src/cpu/x86/vm/stubGenerator_x86_64.cpp

Thu, 12 Oct 2017 21:27:07 +0800

author
aoqi
date
Thu, 12 Oct 2017 21:27:07 +0800
changeset 7535
7ae4e26cb1e0
parent 7152
166d744df0de
parent 6876
710a3c8b516e
child 7994
04ff2f6cd0eb
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "asm/macroAssembler.hpp"
aoqi@0 27 #include "asm/macroAssembler.inline.hpp"
aoqi@0 28 #include "interpreter/interpreter.hpp"
aoqi@0 29 #include "nativeInst_x86.hpp"
aoqi@0 30 #include "oops/instanceOop.hpp"
aoqi@0 31 #include "oops/method.hpp"
aoqi@0 32 #include "oops/objArrayKlass.hpp"
aoqi@0 33 #include "oops/oop.inline.hpp"
aoqi@0 34 #include "prims/methodHandles.hpp"
aoqi@0 35 #include "runtime/frame.inline.hpp"
aoqi@0 36 #include "runtime/handles.inline.hpp"
aoqi@0 37 #include "runtime/sharedRuntime.hpp"
aoqi@0 38 #include "runtime/stubCodeGenerator.hpp"
aoqi@0 39 #include "runtime/stubRoutines.hpp"
aoqi@0 40 #include "runtime/thread.inline.hpp"
aoqi@0 41 #include "utilities/top.hpp"
aoqi@0 42 #ifdef COMPILER2
aoqi@0 43 #include "opto/runtime.hpp"
aoqi@0 44 #endif
aoqi@0 45
aoqi@0 46 // Declaration and definition of StubGenerator (no .hpp file).
aoqi@0 47 // For a more detailed description of the stub routine structure
aoqi@0 48 // see the comment in stubRoutines.hpp
aoqi@0 49
aoqi@0 50 #define __ _masm->
aoqi@0 51 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
aoqi@0 52 #define a__ ((Assembler*)_masm)->
aoqi@0 53
aoqi@0 54 #ifdef PRODUCT
aoqi@0 55 #define BLOCK_COMMENT(str) /* nothing */
aoqi@0 56 #else
aoqi@0 57 #define BLOCK_COMMENT(str) __ block_comment(str)
aoqi@0 58 #endif
aoqi@0 59
aoqi@0 60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
aoqi@0 61 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
aoqi@0 62
aoqi@0 63 // Stub Code definitions
aoqi@0 64
aoqi@0 65 static address handle_unsafe_access() {
aoqi@0 66 JavaThread* thread = JavaThread::current();
aoqi@0 67 address pc = thread->saved_exception_pc();
aoqi@0 68 // pc is the instruction which we must emulate
aoqi@0 69 // doing a no-op is fine: return garbage from the load
aoqi@0 70 // therefore, compute npc
aoqi@0 71 address npc = Assembler::locate_next_instruction(pc);
aoqi@0 72
aoqi@0 73 // request an async exception
aoqi@0 74 thread->set_pending_unsafe_access_error();
aoqi@0 75
aoqi@0 76 // return address of next instruction to execute
aoqi@0 77 return npc;
aoqi@0 78 }
aoqi@0 79
aoqi@0 80 class StubGenerator: public StubCodeGenerator {
aoqi@0 81 private:
aoqi@0 82
aoqi@0 83 #ifdef PRODUCT
aoqi@0 84 #define inc_counter_np(counter) ((void)0)
aoqi@0 85 #else
aoqi@0 86 void inc_counter_np_(int& counter) {
aoqi@0 87 // This can destroy rscratch1 if counter is far from the code cache
aoqi@0 88 __ incrementl(ExternalAddress((address)&counter));
aoqi@0 89 }
aoqi@0 90 #define inc_counter_np(counter) \
aoqi@0 91 BLOCK_COMMENT("inc_counter " #counter); \
aoqi@0 92 inc_counter_np_(counter);
aoqi@0 93 #endif
aoqi@0 94
aoqi@0 95 // Call stubs are used to call Java from C
aoqi@0 96 //
aoqi@0 97 // Linux Arguments:
aoqi@0 98 // c_rarg0: call wrapper address address
aoqi@0 99 // c_rarg1: result address
aoqi@0 100 // c_rarg2: result type BasicType
aoqi@0 101 // c_rarg3: method Method*
aoqi@0 102 // c_rarg4: (interpreter) entry point address
aoqi@0 103 // c_rarg5: parameters intptr_t*
aoqi@0 104 // 16(rbp): parameter size (in words) int
aoqi@0 105 // 24(rbp): thread Thread*
aoqi@0 106 //
aoqi@0 107 // [ return_from_Java ] <--- rsp
aoqi@0 108 // [ argument word n ]
aoqi@0 109 // ...
