src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 01 Mar 2011 14:56:48 -0800

author
iveresov
date
Tue, 01 Mar 2011 14:56:48 -0800
changeset 2606
0ac769a57c64
parent 2595
d89a22843c62
child 2689
b1c22848507b
permissions
-rw-r--r--

6627983: G1: Bad oop deference during marking
Summary: Bulk zeroing reduction didn't work with G1, because arraycopy would call pre-barriers on uninitialized oops. The solution is to have version of arraycopy stubs that don't have pre-barriers. Also refactored arraycopy stubs generation on SPARC to be more readable and reduced the number of stubs necessary in some cases.
Reviewed-by: jrose, kvn, never

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef COMPILER2
stefank@2314 51 #include "opto/runtime.hpp"
stefank@2314 52 #endif
duke@435 53
duke@435 54 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 55 // For a more detailed description of the stub routine structure
duke@435 56 // see the comment in stubRoutines.hpp
duke@435 57
duke@435 58 #define __ _masm->
coleenp@548 59 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 60 #define a__ ((Assembler*)_masm)->
duke@435 61
duke@435 62 #ifdef PRODUCT
duke@435 63 #define BLOCK_COMMENT(str) /* nothing */
duke@435 64 #else
duke@435 65 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 66 #endif
duke@435 67
duke@435 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 69 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 70
duke@435 71 // Stub Code definitions
duke@435 72
duke@435 73 static address handle_unsafe_access() {
duke@435 74 JavaThread* thread = JavaThread::current();
duke@435 75 address pc = thread->saved_exception_pc();
duke@435 76 // pc is the instruction which we must emulate
duke@435 77 // doing a no-op is fine: return garbage from the load
duke@435 78 // therefore, compute npc
duke@435 79 address npc = Assembler::locate_next_instruction(pc);
duke@435 80
duke@435 81 // request an async exception
duke@435 82 thread->set_pending_unsafe_access_error();
duke@435 83
duke@435 84 // return address of next instruction to execute
duke@435 85 return npc;
duke@435 86 }
duke@435 87
duke@435 88 class StubGenerator: public StubCodeGenerator {
duke@435 89 private:
duke@435 90
duke@435 91 #ifdef PRODUCT
duke@435 92 #define inc_counter_np(counter) (0)
duke@435 93 #else
duke@435 94 void inc_counter_np_(int& counter) {
duke@435 95 __ incrementl(ExternalAddress((address)&counter));
duke@435 96 }
duke@435 97 #define inc_counter_np(counter) \
duke@435 98 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 99 inc_counter_np_(counter);
duke@435 100 #endif
duke@435 101
duke@435 102 // Call stubs are used to call Java from C
duke@435 103 //
duke@435 104 // Linux Arguments:
duke@435 105 // c_rarg0: call wrapper address address
duke@435 106 // c_rarg1: result address
duke@435 107 // c_rarg2: result type BasicType
duke@435 108 // c_rarg3: method methodOop
duke@435 109 // c_rarg4: (interpreter) entry point address
duke@435 110 // c_rarg5: parameters intptr_t*
duke@435 111 // 16(rbp): parameter size (in words) int
duke@435 112 // 24(rbp): thread Thread*
duke@435 113 //
duke@435 114 // [ return_from_Java ] <--- rsp
duke@435 115 // [ argument word n ]
duke@435 116 // ...
duke@435 117 // -12 [ argument word 1 ]
duke@435 118 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 119 // -10 [ saved r14 ]
duke@435 120 // -9 [ saved r13 ]
duke@435 121 // -8 [ saved r12 ]
duke@435 122 // -7 [ saved rbx ]
duke@435 123 // -6 [ call wrapper ]
duke@435 124 // -5 [ result ]
duke@435 125 // -4 [ result type ]
duke@435 126 // -3 [ method ]
duke@435 127 // -2 [ entry point ]
duke@435 128 // -1 [ parameters ]
duke@435 129 // 0 [ saved rbp ] <--- rbp
duke@435 130 // 1 [ return address ]
duke@435 131 // 2 [ parameter size ]
duke@435 132 // 3 [ thread ]
duke@435 133 //
duke@435 134 // Windows Arguments:
duke@435 135 // c_rarg0: call wrapper address address
duke@435 136 // c_rarg1: result address
duke@435 137 // c_rarg2: result type BasicType
duke@435 138 // c_rarg3: method methodOop
duke@435 139 // 48(rbp): (interpreter) entry point address
duke@435 140 // 56(rbp): parameters intptr_t*
duke@435 141 // 64(rbp): parameter size (in words) int
duke@435 142 // 72(rbp): thread Thread*
duke@435 143 //
duke@435 144 // [ return_from_Java ] <--- rsp
duke@435 145 // [ argument word n ]
duke@435 146 // ...
duke@435 147 // -8 [ argument word 1 ]
duke@435 148 // -7 [ saved r15 ] <--- rsp_after_call
duke@435 149 // -6 [ saved r14 ]
duke@435 150 // -5 [ saved r13 ]
duke@435 151 // -4 [ saved r12 ]
duke@435 152 // -3 [ saved rdi ]
duke@435 153 // -2 [ saved rsi ]
duke@435 154 // -1 [ saved rbx ]
duke@435 155 // 0 [ saved rbp ] <--- rbp
duke@435 156 // 1 [ return address ]
duke@435 157 // 2 [ call wrapper ]
duke@435 158 // 3 [ result ]
duke@435 159 // 4 [ result type ]
duke@435 160 // 5 [ method ]
duke@435 161 // 6 [ entry point ]
duke@435 162 // 7 [ parameters ]
duke@435 163 // 8 [ parameter size ]
duke@435 164 // 9 [ thread ]
duke@435 165 //
duke@435 166 // Windows reserves the callers stack space for arguments 1-4.
duke@435 167 // We spill c_rarg0-c_rarg3 to this space.
duke@435 168
duke@435 169 // Call stub stack layout word offsets from rbp
duke@435 170 enum call_stub_layout {
duke@435 171 #ifdef _WIN64
duke@435 172 rsp_after_call_off = -7,
duke@435 173 r15_off = rsp_after_call_off,
duke@435 174 r14_off = -6,
duke@435 175 r13_off = -5,
duke@435 176 r12_off = -4,
duke@435 177 rdi_off = -3,
duke@435 178 rsi_off = -2,
duke@435 179 rbx_off = -1,
duke@435 180 rbp_off = 0,
duke@435 181 retaddr_off = 1,
duke@435 182 call_wrapper_off = 2,
duke@435 183 result_off = 3,
duke@435 184 result_type_off = 4,
duke@435 185 method_off = 5,
duke@435 186 entry_point_off = 6,
duke@435 187 parameters_off = 7,
duke@435 188 parameter_size_off = 8,
duke@435 189 thread_off = 9
duke@435 190 #else
duke@435 191 rsp_after_call_off = -12,
duke@435 192 mxcsr_off = rsp_after_call_off,
duke@435 193 r15_off = -11,
duke@435 194 r14_off = -10,
duke@435 195 r13_off = -9,
duke@435 196 r12_off = -8,
duke@435 197 rbx_off = -7,
duke@435 198 call_wrapper_off = -6,
duke@435 199 result_off = -5,
duke@435 200 result_type_off = -4,
duke@435 201 method_off = -3,
duke@435 202 entry_point_off = -2,
duke@435 203 parameters_off = -1,
duke@435 204 rbp_off = 0,
duke@435 205 retaddr_off = 1,
duke@435 206 parameter_size_off = 2,
duke@435 207 thread_off = 3
duke@435 208 #endif
duke@435 209 };
duke@435 210
duke@435 211 address generate_call_stub(address& return_address) {
duke@435 212 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 213 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 214 "adjust this code");
duke@435 215 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 216 address start = __ pc();
duke@435 217
duke@435 218 // same as in generate_catch_exception()!
duke@435 219 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 220
duke@435 221 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 222 const Address result (rbp, result_off * wordSize);
duke@435 223 const Address result_type (rbp, result_type_off * wordSize);
duke@435 224 const Address method (rbp, method_off * wordSize);
duke@435 225 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 226 const Address parameters (rbp, parameters_off * wordSize);
duke@435 227 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 228
duke@435 229 // same as in generate_catch_exception()!
duke@435 230 const Address thread (rbp, thread_off * wordSize);
duke@435 231
duke@435 232 const Address r15_save(rbp, r15_off * wordSize);
duke@435 233 const Address r14_save(rbp, r14_off * wordSize);
duke@435 234 const Address r13_save(rbp, r13_off * wordSize);
duke@435 235 const Address r12_save(rbp, r12_off * wordSize);
duke@435 236 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 237
duke@435 238 // stub code
duke@435 239 __ enter();
never@739 240 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 241
duke@435 242 // save register parameters
duke@435 243 #ifndef _WIN64
never@739 244 __ movptr(parameters, c_rarg5); // parameters
never@739 245 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 246 #endif
duke@435 247
never@739 248 __ movptr(method, c_rarg3); // method
never@739 249 __ movl(result_type, c_rarg2); // result type
never@739 250 __ movptr(result, c_rarg1); // result
never@739 251 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 252
duke@435 253 // save regs belonging to calling function
never@739 254 __ movptr(rbx_save, rbx);
never@739 255 __ movptr(r12_save, r12);
never@739 256 __ movptr(r13_save, r13);
never@739 257 __ movptr(r14_save, r14);
never@739 258 __ movptr(r15_save, r15);
duke@435 259
duke@435 260 #ifdef _WIN64
duke@435 261 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 262 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 263
never@739 264 __ movptr(rsi_save, rsi);
never@739 265 __ movptr(rdi_save, rdi);
duke@435 266 #else
duke@435 267 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 268 {
duke@435 269 Label skip_ldmx;
duke@435 270 __ stmxcsr(mxcsr_save);
duke@435 271 __ movl(rax, mxcsr_save);
duke@435 272 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 273 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 274 __ cmp32(rax, mxcsr_std);
duke@435 275 __ jcc(Assembler::equal, skip_ldmx);
duke@435 276 __ ldmxcsr(mxcsr_std);
duke@435 277 __ bind(skip_ldmx);
duke@435 278 }
duke@435 279 #endif
duke@435 280
duke@435 281 // Load up thread register
never@739 282 __ movptr(r15_thread, thread);
coleenp@548 283 __ reinit_heapbase();
duke@435 284
duke@435 285 #ifdef ASSERT
duke@435 286 // make sure we have no pending exceptions
duke@435 287 {
duke@435 288 Label L;
never@739 289 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 290 __ jcc(Assembler::equal, L);
duke@435 291 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 292 __ bind(L);
duke@435 293 }
duke@435 294 #endif
duke@435 295
duke@435 296 // pass parameters if any
duke@435 297 BLOCK_COMMENT("pass parameters if any");
duke@435 298 Label parameters_done;
duke@435 299 __ movl(c_rarg3, parameter_size);
duke@435 300 __ testl(c_rarg3, c_rarg3);
duke@435 301 __ jcc(Assembler::zero, parameters_done);
duke@435 302
duke@435 303 Label loop;
never@739 304 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 305 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 306 __ BIND(loop);
never@739 307 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 308 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 309 __ decrementl(c_rarg1); // decrement counter
never@739 310 __ push(rax); // pass parameter
duke@435 311 __ jcc(Assembler::notZero, loop);
duke@435 312
duke@435 313 // call Java function
duke@435 314 __ BIND(parameters_done);
never@739 315 __ movptr(rbx, method); // get methodOop
never@739 316 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 317 __ mov(r13, rsp); // set sender sp
duke@435 318 BLOCK_COMMENT("call Java function");
duke@435 319 __ call(c_rarg1);
duke@435 320
duke@435 321 BLOCK_COMMENT("call_stub_return_address:");
duke@435 322 return_address = __ pc();
duke@435 323
duke@435 324 // store result depending on type (everything that is not
duke@435 325 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 326 __ movptr(c_rarg0, result);
duke@435 327 Label is_long, is_float, is_double, exit;
duke@435 328 __ movl(c_rarg1, result_type);
duke@435 329 __ cmpl(c_rarg1, T_OBJECT);
duke@435 330 __ jcc(Assembler::equal, is_long);
duke@435 331 __ cmpl(c_rarg1, T_LONG);
duke@435 332 __ jcc(Assembler::equal, is_long);
duke@435 333 __ cmpl(c_rarg1, T_FLOAT);
duke@435 334 __ jcc(Assembler::equal, is_float);
duke@435 335 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 336 __ jcc(Assembler::equal, is_double);
duke@435 337
duke@435 338 // handle T_INT case
duke@435 339 __ movl(Address(c_rarg0, 0), rax);
duke@435 340
duke@435 341 __ BIND(exit);
duke@435 342
duke@435 343 // pop parameters
never@739 344 __ lea(rsp, rsp_after_call);
duke@435 345
duke@435 346 #ifdef ASSERT
duke@435 347 // verify that threads correspond
duke@435 348 {
duke@435 349 Label L, S;
never@739 350 __ cmpptr(r15_thread, thread);
duke@435 351 __ jcc(Assembler::notEqual, S);
duke@435 352 __ get_thread(rbx);
never@739 353 __ cmpptr(r15_thread, rbx);
duke@435 354 __ jcc(Assembler::equal, L);
duke@435 355 __ bind(S);
duke@435 356 __ jcc(Assembler::equal, L);
duke@435 357 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 358 __ bind(L);
duke@435 359 }
duke@435 360 #endif
duke@435 361
duke@435 362 // restore regs belonging to calling function
never@739 363 __ movptr(r15, r15_save);
never@739 364 __ movptr(r14, r14_save);
never@739 365 __ movptr(r13, r13_save);
never@739 366 __ movptr(r12, r12_save);
never@739 367 __ movptr(rbx, rbx_save);
duke@435 368
duke@435 369 #ifdef _WIN64
never@739 370 __ movptr(rdi, rdi_save);
never@739 371 __ movptr(rsi, rsi_save);
duke@435 372 #else
duke@435 373 __ ldmxcsr(mxcsr_save);
duke@435 374 #endif
duke@435 375
duke@435 376 // restore rsp
never@739 377 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 378
duke@435 379 // return
never@739 380 __ pop(rbp);
duke@435 381 __ ret(0);
duke@435 382
duke@435 383 // handle return types different from T_INT
duke@435 384 __ BIND(is_long);
duke@435 385 __ movq(Address(c_rarg0, 0), rax);
duke@435 386 __ jmp(exit);
duke@435 387
duke@435 388 __ BIND(is_float);
duke@435 389 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 390 __ jmp(exit);
duke@435 391
duke@435 392 __ BIND(is_double);
duke@435 393 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 394 __ jmp(exit);
duke@435 395
duke@435 396 return start;
duke@435 397 }
duke@435 398
duke@435 399 // Return point for a Java call if there's an exception thrown in
duke@435 400 // Java code. The exception is caught and transformed into a
duke@435 401 // pending exception stored in JavaThread that can be tested from
duke@435 402 // within the VM.
