src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 02 Sep 2014 12:48:45 -0700

author
kvn
date
Tue, 02 Sep 2014 12:48:45 -0700
changeset 7152
166d744df0de
parent 6312
04d32e7fad07
child 7535
7ae4e26cb1e0
child 7816
5f8824f56f39
permissions
-rw-r--r--

8055494: Add C2 x86 intrinsic for BigInteger::multiplyToLen() method
Summary: Add new C2 intrinsic for BigInteger::multiplyToLen() on x86 in 64-bit VM.
Reviewed-by: roland

duke@435 1 /*
drchase@5353 2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
coleenp@4037 31 #include "oops/method.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "utilities/top.hpp"
stefank@2314 42 #ifdef COMPILER2
stefank@2314 43 #include "opto/runtime.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 47 // For a more detailed description of the stub routine structure
duke@435 48 // see the comment in stubRoutines.hpp
duke@435 49
duke@435 50 #define __ _masm->
coleenp@548 51 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 52 #define a__ ((Assembler*)_masm)->
duke@435 53
duke@435 54 #ifdef PRODUCT
duke@435 55 #define BLOCK_COMMENT(str) /* nothing */
duke@435 56 #else
duke@435 57 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 58 #endif
duke@435 59
duke@435 60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 61 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 62
duke@435 63 // Stub Code definitions
duke@435 64
duke@435 65 static address handle_unsafe_access() {
duke@435 66 JavaThread* thread = JavaThread::current();
duke@435 67 address pc = thread->saved_exception_pc();
duke@435 68 // pc is the instruction which we must emulate
duke@435 69 // doing a no-op is fine: return garbage from the load
duke@435 70 // therefore, compute npc
duke@435 71 address npc = Assembler::locate_next_instruction(pc);
duke@435 72
duke@435 73 // request an async exception
duke@435 74 thread->set_pending_unsafe_access_error();
duke@435 75
duke@435 76 // return address of next instruction to execute
duke@435 77 return npc;
duke@435 78 }
duke@435 79
duke@435 80 class StubGenerator: public StubCodeGenerator {
duke@435 81 private:
duke@435 82
duke@435 83 #ifdef PRODUCT
ccheung@5259 84 #define inc_counter_np(counter) ((void)0)
duke@435 85 #else
duke@435 86 void inc_counter_np_(int& counter) {
never@3314 87 // This can destroy rscratch1 if counter is far from the code cache
duke@435 88 __ incrementl(ExternalAddress((address)&counter));
duke@435 89 }
duke@435 90 #define inc_counter_np(counter) \
duke@435 91 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 92 inc_counter_np_(counter);
duke@435 93 #endif
duke@435 94
duke@435 95 // Call stubs are used to call Java from C
duke@435 96 //
duke@435 97 // Linux Arguments:
duke@435 98 // c_rarg0: call wrapper address address
duke@435 99 // c_rarg1: result address
duke@435 100 // c_rarg2: result type BasicType
coleenp@4037 101 // c_rarg3: method Method*
duke@435 102 // c_rarg4: (interpreter) entry point address
duke@435 103 // c_rarg5: parameters intptr_t*
duke@435 104 // 16(rbp): parameter size (in words) int
duke@435 105 // 24(rbp): thread Thread*
duke@435 106 //
duke@435 107 // [ return_from_Java ] <--- rsp
duke@435 108 // [ argument word n ]
duke@435 109 // ...
duke@435 110 // -12 [ argument word 1 ]
duke@435 111 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 112 // -10 [ saved r14 ]
duke@435 113 // -9 [ saved r13 ]
duke@435 114 // -8 [ saved r12 ]
duke@435 115 // -7 [ saved rbx ]
duke@435 116 // -6 [ call wrapper ]
duke@435 117 // -5 [ result ]
duke@435 118 // -4 [ result type ]
duke@435 119 // -3 [ method ]
duke@435 120 // -2 [ entry point ]
duke@435 121 // -1 [ parameters ]
duke@435 122 // 0 [ saved rbp ] <--- rbp
duke@435 123 // 1 [ return address ]
duke@435 124 // 2 [ parameter size ]
duke@435 125 // 3 [ thread ]
duke@435 126 //
duke@435 127 // Windows Arguments:
duke@435 128 // c_rarg0: call wrapper address address
duke@435 129 // c_rarg1: result address
duke@435 130 // c_rarg2: result type BasicType
coleenp@4037 131 // c_rarg3: method Method*
duke@435 132 // 48(rbp): (interpreter) entry point address
duke@435 133 // 56(rbp): parameters intptr_t*
duke@435 134 // 64(rbp): parameter size (in words) int
duke@435 135 // 72(rbp): thread Thread*
duke@435 136 //
duke@435 137 // [ return_from_Java ] <--- rsp
duke@435 138 // [ argument word n ]
duke@435 139 // ...
iveresov@2689 140 // -28 [ argument word 1 ]
iveresov@2689 141 // -27 [ saved xmm15 ] <--- rsp_after_call
iveresov@2689 142 // [ saved xmm7-xmm14 ]
iveresov@2689 143 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
iveresov@2689 144 // -7 [ saved r15 ]
duke@435 145 // -6 [ saved r14 ]
duke@435 146 // -5 [ saved r13 ]
duke@435 147 // -4 [ saved r12 ]
duke@435 148 // -3 [ saved rdi ]
duke@435 149 // -2 [ saved rsi ]
duke@435 150 // -1 [ saved rbx ]
duke@435 151 // 0 [ saved rbp ] <--- rbp
duke@435 152 // 1 [ return address ]
duke@435 153 // 2 [ call wrapper ]
duke@435 154 // 3 [ result ]
duke@435 155 // 4 [ result type ]
duke@435 156 // 5 [ method ]
duke@435 157 // 6 [ entry point ]
duke@435 158 // 7 [ parameters ]
duke@435 159 // 8 [ parameter size ]
duke@435 160 // 9 [ thread ]
duke@435 161 //
duke@435 162 // Windows reserves the callers stack space for arguments 1-4.
duke@435 163 // We spill c_rarg0-c_rarg3 to this space.
duke@435 164
duke@435 165 // Call stub stack layout word offsets from rbp
duke@435 166 enum call_stub_layout {
duke@435 167 #ifdef _WIN64
iveresov@2689 168 xmm_save_first = 6, // save from xmm6
iveresov@2689 169 xmm_save_last = 15, // to xmm15
iveresov@2689 170 xmm_save_base = -9,
iveresov@2689 171 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
iveresov@2689 172 r15_off = -7,
duke@435 173 r14_off = -6,
duke@435 174 r13_off = -5,
duke@435 175 r12_off = -4,
duke@435 176 rdi_off = -3,
duke@435 177 rsi_off = -2,
duke@435 178 rbx_off = -1,
duke@435 179 rbp_off = 0,
duke@435 180 retaddr_off = 1,
duke@435 181 call_wrapper_off = 2,
duke@435 182 result_off = 3,
duke@435 183 result_type_off = 4,
duke@435 184 method_off = 5,
duke@435 185 entry_point_off = 6,
duke@435 186 parameters_off = 7,
duke@435 187 parameter_size_off = 8,
duke@435 188 thread_off = 9
duke@435 189 #else
duke@435 190 rsp_after_call_off = -12,
duke@435 191 mxcsr_off = rsp_after_call_off,
duke@435 192 r15_off = -11,
duke@435 193 r14_off = -10,
duke@435 194 r13_off = -9,
duke@435 195 r12_off = -8,
duke@435 196 rbx_off = -7,
duke@435 197 call_wrapper_off = -6,
duke@435 198 result_off = -5,
duke@435 199 result_type_off = -4,
duke@435 200 method_off = -3,
duke@435 201 entry_point_off = -2,
duke@435 202 parameters_off = -1,
duke@435 203 rbp_off = 0,
duke@435 204 retaddr_off = 1,
duke@435 205 parameter_size_off = 2,
duke@435 206 thread_off = 3
duke@435 207 #endif
duke@435 208 };
duke@435 209
iveresov@2689 210 #ifdef _WIN64
iveresov@2689 211 Address xmm_save(int reg) {
iveresov@2689 212 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
iveresov@2689 213 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
iveresov@2689 214 }
iveresov@2689 215 #endif
iveresov@2689 216
duke@435 217 address generate_call_stub(address& return_address) {
duke@435 218 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 219 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 220 "adjust this code");
duke@435 221 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 222 address start = __ pc();
duke@435 223
duke@435 224 // same as in generate_catch_exception()!
duke@435 225 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 226
duke@435 227 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 228 const Address result (rbp, result_off * wordSize);
duke@435 229 const Address result_type (rbp, result_type_off * wordSize);
duke@435 230 const Address method (rbp, method_off * wordSize);
duke@435 231 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 232 const Address parameters (rbp, parameters_off * wordSize);
duke@435 233 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 234
duke@435 235 // same as in generate_catch_exception()!
duke@435 236 const Address thread (rbp, thread_off * wordSize);
duke@435 237
duke@435 238 const Address r15_save(rbp, r15_off * wordSize);
duke@435 239 const Address r14_save(rbp, r14_off * wordSize);
duke@435 240 const Address r13_save(rbp, r13_off * wordSize);
duke@435 241 const Address r12_save(rbp, r12_off * wordSize);
duke@435 242 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 243
duke@435 244 // stub code
duke@435 245 __ enter();
never@739 246 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 247
duke@435 248 // save register parameters
duke@435 249 #ifndef _WIN64
never@739 250 __ movptr(parameters, c_rarg5); // parameters
never@739 251 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 252 #endif
duke@435 253
never@739 254 __ movptr(method, c_rarg3); // method
never@739 255 __ movl(result_type, c_rarg2); // result type
never@739 256 __ movptr(result, c_rarg1); // result
never@739 257 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 258
duke@435 259 // save regs belonging to calling function
never@739 260 __ movptr(rbx_save, rbx);
never@739 261 __ movptr(r12_save, r12);
never@739 262 __ movptr(r13_save, r13);
never@739 263 __ movptr(r14_save, r14);
never@739 264 __ movptr(r15_save, r15);
duke@435 265 #ifdef _WIN64
iveresov@2689 266 for (int i = 6; i <= 15; i++) {
iveresov@2689 267 __ movdqu(xmm_save(i), as_XMMRegister(i));
iveresov@2689 268 }
iveresov@2689 269
duke@435 270 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 271 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 272
never@739 273 __ movptr(rsi_save, rsi);
never@739 274 __ movptr(rdi_save, rdi);
duke@435 275 #else
duke@435 276 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 277 {
duke@435 278 Label skip_ldmx;
duke@435 279 __ stmxcsr(mxcsr_save);
duke@435 280 __ movl(rax, mxcsr_save);
duke@435 281 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
kvn@5439 282 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 283 __ cmp32(rax, mxcsr_std);
duke@435 284 __ jcc(Assembler::equal, skip_ldmx);
duke@435 285 __ ldmxcsr(mxcsr_std);
duke@435 286 __ bind(skip_ldmx);
duke@435 287 }
duke@435 288 #endif
duke@435 289
duke@435 290 // Load up thread register
never@739 291 __ movptr(r15_thread, thread);
coleenp@548 292 __ reinit_heapbase();
duke@435 293
duke@435 294 #ifdef ASSERT
duke@435 295 // make sure we have no pending exceptions
duke@435 296 {
duke@435 297 Label L;
never@739 298 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 299 __ jcc(Assembler::equal, L);
duke@435 300 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 301 __ bind(L);
duke@435 302 }
duke@435 303 #endif
duke@435 304
duke@435 305 // pass parameters if any
duke@435 306 BLOCK_COMMENT("pass parameters if any");
duke@435 307 Label parameters_done;
duke@435 308 __ movl(c_rarg3, parameter_size);
duke@435 309 __ testl(c_rarg3, c_rarg3);
duke@435 310 __ jcc(Assembler::zero, parameters_done);
duke@435 311
duke@435 312 Label loop;
never@739 313 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 314 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 315 __ BIND(loop);
never@739 316 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 317 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 318 __ decrementl(c_rarg1); // decrement counter
never@739 319 __ push(rax); // pass parameter
duke@435 320 __ jcc(Assembler::notZero, loop);
duke@435 321
duke@435 322 // call Java function
duke@435 323 __ BIND(parameters_done);
coleenp@4037 324 __ movptr(rbx, method); // get Method*
never@739 325 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 326 __ mov(r13, rsp); // set sender sp
duke@435 327 BLOCK_COMMENT("call Java function");
duke@435 328 __ call(c_rarg1);
duke@435 329
duke@435 330 BLOCK_COMMENT("call_stub_return_address:");
duke@435 331 return_address = __ pc();
duke@435 332
duke@435 333 // store result depending on type (everything that is not
duke@435 334 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 335 __ movptr(c_rarg0, result);
duke@435 336 Label is_long, is_float, is_double, exit;
duke@435 337 __ movl(c_rarg1, result_type);
duke@435 338 __ cmpl(c_rarg1, T_OBJECT);
duke@435 339 __ jcc(Assembler::equal, is_long);
duke@435 340 __ cmpl(c_rarg1, T_LONG);
duke@435 341 __ jcc(Assembler::equal, is_long);
duke@435 342 __ cmpl(c_rarg1, T_FLOAT);
duke@435 343 __ jcc(Assembler::equal, is_float);
duke@435 344 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 345 __ jcc(Assembler::equal, is_double);
duke@435 346
duke@435 347 // handle T_INT case
duke@435 348 __ movl(Address(c_rarg0, 0), rax);
duke@435 349
duke@435 350 __ BIND(exit);
duke@435 351
duke@435 352 // pop parameters
never@739 353 __ lea(rsp, rsp_after_call);
duke@435 354
duke@435 355 #ifdef ASSERT
duke@435 356 // verify that threads correspond
duke@435 357 {
duke@435 358 Label L, S;
never@739 359 __ cmpptr(r15_thread, thread);
duke@435 360 __ jcc(Assembler::notEqual, S);
duke@435 361 __ get_thread(rbx);
never@739 362 __ cmpptr(r15_thread, rbx);
duke@435 363 __ jcc(Assembler::equal, L);
duke@435 364 __ bind(S);
duke@435 365 __ jcc(Assembler::equal, L);
duke@435 366 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 367 __ bind(L);
duke@435 368 }
duke@435 369 #endif
duke@435 370
duke@435 371 // restore regs belonging to calling function
iveresov@2689 372 #ifdef _WIN64
iveresov@2689 373 for (int i = 15; i >= 6; i--) {
iveresov@2689 374 __ movdqu(as_XMMRegister(i), xmm_save(i));
iveresov@2689 375 }
iveresov@2689 376 #endif
never@739 377 __ movptr(r15, r15_save);
never@739 378 __ movptr(r14, r14_save);
never@739 379 __ movptr(r13, r13_save);
never@739 380 __ movptr(r12, r12_save);
never@739 381 __ movptr(rbx, rbx_save);
duke@435 382
duke@435 383 #ifdef _WIN64
never@739 384 __ movptr(rdi, rdi_save);
never@739 385 __ movptr(rsi, rsi_save);
duke@435 386 #else
duke@435 387 __ ldmxcsr(mxcsr_save);
duke@435 388 #endif
duke@435 389
duke@435 390 // restore rsp
never@739 391 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 392
duke@435 393 // return
never@739 394 __ pop(rbp);
duke@435 395 __ ret(0);
duke@435 396
duke@435 397 // handle return types different from T_INT
duke@435 398 __ BIND(is_long);
duke@435 399 __ movq(Address(c_rarg0, 0), rax);
duke@435 400 __ jmp(exit);
duke@435 401
duke@435 402 __ BIND(is_float);
duke@435 403 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 404 __ jmp(exit);
duke@435 405
duke@435 406 __ BIND(is_double);
duke@435 407 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 408 __ jmp(exit);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
duke@435 413 // Return point for a Java call if there's an exception thrown in
duke@435 414 // Java code. The exception is caught and transformed into a
duke@435 415 // pending exception stored in JavaThread that can be tested from
duke@435 416 // within the VM.
duke@435 417 //
duke@435 418 // Note: Usually the parameters are removed by the callee. In case
duke@435 419 // of an exception crossing an activation frame boundary, that is
duke@435 420 // not the case if the callee is compiled code => need to setup the
duke@435 421 // rsp.
duke@435 422 //
duke@435 423 // rax: exception oop
duke@435 424
duke@435 425 address generate_catch_exception() {
duke@435 426 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 427 address start = __ pc();
duke@435 428
duke@435 429 // same as in generate_call_stub():
duke@435 430 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 431 const Address thread (rbp, thread_off * wordSize);
duke@435 432
duke@435 433 #ifdef ASSERT
duke@435 434 // verify that threads correspond
duke@435 435 {
duke@435 436 Label L, S;
never@739 437 __ cmpptr(r15_thread, thread);
duke@435 438 __ jcc(Assembler::notEqual, S);
duke@435 439 __ get_thread(rbx);
never@739 440 __ cmpptr(r15_thread, rbx);
duke@435 441 __ jcc(Assembler::equal, L);
duke@435 442 __ bind(S);
duke@435 443 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 444 __ bind(L);
duke@435 445 }
duke@435 446 #endif
duke@435 447
duke@435 448 // set pending exception
duke@435 449 __ verify_oop(rax);
duke@435 450
never@739 451 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 452 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 453 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 454 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 455
duke@435 456 // complete return to VM
duke@435 457 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 458 "_call_stub_return_address must have been generated before");
duke@435 459 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 460
duke@435 461 return start;
duke@435 462 }
duke@435 463
duke@435 464 // Continuation point for runtime calls returning with a pending
duke@435 465 // exception. The pending exception check happened in the runtime
duke@435 466 // or native call stub. The pending exception in Thread is
duke@435 467 // converted into a Java-level exception.
duke@435 468 //
duke@435 469 // Contract with Java-level exception handlers:
duke@435 470 // rax: exception
duke@435 471 // rdx: throwing pc
duke@435 472 //
duke@435 473 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 474
duke@435 475 address generate_forward_exception() {
duke@435 476 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 477 address start = __ pc();
duke@435 478
duke@435 479 // Upon entry, the sp points to the return address returning into
duke@435 480 // Java (interpreted or compiled) code; i.e., the return address
duke@435 481 // becomes the throwing pc.
duke@435 482 //
duke@435 483 // Arguments pushed before the runtime call are still on the stack
duke@435 484 // but the exception handler will reset the stack pointer ->
duke@435 485 // ignore them. A potential result in registers can be ignored as
duke@435 486 // well.