aoqi@0 110 // -12 [ argument word 1 ]
aoqi@0 111 // -11 [ saved r15 ] <--- rsp_after_call
aoqi@0 112 // -10 [ saved r14 ]
aoqi@0 113 // -9 [ saved r13 ]
aoqi@0 114 // -8 [ saved r12 ]
aoqi@0 115 // -7 [ saved rbx ]
aoqi@0 116 // -6 [ call wrapper ]
aoqi@0 117 // -5 [ result ]
aoqi@0 118 // -4 [ result type ]
aoqi@0 119 // -3 [ method ]
aoqi@0 120 // -2 [ entry point ]
aoqi@0 121 // -1 [ parameters ]
aoqi@0 122 // 0 [ saved rbp ] <--- rbp
aoqi@0 123 // 1 [ return address ]
aoqi@0 124 // 2 [ parameter size ]
aoqi@0 125 // 3 [ thread ]
aoqi@0 126 //
aoqi@0 127 // Windows Arguments:
aoqi@0 128 // c_rarg0: call wrapper address address
aoqi@0 129 // c_rarg1: result address
aoqi@0 130 // c_rarg2: result type BasicType
aoqi@0 131 // c_rarg3: method Method*
aoqi@0 132 // 48(rbp): (interpreter) entry point address
aoqi@0 133 // 56(rbp): parameters intptr_t*
aoqi@0 134 // 64(rbp): parameter size (in words) int
aoqi@0 135 // 72(rbp): thread Thread*
aoqi@0 136 //
aoqi@0 137 // [ return_from_Java ] <--- rsp
aoqi@0 138 // [ argument word n ]
aoqi@0 139 // ...
aoqi@0 140 // -28 [ argument word 1 ]
aoqi@0 141 // -27 [ saved xmm15 ] <--- rsp_after_call
aoqi@0 142 // [ saved xmm7-xmm14 ]
aoqi@0 143 // -9 [ saved xmm6 ] (each xmm register takes 2 slots)
aoqi@0 144 // -7 [ saved r15 ]
aoqi@0 145 // -6 [ saved r14 ]
aoqi@0 146 // -5 [ saved r13 ]
aoqi@0 147 // -4 [ saved r12 ]
aoqi@0 148 // -3 [ saved rdi ]
aoqi@0 149 // -2 [ saved rsi ]
aoqi@0 150 // -1 [ saved rbx ]
aoqi@0 151 // 0 [ saved rbp ] <--- rbp
aoqi@0 152 // 1 [ return address ]
aoqi@0 153 // 2 [ call wrapper ]
aoqi@0 154 // 3 [ result ]
aoqi@0 155 // 4 [ result type ]
aoqi@0 156 // 5 [ method ]
aoqi@0 157 // 6 [ entry point ]
aoqi@0 158 // 7 [ parameters ]
aoqi@0 159 // 8 [ parameter size ]
aoqi@0 160 // 9 [ thread ]
aoqi@0 161 //
aoqi@0 162 // Windows reserves the callers stack space for arguments 1-4.
aoqi@0 163 // We spill c_rarg0-c_rarg3 to this space.