duke@435 403 //
duke@435 404 // Note: Usually the parameters are removed by the callee. In case
duke@435 405 // of an exception crossing an activation frame boundary, that is
duke@435 406 // not the case if the callee is compiled code => need to setup the
duke@435 407 // rsp.
duke@435 408 //
duke@435 409 // rax: exception oop
duke@435 410
duke@435 411 address generate_catch_exception() {
duke@435 412 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 413 address start = __ pc();
duke@435 414
duke@435 415 // same as in generate_call_stub():
duke@435 416 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 417 const Address thread (rbp, thread_off * wordSize);
duke@435 418
duke@435 419 #ifdef ASSERT
duke@435 420 // verify that threads correspond
duke@435 421 {
duke@435 422 Label L, S;
never@739 423 __ cmpptr(r15_thread, thread);
duke@435 424 __ jcc(Assembler::notEqual, S);
duke@435 425 __ get_thread(rbx);
never@739 426 __ cmpptr(r15_thread, rbx);
duke@435 427 __ jcc(Assembler::equal, L);
duke@435 428 __ bind(S);
duke@435 429 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 430 __ bind(L);
duke@435 431 }
duke@435 432 #endif
duke@435 433
duke@435 434 // set pending exception
duke@435 435 __ verify_oop(rax);
duke@435 436
never@739 437 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 438 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 439 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 440 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 441
duke@435 442 // complete return to VM
duke@435 443 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 444 "_call_stub_return_address must have been generated before");
duke@435 445 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 446
duke@435 447 return start;
duke@435 448 }
duke@435 449
duke@435 450 // Continuation point for runtime calls returning with a pending
duke@435 451 // exception. The pending exception check happened in the runtime
duke@435 452 // or native call stub. The pending exception in Thread is
duke@435 453 // converted into a Java-level exception.
duke@435 454 //
duke@435 455 // Contract with Java-level exception handlers:
duke@435 456 // rax: exception
duke@435 457 // rdx: throwing pc
duke@435 458 //
duke@435 459 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 460
duke@435 461 address generate_forward_exception() {
duke@435 462 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 463 address start = __ pc();
duke@435 464
duke@435 465 // Upon entry, the sp points to the return address returning into
duke@435 466 // Java (interpreted or compiled) code; i.e., the return address
duke@435 467 // becomes the throwing pc.
duke@435 468 //
duke@435 469 // Arguments pushed before the runtime call are still on the stack
duke@435 470 // but the exception handler will reset the stack pointer ->
duke@435 471 // ignore them. A potential result in registers can be ignored as
duke@435 472 // well.
duke@435 473
duke@435 474 #ifdef ASSERT
duke@435 475 // make sure this code is only executed if there is a pending exception
duke@435 476 {
duke@435 477 Label L;
never@739 478 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 479 __ jcc(Assembler::notEqual, L);
duke@435 480 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 481 __ bind(L);
duke@435 482 }
duke@435 483 #endif
duke@435 484
duke@435 485 // compute exception handler into rbx
never@739 486 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 487 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 488 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 489 SharedRuntime::exception_handler_for_return_address),
twisti@1730 490 r15_thread, c_rarg0);
never@739 491 __ mov(rbx, rax);
duke@435 492
duke@435 493 // setup rax & rdx, remove return address & clear pending exception
never@739 494 __ pop(rdx);
never@739 495 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 496 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 497
duke@435 498 #ifdef ASSERT
duke@435 499 // make sure exception is set
duke@435 500 {
duke@435 501 Label L;
never@739 502 __ testptr(rax, rax);
duke@435 503 __ jcc(Assembler::notEqual, L);
duke@435 504 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 505 __ bind(L);
duke@435 506 }
duke@435 507 #endif
duke@435 508
duke@435 509 // continue at exception handler (return address removed)
duke@435 510 // rax: exception
duke@435 511 // rbx: exception handler
duke@435 512 // rdx: throwing pc
duke@435 513 __ verify_oop(rax);
duke@435 514 __ jmp(rbx);
duke@435 515
duke@435 516 return start;
duke@435 517 }
duke@435 518
duke@435 519 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 520 //
duke@435 521 // Arguments :
duke@435 522 // c_rarg0: exchange_value
duke@435 523 // c_rarg0: dest
duke@435 524 //
duke@435 525 // Result:
duke@435 526 // *dest <- ex, return (orig *dest)
duke@435 527 address generate_atomic_xchg() {
duke@435 528 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 529 address start = __ pc();
duke@435 530
duke@435 531 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 532 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 533 __ ret(0);
duke@435 534
duke@435 535 return start;
duke@435 536 }
duke@435 537
duke@435 538 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 539 //
duke@435 540 // Arguments :
duke@435 541 // c_rarg0: exchange_value
duke@435 542 // c_rarg1: dest
duke@435 543 //
duke@435 544 // Result:
duke@435 545 // *dest <- ex, return (orig *dest)
duke@435 546 address generate_atomic_xchg_ptr() {
duke@435 547 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 548 address start = __ pc();
duke@435 549
never@739 550 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 551 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 552 __ ret(0);
duke@435 553
duke@435 554 return start;
duke@435 555 }
duke@435 556
duke@435 557 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 558 // jint compare_value)
duke@435 559 //
duke@435 560 // Arguments :
duke@435 561 // c_rarg0: exchange_value
duke@435 562 // c_rarg1: dest
duke@435 563 // c_rarg2: compare_value
duke@435 564 //
duke@435 565 // Result:
duke@435 566 // if ( compare_value == *dest ) {
duke@435 567 // *dest = exchange_value
duke@435 568 // return compare_value;
duke@435 569 // else
duke@435 570 // return *dest;
duke@435 571 address generate_atomic_cmpxchg() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 573 address start = __ pc();
duke@435 574
duke@435 575 __ movl(rax, c_rarg2);
duke@435 576 if ( os::is_MP() ) __ lock();
duke@435 577 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 578 __ ret(0);
duke@435 579
duke@435 580 return start;
duke@435 581 }
duke@435 582
duke@435 583 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 584 // volatile jlong* dest,
duke@435 585 // jlong compare_value)
duke@435 586 // Arguments :
duke@435 587 // c_rarg0: exchange_value
duke@435 588 // c_rarg1: dest
duke@435 589 // c_rarg2: compare_value
duke@435 590 //
duke@435 591 // Result:
duke@435 592 // if ( compare_value == *dest ) {
duke@435 593 // *dest = exchange_value
duke@435 594 // return compare_value;
duke@435 595 // else
duke@435 596 // return *dest;
duke@435 597 address generate_atomic_cmpxchg_long() {
duke@435 598 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 599 address start = __ pc();
duke@435 600
duke@435 601 __ movq(rax, c_rarg2);
duke@435 602 if ( os::is_MP() ) __ lock();
duke@435 603 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 604 __ ret(0);
duke@435 605
duke@435 606 return start;
duke@435 607 }
duke@435 608
duke@435 609 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 610 //
duke@435 611 // Arguments :
duke@435 612 // c_rarg0: add_value
duke@435 613 // c_rarg1: dest
duke@435 614 //
duke@435 615 // Result:
duke@435 616 // *dest += add_value
duke@435 617 // return *dest;
duke@435 618 address generate_atomic_add() {
duke@435 619 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 620 address start = __ pc();
duke@435 621
duke@435 622 __ movl(rax, c_rarg0);
duke@435 623 if ( os::is_MP() ) __ lock();
duke@435 624 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 625 __ addl(rax, c_rarg0);
duke@435 626 __ ret(0);
duke@435 627
duke@435 628 return start;
duke@435 629 }
duke@435 630
duke@435 631 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 632 //
duke@435 633 // Arguments :
duke@435 634 // c_rarg0: add_value
duke@435 635 // c_rarg1: dest
duke@435 636 //
duke@435 637 // Result:
duke@435 638 // *dest += add_value
duke@435 639 // return *dest;
duke@435 640 address generate_atomic_add_ptr() {
duke@435 641 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 642 address start = __ pc();
duke@435 643
never@739 644 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 645 if ( os::is_MP() ) __ lock();
never@739 646 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 647 __ addptr(rax, c_rarg0);
duke@435 648 __ ret(0);
duke@435 649
duke@435 650 return start;
duke@435 651 }
duke@435 652
duke@435 653 // Support for intptr_t OrderAccess::fence()
duke@435 654 //
duke@435 655 // Arguments :
duke@435 656 //
duke@435 657 // Result:
duke@435 658 address generate_orderaccess_fence() {
duke@435 659 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 660 address start = __ pc();
never@1106 661 __ membar(Assembler::StoreLoad);
duke@435 662 __ ret(0);
duke@435 663
duke@435 664 return start;
duke@435 665 }
duke@435 666
duke@435 667 // Support for intptr_t get_previous_fp()
duke@435 668 //
duke@435 669 // This routine is used to find the previous frame pointer for the
duke@435 670 // caller (current_frame_guess). This is used as part of debugging
duke@435 671 // ps() is seemingly lost trying to find frames.
duke@435 672 // This code assumes that caller current_frame_guess) has a frame.
duke@435 673 address generate_get_previous_fp() {
duke@435 674 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 675 const Address old_fp(rbp, 0);
duke@435 676 const Address older_fp(rax, 0);
duke@435 677 address start = __ pc();
duke@435 678
duke@435 679 __ enter();
never@739 680 __ movptr(rax, old_fp); // callers fp
never@739 681 __ movptr(rax, older_fp); // the frame for ps()
never@739 682 __ pop(rbp);
duke@435 683 __ ret(0);
duke@435 684
duke@435 685 return start;
duke@435 686 }
duke@435 687
duke@435 688 //----------------------------------------------------------------------------------------------------
duke@435 689 // Support for void verify_mxcsr()
duke@435 690 //
duke@435 691 // This routine is used with -Xcheck:jni to verify that native
duke@435 692 // JNI code does not return to Java code without restoring the
duke@435 693 // MXCSR register to our expected state.
