 1443 __ testl(byte_count, 4);
duke@435 1444 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1445 __ movl(rax, Address(end_from, 8));
duke@435 1446 __ movl(Address(end_to, 8), rax);
duke@435 1447
never@739 1448 __ addptr(end_from, 4);
never@739 1449 __ addptr(end_to, 4);
duke@435 1450
duke@435 1451 // Check for and copy trailing word
duke@435 1452 __ BIND(L_copy_2_bytes);
never@739 1453 __ testl(byte_count, 2);
duke@435 1454 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1455 __ movw(rax, Address(end_from, 8));
duke@435 1456 __ movw(Address(end_to, 8), rax);
duke@435 1457
never@739 1458 __ addptr(end_from, 2);
never@739 1459 __ addptr(end_to, 2);
duke@435 1460
duke@435 1461 // Check for and copy trailing byte
duke@435 1462 __ BIND(L_copy_byte);
never@739 1463 __ testl(byte_count, 1);
duke@435 1464 __ jccb(Assembler::zero, L_exit);
duke@435 1465 __ movb(rax, Address(end_from, 8));
duke@435 1466 __ movb(Address(end_to, 8), rax);
duke@435 1467
duke@435 1468 __ BIND(L_exit);
duke@435 1469 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1470 restore_arg_regs();
never@739 1471 __ xorptr(rax, rax); // return 0
duke@435 1472 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1473 __ ret(0);
duke@435 1474
duke@435 1475 // Copy in 32-bytes chunks
duke@435 1476 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1477 __ jmp(L_copy_4_bytes);
duke@435 1478
duke@435 1479 return start;
duke@435 1480 }
duke@435 1481
duke@435 1482 // Arguments:
duke@435 1483 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1484 // ignored
duke@435 1485 // name - stub name string
duke@435 1486 //
duke@435 1487 // Inputs:
duke@435 1488 // c_rarg0 - source array address
duke@435 1489 // c_rarg1 - destination array address
duke@435 1490 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1491 //
duke@435 1492 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1493 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1494 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1495 // and stored atomically.
duke@435 1496 //
iveresov@2595 1497 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1498 address* entry, const char *name) {
duke@435 1499 __ align(CodeEntryAlignment);
duke@435 1500 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1501 address start = __ pc();
duke@435 1502
duke@435 1503 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1504 const Register from = rdi; // source array address
duke@435 1505 const Register to = rsi; // destination array address
duke@435 1506 const Register count = rdx; // elements count
duke@435 1507 const Register byte_count = rcx;
duke@435 1508 const Register qword_count = count;
duke@435 1509
duke@435 1510 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1511 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1512
iveresov@2595 1513 if (entry != NULL) {
iveresov@2595 1514 *entry = __ pc();
iveresov@2595 1515 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1516 BLOCK_COMMENT("Entry:");
iveresov@2595 1517 }
iveresov@2595 1518
iveresov@2595 1519 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1520 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1521 // r9 and r10 may be used to save non-volatile registers
duke@435 1522
duke@435 1523 // 'from', 'to' and 'count' are now valid
never@739 1524 __ movptr(byte_count, count);
never@739 1525 __ shrptr(count, 3); // count => qword_count
duke@435 1526
duke@435 1527 // Copy from high to low addresses.
duke@435 1528
duke@435 1529 // Check for and copy trailing byte
never@739 1530 __ testl(byte_count, 1);
duke@435 1531 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1532 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1533 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1534 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1535
duke@435 1536 // Check for and copy trailing word
duke@435 1537 __ BIND(L_copy_2_bytes);
never@739 1538 __ testl(byte_count, 2);
duke@435 1539 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1540 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1541 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1542
duke@435 1543 // Check for and copy trailing dword
duke@435 1544 __ BIND(L_copy_4_bytes);
never@739 1545 __ testl(byte_count, 4);
duke@435 1546 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1547 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1548 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1549 __ jmp(L_copy_32_bytes);
duke@435 1550
duke@435 1551 // Copy trailing qwords
duke@435 1552 __ BIND(L_copy_8_bytes);
duke@435 1553 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1554 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1555 __ decrement(qword_count);
duke@435 1556 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1557
duke@435 1558 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1559 restore_arg_regs();
never@739 1560 __ xorptr(rax, rax); // return 0
duke@435 1561 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1562 __ ret(0);
duke@435 1563
duke@435 1564 // Copy in 32-bytes chunks
duke@435 1565 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1566
duke@435 1567 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1568 restore_arg_regs();
never@739 1569 __ xorptr(rax, rax); // return 0
duke@435 1570 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1571 __ ret(0);
duke@435 1572
duke@435 1573 return start;
duke@435 1574 }
duke@435 1575
duke@435 1576 // Arguments:
duke@435 1577 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1578 // ignored
duke@435 1579 // name - stub name string
duke@435 1580 //
duke@435 1581 // Inputs:
duke@435 1582 // c_rarg0 - source array address
duke@435 1583 // c_rarg1 - destination array address
duke@435 1584 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1585 //
duke@435 1586 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1587 // let the hardware handle it. The two or four words within dwords
duke@435 1588 // or qwords that span cache line boundaries will still be loaded
duke@435 1589 // and stored atomically.
duke@435 1590 //
duke@435 1591 // Side Effects:
duke@435 1592 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1593 // used by generate_conjoint_short_copy().
duke@435 1594 //
iveresov@2595 1595 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1596 __ align(CodeEntryAlignment);
duke@435 1597 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1598 address start = __ pc();
duke@435 1599
duke@435 1600 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1601 const Register from = rdi; // source array address
duke@435 1602 const Register to = rsi; // destination array address
duke@435 1603 const Register count = rdx; // elements count
duke@435 1604 const Register word_count = rcx;
duke@435 1605 const Register qword_count = count;
duke@435 1606 const Register end_from = from; // source array end address
duke@435 1607 const Register end_to = to; // destination array end address
duke@435 1608 // End pointers are inclusive, and if count is not zero they point
duke@435 1609 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1610
duke@435 1611 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1612 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1613
iveresov@2595 1614 if (entry != NULL) {
iveresov@2595 1615 *entry = __ pc();
iveresov@2595 1616 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1617 BLOCK_COMMENT("Entry:");
iveresov@2595 1618 }
duke@435 1619
duke@435 1620 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1621 // r9 and r10 may be used to save non-volatile registers
duke@435 1622
duke@435 1623 // 'from', 'to' and 'count' are now valid
never@739 1624 __ movptr(word_count, count);
never@739 1625 __ shrptr(count, 2); // count => qword_count
duke@435 1626
duke@435 1627 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1628 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1629 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1630 __ negptr(qword_count);
duke@435 1631 __ jmp(L_copy_32_bytes);
duke@435 1632
duke@435 1633 // Copy trailing qwords
duke@435 1634 __ BIND(L_copy_8_bytes);
duke@435 1635 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1636 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1637 __ increment(qword_count);
duke@435 1638 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1639
duke@435 1640 // Original 'dest' is trashed, so we can't use it as a
duke@435 1641 // base register for a possible trailing word copy
duke@435 1642
duke@435 1643 // Check for and copy trailing dword
duke@435 1644 __ BIND(L_copy_4_bytes);
never@739 1645 __ testl(word_count, 2);
duke@435 1646 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1647 __ movl(rax, Address(end_from, 8));
duke@435 1648 __ movl(Address(end_to, 8), rax);
duke@435 1649
never@739 1650 __ addptr(end_from, 4);
never@739 1651 __ addptr(end_to, 4);
duke@435 1652
duke@435 1653 // Check for and copy trailing word
duke@435 1654 __ BIND(L_copy_2_bytes);
never@739 1655 __ testl(word_count, 1);
duke@435 1656 __ jccb(Assembler::zero, L_exit);
duke@435 1657 __ movw(rax, Address(end_from, 8));
duke@435 1658 __ movw(Address(end_to, 8), rax);
duke@435 1659
duke@435 1660 __ BIND(L_exit);
duke@435 1661 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1662 restore_arg_regs();
never@739 1663 __ xorptr(rax, rax); // return 0
duke@435 1664 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1665 __ ret(0);
duke@435 1666
duke@435 1667 // Copy in 32-bytes chunks
duke@435 1668 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1669 __ jmp(L_copy_4_bytes);
duke@435 1670
duke@435 1671 return start;
duke@435 1672 }
duke@435 1673
never@2118 1674 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1675 __ align(CodeEntryAlignment);
never@2118 1676 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1677 address start = __ pc();
never@2118 1678
never@2118 1679 BLOCK_COMMENT("Entry:");
never@2118 1680
never@2118 1681 const Register to = c_rarg0; // source array address
never@2118 1682 const Register value = c_rarg1; // value
never@2118 1683 const Register count = c_rarg2; // elements count
never@2118 1684
never@2118 1685 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1686
never@2118 1687 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1688
never@2118 1689 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1690 __ ret(0);
never@2118 1691 return start;
never@2118 1692 }
never@2118 1693
duke@435 1694 // Arguments:
duke@435 1695 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1696 // ignored
duke@435 1697 // name - stub name string
duke@435 1698 //
duke@435 1699 // Inputs:
duke@435 1700 // c_rarg0 - source array address
duke@435 1701 // c_rarg1 - destination array address
duke@435 1702 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1703 //
duke@435 1704 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1705 // let the hardware handle it. The two or four words within dwords
duke@435 1706 // or qwords that span cache line boundaries will still be loaded
duke@435 1707 // and stored atomically.