duke@435 487
duke@435 488 #ifdef ASSERT
duke@435 489 // make sure this code is only executed if there is a pending exception
duke@435 490 {
duke@435 491 Label L;
never@739 492 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 493 __ jcc(Assembler::notEqual, L);
duke@435 494 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 495 __ bind(L);
duke@435 496 }
duke@435 497 #endif
duke@435 498
duke@435 499 // compute exception handler into rbx
never@739 500 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 501 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 502 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 503 SharedRuntime::exception_handler_for_return_address),
twisti@1730 504 r15_thread, c_rarg0);
never@739 505 __ mov(rbx, rax);
duke@435 506
duke@435 507 // setup rax & rdx, remove return address & clear pending exception
never@739 508 __ pop(rdx);
never@739 509 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 510 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 511
duke@435 512 #ifdef ASSERT
duke@435 513 // make sure exception is set
duke@435 514 {
duke@435 515 Label L;
never@739 516 __ testptr(rax, rax);
duke@435 517 __ jcc(Assembler::notEqual, L);
duke@435 518 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 519 __ bind(L);
duke@435 520 }
duke@435 521 #endif
duke@435 522
duke@435 523 // continue at exception handler (return address removed)
duke@435 524 // rax: exception
duke@435 525 // rbx: exception handler
duke@435 526 // rdx: throwing pc
duke@435 527 __ verify_oop(rax);
duke@435 528 __ jmp(rbx);
duke@435 529
duke@435 530 return start;
duke@435 531 }
duke@435 532
duke@435 533 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 534 //
duke@435 535 // Arguments :
duke@435 536 // c_rarg0: exchange_value
duke@435 537 // c_rarg0: dest
duke@435 538 //
duke@435 539 // Result:
duke@435 540 // *dest <- ex, return (orig *dest)
duke@435 541 address generate_atomic_xchg() {
duke@435 542 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 543 address start = __ pc();
duke@435 544
duke@435 545 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 546 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 547 __ ret(0);
duke@435 548
duke@435 549 return start;
duke@435 550 }
duke@435 551
duke@435 552 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 553 //
duke@435 554 // Arguments :
duke@435 555 // c_rarg0: exchange_value
duke@435 556 // c_rarg1: dest
duke@435 557 //
duke@435 558 // Result:
duke@435 559 // *dest <- ex, return (orig *dest)
duke@435 560 address generate_atomic_xchg_ptr() {
duke@435 561 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 562 address start = __ pc();
duke@435 563
never@739 564 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 565 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 566 __ ret(0);
duke@435 567
duke@435 568 return start;
duke@435 569 }
duke@435 570
duke@435 571 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 572 // jint compare_value)
duke@435 573 //
duke@435 574 // Arguments :
duke@435 575 // c_rarg0: exchange_value
duke@435 576 // c_rarg1: dest
duke@435 577 // c_rarg2: compare_value
duke@435 578 //
duke@435 579 // Result:
duke@435 580 // if ( compare_value == *dest ) {
duke@435 581 // *dest = exchange_value
duke@435 582 // return compare_value;
duke@435 583 // else
duke@435 584 // return *dest;
duke@435 585 address generate_atomic_cmpxchg() {
duke@435 586 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 587 address start = __ pc();
duke@435 588
duke@435 589 __ movl(rax, c_rarg2);
duke@435 590 if ( os::is_MP() ) __ lock();
duke@435 591 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 592 __ ret(0);
duke@435 593
duke@435 594 return start;
duke@435 595 }
duke@435 596
duke@435 597 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 598 // volatile jlong* dest,
duke@435 599 // jlong compare_value)
duke@435 600 // Arguments :
duke@435 601 // c_rarg0: exchange_value
duke@435 602 // c_rarg1: dest
duke@435 603 // c_rarg2: compare_value
duke@435 604 //
duke@435 605 // Result:
duke@435 606 // if ( compare_value == *dest ) {
duke@435 607 // *dest = exchange_value
duke@435 608 // return compare_value;
duke@435 609 // else
duke@435 610 // return *dest;
duke@435 611 address generate_atomic_cmpxchg_long() {
duke@435 612 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 613 address start = __ pc();
duke@435 614
duke@435 615 __ movq(rax, c_rarg2);
duke@435 616 if ( os::is_MP() ) __ lock();
duke@435 617 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 618 __ ret(0);
duke@435 619
duke@435 620 return start;
duke@435 621 }
duke@435 622
duke@435 623 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 624 //
duke@435 625 // Arguments :
duke@435 626 // c_rarg0: add_value
duke@435 627 // c_rarg1: dest
duke@435 628 //
duke@435 629 // Result:
duke@435 630 // *dest += add_value
duke@435 631 // return *dest;
duke@435 632 address generate_atomic_add() {
duke@435 633 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 634 address start = __ pc();
duke@435 635
duke@435 636 __ movl(rax, c_rarg0);
duke@435 637 if ( os::is_MP() ) __ lock();
duke@435 638 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 639 __ addl(rax, c_rarg0);
duke@435 640 __ ret(0);
duke@435 641
duke@435 642 return start;
duke@435 643 }
duke@435 644
duke@435 645 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 646 //
duke@435 647 // Arguments :
duke@435 648 // c_rarg0: add_value
duke@435 649 // c_rarg1: dest
duke@435 650 //
duke@435 651 // Result:
duke@435 652 // *dest += add_value
duke@435 653 // return *dest;
duke@435 654 address generate_atomic_add_ptr() {
duke@435 655 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 656 address start = __ pc();
duke@435 657
never@739 658 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 659 if ( os::is_MP() ) __ lock();
never@739 660 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 661 __ addptr(rax, c_rarg0);
duke@435 662 __ ret(0);
duke@435 663
duke@435 664 return start;
duke@435 665 }
duke@435 666
duke@435 667 // Support for intptr_t OrderAccess::fence()
duke@435 668 //
duke@435 669 // Arguments :
duke@435 670 //
duke@435 671 // Result:
duke@435 672 address generate_orderaccess_fence() {
duke@435 673 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 674 address start = __ pc();
never@1106 675 __ membar(Assembler::StoreLoad);
duke@435 676 __ ret(0);
duke@435 677
duke@435 678 return start;
duke@435 679 }
duke@435 680
duke@435 681 // Support for intptr_t get_previous_fp()
duke@435 682 //
duke@435 683 // This routine is used to find the previous frame pointer for the
duke@435 684 // caller (current_frame_guess). This is used as part of debugging
duke@435 685 // ps() is seemingly lost trying to find frames.
duke@435 686 // This code assumes that caller current_frame_guess) has a frame.
duke@435 687 address generate_get_previous_fp() {
duke@435 688 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 689 const Address old_fp(rbp, 0);
duke@435 690 const Address older_fp(rax, 0);
duke@435 691 address start = __ pc();
duke@435 692
duke@435 693 __ enter();
never@739 694 __ movptr(rax, old_fp); // callers fp
never@739 695 __ movptr(rax, older_fp); // the frame for ps()
never@739 696 __ pop(rbp);
duke@435 697 __ ret(0);
duke@435 698
duke@435 699 return start;
duke@435 700 }
duke@435 701
roland@3606 702 // Support for intptr_t get_previous_sp()
roland@3606 703 //
roland@3606 704 // This routine is used to find the previous stack pointer for the
roland@3606 705 // caller.
roland@3606 706 address generate_get_previous_sp() {
roland@3606 707 StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
roland@3606 708 address start = __ pc();
roland@3606 709
roland@3606 710 __ movptr(rax, rsp);
roland@3606 711 __ addptr(rax, 8); // return address is at the top of the stack.
roland@3606 712 __ ret(0);
roland@3606 713
roland@3606 714 return start;
roland@3606 715 }
roland@3606 716
duke@435 717 //----------------------------------------------------------------------------------------------------
duke@435 718 // Support for void verify_mxcsr()
duke@435 719 //
duke@435 720 // This routine is used with -Xcheck:jni to verify that native
duke@435 721 // JNI code does not return to Java code without restoring the
duke@435 722 // MXCSR register to our expected state.
duke@435 723
duke@435 724 address generate_verify_mxcsr() {
duke@435 725 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 726 address start = __ pc();
duke@435 727
duke@435 728 const Address mxcsr_save(rsp, 0);
duke@435 729
duke@435 730 if (CheckJNICalls) {
duke@435 731 Label ok_ret;
kvn@5439 732 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
never@739 733 __ push(rax);
never@739 734 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 735 __ stmxcsr(mxcsr_save);
duke@435 736 __ movl(rax, mxcsr_save);
duke@435 737 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
kvn@5439 738 __ cmp32(rax, mxcsr_std);
duke@435 739 __ jcc(Assembler::equal, ok_ret);
duke@435 740
duke@435 741 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 742
kvn@5439 743 __ ldmxcsr(mxcsr_std);
duke@435 744
duke@435 745 __ bind(ok_ret);
never@739 746 __ addptr(rsp, wordSize);
never@739 747 __ pop(rax);
duke@435 748 }
duke@435 749
duke@435 750 __ ret(0);
duke@435 751
duke@435 752 return start;
duke@435 753 }
duke@435 754
duke@435 755 address generate_f2i_fixup() {
duke@435 756 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 757 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 758
duke@435 759 address start = __ pc();
duke@435 760
duke@435 761 Label L;
duke@435 762
never@739 763 __ push(rax);
never@739 764 __ push(c_rarg3);
never@739 765 __ push(c_rarg2);
never@739 766 __ push(c_rarg1);
duke@435 767
duke@435 768 __ movl(rax, 0x7f800000);
duke@435 769 __ xorl(c_rarg3, c_rarg3);
duke@435 770 __ movl(c_rarg2, inout);
duke@435 771 __ movl(c_rarg1, c_rarg2);
duke@435 772 __ andl(c_rarg1, 0x7fffffff);
duke@435 773 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 774 __ jcc(Assembler::negative, L);
duke@435 775 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 776 __ movl(c_rarg3, 0x80000000);
duke@435 777 __ movl(rax, 0x7fffffff);
duke@435 778 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 779
duke@435 780 __ bind(L);
never@739 781 __ movptr(inout, c_rarg3);
never@739 782
never@739 783 __ pop(c_rarg1);
never@739 784 __ pop(c_rarg2);
never@739 785 __ pop(c_rarg3);
never@739 786 __ pop(rax);
duke@435 787
duke@435 788 __ ret(0);
duke@435 789
duke@435 790 return start;
duke@435 791 }
duke@435 792
duke@435 793 address generate_f2l_fixup() {
duke@435 794 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 795 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 796 address start = __ pc();
duke@435 797
duke@435 798 Label L;
duke@435 799
never@739 800 __ push(rax);
never@739 801 __ push(c_rarg3);
never@739 802 __ push(c_rarg2);
never@739 803 __ push(c_rarg1);
duke@435 804
duke@435 805 __ movl(rax, 0x7f800000);
duke@435 806 __ xorl(c_rarg3, c_rarg3);
duke@435 807 __ movl(c_rarg2, inout);
duke@435 808 __ movl(c_rarg1, c_rarg2);
duke@435 809 __ andl(c_rarg1, 0x7fffffff);
duke@435 810 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 811 __ jcc(Assembler::negative, L);
duke@435 812 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 813 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 814 __ mov64(rax, 0x7fffffffffffffff);
never@739 815 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 816
duke@435 817 __ bind(L);
never@739 818 __ movptr(inout, c_rarg3);
never@739 819
never@739 820 __ pop(c_rarg1);
never@739 821 __ pop(c_rarg2);
never@739 822 __ pop(c_rarg3);
never@739 823 __ pop(rax);
duke@435 824
duke@435 825 __ ret(0);
duke@435 826
duke@435 827 return start;
duke@435 828 }
duke@435 829
duke@435 830 address generate_d2i_fixup() {
duke@435 831 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 832 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 833
duke@435 834 address start = __ pc();
duke@435 835
duke@435 836 Label L;
duke@435 837
never@739 838 __ push(rax);
never@739 839 __ push(c_rarg3);
never@739 840 __ push(c_rarg2);
never@739 841 __ push(c_rarg1);
never@739 842 __ push(c_rarg0);
duke@435 843
duke@435 844 __ movl(rax, 0x7ff00000);
duke@435 845 __ movq(c_rarg2, inout);
duke@435 846 __ movl(c_rarg3, c_rarg2);
never@739 847 __ mov(c_rarg1, c_rarg2);
never@739 848 __ mov(c_rarg0, c_rarg2);
duke@435 849 __ negl(c_rarg3);
never@739 850 __ shrptr(c_rarg1, 0x20);
duke@435 851 __ orl(c_rarg3, c_rarg2);
duke@435 852 __ andl(c_rarg1, 0x7fffffff);
duke@435 853 __ xorl(c_rarg2, c_rarg2);
duke@435 854 __ shrl(c_rarg3, 0x1f);
duke@435 855 __ orl(c_rarg1, c_rarg3);
duke@435 856 __ cmpl(rax, c_rarg1);
duke@435 857 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 858 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 859 __ movl(c_rarg2, 0x80000000);
duke@435 860 __ movl(rax, 0x7fffffff);
never@739 861 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 862
duke@435 863 __ bind(L);
never@739 864 __ movptr(inout, c_rarg2);
never@739 865
never@739 866 __ pop(c_rarg0);
never@739 867 __ pop(c_rarg1);
never@739 868 __ pop(c_rarg2);
never@739 869 __ pop(c_rarg3);
never@739 870 __ pop(rax);
duke@435 871
duke@435 872 __ ret(0);
duke@435 873
duke@435 874 return start;
duke@435 875 }
duke@435 876
duke@435 877 address generate_d2l_fixup() {
duke@435 878 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 879 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 880
duke@435 881 address start = __ pc();
duke@435 882
duke@435 883 Label L;
duke@435 884
never@739 885 __ push(rax);
never@739 886 __ push(c_rarg3);
never@739 887 __ push(c_rarg2);
never@739 888 __ push(c_rarg1);
never@739 889 __ push(c_rarg0);
duke@435 890
duke@435 891 __ movl(rax, 0x7ff00000);
duke@435 892 __ movq(c_rarg2, inout);
duke@435 893 __ movl(c_rarg3, c_rarg2);
never@739 894 __ mov(c_rarg1, c_rarg2);
never@739 895 __ mov(c_rarg0, c_rarg2);
duke@435 896 __ negl(c_rarg3);
never@739 897 __ shrptr(c_rarg1, 0x20);
duke@435 898 __ orl(c_rarg3, c_rarg2);
duke@435 899 __ andl(c_rarg1, 0x7fffffff);
duke@435 900 __ xorl(c_rarg2, c_rarg2);
duke@435 901 __ shrl(c_rarg3, 0x1f);
duke@435 902 __ orl(c_rarg1, c_rarg3);
duke@435 903 __ cmpl(rax, c_rarg1);
duke@435 904 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 905 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 906 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 907 __ mov64(rax, 0x7fffffffffffffff);
duke@435 908 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 909
duke@435 910 __ bind(L);
duke@435 911 __ movq(inout, c_rarg2);
duke@435 912
never@739 913 __ pop(c_rarg0);
never@739 914 __ pop(c_rarg1);
never@739 915 __ pop(c_rarg2);
never@739 916 __ pop(c_rarg3);
never@739 917 __ pop(rax);
duke@435 918
duke@435 919 __ ret(0);
duke@435 920
duke@435 921 return start;
duke@435 922 }
duke@435 923
duke@435 924 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 925 __ align(CodeEntryAlignment);
duke@435 926 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 927 address start = __ pc();
duke@435 928
duke@435 929 __ emit_data64( mask, relocInfo::none );
duke@435 930 __ emit_data64( mask, relocInfo::none );
duke@435 931
duke@435 932 return start;
duke@435 933 }
duke@435 934
duke@435 935 // The following routine generates a subroutine to throw an
duke@435 936 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 937 // could not be reasonably prevented by the programmer. (Example:
duke@435 938 // SIGBUS/OBJERR.)
duke@435 939 address generate_handler_for_unsafe_access() {
duke@435 940 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 941 address start = __ pc();
duke@435 942
never@739 943 __ push(0); // hole for return address-to-be
never@739 944 __ pusha(); // push registers
duke@435 945 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 946
never@3136 947 // FIXME: this probably needs alignment logic
never@3136 948
never@739 949 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 950 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 951 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 952 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 953
never@739 954 __ movptr(next_pc, rax); // stuff next address
never@739 955 __ popa();
duke@435 956 __ ret(0); // jump to next address
duke@435 957
duke@435 958 return start;
duke@435 959 }
duke@435 960
duke@435 961 // Non-destructive plausibility checks for oops
duke@435 962 //
duke@435 963 // Arguments:
duke@435 964 // all args on stack!
duke@435 965 //
duke@435 966 // Stack after saving c_rarg3:
duke@435 967 // [tos + 0]: saved c_rarg3
duke@435 968 // [tos + 1]: saved c_rarg2
kvn@559 969 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 970 // [tos + 3]: saved flags
kvn@559 971 // [tos + 4]: return address
kvn@559 972 // * [tos + 5]: error message (char*)
kvn@559 973 // * [tos + 6]: object to verify (oop)
kvn@559 974 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 975 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 976 // * = popped on exit
duke@435 977 address generate_verify_oop() {
duke@435 978 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 979 address start = __ pc();
duke@435 980
duke@435 981 Label exit, error;
duke@435 982
never@739 983 __ pushf();
duke@435 984 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 985
never@739 986 __ push(r12);
kvn@559 987
duke@435 988 // save c_rarg2 and c_rarg3
never@739 989 __ push(c_rarg2);
never@739 990 __ push(c_rarg3);
duke@435 991
kvn@559 992 enum {
kvn@559 993 // After previous pushes.
kvn@559 994 oop_to_verify = 6 * wordSize,
kvn@559 995 saved_rax = 7 * wordSize,
kvn@1938 996 saved_r10 = 8 * wordSize,
kvn@559 997
kvn@559 998 // Before the call to MacroAssembler::debug(), see below.
kvn@559 999 return_addr = 16 * wordSize,
kvn@559 1000 error_msg = 17 * wordSize
kvn@559 1001 };
kvn@559 1002
duke@435 1003 // get object
never@739 1004 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 1005
duke@435 1006 // make sure object is 'reasonable'
never@739 1007 __ testptr(rax, rax);
duke@435 1008 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 1009 // Check if the oop is in the right area of memory
never@739 1010 __ movptr(c_rarg2, rax);
xlu@947 1011 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 1012 __ andptr(c_rarg2, c_rarg3);
xlu@947 1013 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 1014 __ cmpptr(c_rarg2, c_rarg3);
duke@435 1015 __ jcc(Assembler::notZero, error);
duke@435 1016
kvn@559 1017 // set r12 to heapbase for load_klass()
kvn@559 1018 __ reinit_heapbase();
kvn@559 1019
coleenp@4037 1020 // make sure klass is 'reasonable', which is not zero.