aoqi@0 164
aoqi@0 165 // Call stub stack layout word offsets from rbp
aoqi@0 166 enum call_stub_layout {
aoqi@0 167 #ifdef _WIN64
aoqi@0 168 xmm_save_first = 6, // save from xmm6
aoqi@0 169 xmm_save_last = 15, // to xmm15
aoqi@0 170 xmm_save_base = -9,
aoqi@0 171 rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
aoqi@0 172 r15_off = -7,
aoqi@0 173 r14_off = -6,
aoqi@0 174 r13_off = -5,
aoqi@0 175 r12_off = -4,
aoqi@0 176 rdi_off = -3,
aoqi@0 177 rsi_off = -2,
aoqi@0 178 rbx_off = -1,
aoqi@0 179 rbp_off = 0,
aoqi@0 180 retaddr_off = 1,
aoqi@0 181 call_wrapper_off = 2,
aoqi@0 182 result_off = 3,
aoqi@0 183 result_type_off = 4,
aoqi@0 184 method_off = 5,
aoqi@0 185 entry_point_off = 6,
aoqi@0 186 parameters_off = 7,
aoqi@0 187 parameter_size_off = 8,
aoqi@0 188 thread_off = 9
aoqi@0 189 #else
aoqi@0 190 rsp_after_call_off = -12,
aoqi@0 191 mxcsr_off = rsp_after_call_off,
aoqi@0 192 r15_off = -11,
aoqi@0 193 r14_off = -10,
aoqi@0 194 r13_off = -9,
aoqi@0 195 r12_off = -8,
aoqi@0 196 rbx_off = -7,
aoqi@0 197 call_wrapper_off = -6,
aoqi@0 198 result_off = -5,
aoqi@0 199 result_type_off = -4,
aoqi@0 200 method_off = -3,
aoqi@0 201 entry_point_off = -2,
aoqi@0 202 parameters_off = -1,
aoqi@0 203 rbp_off = 0,
aoqi@0 204 retaddr_off = 1,
aoqi@0 205 parameter_size_off = 2,
aoqi@0 206 thread_off = 3
aoqi@0 207 #endif
aoqi@0 208 };
aoqi@0 209
aoqi@0 210 #ifdef _WIN64
aoqi@0 211 Address xmm_save(int reg) {
aoqi@0 212 assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
aoqi@0 213 return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
aoqi@0 214 }
aoqi@0 215 #endif
aoqi@0 216
aoqi@0 217 address generate_call_stub(address& return_address) {
aoqi@0 218 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
aoqi@0 219 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
aoqi@0 220 "adjust this code");
aoqi@0 221 StubCodeMark mark(this, "StubRoutines", "call_stub");
aoqi@0 222 address start = __ pc();
aoqi@0 223
aoqi@0 224 // same as in generate_catch_exception()!
aoqi@0 225 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
aoqi@0 226
aoqi@0 227 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
aoqi@0 228 const Address result (rbp, result_off * wordSize);
aoqi@0 229 const Address result_type (rbp, result_type_off * wordSize);
aoqi@0 230 const Address method (rbp, method_off * wordSize);
aoqi@0 231 const Address entry_point (rbp, entry_point_off * wordSize);
aoqi@0 232 const Address parameters (rbp, parameters_off * wordSize);
aoqi@0 233 const Address parameter_size(rbp, parameter_size_off * wordSize);
aoqi@0 234
aoqi@0 235 // same as in generate_catch_exception()!
aoqi@0 236 const Address thread (rbp, thread_off * wordSize);
aoqi@0 237
aoqi@0 238 const Address r15_save(rbp, r15_off * wordSize);
aoqi@0 239 const Address r14_save(rbp, r14_off * wordSize);
aoqi@0 240 const Address r13_save(rbp, r13_off * wordSize);
aoqi@0 241 const Address r12_save(rbp, r12_off * wordSize);
aoqi@0 242 const Address rbx_save(rbp, rbx_off * wordSize);
aoqi@0 243
aoqi@0 244 // stub code
aoqi@0 245 __ enter();
aoqi@0 246 __ subptr(rsp, -rsp_after_call_off * wordSize);
aoqi@0 247