duke@435 694
duke@435 695 address generate_verify_mxcsr() {
duke@435 696 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 697 address start = __ pc();
duke@435 698
duke@435 699 const Address mxcsr_save(rsp, 0);
duke@435 700
duke@435 701 if (CheckJNICalls) {
duke@435 702 Label ok_ret;
never@739 703 __ push(rax);
never@739 704 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 705 __ stmxcsr(mxcsr_save);
duke@435 706 __ movl(rax, mxcsr_save);
duke@435 707 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 708 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 709 __ jcc(Assembler::equal, ok_ret);
duke@435 710
duke@435 711 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 712
never@739 713 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 714
duke@435 715 __ bind(ok_ret);
never@739 716 __ addptr(rsp, wordSize);
never@739 717 __ pop(rax);
duke@435 718 }
duke@435 719
duke@435 720 __ ret(0);
duke@435 721
duke@435 722 return start;
duke@435 723 }
duke@435 724
duke@435 725 address generate_f2i_fixup() {
duke@435 726 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 727 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 728
duke@435 729 address start = __ pc();
duke@435 730
duke@435 731 Label L;
duke@435 732
never@739 733 __ push(rax);
never@739 734 __ push(c_rarg3);
never@739 735 __ push(c_rarg2);
never@739 736 __ push(c_rarg1);
duke@435 737
duke@435 738 __ movl(rax, 0x7f800000);
duke@435 739 __ xorl(c_rarg3, c_rarg3);
duke@435 740 __ movl(c_rarg2, inout);
duke@435 741 __ movl(c_rarg1, c_rarg2);
duke@435 742 __ andl(c_rarg1, 0x7fffffff);
duke@435 743 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 744 __ jcc(Assembler::negative, L);
duke@435 745 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 746 __ movl(c_rarg3, 0x80000000);
duke@435 747 __ movl(rax, 0x7fffffff);
duke@435 748 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 749
duke@435 750 __ bind(L);
never@739 751 __ movptr(inout, c_rarg3);
never@739 752
never@739 753 __ pop(c_rarg1);
never@739 754 __ pop(c_rarg2);
never@739 755 __ pop(c_rarg3);
never@739 756 __ pop(rax);
duke@435 757
duke@435 758 __ ret(0);
duke@435 759
duke@435 760 return start;
duke@435 761 }
duke@435 762
duke@435 763 address generate_f2l_fixup() {
duke@435 764 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 765 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 766 address start = __ pc();
duke@435 767
duke@435 768 Label L;
duke@435 769
never@739 770 __ push(rax);
never@739 771 __ push(c_rarg3);
never@739 772 __ push(c_rarg2);
never@739 773 __ push(c_rarg1);
duke@435 774
duke@435 775 __ movl(rax, 0x7f800000);
duke@435 776 __ xorl(c_rarg3, c_rarg3);
duke@435 777 __ movl(c_rarg2, inout);
duke@435 778 __ movl(c_rarg1, c_rarg2);
duke@435 779 __ andl(c_rarg1, 0x7fffffff);
duke@435 780 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 781 __ jcc(Assembler::negative, L);
duke@435 782 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 783 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 784 __ mov64(rax, 0x7fffffffffffffff);
never@739 785 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 786
duke@435 787 __ bind(L);
never@739 788 __ movptr(inout, c_rarg3);
never@739 789
never@739 790 __ pop(c_rarg1);
never@739 791 __ pop(c_rarg2);
never@739 792 __ pop(c_rarg3);
never@739 793 __ pop(rax);
duke@435 794
duke@435 795 __ ret(0);
duke@435 796
duke@435 797 return start;
duke@435 798 }
duke@435 799
duke@435 800 address generate_d2i_fixup() {
duke@435 801 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 802 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 803
duke@435 804 address start = __ pc();
duke@435 805
duke@435 806 Label L;
duke@435 807
never@739 808 __ push(rax);
never@739 809 __ push(c_rarg3);
never@739 810 __ push(c_rarg2);
never@739 811 __ push(c_rarg1);
never@739 812 __ push(c_rarg0);
duke@435 813
duke@435 814 __ movl(rax, 0x7ff00000);
duke@435 815 __ movq(c_rarg2, inout);
duke@435 816 __ movl(c_rarg3, c_rarg2);
never@739 817 __ mov(c_rarg1, c_rarg2);
never@739 818 __ mov(c_rarg0, c_rarg2);
duke@435 819 __ negl(c_rarg3);
never@739 820 __ shrptr(c_rarg1, 0x20);
duke@435 821 __ orl(c_rarg3, c_rarg2);
duke@435 822 __ andl(c_rarg1, 0x7fffffff);
duke@435 823 __ xorl(c_rarg2, c_rarg2);
duke@435 824 __ shrl(c_rarg3, 0x1f);
duke@435 825 __ orl(c_rarg1, c_rarg3);
duke@435 826 __ cmpl(rax, c_rarg1);
duke@435 827 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 828 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 829 __ movl(c_rarg2, 0x80000000);
duke@435 830 __ movl(rax, 0x7fffffff);
never@739 831 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 832
duke@435 833 __ bind(L);
never@739 834 __ movptr(inout, c_rarg2);
never@739 835
never@739 836 __ pop(c_rarg0);
never@739 837 __ pop(c_rarg1);
never@739 838 __ pop(c_rarg2);
never@739 839 __ pop(c_rarg3);
never@739 840 __ pop(rax);
duke@435 841
duke@435 842 __ ret(0);
duke@435 843
duke@435 844 return start;
duke@435 845 }
duke@435 846
duke@435 847 address generate_d2l_fixup() {
duke@435 848 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 849 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 850
duke@435 851 address start = __ pc();
duke@435 852
duke@435 853 Label L;
duke@435 854
never@739 855 __ push(rax);
never@739 856 __ push(c_rarg3);
never@739 857 __ push(c_rarg2);
never@739 858 __ push(c_rarg1);
never@739 859 __ push(c_rarg0);
duke@435 860
duke@435 861 __ movl(rax, 0x7ff00000);
duke@435 862 __ movq(c_rarg2, inout);
duke@435 863 __ movl(c_rarg3, c_rarg2);
never@739 864 __ mov(c_rarg1, c_rarg2);
never@739 865 __ mov(c_rarg0, c_rarg2);
duke@435 866 __ negl(c_rarg3);
never@739 867 __ shrptr(c_rarg1, 0x20);
duke@435 868 __ orl(c_rarg3, c_rarg2);
duke@435 869 __ andl(c_rarg1, 0x7fffffff);
duke@435 870 __ xorl(c_rarg2, c_rarg2);
duke@435 871 __ shrl(c_rarg3, 0x1f);
duke@435 872 __ orl(c_rarg1, c_rarg3);
duke@435 873 __ cmpl(rax, c_rarg1);
duke@435 874 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 875 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 876 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 877 __ mov64(rax, 0x7fffffffffffffff);
duke@435 878 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 879
duke@435 880 __ bind(L);
duke@435 881 __ movq(inout, c_rarg2);
duke@435 882
never@739 883 __ pop(c_rarg0);
never@739 884 __ pop(c_rarg1);
never@739 885 __ pop(c_rarg2);
never@739 886 __ pop(c_rarg3);
never@739 887 __ pop(rax);
duke@435 888
duke@435 889 __ ret(0);
duke@435 890
duke@435 891 return start;
duke@435 892 }
duke@435 893
duke@435 894 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 895 __ align(CodeEntryAlignment);
duke@435 896 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 897 address start = __ pc();
duke@435 898
duke@435 899 __ emit_data64( mask, relocInfo::none );
duke@435 900 __ emit_data64( mask, relocInfo::none );
duke@435 901
duke@435 902 return start;
duke@435 903 }
duke@435 904
duke@435 905 // The following routine generates a subroutine to throw an
duke@435 906 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 907 // could not be reasonably prevented by the programmer. (Example:
duke@435 908 // SIGBUS/OBJERR.)
duke@435 909 address generate_handler_for_unsafe_access() {
duke@435 910 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 911 address start = __ pc();
duke@435 912
never@739 913 __ push(0); // hole for return address-to-be
never@739 914 __ pusha(); // push registers
duke@435 915 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 916
never@739 917 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 918 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 919 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 920 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 921
never@739 922 __ movptr(next_pc, rax); // stuff next address
never@739 923 __ popa();
duke@435 924 __ ret(0); // jump to next address
duke@435 925
duke@435 926 return start;
duke@435 927 }
duke@435 928
duke@435 929 // Non-destructive plausibility checks for oops
duke@435 930 //
duke@435 931 // Arguments:
duke@435 932 // all args on stack!
duke@435 933 //
duke@435 934 // Stack after saving c_rarg3:
duke@435 935 // [tos + 0]: saved c_rarg3
duke@435 936 // [tos + 1]: saved c_rarg2
kvn@559 937 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 938 // [tos + 3]: saved flags
kvn@559 939 // [tos + 4]: return address
kvn@559 940 // * [tos + 5]: error message (char*)
kvn@559 941 // * [tos + 6]: object to verify (oop)
kvn@559 942 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 943 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 944 // * = popped on exit
duke@435 945 address generate_verify_oop() {
duke@435 946 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 947 address start = __ pc();
duke@435 948
duke@435 949 Label exit, error;
duke@435 950
never@739 951 __ pushf();
duke@435 952 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 953
never@739 954 __ push(r12);
kvn@559 955
duke@435 956 // save c_rarg2 and c_rarg3
never@739 957 __ push(c_rarg2);
never@739 958 __ push(c_rarg3);
duke@435 959
kvn@559 960 enum {
kvn@559 961 // After previous pushes.
kvn@559 962 oop_to_verify = 6 * wordSize,
kvn@559 963 saved_rax = 7 * wordSize,
kvn@1938 964 saved_r10 = 8 * wordSize,
kvn@559 965
kvn@559 966 // Before the call to MacroAssembler::debug(), see below.
kvn@559 967 return_addr = 16 * wordSize,
kvn@559 968 error_msg = 17 * wordSize
kvn@559 969 };
kvn@559 970
duke@435 971 // get object
never@739 972 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 973
duke@435 974 // make sure object is 'reasonable'
never@739 975 __ testptr(rax, rax);
duke@435 976 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 977 // Check if the oop is in the right area of memory
never@739 978 __ movptr(c_rarg2, rax);
xlu@947 979 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 980 __ andptr(c_rarg2, c_rarg3);
xlu@947 981 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 982 __ cmpptr(c_rarg2, c_rarg3);
duke@435 983 __ jcc(Assembler::notZero, error);
duke@435 984
kvn@559 985 // set r12 to heapbase for load_klass()
kvn@559 986 __ reinit_heapbase();
kvn@559 987
duke@435 988 // make sure klass is 'reasonable'
coleenp@548 989 __ load_klass(rax, rax); // get klass
never@739 990 __ testptr(rax, rax);
duke@435 991 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 992 // Check if the klass is in the right area of memory
never@739 993 __ mov(c_rarg2, rax);
xlu@947 994 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 995 __ andptr(c_rarg2, c_rarg3);
xlu@947 996 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 997 __ cmpptr(c_rarg2, c_rarg3);
duke@435 998 __ jcc(Assembler::notZero, error);
duke@435 999
duke@435 1000 // make sure klass' klass is 'reasonable'
coleenp@548 1001 __ load_klass(rax, rax);
never@739 1002 __ testptr(rax, rax);
duke@435 1003 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 1004 // Check if the klass' klass is in the right area of memory
xlu@947 1005 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1006 __ andptr(rax, c_rarg3);
xlu@947 1007 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1008 __ cmpptr(rax, c_rarg3);
duke@435 1009 __ jcc(Assembler::notZero, error);
duke@435 1010
duke@435 1011 // return if everything seems ok
duke@435 1012 __ bind(exit);
never@739 1013 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1014 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1015 __ pop(c_rarg3); // restore c_rarg3
never@739 1016 __ pop(c_rarg2); // restore c_rarg2
never@739 1017 __ pop(r12); // restore r12
never@739 1018 __ popf(); // restore flags
kvn@1938 1019 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1020
duke@435 1021 // handle errors
duke@435 1022 __ bind(error);
never@739 1023 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1024 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1025 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1026 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1027 __ pop(r12); // get saved r12 back
never@739 1028 __ popf(); // get saved flags off stack --
duke@435 1029 // will be ignored
duke@435 1030
never@739 1031 __ pusha(); // push registers
duke@435 1032 // (rip is already
duke@435 1033 // already pushed)
kvn@559 1034 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1035 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1036 // pushed all the registers, so now the stack looks like:
duke@435 1037 // [tos + 0] 16 saved registers
duke@435 1038 // [tos + 16] return address
kvn@559 1039 // * [tos + 17] error message (char*)
kvn@559 1040 // * [tos + 18] object to verify (oop)
kvn@559 1041 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1042 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1043 // * = popped on exit
kvn@559 1044
never@739 1045 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1046 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1047 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1048 __ mov(r12, rsp); // remember rsp
never@739 1049 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1050 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1051 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1052 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1053 __ mov(rsp, r12); // restore rsp
never@739 1054 __ popa(); // pop registers (includes r12)
kvn@1938 1055 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1056
duke@435 1057 return start;
duke@435 1058 }
duke@435 1059
duke@435 1060 //
duke@435 1061 // Verify that a register contains clean 32-bits positive value
duke@435 1062 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1063 //
duke@435 1064 // Input:
duke@435 1065 // Rint - 32-bits value
duke@435 1066 // Rtmp - scratch
duke@435 1067 //
duke@435 1068 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1069 #ifdef ASSERT
duke@435 1070 Label L;
duke@435 1071 assert_different_registers(Rtmp, Rint);
duke@435 1072 __ movslq(Rtmp, Rint);
duke@435 1073 __ cmpq(Rtmp, Rint);
kvn@559 1074 __ jcc(Assembler::equal, L);
duke@435 1075 __ stop("high 32-bits of int value are not 0");
duke@435 1076 __ bind(L);
duke@435 1077 #endif
duke@435 1078 }
duke@435 1079
duke@435 1080 // Generate overlap test for array copy stubs
duke@435 1081 //
duke@435 1082 // Input:
duke@435 1083 // c_rarg0 - from
duke@435 1084 // c_rarg1 - to
duke@435 1085 // c_rarg2 - element count
duke@435 1086 //
duke@435 1087 // Output:
duke@435 1088 // rax - &from[element count - 1]
duke@435 1089 //
duke@435 1090 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1091 assert(no_overlap_target != NULL, "must be generated");
duke@435 1092 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1093 }
duke@435 1094 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1095 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1096 }
duke@435 1097 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1098 const Register from = c_rarg0;
duke@435 1099 const Register to = c_rarg1;
duke@435 1100 const Register count = c_rarg2;
duke@435 1101 const Register end_from = rax;
duke@435 1102
never@739 1103 __ cmpptr(to, from);
never@739 1104 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1105 if (NOLp == NULL) {
duke@435 1106 ExternalAddress no_overlap(no_overlap_target);
duke@435 1107 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1108 __ cmpptr(to, end_from);
duke@435 1109 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1110 } else {
duke@435 1111 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1112 __ cmpptr(to, end_from);
duke@435 1113 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1118 //
duke@435 1119 // Outputs:
duke@435 1120 // rdi - rcx
duke@435 1121 // rsi - rdx
duke@435 1122 // rdx - r8
duke@435 1123 // rcx - r9
duke@435 1124 //
duke@435 1125 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1126 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1127 //
duke@435 1128 void setup_arg_regs(int nargs = 3) {
duke@435 1129 const Register saved_rdi = r9;
duke@435 1130 const Register saved_rsi = r10;
duke@435 1131 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1132 #ifdef _WIN64
duke@435 1133 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1134 "unexpected argument registers");
duke@435 1135 if (nargs >= 4)
never@739 1136 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1137 __ movptr(saved_rdi, rdi);
never@739 1138 __ movptr(saved_rsi, rsi);
never@739 1139 __ mov(rdi, rcx); // c_rarg0
never@739 1140 __ mov(rsi, rdx); // c_rarg1
never@739 1141 __ mov(rdx, r8); // c_rarg2
duke@435 1142 if (nargs >= 4)
never@739 1143 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1144 #else
duke@435 1145 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1146 "unexpected argument registers");
duke@435 1147 #endif
duke@435 1148 }
duke@435 1149
duke@435 1150 void restore_arg_regs() {
duke@435 1151 const Register saved_rdi = r9;
duke@435 1152 const Register saved_rsi = r10;
duke@435 1153 #ifdef _WIN64
never@739 1154 __ movptr(rdi, saved_rdi);
never@739 1155 __ movptr(rsi, saved_rsi);
duke@435 1156 #endif
duke@435 1157 }
duke@435 1158
duke@435 1159 // Generate code for an array write pre barrier
duke@435 1160 //
duke@435 1161 // addr - starting address
iveresov@2606 1162 // count - element count
iveresov@2606 1163 // tmp - scratch register
duke@435 1164 //
duke@435 1165 // Destroy no registers!