coleenp@548 1021 __ load_klass(rax, rax); // get klass
never@739 1022 __ testptr(rax, rax);
duke@435 1023 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 1024
duke@435 1025 // return if everything seems ok
duke@435 1026 __ bind(exit);
never@739 1027 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1028 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1029 __ pop(c_rarg3); // restore c_rarg3
never@739 1030 __ pop(c_rarg2); // restore c_rarg2
never@739 1031 __ pop(r12); // restore r12
never@739 1032 __ popf(); // restore flags
kvn@1938 1033 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1034
duke@435 1035 // handle errors
duke@435 1036 __ bind(error);
never@739 1037 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1038 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1039 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1040 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1041 __ pop(r12); // get saved r12 back
never@739 1042 __ popf(); // get saved flags off stack --
duke@435 1043 // will be ignored
duke@435 1044
never@739 1045 __ pusha(); // push registers
duke@435 1046 // (rip is already
duke@435 1047 // already pushed)
kvn@559 1048 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1049 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1050 // pushed all the registers, so now the stack looks like:
duke@435 1051 // [tos + 0] 16 saved registers
duke@435 1052 // [tos + 16] return address
kvn@559 1053 // * [tos + 17] error message (char*)
kvn@559 1054 // * [tos + 18] object to verify (oop)
kvn@559 1055 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1056 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1057 // * = popped on exit
kvn@559 1058
never@739 1059 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1060 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1061 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1062 __ mov(r12, rsp); // remember rsp
never@739 1063 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1064 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1065 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1066 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1067 __ mov(rsp, r12); // restore rsp
never@739 1068 __ popa(); // pop registers (includes r12)
kvn@1938 1069 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1070
duke@435 1071 return start;
duke@435 1072 }
duke@435 1073
duke@435 1074 //
duke@435 1075 // Verify that a register contains clean 32-bits positive value
duke@435 1076 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1077 //
duke@435 1078 // Input:
duke@435 1079 // Rint - 32-bits value
duke@435 1080 // Rtmp - scratch
duke@435 1081 //
duke@435 1082 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1083 #ifdef ASSERT
duke@435 1084 Label L;
duke@435 1085 assert_different_registers(Rtmp, Rint);
duke@435 1086 __ movslq(Rtmp, Rint);
duke@435 1087 __ cmpq(Rtmp, Rint);
kvn@559 1088 __ jcc(Assembler::equal, L);
duke@435 1089 __ stop("high 32-bits of int value are not 0");
duke@435 1090 __ bind(L);
duke@435 1091 #endif
duke@435 1092 }
duke@435 1093
duke@435 1094 // Generate overlap test for array copy stubs
duke@435 1095 //
duke@435 1096 // Input:
duke@435 1097 // c_rarg0 - from
duke@435 1098 // c_rarg1 - to
duke@435 1099 // c_rarg2 - element count
duke@435 1100 //
duke@435 1101 // Output:
duke@435 1102 // rax - &from[element count - 1]
duke@435 1103 //
duke@435 1104 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1105 assert(no_overlap_target != NULL, "must be generated");
duke@435 1106 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1107 }
duke@435 1108 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1109 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1110 }
duke@435 1111 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1112 const Register from = c_rarg0;
duke@435 1113 const Register to = c_rarg1;
duke@435 1114 const Register count = c_rarg2;
duke@435 1115 const Register end_from = rax;
duke@435 1116
never@739 1117 __ cmpptr(to, from);
never@739 1118 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1119 if (NOLp == NULL) {
duke@435 1120 ExternalAddress no_overlap(no_overlap_target);
duke@435 1121 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1122 __ cmpptr(to, end_from);
duke@435 1123 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1124 } else {
duke@435 1125 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1126 __ cmpptr(to, end_from);
duke@435 1127 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1128 }
duke@435 1129 }
duke@435 1130
duke@435 1131 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1132 //
duke@435 1133 // Outputs:
duke@435 1134 // rdi - rcx
duke@435 1135 // rsi - rdx
duke@435 1136 // rdx - r8
duke@435 1137 // rcx - r9
duke@435 1138 //
duke@435 1139 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1140 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1141 //
duke@435 1142 void setup_arg_regs(int nargs = 3) {
duke@435 1143 const Register saved_rdi = r9;
duke@435 1144 const Register saved_rsi = r10;
duke@435 1145 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1146 #ifdef _WIN64
duke@435 1147 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1148 "unexpected argument registers");
duke@435 1149 if (nargs >= 4)
never@739 1150 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1151 __ movptr(saved_rdi, rdi);
never@739 1152 __ movptr(saved_rsi, rsi);
never@739 1153 __ mov(rdi, rcx); // c_rarg0
never@739 1154 __ mov(rsi, rdx); // c_rarg1
never@739 1155 __ mov(rdx, r8); // c_rarg2
duke@435 1156 if (nargs >= 4)
never@739 1157 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1158 #else
duke@435 1159 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1160 "unexpected argument registers");
duke@435 1161 #endif
duke@435 1162 }
duke@435 1163
duke@435 1164 void restore_arg_regs() {
duke@435 1165 const Register saved_rdi = r9;
duke@435 1166 const Register saved_rsi = r10;
duke@435 1167 #ifdef _WIN64
never@739 1168 __ movptr(rdi, saved_rdi);
never@739 1169 __ movptr(rsi, saved_rsi);
duke@435 1170 #endif
duke@435 1171 }
duke@435 1172
duke@435 1173 // Generate code for an array write pre barrier
duke@435 1174 //
duke@435 1175 // addr - starting address
iveresov@2606 1176 // count - element count
iveresov@2606 1177 // tmp - scratch register
duke@435 1178 //
duke@435 1179 // Destroy no registers!
duke@435 1180 //
iveresov@2606 1181 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1182 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1183 switch (bs->kind()) {
duke@435 1184 case BarrierSet::G1SATBCT:
duke@435 1185 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1186 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1187 if (!dest_uninitialized) {
iveresov@2606 1188 __ pusha(); // push registers
iveresov@2606 1189 if (count == c_rarg0) {
iveresov@2606 1190 if (addr == c_rarg1) {
iveresov@2606 1191 // exactly backwards!!
iveresov@2606 1192 __ xchgptr(c_rarg1, c_rarg0);
iveresov@2606 1193 } else {
iveresov@2606 1194 __ movptr(c_rarg1, count);
iveresov@2606 1195 __ movptr(c_rarg0, addr);
iveresov@2606 1196 }
iveresov@2606 1197 } else {
iveresov@2606 1198 __ movptr(c_rarg0, addr);
iveresov@2606 1199 __ movptr(c_rarg1, count);
iveresov@2606 1200 }
iveresov@2606 1201 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
iveresov@2606 1202 __ popa();
duke@435 1203 }
iveresov@2606 1204 break;
duke@435 1205 case BarrierSet::CardTableModRef:
duke@435 1206 case BarrierSet::CardTableExtension:
duke@435 1207 case BarrierSet::ModRef:
duke@435 1208 break;
ysr@777 1209 default:
duke@435 1210 ShouldNotReachHere();
duke@435 1211
duke@435 1212 }
duke@435 1213 }
duke@435 1214
duke@435 1215 //
duke@435 1216 // Generate code for an array write post barrier
duke@435 1217 //
duke@435 1218 // Input:
duke@435 1219 // start - register containing starting address of destination array
kvn@5156 1220 // count - elements count
duke@435 1221 // scratch - scratch register
duke@435 1222 //
duke@435 1223 // The input registers are overwritten.
kvn@5156 1224 //
kvn@5156 1225 void gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) {
kvn@5156 1226 assert_different_registers(start, count, scratch);
duke@435 1227 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1228 switch (bs->kind()) {
duke@435 1229 case BarrierSet::G1SATBCT:
duke@435 1230 case BarrierSet::G1SATBCTLogging:
duke@435 1231 {
kvn@5156 1232 __ pusha(); // push registers (overkill)
kvn@5156 1233 if (c_rarg0 == count) { // On win64 c_rarg0 == rcx
kvn@5156 1234 assert_different_registers(c_rarg1, start);
kvn@5156 1235 __ mov(c_rarg1, count);
kvn@5156 1236 __ mov(c_rarg0, start);
kvn@5156 1237 } else {
kvn@5156 1238 assert_different_registers(c_rarg0, count);
kvn@5156 1239 __ mov(c_rarg0, start);
kvn@5156 1240 __ mov(c_rarg1, count);
kvn@5156 1241 }
apetrusenko@1627 1242 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1243 __ popa();
duke@435 1244 }
duke@435 1245 break;
duke@435 1246 case BarrierSet::CardTableModRef:
duke@435 1247 case BarrierSet::CardTableExtension:
duke@435 1248 {
duke@435 1249 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1250 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1251
duke@435 1252 Label L_loop;
kvn@5156 1253 const Register end = count;
kvn@5156 1254
kvn@5156 1255 __ leaq(end, Address(start, count, TIMES_OOP, 0)); // end == start+count*oop_size
kvn@5156 1256 __ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive
kvn@5156 1257 __ shrptr(start, CardTableModRefBS::card_shift);
kvn@5156 1258 __ shrptr(end, CardTableModRefBS::card_shift);
kvn@5156 1259 __ subptr(end, start); // end --> cards count
kvn@5156 1260
kvn@5156 1261 int64_t disp = (int64_t) ct->byte_map_base;
kvn@5156 1262 __ mov64(scratch, disp);
never@739 1263 __ addptr(start, scratch);
duke@435 1264 __ BIND(L_loop);
duke@435 1265 __ movb(Address(start, count, Address::times_1), 0);
never@739 1266 __ decrement(count);
duke@435 1267 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1268 }
ysr@777 1269 break;
ysr@777 1270 default:
ysr@777 1271 ShouldNotReachHere();
ysr@777 1272
ysr@777 1273 }
ysr@777 1274 }
duke@435 1275
kvn@840 1276
duke@435 1277 // Copy big chunks forward
duke@435 1278 //
duke@435 1279 // Inputs:
duke@435 1280 // end_from - source arrays end address
duke@435 1281 // end_to - destination array end address
duke@435 1282 // qword_count - 64-bits element count, negative
duke@435 1283 // to - scratch
kvn@4411 1284 // L_copy_bytes - entry label
duke@435 1285 // L_copy_8_bytes - exit label
duke@435 1286 //
kvn@4411 1287 void copy_bytes_forward(Register end_from, Register end_to,
duke@435 1288 Register qword_count, Register to,
kvn@4411 1289 Label& L_copy_bytes, Label& L_copy_8_bytes) {
duke@435 1290 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1291 Label L_loop;
kvn@1800 1292 __ align(OptoLoopAlignment);
kvn@4411 1293 if (UseUnalignedLoadStores) {
kvn@4411 1294 Label L_end;
kvn@4411 1295 // Copy 64-bytes per iteration
kvn@4411 1296 __ BIND(L_loop);
kvn@4411 1297 if (UseAVX >= 2) {
kvn@4411 1298 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
kvn@4411 1299 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
kvn@4411 1300 __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1301 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
kvn@4411 1302 } else {
kvn@4411 1303 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
kvn@4411 1304 __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
kvn@4411 1305 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
kvn@4411 1306 __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
kvn@4411 1307 __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1308 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
kvn@4411 1309 __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
kvn@4411 1310 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
kvn@4411 1311 }
kvn@4411 1312 __ BIND(L_copy_bytes);
kvn@4411 1313 __ addptr(qword_count, 8);
kvn@4411 1314 __ jcc(Assembler::lessEqual, L_loop);
kvn@4411 1315 __ subptr(qword_count, 4); // sub(8) and add(4)
kvn@4411 1316 __ jccb(Assembler::greater, L_end);
kvn@4411 1317 // Copy trailing 32 bytes
kvn@4411 1318 if (UseAVX >= 2) {
kvn@4411 1319 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1320 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@4411 1321 } else {
kvn@4411 1322 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@4411 1323 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@4411 1324 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@4411 1325 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@4411 1326 }
kvn@4411 1327 __ addptr(qword_count, 4);
kvn@4411 1328 __ BIND(L_end);
kvn@4873 1329 if (UseAVX >= 2) {
kvn@4873 1330 // clean upper bits of YMM registers
kvn@4873 1331 __ vzeroupper();
kvn@4873 1332 }
kvn@840 1333 } else {
kvn@4411 1334 // Copy 32-bytes per iteration
kvn@4411 1335 __ BIND(L_loop);
kvn@840 1336 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1337 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1338 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1339 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1340 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1341 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1342 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1343 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@4411 1344
kvn@4411 1345 __ BIND(L_copy_bytes);
kvn@4411 1346 __ addptr(qword_count, 4);
kvn@4411 1347 __ jcc(Assembler::lessEqual, L_loop);
kvn@840 1348 }
never@739 1349 __ subptr(qword_count, 4);
duke@435 1350 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1351 }
duke@435 1352
duke@435 1353 // Copy big chunks backward
duke@435 1354 //
duke@435 1355 // Inputs:
duke@435 1356 // from - source arrays address
duke@435 1357 // dest - destination array address
duke@435 1358 // qword_count - 64-bits element count
duke@435 1359 // to - scratch
kvn@4411 1360 // L_copy_bytes - entry label
duke@435 1361 // L_copy_8_bytes - exit label
duke@435 1362 //
kvn@4411 1363 void copy_bytes_backward(Register from, Register dest,
duke@435 1364 Register qword_count, Register to,
kvn@4411 1365 Label& L_copy_bytes, Label& L_copy_8_bytes) {
duke@435 1366 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1367 Label L_loop;
kvn@1800 1368 __ align(OptoLoopAlignment);
kvn@4411 1369 if (UseUnalignedLoadStores) {
kvn@4411 1370 Label L_end;
kvn@4411 1371 // Copy 64-bytes per iteration
kvn@4411 1372 __ BIND(L_loop);
kvn@4411 1373 if (UseAVX >= 2) {
kvn@4411 1374 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
kvn@4411 1375 __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
kvn@4411 1376 __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1377 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@4411 1378 } else {
kvn@4411 1379 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
kvn@4411 1380 __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
kvn@4411 1381 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
kvn@4411 1382 __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
kvn@4411 1383 __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
kvn@4411 1384 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
kvn@4411 1385 __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1386 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3);
kvn@4411 1387 }
kvn@4411 1388 __ BIND(L_copy_bytes);
kvn@4411 1389 __ subptr(qword_count, 8);
kvn@4411 1390 __ jcc(Assembler::greaterEqual, L_loop);
kvn@4411 1391
kvn@4411 1392 __ addptr(qword_count, 4); // add(8) and sub(4)
kvn@4411 1393 __ jccb(Assembler::less, L_end);
kvn@4411 1394 // Copy trailing 32 bytes
kvn@4411 1395 if (UseAVX >= 2) {
kvn@4411 1396 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1397 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
kvn@4411 1398 } else {
kvn@4411 1399 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@4411 1400 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@4411 1401 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@4411 1402 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@4411 1403 }
kvn@4411 1404 __ subptr(qword_count, 4);
kvn@4411 1405 __ BIND(L_end);
kvn@4873 1406 if (UseAVX >= 2) {
kvn@4873 1407 // clean upper bits of YMM registers
kvn@4873 1408 __ vzeroupper();
kvn@4873 1409 }
kvn@840 1410 } else {
kvn@4411 1411 // Copy 32-bytes per iteration
kvn@4411 1412 __ BIND(L_loop);
kvn@840 1413 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1414 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1415 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1416 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1417 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1418 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1419 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1420 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@4411 1421
kvn@4411 1422 __ BIND(L_copy_bytes);
kvn@4411 1423 __ subptr(qword_count, 4);
kvn@4411 1424 __ jcc(Assembler::greaterEqual, L_loop);
kvn@840 1425 }
never@739 1426 __ addptr(qword_count, 4);
duke@435 1427 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1428 }
duke@435 1429
duke@435 1430
duke@435 1431 // Arguments:
duke@435 1432 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1433 // ignored
duke@435 1434 // name - stub name string
duke@435 1435 //
duke@435 1436 // Inputs:
duke@435 1437 // c_rarg0 - source array address
duke@435 1438 // c_rarg1 - destination array address
duke@435 1439 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1440 //
duke@435 1441 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1442 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1443 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1444 // and stored atomically.
duke@435 1445 //
duke@435 1446 // Side Effects:
duke@435 1447 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1448 // used by generate_conjoint_byte_copy().
duke@435 1449 //
iveresov@2595 1450 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
duke@435 1451 __ align(CodeEntryAlignment);
duke@435 1452 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1453 address start = __ pc();
duke@435 1454
kvn@4411 1455 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1456 Label L_copy_byte, L_exit;
duke@435 1457 const Register from = rdi; // source array address
duke@435 1458 const Register to = rsi; // destination array address
duke@435 1459 const Register count = rdx; // elements count
duke@435 1460 const Register byte_count = rcx;
duke@435 1461 const Register qword_count = count;
duke@435 1462 const Register end_from = from; // source array end address
duke@435 1463 const Register end_to = to; // destination array end address
duke@435 1464 // End pointers are inclusive, and if count is not zero they point
duke@435 1465 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1466
duke@435 1467 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1468 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1469
iveresov@2595 1470 if (entry != NULL) {
iveresov@2595 1471 *entry = __ pc();
iveresov@2595 1472 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1473 BLOCK_COMMENT("Entry:");
iveresov@2595 1474 }
duke@435 1475
duke@435 1476 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1477 // r9 and r10 may be used to save non-volatile registers
duke@435 1478
duke@435 1479 // 'from', 'to' and 'count' are now valid
never@739 1480 __ movptr(byte_count, count);
never@739 1481 __ shrptr(count, 3); // count => qword_count
duke@435 1482
duke@435 1483 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1484 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1485 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1486 __ negptr(qword_count); // make the count negative
kvn@4411 1487 __ jmp(L_copy_bytes);
duke@435 1488
duke@435 1489 // Copy trailing qwords
duke@435 1490 __ BIND(L_copy_8_bytes);
duke@435 1491 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1492 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1493 __ increment(qword_count);
duke@435 1494 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1495
duke@435 1496 // Check for and copy trailing dword
duke@435 1497 __ BIND(L_copy_4_bytes);
never@739 1498 __ testl(byte_count, 4);
duke@435 1499 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1500 __ movl(rax, Address(end_from, 8));
duke@435 1501 __ movl(Address(end_to, 8), rax);
duke@435 1502
never@739 1503 __ addptr(end_from, 4);
never@739 1504 __ addptr(end_to, 4);
duke@435 1505
duke@435 1506 // Check for and copy trailing word
duke@435 1507 __ BIND(L_copy_2_bytes);
never@739 1508 __ testl(byte_count, 2);
duke@435 1509 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1510 __ movw(rax, Address(end_from, 8));
duke@435 1511 __ movw(Address(end_to, 8), rax);
duke@435 1512
never@739 1513 __ addptr(end_from, 2);
never@739 1514 __ addptr(end_to, 2);
duke@435 1515
duke@435 1516 // Check for and copy trailing byte
duke@435 1517 __ BIND(L_copy_byte);
never@739 1518 __ testl(byte_count, 1);
duke@435 1519 __ jccb(Assembler::zero, L_exit);
duke@435 1520 __ movb(rax, Address(end_from, 8));
duke@435 1521 __ movb(Address(end_to, 8), rax);
duke@435 1522
duke@435 1523 __ BIND(L_exit);
duke@435 1524 restore_arg_regs();
never@3314 1525 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1526 __ xorptr(rax, rax); // return 0
duke@435 1527 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1528 __ ret(0);
duke@435 1529
kvn@4411 1530 // Copy in multi-bytes chunks
kvn@4411 1531 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1532 __ jmp(L_copy_4_bytes);
duke@435 1533
duke@435 1534 return start;
duke@435 1535 }
duke@435 1536
duke@435 1537 // Arguments:
duke@435 1538 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1539 // ignored
duke@435 1540 // name - stub name string
duke@435 1541 //
duke@435 1542 // Inputs:
duke@435 1543 // c_rarg0 - source array address
duke@435 1544 // c_rarg1 - destination array address
duke@435 1545 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1546 //
duke@435 1547 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1548 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1549 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1550 // and stored atomically.