aoqi@0 248 // save register parameters
aoqi@0 249 #ifndef _WIN64
aoqi@0 250 __ movptr(parameters, c_rarg5); // parameters
aoqi@0 251 __ movptr(entry_point, c_rarg4); // entry_point
aoqi@0 252 #endif
aoqi@0 253
aoqi@0 254 __ movptr(method, c_rarg3); // method
aoqi@0 255 __ movl(result_type, c_rarg2); // result type
aoqi@0 256 __ movptr(result, c_rarg1); // result
aoqi@0 257 __ movptr(call_wrapper, c_rarg0); // call wrapper
aoqi@0 258
aoqi@0 259 // save regs belonging to calling function
aoqi@0 260 __ movptr(rbx_save, rbx);
aoqi@0 261 __ movptr(r12_save, r12);
aoqi@0 262 __ movptr(r13_save, r13);
aoqi@0 263 __ movptr(r14_save, r14);
aoqi@0 264 __ movptr(r15_save, r15);
aoqi@0 265 #ifdef _WIN64
aoqi@0 266 for (int i = 6; i <= 15; i++) {
aoqi@0 267 __ movdqu(xmm_save(i), as_XMMRegister(i));
aoqi@0 268 }
aoqi@0 269
aoqi@0 270 const Address rdi_save(rbp, rdi_off * wordSize);
aoqi@0 271 const Address rsi_save(rbp, rsi_off * wordSize);
aoqi@0 272
aoqi@0 273 __ movptr(rsi_save, rsi);
aoqi@0 274 __ movptr(rdi_save, rdi);
aoqi@0 275 #else
aoqi@0 276 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
aoqi@0 277 {
aoqi@0 278 Label skip_ldmx;
aoqi@0 279 __ stmxcsr(mxcsr_save);
aoqi@0 280 __ movl(rax, mxcsr_save);
aoqi@0 281 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
aoqi@0 282 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
aoqi@0 283 __ cmp32(rax, mxcsr_std);
aoqi@0 284 __ jcc(Assembler::equal, skip_ldmx);
aoqi@0 285 __ ldmxcsr(mxcsr_std);
aoqi@0 286 __ bind(skip_ldmx);
aoqi@0 287 }
aoqi@0 288 #endif
aoqi@0 289
aoqi@0 290 // Load up thread register
aoqi@0 291 __ movptr(r15_thread, thread);
aoqi@0 292 __ reinit_heapbase();
aoqi@0 293
aoqi@0 294 #ifdef ASSERT
aoqi@0 295 // make sure we have no pending exceptions
aoqi@0 296 {
aoqi@0 297 Label L;
aoqi@0 298 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
aoqi@0 299 __ jcc(Assembler::equal, L);
aoqi@0 300 __ stop("StubRoutines::call_stub: entered with pending exception");
aoqi@0 301 __ bind(L);
aoqi@0 302 }
aoqi@0 303 #endif
aoqi@0 304
aoqi@0 305 // pass parameters if any
aoqi@0 306 BLOCK_COMMENT("pass parameters if any");
aoqi@0 307 Label parameters_done;
aoqi@0 308 __ movl(c_rarg3, parameter_size);
aoqi@0 309 __ testl(c_rarg3, c_rarg3);
aoqi@0 310 __ jcc(Assembler::zero, parameters_done);
aoqi@0 311
aoqi@0 312 Label loop;
aoqi@0 313 __ movptr(c_rarg2, parameters); // parameter pointer
aoqi@0 314 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
aoqi@0 315 __ BIND(loop);
aoqi@0 316 __ movptr(rax, Address(c_rarg2, 0));// get parameter
aoqi@0 317 __ addptr(c_rarg2, wordSize); // advance to next parameter
aoqi@0 318 __ decrementl(c_rarg1); // decrement counter
aoqi@0 319 __ push(rax); // pass parameter
aoqi@0 320 __ jcc(Assembler::notZero, loop);
aoqi@0 321
aoqi@0 322 // call Java function
aoqi@0 323 __ BIND(parameters_done);
aoqi@0 324 __ movptr(rbx, method); // get Method*
aoqi@0 325 __ movptr(c_rarg1, entry_point); // get entry_point
aoqi@0 326 __ mov(r13, rsp); // set sender sp
aoqi@0 327 BLOCK_COMMENT("call Java function");
aoqi@0 328 __ call(c_rarg1);
aoqi@0 329
aoqi@0 330 BLOCK_COMMENT("call_stub_return_address:");
