src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3787
6759698e3140
child 4037
da91efe96a93
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "thread_bsd.inline.hpp"
    52 #endif
    53 #ifdef COMPILER2
    54 #include "opto/runtime.hpp"
    55 #endif
    57 // Declaration and definition of StubGenerator (no .hpp file).
    58 // For a more detailed description of the stub routine structure
    59 // see the comment in stubRoutines.hpp
    61 #define __ _masm->
    62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    63 #define a__ ((Assembler*)_masm)->
    65 #ifdef PRODUCT
    66 #define BLOCK_COMMENT(str) /* nothing */
    67 #else
    68 #define BLOCK_COMMENT(str) __ block_comment(str)
    69 #endif
    71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    72 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    74 // Stub Code definitions
    76 static address handle_unsafe_access() {
    77   JavaThread* thread = JavaThread::current();
    78   address pc = thread->saved_exception_pc();
    79   // pc is the instruction which we must emulate
    80   // doing a no-op is fine:  return garbage from the load
    81   // therefore, compute npc
    82   address npc = Assembler::locate_next_instruction(pc);
    84   // request an async exception
    85   thread->set_pending_unsafe_access_error();
    87   // return address of next instruction to execute
    88   return npc;
    89 }
    91 class StubGenerator: public StubCodeGenerator {
    92  private:
    94 #ifdef PRODUCT
    95 #define inc_counter_np(counter) (0)
    96 #else
    97   void inc_counter_np_(int& counter) {
    98     // This can destroy rscratch1 if counter is far from the code cache
    99     __ incrementl(ExternalAddress((address)&counter));
   100   }
   101 #define inc_counter_np(counter) \
   102   BLOCK_COMMENT("inc_counter " #counter); \
   103   inc_counter_np_(counter);
   104 #endif
   106   // Call stubs are used to call Java from C
   107   //
   108   // Linux Arguments:
   109   //    c_rarg0:   call wrapper address                   address
   110   //    c_rarg1:   result                                 address
   111   //    c_rarg2:   result type                            BasicType
   112   //    c_rarg3:   method                                 methodOop
   113   //    c_rarg4:   (interpreter) entry point              address
   114   //    c_rarg5:   parameters                             intptr_t*
   115   //    16(rbp): parameter size (in words)              int
   116   //    24(rbp): thread                                 Thread*
   117   //
   118   //     [ return_from_Java     ] <--- rsp
   119   //     [ argument word n      ]
   120   //      ...
   121   // -12 [ argument word 1      ]
   122   // -11 [ saved r15            ] <--- rsp_after_call
   123   // -10 [ saved r14            ]
   124   //  -9 [ saved r13            ]
   125   //  -8 [ saved r12            ]
   126   //  -7 [ saved rbx            ]
   127   //  -6 [ call wrapper         ]
   128   //  -5 [ result               ]
   129   //  -4 [ result type          ]
   130   //  -3 [ method               ]
   131   //  -2 [ entry point          ]
   132   //  -1 [ parameters           ]
   133   //   0 [ saved rbp            ] <--- rbp
   134   //   1 [ return address       ]
   135   //   2 [ parameter size       ]
   136   //   3 [ thread               ]
   137   //
   138   // Windows Arguments:
   139   //    c_rarg0:   call wrapper address                   address
   140   //    c_rarg1:   result                                 address
   141   //    c_rarg2:   result type                            BasicType
   142   //    c_rarg3:   method                                 methodOop
   143   //    48(rbp): (interpreter) entry point              address
   144   //    56(rbp): parameters                             intptr_t*
   145   //    64(rbp): parameter size (in words)              int
   146   //    72(rbp): thread                                 Thread*
   147   //
   148   //     [ return_from_Java     ] <--- rsp
   149   //     [ argument word n      ]
   150   //      ...
   151   // -28 [ argument word 1      ]
   152   // -27 [ saved xmm15          ] <--- rsp_after_call
   153   //     [ saved xmm7-xmm14     ]
   154   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
   155   //  -7 [ saved r15            ]
   156   //  -6 [ saved r14            ]
   157   //  -5 [ saved r13            ]
   158   //  -4 [ saved r12            ]
   159   //  -3 [ saved rdi            ]
   160   //  -2 [ saved rsi            ]
   161   //  -1 [ saved rbx            ]
   162   //   0 [ saved rbp            ] <--- rbp
   163   //   1 [ return address       ]
   164   //   2 [ call wrapper         ]
   165   //   3 [ result               ]
   166   //   4 [ result type          ]
   167   //   5 [ method               ]
   168   //   6 [ entry point          ]
   169   //   7 [ parameters           ]
   170   //   8 [ parameter size       ]
   171   //   9 [ thread               ]
   172   //
   173   //    Windows reserves the callers stack space for arguments 1-4.
   174   //    We spill c_rarg0-c_rarg3 to this space.
   176   // Call stub stack layout word offsets from rbp
   177   enum call_stub_layout {
   178 #ifdef _WIN64
   179     xmm_save_first     = 6,  // save from xmm6
   180     xmm_save_last      = 15, // to xmm15
   181     xmm_save_base      = -9,
   182     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
   183     r15_off            = -7,
   184     r14_off            = -6,
   185     r13_off            = -5,
   186     r12_off            = -4,
   187     rdi_off            = -3,
   188     rsi_off            = -2,
   189     rbx_off            = -1,
   190     rbp_off            =  0,
   191     retaddr_off        =  1,
   192     call_wrapper_off   =  2,
   193     result_off         =  3,
   194     result_type_off    =  4,
   195     method_off         =  5,
   196     entry_point_off    =  6,
   197     parameters_off     =  7,
   198     parameter_size_off =  8,
   199     thread_off         =  9
   200 #else
   201     rsp_after_call_off = -12,
   202     mxcsr_off          = rsp_after_call_off,
   203     r15_off            = -11,
   204     r14_off            = -10,
   205     r13_off            = -9,
   206     r12_off            = -8,
   207     rbx_off            = -7,
   208     call_wrapper_off   = -6,
   209     result_off         = -5,
   210     result_type_off    = -4,
   211     method_off         = -3,
   212     entry_point_off    = -2,
   213     parameters_off     = -1,
   214     rbp_off            =  0,
   215     retaddr_off        =  1,
   216     parameter_size_off =  2,
   217     thread_off         =  3
   218 #endif
   219   };
   221 #ifdef _WIN64
   222   Address xmm_save(int reg) {
   223     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
   224     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
   225   }
   226 #endif
   228   address generate_call_stub(address& return_address) {
   229     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   230            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   231            "adjust this code");
   232     StubCodeMark mark(this, "StubRoutines", "call_stub");
   233     address start = __ pc();
   235     // same as in generate_catch_exception()!
   236     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   238     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   239     const Address result        (rbp, result_off         * wordSize);
   240     const Address result_type   (rbp, result_type_off    * wordSize);
   241     const Address method        (rbp, method_off         * wordSize);
   242     const Address entry_point   (rbp, entry_point_off    * wordSize);
   243     const Address parameters    (rbp, parameters_off     * wordSize);
   244     const Address parameter_size(rbp, parameter_size_off * wordSize);
   246     // same as in generate_catch_exception()!
   247     const Address thread        (rbp, thread_off         * wordSize);
   249     const Address r15_save(rbp, r15_off * wordSize);
   250     const Address r14_save(rbp, r14_off * wordSize);
   251     const Address r13_save(rbp, r13_off * wordSize);
   252     const Address r12_save(rbp, r12_off * wordSize);
   253     const Address rbx_save(rbp, rbx_off * wordSize);
   255     // stub code
   256     __ enter();
   257     __ subptr(rsp, -rsp_after_call_off * wordSize);
   259     // save register parameters
   260 #ifndef _WIN64
   261     __ movptr(parameters,   c_rarg5); // parameters
   262     __ movptr(entry_point,  c_rarg4); // entry_point
   263 #endif
   265     __ movptr(method,       c_rarg3); // method
   266     __ movl(result_type,  c_rarg2);   // result type
   267     __ movptr(result,       c_rarg1); // result
   268     __ movptr(call_wrapper, c_rarg0); // call wrapper
   270     // save regs belonging to calling function
   271     __ movptr(rbx_save, rbx);
   272     __ movptr(r12_save, r12);
   273     __ movptr(r13_save, r13);
   274     __ movptr(r14_save, r14);
   275     __ movptr(r15_save, r15);
   276 #ifdef _WIN64
   277     for (int i = 6; i <= 15; i++) {
   278       __ movdqu(xmm_save(i), as_XMMRegister(i));
   279     }
   281     const Address rdi_save(rbp, rdi_off * wordSize);
   282     const Address rsi_save(rbp, rsi_off * wordSize);
   284     __ movptr(rsi_save, rsi);
   285     __ movptr(rdi_save, rdi);
   286 #else
   287     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   288     {
   289       Label skip_ldmx;
   290       __ stmxcsr(mxcsr_save);
   291       __ movl(rax, mxcsr_save);
   292       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   293       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   294       __ cmp32(rax, mxcsr_std);
   295       __ jcc(Assembler::equal, skip_ldmx);
   296       __ ldmxcsr(mxcsr_std);
   297       __ bind(skip_ldmx);
   298     }
   299 #endif
   301     // Load up thread register
   302     __ movptr(r15_thread, thread);
   303     __ reinit_heapbase();
   305 #ifdef ASSERT
   306     // make sure we have no pending exceptions
   307     {
   308       Label L;
   309       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   310       __ jcc(Assembler::equal, L);
   311       __ stop("StubRoutines::call_stub: entered with pending exception");
   312       __ bind(L);
   313     }
   314 #endif
   316     // pass parameters if any
   317     BLOCK_COMMENT("pass parameters if any");
   318     Label parameters_done;
   319     __ movl(c_rarg3, parameter_size);
   320     __ testl(c_rarg3, c_rarg3);
   321     __ jcc(Assembler::zero, parameters_done);
   323     Label loop;
   324     __ movptr(c_rarg2, parameters);       // parameter pointer
   325     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   326     __ BIND(loop);
   327     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   328     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   329     __ decrementl(c_rarg1);             // decrement counter
   330     __ push(rax);                       // pass parameter
   331     __ jcc(Assembler::notZero, loop);
   333     // call Java function
   334     __ BIND(parameters_done);
   335     __ movptr(rbx, method);             // get methodOop
   336     __ movptr(c_rarg1, entry_point);    // get entry_point
   337     __ mov(r13, rsp);                   // set sender sp
   338     BLOCK_COMMENT("call Java function");
   339     __ call(c_rarg1);
   341     BLOCK_COMMENT("call_stub_return_address:");
   342     return_address = __ pc();
   344     // store result depending on type (everything that is not
   345     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   346     __ movptr(c_rarg0, result);
   347     Label is_long, is_float, is_double, exit;
   348     __ movl(c_rarg1, result_type);
   349     __ cmpl(c_rarg1, T_OBJECT);
   350     __ jcc(Assembler::equal, is_long);
   351     __ cmpl(c_rarg1, T_LONG);
   352     __ jcc(Assembler::equal, is_long);
   353     __ cmpl(c_rarg1, T_FLOAT);
   354     __ jcc(Assembler::equal, is_float);
   355     __ cmpl(c_rarg1, T_DOUBLE);
   356     __ jcc(Assembler::equal, is_double);
   358     // handle T_INT case
   359     __ movl(Address(c_rarg0, 0), rax);
   361     __ BIND(exit);
   363     // pop parameters
   364     __ lea(rsp, rsp_after_call);
   366 #ifdef ASSERT
   367     // verify that threads correspond
   368     {
   369       Label L, S;
   370       __ cmpptr(r15_thread, thread);
   371       __ jcc(Assembler::notEqual, S);
   372       __ get_thread(rbx);
   373       __ cmpptr(r15_thread, rbx);
   374       __ jcc(Assembler::equal, L);
   375       __ bind(S);
   376       __ jcc(Assembler::equal, L);
   377       __ stop("StubRoutines::call_stub: threads must correspond");
   378       __ bind(L);
   379     }
   380 #endif
   382     // restore regs belonging to calling function
   383 #ifdef _WIN64
   384     for (int i = 15; i >= 6; i--) {
   385       __ movdqu(as_XMMRegister(i), xmm_save(i));
   386     }
   387 #endif
   388     __ movptr(r15, r15_save);
   389     __ movptr(r14, r14_save);
   390     __ movptr(r13, r13_save);
   391     __ movptr(r12, r12_save);
   392     __ movptr(rbx, rbx_save);
   394 #ifdef _WIN64
   395     __ movptr(rdi, rdi_save);
   396     __ movptr(rsi, rsi_save);
   397 #else
   398     __ ldmxcsr(mxcsr_save);
   399 #endif
   401     // restore rsp
   402     __ addptr(rsp, -rsp_after_call_off * wordSize);
   404     // return
   405     __ pop(rbp);
   406     __ ret(0);
   408     // handle return types different from T_INT
   409     __ BIND(is_long);
   410     __ movq(Address(c_rarg0, 0), rax);
   411     __ jmp(exit);
   413     __ BIND(is_float);
   414     __ movflt(Address(c_rarg0, 0), xmm0);
   415     __ jmp(exit);
   417     __ BIND(is_double);
   418     __ movdbl(Address(c_rarg0, 0), xmm0);
   419     __ jmp(exit);
   421     return start;
   422   }
   424   // Return point for a Java call if there's an exception thrown in
   425   // Java code.  The exception is caught and transformed into a
   426   // pending exception stored in JavaThread that can be tested from
   427   // within the VM.