duke@435 1708 //
iveresov@2595 1709 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1710 address *entry, const char *name) {
duke@435 1711 __ align(CodeEntryAlignment);
duke@435 1712 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1713 address start = __ pc();
duke@435 1714
duke@435 1715 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1716 const Register from = rdi; // source array address
duke@435 1717 const Register to = rsi; // destination array address
duke@435 1718 const Register count = rdx; // elements count
duke@435 1719 const Register word_count = rcx;
duke@435 1720 const Register qword_count = count;
duke@435 1721
duke@435 1722 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1723 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1724
iveresov@2595 1725 if (entry != NULL) {
iveresov@2595 1726 *entry = __ pc();
iveresov@2595 1727 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1728 BLOCK_COMMENT("Entry:");
iveresov@2595 1729 }
iveresov@2595 1730
iveresov@2595 1731 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1732 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1733 // r9 and r10 may be used to save non-volatile registers
duke@435 1734
duke@435 1735 // 'from', 'to' and 'count' are now valid
never@739 1736 __ movptr(word_count, count);
never@739 1737 __ shrptr(count, 2); // count => qword_count
duke@435 1738
duke@435 1739 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1740
duke@435 1741 // Check for and copy trailing word
never@739 1742 __ testl(word_count, 1);
duke@435 1743 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1744 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1745 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1746
duke@435 1747 // Check for and copy trailing dword
duke@435 1748 __ BIND(L_copy_4_bytes);
never@739 1749 __ testl(word_count, 2);
duke@435 1750 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1751 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1752 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1753 __ jmp(L_copy_32_bytes);
duke@435 1754
duke@435 1755 // Copy trailing qwords
duke@435 1756 __ BIND(L_copy_8_bytes);
duke@435 1757 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1758 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1759 __ decrement(qword_count);
duke@435 1760 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1761
duke@435 1762 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1763 restore_arg_regs();
never@739 1764 __ xorptr(rax, rax); // return 0
duke@435 1765 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1766 __ ret(0);
duke@435 1767
duke@435 1768 // Copy in 32-bytes chunks
duke@435 1769 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1770
duke@435 1771 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1772 restore_arg_regs();
never@739 1773 __ xorptr(rax, rax); // return 0
duke@435 1774 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1775 __ ret(0);
duke@435 1776
duke@435 1777 return start;
duke@435 1778 }
duke@435 1779
duke@435 1780 // Arguments:
duke@435 1781 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1782 // ignored
coleenp@548 1783 // is_oop - true => oop array, so generate store check code
duke@435 1784 // name - stub name string
duke@435 1785 //
duke@435 1786 // Inputs:
duke@435 1787 // c_rarg0 - source array address
duke@435 1788 // c_rarg1 - destination array address
duke@435 1789 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1790 //
duke@435 1791 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1792 // the hardware handle it. The two dwords within qwords that span
duke@435 1793 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1794 //
duke@435 1795 // Side Effects:
duke@435 1796 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1797 // used by generate_conjoint_int_oop_copy().
duke@435 1798 //
iveresov@2606 1799 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1800 const char *name, bool dest_uninitialized = false) {
duke@435 1801 __ align(CodeEntryAlignment);
duke@435 1802 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1803 address start = __ pc();
duke@435 1804
duke@435 1805 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1806 const Register from = rdi; // source array address
duke@435 1807 const Register to = rsi; // destination array address
duke@435 1808 const Register count = rdx; // elements count
duke@435 1809 const Register dword_count = rcx;
duke@435 1810 const Register qword_count = count;
duke@435 1811 const Register end_from = from; // source array end address
duke@435 1812 const Register end_to = to; // destination array end address
coleenp@548 1813 const Register saved_to = r11; // saved destination array address
duke@435 1814 // End pointers are inclusive, and if count is not zero they point
duke@435 1815 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1816
duke@435 1817 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1818 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1819
iveresov@2595 1820 if (entry != NULL) {
iveresov@2595 1821 *entry = __ pc();
iveresov@2595 1822 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1823 BLOCK_COMMENT("Entry:");
coleenp@548 1824 }
coleenp@548 1825
duke@435 1826 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1827 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1828 if (is_oop) {
coleenp@548 1829 __ movq(saved_to, to);
iveresov@2606 1830 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1831 }
coleenp@548 1832
duke@435 1833 // 'from', 'to' and 'count' are now valid
never@739 1834 __ movptr(dword_count, count);
never@739 1835 __ shrptr(count, 1); // count => qword_count
duke@435 1836
duke@435 1837 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1838 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1839 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1840 __ negptr(qword_count);
duke@435 1841 __ jmp(L_copy_32_bytes);
duke@435 1842
duke@435 1843 // Copy trailing qwords
duke@435 1844 __ BIND(L_copy_8_bytes);
duke@435 1845 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1846 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1847 __ increment(qword_count);
duke@435 1848 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1849
duke@435 1850 // Check for and copy trailing dword
duke@435 1851 __ BIND(L_copy_4_bytes);
never@739 1852 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1853 __ jccb(Assembler::zero, L_exit);
duke@435 1854 __ movl(rax, Address(end_from, 8));
duke@435 1855 __ movl(Address(end_to, 8), rax);
duke@435 1856
duke@435 1857 __ BIND(L_exit);
coleenp@548 1858 if (is_oop) {
coleenp@548 1859 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1860 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1861 }
duke@435 1862 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1863 restore_arg_regs();
never@739 1864 __ xorptr(rax, rax); // return 0
duke@435 1865 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1866 __ ret(0);
duke@435 1867
duke@435 1868 // Copy 32-bytes chunks
duke@435 1869 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1870 __ jmp(L_copy_4_bytes);
duke@435 1871
duke@435 1872 return start;
duke@435 1873 }
duke@435 1874
duke@435 1875 // Arguments:
duke@435 1876 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1877 // ignored
coleenp@548 1878 // is_oop - true => oop array, so generate store check code
duke@435 1879 // name - stub name string
duke@435 1880 //
duke@435 1881 // Inputs:
duke@435 1882 // c_rarg0 - source array address
duke@435 1883 // c_rarg1 - destination array address
duke@435 1884 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1885 //
duke@435 1886 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1887 // the hardware handle it. The two dwords within qwords that span
duke@435 1888 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1889 //
iveresov@2595 1890 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1891 address *entry, const char *name,
iveresov@2606 1892 bool dest_uninitialized = false) {
duke@435 1893 __ align(CodeEntryAlignment);
duke@435 1894 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1895 address start = __ pc();
duke@435 1896
coleenp@548 1897 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1898 const Register from = rdi; // source array address
duke@435 1899 const Register to = rsi; // destination array address
duke@435 1900 const Register count = rdx; // elements count
duke@435 1901 const Register dword_count = rcx;
duke@435 1902 const Register qword_count = count;
duke@435 1903
duke@435 1904 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1905 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1906
iveresov@2595 1907 if (entry != NULL) {
iveresov@2595 1908 *entry = __ pc();
iveresov@2595 1909 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1910 BLOCK_COMMENT("Entry:");
iveresov@2595 1911 }
iveresov@2595 1912
iveresov@2595 1913 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1914 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1915 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1916
coleenp@548 1917 if (is_oop) {
coleenp@548 1918 // no registers are destroyed by this call