aoqi@0 331 return_address = __ pc();
aoqi@0 332
aoqi@0 333 // store result depending on type (everything that is not
aoqi@0 334 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
aoqi@0 335 __ movptr(c_rarg0, result);
aoqi@0 336 Label is_long, is_float, is_double, exit;
aoqi@0 337 __ movl(c_rarg1, result_type);
aoqi@0 338 __ cmpl(c_rarg1, T_OBJECT);
aoqi@0 339 __ jcc(Assembler::equal, is_long);
aoqi@0 340 __ cmpl(c_rarg1, T_LONG);
aoqi@0 341 __ jcc(Assembler::equal, is_long);
aoqi@0 342 __ cmpl(c_rarg1, T_FLOAT);
aoqi@0 343 __ jcc(Assembler::equal, is_float);
aoqi@0 344 __ cmpl(c_rarg1, T_DOUBLE);
aoqi@0 345 __ jcc(Assembler::equal, is_double);
aoqi@0 346
aoqi@0 347 // handle T_INT case
aoqi@0 348 __ movl(Address(c_rarg0, 0), rax);
aoqi@0 349
aoqi@0 350 __ BIND(exit);
aoqi@0 351
aoqi@0 352 // pop parameters
aoqi@0 353 __ lea(rsp, rsp_after_call);
aoqi@0 354
aoqi@0 355 #ifdef ASSERT
aoqi@0 356 // verify that threads correspond
aoqi@0 357 {
aoqi@0 358 Label L, S;
aoqi@0 359 __ cmpptr(r15_thread, thread);
aoqi@0 360 __ jcc(Assembler::notEqual, S);
aoqi@0 361 __ get_thread(rbx);
aoqi@0 362 __ cmpptr(r15_thread, rbx);
aoqi@0 363 __ jcc(Assembler::equal, L);
aoqi@0 364 __ bind(S);
aoqi@0 365 __ jcc(Assembler::equal, L);
aoqi@0 366 __ stop("StubRoutines::call_stub: threads must correspond");
aoqi@0 367 __ bind(L);
aoqi@0 368 }
aoqi@0 369 #endif
aoqi@0 370
aoqi@0 371 // restore regs belonging to calling function
aoqi@0 372 #ifdef _WIN64
aoqi@0 373 for (int i = 15; i >= 6; i--) {
aoqi@0 374 __ movdqu(as_XMMRegister(i), xmm_save(i));
aoqi@0 375 }
aoqi@0 376 #endif
aoqi@0 377 __ movptr(r15, r15_save);
aoqi@0 378 __ movptr(r14, r14_save);
aoqi@0 379 __ movptr(r13, r13_save);
aoqi@0 380 __ movptr(r12, r12_save);
aoqi@0 381 __ movptr(rbx, rbx_save);
aoqi@0 382
aoqi@0 383 #ifdef _WIN64
aoqi@0 384 __ movptr(rdi, rdi_save);
aoqi@0 385 __ movptr(rsi, rsi_save);
aoqi@0 386 #else
aoqi@0 387 __ ldmxcsr(mxcsr_save);
aoqi@0 388 #endif
aoqi@0 389
aoqi@0 390 // restore rsp
aoqi@0 391 __ addptr(rsp, -rsp_after_call_off * wordSize);
aoqi@0 392
aoqi@0 393 // return
aoqi@0 394 __ pop(rbp);
aoqi@0 395 __ ret(0);
aoqi@0 396
aoqi@0 397 // handle return types different from T_INT
aoqi@0 398 __ BIND(is_long);
aoqi@0 399 __ movq(Address(c_rarg0, 0), rax);
aoqi@0 400 __ jmp(exit);
aoqi@0 401
aoqi@0 402 __ BIND(is_float);
aoqi@0 403 __ movflt(Address(c_rarg0, 0), xmm0);
aoqi@0 404 __ jmp(exit);
aoqi@0 405
aoqi@0 406 __ BIND(is_double);
aoqi@0 407 __ movdbl(Address(c_rarg0, 0), xmm0);
aoqi@0 408 __ jmp(exit);
aoqi@0 409
aoqi@0 410 return start;
aoqi@0 411 }
aoqi@0 412
aoqi@0 413 // Return point for a Java call if there's an exception thrown in
aoqi@0 414 // Java code. The exception is caught and transformed into a
aoqi@0 415 // pending exception stored in JavaThread that can be tested from
aoqi@0 416 // within the VM.
aoqi@0 417 //
aoqi@0 418 // Note: Usually the parameters are removed by the callee. In case
aoqi@0 419 // of an exception crossing an activation frame boundary, that is
aoqi@0 420 // not the case if the callee is compiled code => need to setup the
aoqi@0 421 // rsp.