   428   //
   429   // Note: Usually the parameters are removed by the callee. In case
   430   // of an exception crossing an activation frame boundary, that is
   431   // not the case if the callee is compiled code => need to setup the
   432   // rsp.
   433   //
   434   // rax: exception oop
   436   address generate_catch_exception() {
   437     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   438     address start = __ pc();
   440     // same as in generate_call_stub():
   441     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   442     const Address thread        (rbp, thread_off         * wordSize);
   444 #ifdef ASSERT
   445     // verify that threads correspond
   446     {
   447       Label L, S;
   448       __ cmpptr(r15_thread, thread);
   449       __ jcc(Assembler::notEqual, S);
   450       __ get_thread(rbx);
   451       __ cmpptr(r15_thread, rbx);
   452       __ jcc(Assembler::equal, L);
   453       __ bind(S);
   454       __ stop("StubRoutines::catch_exception: threads must correspond");
   455       __ bind(L);
   456     }
   457 #endif
   459     // set pending exception
   460     __ verify_oop(rax);
   462     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   463     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   464     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   465     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   467     // complete return to VM
   468     assert(StubRoutines::_call_stub_return_address != NULL,
   469            "_call_stub_return_address must have been generated before");
   470     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   472     return start;
   473   }
   475   // Continuation point for runtime calls returning with a pending
   476   // exception.  The pending exception check happened in the runtime
   477   // or native call stub.  The pending exception in Thread is
   478   // converted into a Java-level exception.
   479   //
   480   // Contract with Java-level exception handlers:
   481   // rax: exception
   482   // rdx: throwing pc
   483   //
   484   // NOTE: At entry of this stub, exception-pc must be on stack !!
   486   address generate_forward_exception() {
   487     StubCodeMark mark(this, "StubRoutines", "forward exception");
   488     address start = __ pc();
   490     // Upon entry, the sp points to the return address returning into
   491     // Java (interpreted or compiled) code; i.e., the return address
   492     // becomes the throwing pc.
   493     //
   494     // Arguments pushed before the runtime call are still on the stack
   495     // but the exception handler will reset the stack pointer ->
   496     // ignore them.  A potential result in registers can be ignored as
   497     // well.
   499 #ifdef ASSERT
   500     // make sure this code is only executed if there is a pending exception
   501     {
   502       Label L;
   503       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   504       __ jcc(Assembler::notEqual, L);
   505       __ stop("StubRoutines::forward exception: no pending exception (1)");
   506       __ bind(L);
   507     }
   508 #endif
   510     // compute exception handler into rbx
   511     __ movptr(c_rarg0, Address(rsp, 0));
   512     BLOCK_COMMENT("call exception_handler_for_return_address");
   513     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   514                          SharedRuntime::exception_handler_for_return_address),
   515                     r15_thread, c_rarg0);
   516     __ mov(rbx, rax);
   518     // setup rax & rdx, remove return address & clear pending exception
   519     __ pop(rdx);
   520     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   521     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   523 #ifdef ASSERT
   524     // make sure exception is set
   525     {
   526       Label L;
   527       __ testptr(rax, rax);
   528       __ jcc(Assembler::notEqual, L);
   529       __ stop("StubRoutines::forward exception: no pending exception (2)");
   530       __ bind(L);
   531     }
   532 #endif
   534     // continue at exception handler (return address removed)
   535     // rax: exception
   536     // rbx: exception handler
   537     // rdx: throwing pc
   538     __ verify_oop(rax);
   539     __ jmp(rbx);
   541     return start;
   542   }
   544   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   545   //
   546   // Arguments :
   547   //    c_rarg0: exchange_value
   548   //    c_rarg0: dest
   549   //
   550   // Result:
   551   //    *dest <- ex, return (orig *dest)
   552   address generate_atomic_xchg() {
   553     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   554     address start = __ pc();
   556     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   557     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   558     __ ret(0);
   560     return start;
   561   }
   563   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   564   //
   565   // Arguments :
   566   //    c_rarg0: exchange_value
   567   //    c_rarg1: dest
   568   //
   569   // Result:
   570   //    *dest <- ex, return (orig *dest)
   571   address generate_atomic_xchg_ptr() {
   572     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   573     address start = __ pc();
   575     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   576     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   577     __ ret(0);
   579     return start;
   580   }
   582   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   583   //                                         jint compare_value)
   584   //
   585   // Arguments :
   586   //    c_rarg0: exchange_value
   587   //    c_rarg1: dest
   588   //    c_rarg2: compare_value
   589   //
   590   // Result:
   591   //    if ( compare_value == *dest ) {
   592   //       *dest = exchange_value
   593   //       return compare_value;
   594   //    else
   595   //       return *dest;
   596   address generate_atomic_cmpxchg() {
   597     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   598     address start = __ pc();
   600     __ movl(rax, c_rarg2);
   601    if ( os::is_MP() ) __ lock();
   602     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   603     __ ret(0);
   605     return start;
   606   }
   608   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   609   //                                             volatile jlong* dest,
   610   //                                             jlong compare_value)
   611   // Arguments :
   612   //    c_rarg0: exchange_value
   613   //    c_rarg1: dest
   614   //    c_rarg2: compare_value
   615   //
   616   // Result:
   617   //    if ( compare_value == *dest ) {
   618   //       *dest = exchange_value
   619   //       return compare_value;
   620   //    else
   621   //       return *dest;
   622   address generate_atomic_cmpxchg_long() {
   623     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   624     address start = __ pc();
   626     __ movq(rax, c_rarg2);
   627    if ( os::is_MP() ) __ lock();
   628     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   629     __ ret(0);
   631     return start;
   632   }
   634   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   635   //
   636   // Arguments :
   637   //    c_rarg0: add_value
   638   //    c_rarg1: dest
   639   //
   640   // Result:
   641   //    *dest += add_value
   642   //    return *dest;
   643   address generate_atomic_add() {
   644     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   645     address start = __ pc();
   647     __ movl(rax, c_rarg0);
   648    if ( os::is_MP() ) __ lock();
   649     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   650     __ addl(rax, c_rarg0);
   651     __ ret(0);
   653     return start;
   654   }
   656   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   657   //
   658   // Arguments :
   659   //    c_rarg0: add_value
   660   //    c_rarg1: dest
   661   //
   662   // Result:
   663   //    *dest += add_value
   664   //    return *dest;
   665   address generate_atomic_add_ptr() {
   666     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   667     address start = __ pc();
   669     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   670    if ( os::is_MP() ) __ lock();
   671     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   672     __ addptr(rax, c_rarg0);
   673     __ ret(0);
   675     return start;
   676   }
   678   // Support for intptr_t OrderAccess::fence()
   679   //
   680   // Arguments :
   681   //
   682   // Result:
   683   address generate_orderaccess_fence() {
   684     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   685     address start = __ pc();
   686     __ membar(Assembler::StoreLoad);
   687     __ ret(0);
   689     return start;
   690   }
   692   // Support for intptr_t get_previous_fp()
   693   //
   694   // This routine is used to find the previous frame pointer for the
   695   // caller (current_frame_guess). This is used as part of debugging
   696   // ps() is seemingly lost trying to find frames.
   697   // This code assumes that caller current_frame_guess) has a frame.
   698   address generate_get_previous_fp() {
   699     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   700     const Address old_fp(rbp, 0);
   701     const Address older_fp(rax, 0);
   702     address start = __ pc();
   704     __ enter();
   705     __ movptr(rax, old_fp); // callers fp
   706     __ movptr(rax, older_fp); // the frame for ps()
   707     __ pop(rbp);
   708     __ ret(0);
   710     return start;
   711   }
   713   // Support for intptr_t get_previous_sp()
   714   //
   715   // This routine is used to find the previous stack pointer for the
   716   // caller.
   717   address generate_get_previous_sp() {
   718     StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
   719     address start = __ pc();
   721     __ movptr(rax, rsp);
   722     __ addptr(rax, 8); // return address is at the top of the stack.
   723     __ ret(0);
   725     return start;
   726   }
   728   //----------------------------------------------------------------------------------------------------
   729   // Support for void verify_mxcsr()
   730   //
   731   // This routine is used with -Xcheck:jni to verify that native
   732   // JNI code does not return to Java code without restoring the
   733   // MXCSR register to our expected state.