duke@435 1166 //
iveresov@2606 1167 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1168 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1169 switch (bs->kind()) {
duke@435 1170 case BarrierSet::G1SATBCT:
duke@435 1171 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1172 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1173 if (!dest_uninitialized) {
iveresov@2606 1174 __ pusha(); // push registers
iveresov@2606 1175 if (count == c_rarg0) {
iveresov@2606 1176 if (addr == c_rarg1) {
iveresov@2606 1177 // exactly backwards!!
iveresov@2606 1178 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1179 } else {
iveresov@2606 1180 __ movptr(c_rarg1, count);
iveresov@2606 1181 __ movptr(c_rarg0, addr);
iveresov@2606 1182 }
iveresov@2606 1183 } else {
iveresov@2606 1184 __ movptr(c_rarg0, addr);
iveresov@2606 1185 __ movptr(c_rarg1, count);
iveresov@2606 1186 }
iveresov@2606 1187 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1188 __ popa();
duke@435 1189 }
iveresov@2606 1190 break;
duke@435 1191 case BarrierSet::CardTableModRef:
duke@435 1192 case BarrierSet::CardTableExtension:
duke@435 1193 case BarrierSet::ModRef:
duke@435 1194 break;
ysr@777 1195 default:
duke@435 1196 ShouldNotReachHere();
duke@435 1197
duke@435 1198 }
duke@435 1199 }
duke@435 1200
duke@435 1201 //
duke@435 1202 // Generate code for an array write post barrier
duke@435 1203 //
duke@435 1204 // Input:
duke@435 1205 // start - register containing starting address of destination array
duke@435 1206 // end - register containing ending address of destination array
duke@435 1207 // scratch - scratch register
duke@435 1208 //
duke@435 1209 // The input registers are overwritten.
duke@435 1210 // The ending address is inclusive.
duke@435 1211 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1212 assert_different_registers(start, end, scratch);
duke@435 1213 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1214 switch (bs->kind()) {
duke@435 1215 case BarrierSet::G1SATBCT:
duke@435 1216 case BarrierSet::G1SATBCTLogging:
duke@435 1217
duke@435 1218 {
never@739 1219 __ pusha(); // push registers (overkill)
duke@435 1220 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1221 assert_different_registers(start, end, scratch);
ysr@1280 1222 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1223 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1224 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1225 __ mov(c_rarg0, start);
never@739 1226 __ mov(c_rarg1, scratch);
apetrusenko@1627 1227 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1228 __ popa();
duke@435 1229 }
duke@435 1230 break;
duke@435 1231 case BarrierSet::CardTableModRef:
duke@435 1232 case BarrierSet::CardTableExtension:
duke@435 1233 {
duke@435 1234 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1235 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1236
duke@435 1237 Label L_loop;
duke@435 1238
never@739 1239 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1240 __ addptr(end, BytesPerHeapOop);
never@739 1241 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1242 __ subptr(end, start); // number of bytes to copy
duke@435 1243
never@684 1244 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1245 if (__ is_simm32(disp)) {
never@684 1246 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1247 __ lea(scratch, cardtable);
never@684 1248 } else {
never@684 1249 ExternalAddress cardtable((address)disp);
never@684 1250 __ lea(scratch, cardtable);
never@684 1251 }
never@684 1252
duke@435 1253 const Register count = end; // 'end' register contains bytes count now
never@739 1254 __ addptr(start, scratch);
duke@435 1255 __ BIND(L_loop);
duke@435 1256 __ movb(Address(start, count, Address::times_1), 0);
never@739 1257 __ decrement(count);
duke@435 1258 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1259 }
ysr@777 1260 break;
ysr@777 1261 default:
ysr@777 1262 ShouldNotReachHere();
ysr@777 1263
ysr@777 1264 }
ysr@777 1265 }
duke@435 1266
kvn@840 1267
duke@435 1268 // Copy big chunks forward
duke@435 1269 //
duke@435 1270 // Inputs:
duke@435 1271 // end_from - source arrays end address
duke@435 1272 // end_to - destination array end address
duke@435 1273 // qword_count - 64-bits element count, negative
duke@435 1274 // to - scratch
duke@435 1275 // L_copy_32_bytes - entry label
duke@435 1276 // L_copy_8_bytes - exit label
duke@435 1277 //
duke@435 1278 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1279 Register qword_count, Register to,
duke@435 1280 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1281 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1282 Label L_loop;
kvn@1800 1283 __ align(OptoLoopAlignment);
duke@435 1284 __ BIND(L_loop);
kvn@840 1285 if(UseUnalignedLoadStores) {
kvn@840 1286 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1287 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1288 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1289 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1290
kvn@840 1291 } else {
kvn@840 1292 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1293 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1294 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1295 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1296 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1297 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1298 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1299 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1300 }
duke@435 1301 __ BIND(L_copy_32_bytes);
never@739 1302 __ addptr(qword_count, 4);
duke@435 1303 __ jcc(Assembler::lessEqual, L_loop);
never@739 1304 __ subptr(qword_count, 4);
duke@435 1305 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1306 }
duke@435 1307
duke@435 1308
duke@435 1309 // Copy big chunks backward
duke@435 1310 //
duke@435 1311 // Inputs:
duke@435 1312 // from - source arrays address
duke@435 1313 // dest - destination array address
duke@435 1314 // qword_count - 64-bits element count
duke@435 1315 // to - scratch
duke@435 1316 // L_copy_32_bytes - entry label
duke@435 1317 // L_copy_8_bytes - exit label
duke@435 1318 //
duke@435 1319 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1320 Register qword_count, Register to,
duke@435 1321 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1322 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1323 Label L_loop;
kvn@1800 1324 __ align(OptoLoopAlignment);
duke@435 1325 __ BIND(L_loop);
kvn@840 1326 if(UseUnalignedLoadStores) {
kvn@840 1327 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1328 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1329 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1330 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1331
kvn@840 1332 } else {
kvn@840 1333 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1334 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1335 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1336 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1337 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1338 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1339 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1340 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1341 }
duke@435 1342 __ BIND(L_copy_32_bytes);
never@739 1343 __ subptr(qword_count, 4);
duke@435 1344 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1345 __ addptr(qword_count, 4);
duke@435 1346 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1347 }
duke@435 1348
duke@435 1349
duke@435 1350 // Arguments:
duke@435 1351 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1352 // ignored
duke@435 1353 // name - stub name string
duke@435 1354 //
duke@435 1355 // Inputs:
duke@435 1356 // c_rarg0 - source array address
duke@435 1357 // c_rarg1 - destination array address
duke@435 1358 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1359 //
duke@435 1360 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1361 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1362 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1363 // and stored atomically.
duke@435 1364 //
duke@435 1365 // Side Effects:
duke@435 1366 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1367 // used by generate_conjoint_byte_copy().
duke@435 1368 //
iveresov@2595 1369 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1370 __ align(CodeEntryAlignment);
duke@435 1371 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1372 address start = __ pc();
duke@435 1373
duke@435 1374 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1375 Label L_copy_byte, L_exit;
duke@435 1376 const Register from = rdi; // source array address
duke@435 1377 const Register to = rsi; // destination array address
duke@435 1378 const Register count = rdx; // elements count
duke@435 1379 const Register byte_count = rcx;
duke@435 1380 const Register qword_count = count;
duke@435 1381 const Register end_from = from; // source array end address
duke@435 1382 const Register end_to = to; // destination array end address
duke@435 1383 // End pointers are inclusive, and if count is not zero they point
duke@435 1384 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1385
duke@435 1386 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1387 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1388
iveresov@2595 1389 if (entry != NULL) {
iveresov@2595 1390 *entry = __ pc();
iveresov@2595 1391 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1392 BLOCK_COMMENT("Entry:");
iveresov@2595 1393 }
duke@435 1394
duke@435 1395 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1396 // r9 and r10 may be used to save non-volatile registers
duke@435 1397
duke@435 1398 // 'from', 'to' and 'count' are now valid
never@739 1399 __ movptr(byte_count, count);
never@739 1400 __ shrptr(count, 3); // count => qword_count
duke@435 1401
duke@435 1402 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1403 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1404 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1405 __ negptr(qword_count); // make the count negative
duke@435 1406 __ jmp(L_copy_32_bytes);
duke@435 1407
duke@435 1408 // Copy trailing qwords
duke@435 1409 __ BIND(L_copy_8_bytes);
duke@435 1410 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1411 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1412 __ increment(qword_count);
duke@435 1413 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1414
duke@435 1415 // Check for and copy trailing dword
duke@435 1416 __ BIND(L_copy_4_bytes);
never@739 1417 __ testl(byte_count, 4);
duke@435 1418 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1419 __ movl(rax, Address(end_from, 8));
duke@435 1420 __ movl(Address(end_to, 8), rax);
duke@435 1421
never@739 1422 __ addptr(end_from, 4);
never@739 1423 __ addptr(end_to, 4);
duke@435 1424
duke@435 1425 // Check for and copy trailing word
duke@435 1426 __ BIND(L_copy_2_bytes);
never@739 1427 __ testl(byte_count, 2);
duke@435 1428 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1429 __ movw(rax, Address(end_from, 8));
duke@435 1430 __ movw(Address(end_to, 8), rax);
duke@435 1431
never@739 1432 __ addptr(end_from, 2);
never@739 1433 __ addptr(end_to, 2);
duke@435 1434
duke@435 1435 // Check for and copy trailing byte
duke@435 1436 __ BIND(L_copy_byte);
never@739 1437 __ testl(byte_count, 1);
duke@435 1438 __ jccb(Assembler::zero, L_exit);
duke@435 1439 __ movb(rax, Address(end_from, 8));
duke@435 1440 __ movb(Address(end_to, 8), rax);
duke@435 1441
duke@435 1442 __ BIND(L_exit);
duke@435 1443 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1444 restore_arg_regs();
never@739 1445 __ xorptr(rax, rax); // return 0
duke@435 1446 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1447 __ ret(0);
duke@435 1448
duke@435 1449 // Copy in 32-bytes chunks
duke@435 1450 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1451 __ jmp(L_copy_4_bytes);
duke@435 1452
duke@435 1453 return start;
duke@435 1454 }
duke@435 1455
duke@435 1456 // Arguments:
duke@435 1457 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1458 // ignored
duke@435 1459 // name - stub name string
duke@435 1460 //
duke@435 1461 // Inputs:
duke@435 1462 // c_rarg0 - source array address
duke@435 1463 // c_rarg1 - destination array address
duke@435 1464 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1465 //
duke@435 1466 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1467 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1468 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1469 // and stored atomically.
duke@435 1470 //
iveresov@2595 1471 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1472 address* entry, const char *name) {
duke@435 1473 __ align(CodeEntryAlignment);
duke@435 1474 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1475 address start = __ pc();
duke@435 1476
duke@435 1477 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1478 const Register from = rdi; // source array address
duke@435 1479 const Register to = rsi; // destination array address
duke@435 1480 const Register count = rdx; // elements count
duke@435 1481 const Register byte_count = rcx;
duke@435 1482 const Register qword_count = count;
duke@435 1483
duke@435 1484 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1485 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1486
iveresov@2595 1487 if (entry != NULL) {
iveresov@2595 1488 *entry = __ pc();
iveresov@2595 1489 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1490 BLOCK_COMMENT("Entry:");
iveresov@2595 1491 }
iveresov@2595 1492
iveresov@2595 1493 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1494 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1495 // r9 and r10 may be used to save non-volatile registers
duke@435 1496
duke@435 1497 // 'from', 'to' and 'count' are now valid
never@739 1498 __ movptr(byte_count, count);
never@739 1499 __ shrptr(count, 3); // count => qword_count
duke@435 1500
duke@435 1501 // Copy from high to low addresses.
duke@435 1502
duke@435 1503 // Check for and copy trailing byte
never@739 1504 __ testl(byte_count, 1);
duke@435 1505 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1506 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1507 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1508 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1509
duke@435 1510 // Check for and copy trailing word
duke@435 1511 __ BIND(L_copy_2_bytes);
never@739 1512 __ testl(byte_count, 2);
duke@435 1513 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1514 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1515 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1516
duke@435 1517 // Check for and copy trailing dword
duke@435 1518 __ BIND(L_copy_4_bytes);
never@739 1519 __ testl(byte_count, 4);
duke@435 1520 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1521 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1522 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1523 __ jmp(L_copy_32_bytes);
duke@435 1524
duke@435 1525 // Copy trailing qwords
duke@435 1526 __ BIND(L_copy_8_bytes);
duke@435 1527 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1528 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1529 __ decrement(qword_count);
duke@435 1530 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1531
duke@435 1532 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1533 restore_arg_regs();
never@739 1534 __ xorptr(rax, rax); // return 0
duke@435 1535 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1536 __ ret(0);
duke@435 1537
duke@435 1538 // Copy in 32-bytes chunks
duke@435 1539 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1540
duke@435 1541 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1542 restore_arg_regs();
never@739 1543 __ xorptr(rax, rax); // return 0
duke@435 1544 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1545 __ ret(0);
duke@435 1546
duke@435 1547 return start;
duke@435 1548 }
duke@435 1549
duke@435 1550 // Arguments:
duke@435 1551 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1552 // ignored
duke@435 1553 // name - stub name string
duke@435 1554 //
duke@435 1555 // Inputs:
duke@435 1556 // c_rarg0 - source array address
duke@435 1557 // c_rarg1 - destination array address
duke@435 1558 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1559 //
duke@435 1560 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1561 // let the hardware handle it. The two or four words within dwords
duke@435 1562 // or qwords that span cache line boundaries will still be loaded
duke@435 1563 // and stored atomically.