aoqi@0 422 //
aoqi@0 423 // rax: exception oop
aoqi@0 424
aoqi@0 425 address generate_catch_exception() {
aoqi@0 426 StubCodeMark mark(this, "StubRoutines", "catch_exception");
aoqi@0 427 address start = __ pc();
aoqi@0 428
aoqi@0 429 // same as in generate_call_stub():
aoqi@0 430 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
aoqi@0 431 const Address thread (rbp, thread_off * wordSize);
aoqi@0 432
aoqi@0 433 #ifdef ASSERT
aoqi@0 434 // verify that threads correspond
aoqi@0 435 {
aoqi@0 436 Label L, S;
aoqi@0 437 __ cmpptr(r15_thread, thread);
aoqi@0 438 __ jcc(Assembler::notEqual, S);
aoqi@0 439 __ get_thread(rbx);
aoqi@0 440 __ cmpptr(r15_thread, rbx);
aoqi@0 441 __ jcc(Assembler::equal, L);
aoqi@0 442 __ bind(S);
aoqi@0 443 __ stop("StubRoutines::catch_exception: threads must correspond");
aoqi@0 444 __ bind(L);
aoqi@0 445 }
aoqi@0 446 #endif
aoqi@0 447
aoqi@0 448 // set pending exception
aoqi@0 449 __ verify_oop(rax);
aoqi@0 450
aoqi@0 451 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
aoqi@0 452 __ lea(rscratch1, ExternalAddress((address)__FILE__));
aoqi@0 453 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
aoqi@0 454 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
aoqi@0 455
aoqi@0 456 // complete return to VM
aoqi@0 457 assert(StubRoutines::_call_stub_return_address != NULL,
aoqi@0 458 "_call_stub_return_address must have been generated before");
aoqi@0 459 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
aoqi@0 460
aoqi@0 461 return start;
aoqi@0 462 }
aoqi@0 463
aoqi@0 464 // Continuation point for runtime calls returning with a pending
aoqi@0 465 // exception. The pending exception check happened in the runtime
aoqi@0 466 // or native call stub. The pending exception in Thread is
aoqi@0 467 // converted into a Java-level exception.
aoqi@0 468 //
aoqi@0 469 // Contract with Java-level exception handlers:
aoqi@0 470 // rax: exception
aoqi@0 471 // rdx: throwing pc
aoqi@0 472 //
aoqi@0 473 // NOTE: At entry of this stub, exception-pc must be on stack !!
aoqi@0 474
aoqi@0 475 address generate_forward_exception() {
aoqi@0 476 StubCodeMark mark(this, "StubRoutines", "forward exception");
aoqi@0 477 address start = __ pc();
aoqi@0 478
aoqi@0 479 // Upon entry, the sp points to the return address returning into
aoqi@0 480 // Java (interpreted or compiled) code; i.e., the return address
aoqi@0 481 // becomes the throwing pc.
aoqi@0 482 //
aoqi@0 483 // Arguments pushed before the runtime call are still on the stack
aoqi@0 484 // but the exception handler will reset the stack pointer ->
aoqi@0 485 // ignore them. A potential result in registers can be ignored as
aoqi@0 486 // well.
aoqi@0 487
aoqi@0 488 #ifdef ASSERT
aoqi@0 489 // make sure this code is only executed if there is a pending exception
aoqi@0 490 {
aoqi@0 491 Label L;
aoqi@0 492 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
aoqi@0 493 __ jcc(Assembler::notEqual, L);
aoqi@0 494 __ stop("StubRoutines::forward exception: no pending exception (1)");
aoqi@0 495 __ bind(L);
aoqi@0 496 }
aoqi@0 497 #endif
aoqi@0 498
aoqi@0 499 // compute exception handler into rbx
aoqi@0 500 __ movptr(c_rarg0, Address(rsp, 0));
aoqi@0 501 BLOCK_COMMENT("call exception_handler_for_return_address");
aoqi@0 502 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
aoqi@0 503 SharedRuntime::exception_handler_for_return_address),
aoqi@0 504 r15_thread, c_rarg0);
aoqi@0 505 __ mov(rbx, rax);
aoqi@0 506
aoqi@0 507 // setup rax & rdx, remove return address & clear pending exception
aoqi@0 508 __ pop(rdx);
aoqi@0 509 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
aoqi@0 510 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
aoqi@0 511