   735   address generate_verify_mxcsr() {
   736     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   737     address start = __ pc();
   739     const Address mxcsr_save(rsp, 0);
   741     if (CheckJNICalls) {
   742       Label ok_ret;
   743       __ push(rax);
   744       __ subptr(rsp, wordSize);      // allocate a temp location
   745       __ stmxcsr(mxcsr_save);
   746       __ movl(rax, mxcsr_save);
   747       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   748       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   749       __ jcc(Assembler::equal, ok_ret);
   751       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   753       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   755       __ bind(ok_ret);
   756       __ addptr(rsp, wordSize);
   757       __ pop(rax);
   758     }
   760     __ ret(0);
   762     return start;
   763   }
   765   address generate_f2i_fixup() {
   766     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   767     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   769     address start = __ pc();
   771     Label L;
   773     __ push(rax);
   774     __ push(c_rarg3);
   775     __ push(c_rarg2);
   776     __ push(c_rarg1);
   778     __ movl(rax, 0x7f800000);
   779     __ xorl(c_rarg3, c_rarg3);
   780     __ movl(c_rarg2, inout);
   781     __ movl(c_rarg1, c_rarg2);
   782     __ andl(c_rarg1, 0x7fffffff);
   783     __ cmpl(rax, c_rarg1); // NaN? -> 0
   784     __ jcc(Assembler::negative, L);
   785     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   786     __ movl(c_rarg3, 0x80000000);
   787     __ movl(rax, 0x7fffffff);
   788     __ cmovl(Assembler::positive, c_rarg3, rax);
   790     __ bind(L);
   791     __ movptr(inout, c_rarg3);
   793     __ pop(c_rarg1);
   794     __ pop(c_rarg2);
   795     __ pop(c_rarg3);
   796     __ pop(rax);
   798     __ ret(0);
   800     return start;
   801   }
   803   address generate_f2l_fixup() {
   804     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   805     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   806     address start = __ pc();
   808     Label L;
   810     __ push(rax);
   811     __ push(c_rarg3);
   812     __ push(c_rarg2);
   813     __ push(c_rarg1);
   815     __ movl(rax, 0x7f800000);
   816     __ xorl(c_rarg3, c_rarg3);
   817     __ movl(c_rarg2, inout);
   818     __ movl(c_rarg1, c_rarg2);
   819     __ andl(c_rarg1, 0x7fffffff);
   820     __ cmpl(rax, c_rarg1); // NaN? -> 0
   821     __ jcc(Assembler::negative, L);
   822     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   823     __ mov64(c_rarg3, 0x8000000000000000);
   824     __ mov64(rax, 0x7fffffffffffffff);
   825     __ cmov(Assembler::positive, c_rarg3, rax);
   827     __ bind(L);
   828     __ movptr(inout, c_rarg3);
   830     __ pop(c_rarg1);
   831     __ pop(c_rarg2);
   832     __ pop(c_rarg3);
   833     __ pop(rax);
   835     __ ret(0);
   837     return start;
   838   }
   840   address generate_d2i_fixup() {
   841     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   842     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   844     address start = __ pc();
   846     Label L;
   848     __ push(rax);
   849     __ push(c_rarg3);
   850     __ push(c_rarg2);
   851     __ push(c_rarg1);
   852     __ push(c_rarg0);
   854     __ movl(rax, 0x7ff00000);
   855     __ movq(c_rarg2, inout);
   856     __ movl(c_rarg3, c_rarg2);
   857     __ mov(c_rarg1, c_rarg2);
   858     __ mov(c_rarg0, c_rarg2);
   859     __ negl(c_rarg3);
   860     __ shrptr(c_rarg1, 0x20);
   861     __ orl(c_rarg3, c_rarg2);
   862     __ andl(c_rarg1, 0x7fffffff);
   863     __ xorl(c_rarg2, c_rarg2);
   864     __ shrl(c_rarg3, 0x1f);
   865     __ orl(c_rarg1, c_rarg3);
   866     __ cmpl(rax, c_rarg1);
   867     __ jcc(Assembler::negative, L); // NaN -> 0
   868     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   869     __ movl(c_rarg2, 0x80000000);
   870     __ movl(rax, 0x7fffffff);
   871     __ cmov(Assembler::positive, c_rarg2, rax);
   873     __ bind(L);
   874     __ movptr(inout, c_rarg2);
   876     __ pop(c_rarg0);
   877     __ pop(c_rarg1);
   878     __ pop(c_rarg2);
   879     __ pop(c_rarg3);
   880     __ pop(rax);
   882     __ ret(0);
   884     return start;
   885   }
   887   address generate_d2l_fixup() {
   888     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   889     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   891     address start = __ pc();
   893     Label L;
   895     __ push(rax);
   896     __ push(c_rarg3);
   897     __ push(c_rarg2);
   898     __ push(c_rarg1);
   899     __ push(c_rarg0);
   901     __ movl(rax, 0x7ff00000);
   902     __ movq(c_rarg2, inout);
   903     __ movl(c_rarg3, c_rarg2);
   904     __ mov(c_rarg1, c_rarg2);
   905     __ mov(c_rarg0, c_rarg2);
   906     __ negl(c_rarg3);
   907     __ shrptr(c_rarg1, 0x20);
   908     __ orl(c_rarg3, c_rarg2);
   909     __ andl(c_rarg1, 0x7fffffff);
   910     __ xorl(c_rarg2, c_rarg2);
   911     __ shrl(c_rarg3, 0x1f);
   912     __ orl(c_rarg1, c_rarg3);
   913     __ cmpl(rax, c_rarg1);
   914     __ jcc(Assembler::negative, L); // NaN -> 0
   915     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   916     __ mov64(c_rarg2, 0x8000000000000000);
   917     __ mov64(rax, 0x7fffffffffffffff);
   918     __ cmovq(Assembler::positive, c_rarg2, rax);
   920     __ bind(L);
   921     __ movq(inout, c_rarg2);
   923     __ pop(c_rarg0);
   924     __ pop(c_rarg1);
   925     __ pop(c_rarg2);
   926     __ pop(c_rarg3);
   927     __ pop(rax);
   929     __ ret(0);
   931     return start;
   932   }
   934   address generate_fp_mask(const char *stub_name, int64_t mask) {
   935     __ align(CodeEntryAlignment);
   936     StubCodeMark mark(this, "StubRoutines", stub_name);
   937     address start = __ pc();
   939     __ emit_data64( mask, relocInfo::none );
   940     __ emit_data64( mask, relocInfo::none );
   942     return start;
   943   }
   945   // The following routine generates a subroutine to throw an
   946   // asynchronous UnknownError when an unsafe access gets a fault that
   947   // could not be reasonably prevented by the programmer.  (Example:
   948   // SIGBUS/OBJERR.)
   949   address generate_handler_for_unsafe_access() {
   950     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   951     address start = __ pc();
   953     __ push(0);                       // hole for return address-to-be
   954     __ pusha();                       // push registers
   955     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   957     // FIXME: this probably needs alignment logic
   959     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   960     BLOCK_COMMENT("call handle_unsafe_access");
   961     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   962     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   964     __ movptr(next_pc, rax);          // stuff next address
   965     __ popa();
   966     __ ret(0);                        // jump to next address
   968     return start;
   969   }
   971   // Non-destructive plausibility checks for oops
   972   //
   973   // Arguments:
   974   //    all args on stack!
   975   //
   976   // Stack after saving c_rarg3:
   977   //    [tos + 0]: saved c_rarg3
   978   //    [tos + 1]: saved c_rarg2
   979   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   980   //    [tos + 3]: saved flags
   981   //    [tos + 4]: return address
   982   //  * [tos + 5]: error message (char*)
   983   //  * [tos + 6]: object to verify (oop)
   984   //  * [tos + 7]: saved rax - saved by caller and bashed
   985   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
   986   //  * = popped on exit
   987   address generate_verify_oop() {
   988     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   989     address start = __ pc();
   991     Label exit, error;
   993     __ pushf();
   994     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   996     __ push(r12);
   998     // save c_rarg2 and c_rarg3
   999     __ push(c_rarg2);
  1000     __ push(c_rarg3);
  1002     enum {
  1003            // After previous pushes.
  1004            oop_to_verify = 6 * wordSize,
  1005            saved_rax     = 7 * wordSize,
  1006            saved_r10     = 8 * wordSize,
  1008            // Before the call to MacroAssembler::debug(), see below.
  1009            return_addr   = 16 * wordSize,
  1010            error_msg     = 17 * wordSize
  1011     };
  1013     // get object
  1014     __ movptr(rax, Address(rsp, oop_to_verify));
  1016     // make sure object is 'reasonable'
  1017     __ testptr(rax, rax);
  1018     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
  1019     // Check if the oop is in the right area of memory
  1020     __ movptr(c_rarg2, rax);
  1021     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
  1022     __ andptr(c_rarg2, c_rarg3);
  1023     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
  1024     __ cmpptr(c_rarg2, c_rarg3);
  1025     __ jcc(Assembler::notZero, error);
  1027     // set r12 to heapbase for load_klass()
  1028     __ reinit_heapbase();
  1030     // make sure klass is 'reasonable'
  1031     __ load_klass(rax, rax);  // get klass
  1032     __ testptr(rax, rax);
  1033     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
  1034     // Check if the klass is in the right area of memory
  1035     __ mov(c_rarg2, rax);
  1036     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1037     __ andptr(c_rarg2, c_rarg3);
  1038     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1039     __ cmpptr(c_rarg2, c_rarg3);
  1040     __ jcc(Assembler::notZero, error);
  1042     // make sure klass' klass is 'reasonable'
  1043     __ load_klass(rax, rax);
  1044     __ testptr(rax, rax);
  1045     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
  1046     // Check if the klass' klass is in the right area of memory
  1047     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1048     __ andptr(rax, c_rarg3);
  1049     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1050     __ cmpptr(rax, c_rarg3);
  1051     __ jcc(Assembler::notZero, error);
  1053     // return if everything seems ok
  1054     __ bind(exit);
  1055     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1056     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1057     __ pop(c_rarg3);                             // restore c_rarg3
  1058     __ pop(c_rarg2);                             // restore c_rarg2
  1059     __ pop(r12);                                 // restore r12
  1060     __ popf();                                   // restore flags
  1061     __ ret(4 * wordSize);                        // pop caller saved stuff
  1063     // handle errors
  1064     __ bind(error);
  1065     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1066     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1067     __ pop(c_rarg3);                             // get saved c_rarg3 back
  1068     __ pop(c_rarg2);                             // get saved c_rarg2 back
  1069     __ pop(r12);                                 // get saved r12 back
  1070     __ popf();                                   // get saved flags off stack --
  1071                                                  // will be ignored
  1073     __ pusha();                                  // push registers
  1074                                                  // (rip is already
  1075                                                  // already pushed)
  1076     // debug(char* msg, int64_t pc, int64_t regs[])
  1077     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1078     // pushed all the registers, so now the stack looks like:
  1079     //     [tos +  0] 16 saved registers
  1080     //     [tos + 16] return address
  1081     //   * [tos + 17] error message (char*)
  1082     //   * [tos + 18] object to verify (oop)
  1083     //   * [tos + 19] saved rax - saved by caller and bashed
  1084     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
  1085     //   * = popped on exit
  1087     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1088     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1089     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1090     __ mov(r12, rsp);                               // remember rsp
  1091     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1092     __ andptr(rsp, -16);                            // align stack as required by ABI
  1093     BLOCK_COMMENT("call MacroAssembler::debug");
  1094     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1095     __ mov(rsp, r12);                               // restore rsp
  1096     __ popa();                                      // pop registers (includes r12)
  1097     __ ret(4 * wordSize);                           // pop caller saved stuff
  1099     return start;
  1102   //
  1103   // Verify that a register contains clean 32-bits positive value
  1104   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1105   //
  1106   //  Input:
  1107   //    Rint  -  32-bits value
  1108   //    Rtmp  -  scratch
  1109   //
  1110   void assert_clean_int(Register Rint, Register Rtmp) {
  1111 #ifdef ASSERT
  1112     Label L;
  1113     assert_different_registers(Rtmp, Rint);
  1114     __ movslq(Rtmp, Rint);
  1115     __ cmpq(Rtmp, Rint);
  1116     __ jcc(Assembler::equal, L);
  1117     __ stop("high 32-bits of int value are not 0");
  1118     __ bind(L);
  1119 #endif
  1122   //  Generate overlap test for array copy stubs
  1123   //
  1124   //  Input:
  1125   //     c_rarg0 - from
  1126   //     c_rarg1 - to
  1127   //     c_rarg2 - element count
  1128   //
  1129   //  Output:
  1130   //     rax   - &from[element count - 1]
  1131   //
  1132   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1133     assert(no_overlap_target != NULL, "must be generated");
  1134     array_overlap_test(no_overlap_target, NULL, sf);
  1136   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1137     array_overlap_test(NULL, &L_no_overlap, sf);
  1139   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1140     const Register from     = c_rarg0;
  1141     const Register to       = c_rarg1;
  1142     const Register count    = c_rarg2;
  1143     const Register end_from = rax;
  1145     __ cmpptr(to, from);
  1146     __ lea(end_from, Address(from, count, sf, 0));
  1147     if (NOLp == NULL) {
  1148       ExternalAddress no_overlap(no_overlap_target);
  1149       __ jump_cc(Assembler::belowEqual, no_overlap);
  1150       __ cmpptr(to, end_from);
  1151       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1152     } else {
  1153       __ jcc(Assembler::belowEqual, (*NOLp));
  1154       __ cmpptr(to, end_from);
  1155       __ jcc(Assembler::aboveEqual, (*NOLp));
  1159   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1160   //
  1161   // Outputs:
  1162   //    rdi - rcx
  1163   //    rsi - rdx
  1164   //    rdx - r8
  1165   //    rcx - r9
  1166   //
  1167   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1168   // are non-volatile.  r9 and r10 should not be used by the caller.
  1169   //
  1170   void setup_arg_regs(int nargs = 3) {
  1171     const Register saved_rdi = r9;
  1172     const Register saved_rsi = r10;
  1173     assert(nargs == 3 || nargs == 4, "else fix");
  1174 #ifdef _WIN64
  1175     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1176            "unexpected argument registers");
  1177     if (nargs >= 4)
  1178       __ mov(rax, r9);  // r9 is also saved_rdi
  1179     __ movptr(saved_rdi, rdi);
  1180     __ movptr(saved_rsi, rsi);
  1181     __ mov(rdi, rcx); // c_rarg0
  1182     __ mov(rsi, rdx); // c_rarg1
  1183     __ mov(rdx, r8);  // c_rarg2
  1184     if (nargs >= 4)
  1185       __ mov(rcx, rax); // c_rarg3 (via rax)
  1186 #else
  1187     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1188            "unexpected argument registers");
  1189 #endif
  1192   void restore_arg_regs() {
  1193     const Register saved_rdi = r9;
  1194     const Register saved_rsi = r10;
  1195 #ifdef _WIN64
  1196     __ movptr(rdi, saved_rdi);
  1197     __ movptr(rsi, saved_rsi);
  1198 #endif
  1201   // Generate code for an array write pre barrier
  1202   //
  1203   //     addr    -  starting address
  1204   //     count   -  element count
  1205   //     tmp     - scratch register
  1206   //
  1207   //     Destroy no registers!