duke@435 1551 //
iveresov@2595 1552 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1553 address* entry, const char *name) {
duke@435 1554 __ align(CodeEntryAlignment);
duke@435 1555 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1556 address start = __ pc();
duke@435 1557
kvn@4411 1558 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1559 const Register from = rdi; // source array address
duke@435 1560 const Register to = rsi; // destination array address
duke@435 1561 const Register count = rdx; // elements count
duke@435 1562 const Register byte_count = rcx;
duke@435 1563 const Register qword_count = count;
duke@435 1564
duke@435 1565 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1566 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1567
iveresov@2595 1568 if (entry != NULL) {
iveresov@2595 1569 *entry = __ pc();
iveresov@2595 1570 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1571 BLOCK_COMMENT("Entry:");
iveresov@2595 1572 }
iveresov@2595 1573
iveresov@2595 1574 array_overlap_test(nooverlap_target, Address::times_1);
duke@435 1575 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1576 // r9 and r10 may be used to save non-volatile registers
duke@435 1577
duke@435 1578 // 'from', 'to' and 'count' are now valid
never@739 1579 __ movptr(byte_count, count);
never@739 1580 __ shrptr(count, 3); // count => qword_count
duke@435 1581
duke@435 1582 // Copy from high to low addresses.
duke@435 1583
duke@435 1584 // Check for and copy trailing byte
never@739 1585 __ testl(byte_count, 1);
duke@435 1586 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1587 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1588 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1589 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1590
duke@435 1591 // Check for and copy trailing word
duke@435 1592 __ BIND(L_copy_2_bytes);
never@739 1593 __ testl(byte_count, 2);
duke@435 1594 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1595 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1596 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1597
duke@435 1598 // Check for and copy trailing dword
duke@435 1599 __ BIND(L_copy_4_bytes);
never@739 1600 __ testl(byte_count, 4);
kvn@4411 1601 __ jcc(Assembler::zero, L_copy_bytes);
duke@435 1602 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1603 __ movl(Address(to, qword_count, Address::times_8), rax);
kvn@4411 1604 __ jmp(L_copy_bytes);
duke@435 1605
duke@435 1606 // Copy trailing qwords
duke@435 1607 __ BIND(L_copy_8_bytes);
duke@435 1608 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1609 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1610 __ decrement(qword_count);
duke@435 1611 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1612
duke@435 1613 restore_arg_regs();
never@3314 1614 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1615 __ xorptr(rax, rax); // return 0
duke@435 1616 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1617 __ ret(0);
duke@435 1618
kvn@4411 1619 // Copy in multi-bytes chunks
kvn@4411 1620 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1621
duke@435 1622 restore_arg_regs();
never@3314 1623 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1624 __ xorptr(rax, rax); // return 0
duke@435 1625 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1626 __ ret(0);
duke@435 1627
duke@435 1628 return start;
duke@435 1629 }
duke@435 1630
duke@435 1631 // Arguments:
duke@435 1632 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1633 // ignored
duke@435 1634 // name - stub name string
duke@435 1635 //
duke@435 1636 // Inputs:
duke@435 1637 // c_rarg0 - source array address
duke@435 1638 // c_rarg1 - destination array address
duke@435 1639 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1640 //
duke@435 1641 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1642 // let the hardware handle it. The two or four words within dwords
duke@435 1643 // or qwords that span cache line boundaries will still be loaded
duke@435 1644 // and stored atomically.
duke@435 1645 //
duke@435 1646 // Side Effects:
duke@435 1647 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1648 // used by generate_conjoint_short_copy().
duke@435 1649 //
iveresov@2595 1650 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
duke@435 1651 __ align(CodeEntryAlignment);
duke@435 1652 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1653 address start = __ pc();
duke@435 1654
kvn@4411 1655 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1656 const Register from = rdi; // source array address
duke@435 1657 const Register to = rsi; // destination array address
duke@435 1658 const Register count = rdx; // elements count
duke@435 1659 const Register word_count = rcx;
duke@435 1660 const Register qword_count = count;
duke@435 1661 const Register end_from = from; // source array end address
duke@435 1662 const Register end_to = to; // destination array end address
duke@435 1663 // End pointers are inclusive, and if count is not zero they point
duke@435 1664 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1665
duke@435 1666 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1667 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1668
iveresov@2595 1669 if (entry != NULL) {
iveresov@2595 1670 *entry = __ pc();
iveresov@2595 1671 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1672 BLOCK_COMMENT("Entry:");
iveresov@2595 1673 }
duke@435 1674
duke@435 1675 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1676 // r9 and r10 may be used to save non-volatile registers
duke@435 1677
duke@435 1678 // 'from', 'to' and 'count' are now valid
never@739 1679 __ movptr(word_count, count);
never@739 1680 __ shrptr(count, 2); // count => qword_count
duke@435 1681
duke@435 1682 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1683 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1684 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1685 __ negptr(qword_count);
kvn@4411 1686 __ jmp(L_copy_bytes);
duke@435 1687
duke@435 1688 // Copy trailing qwords
duke@435 1689 __ BIND(L_copy_8_bytes);
duke@435 1690 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1691 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1692 __ increment(qword_count);
duke@435 1693 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1694
duke@435 1695 // Original 'dest' is trashed, so we can't use it as a
duke@435 1696 // base register for a possible trailing word copy
duke@435 1697
duke@435 1698 // Check for and copy trailing dword
duke@435 1699 __ BIND(L_copy_4_bytes);
never@739 1700 __ testl(word_count, 2);
duke@435 1701 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1702 __ movl(rax, Address(end_from, 8));
duke@435 1703 __ movl(Address(end_to, 8), rax);
duke@435 1704
never@739 1705 __ addptr(end_from, 4);
never@739 1706 __ addptr(end_to, 4);
duke@435 1707
duke@435 1708 // Check for and copy trailing word
duke@435 1709 __ BIND(L_copy_2_bytes);
never@739 1710 __ testl(word_count, 1);
duke@435 1711 __ jccb(Assembler::zero, L_exit);
duke@435 1712 __ movw(rax, Address(end_from, 8));
duke@435 1713 __ movw(Address(end_to, 8), rax);
duke@435 1714
duke@435 1715 __ BIND(L_exit);
duke@435 1716 restore_arg_regs();
never@3314 1717 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1718 __ xorptr(rax, rax); // return 0
duke@435 1719 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1720 __ ret(0);
duke@435 1721
kvn@4411 1722 // Copy in multi-bytes chunks
kvn@4411 1723 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1724 __ jmp(L_copy_4_bytes);
duke@435 1725
duke@435 1726 return start;
duke@435 1727 }
duke@435 1728
never@2118 1729 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1730 __ align(CodeEntryAlignment);
never@2118 1731 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1732 address start = __ pc();
never@2118 1733
never@2118 1734 BLOCK_COMMENT("Entry:");
never@2118 1735
never@2118 1736 const Register to = c_rarg0; // source array address
never@2118 1737 const Register value = c_rarg1; // value
never@2118 1738 const Register count = c_rarg2; // elements count
never@2118 1739
never@2118 1740 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1741
never@2118 1742 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1743
never@2118 1744 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1745 __ ret(0);
never@2118 1746 return start;
never@2118 1747 }
never@2118 1748
duke@435 1749 // Arguments:
duke@435 1750 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1751 // ignored
duke@435 1752 // name - stub name string
duke@435 1753 //
duke@435 1754 // Inputs:
duke@435 1755 // c_rarg0 - source array address
duke@435 1756 // c_rarg1 - destination array address
duke@435 1757 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1758 //
duke@435 1759 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1760 // let the hardware handle it. The two or four words within dwords
duke@435 1761 // or qwords that span cache line boundaries will still be loaded
duke@435 1762 // and stored atomically.
duke@435 1763 //
iveresov@2595 1764 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1765 address *entry, const char *name) {
duke@435 1766 __ align(CodeEntryAlignment);
duke@435 1767 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1768 address start = __ pc();
duke@435 1769
kvn@4411 1770 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1771 const Register from = rdi; // source array address
duke@435 1772 const Register to = rsi; // destination array address
duke@435 1773 const Register count = rdx; // elements count
duke@435 1774 const Register word_count = rcx;
duke@435 1775 const Register qword_count = count;
duke@435 1776
duke@435 1777 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1778 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1779
iveresov@2595 1780 if (entry != NULL) {
iveresov@2595 1781 *entry = __ pc();
iveresov@2595 1782 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1783 BLOCK_COMMENT("Entry:");
iveresov@2595 1784 }
iveresov@2595 1785
iveresov@2595 1786 array_overlap_test(nooverlap_target, Address::times_2);
duke@435 1787 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1788 // r9 and r10 may be used to save non-volatile registers
duke@435 1789
duke@435 1790 // 'from', 'to' and 'count' are now valid
never@739 1791 __ movptr(word_count, count);
never@739 1792 __ shrptr(count, 2); // count => qword_count
duke@435 1793
duke@435 1794 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1795
duke@435 1796 // Check for and copy trailing word
never@739 1797 __ testl(word_count, 1);
duke@435 1798 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1799 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1800 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1801
duke@435 1802 // Check for and copy trailing dword
duke@435 1803 __ BIND(L_copy_4_bytes);
never@739 1804 __ testl(word_count, 2);
kvn@4411 1805 __ jcc(Assembler::zero, L_copy_bytes);
duke@435 1806 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1807 __ movl(Address(to, qword_count, Address::times_8), rax);
kvn@4411 1808 __ jmp(L_copy_bytes);
duke@435 1809
duke@435 1810 // Copy trailing qwords
duke@435 1811 __ BIND(L_copy_8_bytes);
duke@435 1812 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1813 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1814 __ decrement(qword_count);
duke@435 1815 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1816
duke@435 1817 restore_arg_regs();
never@3314 1818 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1819 __ xorptr(rax, rax); // return 0
duke@435 1820 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1821 __ ret(0);
duke@435 1822
kvn@4411 1823 // Copy in multi-bytes chunks
kvn@4411 1824 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1825
duke@435 1826 restore_arg_regs();
never@3314 1827 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1828 __ xorptr(rax, rax); // return 0
duke@435 1829 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1830 __ ret(0);
duke@435 1831
duke@435 1832 return start;
duke@435 1833 }
duke@435 1834
duke@435 1835 // Arguments:
duke@435 1836 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1837 // ignored
coleenp@548 1838 // is_oop - true => oop array, so generate store check code
duke@435 1839 // name - stub name string
duke@435 1840 //
duke@435 1841 // Inputs:
duke@435 1842 // c_rarg0 - source array address
duke@435 1843 // c_rarg1 - destination array address
duke@435 1844 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1845 //
duke@435 1846 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1847 // the hardware handle it. The two dwords within qwords that span
duke@435 1848 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1849 //
duke@435 1850 // Side Effects:
duke@435 1851 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1852 // used by generate_conjoint_int_oop_copy().
duke@435 1853 //
iveresov@2606 1854 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
iveresov@2606 1855 const char *name, bool dest_uninitialized = false) {
duke@435 1856 __ align(CodeEntryAlignment);
duke@435 1857 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1858 address start = __ pc();
duke@435 1859
kvn@4411 1860 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1861 const Register from = rdi; // source array address
duke@435 1862 const Register to = rsi; // destination array address
duke@435 1863 const Register count = rdx; // elements count
duke@435 1864 const Register dword_count = rcx;
duke@435 1865 const Register qword_count = count;
duke@435 1866 const Register end_from = from; // source array end address
duke@435 1867 const Register end_to = to; // destination array end address
coleenp@548 1868 const Register saved_to = r11; // saved destination array address
duke@435 1869 // End pointers are inclusive, and if count is not zero they point
duke@435 1870 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1871
duke@435 1872 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1873 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1874
iveresov@2595 1875 if (entry != NULL) {
iveresov@2595 1876 *entry = __ pc();
iveresov@2595 1877 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1878 BLOCK_COMMENT("Entry:");
coleenp@548 1879 }
coleenp@548 1880
duke@435 1881 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1882 // r9 and r10 may be used to save non-volatile registers
coleenp@548 1883 if (is_oop) {
coleenp@548 1884 __ movq(saved_to, to);
iveresov@2606 1885 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1886 }
coleenp@548 1887
duke@435 1888 // 'from', 'to' and 'count' are now valid
never@739 1889 __ movptr(dword_count, count);
never@739 1890 __ shrptr(count, 1); // count => qword_count
duke@435 1891
duke@435 1892 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1893 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1894 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1895 __ negptr(qword_count);
kvn@4411 1896 __ jmp(L_copy_bytes);
duke@435 1897
duke@435 1898 // Copy trailing qwords
duke@435 1899 __ BIND(L_copy_8_bytes);
duke@435 1900 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1901 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1902 __ increment(qword_count);
duke@435 1903 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1904
duke@435 1905 // Check for and copy trailing dword
duke@435 1906 __ BIND(L_copy_4_bytes);
never@739 1907 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1908 __ jccb(Assembler::zero, L_exit);
duke@435 1909 __ movl(rax, Address(end_from, 8));
duke@435 1910 __ movl(Address(end_to, 8), rax);
duke@435 1911
duke@435 1912 __ BIND(L_exit);
coleenp@548 1913 if (is_oop) {
kvn@5156 1914 gen_write_ref_array_post_barrier(saved_to, dword_count, rax);
coleenp@548 1915 }
duke@435 1916 restore_arg_regs();
never@3314 1917 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 1918 __ xorptr(rax, rax); // return 0
duke@435 1919 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1920 __ ret(0);
duke@435 1921
kvn@4411 1922 // Copy in multi-bytes chunks
kvn@4411 1923 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 1924 __ jmp(L_copy_4_bytes);
duke@435 1925
duke@435 1926 return start;
duke@435 1927 }
duke@435 1928
duke@435 1929 // Arguments:
duke@435 1930 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1931 // ignored
coleenp@548 1932 // is_oop - true => oop array, so generate store check code
duke@435 1933 // name - stub name string
duke@435 1934 //
duke@435 1935 // Inputs:
duke@435 1936 // c_rarg0 - source array address
duke@435 1937 // c_rarg1 - destination array address
duke@435 1938 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1939 //
duke@435 1940 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1941 // the hardware handle it. The two dwords within qwords that span
duke@435 1942 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1943 //
iveresov@2595 1944 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
iveresov@2606 1945 address *entry, const char *name,
iveresov@2606 1946 bool dest_uninitialized = false) {
duke@435 1947 __ align(CodeEntryAlignment);
duke@435 1948 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1949 address start = __ pc();
duke@435 1950
kvn@4411 1951 Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1952 const Register from = rdi; // source array address
duke@435 1953 const Register to = rsi; // destination array address
duke@435 1954 const Register count = rdx; // elements count
duke@435 1955 const Register dword_count = rcx;
duke@435 1956 const Register qword_count = count;
duke@435 1957
duke@435 1958 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1959 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1960
iveresov@2595 1961 if (entry != NULL) {
iveresov@2595 1962 *entry = __ pc();
iveresov@2595 1963 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1964 BLOCK_COMMENT("Entry:");
iveresov@2595 1965 }
iveresov@2595 1966
iveresov@2595 1967 array_overlap_test(nooverlap_target, Address::times_4);
iveresov@2595 1968 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
iveresov@2595 1969 // r9 and r10 may be used to save non-volatile registers
iveresov@2595 1970
coleenp@548 1971 if (is_oop) {
coleenp@548 1972 // no registers are destroyed by this call
iveresov@2606 1973 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
coleenp@548 1974 }
coleenp@548 1975
coleenp@548 1976 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1977 // 'from', 'to' and 'count' are now valid
never@739 1978 __ movptr(dword_count, count);
never@739 1979 __ shrptr(count, 1); // count => qword_count
duke@435 1980
duke@435 1981 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1982
duke@435 1983 // Check for and copy trailing dword
never@739 1984 __ testl(dword_count, 1);
kvn@4411 1985 __ jcc(Assembler::zero, L_copy_bytes);
duke@435 1986 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1987 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
kvn@4411 1988 __ jmp(L_copy_bytes);
duke@435 1989
duke@435 1990 // Copy trailing qwords
duke@435 1991 __ BIND(L_copy_8_bytes);
duke@435 1992 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1993 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1994 __ decrement(qword_count);
duke@435 1995 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1996
coleenp@548 1997 if (is_oop) {
coleenp@548 1998 __ jmp(L_exit);
coleenp@548 1999 }
duke@435 2000 restore_arg_regs();
never@3314 2001 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2002 __ xorptr(rax, rax); // return 0
duke@435 2003 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2004 __ ret(0);
duke@435 2005
kvn@4411 2006 // Copy in multi-bytes chunks
kvn@4411 2007 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 2008
kvn@5156 2009 __ BIND(L_exit);
kvn@5156 2010 if (is_oop) {
kvn@5156 2011 gen_write_ref_array_post_barrier(to, dword_count, rax);
kvn@5156 2012 }
duke@435 2013 restore_arg_regs();
never@3314 2014 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2015 __ xorptr(rax, rax); // return 0
duke@435 2016 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2017 __ ret(0);
duke@435 2018
duke@435 2019 return start;
duke@435 2020 }
duke@435 2021
duke@435 2022 // Arguments:
duke@435 2023 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2024 // ignored
duke@435 2025 // is_oop - true => oop array, so generate store check code
duke@435 2026 // name - stub name string
duke@435 2027 //
duke@435 2028 // Inputs:
duke@435 2029 // c_rarg0 - source array address
duke@435 2030 // c_rarg1 - destination array address
duke@435 2031 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2032 //
coleenp@548 2033 // Side Effects:
duke@435 2034 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 2035 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 2036 //
iveresov@2606 2037 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
iveresov@2606 2038 const char *name, bool dest_uninitialized = false) {
duke@435 2039 __ align(CodeEntryAlignment);
duke@435 2040 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2041 address start = __ pc();
duke@435 2042
kvn@4411 2043 Label L_copy_bytes, L_copy_8_bytes, L_exit;
duke@435 2044 const Register from = rdi; // source array address
duke@435 2045 const Register to = rsi; // destination array address
duke@435 2046 const Register qword_count = rdx; // elements count
duke@435 2047 const Register end_from = from; // source array end address
duke@435 2048 const Register end_to = rcx; // destination array end address
duke@435 2049 const Register saved_to = to;
kvn@5156 2050 const Register saved_count = r11;
duke@435 2051 // End pointers are inclusive, and if count is not zero they point
duke@435 2052 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2053
duke@435 2054 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2055 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 2056 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2057
iveresov@2595 2058 if (entry != NULL) {
iveresov@2595 2059 *entry = __ pc();
iveresov@2595 2060 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2061 BLOCK_COMMENT("Entry:");
duke@435 2062 }
duke@435 2063
duke@435 2064 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2065 // r9 and r10 may be used to save non-volatile registers
duke@435 2066 // 'from', 'to' and 'qword_count' are now valid
iveresov@2595 2067 if (is_oop) {
kvn@5156 2068 // Save to and count for store barrier
kvn@5156 2069 __ movptr(saved_count, qword_count);
iveresov@2595 2070 // no registers are destroyed by this call
iveresov@2606 2071 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
iveresov@2595 2072 }
duke@435 2073
duke@435 2074 // Copy from low to high addresses. Use 'to' as scratch.