iveresov@2606 1919 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1920 }
coleenp@548 1921
coleenp@548 1922 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1923 // 'from', 'to' and 'count' are now valid
never@739 1924 __ movptr(dword_count, count);
never@739 1925 __ shrptr(count, 1); // count => qword_count
duke@435 1926
duke@435 1927 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1928
duke@435 1929 // Check for and copy trailing dword
never@739 1930 __ testl(dword_count, 1);
duke@435 1931 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1932 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1933 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1934 __ jmp(L_copy_32_bytes);
duke@435 1935
duke@435 1936 // Copy trailing qwords
duke@435 1937 __ BIND(L_copy_8_bytes);
duke@435 1938 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1939 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1940 __ decrement(qword_count);
duke@435 1941 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1942
duke@435 1943 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1944 if (is_oop) {
coleenp@548 1945 __ jmp(L_exit);
coleenp@548 1946 }
duke@435 1947 restore_arg_regs();
never@739 1948 __ xorptr(rax, rax); // return 0
duke@435 1949 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1950 __ ret(0);
duke@435 1951
duke@435 1952 // Copy in 32-bytes chunks
duke@435 1953 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1954
coleenp@548 1955 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1956 __ bind(L_exit);
coleenp@548 1957 if (is_oop) {
coleenp@548 1958 Register end_to = rdx;
coleenp@548 1959 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1960 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1961 }
duke@435 1962 restore_arg_regs();
never@739 1963 __ xorptr(rax, rax); // return 0
duke@435 1964 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1965 __ ret(0);
duke@435 1966
duke@435 1967 return start;
duke@435 1968 }
duke@435 1969
duke@435 1970 // Arguments:
duke@435 1971 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1972 // ignored
duke@435 1973 // is_oop - true => oop array, so generate store check code
duke@435 1974 // name - stub name string
duke@435 1975 //
duke@435 1976 // Inputs:
duke@435 1977 // c_rarg0 - source array address
duke@435 1978 // c_rarg1 - destination array address
duke@435 1979 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1980 //
coleenp@548 1981 // Side Effects:
duke@435 1982 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1983 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1984 //
iveresov@2606 1985 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 1986 const char *name, bool dest_uninitialized = false) {
duke@435 1987 __ align(CodeEntryAlignment);
duke@435 1988 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1989 address start = __ pc();
duke@435 1990
duke@435 1991 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1992 const Register from = rdi; // source array address
duke@435 1993 const Register to = rsi; // destination array address
duke@435 1994 const Register qword_count = rdx; // elements count
duke@435 1995 const Register end_from = from; // source array end address
duke@435 1996 const Register end_to = rcx; // destination array end address
duke@435 1997 const Register saved_to = to;
duke@435 1998 // End pointers are inclusive, and if count is not zero they point
duke@435 1999 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2000
duke@435 2001 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2002 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 2003 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2004
iveresov@2595 2005 if (entry != NULL) {
iveresov@2595 2006 *entry = __ pc();
iveresov@2595 2007 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2008 BLOCK_COMMENT("Entry:");
duke@435 2009 }
duke@435 2010
duke@435 2011 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2012 // r9 and r10 may be used to save non-volatile registers
duke@435 2013 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 2014 if (is_oop) {
iveresov@2595 2015 // no registers are destroyed by this call
iveresov@2606 2016 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 2017 }
duke@435 2018
duke@435 2019 // Copy from low to high addresses. Use 'to' as scratch.
never@739 2020 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 2021 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 2022 __ negptr(qword_count);
duke@435 2023 __ jmp(L_copy_32_bytes);
duke@435 2024
duke@435 2025 // Copy trailing qwords
duke@435 2026 __ BIND(L_copy_8_bytes);
duke@435 2027 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2028 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2029 __ increment(qword_count);
duke@435 2030 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2031
duke@435 2032 if (is_oop) {
duke@435 2033 __ jmp(L_exit);
duke@435 2034 } else {
duke@435 2035 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2036 restore_arg_regs();
never@739 2037 __ xorptr(rax, rax); // return 0
duke@435 2038 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2039 __ ret(0);
duke@435 2040 }
duke@435 2041
duke@435 2042 // Copy 64-byte chunks
duke@435 2043 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2044
duke@435 2045 if (is_oop) {
duke@435 2046 __ BIND(L_exit);
duke@435 2047 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2048 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2049 } else {
duke@435 2050 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2051 }
duke@435 2052 restore_arg_regs();
never@739 2053 __ xorptr(rax, rax); // return 0
duke@435 2054 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2055 __ ret(0);
duke@435 2056
duke@435 2057 return start;
duke@435 2058 }
duke@435 2059
duke@435 2060 // Arguments:
duke@435 2061 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2062 // ignored
duke@435 2063 // is_oop - true => oop array, so generate store check code
duke@435 2064 // name - stub name string
duke@435 2065 //
duke@435 2066 // Inputs:
duke@435 2067 // c_rarg0 - source array address
duke@435 2068 // c_rarg1 - destination array address
duke@435 2069 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2070 //
iveresov@2606 2071 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2072 address nooverlap_target, address *entry,
iveresov@2606 2073 const char *name, bool dest_uninitialized = false) {
duke@435 2074 __ align(CodeEntryAlignment);
duke@435 2075 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2076 address start = __ pc();
duke@435 2077
duke@435 2078 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2079 const Register from = rdi; // source array address
duke@435 2080 const Register to = rsi; // destination array address
duke@435 2081 const Register qword_count = rdx; // elements count
duke@435 2082 const Register saved_count = rcx;
duke@435 2083
duke@435 2084 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2085 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2086
iveresov@2595 2087 if (entry != NULL) {
iveresov@2595 2088 *entry = __ pc();
iveresov@2595 2089 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2090 BLOCK_COMMENT("Entry:");
duke@435 2091 }
iveresov@2595 2092
iveresov@2595 2093 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2094 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2095 // r9 and r10 may be used to save non-volatile registers
duke@435 2096 // 'from', 'to' and 'qword_count' are now valid
duke@435 2097 if (is_oop) {
duke@435 2098 // Save to and count for store barrier
never@739 2099 __ movptr(saved_count, qword_count);
duke@435 2100 // No registers are destroyed by this call
iveresov@2606 2101 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2102 }
duke@435 2103
duke@435 2104 __ jmp(L_copy_32_bytes);
duke@435 2105
duke@435 2106 // Copy trailing qwords
duke@435 2107 __ BIND(L_copy_8_bytes);
duke@435 2108 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2109 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2110 __ decrement(qword_count);
duke@435 2111 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2112
duke@435 2113 if (is_oop) {
duke@435 2114 __ jmp(L_exit);
duke@435 2115 } else {
duke@435 2116 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2117 restore_arg_regs();
never@739 2118 __ xorptr(rax, rax); // return 0
duke@435 2119 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2120 __ ret(0);
duke@435 2121 }
duke@435 2122
duke@435 2123 // Copy in 32-bytes chunks
duke@435 2124 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2125
duke@435 2126 if (is_oop) {
duke@435 2127 __ BIND(L_exit);
never@739 2128 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2129 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2130 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2131 } else {
duke@435 2132 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2133 }
duke@435 2134 restore_arg_regs();
never@739 2135 __ xorptr(rax, rax); // return 0
duke@435 2136 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2137 __ ret(0);
duke@435 2138
duke@435 2139 return start;
duke@435 2140 }
duke@435 2141
duke@435 2142
duke@435 2143 // Helper for generating a dynamic type check.