duke@435 1564 //
duke@435 1565 // Side Effects:
duke@435 1566 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1567 // used by generate_conjoint_short_copy().
duke@435 1568 //
iveresov@2595 1569 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1570 __ align(CodeEntryAlignment);
duke@435 1571 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1572 address start = __ pc();
duke@435 1573
duke@435 1574 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1575 const Register from = rdi; // source array address
duke@435 1576 const Register to = rsi; // destination array address
duke@435 1577 const Register count = rdx; // elements count
duke@435 1578 const Register word_count = rcx;
duke@435 1579 const Register qword_count = count;
duke@435 1580 const Register end_from = from; // source array end address
duke@435 1581 const Register end_to = to; // destination array end address
duke@435 1582 // End pointers are inclusive, and if count is not zero they point
duke@435 1583 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1584
duke@435 1585 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1586 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1587
iveresov@2595 1588 if (entry != NULL) {
iveresov@2595 1589 *entry = __ pc();
iveresov@2595 1590 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1591 BLOCK_COMMENT("Entry:");
iveresov@2595 1592 }
duke@435 1593
duke@435 1594 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1595 // r9 and r10 may be used to save non-volatile registers
duke@435 1596
duke@435 1597 // 'from', 'to' and 'count' are now valid
never@739 1598 __ movptr(word_count, count);
never@739 1599 __ shrptr(count, 2); // count => qword_count
duke@435 1600
duke@435 1601 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1602 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1603 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1604 __ negptr(qword_count);
duke@435 1605 __ jmp(L_copy_32_bytes);
duke@435 1606
duke@435 1607 // Copy trailing qwords
duke@435 1608 __ BIND(L_copy_8_bytes);
duke@435 1609 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1610 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1611 __ increment(qword_count);
duke@435 1612 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1613
duke@435 1614 // Original 'dest' is trashed, so we can't use it as a
duke@435 1615 // base register for a possible trailing word copy
duke@435 1616
duke@435 1617 // Check for and copy trailing dword
duke@435 1618 __ BIND(L_copy_4_bytes);
never@739 1619 __ testl(word_count, 2);
duke@435 1620 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1621 __ movl(rax, Address(end_from, 8));
duke@435 1622 __ movl(Address(end_to, 8), rax);
duke@435 1623
never@739 1624 __ addptr(end_from, 4);
never@739 1625 __ addptr(end_to, 4);
duke@435 1626
duke@435 1627 // Check for and copy trailing word
duke@435 1628 __ BIND(L_copy_2_bytes);
never@739 1629 __ testl(word_count, 1);
duke@435 1630 __ jccb(Assembler::zero, L_exit);
duke@435 1631 __ movw(rax, Address(end_from, 8));
duke@435 1632 __ movw(Address(end_to, 8), rax);
duke@435 1633
duke@435 1634 __ BIND(L_exit);
duke@435 1635 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1636 restore_arg_regs();
never@739 1637 __ xorptr(rax, rax); // return 0
duke@435 1638 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1639 __ ret(0);
duke@435 1640
duke@435 1641 // Copy in 32-bytes chunks
duke@435 1642 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1643 __ jmp(L_copy_4_bytes);
duke@435 1644
duke@435 1645 return start;
duke@435 1646 }
duke@435 1647
never@2118 1648 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1649 __ align(CodeEntryAlignment);
never@2118 1650 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1651 address start = __ pc();
never@2118 1652
never@2118 1653 BLOCK_COMMENT("Entry:");
never@2118 1654
never@2118 1655 const Register to = c_rarg0; // source array address
never@2118 1656 const Register value = c_rarg1; // value
never@2118 1657 const Register count = c_rarg2; // elements count
never@2118 1658
never@2118 1659 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1660
never@2118 1661 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1662
never@2118 1663 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1664 __ ret(0);
never@2118 1665 return start;
never@2118 1666 }
never@2118 1667
duke@435 1668 // Arguments:
duke@435 1669 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1670 // ignored
duke@435 1671 // name - stub name string
duke@435 1672 //
duke@435 1673 // Inputs:
duke@435 1674 // c_rarg0 - source array address
duke@435 1675 // c_rarg1 - destination array address
duke@435 1676 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1677 //
duke@435 1678 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1679 // let the hardware handle it. The two or four words within dwords
duke@435 1680 // or qwords that span cache line boundaries will still be loaded
duke@435 1681 // and stored atomically.
duke@435 1682 //
iveresov@2595 1683 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1684 address *entry, const char *name) {
duke@435 1685 __ align(CodeEntryAlignment);
duke@435 1686 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1687 address start = __ pc();
duke@435 1688
duke@435 1689 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1690 const Register from = rdi; // source array address
duke@435 1691 const Register to = rsi; // destination array address
duke@435 1692 const Register count = rdx; // elements count
duke@435 1693 const Register word_count = rcx;
duke@435 1694 const Register qword_count = count;
duke@435 1695
duke@435 1696 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1697 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1698
iveresov@2595 1699 if (entry != NULL) {
iveresov@2595 1700 *entry = __ pc();
iveresov@2595 1701 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1702 BLOCK_COMMENT("Entry:");
iveresov@2595 1703 }
iveresov@2595 1704
iveresov@2595 1705 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1706 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1707 // r9 and r10 may be used to save non-volatile registers
duke@435 1708
duke@435 1709 // 'from', 'to' and 'count' are now valid
never@739 1710 __ movptr(word_count, count);
never@739 1711 __ shrptr(count, 2); // count => qword_count
duke@435 1712
duke@435 1713 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1714
duke@435 1715 // Check for and copy trailing word
never@739 1716 __ testl(word_count, 1);
duke@435 1717 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1718 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1719 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1720
duke@435 1721 // Check for and copy trailing dword
duke@435 1722 __ BIND(L_copy_4_bytes);
never@739 1723 __ testl(word_count, 2);
duke@435 1724 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1725 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1726 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1727 __ jmp(L_copy_32_bytes);
duke@435 1728
duke@435 1729 // Copy trailing qwords
duke@435 1730 __ BIND(L_copy_8_bytes);
duke@435 1731 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1732 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1733 __ decrement(qword_count);
duke@435 1734 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1735
duke@435 1736 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1737 restore_arg_regs();
never@739 1738 __ xorptr(rax, rax); // return 0
duke@435 1739 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1740 __ ret(0);
duke@435 1741
duke@435 1742 // Copy in 32-bytes chunks
duke@435 1743 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1744
duke@435 1745 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1746 restore_arg_regs();
never@739 1747 __ xorptr(rax, rax); // return 0
duke@435 1748 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1749 __ ret(0);
duke@435 1750
duke@435 1751 return start;
duke@435 1752 }
duke@435 1753
duke@435 1754 // Arguments:
duke@435 1755 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1756 // ignored
coleenp@548 1757 // is_oop - true => oop array, so generate store check code
duke@435 1758 // name - stub name string
duke@435 1759 //
duke@435 1760 // Inputs:
duke@435 1761 // c_rarg0 - source array address
duke@435 1762 // c_rarg1 - destination array address
duke@435 1763 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1764 //
duke@435 1765 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1766 // the hardware handle it. The two dwords within qwords that span
duke@435 1767 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1768 //
duke@435 1769 // Side Effects:
duke@435 1770 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1771 // used by generate_conjoint_int_oop_copy().
duke@435 1772 //
iveresov@2606 1773 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1774 const char *name, bool dest_uninitialized = false) {
duke@435 1775 __ align(CodeEntryAlignment);
duke@435 1776 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1777 address start = __ pc();
duke@435 1778
duke@435 1779 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1780 const Register from = rdi; // source array address
duke@435 1781 const Register to = rsi; // destination array address
duke@435 1782 const Register count = rdx; // elements count
duke@435 1783 const Register dword_count = rcx;
duke@435 1784 const Register qword_count = count;
duke@435 1785 const Register end_from = from; // source array end address
duke@435 1786 const Register end_to = to; // destination array end address
coleenp@548 1787 const Register saved_to = r11; // saved destination array address
duke@435 1788 // End pointers are inclusive, and if count is not zero they point
duke@435 1789 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1790
duke@435 1791 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1792 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1793
iveresov@2595 1794 if (entry != NULL) {
iveresov@2595 1795 *entry = __ pc();
iveresov@2595 1796 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1797 BLOCK_COMMENT("Entry:");
coleenp@548 1798 }
coleenp@548 1799
duke@435 1800 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1801 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1802 if (is_oop) {
coleenp@548 1803 __ movq(saved_to, to);
iveresov@2606 1804 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1805 }
coleenp@548 1806
duke@435 1807 // 'from', 'to' and 'count' are now valid
never@739 1808 __ movptr(dword_count, count);
never@739 1809 __ shrptr(count, 1); // count => qword_count
duke@435 1810
duke@435 1811 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1812 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1813 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1814 __ negptr(qword_count);
duke@435 1815 __ jmp(L_copy_32_bytes);
duke@435 1816
duke@435 1817 // Copy trailing qwords
duke@435 1818 __ BIND(L_copy_8_bytes);
duke@435 1819 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1820 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1821 __ increment(qword_count);
duke@435 1822 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1823
duke@435 1824 // Check for and copy trailing dword
duke@435 1825 __ BIND(L_copy_4_bytes);
never@739 1826 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1827 __ jccb(Assembler::zero, L_exit);
duke@435 1828 __ movl(rax, Address(end_from, 8));
duke@435 1829 __ movl(Address(end_to, 8), rax);
duke@435 1830
duke@435 1831 __ BIND(L_exit);
coleenp@548 1832 if (is_oop) {
coleenp@548 1833 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1834 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1835 }
duke@435 1836 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1837 restore_arg_regs();
never@739 1838 __ xorptr(rax, rax); // return 0
duke@435 1839 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1840 __ ret(0);
duke@435 1841
duke@435 1842 // Copy 32-bytes chunks
duke@435 1843 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1844 __ jmp(L_copy_4_bytes);
duke@435 1845
duke@435 1846 return start;
duke@435 1847 }
duke@435 1848
duke@435 1849 // Arguments:
duke@435 1850 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1851 // ignored
coleenp@548 1852 // is_oop - true => oop array, so generate store check code
duke@435 1853 // name - stub name string
duke@435 1854 //
duke@435 1855 // Inputs:
duke@435 1856 // c_rarg0 - source array address
duke@435 1857 // c_rarg1 - destination array address
duke@435 1858 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1859 //
duke@435 1860 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1861 // the hardware handle it. The two dwords within qwords that span
duke@435 1862 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1863 //
iveresov@2595 1864 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1865 address *entry, const char *name,
iveresov@2606 1866 bool dest_uninitialized = false) {
duke@435 1867 __ align(CodeEntryAlignment);
duke@435 1868 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1869 address start = __ pc();
duke@435 1870
coleenp@548 1871 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1872 const Register from = rdi; // source array address
duke@435 1873 const Register to = rsi; // destination array address
duke@435 1874 const Register count = rdx; // elements count
duke@435 1875 const Register dword_count = rcx;
duke@435 1876 const Register qword_count = count;
duke@435 1877
duke@435 1878 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1879 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1880
iveresov@2595 1881 if (entry != NULL) {
iveresov@2595 1882 *entry = __ pc();
iveresov@2595 1883 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1884 BLOCK_COMMENT("Entry:");
iveresov@2595 1885 }
iveresov@2595 1886
iveresov@2595 1887 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1888 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1889 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1890
coleenp@548 1891 if (is_oop) {
coleenp@548 1892 // no registers are destroyed by this call
iveresov@2606 1893 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1894 }
coleenp@548 1895
coleenp@548 1896 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1897 // 'from', 'to' and 'count' are now valid
never@739 1898 __ movptr(dword_count, count);
never@739 1899 __ shrptr(count, 1); // count => qword_count
duke@435 1900
duke@435 1901 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1902
duke@435 1903 // Check for and copy trailing dword
never@739 1904 __ testl(dword_count, 1);
duke@435 1905 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1906 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1907 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1908 __ jmp(L_copy_32_bytes);
duke@435 1909
duke@435 1910 // Copy trailing qwords
duke@435 1911 __ BIND(L_copy_8_bytes);
duke@435 1912 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1913 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1914 __ decrement(qword_count);
duke@435 1915 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1916
duke@435 1917 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1918 if (is_oop) {
coleenp@548 1919 __ jmp(L_exit);
coleenp@548 1920 }
duke@435 1921 restore_arg_regs();
never@739 1922 __ xorptr(rax, rax); // return 0
duke@435 1923 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1924 __ ret(0);
duke@435 1925
duke@435 1926 // Copy in 32-bytes chunks
duke@435 1927 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1928
coleenp@548 1929 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1930 __ bind(L_exit);
coleenp@548 1931 if (is_oop) {
coleenp@548 1932 Register end_to = rdx;
coleenp@548 1933 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1934 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1935 }
duke@435 1936 restore_arg_regs();
never@739 1937 __ xorptr(rax, rax); // return 0
duke@435 1938 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1939 __ ret(0);
duke@435 1940
duke@435 1941 return start;
duke@435 1942 }
duke@435 1943
duke@435 1944 // Arguments:
duke@435 1945 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1946 // ignored
duke@435 1947 // is_oop - true => oop array, so generate store check code