  1208   //
  1209   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
  1210     BarrierSet* bs = Universe::heap()->barrier_set();
  1211     switch (bs->kind()) {
  1212       case BarrierSet::G1SATBCT:
  1213       case BarrierSet::G1SATBCTLogging:
  1214         // With G1, don't generate the call if we statically know that the target in uninitialized
  1215         if (!dest_uninitialized) {
  1216            __ pusha();                      // push registers
  1217            if (count == c_rarg0) {
  1218              if (addr == c_rarg1) {
  1219                // exactly backwards!!
  1220                __ xchgptr(c_rarg1, c_rarg0);
  1221              } else {
  1222                __ movptr(c_rarg1, count);
  1223                __ movptr(c_rarg0, addr);
  1225            } else {
  1226              __ movptr(c_rarg0, addr);
  1227              __ movptr(c_rarg1, count);
  1229            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
  1230            __ popa();
  1232          break;
  1233       case BarrierSet::CardTableModRef:
  1234       case BarrierSet::CardTableExtension:
  1235       case BarrierSet::ModRef:
  1236         break;
  1237       default:
  1238         ShouldNotReachHere();
  1243   //
  1244   // Generate code for an array write post barrier
  1245   //
  1246   //  Input:
  1247   //     start    - register containing starting address of destination array
  1248   //     end      - register containing ending address of destination array
  1249   //     scratch  - scratch register
  1250   //
  1251   //  The input registers are overwritten.
  1252   //  The ending address is inclusive.
  1253   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1254     assert_different_registers(start, end, scratch);
  1255     BarrierSet* bs = Universe::heap()->barrier_set();
  1256     switch (bs->kind()) {
  1257       case BarrierSet::G1SATBCT:
  1258       case BarrierSet::G1SATBCTLogging:
  1261           __ pusha();                      // push registers (overkill)
  1262           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1263           assert_different_registers(start, end, scratch);
  1264           __ lea(scratch, Address(end, BytesPerHeapOop));
  1265           __ subptr(scratch, start);               // subtract start to get #bytes
  1266           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
  1267           __ mov(c_rarg0, start);
  1268           __ mov(c_rarg1, scratch);
  1269           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
  1270           __ popa();
  1272         break;
  1273       case BarrierSet::CardTableModRef:
  1274       case BarrierSet::CardTableExtension:
  1276           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1277           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1279           Label L_loop;
  1281            __ shrptr(start, CardTableModRefBS::card_shift);
  1282            __ addptr(end, BytesPerHeapOop);
  1283            __ shrptr(end, CardTableModRefBS::card_shift);
  1284            __ subptr(end, start); // number of bytes to copy
  1286           intptr_t disp = (intptr_t) ct->byte_map_base;
  1287           if (Assembler::is_simm32(disp)) {
  1288             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1289             __ lea(scratch, cardtable);
  1290           } else {
  1291             ExternalAddress cardtable((address)disp);
  1292             __ lea(scratch, cardtable);
  1295           const Register count = end; // 'end' register contains bytes count now
  1296           __ addptr(start, scratch);
  1297         __ BIND(L_loop);
  1298           __ movb(Address(start, count, Address::times_1), 0);
  1299           __ decrement(count);
  1300           __ jcc(Assembler::greaterEqual, L_loop);
  1302         break;
  1303       default:
  1304         ShouldNotReachHere();
  1310   // Copy big chunks forward
  1311   //
  1312   // Inputs:
  1313   //   end_from     - source arrays end address
  1314   //   end_to       - destination array end address
  1315   //   qword_count  - 64-bits element count, negative
  1316   //   to           - scratch
  1317   //   L_copy_32_bytes - entry label
  1318   //   L_copy_8_bytes  - exit  label
  1319   //
  1320   void copy_32_bytes_forward(Register end_from, Register end_to,
  1321                              Register qword_count, Register to,
  1322                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1323     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1324     Label L_loop;
  1325     __ align(OptoLoopAlignment);
  1326   __ BIND(L_loop);
  1327     if(UseUnalignedLoadStores) {
  1328       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1329       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1330       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1331       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1333     } else {
  1334       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1335       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1336       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1337       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1338       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1339       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1340       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1341       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1343   __ BIND(L_copy_32_bytes);
  1344     __ addptr(qword_count, 4);
  1345     __ jcc(Assembler::lessEqual, L_loop);
  1346     __ subptr(qword_count, 4);
  1347     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1351   // Copy big chunks backward
  1352   //
  1353   // Inputs:
  1354   //   from         - source arrays address
  1355   //   dest         - destination array address
  1356   //   qword_count  - 64-bits element count
  1357   //   to           - scratch
  1358   //   L_copy_32_bytes - entry label
  1359   //   L_copy_8_bytes  - exit  label
  1360   //
  1361   void copy_32_bytes_backward(Register from, Register dest,
  1362                               Register qword_count, Register to,
  1363                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1364     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1365     Label L_loop;
  1366     __ align(OptoLoopAlignment);
  1367   __ BIND(L_loop);
  1368     if(UseUnalignedLoadStores) {
  1369       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1370       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1371       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1372       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1374     } else {
  1375       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1376       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1377       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1378       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1379       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1380       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1381       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1382       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1384   __ BIND(L_copy_32_bytes);
  1385     __ subptr(qword_count, 4);
  1386     __ jcc(Assembler::greaterEqual, L_loop);
  1387     __ addptr(qword_count, 4);
  1388     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1392   // Arguments:
  1393   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1394   //             ignored
  1395   //   name    - stub name string
  1396   //
  1397   // Inputs:
  1398   //   c_rarg0   - source array address
  1399   //   c_rarg1   - destination array address
  1400   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1401   //
  1402   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1403   // we let the hardware handle it.  The one to eight bytes within words,
  1404   // dwords or qwords that span cache line boundaries will still be loaded
  1405   // and stored atomically.
  1406   //
  1407   // Side Effects:
  1408   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1409   //   used by generate_conjoint_byte_copy().
  1410   //
  1411   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
  1412     __ align(CodeEntryAlignment);
  1413     StubCodeMark mark(this, "StubRoutines", name);
  1414     address start = __ pc();
  1416     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1417     Label L_copy_byte, L_exit;
  1418     const Register from        = rdi;  // source array address
  1419     const Register to          = rsi;  // destination array address
  1420     const Register count       = rdx;  // elements count
  1421     const Register byte_count  = rcx;
  1422     const Register qword_count = count;
  1423     const Register end_from    = from; // source array end address
  1424     const Register end_to      = to;   // destination array end address
  1425     // End pointers are inclusive, and if count is not zero they point
  1426     // to the last unit copied:  end_to[0] := end_from[0]
  1428     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1429     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1431     if (entry != NULL) {
  1432       *entry = __ pc();
  1433        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1434       BLOCK_COMMENT("Entry:");
  1437     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1438                       // r9 and r10 may be used to save non-volatile registers
  1440     // 'from', 'to' and 'count' are now valid
  1441     __ movptr(byte_count, count);
  1442     __ shrptr(count, 3); // count => qword_count
  1444     // Copy from low to high addresses.  Use 'to' as scratch.
  1445     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1446     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1447     __ negptr(qword_count); // make the count negative
  1448     __ jmp(L_copy_32_bytes);
  1450     // Copy trailing qwords
  1451   __ BIND(L_copy_8_bytes);
  1452     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1453     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1454     __ increment(qword_count);
  1455     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1457     // Check for and copy trailing dword
  1458   __ BIND(L_copy_4_bytes);
  1459     __ testl(byte_count, 4);
  1460     __ jccb(Assembler::zero, L_copy_2_bytes);
  1461     __ movl(rax, Address(end_from, 8));
  1462     __ movl(Address(end_to, 8), rax);
  1464     __ addptr(end_from, 4);
  1465     __ addptr(end_to, 4);
  1467     // Check for and copy trailing word
  1468   __ BIND(L_copy_2_bytes);
  1469     __ testl(byte_count, 2);
  1470     __ jccb(Assembler::zero, L_copy_byte);
  1471     __ movw(rax, Address(end_from, 8));
  1472     __ movw(Address(end_to, 8), rax);
  1474     __ addptr(end_from, 2);
  1475     __ addptr(end_to, 2);
  1477     // Check for and copy trailing byte
  1478   __ BIND(L_copy_byte);
  1479     __ testl(byte_count, 1);
  1480     __ jccb(Assembler::zero, L_exit);
  1481     __ movb(rax, Address(end_from, 8));
  1482     __ movb(Address(end_to, 8), rax);
  1484   __ BIND(L_exit);
  1485     restore_arg_regs();
  1486     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
  1487     __ xorptr(rax, rax); // return 0
  1488     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1489     __ ret(0);
  1491     // Copy in 32-bytes chunks
  1492     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1493     __ jmp(L_copy_4_bytes);
  1495     return start;
  1498   // Arguments:
  1499   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1500   //             ignored
  1501   //   name    - stub name string
  1502   //
  1503   // Inputs:
  1504   //   c_rarg0   - source array address
  1505   //   c_rarg1   - destination array address
  1506   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1507   //
  1508   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1509   // we let the hardware handle it.  The one to eight bytes within words,
  1510   // dwords or qwords that span cache line boundaries will still be loaded
  1511   // and stored atomically.
  1512   //
  1513   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
  1514                                       address* entry, const char *name) {
  1515     __ align(CodeEntryAlignment);
  1516     StubCodeMark mark(this, "StubRoutines", name);
  1517     address start = __ pc();
  1519     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1520     const Register from        = rdi;  // source array address
  1521     const Register to          = rsi;  // destination array address
  1522     const Register count       = rdx;  // elements count
  1523     const Register byte_count  = rcx;
  1524     const Register qword_count = count;
  1526     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1527     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1529     if (entry != NULL) {
  1530       *entry = __ pc();
  1531       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1532       BLOCK_COMMENT("Entry:");
  1535     array_overlap_test(nooverlap_target, Address::times_1);
  1536     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1537                       // r9 and r10 may be used to save non-volatile registers
  1539     // 'from', 'to' and 'count' are now valid
  1540     __ movptr(byte_count, count);
  1541     __ shrptr(count, 3);   // count => qword_count
  1543     // Copy from high to low addresses.
  1545     // Check for and copy trailing byte
  1546     __ testl(byte_count, 1);
  1547     __ jcc(Assembler::zero, L_copy_2_bytes);
  1548     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1549     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1550     __ decrement(byte_count); // Adjust for possible trailing word
  1552     // Check for and copy trailing word
  1553   __ BIND(L_copy_2_bytes);
  1554     __ testl(byte_count, 2);
  1555     __ jcc(Assembler::zero, L_copy_4_bytes);
  1556     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1557     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1559     // Check for and copy trailing dword
  1560   __ BIND(L_copy_4_bytes);
  1561     __ testl(byte_count, 4);
  1562     __ jcc(Assembler::zero, L_copy_32_bytes);
  1563     __ movl(rax, Address(from, qword_count, Address::times_8));
  1564     __ movl(Address(to, qword_count, Address::times_8), rax);
  1565     __ jmp(L_copy_32_bytes);
  1567     // Copy trailing qwords
  1568   __ BIND(L_copy_8_bytes);
  1569     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1570     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1571     __ decrement(qword_count);
  1572     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1574     restore_arg_regs();
  1575     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
  1576     __ xorptr(rax, rax); // return 0
  1577     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1578     __ ret(0);
  1580     // Copy in 32-bytes chunks
  1581     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1583     restore_arg_regs();
  1584     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
  1585     __ xorptr(rax, rax); // return 0
  1586     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1587     __ ret(0);
  1589     return start;
  1592   // Arguments:
  1593   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1594   //             ignored
  1595   //   name    - stub name string
  1596   //
  1597   // Inputs:
  1598   //   c_rarg0   - source array address
  1599   //   c_rarg1   - destination array address
  1600   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1601   //
  1602   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1603   // let the hardware handle it.  The two or four words within dwords
  1604   // or qwords that span cache line boundaries will still be loaded
  1605   // and stored atomically.