never@739 2075 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 2076 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 2077 __ negptr(qword_count);
kvn@4411 2078 __ jmp(L_copy_bytes);
duke@435 2079
duke@435 2080 // Copy trailing qwords
duke@435 2081 __ BIND(L_copy_8_bytes);
duke@435 2082 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2083 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2084 __ increment(qword_count);
duke@435 2085 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2086
duke@435 2087 if (is_oop) {
duke@435 2088 __ jmp(L_exit);
duke@435 2089 } else {
duke@435 2090 restore_arg_regs();
never@3314 2091 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2092 __ xorptr(rax, rax); // return 0
duke@435 2093 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2094 __ ret(0);
duke@435 2095 }
duke@435 2096
kvn@4411 2097 // Copy in multi-bytes chunks
kvn@4411 2098 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 2099
duke@435 2100 if (is_oop) {
duke@435 2101 __ BIND(L_exit);
kvn@5156 2102 gen_write_ref_array_post_barrier(saved_to, saved_count, rax);
duke@435 2103 }
duke@435 2104 restore_arg_regs();
never@3314 2105 if (is_oop) {
never@3314 2106 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2107 } else {
never@3314 2108 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2109 }
never@739 2110 __ xorptr(rax, rax); // return 0
duke@435 2111 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2112 __ ret(0);
duke@435 2113
duke@435 2114 return start;
duke@435 2115 }
duke@435 2116
duke@435 2117 // Arguments:
duke@435 2118 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2119 // ignored
duke@435 2120 // is_oop - true => oop array, so generate store check code
duke@435 2121 // name - stub name string
duke@435 2122 //
duke@435 2123 // Inputs:
duke@435 2124 // c_rarg0 - source array address
duke@435 2125 // c_rarg1 - destination array address
duke@435 2126 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2127 //
iveresov@2606 2128 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
iveresov@2606 2129 address nooverlap_target, address *entry,
iveresov@2606 2130 const char *name, bool dest_uninitialized = false) {
duke@435 2131 __ align(CodeEntryAlignment);
duke@435 2132 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2133 address start = __ pc();
duke@435 2134
kvn@4411 2135 Label L_copy_bytes, L_copy_8_bytes, L_exit;
duke@435 2136 const Register from = rdi; // source array address
duke@435 2137 const Register to = rsi; // destination array address
duke@435 2138 const Register qword_count = rdx; // elements count
duke@435 2139 const Register saved_count = rcx;
duke@435 2140
duke@435 2141 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2142 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2143
iveresov@2595 2144 if (entry != NULL) {
iveresov@2595 2145 *entry = __ pc();
iveresov@2595 2146 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2147 BLOCK_COMMENT("Entry:");
duke@435 2148 }
iveresov@2595 2149
iveresov@2595 2150 array_overlap_test(nooverlap_target, Address::times_8);
duke@435 2151 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2152 // r9 and r10 may be used to save non-volatile registers
duke@435 2153 // 'from', 'to' and 'qword_count' are now valid
duke@435 2154 if (is_oop) {
duke@435 2155 // Save to and count for store barrier
never@739 2156 __ movptr(saved_count, qword_count);
duke@435 2157 // No registers are destroyed by this call
iveresov@2606 2158 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
duke@435 2159 }
duke@435 2160
kvn@4411 2161 __ jmp(L_copy_bytes);
duke@435 2162
duke@435 2163 // Copy trailing qwords
duke@435 2164 __ BIND(L_copy_8_bytes);
duke@435 2165 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2166 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2167 __ decrement(qword_count);
duke@435 2168 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2169
duke@435 2170 if (is_oop) {
duke@435 2171 __ jmp(L_exit);
duke@435 2172 } else {
duke@435 2173 restore_arg_regs();
never@3314 2174 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@739 2175 __ xorptr(rax, rax); // return 0
duke@435 2176 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2177 __ ret(0);
duke@435 2178 }
duke@435 2179
kvn@4411 2180 // Copy in multi-bytes chunks
kvn@4411 2181 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
duke@435 2182
duke@435 2183 if (is_oop) {
duke@435 2184 __ BIND(L_exit);
kvn@5156 2185 gen_write_ref_array_post_barrier(to, saved_count, rax);
duke@435 2186 }
duke@435 2187 restore_arg_regs();
never@3314 2188 if (is_oop) {
never@3314 2189 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2190 } else {
never@3314 2191 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
never@3314 2192 }
never@739 2193 __ xorptr(rax, rax); // return 0
duke@435 2194 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2195 __ ret(0);
duke@435 2196
duke@435 2197 return start;
duke@435 2198 }
duke@435 2199
duke@435 2200
duke@435 2201 // Helper for generating a dynamic type check.
duke@435 2202 // Smashes no registers.
duke@435 2203 void generate_type_check(Register sub_klass,
duke@435 2204 Register super_check_offset,
duke@435 2205 Register super_klass,
duke@435 2206 Label& L_success) {
duke@435 2207 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2208
duke@435 2209 BLOCK_COMMENT("type_check:");
duke@435 2210
duke@435 2211 Label L_miss;
duke@435 2212
jrose@1079 2213 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2214 super_check_offset);
jrose@1079 2215 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2216
duke@435 2217 // Fall through on failure!
duke@435 2218 __ BIND(L_miss);
duke@435 2219 }
duke@435 2220
duke@435 2221 //
duke@435 2222 // Generate checkcasting array copy stub
duke@435 2223 //
duke@435 2224 // Input:
duke@435 2225 // c_rarg0 - source array address
duke@435 2226 // c_rarg1 - destination array address
duke@435 2227 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2228 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2229 // not Win64
duke@435 2230 // c_rarg4 - oop ckval (super_klass)
duke@435 2231 // Win64
duke@435 2232 // rsp+40 - oop ckval (super_klass)
duke@435 2233 //
duke@435 2234 // Output:
duke@435 2235 // rax == 0 - success
duke@435 2236 // rax == -1^K - failure, where K is partial transfer count
duke@435 2237 //
iveresov@2606 2238 address generate_checkcast_copy(const char *name, address *entry,
iveresov@2606 2239 bool dest_uninitialized = false) {
duke@435 2240
duke@435 2241 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2242
duke@435 2243 // Input registers (after setup_arg_regs)
duke@435 2244 const Register from = rdi; // source array address
duke@435 2245 const Register to = rsi; // destination array address
duke@435 2246 const Register length = rdx; // elements count
duke@435 2247 const Register ckoff = rcx; // super_check_offset
duke@435 2248 const Register ckval = r8; // super_klass
duke@435 2249
duke@435 2250 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2251 const Register end_from = from; // source array end address
duke@435 2252 const Register end_to = r13; // destination array end address
duke@435 2253 const Register count = rdx; // -(count_remaining)
duke@435 2254 const Register r14_length = r14; // saved copy of length
duke@435 2255 // End pointers are inclusive, and if length is not zero they point
duke@435 2256 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2257
duke@435 2258 const Register rax_oop = rax; // actual oop copied
duke@435 2259 const Register r11_klass = r11; // oop._klass
duke@435 2260
duke@435 2261 //---------------------------------------------------------------
duke@435 2262 // Assembler stub will be used for this call to arraycopy
duke@435 2263 // if the two arrays are subtypes of Object[] but the
duke@435 2264 // destination array type is not equal to or a supertype
duke@435 2265 // of the source type. Each element must be separately
duke@435 2266 // checked.
duke@435 2267
duke@435 2268 __ align(CodeEntryAlignment);
duke@435 2269 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2270 address start = __ pc();
duke@435 2271
duke@435 2272 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2273
duke@435 2274 #ifdef ASSERT
duke@435 2275 // caller guarantees that the arrays really are different
duke@435 2276 // otherwise, we would have to make conjoint checks
duke@435 2277 { Label L;
coleenp@548 2278 array_overlap_test(L, TIMES_OOP);
duke@435 2279 __ stop("checkcast_copy within a single array");
duke@435 2280 __ bind(L);
duke@435 2281 }
duke@435 2282 #endif //ASSERT
duke@435 2283
duke@435 2284 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2285 // ckoff => rcx, ckval => r8
duke@435 2286 // r9 and r10 may be used to save non-volatile registers
duke@435 2287 #ifdef _WIN64
duke@435 2288 // last argument (#4) is on stack on Win64
twisti@2348 2289 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2290 #endif
duke@435 2291
twisti@2348 2292 // Caller of this entry point must set up the argument registers.
iveresov@2595 2293 if (entry != NULL) {
iveresov@2595 2294 *entry = __ pc();
iveresov@2595 2295 BLOCK_COMMENT("Entry:");
iveresov@2595 2296 }
twisti@2348 2297
twisti@2348 2298 // allocate spill slots for r13, r14
twisti@2348 2299 enum {
twisti@2348 2300 saved_r13_offset,
twisti@2348 2301 saved_r14_offset,
twisti@2348 2302 saved_rbp_offset
twisti@2348 2303 };
twisti@2348 2304 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2305 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2306 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2307
duke@435 2308 // check that int operands are properly extended to size_t
duke@435 2309 assert_clean_int(length, rax);
duke@435 2310 assert_clean_int(ckoff, rax);
duke@435 2311
duke@435 2312 #ifdef ASSERT
duke@435 2313 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2314 // The ckoff and ckval must be mutually consistent,
duke@435 2315 // even though caller generates both.
duke@435 2316 { Label L;
stefank@3391 2317 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2318 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2319 __ jcc(Assembler::equal, L);
duke@435 2320 __ stop("super_check_offset inconsistent");
duke@435 2321 __ bind(L);
duke@435 2322 }
duke@435 2323 #endif //ASSERT
duke@435 2324
duke@435 2325 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2326 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2327 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2328 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2329 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2330 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2331
iveresov@2606 2332 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
duke@435 2333
duke@435 2334 // Copy from low to high addresses, indexed from the end of each array.
never@739 2335 __ lea(end_from, end_from_addr);
never@739 2336 __ lea(end_to, end_to_addr);
never@739 2337 __ movptr(r14_length, length); // save a copy of the length
never@739 2338 assert(length == count, ""); // else fix next line:
never@739 2339 __ negptr(count); // negate and test the length
duke@435 2340 __ jcc(Assembler::notZero, L_load_element);
duke@435 2341
duke@435 2342 // Empty array: Nothing to do.
never@739 2343 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2344 __ jmp(L_done);
duke@435 2345
duke@435 2346 // ======== begin loop ========
duke@435 2347 // (Loop is rotated; its entry is L_load_element.)
duke@435 2348 // Loop control:
duke@435 2349 // for (count = -count; count != 0; count++)
duke@435 2350 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2351 __ align(OptoLoopAlignment);
duke@435 2352
duke@435 2353 __ BIND(L_store_element);
coleenp@548 2354 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2355 __ increment(count); // increment the count toward zero
duke@435 2356 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2357
duke@435 2358 // ======== loop entry is here ========
duke@435 2359 __ BIND(L_load_element);
coleenp@548 2360 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2361 __ testptr(rax_oop, rax_oop);
duke@435 2362 __ jcc(Assembler::zero, L_store_element);
duke@435 2363
coleenp@548 2364 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2365 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2366 // ======== end loop ========
duke@435 2367
duke@435 2368 // It was a real error; we must depend on the caller to finish the job.
duke@435 2369 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2370 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2371 // and report their number to the caller.
kvn@5156 2372 assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
kvn@5156 2373 Label L_post_barrier;
kvn@5156 2374 __ addptr(r14_length, count); // K = (original - remaining) oops
kvn@5156 2375 __ movptr(rax, r14_length); // save the value
kvn@5156 2376 __ notptr(rax); // report (-1^K) to caller (does not affect flags)
kvn@5156 2377 __ jccb(Assembler::notZero, L_post_barrier);
kvn@5156 2378 __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
duke@435 2379
duke@435 2380 // Come here on success only.
duke@435 2381 __ BIND(L_do_card_marks);
kvn@5156 2382 __ xorptr(rax, rax); // return 0 on success
kvn@5156 2383
kvn@5156 2384 __ BIND(L_post_barrier);
kvn@5156 2385 gen_write_ref_array_post_barrier(to, r14_length, rscratch1);
duke@435 2386
duke@435 2387 // Common exit point (success or failure).
duke@435 2388 __ BIND(L_done);
never@739 2389 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2390 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2391 restore_arg_regs();
never@3314 2392 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
duke@435 2393 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2394 __ ret(0);
duke@435 2395
duke@435 2396 return start;
duke@435 2397 }
duke@435 2398
duke@435 2399 //
duke@435 2400 // Generate 'unsafe' array copy stub
duke@435 2401 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2402 // size_t argument instead of an element count.
duke@435 2403 //
duke@435 2404 // Input:
duke@435 2405 // c_rarg0 - source array address
duke@435 2406 // c_rarg1 - destination array address
duke@435 2407 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2408 //
duke@435 2409 // Examines the alignment of the operands and dispatches
duke@435 2410 // to a long, int, short, or byte copy loop.
duke@435 2411 //
iveresov@2595 2412 address generate_unsafe_copy(const char *name,
iveresov@2595 2413 address byte_copy_entry, address short_copy_entry,
iveresov@2595 2414 address int_copy_entry, address long_copy_entry) {
duke@435 2415
duke@435 2416 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2417
duke@435 2418 // Input registers (before setup_arg_regs)
duke@435 2419 const Register from = c_rarg0; // source array address
duke@435 2420 const Register to = c_rarg1; // destination array address
duke@435 2421 const Register size = c_rarg2; // byte count (size_t)
duke@435 2422
duke@435 2423 // Register used as a temp
duke@435 2424 const Register bits = rax; // test copy of low bits
duke@435 2425
duke@435 2426 __ align(CodeEntryAlignment);
duke@435 2427 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2428 address start = __ pc();
duke@435 2429
duke@435 2430 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2431
duke@435 2432 // bump this on entry, not on exit:
duke@435 2433 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2434
never@739 2435 __ mov(bits, from);
never@739 2436 __ orptr(bits, to);
never@739 2437 __ orptr(bits, size);
duke@435 2438
duke@435 2439 __ testb(bits, BytesPerLong-1);
duke@435 2440 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2441
duke@435 2442 __ testb(bits, BytesPerInt-1);
duke@435 2443 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2444
duke@435 2445 __ testb(bits, BytesPerShort-1);
duke@435 2446 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2447
duke@435 2448 __ BIND(L_short_aligned);
never@739 2449 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2450 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2451
duke@435 2452 __ BIND(L_int_aligned);
never@739 2453 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2454 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2455
duke@435 2456 __ BIND(L_long_aligned);
never@739 2457 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2458 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2459
duke@435 2460 return start;
duke@435 2461 }
duke@435 2462
duke@435 2463 // Perform range checks on the proposed arraycopy.
duke@435 2464 // Kills temp, but nothing else.
duke@435 2465 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2466 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2467 Register src_pos, // source position (c_rarg1)
duke@435 2468 Register dst, // destination array oo (c_rarg2)
duke@435 2469 Register dst_pos, // destination position (c_rarg3)
duke@435 2470 Register length,
duke@435 2471 Register temp,
duke@435 2472 Label& L_failed) {
duke@435 2473 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2474
duke@435 2475 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2476 __ movl(temp, length);
duke@435 2477 __ addl(temp, src_pos); // src_pos + length
duke@435 2478 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2479 __ jcc(Assembler::above, L_failed);
duke@435 2480
duke@435 2481 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2482 __ movl(temp, length);
duke@435 2483 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2484 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2485 __ jcc(Assembler::above, L_failed);
duke@435 2486
duke@435 2487 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2488 // Move with sign extension can be used since they are positive.
duke@435 2489 __ movslq(src_pos, src_pos);
duke@435 2490 __ movslq(dst_pos, dst_pos);
duke@435 2491
duke@435 2492 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2493 }
duke@435 2494
duke@435 2495 //
duke@435 2496 // Generate generic array copy stubs
duke@435 2497 //
duke@435 2498 // Input:
duke@435 2499 // c_rarg0 - src oop
duke@435 2500 // c_rarg1 - src_pos (32-bits)
duke@435 2501 // c_rarg2 - dst oop
duke@435 2502 // c_rarg3 - dst_pos (32-bits)
duke@435 2503 // not Win64
duke@435 2504 // c_rarg4 - element count (32-bits)
duke@435 2505 // Win64
duke@435 2506 // rsp+40 - element count (32-bits)
duke@435 2507 //
duke@435 2508 // Output:
duke@435 2509 // rax == 0 - success
duke@435 2510 // rax == -1^K - failure, where K is partial transfer count
duke@435 2511 //
iveresov@2595 2512 address generate_generic_copy(const char *name,
iveresov@2595 2513 address byte_copy_entry, address short_copy_entry,
iveresov@2691 2514 address int_copy_entry, address oop_copy_entry,
iveresov@2691 2515 address long_copy_entry, address checkcast_copy_entry) {
duke@435 2516
duke@435 2517 Label L_failed, L_failed_0, L_objArray;
duke@435 2518 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2519
duke@435 2520 // Input registers
duke@435 2521 const Register src = c_rarg0; // source array oop
duke@435 2522 const Register src_pos = c_rarg1; // source position
duke@435 2523 const Register dst = c_rarg2; // destination array oop
duke@435 2524 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2525 #ifndef _WIN64
twisti@2348 2526 const Register length = c_rarg4;
duke@435 2527 #else
twisti@2348 2528 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2529 #endif
duke@435 2530
duke@435 2531 { int modulus = CodeEntryAlignment;
duke@435 2532 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2533 int advance = target - (__ offset() % modulus);
duke@435 2534 if (advance < 0) advance += modulus;
duke@435 2535 if (advance > 0) __ nop(advance);
duke@435 2536 }
duke@435 2537 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2538
duke@435 2539 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2540 __ BIND(L_failed_0);
duke@435 2541 __ jmp(L_failed);
duke@435 2542 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2543
duke@435 2544 __ align(CodeEntryAlignment);
duke@435 2545 address start = __ pc();
duke@435 2546
duke@435 2547 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2548
duke@435 2549 // bump this on entry, not on exit:
duke@435 2550 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2551
duke@435 2552 //-----------------------------------------------------------------------
duke@435 2553 // Assembler stub will be used for this call to arraycopy
duke@435 2554 // if the following conditions are met:
duke@435 2555 //
duke@435 2556 // (1) src and dst must not be null.
duke@435 2557 // (2) src_pos must not be negative.
duke@435 2558 // (3) dst_pos must not be negative.
duke@435 2559 // (4) length must not be negative.
duke@435 2560 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2561 // (6) src and dst should be arrays.
duke@435 2562 // (7) src_pos + length must not exceed length of src.
duke@435 2563 // (8) dst_pos + length must not exceed length of dst.