duke@435 2144 // Smashes no registers.
duke@435 2145 void generate_type_check(Register sub_klass,
duke@435 2146 Register super_check_offset,
duke@435 2147 Register super_klass,
duke@435 2148 Label& L_success) {
duke@435 2149 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2150
duke@435 2151 BLOCK_COMMENT("type_check:");
duke@435 2152
duke@435 2153 Label L_miss;
duke@435 2154
jrose@1079 2155 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2156 super_check_offset);
jrose@1079 2157 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2158
duke@435 2159 // Fall through on failure!
duke@435 2160 __ BIND(L_miss);
duke@435 2161 }
duke@435 2162
duke@435 2163 //
duke@435 2164 // Generate checkcasting array copy stub
duke@435 2165 //
duke@435 2166 // Input:
duke@435 2167 // c_rarg0 - source array address
duke@435 2168 // c_rarg1 - destination array address
duke@435 2169 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2170 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2171 // not Win64
duke@435 2172 // c_rarg4 - oop ckval (super_klass)
duke@435 2173 // Win64
duke@435 2174 // rsp+40 - oop ckval (super_klass)
duke@435 2175 //
duke@435 2176 // Output:
duke@435 2177 // rax == 0 - success
duke@435 2178 // rax == -1^K - failure, where K is partial transfer count
duke@435 2179 //
iveresov@2606 2180 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2181 bool dest_uninitialized = false) {
duke@435 2182
duke@435 2183 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2184
duke@435 2185 // Input registers (after setup_arg_regs)
duke@435 2186 const Register from = rdi; // source array address
duke@435 2187 const Register to = rsi; // destination array address
duke@435 2188 const Register length = rdx; // elements count
duke@435 2189 const Register ckoff = rcx; // super_check_offset
duke@435 2190 const Register ckval = r8; // super_klass
duke@435 2191
duke@435 2192 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2193 const Register end_from = from; // source array end address
duke@435 2194 const Register end_to = r13; // destination array end address
duke@435 2195 const Register count = rdx; // -(count_remaining)
duke@435 2196 const Register r14_length = r14; // saved copy of length
duke@435 2197 // End pointers are inclusive, and if length is not zero they point
duke@435 2198 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2199
duke@435 2200 const Register rax_oop = rax; // actual oop copied
duke@435 2201 const Register r11_klass = r11; // oop._klass
duke@435 2202
duke@435 2203 //---------------------------------------------------------------
duke@435 2204 // Assembler stub will be used for this call to arraycopy
duke@435 2205 // if the two arrays are subtypes of Object[] but the
duke@435 2206 // destination array type is not equal to or a supertype
duke@435 2207 // of the source type. Each element must be separately
duke@435 2208 // checked.
duke@435 2209
duke@435 2210 __ align(CodeEntryAlignment);
duke@435 2211 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2212 address start = __ pc();
duke@435 2213
duke@435 2214 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2215
duke@435 2216 #ifdef ASSERT
duke@435 2217 // caller guarantees that the arrays really are different
duke@435 2218 // otherwise, we would have to make conjoint checks
duke@435 2219 { Label L;
coleenp@548 2220 array_overlap_test(L, TIMES_OOP);
duke@435 2221 __ stop("checkcast_copy within a single array");
duke@435 2222 __ bind(L);
duke@435 2223 }
duke@435 2224 #endif //ASSERT
duke@435 2225
duke@435 2226 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2227 // ckoff => rcx, ckval => r8
duke@435 2228 // r9 and r10 may be used to save non-volatile registers
duke@435 2229 #ifdef _WIN64
duke@435 2230 // last argument (#4) is on stack on Win64
twisti@2348 2231 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2232 #endif
duke@435 2233
twisti@2348 2234 // Caller of this entry point must set up the argument registers.
iveresov@2595 2235 if (entry != NULL) {
iveresov@2595 2236 *entry = __ pc();
iveresov@2595 2237 BLOCK_COMMENT("Entry:");
iveresov@2595 2238 }
twisti@2348 2239
twisti@2348 2240 // allocate spill slots for r13, r14
twisti@2348 2241 enum {
twisti@2348 2242 saved_r13_offset,
twisti@2348 2243 saved_r14_offset,
twisti@2348 2244 saved_rbp_offset
twisti@2348 2245 };
twisti@2348 2246 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2247 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2248 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2249
duke@435 2250 // check that int operands are properly extended to size_t
duke@435 2251 assert_clean_int(length, rax);
duke@435 2252 assert_clean_int(ckoff, rax);
duke@435 2253
duke@435 2254 #ifdef ASSERT
duke@435 2255 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2256 // The ckoff and ckval must be mutually consistent,
duke@435 2257 // even though caller generates both.
duke@435 2258 { Label L;
duke@435 2259 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2260 Klass::super_check_offset_offset_in_bytes());
duke@435 2261 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2262 __ jcc(Assembler::equal, L);
duke@435 2263 __ stop("super_check_offset inconsistent");
duke@435 2264 __ bind(L);
duke@435 2265 }
duke@435 2266 #endif //ASSERT
duke@435 2267
duke@435 2268 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2269 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2270 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2271 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2272 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2273 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2274
iveresov@2606 2275 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2276
duke@435 2277 // Copy from low to high addresses, indexed from the end of each array.
never@739 2278 __ lea(end_from, end_from_addr);
never@739 2279 __ lea(end_to, end_to_addr);
never@739 2280 __ movptr(r14_length, length); // save a copy of the length
never@739 2281 assert(length == count, ""); // else fix next line:
never@739 2282 __ negptr(count); // negate and test the length
duke@435 2283 __ jcc(Assembler::notZero, L_load_element);
duke@435 2284
duke@435 2285 // Empty array: Nothing to do.
never@739 2286 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2287 __ jmp(L_done);
duke@435 2288
duke@435 2289 // ======== begin loop ========
duke@435 2290 // (Loop is rotated; its entry is L_load_element.)