  1606   //
  1607   // Side Effects:
  1608   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1609   //   used by generate_conjoint_short_copy().
  1610   //
  1611   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
  1612     __ align(CodeEntryAlignment);
  1613     StubCodeMark mark(this, "StubRoutines", name);
  1614     address start = __ pc();
  1616     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1617     const Register from        = rdi;  // source array address
  1618     const Register to          = rsi;  // destination array address
  1619     const Register count       = rdx;  // elements count
  1620     const Register word_count  = rcx;
  1621     const Register qword_count = count;
  1622     const Register end_from    = from; // source array end address
  1623     const Register end_to      = to;   // destination array end address
  1624     // End pointers are inclusive, and if count is not zero they point
  1625     // to the last unit copied:  end_to[0] := end_from[0]
  1627     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1628     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1630     if (entry != NULL) {
  1631       *entry = __ pc();
  1632       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1633       BLOCK_COMMENT("Entry:");
  1636     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1637                       // r9 and r10 may be used to save non-volatile registers
  1639     // 'from', 'to' and 'count' are now valid
  1640     __ movptr(word_count, count);
  1641     __ shrptr(count, 2); // count => qword_count
  1643     // Copy from low to high addresses.  Use 'to' as scratch.
  1644     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1645     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1646     __ negptr(qword_count);
  1647     __ jmp(L_copy_32_bytes);
  1649     // Copy trailing qwords
  1650   __ BIND(L_copy_8_bytes);
  1651     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1652     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1653     __ increment(qword_count);
  1654     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1656     // Original 'dest' is trashed, so we can't use it as a
  1657     // base register for a possible trailing word copy
  1659     // Check for and copy trailing dword
  1660   __ BIND(L_copy_4_bytes);
  1661     __ testl(word_count, 2);
  1662     __ jccb(Assembler::zero, L_copy_2_bytes);
  1663     __ movl(rax, Address(end_from, 8));
  1664     __ movl(Address(end_to, 8), rax);
  1666     __ addptr(end_from, 4);
  1667     __ addptr(end_to, 4);
  1669     // Check for and copy trailing word
  1670   __ BIND(L_copy_2_bytes);
  1671     __ testl(word_count, 1);
  1672     __ jccb(Assembler::zero, L_exit);
  1673     __ movw(rax, Address(end_from, 8));
  1674     __ movw(Address(end_to, 8), rax);
  1676   __ BIND(L_exit);
  1677     restore_arg_regs();
  1678     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
  1679     __ xorptr(rax, rax); // return 0
  1680     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1681     __ ret(0);
  1683     // Copy in 32-bytes chunks
  1684     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1685     __ jmp(L_copy_4_bytes);
  1687     return start;
  1690   address generate_fill(BasicType t, bool aligned, const char *name) {
  1691     __ align(CodeEntryAlignment);
  1692     StubCodeMark mark(this, "StubRoutines", name);
  1693     address start = __ pc();
  1695     BLOCK_COMMENT("Entry:");
  1697     const Register to       = c_rarg0;  // source array address
  1698     const Register value    = c_rarg1;  // value
  1699     const Register count    = c_rarg2;  // elements count
  1701     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1703     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1705     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1706     __ ret(0);
  1707     return start;
  1710   // Arguments:
  1711   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1712   //             ignored
  1713   //   name    - stub name string
  1714   //
  1715   // Inputs:
  1716   //   c_rarg0   - source array address
  1717   //   c_rarg1   - destination array address
  1718   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1719   //
  1720   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1721   // let the hardware handle it.  The two or four words within dwords
  1722   // or qwords that span cache line boundaries will still be loaded
  1723   // and stored atomically.
  1724   //
  1725   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
  1726                                        address *entry, const char *name) {
  1727     __ align(CodeEntryAlignment);
  1728     StubCodeMark mark(this, "StubRoutines", name);
  1729     address start = __ pc();
  1731     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1732     const Register from        = rdi;  // source array address
  1733     const Register to          = rsi;  // destination array address
  1734     const Register count       = rdx;  // elements count
  1735     const Register word_count  = rcx;
  1736     const Register qword_count = count;
  1738     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1739     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1741     if (entry != NULL) {
  1742       *entry = __ pc();
  1743       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1744       BLOCK_COMMENT("Entry:");
  1747     array_overlap_test(nooverlap_target, Address::times_2);
  1748     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1749                       // r9 and r10 may be used to save non-volatile registers
  1751     // 'from', 'to' and 'count' are now valid
  1752     __ movptr(word_count, count);
  1753     __ shrptr(count, 2); // count => qword_count
  1755     // Copy from high to low addresses.  Use 'to' as scratch.
  1757     // Check for and copy trailing word
  1758     __ testl(word_count, 1);
  1759     __ jccb(Assembler::zero, L_copy_4_bytes);
  1760     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1761     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1763     // Check for and copy trailing dword
  1764   __ BIND(L_copy_4_bytes);
  1765     __ testl(word_count, 2);
  1766     __ jcc(Assembler::zero, L_copy_32_bytes);
  1767     __ movl(rax, Address(from, qword_count, Address::times_8));
  1768     __ movl(Address(to, qword_count, Address::times_8), rax);
  1769     __ jmp(L_copy_32_bytes);
  1771     // Copy trailing qwords
  1772   __ BIND(L_copy_8_bytes);
  1773     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1774     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1775     __ decrement(qword_count);
  1776     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1778     restore_arg_regs();
  1779     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
  1780     __ xorptr(rax, rax); // return 0
  1781     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1782     __ ret(0);
  1784     // Copy in 32-bytes chunks
  1785     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1787     restore_arg_regs();
  1788     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
  1789     __ xorptr(rax, rax); // return 0
  1790     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1791     __ ret(0);
  1793     return start;
  1796   // Arguments:
  1797   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1798   //             ignored
  1799   //   is_oop  - true => oop array, so generate store check code
  1800   //   name    - stub name string
  1801   //
  1802   // Inputs:
  1803   //   c_rarg0   - source array address
  1804   //   c_rarg1   - destination array address
  1805   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1806   //
  1807   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1808   // the hardware handle it.  The two dwords within qwords that span
  1809   // cache line boundaries will still be loaded and stored atomicly.
  1810   //
  1811   // Side Effects:
  1812   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1813   //   used by generate_conjoint_int_oop_copy().
  1814   //
  1815   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
  1816                                          const char *name, bool dest_uninitialized = false) {
  1817     __ align(CodeEntryAlignment);
  1818     StubCodeMark mark(this, "StubRoutines", name);
  1819     address start = __ pc();
  1821     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1822     const Register from        = rdi;  // source array address
  1823     const Register to          = rsi;  // destination array address
  1824     const Register count       = rdx;  // elements count
  1825     const Register dword_count = rcx;
  1826     const Register qword_count = count;
  1827     const Register end_from    = from; // source array end address
  1828     const Register end_to      = to;   // destination array end address
  1829     const Register saved_to    = r11;  // saved destination array address
  1830     // End pointers are inclusive, and if count is not zero they point
  1831     // to the last unit copied:  end_to[0] := end_from[0]
  1833     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1834     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1836     if (entry != NULL) {
  1837       *entry = __ pc();
  1838       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1839       BLOCK_COMMENT("Entry:");
  1842     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1843                       // r9 and r10 may be used to save non-volatile registers
  1844     if (is_oop) {
  1845       __ movq(saved_to, to);
  1846       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1849     // 'from', 'to' and 'count' are now valid
  1850     __ movptr(dword_count, count);
  1851     __ shrptr(count, 1); // count => qword_count
  1853     // Copy from low to high addresses.  Use 'to' as scratch.
  1854     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1855     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1856     __ negptr(qword_count);
  1857     __ jmp(L_copy_32_bytes);
  1859     // Copy trailing qwords
  1860   __ BIND(L_copy_8_bytes);
  1861     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1862     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1863     __ increment(qword_count);
  1864     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1866     // Check for and copy trailing dword
  1867   __ BIND(L_copy_4_bytes);
  1868     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1869     __ jccb(Assembler::zero, L_exit);
  1870     __ movl(rax, Address(end_from, 8));
  1871     __ movl(Address(end_to, 8), rax);
  1873   __ BIND(L_exit);
  1874     if (is_oop) {
  1875       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1876       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1878     restore_arg_regs();
  1879     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
  1880     __ xorptr(rax, rax); // return 0
  1881     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1882     __ ret(0);
  1884     // Copy 32-bytes chunks
  1885     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1886     __ jmp(L_copy_4_bytes);
  1888     return start;
  1891   // Arguments:
  1892   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1893   //             ignored
  1894   //   is_oop  - true => oop array, so generate store check code
  1895   //   name    - stub name string
  1896   //
  1897   // Inputs:
  1898   //   c_rarg0   - source array address
  1899   //   c_rarg1   - destination array address
  1900   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1901   //
  1902   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1903   // the hardware handle it.  The two dwords within qwords that span
  1904   // cache line boundaries will still be loaded and stored atomicly.
  1905   //
  1906   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
  1907                                          address *entry, const char *name,
  1908                                          bool dest_uninitialized = false) {
  1909     __ align(CodeEntryAlignment);
  1910     StubCodeMark mark(this, "StubRoutines", name);
  1911     address start = __ pc();
  1913     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1914     const Register from        = rdi;  // source array address
  1915     const Register to          = rsi;  // destination array address
  1916     const Register count       = rdx;  // elements count
  1917     const Register dword_count = rcx;
  1918     const Register qword_count = count;
  1920     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1921     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1923     if (entry != NULL) {
  1924       *entry = __ pc();
  1925        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1926       BLOCK_COMMENT("Entry:");
  1929     array_overlap_test(nooverlap_target, Address::times_4);
  1930     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1931                       // r9 and r10 may be used to save non-volatile registers
  1933     if (is_oop) {
  1934       // no registers are destroyed by this call
  1935       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1938     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1939     // 'from', 'to' and 'count' are now valid
  1940     __ movptr(dword_count, count);
  1941     __ shrptr(count, 1); // count => qword_count
  1943     // Copy from high to low addresses.  Use 'to' as scratch.
  1945     // Check for and copy trailing dword
  1946     __ testl(dword_count, 1);
  1947     __ jcc(Assembler::zero, L_copy_32_bytes);
  1948     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1949     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1950     __ jmp(L_copy_32_bytes);
  1952     // Copy trailing qwords
  1953   __ BIND(L_copy_8_bytes);
  1954     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1955     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1956     __ decrement(qword_count);
  1957     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1959     if (is_oop) {
  1960       __ jmp(L_exit);
  1962     restore_arg_regs();
  1963     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
  1964     __ xorptr(rax, rax); // return 0
  1965     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1966     __ ret(0);
  1968     // Copy in 32-bytes chunks
  1969     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1971    __ bind(L_exit);
  1972      if (is_oop) {
  1973        Register end_to = rdx;
  1974        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1975        gen_write_ref_array_post_barrier(to, end_to, rax);
  1977     restore_arg_regs();
  1978     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
  1979     __ xorptr(rax, rax); // return 0
  1980     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1981     __ ret(0);
  1983     return start;
  1986   // Arguments:
  1987   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1988   //             ignored
  1989   //   is_oop  - true => oop array, so generate store check code
  1990   //   name    - stub name string
  1991   //
  1992   // Inputs:
  1993   //   c_rarg0   - source array address
  1994   //   c_rarg1   - destination array address
  1995   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1996   //
  1997  // Side Effects:
  1998   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1999   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  2000   //
  2001   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
  2002                                           const char *name, bool dest_uninitialized = false) {
  2003     __ align(CodeEntryAlignment);
  2004     StubCodeMark mark(this, "StubRoutines", name);
  2005     address start = __ pc();
  2007     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2008     const Register from        = rdi;  // source array address
  2009     const Register to          = rsi;  // destination array address
  2010     const Register qword_count = rdx;  // elements count
  2011     const Register end_from    = from; // source array end address
  2012     const Register end_to      = rcx;  // destination array end address
  2013     const Register saved_to    = to;
  2014     // End pointers are inclusive, and if count is not zero they point
  2015     // to the last unit copied:  end_to[0] := end_from[0]
  2017     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2018     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  2019     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2021     if (entry != NULL) {
  2022       *entry = __ pc();
  2023       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2024       BLOCK_COMMENT("Entry:");
  2027     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2028                       // r9 and r10 may be used to save non-volatile registers
  2029     // 'from', 'to' and 'qword_count' are now valid
  2030     if (is_oop) {
  2031       // no registers are destroyed by this call
  2032       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
  2035     // Copy from low to high addresses.  Use 'to' as scratch.