duke@435 2564 //
duke@435 2565
duke@435 2566 // if (src == NULL) return -1;
never@739 2567 __ testptr(src, src); // src oop
duke@435 2568 size_t j1off = __ offset();
duke@435 2569 __ jccb(Assembler::zero, L_failed_0);
duke@435 2570
duke@435 2571 // if (src_pos < 0) return -1;
duke@435 2572 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2573 __ jccb(Assembler::negative, L_failed_0);
duke@435 2574
duke@435 2575 // if (dst == NULL) return -1;
never@739 2576 __ testptr(dst, dst); // dst oop
duke@435 2577 __ jccb(Assembler::zero, L_failed_0);
duke@435 2578
duke@435 2579 // if (dst_pos < 0) return -1;
duke@435 2580 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2581 size_t j4off = __ offset();
duke@435 2582 __ jccb(Assembler::negative, L_failed_0);
duke@435 2583
duke@435 2584 // The first four tests are very dense code,
duke@435 2585 // but not quite dense enough to put four
duke@435 2586 // jumps in a 16-byte instruction fetch buffer.
duke@435 2587 // That's good, because some branch predicters
duke@435 2588 // do not like jumps so close together.
duke@435 2589 // Make sure of this.
duke@435 2590 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2591
duke@435 2592 // registers used as temp
duke@435 2593 const Register r11_length = r11; // elements count to copy
duke@435 2594 const Register r10_src_klass = r10; // array klass
duke@435 2595
duke@435 2596 // if (length < 0) return -1;
twisti@2348 2597 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2598 __ testl(r11_length, r11_length);
duke@435 2599 __ jccb(Assembler::negative, L_failed_0);
duke@435 2600
coleenp@548 2601 __ load_klass(r10_src_klass, src);
duke@435 2602 #ifdef ASSERT
duke@435 2603 // assert(src->klass() != NULL);
twisti@2348 2604 {
twisti@2348 2605 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2606 Label L1, L2;
never@739 2607 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2608 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2609 __ bind(L1);
duke@435 2610 __ stop("broken null klass");
duke@435 2611 __ bind(L2);
twisti@2348 2612 __ load_klass(rax, dst);
twisti@2348 2613 __ cmpq(rax, 0);
duke@435 2614 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2615 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2616 }
duke@435 2617 #endif
duke@435 2618
duke@435 2619 // Load layout helper (32-bits)
duke@435 2620 //
duke@435 2621 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2622 // 32 30 24 16 8 2 0
duke@435 2623 //
duke@435 2624 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2625 //
duke@435 2626
stefank@3391 2627 const int lh_offset = in_bytes(Klass::layout_helper_offset());
twisti@2348 2628
twisti@2348 2629 // Handle objArrays completely differently...
twisti@2348 2630 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2631 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2632 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2633
twisti@2348 2634 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2635 __ load_klass(rax, dst);
twisti@2348 2636 __ cmpq(r10_src_klass, rax);
twisti@2348 2637 __ jcc(Assembler::notEqual, L_failed);
duke@435 2638
duke@435 2639 const Register rax_lh = rax; // layout helper
duke@435 2640 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2641
duke@435 2642 // if (!src->is_Array()) return -1;
duke@435 2643 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2644 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2645
duke@435 2646 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2647 #ifdef ASSERT
twisti@2348 2648 {
twisti@2348 2649 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2650 Label L;
duke@435 2651 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2652 __ jcc(Assembler::greaterEqual, L);
duke@435 2653 __ stop("must be a primitive array");
duke@435 2654 __ bind(L);
twisti@2348 2655 BLOCK_COMMENT("} assert primitive array done");
duke@435 2656 }
duke@435 2657 #endif
duke@435 2658
duke@435 2659 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2660 r10, L_failed);
duke@435 2661
coleenp@4142 2662 // TypeArrayKlass
duke@435 2663 //
duke@435 2664 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2665 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2666 //
duke@435 2667
duke@435 2668 const Register r10_offset = r10; // array offset
duke@435 2669 const Register rax_elsize = rax_lh; // element size
duke@435 2670
duke@435 2671 __ movl(r10_offset, rax_lh);
duke@435 2672 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2673 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2674 __ addptr(src, r10_offset); // src array offset
never@739 2675 __ addptr(dst, r10_offset); // dst array offset
duke@435 2676 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2677 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2678
duke@435 2679 // next registers should be set before the jump to corresponding stub
duke@435 2680 const Register from = c_rarg0; // source array address
duke@435 2681 const Register to = c_rarg1; // destination array address
duke@435 2682 const Register count = c_rarg2; // elements count
duke@435 2683
duke@435 2684 // 'from', 'to', 'count' registers should be set in such order
duke@435 2685 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2686
duke@435 2687 __ BIND(L_copy_bytes);
duke@435 2688 __ cmpl(rax_elsize, 0);
duke@435 2689 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2690 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2691 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2692 __ movl2ptr(count, r11_length); // length
duke@435 2693 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2694
duke@435 2695 __ BIND(L_copy_shorts);
duke@435 2696 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2697 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2698 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2699 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2700 __ movl2ptr(count, r11_length); // length
duke@435 2701 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2702
duke@435 2703 __ BIND(L_copy_ints);
duke@435 2704 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2705 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2706 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2707 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2708 __ movl2ptr(count, r11_length); // length
duke@435 2709 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2710
duke@435 2711 __ BIND(L_copy_longs);
duke@435 2712 #ifdef ASSERT
twisti@2348 2713 {
twisti@2348 2714 BLOCK_COMMENT("assert long copy {");
twisti@2348 2715 Label L;
duke@435 2716 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2717 __ jcc(Assembler::equal, L);
duke@435 2718 __ stop("must be long copy, but elsize is wrong");
duke@435 2719 __ bind(L);
twisti@2348 2720 BLOCK_COMMENT("} assert long copy done");
duke@435 2721 }
duke@435 2722 #endif
never@739 2723 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2724 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2725 __ movl2ptr(count, r11_length); // length
duke@435 2726 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2727
coleenp@4142 2728 // ObjArrayKlass
duke@435 2729 __ BIND(L_objArray);
twisti@2348 2730 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2731
duke@435 2732 Label L_plain_copy, L_checkcast_copy;
duke@435 2733 // test array classes for subtyping
twisti@2348 2734 __ load_klass(rax, dst);
twisti@2348 2735 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2736 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2737
duke@435 2738 // Identically typed arrays can be copied without element-wise checks.
duke@435 2739 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2740 r10, L_failed);
duke@435 2741
never@739 2742 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2743 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2744 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2745 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2746 __ movl2ptr(count, r11_length); // length
duke@435 2747 __ BIND(L_plain_copy);
duke@435 2748 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2749
duke@435 2750 __ BIND(L_checkcast_copy);
twisti@2348 2751 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2752 {
duke@435 2753 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2754 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2755 __ jcc(Assembler::notEqual, L_failed);
duke@435 2756
duke@435 2757 // It is safe to examine both src.length and dst.length.
duke@435 2758 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2759 rax, L_failed);
twisti@2348 2760
twisti@2348 2761 const Register r11_dst_klass = r11;
coleenp@548 2762 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2763
duke@435 2764 // Marshal the base address arguments now, freeing registers.
never@739 2765 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2766 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2767 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2768 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2769 __ movl(count, length); // length (reloaded)
duke@435 2770 Register sco_temp = c_rarg3; // this register is free now
duke@435 2771 assert_different_registers(from, to, count, sco_temp,
duke@435 2772 r11_dst_klass, r10_src_klass);
duke@435 2773 assert_clean_int(count, sco_temp);
duke@435 2774
duke@435 2775 // Generate the type check.
stefank@3391 2776 const int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 2777 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2778 assert_clean_int(sco_temp, rax);
duke@435 2779 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2780
coleenp@4142 2781 // Fetch destination element klass from the ObjArrayKlass header.
coleenp@4142 2782 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
never@739 2783 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2784 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2785 assert_clean_int(sco_temp, rax);
duke@435 2786
duke@435 2787 // the checkcast_copy loop needs two extra arguments:
duke@435 2788 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2789 // Set up arguments for checkcast_copy_entry.
twisti@2348 2790 setup_arg_regs(4);
twisti@2348 2791 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2792 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2793 }
duke@435 2794
duke@435 2795 __ BIND(L_failed);
never@739 2796 __ xorptr(rax, rax);
never@739 2797 __ notptr(rax); // return -1
duke@435 2798 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2799 __ ret(0);
duke@435 2800
duke@435 2801 return start;
duke@435 2802 }
duke@435 2803
duke@435 2804 void generate_arraycopy_stubs() {
iveresov@2595 2805 address entry;
iveresov@2595 2806 address entry_jbyte_arraycopy;
iveresov@2595 2807 address entry_jshort_arraycopy;
iveresov@2595 2808 address entry_jint_arraycopy;
iveresov@2595 2809 address entry_oop_arraycopy;
iveresov@2595 2810 address entry_jlong_arraycopy;
iveresov@2595 2811 address entry_checkcast_arraycopy;
iveresov@2595 2812
iveresov@2595 2813 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 2814 "jbyte_disjoint_arraycopy");
iveresov@2595 2815 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 2816 "jbyte_arraycopy");
iveresov@2595 2817
iveresov@2595 2818 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 2819 "jshort_disjoint_arraycopy");
iveresov@2595 2820 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 2821 "jshort_arraycopy");
iveresov@2595 2822
iveresov@2595 2823 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
iveresov@2595 2824 "jint_disjoint_arraycopy");
iveresov@2595 2825 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
iveresov@2595 2826 &entry_jint_arraycopy, "jint_arraycopy");
iveresov@2595 2827
iveresov@2595 2828 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
iveresov@2595 2829 "jlong_disjoint_arraycopy");
iveresov@2595 2830 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
iveresov@2595 2831 &entry_jlong_arraycopy, "jlong_arraycopy");
duke@435 2832
coleenp@548 2833
coleenp@548 2834 if (UseCompressedOops) {
iveresov@2595 2835 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2595 2836 "oop_disjoint_arraycopy");
iveresov@2595 2837 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2595 2838 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2839 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
iveresov@2606 2840 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2841 /*dest_uninitialized*/true);
iveresov@2606 2842 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
iveresov@2606 2843 NULL, "oop_arraycopy_uninit",
iveresov@2606 2844 /*dest_uninitialized*/true);
coleenp@548 2845 } else {
iveresov@2595 2846 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2595 2847 "oop_disjoint_arraycopy");
iveresov@2595 2848 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2595 2849 &entry_oop_arraycopy, "oop_arraycopy");
iveresov@2606 2850 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
iveresov@2606 2851 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2852 /*dest_uninitialized*/true);
iveresov@2606 2853 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
iveresov@2606 2854 NULL, "oop_arraycopy_uninit",
iveresov@2606 2855 /*dest_uninitialized*/true);
coleenp@548 2856 }
duke@435 2857
iveresov@2606 2858 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2859 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 2860 /*dest_uninitialized*/true);
iveresov@2606 2861
iveresov@2595 2862 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 2863 entry_jbyte_arraycopy,
iveresov@2595 2864 entry_jshort_arraycopy,
iveresov@2595 2865 entry_jint_arraycopy,
iveresov@2595 2866 entry_jlong_arraycopy);
iveresov@2595 2867 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 2868 entry_jbyte_arraycopy,
iveresov@2595 2869 entry_jshort_arraycopy,
iveresov@2595 2870 entry_jint_arraycopy,
iveresov@2595 2871 entry_oop_arraycopy,
iveresov@2595 2872 entry_jlong_arraycopy,
iveresov@2595 2873 entry_checkcast_arraycopy);
duke@435 2874
never@2118 2875 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2876 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2877 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2878 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2879 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2880 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2881
duke@435 2882 // We don't generate specialized code for HeapWord-aligned source
duke@435 2883 // arrays, so just use the code we've already generated
duke@435 2884 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2885 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2886
duke@435 2887 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2888 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2889
duke@435 2890 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2891 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2892
duke@435 2893 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2894 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2895
duke@435 2896 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2897 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2898
iveresov@2606 2899 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2900 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
duke@435 2901 }
duke@435 2902
never@1609 2903 void generate_math_stubs() {
never@1609 2904 {
never@1609 2905 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2906 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2907
never@1609 2908 __ subq(rsp, 8);
never@1609 2909 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2910 __ fld_d(Address(rsp, 0));
never@1609 2911 __ flog();
never@1609 2912 __ fstp_d(Address(rsp, 0));
never@1609 2913 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2914 __ addq(rsp, 8);
never@1609 2915 __ ret(0);
never@1609 2916 }
never@1609 2917 {
never@1609 2918 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2919 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2920
never@1609 2921 __ subq(rsp, 8);
never@1609 2922 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2923 __ fld_d(Address(rsp, 0));
never@1609 2924 __ flog10();
never@1609 2925 __ fstp_d(Address(rsp, 0));
never@1609 2926 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2927 __ addq(rsp, 8);
never@1609 2928 __ ret(0);
never@1609 2929 }
never@1609 2930 {
never@1609 2931 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2932 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2933
never@1609 2934 __ subq(rsp, 8);
never@1609 2935 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2936 __ fld_d(Address(rsp, 0));
never@1609 2937 __ trigfunc('s');
never@1609 2938 __ fstp_d(Address(rsp, 0));
never@1609 2939 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2940 __ addq(rsp, 8);
never@1609 2941 __ ret(0);
never@1609 2942 }
never@1609 2943 {
never@1609 2944 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2945 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2946
never@1609 2947 __ subq(rsp, 8);
never@1609 2948 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2949 __ fld_d(Address(rsp, 0));
never@1609 2950 __ trigfunc('c');
never@1609 2951 __ fstp_d(Address(rsp, 0));
never@1609 2952 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2953 __ addq(rsp, 8);
never@1609 2954 __ ret(0);
never@1609 2955 }
never@1609 2956 {
never@1609 2957 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2958 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2959
never@1609 2960 __ subq(rsp, 8);
never@1609 2961 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2962 __ fld_d(Address(rsp, 0));
never@1609 2963 __ trigfunc('t');
never@1609 2964 __ fstp_d(Address(rsp, 0));
never@1609 2965 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2966 __ addq(rsp, 8);
never@1609 2967 __ ret(0);
never@1609 2968 }
roland@3787 2969 {
roland@3787 2970 StubCodeMark mark(this, "StubRoutines", "exp");
roland@3787 2971 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
roland@3787 2972
roland@3787 2973 __ subq(rsp, 8);
roland@3787 2974 __ movdbl(Address(rsp, 0), xmm0);
roland@3787 2975 __ fld_d(Address(rsp, 0));
roland@3787 2976 __ exp_with_fallback(0);
roland@3787 2977 __ fstp_d(Address(rsp, 0));
roland@3787 2978 __ movdbl(xmm0, Address(rsp, 0));
roland@3787 2979 __ addq(rsp, 8);
roland@3787 2980 __ ret(0);
roland@3787 2981 }
roland@3787 2982 {
roland@3787 2983 StubCodeMark mark(this, "StubRoutines", "pow");
roland@3787 2984 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
roland@3787 2985
roland@3787 2986 __ subq(rsp, 8);
roland@3787 2987 __ movdbl(Address(rsp, 0), xmm1);
roland@3787 2988 __ fld_d(Address(rsp, 0));
roland@3787 2989 __ movdbl(Address(rsp, 0), xmm0);
roland@3787 2990 __ fld_d(Address(rsp, 0));
roland@3787 2991 __ pow_with_fallback(0);
roland@3787 2992 __ fstp_d(Address(rsp, 0));
roland@3787 2993 __ movdbl(xmm0, Address(rsp, 0));
roland@3787 2994 __ addq(rsp, 8);
roland@3787 2995 __ ret(0);
roland@3787 2996 }
never@1609 2997 }
never@1609 2998
kvn@4205 2999 // AES intrinsic stubs
kvn@4205 3000 enum {AESBlockSize = 16};
kvn@4205 3001
kvn@4205 3002 address generate_key_shuffle_mask() {
kvn@4205 3003 __ align(16);
kvn@4205 3004 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
kvn@4205 3005 address start = __ pc();
kvn@4205 3006 __ emit_data64( 0x0405060700010203, relocInfo::none );
kvn@4205 3007 __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
kvn@4205 3008 return start;
kvn@4205 3009 }
kvn@4205 3010
kvn@4205 3011 // Utility routine for loading a 128-bit key word in little endian format
kvn@4205 3012 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 3013 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 3014 __ movdqu(xmmdst, Address(key, offset));
kvn@4205 3015 if (xmm_shuf_mask != NULL) {
kvn@4205 3016 __ pshufb(xmmdst, xmm_shuf_mask);
kvn@4205 3017 } else {
kvn@4205 3018 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3019 }
kvn@4205 3020 }
kvn@4205 3021
kvn@4205 3022 // Arguments:
kvn@4205 3023 //
kvn@4205 3024 // Inputs:
kvn@4205 3025 // c_rarg0 - source byte array address
kvn@4205 3026 // c_rarg1 - destination byte array address
kvn@4205 3027 // c_rarg2 - K (key) in little endian int array
kvn@4205 3028 //
kvn@4205 3029 address generate_aescrypt_encryptBlock() {
kvn@4363 3030 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3031 __ align(CodeEntryAlignment);
kvn@4205 3032 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
kvn@4205 3033 Label L_doLast;
kvn@4205 3034 address start = __ pc();
kvn@4205 3035
kvn@4205 3036 const Register from = c_rarg0; // source array address
kvn@4205 3037 const Register to = c_rarg1; // destination array address
kvn@4205 3038 const Register key = c_rarg2; // key array address
kvn@4205 3039 const Register keylen = rax;
kvn@4205 3040
kvn@4205 3041 const XMMRegister xmm_result = xmm0;
kvn@4363 3042 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 3043 // On win64 xmm6-xmm15 must be preserved so don't use them.