duke@435 2291 // Loop control:
duke@435 2292 // for (count = -count; count != 0; count++)
duke@435 2293 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2294 __ align(OptoLoopAlignment);
duke@435 2295
duke@435 2296 __ BIND(L_store_element);
coleenp@548 2297 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2298 __ increment(count); // increment the count toward zero
duke@435 2299 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2300
duke@435 2301 // ======== loop entry is here ========
duke@435 2302 __ BIND(L_load_element);
coleenp@548 2303 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2304 __ testptr(rax_oop, rax_oop);
duke@435 2305 __ jcc(Assembler::zero, L_store_element);
duke@435 2306
coleenp@548 2307 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2308 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2309 // ======== end loop ========
duke@435 2310
duke@435 2311 // It was a real error; we must depend on the caller to finish the job.
duke@435 2312 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2313 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2314 // and report their number to the caller.
duke@435 2315 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2316 __ lea(end_to, to_element_addr);
ysr@1280 2317 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2318 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2319 __ movptr(rax, r14_length); // original oops
never@739 2320 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2321 __ notptr(rax); // report (-1^K) to caller
duke@435 2322 __ jmp(L_done);
duke@435 2323
duke@435 2324 // Come here on success only.
duke@435 2325 __ BIND(L_do_card_marks);
ysr@1280 2326 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2327 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2328 __ xorptr(rax, rax); // return 0 on success
duke@435 2329
duke@435 2330 // Common exit point (success or failure).
duke@435 2331 __ BIND(L_done);
never@739 2332 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2333 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2334 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2335 restore_arg_regs();
duke@435 2336 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2337 __ ret(0);
duke@435 2338
duke@435 2339 return start;
duke@435 2340 }
duke@435 2341
duke@435 2342 //
duke@435 2343 // Generate 'unsafe' array copy stub
duke@435 2344 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2345 // size_t argument instead of an element count.
duke@435 2346 //
duke@435 2347 // Input:
duke@435 2348 // c_rarg0 - source array address
duke@435 2349 // c_rarg1 - destination array address
duke@435 2350 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2351 //
duke@435 2352 // Examines the alignment of the operands and dispatches
duke@435 2353 // to a long, int, short, or byte copy loop.
duke@435 2354 //
iveresov@2595 2355 address generate_unsafe_copy(const char *name,
iveresov@2595 2356 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2357 address int_copy_entry, address long_copy_entry) {
duke@435 2358
duke@435 2359 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2360
duke@435 2361 // Input registers (before setup_arg_regs)
duke@435 2362 const Register from = c_rarg0; // source array address
duke@435 2363 const Register to = c_rarg1; // destination array address
duke@435 2364 const Register size = c_rarg2; // byte count (size_t)
duke@435 2365
duke@435 2366 // Register used as a temp
duke@435 2367 const Register bits = rax; // test copy of low bits
duke@435 2368
duke@435 2369 __ align(CodeEntryAlignment);
duke@435 2370 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2371 address start = __ pc();
duke@435 2372
duke@435 2373 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2374
duke@435 2375 // bump this on entry, not on exit:
duke@435 2376 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2377
never@739 2378 __ mov(bits, from);
never@739 2379 __ orptr(bits, to);
never@739 2380 __ orptr(bits, size);
duke@435 2381
duke@435 2382 __ testb(bits, BytesPerLong-1);
duke@435 2383 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2384
duke@435 2385 __ testb(bits, BytesPerInt-1);
duke@435 2386 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2387
duke@435 2388 __ testb(bits, BytesPerShort-1);
duke@435 2389 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2390
duke@435 2391 __ BIND(L_short_aligned);
never@739 2392 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2393 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2394
duke@435 2395 __ BIND(L_int_aligned);
never@739 2396 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2397 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2398
duke@435 2399 __ BIND(L_long_aligned);
never@739 2400 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2401 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2402
duke@435 2403 return start;
duke@435 2404 }
duke@435 2405
duke@435 2406 // Perform range checks on the proposed arraycopy.
duke@435 2407 // Kills temp, but nothing else.
duke@435 2408 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2409 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2410 Register src_pos, // source position (c_rarg1)
duke@435 2411 Register dst, // destination array oo (c_rarg2)
duke@435 2412 Register dst_pos, // destination position (c_rarg3)
duke@435 2413 Register length,
duke@435 2414 Register temp,
duke@435 2415 Label& L_failed) {
duke@435 2416 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2417
duke@435 2418 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2419 __ movl(temp, length);
duke@435 2420 __ addl(temp, src_pos); // src_pos + length
duke@435 2421 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2422 __ jcc(Assembler::above, L_failed);
duke@435 2423
duke@435 2424 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2425 __ movl(temp, length);
duke@435 2426 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2427 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2428 __ jcc(Assembler::above, L_failed);
duke@435 2429
duke@435 2430 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2431 // Move with sign extension can be used since they are positive.
duke@435 2432 __ movslq(src_pos, src_pos);
duke@435 2433 __ movslq(dst_pos, dst_pos);
duke@435 2434
duke@435 2435 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2436 }
duke@435 2437
duke@435 2438 //
duke@435 2439 // Generate generic array copy stubs
duke@435 2440 //
duke@435 2441 // Input:
duke@435 2442 // c_rarg0 - src oop
duke@435 2443 // c_rarg1 - src_pos (32-bits)
duke@435 2444 // c_rarg2 - dst oop
duke@435 2445 // c_rarg3 - dst_pos (32-bits)
duke@435 2446 // not Win64
duke@435 2447 // c_rarg4 - element count (32-bits)
duke@435 2448 // Win64
duke@435 2449 // rsp+40 - element count (32-bits)
duke@435 2450 //
duke@435 2451 // Output:
duke@435 2452 // rax == 0 - success
duke@435 2453 // rax == -1^K - failure, where K is partial transfer count
duke@435 2454 //
iveresov@2595 2455 address generate_generic_copy(const char *name,
iveresov@2595 2456 address byte_copy_entry, address short_copy_entry,
iveresov@2691 2457 address int_copy_entry, address oop_copy_entry,
iveresov@2691 2458 address long_copy_entry, address checkcast_copy_entry) {
duke@435 2459
duke@435 2460 Label L_failed, L_failed_0, L_objArray;
duke@435 2461 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2462
duke@435 2463 // Input registers
duke@435 2464 const Register src = c_rarg0; // source array oop
duke@435 2465 const Register src_pos = c_rarg1; // source position
duke@435 2466 const Register dst = c_rarg2; // destination array oop
duke@435 2467 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2468 #ifndef _WIN64
twisti@2348 2469 const Register length = c_rarg4;
duke@435 2470 #else
twisti@2348 2471 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2472 #endif
duke@435 2473
duke@435 2474 { int modulus = CodeEntryAlignment;
duke@435 2475 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2476 int advance = target - (__ offset() % modulus);
duke@435 2477 if (advance < 0) advance += modulus;
duke@435 2478 if (advance > 0) __ nop(advance);
duke@435 2479 }
duke@435 2480 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2481
duke@435 2482 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2483 __ BIND(L_failed_0);
duke@435 2484 __ jmp(L_failed);
duke@435 2485 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2486
duke@435 2487 __ align(CodeEntryAlignment);
duke@435 2488 address start = __ pc();
duke@435 2489
duke@435 2490 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2491
duke@435 2492 // bump this on entry, not on exit:
duke@435 2493 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2494
duke@435 2495 //-----------------------------------------------------------------------
duke@435 2496 // Assembler stub will be used for this call to arraycopy
duke@435 2497 // if the following conditions are met:
duke@435 2498 //
duke@435 2499 // (1) src and dst must not be null.