  2036     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  2037     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  2038     __ negptr(qword_count);
  2039     __ jmp(L_copy_32_bytes);
  2041     // Copy trailing qwords
  2042   __ BIND(L_copy_8_bytes);
  2043     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  2044     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  2045     __ increment(qword_count);
  2046     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2048     if (is_oop) {
  2049       __ jmp(L_exit);
  2050     } else {
  2051       restore_arg_regs();
  2052       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2053       __ xorptr(rax, rax); // return 0
  2054       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2055       __ ret(0);
  2058     // Copy 64-byte chunks
  2059     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2061     if (is_oop) {
  2062     __ BIND(L_exit);
  2063       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  2065     restore_arg_regs();
  2066     if (is_oop) {
  2067       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
  2068     } else {
  2069       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2071     __ xorptr(rax, rax); // return 0
  2072     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2073     __ ret(0);
  2075     return start;
  2078   // Arguments:
  2079   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  2080   //             ignored
  2081   //   is_oop  - true => oop array, so generate store check code
  2082   //   name    - stub name string
  2083   //
  2084   // Inputs:
  2085   //   c_rarg0   - source array address
  2086   //   c_rarg1   - destination array address
  2087   //   c_rarg2   - element count, treated as ssize_t, can be zero
  2088   //
  2089   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
  2090                                           address nooverlap_target, address *entry,
  2091                                           const char *name, bool dest_uninitialized = false) {
  2092     __ align(CodeEntryAlignment);
  2093     StubCodeMark mark(this, "StubRoutines", name);
  2094     address start = __ pc();
  2096     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2097     const Register from        = rdi;  // source array address
  2098     const Register to          = rsi;  // destination array address
  2099     const Register qword_count = rdx;  // elements count
  2100     const Register saved_count = rcx;
  2102     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2103     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2105     if (entry != NULL) {
  2106       *entry = __ pc();
  2107       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2108       BLOCK_COMMENT("Entry:");
  2111     array_overlap_test(nooverlap_target, Address::times_8);
  2112     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2113                       // r9 and r10 may be used to save non-volatile registers
  2114     // 'from', 'to' and 'qword_count' are now valid
  2115     if (is_oop) {
  2116       // Save to and count for store barrier
  2117       __ movptr(saved_count, qword_count);
  2118       // No registers are destroyed by this call
  2119       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
  2122     __ jmp(L_copy_32_bytes);
  2124     // Copy trailing qwords
  2125   __ BIND(L_copy_8_bytes);
  2126     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2127     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2128     __ decrement(qword_count);
  2129     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2131     if (is_oop) {
  2132       __ jmp(L_exit);
  2133     } else {
  2134       restore_arg_regs();
  2135       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2136       __ xorptr(rax, rax); // return 0
  2137       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2138       __ ret(0);
  2141     // Copy in 32-bytes chunks
  2142     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2144     if (is_oop) {
  2145     __ BIND(L_exit);
  2146       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2147       gen_write_ref_array_post_barrier(to, rcx, rax);
  2149     restore_arg_regs();
  2150     if (is_oop) {
  2151       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
  2152     } else {
  2153       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
  2155     __ xorptr(rax, rax); // return 0
  2156     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2157     __ ret(0);
  2159     return start;
  2163   // Helper for generating a dynamic type check.
  2164   // Smashes no registers.
  2165   void generate_type_check(Register sub_klass,
  2166                            Register super_check_offset,
  2167                            Register super_klass,
  2168                            Label& L_success) {
  2169     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2171     BLOCK_COMMENT("type_check:");
  2173     Label L_miss;
  2175     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
  2176                                      super_check_offset);
  2177     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
  2179     // Fall through on failure!
  2180     __ BIND(L_miss);
  2183   //
  2184   //  Generate checkcasting array copy stub
  2185   //
  2186   //  Input:
  2187   //    c_rarg0   - source array address
  2188   //    c_rarg1   - destination array address
  2189   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2190   //    c_rarg3   - size_t ckoff (super_check_offset)
  2191   // not Win64
  2192   //    c_rarg4   - oop ckval (super_klass)
  2193   // Win64
  2194   //    rsp+40    - oop ckval (super_klass)
  2195   //
  2196   //  Output:
  2197   //    rax ==  0  -  success
  2198   //    rax == -1^K - failure, where K is partial transfer count
  2199   //
  2200   address generate_checkcast_copy(const char *name, address *entry,
  2201                                   bool dest_uninitialized = false) {
  2203     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2205     // Input registers (after setup_arg_regs)
  2206     const Register from        = rdi;   // source array address
  2207     const Register to          = rsi;   // destination array address
  2208     const Register length      = rdx;   // elements count
  2209     const Register ckoff       = rcx;   // super_check_offset
  2210     const Register ckval       = r8;    // super_klass
  2212     // Registers used as temps (r13, r14 are save-on-entry)
  2213     const Register end_from    = from;  // source array end address
  2214     const Register end_to      = r13;   // destination array end address
  2215     const Register count       = rdx;   // -(count_remaining)
  2216     const Register r14_length  = r14;   // saved copy of length
  2217     // End pointers are inclusive, and if length is not zero they point
  2218     // to the last unit copied:  end_to[0] := end_from[0]
  2220     const Register rax_oop    = rax;    // actual oop copied
  2221     const Register r11_klass  = r11;    // oop._klass
  2223     //---------------------------------------------------------------
  2224     // Assembler stub will be used for this call to arraycopy
  2225     // if the two arrays are subtypes of Object[] but the
  2226     // destination array type is not equal to or a supertype
  2227     // of the source type.  Each element must be separately
  2228     // checked.
  2230     __ align(CodeEntryAlignment);
  2231     StubCodeMark mark(this, "StubRoutines", name);
  2232     address start = __ pc();
  2234     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2236 #ifdef ASSERT
  2237     // caller guarantees that the arrays really are different
  2238     // otherwise, we would have to make conjoint checks
  2239     { Label L;
  2240       array_overlap_test(L, TIMES_OOP);
  2241       __ stop("checkcast_copy within a single array");
  2242       __ bind(L);
  2244 #endif //ASSERT
  2246     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2247                        // ckoff => rcx, ckval => r8
  2248                        // r9 and r10 may be used to save non-volatile registers
  2249 #ifdef _WIN64
  2250     // last argument (#4) is on stack on Win64
  2251     __ movptr(ckval, Address(rsp, 6 * wordSize));
  2252 #endif
  2254     // Caller of this entry point must set up the argument registers.
  2255     if (entry != NULL) {
  2256       *entry = __ pc();
  2257       BLOCK_COMMENT("Entry:");
  2260     // allocate spill slots for r13, r14
  2261     enum {
  2262       saved_r13_offset,
  2263       saved_r14_offset,
  2264       saved_rbp_offset
  2265     };
  2266     __ subptr(rsp, saved_rbp_offset * wordSize);
  2267     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2268     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2270     // check that int operands are properly extended to size_t
  2271     assert_clean_int(length, rax);
  2272     assert_clean_int(ckoff, rax);
  2274 #ifdef ASSERT
  2275     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2276     // The ckoff and ckval must be mutually consistent,
  2277     // even though caller generates both.
  2278     { Label L;
  2279       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2280       __ cmpl(ckoff, Address(ckval, sco_offset));
  2281       __ jcc(Assembler::equal, L);
  2282       __ stop("super_check_offset inconsistent");
  2283       __ bind(L);
  2285 #endif //ASSERT
  2287     // Loop-invariant addresses.  They are exclusive end pointers.
  2288     Address end_from_addr(from, length, TIMES_OOP, 0);
  2289     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2290     // Loop-variant addresses.  They assume post-incremented count < 0.
  2291     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2292     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2294     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  2296     // Copy from low to high addresses, indexed from the end of each array.
  2297     __ lea(end_from, end_from_addr);
  2298     __ lea(end_to,   end_to_addr);
  2299     __ movptr(r14_length, length);        // save a copy of the length
  2300     assert(length == count, "");          // else fix next line:
  2301     __ negptr(count);                     // negate and test the length
  2302     __ jcc(Assembler::notZero, L_load_element);
  2304     // Empty array:  Nothing to do.
  2305     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2306     __ jmp(L_done);
  2308     // ======== begin loop ========
  2309     // (Loop is rotated; its entry is L_load_element.)
  2310     // Loop control:
  2311     //   for (count = -count; count != 0; count++)
  2312     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2313     __ align(OptoLoopAlignment);
  2315     __ BIND(L_store_element);
  2316     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2317     __ increment(count);               // increment the count toward zero
  2318     __ jcc(Assembler::zero, L_do_card_marks);
  2320     // ======== loop entry is here ========
  2321     __ BIND(L_load_element);
  2322     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2323     __ testptr(rax_oop, rax_oop);
  2324     __ jcc(Assembler::zero, L_store_element);
  2326     __ load_klass(r11_klass, rax_oop);// query the object klass
  2327     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2328     // ======== end loop ========
  2330     // It was a real error; we must depend on the caller to finish the job.
  2331     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2332     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2333     // and report their number to the caller.
  2334     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2335     __ lea(end_to, to_element_addr);
  2336     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
  2337     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2338     __ movptr(rax, r14_length);           // original oops
  2339     __ addptr(rax, count);                // K = (original - remaining) oops
  2340     __ notptr(rax);                       // report (-1^K) to caller
  2341     __ jmp(L_done);
  2343     // Come here on success only.
  2344     __ BIND(L_do_card_marks);
  2345     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
  2346     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2347     __ xorptr(rax, rax);                  // return 0 on success
  2349     // Common exit point (success or failure).
  2350     __ BIND(L_done);
  2351     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2352     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2353     restore_arg_regs();
  2354     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
  2355     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2356     __ ret(0);
  2358     return start;
  2361   //
  2362   //  Generate 'unsafe' array copy stub
  2363   //  Though just as safe as the other stubs, it takes an unscaled
  2364   //  size_t argument instead of an element count.
  2365   //
  2366   //  Input:
  2367   //    c_rarg0   - source array address
  2368   //    c_rarg1   - destination array address
  2369   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2370   //
  2371   // Examines the alignment of the operands and dispatches
  2372   // to a long, int, short, or byte copy loop.
  2373   //
  2374   address generate_unsafe_copy(const char *name,
  2375                                address byte_copy_entry, address short_copy_entry,
  2376                                address int_copy_entry, address long_copy_entry) {
  2378     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2380     // Input registers (before setup_arg_regs)
  2381     const Register from        = c_rarg0;  // source array address
  2382     const Register to          = c_rarg1;  // destination array address
  2383     const Register size        = c_rarg2;  // byte count (size_t)
  2385     // Register used as a temp
  2386     const Register bits        = rax;      // test copy of low bits
  2388     __ align(CodeEntryAlignment);
  2389     StubCodeMark mark(this, "StubRoutines", name);
  2390     address start = __ pc();
  2392     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2394     // bump this on entry, not on exit:
  2395     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2397     __ mov(bits, from);
  2398     __ orptr(bits, to);
  2399     __ orptr(bits, size);
  2401     __ testb(bits, BytesPerLong-1);
  2402     __ jccb(Assembler::zero, L_long_aligned);
  2404     __ testb(bits, BytesPerInt-1);
  2405     __ jccb(Assembler::zero, L_int_aligned);
  2407     __ testb(bits, BytesPerShort-1);
  2408     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2410     __ BIND(L_short_aligned);
  2411     __ shrptr(size, LogBytesPerShort); // size => short_count
  2412     __ jump(RuntimeAddress(short_copy_entry));
  2414     __ BIND(L_int_aligned);
  2415     __ shrptr(size, LogBytesPerInt); // size => int_count
  2416     __ jump(RuntimeAddress(int_copy_entry));
  2418     __ BIND(L_long_aligned);
  2419     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2420     __ jump(RuntimeAddress(long_copy_entry));
  2422     return start;
  2425   // Perform range checks on the proposed arraycopy.
  2426   // Kills temp, but nothing else.
  2427   // Also, clean the sign bits of src_pos and dst_pos.