duke@435 1948 // name - stub name string
duke@435 1949 //
duke@435 1950 // Inputs:
duke@435 1951 // c_rarg0 - source array address
duke@435 1952 // c_rarg1 - destination array address
duke@435 1953 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1954 //
coleenp@548 1955 // Side Effects:
duke@435 1956 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1957 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1958 //
iveresov@2606 1959 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 1960 const char *name, bool dest_uninitialized = false) {
duke@435 1961 __ align(CodeEntryAlignment);
duke@435 1962 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1963 address start = __ pc();
duke@435 1964
duke@435 1965 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1966 const Register from = rdi; // source array address
duke@435 1967 const Register to = rsi; // destination array address
duke@435 1968 const Register qword_count = rdx; // elements count
duke@435 1969 const Register end_from = from; // source array end address
duke@435 1970 const Register end_to = rcx; // destination array end address
duke@435 1971 const Register saved_to = to;
duke@435 1972 // End pointers are inclusive, and if count is not zero they point
duke@435 1973 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1974
duke@435 1975 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1976 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1977 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1978
iveresov@2595 1979 if (entry != NULL) {
iveresov@2595 1980 *entry = __ pc();
iveresov@2595 1981 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1982 BLOCK_COMMENT("Entry:");
duke@435 1983 }
duke@435 1984
duke@435 1985 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1986 // r9 and r10 may be used to save non-volatile registers
duke@435 1987 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 1988 if (is_oop) {
iveresov@2595 1989 // no registers are destroyed by this call
iveresov@2606 1990 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 1991 }
duke@435 1992
duke@435 1993 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1994 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1995 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1996 __ negptr(qword_count);
duke@435 1997 __ jmp(L_copy_32_bytes);
duke@435 1998
duke@435 1999 // Copy trailing qwords
duke@435 2000 __ BIND(L_copy_8_bytes);
duke@435 2001 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2002 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2003 __ increment(qword_count);
duke@435 2004 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2005
duke@435 2006 if (is_oop) {
duke@435 2007 __ jmp(L_exit);
duke@435 2008 } else {
duke@435 2009 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2010 restore_arg_regs();
never@739 2011 __ xorptr(rax, rax); // return 0
duke@435 2012 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2013 __ ret(0);
duke@435 2014 }
duke@435 2015
duke@435 2016 // Copy 64-byte chunks
duke@435 2017 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2018
duke@435 2019 if (is_oop) {
duke@435 2020 __ BIND(L_exit);
duke@435 2021 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2022 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2023 } else {
duke@435 2024 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2025 }
duke@435 2026 restore_arg_regs();
never@739 2027 __ xorptr(rax, rax); // return 0
duke@435 2028 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2029 __ ret(0);
duke@435 2030
duke@435 2031 return start;
duke@435 2032 }
duke@435 2033
duke@435 2034 // Arguments:
duke@435 2035 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2036 // ignored
duke@435 2037 // is_oop - true => oop array, so generate store check code
duke@435 2038 // name - stub name string
duke@435 2039 //
duke@435 2040 // Inputs:
duke@435 2041 // c_rarg0 - source array address
duke@435 2042 // c_rarg1 - destination array address
duke@435 2043 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2044 //
iveresov@2606 2045 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2046 address nooverlap_target, address *entry,
iveresov@2606 2047 const char *name, bool dest_uninitialized = false) {
duke@435 2048 __ align(CodeEntryAlignment);
duke@435 2049 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2050 address start = __ pc();
duke@435 2051
duke@435 2052 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2053 const Register from = rdi; // source array address
duke@435 2054 const Register to = rsi; // destination array address
duke@435 2055 const Register qword_count = rdx; // elements count
duke@435 2056 const Register saved_count = rcx;
duke@435 2057
duke@435 2058 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2059 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2060
iveresov@2595 2061 if (entry != NULL) {
iveresov@2595 2062 *entry = __ pc();
iveresov@2595 2063 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2064 BLOCK_COMMENT("Entry:");
duke@435 2065 }
iveresov@2595 2066
iveresov@2595 2067 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2068 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2069 // r9 and r10 may be used to save non-volatile registers
duke@435 2070 // 'from', 'to' and 'qword_count' are now valid
duke@435 2071 if (is_oop) {
duke@435 2072 // Save to and count for store barrier
never@739 2073 __ movptr(saved_count, qword_count);
duke@435 2074 // No registers are destroyed by this call
iveresov@2606 2075 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2076 }
duke@435 2077
duke@435 2078 __ jmp(L_copy_32_bytes);
duke@435 2079
duke@435 2080 // Copy trailing qwords
duke@435 2081 __ BIND(L_copy_8_bytes);
duke@435 2082 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2083 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2084 __ decrement(qword_count);
duke@435 2085 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2086
duke@435 2087 if (is_oop) {
duke@435 2088 __ jmp(L_exit);
duke@435 2089 } else {
duke@435 2090 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2091 restore_arg_regs();
never@739 2092 __ xorptr(rax, rax); // return 0
duke@435 2093 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2094 __ ret(0);
duke@435 2095 }
duke@435 2096
duke@435 2097 // Copy in 32-bytes chunks
duke@435 2098 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2099
duke@435 2100 if (is_oop) {
duke@435 2101 __ BIND(L_exit);
never@739 2102 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2103 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2104 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2105 } else {
duke@435 2106 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2107 }
duke@435 2108 restore_arg_regs();
never@739 2109 __ xorptr(rax, rax); // return 0
duke@435 2110 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2111 __ ret(0);
duke@435 2112
duke@435 2113 return start;
duke@435 2114 }
duke@435 2115
duke@435 2116
duke@435 2117 // Helper for generating a dynamic type check.
duke@435 2118 // Smashes no registers.
duke@435 2119 void generate_type_check(Register sub_klass,
duke@435 2120 Register super_check_offset,
duke@435 2121 Register super_klass,
duke@435 2122 Label& L_success) {
duke@435 2123 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2124
duke@435 2125 BLOCK_COMMENT("type_check:");
duke@435 2126
duke@435 2127 Label L_miss;
duke@435 2128
jrose@1079 2129 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2130 super_check_offset);
jrose@1079 2131 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2132
duke@435 2133 // Fall through on failure!
duke@435 2134 __ BIND(L_miss);
duke@435 2135 }
duke@435 2136
duke@435 2137 //
duke@435 2138 // Generate checkcasting array copy stub
duke@435 2139 //
duke@435 2140 // Input:
duke@435 2141 // c_rarg0 - source array address
duke@435 2142 // c_rarg1 - destination array address
duke@435 2143 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2144 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2145 // not Win64
duke@435 2146 // c_rarg4 - oop ckval (super_klass)
duke@435 2147 // Win64
duke@435 2148 // rsp+40 - oop ckval (super_klass)
duke@435 2149 //
duke@435 2150 // Output:
duke@435 2151 // rax == 0 - success
duke@435 2152 // rax == -1^K - failure, where K is partial transfer count
duke@435 2153 //
iveresov@2606 2154 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2155 bool dest_uninitialized = false) {
duke@435 2156
duke@435 2157 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2158
duke@435 2159 // Input registers (after setup_arg_regs)
duke@435 2160 const Register from = rdi; // source array address
duke@435 2161 const Register to = rsi; // destination array address
duke@435 2162 const Register length = rdx; // elements count
duke@435 2163 const Register ckoff = rcx; // super_check_offset
duke@435 2164 const Register ckval = r8; // super_klass
duke@435 2165
duke@435 2166 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2167 const Register end_from = from; // source array end address
duke@435 2168 const Register end_to = r13; // destination array end address
duke@435 2169 const Register count = rdx; // -(count_remaining)
duke@435 2170 const Register r14_length = r14; // saved copy of length
duke@435 2171 // End pointers are inclusive, and if length is not zero they point
duke@435 2172 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2173
duke@435 2174 const Register rax_oop = rax; // actual oop copied
duke@435 2175 const Register r11_klass = r11; // oop._klass
duke@435 2176
duke@435 2177 //---------------------------------------------------------------
duke@435 2178 // Assembler stub will be used for this call to arraycopy
duke@435 2179 // if the two arrays are subtypes of Object[] but the
duke@435 2180 // destination array type is not equal to or a supertype
duke@435 2181 // of the source type. Each element must be separately
duke@435 2182 // checked.
duke@435 2183
duke@435 2184 __ align(CodeEntryAlignment);
duke@435 2185 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2186 address start = __ pc();
duke@435 2187
duke@435 2188 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2189
duke@435 2190 #ifdef ASSERT
duke@435 2191 // caller guarantees that the arrays really are different
duke@435 2192 // otherwise, we would have to make conjoint checks
duke@435 2193 { Label L;
coleenp@548 2194 array_overlap_test(L, TIMES_OOP);
duke@435 2195 __ stop("checkcast_copy within a single array");
duke@435 2196 __ bind(L);
duke@435 2197 }
duke@435 2198 #endif //ASSERT
duke@435 2199
duke@435 2200 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2201 // ckoff => rcx, ckval => r8
duke@435 2202 // r9 and r10 may be used to save non-volatile registers
duke@435 2203 #ifdef _WIN64
duke@435 2204 // last argument (#4) is on stack on Win64
twisti@2348 2205 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2206 #endif
duke@435 2207
twisti@2348 2208 // Caller of this entry point must set up the argument registers.
iveresov@2595 2209 if (entry != NULL) {
iveresov@2595 2210 *entry = __ pc();
iveresov@2595 2211 BLOCK_COMMENT("Entry:");
iveresov@2595 2212 }
twisti@2348 2213
twisti@2348 2214 // allocate spill slots for r13, r14
twisti@2348 2215 enum {
twisti@2348 2216 saved_r13_offset,
twisti@2348 2217 saved_r14_offset,
twisti@2348 2218 saved_rbp_offset
twisti@2348 2219 };
twisti@2348 2220 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2221 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2222 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2223
duke@435 2224 // check that int operands are properly extended to size_t
duke@435 2225 assert_clean_int(length, rax);
duke@435 2226 assert_clean_int(ckoff, rax);
duke@435 2227
duke@435 2228 #ifdef ASSERT
duke@435 2229 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2230 // The ckoff and ckval must be mutually consistent,
duke@435 2231 // even though caller generates both.
duke@435 2232 { Label L;
duke@435 2233 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2234 Klass::super_check_offset_offset_in_bytes());
duke@435 2235 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2236 __ jcc(Assembler::equal, L);
duke@435 2237 __ stop("super_check_offset inconsistent");
duke@435 2238 __ bind(L);
duke@435 2239 }
duke@435 2240 #endif //ASSERT
duke@435 2241
duke@435 2242 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2243 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2244 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2245 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2246 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2247 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2248
iveresov@2606 2249 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2250
duke@435 2251 // Copy from low to high addresses, indexed from the end of each array.
never@739 2252 __ lea(end_from, end_from_addr);
never@739 2253 __ lea(end_to, end_to_addr);
never@739 2254 __ movptr(r14_length, length); // save a copy of the length
never@739 2255 assert(length == count, ""); // else fix next line:
never@739 2256 __ negptr(count); // negate and test the length
duke@435 2257 __ jcc(Assembler::notZero, L_load_element);
duke@435 2258
duke@435 2259 // Empty array: Nothing to do.
never@739 2260 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2261 __ jmp(L_done);
duke@435 2262
duke@435 2263 // ======== begin loop ========
duke@435 2264 // (Loop is rotated; its entry is L_load_element.)
duke@435 2265 // Loop control:
duke@435 2266 // for (count = -count; count != 0; count++)
duke@435 2267 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2268 __ align(OptoLoopAlignment);
duke@435 2269
duke@435 2270 __ BIND(L_store_element);
coleenp@548 2271 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2272 __ increment(count); // increment the count toward zero
duke@435 2273 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2274
duke@435 2275 // ======== loop entry is here ========
duke@435 2276 __ BIND(L_load_element);
coleenp@548 2277 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2278 __ testptr(rax_oop, rax_oop);
duke@435 2279 __ jcc(Assembler::zero, L_store_element);
duke@435 2280
coleenp@548 2281 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2282 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2283 // ======== end loop ========
duke@435 2284
duke@435 2285 // It was a real error; we must depend on the caller to finish the job.
duke@435 2286 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2287 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2288 // and report their number to the caller.
duke@435 2289 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2290 __ lea(end_to, to_element_addr);
ysr@1280 2291 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2292 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2293 __ movptr(rax, r14_length); // original oops
never@739 2294 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2295 __ notptr(rax); // report (-1^K) to caller
duke@435 2296 __ jmp(L_done);
duke@435 2297
duke@435 2298 // Come here on success only.
duke@435 2299 __ BIND(L_do_card_marks);
ysr@1280 2300 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2301 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2302 __ xorptr(rax, rax); // return 0 on success
duke@435 2303
duke@435 2304 // Common exit point (success or failure).
duke@435 2305 __ BIND(L_done);
never@739 2306 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2307 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2308 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2309 restore_arg_regs();
duke@435 2310 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2311 __ ret(0);
duke@435 2312
duke@435 2313 return start;
duke@435 2314 }
duke@435 2315
duke@435 2316 //
duke@435 2317 // Generate 'unsafe' array copy stub
duke@435 2318 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2319 // size_t argument instead of an element count.
duke@435 2320 //
duke@435 2321 // Input:
duke@435 2322 // c_rarg0 - source array address
duke@435 2323 // c_rarg1 - destination array address
duke@435 2324 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2325 //
duke@435 2326 // Examines the alignment of the operands and dispatches
duke@435 2327 // to a long, int, short, or byte copy loop.