duke@435 2500 // (2) src_pos must not be negative.
duke@435 2501 // (3) dst_pos must not be negative.
duke@435 2502 // (4) length must not be negative.
duke@435 2503 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2504 // (6) src and dst should be arrays.
duke@435 2505 // (7) src_pos + length must not exceed length of src.
duke@435 2506 // (8) dst_pos + length must not exceed length of dst.
duke@435 2507 //
duke@435 2508
duke@435 2509 // if (src == NULL) return -1;
never@739 2510 __ testptr(src, src); // src oop
duke@435 2511 size_t j1off = __ offset();
duke@435 2512 __ jccb(Assembler::zero, L_failed_0);
duke@435 2513
duke@435 2514 // if (src_pos < 0) return -1;
duke@435 2515 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2516 __ jccb(Assembler::negative, L_failed_0);
duke@435 2517
duke@435 2518 // if (dst == NULL) return -1;
never@739 2519 __ testptr(dst, dst); // dst oop
duke@435 2520 __ jccb(Assembler::zero, L_failed_0);
duke@435 2521
duke@435 2522 // if (dst_pos < 0) return -1;
duke@435 2523 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2524 size_t j4off = __ offset();
duke@435 2525 __ jccb(Assembler::negative, L_failed_0);
duke@435 2526
duke@435 2527 // The first four tests are very dense code,
duke@435 2528 // but not quite dense enough to put four
duke@435 2529 // jumps in a 16-byte instruction fetch buffer.
duke@435 2530 // That's good, because some branch predicters
duke@435 2531 // do not like jumps so close together.
duke@435 2532 // Make sure of this.
duke@435 2533 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2534
duke@435 2535 // registers used as temp
duke@435 2536 const Register r11_length = r11; // elements count to copy
duke@435 2537 const Register r10_src_klass = r10; // array klass
duke@435 2538
duke@435 2539 // if (length < 0) return -1;
twisti@2348 2540 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2541 __ testl(r11_length, r11_length);
duke@435 2542 __ jccb(Assembler::negative, L_failed_0);
duke@435 2543
coleenp@548 2544 __ load_klass(r10_src_klass, src);
duke@435 2545 #ifdef ASSERT
duke@435 2546 // assert(src->klass() != NULL);
twisti@2348 2547 {
twisti@2348 2548 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2549 Label L1, L2;
never@739 2550 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2551 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2552 __ bind(L1);
duke@435 2553 __ stop("broken null klass");
duke@435 2554 __ bind(L2);
twisti@2348 2555 __ load_klass(rax, dst);
twisti@2348 2556 __ cmpq(rax, 0);
duke@435 2557 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2558 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2559 }
duke@435 2560 #endif
duke@435 2561
duke@435 2562 // Load layout helper (32-bits)
duke@435 2563 //
duke@435 2564 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2565 // 32 30 24 16 8 2 0
duke@435 2566 //
duke@435 2567 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2568 //
duke@435 2569
twisti@2348 2570 const int lh_offset = klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2571 Klass::layout_helper_offset_in_bytes();
twisti@2348 2572
twisti@2348 2573 // Handle objArrays completely differently...
twisti@2348 2574 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2575 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2576 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2577
twisti@2348 2578 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2579 __ load_klass(rax, dst);
twisti@2348 2580 __ cmpq(r10_src_klass, rax);
twisti@2348 2581 __ jcc(Assembler::notEqual, L_failed);
duke@435 2582
duke@435 2583 const Register rax_lh = rax; // layout helper
duke@435 2584 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2585
duke@435 2586 // if (!src->is_Array()) return -1;
duke@435 2587 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2588 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2589
duke@435 2590 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2591 #ifdef ASSERT
twisti@2348 2592 {
twisti@2348 2593 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2594 Label L;
duke@435 2595 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2596 __ jcc(Assembler::greaterEqual, L);
duke@435 2597 __ stop("must be a primitive array");
duke@435 2598 __ bind(L);
twisti@2348 2599 BLOCK_COMMENT("} assert primitive array done");
duke@435 2600 }
duke@435 2601 #endif
duke@435 2602
duke@435 2603 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2604 r10, L_failed);
duke@435 2605
duke@435 2606 // typeArrayKlass
duke@435 2607 //
duke@435 2608 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2609 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2610 //
duke@435 2611
duke@435 2612 const Register r10_offset = r10; // array offset
duke@435 2613 const Register rax_elsize = rax_lh; // element size
duke@435 2614
duke@435 2615 __ movl(r10_offset, rax_lh);
duke@435 2616 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2617 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2618 __ addptr(src, r10_offset); // src array offset
never@739 2619 __ addptr(dst, r10_offset); // dst array offset
duke@435 2620 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2621 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2622
duke@435 2623 // next registers should be set before the jump to corresponding stub
duke@435 2624 const Register from = c_rarg0; // source array address
duke@435 2625 const Register to = c_rarg1; // destination array address
duke@435 2626 const Register count = c_rarg2; // elements count
duke@435 2627
duke@435 2628 // 'from', 'to', 'count' registers should be set in such order
duke@435 2629 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2630
duke@435 2631 __ BIND(L_copy_bytes);
duke@435 2632 __ cmpl(rax_elsize, 0);
duke@435 2633 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2634 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2635 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2636 __ movl2ptr(count, r11_length); // length
duke@435 2637 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2638
duke@435 2639 __ BIND(L_copy_shorts);
duke@435 2640 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2641 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2642 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2643 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2644 __ movl2ptr(count, r11_length); // length
duke@435 2645 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2646
duke@435 2647 __ BIND(L_copy_ints);
duke@435 2648 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2649 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2650 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2651 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2652 __ movl2ptr(count, r11_length); // length
duke@435 2653 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2654
duke@435 2655 __ BIND(L_copy_longs);
duke@435 2656 #ifdef ASSERT
twisti@2348 2657 {
twisti@2348 2658 BLOCK_COMMENT("assert long copy {");
twisti@2348 2659 Label L;
duke@435 2660 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2661 __ jcc(Assembler::equal, L);
duke@435 2662 __ stop("must be long copy, but elsize is wrong");
duke@435 2663 __ bind(L);
twisti@2348 2664 BLOCK_COMMENT("} assert long copy done");
duke@435 2665 }
duke@435 2666 #endif
never@739 2667 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2668 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2669 __ movl2ptr(count, r11_length); // length
duke@435 2670 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2671
duke@435 2672 // objArrayKlass
duke@435 2673 __ BIND(L_objArray);
twisti@2348 2674 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2675
duke@435 2676 Label L_plain_copy, L_checkcast_copy;
duke@435 2677 // test array classes for subtyping
twisti@2348 2678 __ load_klass(rax, dst);
twisti@2348 2679 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2680 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2681
duke@435 2682 // Identically typed arrays can be copied without element-wise checks.
duke@435 2683 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2684 r10, L_failed);
duke@435 2685
never@739 2686 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2687 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2688 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2689 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2690 __ movl2ptr(count, r11_length); // length
duke@435 2691 __ BIND(L_plain_copy);
duke@435 2692 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2693
duke@435 2694 __ BIND(L_checkcast_copy);
twisti@2348 2695 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2696 {
duke@435 2697 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2698 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2699 __ jcc(Assembler::notEqual, L_failed);
duke@435 2700
duke@435 2701 // It is safe to examine both src.length and dst.length.