kvn@4363 3044 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 3045 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 3046 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 3047 const XMMRegister xmm_temp4 = xmm5;
kvn@4205 3048
kvn@4205 3049 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3050
kvn@4363 3051 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 3052 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3053
kvn@4205 3054 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3055 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
kvn@4205 3056
kvn@4205 3057 // For encryption, the java expanded key ordering is just what we need
kvn@4205 3058 // we don't know if the key is aligned, hence not using load-execute form
kvn@4205 3059
kvn@4363 3060 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
kvn@4363 3061 __ pxor(xmm_result, xmm_temp1);
kvn@4363 3062
kvn@4363 3063 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 3064 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 3065 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 3066 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 3067
kvn@4363 3068 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3069 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3070 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 3071 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 3072
kvn@4363 3073 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 3074 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 3075 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 3076 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 3077
kvn@4363 3078 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3079 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3080 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 3081 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 3082
kvn@4363 3083 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 3084 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 3085
kvn@4363 3086 __ cmpl(keylen, 44);
kvn@4363 3087 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3088
kvn@4363 3089 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3090 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3091
kvn@4363 3092 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 3093 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 3094
kvn@4363 3095 __ cmpl(keylen, 52);
kvn@4363 3096 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3097
kvn@4363 3098 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3099 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 3100
kvn@4363 3101 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 3102 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 3103
kvn@4205 3104 __ BIND(L_doLast);
kvn@4363 3105 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 3106 __ aesenclast(xmm_result, xmm_temp2);
kvn@4205 3107 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 3108 __ xorptr(rax, rax); // return 0
kvn@4205 3109 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3110 __ ret(0);
kvn@4205 3111
kvn@4205 3112 return start;
kvn@4205 3113 }
kvn@4205 3114
kvn@4205 3115
kvn@4205 3116 // Arguments:
kvn@4205 3117 //
kvn@4205 3118 // Inputs:
kvn@4205 3119 // c_rarg0 - source byte array address
kvn@4205 3120 // c_rarg1 - destination byte array address
kvn@4205 3121 // c_rarg2 - K (key) in little endian int array
kvn@4205 3122 //
kvn@4205 3123 address generate_aescrypt_decryptBlock() {
kvn@4363 3124 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3125 __ align(CodeEntryAlignment);
kvn@4205 3126 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
kvn@4205 3127 Label L_doLast;
kvn@4205 3128 address start = __ pc();
kvn@4205 3129
kvn@4205 3130 const Register from = c_rarg0; // source array address
kvn@4205 3131 const Register to = c_rarg1; // destination array address
kvn@4205 3132 const Register key = c_rarg2; // key array address
kvn@4205 3133 const Register keylen = rax;
kvn@4205 3134
kvn@4205 3135 const XMMRegister xmm_result = xmm0;
kvn@4363 3136 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 3137 // On win64 xmm6-xmm15 must be preserved so don't use them.
kvn@4363 3138 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 3139 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 3140 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 3141 const XMMRegister xmm_temp4 = xmm5;
kvn@4205 3142
kvn@4205 3143 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3144
kvn@4363 3145 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 3146 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3147
kvn@4205 3148 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3149 __ movdqu(xmm_result, Address(from, 0));
kvn@4205 3150
kvn@4205 3151 // for decryption java expanded key ordering is rotated one position from what we want
kvn@4205 3152 // so we start from 0x10 here and hit 0x00 last
kvn@4205 3153 // we don't know if the key is aligned, hence not using load-execute form
kvn@4363 3154 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 3155 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 3156 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 3157 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 3158
kvn@4363 3159 __ pxor (xmm_result, xmm_temp1);
kvn@4363 3160 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3161 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 3162 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 3163
kvn@4363 3164 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 3165 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 3166 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 3167 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 3168
kvn@4363 3169 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3170 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3171 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 3172 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 3173
kvn@4363 3174 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 3175 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 3176 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
kvn@4363 3177
kvn@4363 3178 __ cmpl(keylen, 44);
kvn@4363 3179 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3180
kvn@4363 3181 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3182 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3183
kvn@4363 3184 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 3185 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 3186
kvn@4363 3187 __ cmpl(keylen, 52);
kvn@4363 3188 __ jccb(Assembler::equal, L_doLast);
kvn@4363 3189
kvn@4363 3190 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3191 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3192
kvn@4363 3193 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 3194 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 3195
kvn@4205 3196 __ BIND(L_doLast);
kvn@4363 3197 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 3198 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 3199
kvn@4205 3200 // for decryption the aesdeclast operation is always on key+0x00
kvn@4363 3201 __ aesdeclast(xmm_result, xmm_temp3);
kvn@4205 3202 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 3203 __ xorptr(rax, rax); // return 0
kvn@4205 3204 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3205 __ ret(0);
kvn@4205 3206
kvn@4205 3207 return start;
kvn@4205 3208 }
kvn@4205 3209
kvn@4205 3210
kvn@4205 3211 // Arguments:
kvn@4205 3212 //
kvn@4205 3213 // Inputs:
kvn@4205 3214 // c_rarg0 - source byte array address
kvn@4205 3215 // c_rarg1 - destination byte array address
kvn@4205 3216 // c_rarg2 - K (key) in little endian int array
kvn@4205 3217 // c_rarg3 - r vector byte array address
kvn@4205 3218 // c_rarg4 - input length
kvn@4205 3219 //
kvn@6312 3220 // Output:
kvn@6312 3221 // rax - input length
kvn@6312 3222 //
kvn@4205 3223 address generate_cipherBlockChaining_encryptAESCrypt() {
kvn@4363 3224 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3225 __ align(CodeEntryAlignment);
kvn@4205 3226 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
kvn@4205 3227 address start = __ pc();
kvn@4205 3228
kvn@4205 3229 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
kvn@4205 3230 const Register from = c_rarg0; // source array address
kvn@4205 3231 const Register to = c_rarg1; // destination array address
kvn@4205 3232 const Register key = c_rarg2; // key array address
kvn@4205 3233 const Register rvec = c_rarg3; // r byte array initialized from initvector array address
kvn@4205 3234 // and left with the results of the last encryption block
kvn@4205 3235 #ifndef _WIN64
kvn@4205 3236 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
kvn@4205 3237 #else
kvn@6312 3238 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
kvn@4205 3239 const Register len_reg = r10; // pick the first volatile windows register
kvn@4205 3240 #endif
kvn@4205 3241 const Register pos = rax;
kvn@4205 3242
kvn@4205 3243 // xmm register assignments for the loops below
kvn@4205 3244 const XMMRegister xmm_result = xmm0;
kvn@4205 3245 const XMMRegister xmm_temp = xmm1;
kvn@4205 3246 // keys 0-10 preloaded into xmm2-xmm12
kvn@4205 3247 const int XMM_REG_NUM_KEY_FIRST = 2;
kvn@4363 3248 const int XMM_REG_NUM_KEY_LAST = 15;
kvn@4205 3249 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4363 3250 const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
kvn@4363 3251 const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
kvn@4363 3252 const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
kvn@4363 3253 const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
kvn@4205 3254
kvn@4205 3255 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3256
kvn@4205 3257 #ifdef _WIN64
kvn@4205 3258 // on win64, fill len_reg from stack position
kvn@4205 3259 __ movl(len_reg, len_mem);
kvn@4363 3260 // save the xmm registers which must be preserved 6-15
kvn@4205 3261 __ subptr(rsp, -rsp_after_call_off * wordSize);
kvn@4205 3262 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3263 __ movdqu(xmm_save(i), as_XMMRegister(i));
kvn@4205 3264 }
kvn@6312 3265 #else
kvn@6312 3266 __ push(len_reg); // Save
kvn@4205 3267 #endif
kvn@4205 3268
kvn@4205 3269 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
kvn@4205 3270 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4363 3271 // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
kvn@4363 3272 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
kvn@4205 3273 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 3274 offset += 0x10;
kvn@4205 3275 }
kvn@4205 3276 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
kvn@4205 3277
kvn@4205 3278 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 3279 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3280 __ cmpl(rax, 44);
kvn@4205 3281 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 3282
kvn@4205 3283 // 128 bit code follows here
kvn@4205 3284 __ movptr(pos, 0);
kvn@4205 3285 __ align(OptoLoopAlignment);
kvn@4363 3286
kvn@4205 3287 __ BIND(L_loopTop_128);
kvn@4205 3288 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 3289 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 3290 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4363 3291 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
kvn@4205 3292 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 3293 }
kvn@4205 3294 __ aesenclast(xmm_result, xmm_key10);
kvn@4205 3295 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3296 // no need to store r to memory until we exit
kvn@4205 3297 __ addptr(pos, AESBlockSize);
kvn@4205 3298 __ subptr(len_reg, AESBlockSize);
kvn@4205 3299 __ jcc(Assembler::notEqual, L_loopTop_128);
kvn@4205 3300
kvn@4205 3301 __ BIND(L_exit);
kvn@4205 3302 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 3303
kvn@4205 3304 #ifdef _WIN64
kvn@4205 3305 // restore xmm regs belonging to calling function
kvn@4205 3306 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3307 __ movdqu(as_XMMRegister(i), xmm_save(i));
kvn@4205 3308 }
kvn@6312 3309 __ movl(rax, len_mem);
kvn@6312 3310 #else
kvn@6312 3311 __ pop(rax); // return length
kvn@4205 3312 #endif
kvn@4205 3313 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3314 __ ret(0);
kvn@4205 3315
kvn@4205 3316 __ BIND(L_key_192_256);
kvn@4205 3317 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4363 3318 load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 3319 load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
kvn@4205 3320 __ cmpl(rax, 52);
kvn@4205 3321 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 3322
kvn@4205 3323 // 192-bit code follows here (could be changed to use more xmm registers)
kvn@4205 3324 __ movptr(pos, 0);
kvn@4205 3325 __ align(OptoLoopAlignment);
kvn@4363 3326
kvn@4205 3327 __ BIND(L_loopTop_192);
kvn@4205 3328 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 3329 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 3330 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4363 3331 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
kvn@4205 3332 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 3333 }
kvn@4363 3334 __ aesenclast(xmm_result, xmm_key12);
kvn@4205 3335 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3336 // no need to store r to memory until we exit
kvn@4205 3337 __ addptr(pos, AESBlockSize);
kvn@4205 3338 __ subptr(len_reg, AESBlockSize);
kvn@4205 3339 __ jcc(Assembler::notEqual, L_loopTop_192);
kvn@4205 3340 __ jmp(L_exit);
kvn@4205 3341
kvn@4205 3342 __ BIND(L_key_256);
kvn@4205 3343 // 256-bit code follows here (could be changed to use more xmm registers)
kvn@4363 3344 load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
kvn@4205 3345 __ movptr(pos, 0);
kvn@4205 3346 __ align(OptoLoopAlignment);
kvn@4363 3347
kvn@4205 3348 __ BIND(L_loopTop_256);
kvn@4205 3349 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 3350 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 3351 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4363 3352 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
kvn@4205 3353 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 3354 }
kvn@4205 3355 load_key(xmm_temp, key, 0xe0);
kvn@4205 3356 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 3357 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3358 // no need to store r to memory until we exit
kvn@4205 3359 __ addptr(pos, AESBlockSize);
kvn@4205 3360 __ subptr(len_reg, AESBlockSize);
kvn@4205 3361 __ jcc(Assembler::notEqual, L_loopTop_256);
kvn@4205 3362 __ jmp(L_exit);
kvn@4205 3363
kvn@4205 3364 return start;
kvn@4205 3365 }
kvn@4205 3366
goetz@5400 3367 // Safefetch stubs.
goetz@5400 3368 void generate_safefetch(const char* name, int size, address* entry,
goetz@5400 3369 address* fault_pc, address* continuation_pc) {
goetz@5400 3370 // safefetch signatures:
goetz@5400 3371 // int SafeFetch32(int* adr, int errValue);
goetz@5400 3372 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
goetz@5400 3373 //
goetz@5400 3374 // arguments:
goetz@5400 3375 // c_rarg0 = adr
goetz@5400 3376 // c_rarg1 = errValue
goetz@5400 3377 //
goetz@5400 3378 // result:
goetz@5400 3379 // PPC_RET = *adr or errValue
goetz@5400 3380
goetz@5400 3381 StubCodeMark mark(this, "StubRoutines", name);
goetz@5400 3382
goetz@5400 3383 // Entry point, pc or function descriptor.
goetz@5400 3384 *entry = __ pc();
goetz@5400 3385
goetz@5400 3386 // Load *adr into c_rarg1, may fault.
goetz@5400 3387 *fault_pc = __ pc();
goetz@5400 3388 switch (size) {
goetz@5400 3389 case 4:
goetz@5400 3390 // int32_t
goetz@5400 3391 __ movl(c_rarg1, Address(c_rarg0, 0));
goetz@5400 3392 break;
goetz@5400 3393 case 8:
goetz@5400 3394 // int64_t
goetz@5400 3395 __ movq(c_rarg1, Address(c_rarg0, 0));
goetz@5400 3396 break;
goetz@5400 3397 default:
goetz@5400 3398 ShouldNotReachHere();
goetz@5400 3399 }
goetz@5400 3400
goetz@5400 3401 // return errValue or *adr
goetz@5400 3402 *continuation_pc = __ pc();
goetz@5400 3403 __ movq(rax, c_rarg1);
goetz@5400 3404 __ ret(0);
goetz@5400 3405 }
kvn@4205 3406
kvn@4205 3407 // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
kvn@4205 3408 // to hide instruction latency
kvn@4205 3409 //
kvn@4205 3410 // Arguments:
kvn@4205 3411 //
kvn@4205 3412 // Inputs:
kvn@4205 3413 // c_rarg0 - source byte array address
kvn@4205 3414 // c_rarg1 - destination byte array address
kvn@4205 3415 // c_rarg2 - K (key) in little endian int array
kvn@4205 3416 // c_rarg3 - r vector byte array address
kvn@4205 3417 // c_rarg4 - input length
kvn@4205 3418 //
kvn@6312 3419 // Output:
kvn@6312 3420 // rax - input length
kvn@6312 3421 //
kvn@4205 3422
kvn@4205 3423 address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
kvn@4363 3424 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 3425 __ align(CodeEntryAlignment);
kvn@4205 3426 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
kvn@4205 3427 address start = __ pc();
kvn@4205 3428
kvn@4205 3429 Label L_exit, L_key_192_256, L_key_256;
kvn@4205 3430 Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
kvn@4205 3431 Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
kvn@4205 3432 const Register from = c_rarg0; // source array address
kvn@4205 3433 const Register to = c_rarg1; // destination array address
kvn@4205 3434 const Register key = c_rarg2; // key array address
kvn@4205 3435 const Register rvec = c_rarg3; // r byte array initialized from initvector array address
kvn@4205 3436 // and left with the results of the last encryption block
kvn@4205 3437 #ifndef _WIN64
kvn@4205 3438 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
kvn@4205 3439 #else
kvn@6312 3440 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
kvn@4205 3441 const Register len_reg = r10; // pick the first volatile windows register
kvn@4205 3442 #endif
kvn@4205 3443 const Register pos = rax;
kvn@4205 3444
kvn@4205 3445 // keys 0-10 preloaded into xmm2-xmm12
kvn@4205 3446 const int XMM_REG_NUM_KEY_FIRST = 5;
kvn@4205 3447 const int XMM_REG_NUM_KEY_LAST = 15;
kvn@4363 3448 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4205 3449 const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
kvn@4205 3450
kvn@4205 3451 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3452
kvn@4205 3453 #ifdef _WIN64
kvn@4205 3454 // on win64, fill len_reg from stack position
kvn@4205 3455 __ movl(len_reg, len_mem);
kvn@4205 3456 // save the xmm registers which must be preserved 6-15
kvn@4205 3457 __ subptr(rsp, -rsp_after_call_off * wordSize);
kvn@4205 3458 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3459 __ movdqu(xmm_save(i), as_XMMRegister(i));
kvn@4205 3460 }
kvn@6312 3461 #else
kvn@6312 3462 __ push(len_reg); // Save
kvn@4205 3463 #endif
kvn@6312 3464
kvn@4205 3465 // the java expanded key ordering is rotated one position from what we want
kvn@4205 3466 // so we start from 0x10 here and hit 0x00 last
kvn@4205 3467 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
kvn@4205 3468 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 3469 // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
kvn@4363 3470 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 3471 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 3472 offset += 0x10;
kvn@4205 3473 }
kvn@4363 3474 load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
kvn@4205 3475
kvn@4205 3476 const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block
kvn@4363 3477
kvn@4205 3478 // registers holding the four results in the parallelized loop
kvn@4205 3479 const XMMRegister xmm_result0 = xmm0;
kvn@4205 3480 const XMMRegister xmm_result1 = xmm2;
kvn@4205 3481 const XMMRegister xmm_result2 = xmm3;
kvn@4205 3482 const XMMRegister xmm_result3 = xmm4;
kvn@4205 3483
kvn@4205 3484 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
kvn@4205 3485
kvn@4205 3486 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 3487 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 3488 __ cmpl(rax, 44);
kvn@4205 3489 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 3490
kvn@4205 3491
kvn@4205 3492 // 128-bit code follows here, parallelized
kvn@4205 3493 __ movptr(pos, 0);
kvn@4205 3494 __ align(OptoLoopAlignment);
kvn@4205 3495 __ BIND(L_multiBlock_loopTop_128);
kvn@4205 3496 __ cmpptr(len_reg, 4*AESBlockSize); // see if at least 4 blocks left
kvn@4205 3497 __ jcc(Assembler::less, L_singleBlock_loopTop_128);
kvn@4205 3498
kvn@4205 3499 __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize)); // get next 4 blocks into xmmresult registers
kvn@4205 3500 __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
kvn@4205 3501 __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
kvn@4205 3502 __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
kvn@4205 3503
kvn@4205 3504 #define DoFour(opc, src_reg) \
kvn@4205 3505 __ opc(xmm_result0, src_reg); \
kvn@4205 3506 __ opc(xmm_result1, src_reg); \
kvn@4205 3507 __ opc(xmm_result2, src_reg); \
kvn@4205 3508 __ opc(xmm_result3, src_reg);
kvn@4205 3509
kvn@4205 3510 DoFour(pxor, xmm_key_first);
kvn@4205 3511 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3512 DoFour(aesdec, as_XMMRegister(rnum));
kvn@4205 3513 }
kvn@4205 3514 DoFour(aesdeclast, xmm_key_last);
kvn@4205 3515 // for each result, xor with the r vector of previous cipher block
kvn@4205 3516 __ pxor(xmm_result0, xmm_prev_block_cipher);
kvn@4205 3517 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
kvn@4205 3518 __ pxor(xmm_result1, xmm_prev_block_cipher);
kvn@4205 3519 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
kvn@4205 3520 __ pxor(xmm_result2, xmm_prev_block_cipher);
kvn@4205 3521 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
kvn@4205 3522 __ pxor(xmm_result3, xmm_prev_block_cipher);
kvn@4205 3523 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize)); // this will carry over to next set of blocks
kvn@4205 3524
kvn@4205 3525 __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output
kvn@4205 3526 __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
kvn@4205 3527 __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
kvn@4205 3528 __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
kvn@4205 3529
kvn@4205 3530 __ addptr(pos, 4*AESBlockSize);
kvn@4205 3531 __ subptr(len_reg, 4*AESBlockSize);
kvn@4205 3532 __ jmp(L_multiBlock_loopTop_128);
kvn@4205 3533
kvn@4205 3534 // registers used in the non-parallelized loops
kvn@4363 3535 // xmm register assignments for the loops below
kvn@4363 3536 const XMMRegister xmm_result = xmm0;
kvn@4205 3537 const XMMRegister xmm_prev_block_cipher_save = xmm2;
kvn@4363 3538 const XMMRegister xmm_key11 = xmm3;
kvn@4363 3539 const XMMRegister xmm_key12 = xmm4;
kvn@4363 3540 const XMMRegister xmm_temp = xmm4;
kvn@4205 3541
kvn@4205 3542 __ align(OptoLoopAlignment);
kvn@4205 3543 __ BIND(L_singleBlock_loopTop_128);
kvn@4205 3544 __ cmpptr(len_reg, 0); // any blocks left??