duke@435 2328 //
iveresov@2595 2329 address generate_unsafe_copy(const char *name,
iveresov@2595 2330 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2331 address int_copy_entry, address long_copy_entry) {
duke@435 2332
duke@435 2333 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2334
duke@435 2335 // Input registers (before setup_arg_regs)
duke@435 2336 const Register from = c_rarg0; // source array address
duke@435 2337 const Register to = c_rarg1; // destination array address
duke@435 2338 const Register size = c_rarg2; // byte count (size_t)
duke@435 2339
duke@435 2340 // Register used as a temp
duke@435 2341 const Register bits = rax; // test copy of low bits
duke@435 2342
duke@435 2343 __ align(CodeEntryAlignment);
duke@435 2344 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2345 address start = __ pc();
duke@435 2346
duke@435 2347 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2348
duke@435 2349 // bump this on entry, not on exit:
duke@435 2350 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2351
never@739 2352 __ mov(bits, from);
never@739 2353 __ orptr(bits, to);
never@739 2354 __ orptr(bits, size);
duke@435 2355
duke@435 2356 __ testb(bits, BytesPerLong-1);
duke@435 2357 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2358
duke@435 2359 __ testb(bits, BytesPerInt-1);
duke@435 2360 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2361
duke@435 2362 __ testb(bits, BytesPerShort-1);
duke@435 2363 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2364
duke@435 2365 __ BIND(L_short_aligned);
never@739 2366 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2367 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2368
duke@435 2369 __ BIND(L_int_aligned);
never@739 2370 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2371 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2372
duke@435 2373 __ BIND(L_long_aligned);
never@739 2374 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2375 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2376
duke@435 2377 return start;
duke@435 2378 }
duke@435 2379
duke@435 2380 // Perform range checks on the proposed arraycopy.
duke@435 2381 // Kills temp, but nothing else.
duke@435 2382 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2383 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2384 Register src_pos, // source position (c_rarg1)
duke@435 2385 Register dst, // destination array oo (c_rarg2)
duke@435 2386 Register dst_pos, // destination position (c_rarg3)
duke@435 2387 Register length,
duke@435 2388 Register temp,
duke@435 2389 Label& L_failed) {
duke@435 2390 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2391
duke@435 2392 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2393 __ movl(temp, length);
duke@435 2394 __ addl(temp, src_pos); // src_pos + length
duke@435 2395 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2396 __ jcc(Assembler::above, L_failed);
duke@435 2397
duke@435 2398 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2399 __ movl(temp, length);
duke@435 2400 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2401 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2402 __ jcc(Assembler::above, L_failed);
duke@435 2403
duke@435 2404 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2405 // Move with sign extension can be used since they are positive.
duke@435 2406 __ movslq(src_pos, src_pos);
duke@435 2407 __ movslq(dst_pos, dst_pos);
duke@435 2408
duke@435 2409 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2410 }
duke@435 2411
duke@435 2412 //
duke@435 2413 // Generate generic array copy stubs
duke@435 2414 //
duke@435 2415 // Input:
duke@435 2416 // c_rarg0 - src oop
duke@435 2417 // c_rarg1 - src_pos (32-bits)
duke@435 2418 // c_rarg2 - dst oop
duke@435 2419 // c_rarg3 - dst_pos (32-bits)
duke@435 2420 // not Win64
duke@435 2421 // c_rarg4 - element count (32-bits)
duke@435 2422 // Win64
duke@435 2423 // rsp+40 - element count (32-bits)
duke@435 2424 //
duke@435 2425 // Output:
duke@435 2426 // rax == 0 - success
duke@435 2427 // rax == -1^K - failure, where K is partial transfer count
duke@435 2428 //
iveresov@2595 2429 address generate_generic_copy(const char *name,
iveresov@2595 2430 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2431 address int_copy_entry, address long_copy_entry,
iveresov@2595 2432 address oop_copy_entry, address checkcast_copy_entry) {
duke@435 2433
duke@435 2434 Label L_failed, L_failed_0, L_objArray;
duke@435 2435 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2436
duke@435 2437 // Input registers
duke@435 2438 const Register src = c_rarg0; // source array oop
duke@435 2439 const Register src_pos = c_rarg1; // source position
duke@435 2440 const Register dst = c_rarg2; // destination array oop
duke@435 2441 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2442 #ifndef _WIN64
twisti@2348 2443 const Register length = c_rarg4;
duke@435 2444 #else
twisti@2348 2445 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2446 #endif
duke@435 2447
duke@435 2448 { int modulus = CodeEntryAlignment;
duke@435 2449 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2450 int advance = target - (__ offset() % modulus);
duke@435 2451 if (advance < 0) advance += modulus;
duke@435 2452 if (advance > 0) __ nop(advance);
duke@435 2453 }
duke@435 2454 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2455
duke@435 2456 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2457 __ BIND(L_failed_0);
duke@435 2458 __ jmp(L_failed);
duke@435 2459 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2460
duke@435 2461 __ align(CodeEntryAlignment);
duke@435 2462 address start = __ pc();
duke@435 2463
duke@435 2464 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2465
duke@435 2466 // bump this on entry, not on exit:
duke@435 2467 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2468
duke@435 2469 //-----------------------------------------------------------------------
duke@435 2470 // Assembler stub will be used for this call to arraycopy
duke@435 2471 // if the following conditions are met:
duke@435 2472 //
duke@435 2473 // (1) src and dst must not be null.
duke@435 2474 // (2) src_pos must not be negative.
duke@435 2475 // (3) dst_pos must not be negative.
duke@435 2476 // (4) length must not be negative.
duke@435 2477 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2478 // (6) src and dst should be arrays.
duke@435 2479 // (7) src_pos + length must not exceed length of src.
duke@435 2480 // (8) dst_pos + length must not exceed length of dst.
duke@435 2481 //
duke@435 2482
duke@435 2483 // if (src == NULL) return -1;
never@739 2484 __ testptr(src, src); // src oop
duke@435 2485 size_t j1off = __ offset();
duke@435 2486 __ jccb(Assembler::zero, L_failed_0);
duke@435 2487
duke@435 2488 // if (src_pos < 0) return -1;
duke@435 2489 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2490 __ jccb(Assembler::negative, L_failed_0);
duke@435 2491
duke@435 2492 // if (dst == NULL) return -1;
never@739 2493 __ testptr(dst, dst); // dst oop
duke@435 2494 __ jccb(Assembler::zero, L_failed_0);
duke@435 2495
duke@435 2496 // if (dst_pos < 0) return -1;
duke@435 2497 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2498 size_t j4off = __ offset();
duke@435 2499 __ jccb(Assembler::negative, L_failed_0);
duke@435 2500
duke@435 2501 // The first four tests are very dense code,
duke@435 2502 // but not quite dense enough to put four
duke@435 2503 // jumps in a 16-byte instruction fetch buffer.
duke@435 2504 // That's good, because some branch predicters
duke@435 2505 // do not like jumps so close together.
duke@435 2506 // Make sure of this.
duke@435 2507 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2508
duke@435 2509 // registers used as temp
duke@435 2510 const Register r11_length = r11; // elements count to copy
duke@435 2511 const Register r10_src_klass = r10; // array klass
duke@435 2512
duke@435 2513 // if (length < 0) return -1;
twisti@2348 2514 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2515 __ testl(r11_length, r11_length);
duke@435 2516 __ jccb(Assembler::negative, L_failed_0);
duke@435 2517
coleenp@548 2518 __ load_klass(r10_src_klass, src);
duke@435 2519 #ifdef ASSERT
duke@435 2520 // assert(src->klass() != NULL);
twisti@2348 2521 {
twisti@2348 2522 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2523 Label L1, L2;
never@739 2524 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2525 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2526 __ bind(L1);
duke@435 2527 __ stop("broken null klass");
duke@435 2528 __ bind(L2);
twisti@2348 2529 __ load_klass(rax, dst);
twisti@2348 2530 __ cmpq(rax, 0);
duke@435 2531 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2532 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2533 }
duke@435 2534 #endif
duke@435 2535
duke@435 2536 // Load layout helper (32-bits)
duke@435 2537 //
duke@435 2538 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2539 // 32 30 24 16 8 2 0
duke@435 2540 //
duke@435 2541 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2542 //
duke@435 2543
twisti@2348 2544 const int lh_offset = klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2545 Klass::layout_helper_offset_in_bytes();
twisti@2348 2546
twisti@2348 2547 // Handle objArrays completely differently...
twisti@2348 2548 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2549 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2550 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2551
twisti@2348 2552 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2553 __ load_klass(rax, dst);
twisti@2348 2554 __ cmpq(r10_src_klass, rax);
twisti@2348 2555 __ jcc(Assembler::notEqual, L_failed);
duke@435 2556
duke@435 2557 const Register rax_lh = rax; // layout helper
duke@435 2558 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2559
duke@435 2560 // if (!src->is_Array()) return -1;
duke@435 2561 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2562 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2563
duke@435 2564 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2565 #ifdef ASSERT
twisti@2348 2566 {
twisti@2348 2567 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2568 Label L;
duke@435 2569 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2570 __ jcc(Assembler::greaterEqual, L);
duke@435 2571 __ stop("must be a primitive array");
duke@435 2572 __ bind(L);
twisti@2348 2573 BLOCK_COMMENT("} assert primitive array done");
duke@435 2574 }
duke@435 2575 #endif
duke@435 2576
duke@435 2577 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2578 r10, L_failed);
duke@435 2579
duke@435 2580 // typeArrayKlass
duke@435 2581 //
duke@435 2582 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2583 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2584 //
duke@435 2585
duke@435 2586 const Register r10_offset = r10; // array offset
duke@435 2587 const Register rax_elsize = rax_lh; // element size
duke@435 2588
duke@435 2589 __ movl(r10_offset, rax_lh);
duke@435 2590 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2591 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2592 __ addptr(src, r10_offset); // src array offset
never@739 2593 __ addptr(dst, r10_offset); // dst array offset
duke@435 2594 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2595 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2596
duke@435 2597 // next registers should be set before the jump to corresponding stub
duke@435 2598 const Register from = c_rarg0; // source array address
duke@435 2599 const Register to = c_rarg1; // destination array address
duke@435 2600 const Register count = c_rarg2; // elements count
duke@435 2601
duke@435 2602 // 'from', 'to', 'count' registers should be set in such order
duke@435 2603 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2604
duke@435 2605 __ BIND(L_copy_bytes);
duke@435 2606 __ cmpl(rax_elsize, 0);
duke@435 2607 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2608 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2609 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2610 __ movl2ptr(count, r11_length); // length
duke@435 2611 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2612
duke@435 2613 __ BIND(L_copy_shorts);
duke@435 2614 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2615 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2616 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2617 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2618 __ movl2ptr(count, r11_length); // length
duke@435 2619 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2620
duke@435 2621 __ BIND(L_copy_ints);
duke@435 2622 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2623 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2624 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2625 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2626 __ movl2ptr(count, r11_length); // length
duke@435 2627 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2628
duke@435 2629 __ BIND(L_copy_longs);
duke@435 2630 #ifdef ASSERT
twisti@2348 2631 {
twisti@2348 2632 BLOCK_COMMENT("assert long copy {");
twisti@2348 2633 Label L;
duke@435 2634 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2635 __ jcc(Assembler::equal, L);
duke@435 2636 __ stop("must be long copy, but elsize is wrong");
duke@435 2637 __ bind(L);
twisti@2348 2638 BLOCK_COMMENT("} assert long copy done");
duke@435 2639 }
duke@435 2640 #endif
never@739 2641 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2642 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2643 __ movl2ptr(count, r11_length); // length
duke@435 2644 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2645
duke@435 2646 // objArrayKlass
duke@435 2647 __ BIND(L_objArray);
twisti@2348 2648 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2649
duke@435 2650 Label L_plain_copy, L_checkcast_copy;
duke@435 2651 // test array classes for subtyping
twisti@2348 2652 __ load_klass(rax, dst);
twisti@2348 2653 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2654 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2655
duke@435 2656 // Identically typed arrays can be copied without element-wise checks.
duke@435 2657 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2658 r10, L_failed);
duke@435 2659
never@739 2660 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2661 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2662 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2663 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2664 __ movl2ptr(count, r11_length); // length
duke@435 2665 __ BIND(L_plain_copy);
duke@435 2666 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2667
duke@435 2668 __ BIND(L_checkcast_copy);
twisti@2348 2669 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2670 {
duke@435 2671 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2672 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2673 __ jcc(Assembler::notEqual, L_failed);
duke@435 2674
duke@435 2675 // It is safe to examine both src.length and dst.length.
duke@435 2676 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2677 rax, L_failed);
twisti@2348 2678
twisti@2348 2679 const Register r11_dst_klass = r11;
coleenp@548 2680 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2681
duke@435 2682 // Marshal the base address arguments now, freeing registers.
never@739 2683 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2684 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2685 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2686 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2687 __ movl(count, length); // length (reloaded)
duke@435 2688 Register sco_temp = c_rarg3; // this register is free now
duke@435 2689 assert_different_registers(from, to, count, sco_temp,
duke@435 2690 r11_dst_klass, r10_src_klass);
duke@435 2691 assert_clean_int(count, sco_temp);
duke@435 2692
duke@435 2693 // Generate the type check.
twisti@2348 2694 const int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2695 Klass::super_check_offset_offset_in_bytes());
duke@435 2696 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2697 assert_clean_int(sco_temp, rax);
duke@435 2698 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2699
duke@435 2700 // Fetch destination element klass from the objArrayKlass header.
duke@435 2701 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2702 objArrayKlass::element_klass_offset_in_bytes());
never@739 2703 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2704 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2705 assert_clean_int(sco_temp, rax);
duke@435 2706
duke@435 2707 // the checkcast_copy loop needs two extra arguments:
duke@435 2708 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2709 // Set up arguments for checkcast_copy_entry.