duke@435 2702 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2703 rax, L_failed);
twisti@2348 2704
twisti@2348 2705 const Register r11_dst_klass = r11;
coleenp@548 2706 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2707
duke@435 2708 // Marshal the base address arguments now, freeing registers.
never@739 2709 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2710 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2711 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2712 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2713 __ movl(count, length); // length (reloaded)
duke@435 2714 Register sco_temp = c_rarg3; // this register is free now
duke@435 2715 assert_different_registers(from, to, count, sco_temp,
duke@435 2716 r11_dst_klass, r10_src_klass);
duke@435 2717 assert_clean_int(count, sco_temp);
duke@435 2718
duke@435 2719 // Generate the type check.
twisti@2348 2720 const int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2721 Klass::super_check_offset_offset_in_bytes());
duke@435 2722 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2723 assert_clean_int(sco_temp, rax);
duke@435 2724 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2725
duke@435 2726 // Fetch destination element klass from the objArrayKlass header.
duke@435 2727 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2728 objArrayKlass::element_klass_offset_in_bytes());
never@739 2729 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2730 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2731 assert_clean_int(sco_temp, rax);
duke@435 2732
duke@435 2733 // the checkcast_copy loop needs two extra arguments:
duke@435 2734 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2735 // Set up arguments for checkcast_copy_entry.
twisti@2348 2736 setup_arg_regs(4);
twisti@2348 2737 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2738 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2739 }
duke@435 2740
duke@435 2741 __ BIND(L_failed);
never@739 2742 __ xorptr(rax, rax);
never@739 2743 __ notptr(rax); // return -1
duke@435 2744 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2745 __ ret(0);
duke@435 2746
duke@435 2747 return start;
duke@435 2748 }
duke@435 2749
duke@435 2750 void generate_arraycopy_stubs() {
iveresov@2595 2751 address entry;
iveresov@2595 2752 address entry_jbyte_arraycopy;
iveresov@2595 2753 address entry_jshort_arraycopy;
iveresov@2595 2754 address entry_jint_arraycopy;
iveresov@2595 2755 address entry_oop_arraycopy;
iveresov@2595 2756 address entry_jlong_arraycopy;
iveresov@2595 2757 address entry_checkcast_arraycopy;
iveresov@2595 2758
iveresov@2595 2759 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2760 "jbyte_disjoint_arraycopy");
iveresov@2595 2761 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2762 "jbyte_arraycopy");
iveresov@2595 2763
iveresov@2595 2764 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2765 "jshort_disjoint_arraycopy");
iveresov@2595 2766 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2767 "jshort_arraycopy");
iveresov@2595 2768
iveresov@2595 2769 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2770 "jint_disjoint_arraycopy");
iveresov@2595 2771 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2772 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2773
iveresov@2595 2774 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2775 "jlong_disjoint_arraycopy");
iveresov@2595 2776 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2777 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2778
coleenp@548 2779
coleenp@548 2780 if (UseCompressedOops) {
iveresov@2595 2781 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2782 "oop_disjoint_arraycopy");
iveresov@2595 2783 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2784 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2785 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2786 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2787 /*dest_uninitialized*/true);
iveresov@2606 2788 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2789 NULL, "oop_arraycopy_uninit",
iveresov@2606 2790 /*dest_uninitialized*/true);
coleenp@548 2791 } else {
iveresov@2595 2792 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2793 "oop_disjoint_arraycopy");
iveresov@2595 2794 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2795 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2796 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2797 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2798 /*dest_uninitialized*/true);
iveresov@2606 2799 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2800 NULL, "oop_arraycopy_uninit",
iveresov@2606 2801 /*dest_uninitialized*/true);
coleenp@548 2802 }
duke@435 2803
iveresov@2606 2804 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2805 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2806 /*dest_uninitialized*/true);
iveresov@2606 2807
iveresov@2595 2808 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2809 entry_jbyte_arraycopy,
iveresov@2595 2810 entry_jshort_arraycopy,
iveresov@2595 2811 entry_jint_arraycopy,
iveresov@2595 2812 entry_jlong_arraycopy);
iveresov@2595 2813 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2814 entry_jbyte_arraycopy,
iveresov@2595 2815 entry_jshort_arraycopy,
iveresov@2595 2816 entry_jint_arraycopy,
iveresov@2595 2817 entry_oop_arraycopy,
iveresov@2595 2818 entry_jlong_arraycopy,
iveresov@2595 2819 entry_checkcast_arraycopy);
duke@435 2820
never@2118 2821 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2822 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2823 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2824 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2825 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2826 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2827
duke@435 2828 // We don't generate specialized code for HeapWord-aligned source
duke@435 2829 // arrays, so just use the code we've already generated
duke@435 2830 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2831 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2832
duke@435 2833 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2834 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2835
duke@435 2836 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2837 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2838
duke@435 2839 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2840 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2841
duke@435 2842 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2843 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2844
iveresov@2606 2845 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2846 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2847 }
duke@435 2848
never@1609 2849 void generate_math_stubs() {
never@1609 2850 {
never@1609 2851 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2852 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2853
never@1609 2854 __ subq(rsp, 8);
never@1609 2855 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2856 __ fld_d(Address(rsp, 0));
never@1609 2857 __ flog();
never@1609 2858 __ fstp_d(Address(rsp, 0));
never@1609 2859 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2860 __ addq(rsp, 8);
never@1609 2861 __ ret(0);
never@1609 2862 }
never@1609 2863 {
never@1609 2864 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2865 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2866
never@1609 2867 __ subq(rsp, 8);
never@1609 2868 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2869 __ fld_d(Address(rsp, 0));
never@1609 2870 __ flog10();
never@1609 2871 __ fstp_d(Address(rsp, 0));
never@1609 2872 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2873 __ addq(rsp, 8);
never@1609 2874 __ ret(0);
never@1609 2875 }
never@1609 2876 {
never@1609 2877 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2878 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2879
never@1609 2880 __ subq(rsp, 8);
never@1609 2881 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2882 __ fld_d(Address(rsp, 0));
never@1609 2883 __ trigfunc('s');
never@1609 2884 __ fstp_d(Address(rsp, 0));
never@1609 2885 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2886 __ addq(rsp, 8);
never@1609 2887 __ ret(0);
never@1609 2888 }
never@1609 2889 {
never@1609 2890 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2891 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2892
never@1609 2893 __ subq(rsp, 8);
never@1609 2894 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2895 __ fld_d(Address(rsp, 0));
never@1609 2896 __ trigfunc('c');
never@1609 2897 __ fstp_d(Address(rsp, 0));
never@1609 2898 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2899 __ addq(rsp, 8);
never@1609 2900 __ ret(0);
never@1609 2901 }
never@1609 2902 {
never@1609 2903 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2904 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2905
never@1609 2906 __ subq(rsp, 8);
never@1609 2907 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2908 __ fld_d(Address(rsp, 0));
never@1609 2909 __ trigfunc('t');
never@1609 2910 __ fstp_d(Address(rsp, 0));
never@1609 2911 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2912 __ addq(rsp, 8);
never@1609 2913 __ ret(0);
never@1609 2914 }
never@1609 2915
never@1609 2916 // The intrinsic version of these seem to return the same value as
never@1609 2917 // the strict version.