  2428   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2429                               Register src_pos, // source position (c_rarg1)
  2430                               Register dst,     // destination array oo (c_rarg2)
  2431                               Register dst_pos, // destination position (c_rarg3)
  2432                               Register length,
  2433                               Register temp,
  2434                               Label& L_failed) {
  2435     BLOCK_COMMENT("arraycopy_range_checks:");
  2437     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2438     __ movl(temp, length);
  2439     __ addl(temp, src_pos);             // src_pos + length
  2440     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2441     __ jcc(Assembler::above, L_failed);
  2443     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2444     __ movl(temp, length);
  2445     __ addl(temp, dst_pos);             // dst_pos + length
  2446     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2447     __ jcc(Assembler::above, L_failed);
  2449     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2450     // Move with sign extension can be used since they are positive.
  2451     __ movslq(src_pos, src_pos);
  2452     __ movslq(dst_pos, dst_pos);
  2454     BLOCK_COMMENT("arraycopy_range_checks done");
  2457   //
  2458   //  Generate generic array copy stubs
  2459   //
  2460   //  Input:
  2461   //    c_rarg0    -  src oop
  2462   //    c_rarg1    -  src_pos (32-bits)
  2463   //    c_rarg2    -  dst oop
  2464   //    c_rarg3    -  dst_pos (32-bits)
  2465   // not Win64
  2466   //    c_rarg4    -  element count (32-bits)
  2467   // Win64
  2468   //    rsp+40     -  element count (32-bits)
  2469   //
  2470   //  Output:
  2471   //    rax ==  0  -  success
  2472   //    rax == -1^K - failure, where K is partial transfer count
  2473   //
  2474   address generate_generic_copy(const char *name,
  2475                                 address byte_copy_entry, address short_copy_entry,
  2476                                 address int_copy_entry, address oop_copy_entry,
  2477                                 address long_copy_entry, address checkcast_copy_entry) {
  2479     Label L_failed, L_failed_0, L_objArray;
  2480     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2482     // Input registers
  2483     const Register src        = c_rarg0;  // source array oop
  2484     const Register src_pos    = c_rarg1;  // source position
  2485     const Register dst        = c_rarg2;  // destination array oop
  2486     const Register dst_pos    = c_rarg3;  // destination position
  2487 #ifndef _WIN64
  2488     const Register length     = c_rarg4;
  2489 #else
  2490     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
  2491 #endif
  2493     { int modulus = CodeEntryAlignment;
  2494       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2495       int advance = target - (__ offset() % modulus);
  2496       if (advance < 0)  advance += modulus;
  2497       if (advance > 0)  __ nop(advance);
  2499     StubCodeMark mark(this, "StubRoutines", name);
  2501     // Short-hop target to L_failed.  Makes for denser prologue code.
  2502     __ BIND(L_failed_0);
  2503     __ jmp(L_failed);
  2504     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2506     __ align(CodeEntryAlignment);
  2507     address start = __ pc();
  2509     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2511     // bump this on entry, not on exit:
  2512     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2514     //-----------------------------------------------------------------------
  2515     // Assembler stub will be used for this call to arraycopy
  2516     // if the following conditions are met:
  2517     //
  2518     // (1) src and dst must not be null.
  2519     // (2) src_pos must not be negative.
  2520     // (3) dst_pos must not be negative.
  2521     // (4) length  must not be negative.
  2522     // (5) src klass and dst klass should be the same and not NULL.
  2523     // (6) src and dst should be arrays.
  2524     // (7) src_pos + length must not exceed length of src.
  2525     // (8) dst_pos + length must not exceed length of dst.
  2526     //
  2528     //  if (src == NULL) return -1;
  2529     __ testptr(src, src);         // src oop
  2530     size_t j1off = __ offset();
  2531     __ jccb(Assembler::zero, L_failed_0);
  2533     //  if (src_pos < 0) return -1;
  2534     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2535     __ jccb(Assembler::negative, L_failed_0);
  2537     //  if (dst == NULL) return -1;
  2538     __ testptr(dst, dst);         // dst oop
  2539     __ jccb(Assembler::zero, L_failed_0);
  2541     //  if (dst_pos < 0) return -1;
  2542     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2543     size_t j4off = __ offset();
  2544     __ jccb(Assembler::negative, L_failed_0);
  2546     // The first four tests are very dense code,
  2547     // but not quite dense enough to put four
  2548     // jumps in a 16-byte instruction fetch buffer.
  2549     // That's good, because some branch predicters
  2550     // do not like jumps so close together.
  2551     // Make sure of this.
  2552     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2554     // registers used as temp
  2555     const Register r11_length    = r11; // elements count to copy
  2556     const Register r10_src_klass = r10; // array klass
  2558     //  if (length < 0) return -1;
  2559     __ movl(r11_length, length);        // length (elements count, 32-bits value)
  2560     __ testl(r11_length, r11_length);
  2561     __ jccb(Assembler::negative, L_failed_0);
  2563     __ load_klass(r10_src_klass, src);
  2564 #ifdef ASSERT
  2565     //  assert(src->klass() != NULL);
  2567       BLOCK_COMMENT("assert klasses not null {");
  2568       Label L1, L2;
  2569       __ testptr(r10_src_klass, r10_src_klass);
  2570       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2571       __ bind(L1);
  2572       __ stop("broken null klass");
  2573       __ bind(L2);
  2574       __ load_klass(rax, dst);
  2575       __ cmpq(rax, 0);
  2576       __ jcc(Assembler::equal, L1);     // this would be broken also
  2577       BLOCK_COMMENT("} assert klasses not null done");
  2579 #endif
  2581     // Load layout helper (32-bits)
  2582     //
  2583     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2584     // 32        30    24            16              8     2                 0
  2585     //
  2586     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2587     //
  2589     const int lh_offset = in_bytes(Klass::layout_helper_offset());
  2591     // Handle objArrays completely differently...
  2592     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2593     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
  2594     __ jcc(Assembler::equal, L_objArray);
  2596     //  if (src->klass() != dst->klass()) return -1;
  2597     __ load_klass(rax, dst);
  2598     __ cmpq(r10_src_klass, rax);
  2599     __ jcc(Assembler::notEqual, L_failed);
  2601     const Register rax_lh = rax;  // layout helper
  2602     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2604     //  if (!src->is_Array()) return -1;
  2605     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2606     __ jcc(Assembler::greaterEqual, L_failed);
  2608     // At this point, it is known to be a typeArray (array_tag 0x3).
  2609 #ifdef ASSERT
  2611       BLOCK_COMMENT("assert primitive array {");
  2612       Label L;
  2613       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2614       __ jcc(Assembler::greaterEqual, L);
  2615       __ stop("must be a primitive array");
  2616       __ bind(L);
  2617       BLOCK_COMMENT("} assert primitive array done");
  2619 #endif
  2621     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2622                            r10, L_failed);
  2624     // typeArrayKlass
  2625     //
  2626     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2627     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2628     //
  2630     const Register r10_offset = r10;    // array offset
  2631     const Register rax_elsize = rax_lh; // element size
  2633     __ movl(r10_offset, rax_lh);
  2634     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2635     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2636     __ addptr(src, r10_offset);           // src array offset
  2637     __ addptr(dst, r10_offset);           // dst array offset
  2638     BLOCK_COMMENT("choose copy loop based on element size");
  2639     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2641     // next registers should be set before the jump to corresponding stub
  2642     const Register from     = c_rarg0;  // source array address
  2643     const Register to       = c_rarg1;  // destination array address
  2644     const Register count    = c_rarg2;  // elements count
  2646     // 'from', 'to', 'count' registers should be set in such order
  2647     // since they are the same as 'src', 'src_pos', 'dst'.
  2649   __ BIND(L_copy_bytes);
  2650     __ cmpl(rax_elsize, 0);
  2651     __ jccb(Assembler::notEqual, L_copy_shorts);
  2652     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2653     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2654     __ movl2ptr(count, r11_length); // length
  2655     __ jump(RuntimeAddress(byte_copy_entry));
  2657   __ BIND(L_copy_shorts);
  2658     __ cmpl(rax_elsize, LogBytesPerShort);
  2659     __ jccb(Assembler::notEqual, L_copy_ints);
  2660     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2661     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2662     __ movl2ptr(count, r11_length); // length
  2663     __ jump(RuntimeAddress(short_copy_entry));
  2665   __ BIND(L_copy_ints);
  2666     __ cmpl(rax_elsize, LogBytesPerInt);
  2667     __ jccb(Assembler::notEqual, L_copy_longs);
  2668     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2669     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2670     __ movl2ptr(count, r11_length); // length
  2671     __ jump(RuntimeAddress(int_copy_entry));
  2673   __ BIND(L_copy_longs);
  2674 #ifdef ASSERT
  2676       BLOCK_COMMENT("assert long copy {");
  2677       Label L;
  2678       __ cmpl(rax_elsize, LogBytesPerLong);
  2679       __ jcc(Assembler::equal, L);
  2680       __ stop("must be long copy, but elsize is wrong");
  2681       __ bind(L);
  2682       BLOCK_COMMENT("} assert long copy done");
  2684 #endif
  2685     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2686     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2687     __ movl2ptr(count, r11_length); // length
  2688     __ jump(RuntimeAddress(long_copy_entry));
  2690     // objArrayKlass
  2691   __ BIND(L_objArray);
  2692     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
  2694     Label L_plain_copy, L_checkcast_copy;
  2695     //  test array classes for subtyping
  2696     __ load_klass(rax, dst);
  2697     __ cmpq(r10_src_klass, rax); // usual case is exact equality
  2698     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2700     // Identically typed arrays can be copied without element-wise checks.
  2701     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2702                            r10, L_failed);
  2704     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2705                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2706     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2707                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2708     __ movl2ptr(count, r11_length); // length
  2709   __ BIND(L_plain_copy);
  2710     __ jump(RuntimeAddress(oop_copy_entry));
  2712   __ BIND(L_checkcast_copy);
  2713     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
  2715       // Before looking at dst.length, make sure dst is also an objArray.
  2716       __ cmpl(Address(rax, lh_offset), objArray_lh);
  2717       __ jcc(Assembler::notEqual, L_failed);
  2719       // It is safe to examine both src.length and dst.length.
  2720       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2721                              rax, L_failed);
  2723       const Register r11_dst_klass = r11;
  2724       __ load_klass(r11_dst_klass, dst); // reload
  2726       // Marshal the base address arguments now, freeing registers.
  2727       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2728                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2729       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2730                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2731       __ movl(count, length);           // length (reloaded)
  2732       Register sco_temp = c_rarg3;      // this register is free now
  2733       assert_different_registers(from, to, count, sco_temp,
  2734                                  r11_dst_klass, r10_src_klass);
  2735       assert_clean_int(count, sco_temp);
  2737       // Generate the type check.
  2738       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2739       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2740       assert_clean_int(sco_temp, rax);
  2741       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2743       // Fetch destination element klass from the objArrayKlass header.
  2744       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  2745       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2746       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
  2747       assert_clean_int(sco_temp, rax);
  2749       // the checkcast_copy loop needs two extra arguments:
  2750       assert(c_rarg3 == sco_temp, "#3 already in place");
  2751       // Set up arguments for checkcast_copy_entry.