twisti@2348 2710 setup_arg_regs(4);
twisti@2348 2711 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2712 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2713 }
duke@435 2714
duke@435 2715 __ BIND(L_failed);
never@739 2716 __ xorptr(rax, rax);
never@739 2717 __ notptr(rax); // return -1
duke@435 2718 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2719 __ ret(0);
duke@435 2720
duke@435 2721 return start;
duke@435 2722 }
duke@435 2723
duke@435 2724 void generate_arraycopy_stubs() {
iveresov@2595 2725 address entry;
iveresov@2595 2726 address entry_jbyte_arraycopy;
iveresov@2595 2727 address entry_jshort_arraycopy;
iveresov@2595 2728 address entry_jint_arraycopy;
iveresov@2595 2729 address entry_oop_arraycopy;
iveresov@2595 2730 address entry_jlong_arraycopy;
iveresov@2595 2731 address entry_checkcast_arraycopy;
iveresov@2595 2732
iveresov@2595 2733 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2734 "jbyte_disjoint_arraycopy");
iveresov@2595 2735 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2736 "jbyte_arraycopy");
iveresov@2595 2737
iveresov@2595 2738 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2739 "jshort_disjoint_arraycopy");
iveresov@2595 2740 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2741 "jshort_arraycopy");
iveresov@2595 2742
iveresov@2595 2743 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2744 "jint_disjoint_arraycopy");
iveresov@2595 2745 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2746 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2747
iveresov@2595 2748 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2749 "jlong_disjoint_arraycopy");
iveresov@2595 2750 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2751 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2752
coleenp@548 2753
coleenp@548 2754 if (UseCompressedOops) {
iveresov@2595 2755 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2756 "oop_disjoint_arraycopy");
iveresov@2595 2757 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2758 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2759 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2760 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2761 /*dest_uninitialized*/true);
iveresov@2606 2762 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2763 NULL, "oop_arraycopy_uninit",
iveresov@2606 2764 /*dest_uninitialized*/true);
coleenp@548 2765 } else {
iveresov@2595 2766 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2767 "oop_disjoint_arraycopy");
iveresov@2595 2768 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2769 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2770 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2771 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2772 /*dest_uninitialized*/true);
iveresov@2606 2773 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2774 NULL, "oop_arraycopy_uninit",
iveresov@2606 2775 /*dest_uninitialized*/true);
coleenp@548 2776 }
duke@435 2777
iveresov@2606 2778 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2779 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2780 /*dest_uninitialized*/true);
iveresov@2606 2781
iveresov@2595 2782 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2783 entry_jbyte_arraycopy,
iveresov@2595 2784 entry_jshort_arraycopy,
iveresov@2595 2785 entry_jint_arraycopy,
iveresov@2595 2786 entry_jlong_arraycopy);
iveresov@2595 2787 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2788 entry_jbyte_arraycopy,
iveresov@2595 2789 entry_jshort_arraycopy,
iveresov@2595 2790 entry_jint_arraycopy,
iveresov@2595 2791 entry_oop_arraycopy,
iveresov@2595 2792 entry_jlong_arraycopy,
iveresov@2595 2793 entry_checkcast_arraycopy);
duke@435 2794
never@2118 2795 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2796 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2797 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2798 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2799 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2800 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2801
duke@435 2802 // We don't generate specialized code for HeapWord-aligned source
duke@435 2803 // arrays, so just use the code we've already generated
duke@435 2804 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2805 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2806
duke@435 2807 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2808 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2809
duke@435 2810 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2811 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2812
duke@435 2813 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2814 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2815
duke@435 2816 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2817 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2818
iveresov@2606 2819 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2820 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2821 }
duke@435 2822
never@1609 2823 void generate_math_stubs() {
never@1609 2824 {
never@1609 2825 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2826 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2827
never@1609 2828 __ subq(rsp, 8);
never@1609 2829 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2830 __ fld_d(Address(rsp, 0));
never@1609 2831 __ flog();
never@1609 2832 __ fstp_d(Address(rsp, 0));
never@1609 2833 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2834 __ addq(rsp, 8);
never@1609 2835 __ ret(0);
never@1609 2836 }
never@1609 2837 {
never@1609 2838 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2839 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2840
never@1609 2841 __ subq(rsp, 8);
never@1609 2842 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2843 __ fld_d(Address(rsp, 0));
never@1609 2844 __ flog10();
never@1609 2845 __ fstp_d(Address(rsp, 0));
never@1609 2846 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2847 __ addq(rsp, 8);
never@1609 2848 __ ret(0);
never@1609 2849 }
never@1609 2850 {
never@1609 2851 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2852 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2853
never@1609 2854 __ subq(rsp, 8);
never@1609 2855 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2856 __ fld_d(Address(rsp, 0));
never@1609 2857 __ trigfunc('s');
never@1609 2858 __ fstp_d(Address(rsp, 0));
never@1609 2859 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2860 __ addq(rsp, 8);
never@1609 2861 __ ret(0);
never@1609 2862 }
never@1609 2863 {
never@1609 2864 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2865 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2866
never@1609 2867 __ subq(rsp, 8);
never@1609 2868 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2869 __ fld_d(Address(rsp, 0));
never@1609 2870 __ trigfunc('c');
never@1609 2871 __ fstp_d(Address(rsp, 0));
never@1609 2872 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2873 __ addq(rsp, 8);
never@1609 2874 __ ret(0);
never@1609 2875 }
never@1609 2876 {
never@1609 2877 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2878 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2879
never@1609 2880 __ subq(rsp, 8);
never@1609 2881 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2882 __ fld_d(Address(rsp, 0));
never@1609 2883 __ trigfunc('t');
never@1609 2884 __ fstp_d(Address(rsp, 0));
never@1609 2885 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2886 __ addq(rsp, 8);
never@1609 2887 __ ret(0);
never@1609 2888 }
never@1609 2889
never@1609 2890 // The intrinsic version of these seem to return the same value as
never@1609 2891 // the strict version.
never@1609 2892 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2893 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2894 }
never@1609 2895
duke@435 2896 #undef __
duke@435 2897 #define __ masm->
duke@435 2898
duke@435 2899 // Continuation point for throwing of implicit exceptions that are
duke@435 2900 // not handled in the current activation. Fabricates an exception
duke@435 2901 // oop and initiates normal exception dispatching in this
duke@435 2902 // frame. Since we need to preserve callee-saved values (currently
duke@435 2903 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2904 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2905 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2906 // be preserved between the fault point and the exception handler
duke@435 2907 // then it must assume responsibility for that in
duke@435 2908 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2909 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2910 // implicit exceptions (e.g., NullPointerException or
duke@435 2911 // AbstractMethodError on entry) are either at call sites or
duke@435 2912 // otherwise assume that stack unwinding will be initiated, so
duke@435 2913 // caller saved registers were assumed volatile in the compiler.
duke@435 2914 address generate_throw_exception(const char* name,
duke@435 2915 address runtime_entry,
duke@435 2916 bool restore_saved_exception_pc) {
duke@435 2917 // Information about frame layout at time of blocking runtime call.
duke@435 2918 // Note that we only have to preserve callee-saved registers since
duke@435 2919 // the compilers are responsible for supplying a continuation point
duke@435 2920 // if they expect all registers to be preserved.
duke@435 2921 enum layout {
duke@435 2922 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2923 rbp_off2,
duke@435 2924 return_off,
duke@435 2925 return_off2,
duke@435 2926 framesize // inclusive of return address
duke@435 2927 };
duke@435 2928
duke@435 2929 int insts_size = 512;
duke@435 2930 int locs_size = 64;
duke@435 2931
duke@435 2932 CodeBuffer code(name, insts_size, locs_size);
duke@435 2933 OopMapSet* oop_maps = new OopMapSet();
duke@435 2934 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2935
duke@435 2936 address start = __ pc();
duke@435 2937
duke@435 2938 // This is an inlined and slightly modified version of call_VM
duke@435 2939 // which has the ability to fetch the return PC out of
duke@435 2940 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2941 // differently than the real call_VM
duke@435 2942 if (restore_saved_exception_pc) {
never@739 2943 __ movptr(rax,
never@739 2944 Address(r15_thread,
never@739 2945 in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2946 __ push(rax);
duke@435 2947 }
duke@435 2948
duke@435 2949 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2950
duke@435 2951 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2952
duke@435 2953 // return address and rbp are already in place
never@739 2954 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2955
duke@435 2956 int frame_complete = __ pc() - start;
duke@435 2957
duke@435 2958 // Set up last_Java_sp and last_Java_fp
duke@435 2959 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2960
duke@435 2961 // Call runtime
never@739 2962 __ movptr(c_rarg0, r15_thread);
duke@435 2963 BLOCK_COMMENT("call runtime_entry");
duke@435 2964 __ call(RuntimeAddress(runtime_entry));
duke@435 2965
duke@435 2966 // Generate oop map
duke@435 2967 OopMap* map = new OopMap(framesize, 0);
duke@435 2968
duke@435 2969 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2970
duke@435 2971 __ reset_last_Java_frame(true, false);
duke@435 2972
duke@435 2973 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2974
duke@435 2975 // check for pending exceptions
duke@435 2976 #ifdef ASSERT
duke@435 2977 Label L;
never@739 2978 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 2979 (int32_t) NULL_WORD);
duke@435 2980 __ jcc(Assembler::notEqual, L);
duke@435 2981 __ should_not_reach_here();
duke@435 2982 __ bind(L);
duke@435 2983 #endif // ASSERT
duke@435 2984 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2985
duke@435 2986
duke@435 2987 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 2988 RuntimeStub* stub =
duke@435 2989 RuntimeStub::new_runtime_stub(name,
duke@435 2990 &code,
duke@435 2991 frame_complete,
duke@435 2992 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 2993 oop_maps, false);
duke@435 2994 return stub->entry_point();
duke@435 2995 }
duke@435 2996
duke@435 2997 // Initialization
duke@435 2998 void generate_initial() {
duke@435 2999 // Generates all stubs and initializes the entry points
duke@435 3000
duke@435 3001 // This platform-specific stub is needed by generate_call_stub()
never@739 3002 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 3003
duke@435 3004 // entry points that exist in all platforms Note: This is code
duke@435 3005 // that could be shared among different platforms - however the
duke@435 3006 // benefit seems to be smaller than the disadvantage of having a
duke@435 3007 // much more complicated generator structure. See also comment in
duke@435 3008 // stubRoutines.hpp.
duke@435 3009
duke@435 3010 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3011
duke@435 3012 StubRoutines::_call_stub_entry =
duke@435 3013 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3014
duke@435 3015 // is referenced by megamorphic call
duke@435 3016 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3017
duke@435 3018 // atomic calls
duke@435 3019 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3020 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3021 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3022 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3023 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3024 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3025 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3026
duke@435 3027 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3028 generate_handler_for_unsafe_access();
duke@435 3029
duke@435 3030 // platform dependent
never@739 3031 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 3032
never@739 3033 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 3034 }
duke@435 3035
duke@435 3036 void generate_all() {
duke@435 3037 // Generates all stubs and initializes the entry points
duke@435 3038
duke@435 3039 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3040 // non-core builds and need to be relocatable, so they each
duke@435 3041 // fabricate a RuntimeStub internally.
duke@435 3042 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3043 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3044 CAST_FROM_FN_PTR(address,
duke@435 3045 SharedRuntime::
duke@435 3046 throw_AbstractMethodError),
duke@435 3047 false);
duke@435 3048
dcubed@451 3049 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3050 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3051 CAST_FROM_FN_PTR(address,
dcubed@451 3052 SharedRuntime::
dcubed@451 3053 throw_IncompatibleClassChangeError),
dcubed@451 3054 false);
dcubed@451 3055
duke@435 3056 StubRoutines::_throw_ArithmeticException_entry =
duke@435 3057 generate_throw_exception("ArithmeticException throw_exception",
duke@435 3058 CAST_FROM_FN_PTR(address,
duke@435 3059 SharedRuntime::
duke@435 3060 throw_ArithmeticException),
duke@435 3061 true);
duke@435 3062
duke@435 3063 StubRoutines::_throw_NullPointerException_entry =
duke@435 3064 generate_throw_exception("NullPointerException throw_exception",
duke@435 3065 CAST_FROM_FN_PTR(address,
duke@435 3066 SharedRuntime::
duke@435 3067 throw_NullPointerException),
duke@435 3068 true);
duke@435 3069
duke@435 3070 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3071 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3072 CAST_FROM_FN_PTR(address,
duke@435 3073 SharedRuntime::
duke@435 3074 throw_NullPointerException_at_call),
duke@435 3075 false);
duke@435 3076
duke@435 3077 StubRoutines::_throw_StackOverflowError_entry =
duke@435 3078 generate_throw_exception("StackOverflowError throw_exception",
duke@435 3079 CAST_FROM_FN_PTR(address,
duke@435 3080 SharedRuntime::
duke@435 3081 throw_StackOverflowError),
duke@435 3082 false);
duke@435 3083
duke@435 3084 // entry points that are platform specific
never@739 3085 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3086 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3087 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3088 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3089
never@739 3090 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3091 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3092 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3093 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3094
duke@435 3095 // support for verify_oop (must happen after universe_init)
duke@435 3096 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3097
duke@435 3098 // arraycopy stubs used by compilers
duke@435 3099 generate_arraycopy_stubs();
twisti@1543 3100
never@1609 3101 generate_math_stubs();
duke@435 3102 }
duke@435 3103
duke@435 3104 public:
duke@435 3105 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3106 if (all) {
duke@435 3107 generate_all();
duke@435 3108 } else {
duke@435 3109 generate_initial();
duke@435 3110 }
duke@435 3111 }
duke@435 3112 }; // end class declaration
duke@435 3113
duke@435 3114 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3115 StubGenerator g(code, all);
duke@435 3116 }

mercurial