never@1609 2918 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2919 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2920 }
never@1609 2921
duke@435 2922 #undef __
duke@435 2923 #define __ masm->
duke@435 2924
duke@435 2925 // Continuation point for throwing of implicit exceptions that are
duke@435 2926 // not handled in the current activation. Fabricates an exception
duke@435 2927 // oop and initiates normal exception dispatching in this
duke@435 2928 // frame. Since we need to preserve callee-saved values (currently
duke@435 2929 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2930 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2931 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2932 // be preserved between the fault point and the exception handler
duke@435 2933 // then it must assume responsibility for that in
duke@435 2934 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2935 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2936 // implicit exceptions (e.g., NullPointerException or
duke@435 2937 // AbstractMethodError on entry) are either at call sites or
duke@435 2938 // otherwise assume that stack unwinding will be initiated, so
duke@435 2939 // caller saved registers were assumed volatile in the compiler.
duke@435 2940 address generate_throw_exception(const char* name,
duke@435 2941 address runtime_entry,
never@2978 2942 Register arg1 = noreg,
never@2978 2943 Register arg2 = noreg) {
duke@435 2944 // Information about frame layout at time of blocking runtime call.
duke@435 2945 // Note that we only have to preserve callee-saved registers since
duke@435 2946 // the compilers are responsible for supplying a continuation point
duke@435 2947 // if they expect all registers to be preserved.
duke@435 2948 enum layout {
duke@435 2949 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2950 rbp_off2,
duke@435 2951 return_off,
duke@435 2952 return_off2,
duke@435 2953 framesize // inclusive of return address
duke@435 2954 };
duke@435 2955
duke@435 2956 int insts_size = 512;
duke@435 2957 int locs_size = 64;
duke@435 2958
duke@435 2959 CodeBuffer code(name, insts_size, locs_size);
duke@435 2960 OopMapSet* oop_maps = new OopMapSet();
duke@435 2961 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2962
duke@435 2963 address start = __ pc();
duke@435 2964
duke@435 2965 // This is an inlined and slightly modified version of call_VM
duke@435 2966 // which has the ability to fetch the return PC out of
duke@435 2967 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2968 // differently than the real call_VM
duke@435 2969
duke@435 2970 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2971
duke@435 2972 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2973
duke@435 2974 // return address and rbp are already in place
never@739 2975 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2976
duke@435 2977 int frame_complete = __ pc() - start;
duke@435 2978
duke@435 2979 // Set up last_Java_sp and last_Java_fp
duke@435 2980 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2981
duke@435 2982 // Call runtime
never@2978 2983 if (arg1 != noreg) {
never@2978 2984 assert(arg2 != c_rarg1, "clobbered");
never@2978 2985 __ movptr(c_rarg1, arg1);
never@2978 2986 }
never@2978 2987 if (arg2 != noreg) {
never@2978 2988 __ movptr(c_rarg2, arg2);
never@2978 2989 }
never@739 2990 __ movptr(c_rarg0, r15_thread);
duke@435 2991 BLOCK_COMMENT("call runtime_entry");
duke@435 2992 __ call(RuntimeAddress(runtime_entry));
duke@435 2993
duke@435 2994 // Generate oop map
duke@435 2995 OopMap* map = new OopMap(framesize, 0);
duke@435 2996
duke@435 2997 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2998
duke@435 2999 __ reset_last_Java_frame(true, false);
duke@435 3000
duke@435 3001 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 3002
duke@435 3003 // check for pending exceptions
duke@435 3004 #ifdef ASSERT
duke@435 3005 Label L;
never@739 3006 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 3007 (int32_t) NULL_WORD);
duke@435 3008 __ jcc(Assembler::notEqual, L);
duke@435 3009 __ should_not_reach_here();
duke@435 3010 __ bind(L);
duke@435 3011 #endif // ASSERT
duke@435 3012 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3013
duke@435 3014
duke@435 3015 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 3016 RuntimeStub* stub =
duke@435 3017 RuntimeStub::new_runtime_stub(name,
duke@435 3018 &code,
duke@435 3019 frame_complete,
duke@435 3020 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 3021 oop_maps, false);
duke@435 3022 return stub->entry_point();
duke@435 3023 }
duke@435 3024
duke@435 3025 // Initialization
duke@435 3026 void generate_initial() {
duke@435 3027 // Generates all stubs and initializes the entry points
duke@435 3028
duke@435 3029 // This platform-specific stub is needed by generate_call_stub()
never@739 3030 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 3031
duke@435 3032 // entry points that exist in all platforms Note: This is code
duke@435 3033 // that could be shared among different platforms - however the
duke@435 3034 // benefit seems to be smaller than the disadvantage of having a
duke@435 3035 // much more complicated generator structure. See also comment in
duke@435 3036 // stubRoutines.hpp.
duke@435 3037
duke@435 3038 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3039
duke@435 3040 StubRoutines::_call_stub_entry =
duke@435 3041 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3042
duke@435 3043 // is referenced by megamorphic call
duke@435 3044 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3045
duke@435 3046 // atomic calls
duke@435 3047 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3048 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3049 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3050 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3051 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3052 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3053 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3054
duke@435 3055 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3056 generate_handler_for_unsafe_access();
duke@435 3057
duke@435 3058 // platform dependent
never@739 3059 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 3060
never@739 3061 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@2978 3062
never@2978 3063 // Build this early so it's available for the interpreter. Stub
never@2978 3064 // expects the required and actual types as register arguments in
never@2978 3065 // j_rarg0 and j_rarg1 respectively.
never@2978 3066 StubRoutines::_throw_WrongMethodTypeException_entry =
never@2978 3067 generate_throw_exception("WrongMethodTypeException throw_exception",
never@2978 3068 CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
never@3136 3069 rax, rcx);
duke@435 3070 }
duke@435 3071
duke@435 3072 void generate_all() {
duke@435 3073 // Generates all stubs and initializes the entry points
duke@435 3074
duke@435 3075 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3076 // non-core builds and need to be relocatable, so they each
duke@435 3077 // fabricate a RuntimeStub internally.
duke@435 3078 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3079 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3080 CAST_FROM_FN_PTR(address,
duke@435 3081 SharedRuntime::
never@3136 3082 throw_AbstractMethodError));
duke@435 3083
dcubed@451 3084 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3085 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3086 CAST_FROM_FN_PTR(address,
dcubed@451 3087 SharedRuntime::
never@3136 3088 throw_IncompatibleClassChangeError));
duke@435 3089
duke@435 3090 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3091 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3092 CAST_FROM_FN_PTR(address,
duke@435 3093 SharedRuntime::
never@3136 3094 throw_NullPointerException_at_call));
duke@435 3095
duke@435 3096 StubRoutines::_throw_StackOverflowError_entry =
duke@435 3097 generate_throw_exception("StackOverflowError throw_exception",
duke@435 3098 CAST_FROM_FN_PTR(address,
duke@435 3099 SharedRuntime::
never@3136 3100 throw_StackOverflowError));
duke@435 3101
duke@435 3102 // entry points that are platform specific
never@739 3103 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3104 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3105 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3106 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3107
never@739 3108 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3109 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3110 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3111 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3112
duke@435 3113 // support for verify_oop (must happen after universe_init)
duke@435 3114 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3115
duke@435 3116 // arraycopy stubs used by compilers
duke@435 3117 generate_arraycopy_stubs();
twisti@1543 3118
never@1609 3119 generate_math_stubs();
duke@435 3120 }
duke@435 3121
duke@435 3122 public:
duke@435 3123 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3124 if (all) {
duke@435 3125 generate_all();
duke@435 3126 } else {
duke@435 3127 generate_initial();
duke@435 3128 }
duke@435 3129 }
duke@435 3130 }; // end class declaration
duke@435 3131
duke@435 3132 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3133 StubGenerator g(code, all);
duke@435 3134 }

mercurial