  2752       setup_arg_regs(4);
  2753       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
  2754       __ jump(RuntimeAddress(checkcast_copy_entry));
  2757   __ BIND(L_failed);
  2758     __ xorptr(rax, rax);
  2759     __ notptr(rax); // return -1
  2760     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2761     __ ret(0);
  2763     return start;
  2766   void generate_arraycopy_stubs() {
  2767     address entry;
  2768     address entry_jbyte_arraycopy;
  2769     address entry_jshort_arraycopy;
  2770     address entry_jint_arraycopy;
  2771     address entry_oop_arraycopy;
  2772     address entry_jlong_arraycopy;
  2773     address entry_checkcast_arraycopy;
  2775     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
  2776                                                                            "jbyte_disjoint_arraycopy");
  2777     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
  2778                                                                            "jbyte_arraycopy");
  2780     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
  2781                                                                             "jshort_disjoint_arraycopy");
  2782     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
  2783                                                                             "jshort_arraycopy");
  2785     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
  2786                                                                               "jint_disjoint_arraycopy");
  2787     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
  2788                                                                               &entry_jint_arraycopy, "jint_arraycopy");
  2790     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
  2791                                                                                "jlong_disjoint_arraycopy");
  2792     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
  2793                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
  2796     if (UseCompressedOops) {
  2797       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
  2798                                                                               "oop_disjoint_arraycopy");
  2799       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
  2800                                                                               &entry_oop_arraycopy, "oop_arraycopy");
  2801       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
  2802                                                                                      "oop_disjoint_arraycopy_uninit",
  2803                                                                                      /*dest_uninitialized*/true);
  2804       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
  2805                                                                                      NULL, "oop_arraycopy_uninit",
  2806                                                                                      /*dest_uninitialized*/true);
  2807     } else {
  2808       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
  2809                                                                                "oop_disjoint_arraycopy");
  2810       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
  2811                                                                                &entry_oop_arraycopy, "oop_arraycopy");
  2812       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
  2813                                                                                       "oop_disjoint_arraycopy_uninit",
  2814                                                                                       /*dest_uninitialized*/true);
  2815       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
  2816                                                                                       NULL, "oop_arraycopy_uninit",
  2817                                                                                       /*dest_uninitialized*/true);
  2820     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2821     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
  2822                                                                         /*dest_uninitialized*/true);
  2824     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
  2825                                                               entry_jbyte_arraycopy,
  2826                                                               entry_jshort_arraycopy,
  2827                                                               entry_jint_arraycopy,
  2828                                                               entry_jlong_arraycopy);
  2829     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
  2830                                                                entry_jbyte_arraycopy,
  2831                                                                entry_jshort_arraycopy,
  2832                                                                entry_jint_arraycopy,
  2833                                                                entry_oop_arraycopy,
  2834                                                                entry_jlong_arraycopy,
  2835                                                                entry_checkcast_arraycopy);
  2837     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2838     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2839     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2840     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2841     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2842     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2844     // We don't generate specialized code for HeapWord-aligned source
  2845     // arrays, so just use the code we've already generated
  2846     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2847     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2849     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2850     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2852     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2853     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2855     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2856     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2858     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2859     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2861     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2862     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
  2865   void generate_math_stubs() {
  2867       StubCodeMark mark(this, "StubRoutines", "log");
  2868       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2870       __ subq(rsp, 8);
  2871       __ movdbl(Address(rsp, 0), xmm0);
  2872       __ fld_d(Address(rsp, 0));
  2873       __ flog();
  2874       __ fstp_d(Address(rsp, 0));
  2875       __ movdbl(xmm0, Address(rsp, 0));
  2876       __ addq(rsp, 8);
  2877       __ ret(0);
  2880       StubCodeMark mark(this, "StubRoutines", "log10");
  2881       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2883       __ subq(rsp, 8);
  2884       __ movdbl(Address(rsp, 0), xmm0);
  2885       __ fld_d(Address(rsp, 0));
  2886       __ flog10();
  2887       __ fstp_d(Address(rsp, 0));
  2888       __ movdbl(xmm0, Address(rsp, 0));
  2889       __ addq(rsp, 8);
  2890       __ ret(0);
  2893       StubCodeMark mark(this, "StubRoutines", "sin");
  2894       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
  2896       __ subq(rsp, 8);
  2897       __ movdbl(Address(rsp, 0), xmm0);
  2898       __ fld_d(Address(rsp, 0));
  2899       __ trigfunc('s');
  2900       __ fstp_d(Address(rsp, 0));
  2901       __ movdbl(xmm0, Address(rsp, 0));
  2902       __ addq(rsp, 8);
  2903       __ ret(0);
  2906       StubCodeMark mark(this, "StubRoutines", "cos");
  2907       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2909       __ subq(rsp, 8);
  2910       __ movdbl(Address(rsp, 0), xmm0);
  2911       __ fld_d(Address(rsp, 0));
  2912       __ trigfunc('c');
  2913       __ fstp_d(Address(rsp, 0));
  2914       __ movdbl(xmm0, Address(rsp, 0));
  2915       __ addq(rsp, 8);
  2916       __ ret(0);
  2919       StubCodeMark mark(this, "StubRoutines", "tan");
  2920       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2922       __ subq(rsp, 8);
  2923       __ movdbl(Address(rsp, 0), xmm0);
  2924       __ fld_d(Address(rsp, 0));
  2925       __ trigfunc('t');
  2926       __ fstp_d(Address(rsp, 0));
  2927       __ movdbl(xmm0, Address(rsp, 0));
  2928       __ addq(rsp, 8);
  2929       __ ret(0);
  2932       StubCodeMark mark(this, "StubRoutines", "exp");
  2933       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
  2935       __ subq(rsp, 8);
  2936       __ movdbl(Address(rsp, 0), xmm0);
  2937       __ fld_d(Address(rsp, 0));
  2938       __ exp_with_fallback(0);
  2939       __ fstp_d(Address(rsp, 0));
  2940       __ movdbl(xmm0, Address(rsp, 0));
  2941       __ addq(rsp, 8);
  2942       __ ret(0);
  2945       StubCodeMark mark(this, "StubRoutines", "pow");
  2946       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
  2948       __ subq(rsp, 8);
  2949       __ movdbl(Address(rsp, 0), xmm1);
  2950       __ fld_d(Address(rsp, 0));
  2951       __ movdbl(Address(rsp, 0), xmm0);
  2952       __ fld_d(Address(rsp, 0));
  2953       __ pow_with_fallback(0);
  2954       __ fstp_d(Address(rsp, 0));
  2955       __ movdbl(xmm0, Address(rsp, 0));
  2956       __ addq(rsp, 8);
  2957       __ ret(0);
  2961 #undef __
  2962 #define __ masm->
  2964   // Continuation point for throwing of implicit exceptions that are
  2965   // not handled in the current activation. Fabricates an exception
  2966   // oop and initiates normal exception dispatching in this
  2967   // frame. Since we need to preserve callee-saved values (currently
  2968   // only for C2, but done for C1 as well) we need a callee-saved oop
  2969   // map and therefore have to make these stubs into RuntimeStubs
  2970   // rather than BufferBlobs.  If the compiler needs all registers to
  2971   // be preserved between the fault point and the exception handler
  2972   // then it must assume responsibility for that in
  2973   // AbstractCompiler::continuation_for_implicit_null_exception or
  2974   // continuation_for_implicit_division_by_zero_exception. All other
  2975   // implicit exceptions (e.g., NullPointerException or
  2976   // AbstractMethodError on entry) are either at call sites or
  2977   // otherwise assume that stack unwinding will be initiated, so
  2978   // caller saved registers were assumed volatile in the compiler.
  2979   address generate_throw_exception(const char* name,
  2980                                    address runtime_entry,
  2981                                    Register arg1 = noreg,
  2982                                    Register arg2 = noreg) {
  2983     // Information about frame layout at time of blocking runtime call.
  2984     // Note that we only have to preserve callee-saved registers since
  2985     // the compilers are responsible for supplying a continuation point
  2986     // if they expect all registers to be preserved.
  2987     enum layout {
  2988       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2989       rbp_off2,
  2990       return_off,
  2991       return_off2,
  2992       framesize // inclusive of return address
  2993     };
  2995     int insts_size = 512;
  2996     int locs_size  = 64;
  2998     CodeBuffer code(name, insts_size, locs_size);
  2999     OopMapSet* oop_maps  = new OopMapSet();
  3000     MacroAssembler* masm = new MacroAssembler(&code);
  3002     address start = __ pc();
  3004     // This is an inlined and slightly modified version of call_VM
  3005     // which has the ability to fetch the return PC out of
  3006     // thread-local storage and also sets up last_Java_sp slightly
  3007     // differently than the real call_VM
  3009     __ enter(); // required for proper stackwalking of RuntimeStub frame
  3011     assert(is_even(framesize/2), "sp not 16-byte aligned");
  3013     // return address and rbp are already in place
  3014     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  3016     int frame_complete = __ pc() - start;
  3018     // Set up last_Java_sp and last_Java_fp
  3019     address the_pc = __ pc();
  3020     __ set_last_Java_frame(rsp, rbp, the_pc);
  3021     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  3023     // Call runtime
  3024     if (arg1 != noreg) {
  3025       assert(arg2 != c_rarg1, "clobbered");
  3026       __ movptr(c_rarg1, arg1);
  3028     if (arg2 != noreg) {
  3029       __ movptr(c_rarg2, arg2);
  3031     __ movptr(c_rarg0, r15_thread);
  3032     BLOCK_COMMENT("call runtime_entry");
  3033     __ call(RuntimeAddress(runtime_entry));
  3035     // Generate oop map
  3036     OopMap* map = new OopMap(framesize, 0);
  3038     oop_maps->add_gc_map(the_pc - start, map);
  3040     __ reset_last_Java_frame(true, true);
  3042     __ leave(); // required for proper stackwalking of RuntimeStub frame
  3044     // check for pending exceptions
  3045 #ifdef ASSERT
  3046     Label L;
  3047     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  3048             (int32_t) NULL_WORD);
  3049     __ jcc(Assembler::notEqual, L);
  3050     __ should_not_reach_here();
  3051     __ bind(L);
  3052 #endif // ASSERT
  3053     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3056     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  3057     RuntimeStub* stub =
  3058       RuntimeStub::new_runtime_stub(name,
  3059                                     &code,
  3060                                     frame_complete,
  3061                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  3062                                     oop_maps, false);
  3063     return stub->entry_point();
  3066   // Initialization
  3067   void generate_initial() {
  3068     // Generates all stubs and initializes the entry points
  3070     // This platform-specific stub is needed by generate_call_stub()
  3071     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  3073     // entry points that exist in all platforms Note: This is code
  3074     // that could be shared among different platforms - however the
  3075     // benefit seems to be smaller than the disadvantage of having a
  3076     // much more complicated generator structure. See also comment in
  3077     // stubRoutines.hpp.
  3079     StubRoutines::_forward_exception_entry = generate_forward_exception();
  3081     StubRoutines::_call_stub_entry =
  3082       generate_call_stub(StubRoutines::_call_stub_return_address);
  3084     // is referenced by megamorphic call
  3085     StubRoutines::_catch_exception_entry = generate_catch_exception();
  3087     // atomic calls
  3088     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  3089     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  3090     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  3091     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  3092     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  3093     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  3094     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  3096     StubRoutines::_handler_for_unsafe_access_entry =
  3097       generate_handler_for_unsafe_access();
  3099     // platform dependent
  3100     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  3101     StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
  3103     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  3105     // Build this early so it's available for the interpreter.
  3106     StubRoutines::_throw_StackOverflowError_entry =
  3107       generate_throw_exception("StackOverflowError throw_exception",
  3108                                CAST_FROM_FN_PTR(address,
  3109                                                 SharedRuntime::
  3110                                                 throw_StackOverflowError));
  3113   void generate_all() {
  3114     // Generates all stubs and initializes the entry points
  3116     // These entry points require SharedInfo::stack0 to be set up in
  3117     // non-core builds and need to be relocatable, so they each
  3118     // fabricate a RuntimeStub internally.
  3119     StubRoutines::_throw_AbstractMethodError_entry =
  3120       generate_throw_exception("AbstractMethodError throw_exception",
  3121                                CAST_FROM_FN_PTR(address,
  3122                                                 SharedRuntime::
  3123                                                 throw_AbstractMethodError));
  3125     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  3126       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  3127                                CAST_FROM_FN_PTR(address,
  3128                                                 SharedRuntime::
  3129                                                 throw_IncompatibleClassChangeError));
  3131     StubRoutines::_throw_NullPointerException_at_call_entry =
  3132       generate_throw_exception("NullPointerException at call throw_exception",
  3133                                CAST_FROM_FN_PTR(address,
  3134                                                 SharedRuntime::
  3135                                                 throw_NullPointerException_at_call));
  3137     // entry points that are platform specific
  3138     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  3139     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  3140     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  3141     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  3143     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  3144     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  3145     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  3146     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  3148     // support for verify_oop (must happen after universe_init)
  3149     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  3151     // arraycopy stubs used by compilers
  3152     generate_arraycopy_stubs();
  3154     generate_math_stubs();
  3157  public:
  3158   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3159     if (all) {
  3160       generate_all();
  3161     } else {
  3162       generate_initial();
  3165 }; // end class declaration
  3167 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3168   StubGenerator g(code, all);

mercurial