kvn@4205 3545 __ jcc(Assembler::equal, L_exit);
kvn@4205 3546 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 3547 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
kvn@4205 3548 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 3549 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3550 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 3551 }
kvn@4205 3552 __ aesdeclast(xmm_result, xmm_key_last);
kvn@4205 3553 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
kvn@4205 3554 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3555 // no need to store r to memory until we exit
kvn@4205 3556 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
kvn@4205 3557
kvn@4205 3558 __ addptr(pos, AESBlockSize);
kvn@4205 3559 __ subptr(len_reg, AESBlockSize);
kvn@4205 3560 __ jmp(L_singleBlock_loopTop_128);
kvn@4205 3561
kvn@4205 3562
kvn@4205 3563 __ BIND(L_exit);
kvn@4205 3564 __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 3565 #ifdef _WIN64
kvn@4205 3566 // restore regs belonging to calling function
kvn@4205 3567 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
kvn@4205 3568 __ movdqu(as_XMMRegister(i), xmm_save(i));
kvn@4205 3569 }
kvn@6312 3570 __ movl(rax, len_mem);
kvn@6312 3571 #else
kvn@6312 3572 __ pop(rax); // return length
kvn@4205 3573 #endif
kvn@4205 3574 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 3575 __ ret(0);
kvn@4205 3576
kvn@4205 3577
kvn@4205 3578 __ BIND(L_key_192_256);
kvn@4205 3579 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4363 3580 load_key(xmm_key11, key, 0xb0);
kvn@4205 3581 __ cmpl(rax, 52);
kvn@4205 3582 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 3583
kvn@4205 3584 // 192-bit code follows here (could be optimized to use parallelism)
kvn@4363 3585 load_key(xmm_key12, key, 0xc0); // 192-bit key goes up to c0
kvn@4205 3586 __ movptr(pos, 0);
kvn@4205 3587 __ align(OptoLoopAlignment);
kvn@4363 3588
kvn@4205 3589 __ BIND(L_singleBlock_loopTop_192);
kvn@4205 3590 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 3591 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
kvn@4205 3592 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 3593 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3594 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 3595 }
kvn@4363 3596 __ aesdec(xmm_result, xmm_key11);
kvn@4363 3597 __ aesdec(xmm_result, xmm_key12);
kvn@4205 3598 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0
kvn@4205 3599 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
kvn@4363 3600 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3601 // no need to store r to memory until we exit
kvn@4363 3602 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
kvn@4205 3603 __ addptr(pos, AESBlockSize);
kvn@4205 3604 __ subptr(len_reg, AESBlockSize);
kvn@4205 3605 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
kvn@4205 3606 __ jmp(L_exit);
kvn@4205 3607
kvn@4205 3608 __ BIND(L_key_256);
kvn@4205 3609 // 256-bit code follows here (could be optimized to use parallelism)
kvn@4205 3610 __ movptr(pos, 0);
kvn@4205 3611 __ align(OptoLoopAlignment);
kvn@4363 3612
kvn@4205 3613 __ BIND(L_singleBlock_loopTop_256);
kvn@4363 3614 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 3615 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
kvn@4205 3616 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 3617 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
kvn@4205 3618 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 3619 }
kvn@4363 3620 __ aesdec(xmm_result, xmm_key11);
kvn@4363 3621 load_key(xmm_temp, key, 0xc0);
kvn@4363 3622 __ aesdec(xmm_result, xmm_temp);
kvn@4363 3623 load_key(xmm_temp, key, 0xd0);
kvn@4363 3624 __ aesdec(xmm_result, xmm_temp);
kvn@4363 3625 load_key(xmm_temp, key, 0xe0); // 256-bit key goes up to e0
kvn@4363 3626 __ aesdec(xmm_result, xmm_temp);
kvn@4363 3627 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 came from key+0
kvn@4205 3628 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
kvn@4363 3629 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 3630 // no need to store r to memory until we exit
kvn@4363 3631 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
kvn@4205 3632 __ addptr(pos, AESBlockSize);
kvn@4205 3633 __ subptr(len_reg, AESBlockSize);
kvn@4205 3634 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
kvn@4205 3635 __ jmp(L_exit);
kvn@4205 3636
kvn@4205 3637 return start;
kvn@4205 3638 }
kvn@4205 3639
drchase@5353 3640 /**
drchase@5353 3641 * Arguments:
drchase@5353 3642 *
drchase@5353 3643 * Inputs:
drchase@5353 3644 * c_rarg0 - int crc
drchase@5353 3645 * c_rarg1 - byte* buf
drchase@5353 3646 * c_rarg2 - int length
drchase@5353 3647 *
drchase@5353 3648 * Ouput:
drchase@5353 3649 * rax - int crc result
drchase@5353 3650 */
drchase@5353 3651 address generate_updateBytesCRC32() {
drchase@5353 3652 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
drchase@5353 3653
drchase@5353 3654 __ align(CodeEntryAlignment);
drchase@5353 3655 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
drchase@5353 3656
drchase@5353 3657 address start = __ pc();
drchase@5353 3658 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
drchase@5353 3659 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
drchase@5353 3660 // rscratch1: r10
drchase@5353 3661 const Register crc = c_rarg0; // crc
drchase@5353 3662 const Register buf = c_rarg1; // source java byte array address
drchase@5353 3663 const Register len = c_rarg2; // length
drchase@5353 3664 const Register table = c_rarg3; // crc_table address (reuse register)
drchase@5353 3665 const Register tmp = r11;
drchase@5353 3666 assert_different_registers(crc, buf, len, table, tmp, rax);
drchase@5353 3667
drchase@5353 3668 BLOCK_COMMENT("Entry:");
drchase@5353 3669 __ enter(); // required for proper stackwalking of RuntimeStub frame
drchase@5353 3670
drchase@5353 3671 __ kernel_crc32(crc, buf, len, table, tmp);
drchase@5353 3672
drchase@5353 3673 __ movl(rax, crc);
drchase@5353 3674 __ leave(); // required for proper stackwalking of RuntimeStub frame
drchase@5353 3675 __ ret(0);
drchase@5353 3676
drchase@5353 3677 return start;
drchase@5353 3678 }
kvn@4205 3679
kvn@7152 3680
kvn@7152 3681 /**
kvn@7152 3682 * Arguments:
kvn@7152 3683 *
kvn@7152 3684 * Input:
kvn@7152 3685 * c_rarg0 - x address
kvn@7152 3686 * c_rarg1 - x length
kvn@7152 3687 * c_rarg2 - y address
kvn@7152 3688 * c_rarg3 - y lenth
kvn@7152 3689 * not Win64
kvn@7152 3690 * c_rarg4 - z address
kvn@7152 3691 * c_rarg5 - z length
kvn@7152 3692 * Win64
kvn@7152 3693 * rsp+40 - z address
kvn@7152 3694 * rsp+48 - z length
kvn@7152 3695 */
kvn@7152 3696 address generate_multiplyToLen() {
kvn@7152 3697 __ align(CodeEntryAlignment);
kvn@7152 3698 StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
kvn@7152 3699
kvn@7152 3700 address start = __ pc();
kvn@7152 3701 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
kvn@7152 3702 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
kvn@7152 3703 const Register x = rdi;
kvn@7152 3704 const Register xlen = rax;
kvn@7152 3705 const Register y = rsi;
kvn@7152 3706 const Register ylen = rcx;
kvn@7152 3707 const Register z = r8;
kvn@7152 3708 const Register zlen = r11;
kvn@7152 3709
kvn@7152 3710 // Next registers will be saved on stack in multiply_to_len().
kvn@7152 3711 const Register tmp1 = r12;
kvn@7152 3712 const Register tmp2 = r13;
kvn@7152 3713 const Register tmp3 = r14;
kvn@7152 3714 const Register tmp4 = r15;
kvn@7152 3715 const Register tmp5 = rbx;
kvn@7152 3716
kvn@7152 3717 BLOCK_COMMENT("Entry:");
kvn@7152 3718 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@7152 3719
kvn@7152 3720 #ifndef _WIN64
kvn@7152 3721 __ movptr(zlen, r9); // Save r9 in r11 - zlen
kvn@7152 3722 #endif
kvn@7152 3723 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
kvn@7152 3724 // ylen => rcx, z => r8, zlen => r11
kvn@7152 3725 // r9 and r10 may be used to save non-volatile registers
kvn@7152 3726 #ifdef _WIN64
kvn@7152 3727 // last 2 arguments (#4, #5) are on stack on Win64
kvn@7152 3728 __ movptr(z, Address(rsp, 6 * wordSize));
kvn@7152 3729 __ movptr(zlen, Address(rsp, 7 * wordSize));
kvn@7152 3730 #endif
kvn@7152 3731
kvn@7152 3732 __ movptr(xlen, rsi);
kvn@7152 3733 __ movptr(y, rdx);
kvn@7152 3734 __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
kvn@7152 3735
kvn@7152 3736 restore_arg_regs();
kvn@7152 3737
kvn@7152 3738 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@7152 3739 __ ret(0);
kvn@7152 3740
kvn@7152 3741 return start;
kvn@7152 3742 }
kvn@7152 3743
duke@435 3744 #undef __
duke@435 3745 #define __ masm->
duke@435 3746
duke@435 3747 // Continuation point for throwing of implicit exceptions that are
duke@435 3748 // not handled in the current activation. Fabricates an exception
duke@435 3749 // oop and initiates normal exception dispatching in this
duke@435 3750 // frame. Since we need to preserve callee-saved values (currently
duke@435 3751 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 3752 // map and therefore have to make these stubs into RuntimeStubs
duke@435 3753 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 3754 // be preserved between the fault point and the exception handler
duke@435 3755 // then it must assume responsibility for that in
duke@435 3756 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 3757 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 3758 // implicit exceptions (e.g., NullPointerException or
duke@435 3759 // AbstractMethodError on entry) are either at call sites or
duke@435 3760 // otherwise assume that stack unwinding will be initiated, so
duke@435 3761 // caller saved registers were assumed volatile in the compiler.
duke@435 3762 address generate_throw_exception(const char* name,
duke@435 3763 address runtime_entry,
never@2978 3764 Register arg1 = noreg,
never@2978 3765 Register arg2 = noreg) {
duke@435 3766 // Information about frame layout at time of blocking runtime call.
duke@435 3767 // Note that we only have to preserve callee-saved registers since
duke@435 3768 // the compilers are responsible for supplying a continuation point
duke@435 3769 // if they expect all registers to be preserved.
duke@435 3770 enum layout {
duke@435 3771 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 3772 rbp_off2,
duke@435 3773 return_off,
duke@435 3774 return_off2,
duke@435 3775 framesize // inclusive of return address
duke@435 3776 };
duke@435 3777
duke@435 3778 int insts_size = 512;
duke@435 3779 int locs_size = 64;
duke@435 3780
duke@435 3781 CodeBuffer code(name, insts_size, locs_size);
duke@435 3782 OopMapSet* oop_maps = new OopMapSet();
duke@435 3783 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 3784
duke@435 3785 address start = __ pc();
duke@435 3786
duke@435 3787 // This is an inlined and slightly modified version of call_VM
duke@435 3788 // which has the ability to fetch the return PC out of
duke@435 3789 // thread-local storage and also sets up last_Java_sp slightly
duke@435 3790 // differently than the real call_VM
duke@435 3791
duke@435 3792 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 3793
duke@435 3794 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 3795
duke@435 3796 // return address and rbp are already in place
never@739 3797 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 3798
duke@435 3799 int frame_complete = __ pc() - start;
duke@435 3800
duke@435 3801 // Set up last_Java_sp and last_Java_fp
roland@3522 3802 address the_pc = __ pc();
roland@3522 3803 __ set_last_Java_frame(rsp, rbp, the_pc);
roland@3522 3804 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 3805
duke@435 3806 // Call runtime
never@2978 3807 if (arg1 != noreg) {
never@2978 3808 assert(arg2 != c_rarg1, "clobbered");
never@2978 3809 __ movptr(c_rarg1, arg1);
never@2978 3810 }
never@2978 3811 if (arg2 != noreg) {
never@2978 3812 __ movptr(c_rarg2, arg2);
never@2978 3813 }
never@739 3814 __ movptr(c_rarg0, r15_thread);
duke@435 3815 BLOCK_COMMENT("call runtime_entry");
duke@435 3816 __ call(RuntimeAddress(runtime_entry));
duke@435 3817
duke@435 3818 // Generate oop map
duke@435 3819 OopMap* map = new OopMap(framesize, 0);
duke@435 3820
roland@3568 3821 oop_maps->add_gc_map(the_pc - start, map);
duke@435 3822
roland@3522 3823 __ reset_last_Java_frame(true, true);
duke@435 3824
duke@435 3825 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 3826
duke@435 3827 // check for pending exceptions
duke@435 3828 #ifdef ASSERT
duke@435 3829 Label L;
never@739 3830 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 3831 (int32_t) NULL_WORD);
duke@435 3832 __ jcc(Assembler::notEqual, L);
duke@435 3833 __ should_not_reach_here();
duke@435 3834 __ bind(L);
duke@435 3835 #endif // ASSERT
duke@435 3836 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3837
duke@435 3838
duke@435 3839 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 3840 RuntimeStub* stub =
duke@435 3841 RuntimeStub::new_runtime_stub(name,
duke@435 3842 &code,
duke@435 3843 frame_complete,
duke@435 3844 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 3845 oop_maps, false);
duke@435 3846 return stub->entry_point();
duke@435 3847 }
duke@435 3848
kvn@5439 3849 void create_control_words() {
kvn@5439 3850 // Round to nearest, 53-bit mode, exceptions masked
kvn@5439 3851 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
kvn@5439 3852 // Round to zero, 53-bit mode, exception mased
kvn@5439 3853 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
kvn@5439 3854 // Round to nearest, 24-bit mode, exceptions masked
kvn@5439 3855 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
kvn@5439 3856 // Round to nearest, 64-bit mode, exceptions masked
kvn@5439 3857 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
kvn@5439 3858 // Round to nearest, 64-bit mode, exceptions masked
kvn@5439 3859 StubRoutines::_mxcsr_std = 0x1F80;
kvn@5439 3860 // Note: the following two constants are 80-bit values
kvn@5439 3861 // layout is critical for correct loading by FPU.
kvn@5439 3862 // Bias for strict fp multiply/divide
kvn@5439 3863 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
kvn@5439 3864 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
kvn@5439 3865 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
kvn@5439 3866 // Un-Bias for strict fp multiply/divide
kvn@5439 3867 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
kvn@5439 3868 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
kvn@5439 3869 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
kvn@5439 3870 }
kvn@5439 3871
duke@435 3872 // Initialization
duke@435 3873 void generate_initial() {
duke@435 3874 // Generates all stubs and initializes the entry points
duke@435 3875
kvn@5439 3876 // This platform-specific settings are needed by generate_call_stub()
kvn@5439 3877 create_control_words();
duke@435 3878
duke@435 3879 // entry points that exist in all platforms Note: This is code
duke@435 3880 // that could be shared among different platforms - however the
duke@435 3881 // benefit seems to be smaller than the disadvantage of having a
duke@435 3882 // much more complicated generator structure. See also comment in
duke@435 3883 // stubRoutines.hpp.
duke@435 3884
duke@435 3885 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3886
duke@435 3887 StubRoutines::_call_stub_entry =
duke@435 3888 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3889
duke@435 3890 // is referenced by megamorphic call
duke@435 3891 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3892
duke@435 3893 // atomic calls
duke@435 3894 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3895 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 3896 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3897 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3898 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3899 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 3900 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 3901
duke@435 3902 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3903 generate_handler_for_unsafe_access();
duke@435 3904
duke@435 3905 // platform dependent
never@739 3906 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
roland@3606 3907 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
never@739 3908
never@739 3909 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@2978 3910
bdelsart@3372 3911 // Build this early so it's available for the interpreter.
bdelsart@3372 3912 StubRoutines::_throw_StackOverflowError_entry =
bdelsart@3372 3913 generate_throw_exception("StackOverflowError throw_exception",
bdelsart@3372 3914 CAST_FROM_FN_PTR(address,
bdelsart@3372 3915 SharedRuntime::
bdelsart@3372 3916 throw_StackOverflowError));
drchase@5353 3917 if (UseCRC32Intrinsics) {
drchase@5353 3918 // set table address before stub generation which use it
drchase@5353 3919 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
drchase@5353 3920 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
drchase@5353 3921 }
duke@435 3922 }
duke@435 3923
duke@435 3924 void generate_all() {
duke@435 3925 // Generates all stubs and initializes the entry points
duke@435 3926
duke@435 3927 // These entry points require SharedInfo::stack0 to be set up in
duke@435 3928 // non-core builds and need to be relocatable, so they each
duke@435 3929 // fabricate a RuntimeStub internally.
duke@435 3930 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3931 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3932 CAST_FROM_FN_PTR(address,
duke@435 3933 SharedRuntime::
never@3136 3934 throw_AbstractMethodError));
duke@435 3935
dcubed@451 3936 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3937 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3938 CAST_FROM_FN_PTR(address,
dcubed@451 3939 SharedRuntime::
never@3136 3940 throw_IncompatibleClassChangeError));
duke@435 3941
duke@435 3942 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3943 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3944 CAST_FROM_FN_PTR(address,
duke@435 3945 SharedRuntime::
never@3136 3946 throw_NullPointerException_at_call));
duke@435 3947
duke@435 3948 // entry points that are platform specific
never@739 3949 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3950 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3951 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3952 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3953
never@739 3954 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3955 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3956 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3957 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3958
duke@435 3959 // support for verify_oop (must happen after universe_init)
duke@435 3960 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3961
duke@435 3962 // arraycopy stubs used by compilers
duke@435 3963 generate_arraycopy_stubs();
twisti@1543 3964
never@1609 3965 generate_math_stubs();
kvn@4205 3966
kvn@4205 3967 // don't bother generating these AES intrinsic stubs unless global flag is set
kvn@4205 3968 if (UseAESIntrinsics) {
kvn@4205 3969 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others
kvn@4205 3970
kvn@4205 3971 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
kvn@4205 3972 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
kvn@4205 3973 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
kvn@4205 3974 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
kvn@4205 3975 }
goetz@5400 3976
goetz@5400 3977 // Safefetch stubs.
goetz@5400 3978 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
goetz@5400 3979 &StubRoutines::_safefetch32_fault_pc,
goetz@5400 3980 &StubRoutines::_safefetch32_continuation_pc);
goetz@5400 3981 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
goetz@5400 3982 &StubRoutines::_safefetchN_fault_pc,
goetz@5400 3983 &StubRoutines::_safefetchN_continuation_pc);
kvn@7152 3984 #ifdef COMPILER2
kvn@7152 3985 if (UseMultiplyToLenIntrinsic) {
kvn@7152 3986 StubRoutines::_multiplyToLen = generate_multiplyToLen();
kvn@7152 3987 }
kvn@7152 3988 #endif
duke@435 3989 }
duke@435 3990
duke@435 3991 public:
duke@435 3992 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3993 if (all) {
duke@435 3994 generate_all();
duke@435 3995 } else {
duke@435 3996 generate_initial();
duke@435 3997 }
duke@435 3998 }
duke@435 3999 }; // end class declaration
duke@435 4000
duke@435 4001 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 4002 StubGenerator g(code, all);
duke@435 4003 }

mercurial