aoqi@0 512 #ifdef ASSERT
aoqi@0 513 // make sure exception is set
aoqi@0 514 {
aoqi@0 515 Label L;
aoqi@0 516 __ testptr(rax, rax);
aoqi@0 517 __ jcc(Assembler::notEqual, L);
aoqi@0 518 __ stop("StubRoutines::forward exception: no pending exception (2)");
aoqi@0 519 __ bind(L);
aoqi@0 520 }
aoqi@0 521 #endif
aoqi@0 522
aoqi@0 523 // continue at exception handler (return address removed)
aoqi@0 524 // rax: exception
aoqi@0 525 // rbx: exception handler
aoqi@0 526 // rdx: throwing pc
aoqi@0 527 __ verify_oop(rax);
aoqi@0 528 __ jmp(rbx);
aoqi@0 529
aoqi@0 530 return start;
aoqi@0 531 }
aoqi@0 532
aoqi@0 533 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
aoqi@0 534 //
aoqi@0 535 // Arguments :
aoqi@0 536 // c_rarg0: exchange_value
aoqi@0 537 // c_rarg0: dest
aoqi@0 538 //
aoqi@0 539 // Result:
aoqi@0 540 // *dest <- ex, return (orig *dest)
aoqi@0 541 address generate_atomic_xchg() {
aoqi@0 542 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
aoqi@0 543 address start = __ pc();
aoqi@0 544
aoqi@0 545 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
aoqi@0 546 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
aoqi@0 547 __ ret(0);
aoqi@0 548
aoqi@0 549 return start;
aoqi@0 550 }
aoqi@0 551
aoqi@0 552 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
aoqi@0 553 //
aoqi@0 554 // Arguments :
aoqi@0 555 // c_rarg0: exchange_value
aoqi@0 556 // c_rarg1: dest
aoqi@0 557 //
aoqi@0 558 // Result:
aoqi@0 559 // *dest <- ex, return (orig *dest)
aoqi@0 560 address generate_atomic_xchg_ptr() {
aoqi@0 561 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
aoqi@0 562 address start = __ pc();
aoqi@0 563
aoqi@0 564 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
aoqi@0 565 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
aoqi@0 566 __ ret(0);
aoqi@0 567
aoqi@0 568 return start;
aoqi@0 569 }
aoqi@0 570
aoqi@0 571 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
aoqi@0 572 // jint compare_value)
aoqi@0 573 //
aoqi@0 574 // Arguments :
aoqi@0 575 // c_rarg0: exchange_value
aoqi@0 576 // c_rarg1: dest
aoqi@0 577 // c_rarg2: compare_value
aoqi@0 578 //
aoqi@0 579 // Result:
aoqi@0 580 // if ( compare_value == *dest ) {
aoqi@0 581 // *dest = exchange_value
aoqi@0 582 // return compare_value;
aoqi@0 583 // else
aoqi@0 584 // return *dest;
aoqi@0 585 address generate_atomic_cmpxchg() {
aoqi@0 586 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
aoqi@0 587 address start = __ pc();
aoqi@0 588
aoqi@0 589 __ movl(rax, c_rarg2);
aoqi@0 590 if ( os::is_MP() ) __ lock();
aoqi@0 591 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
aoqi@0 592 __ ret(0);
aoqi@0 593
aoqi@0 594 return start;
aoqi@0 595 }
aoqi@0 596
aoqi@0 597 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
aoqi@0 598 // volatile jlong* dest,
aoqi@0 599 // jlong compare_value)
aoqi@0 600 // Arguments :
aoqi@0 601 // c_rarg0: exchange_value
aoqi@0 602 // c_rarg1: dest
aoqi@0 603 // c_rarg2: compare_value
aoqi@0 604 //
aoqi@0 605 // Result:
aoqi@0 606 // if ( compare_value == *dest ) {
aoqi@0 607 // *dest = exchange_value
aoqi@0 608 // return compare_value;
aoqi@0 609 // else
aoqi@0 610 // return *dest;
aoqi@0 611 address generate_atomic_cmpxchg_long() {
aoqi@0 612 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
aoqi@0 613 address start = __ pc();
aoqi@0 614
aoqi@0 615 __ movq(rax, c_rarg2);
aoqi@0 616 if ( os::is_MP() ) __ lock();
aoqi@0 617 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
aoqi@0 618 __ ret(0);
aoqi@0 619
aoqi@0 620 return start;
aoqi@0 621 }
aoqi@0 622
aoqi@0 623 // Support for jint atomic::add(jint add_value, volatile jint* dest)
aoqi@0 624 //
aoqi@0 625 // Arguments :
aoqi@0 626 // c_rarg0: add_value
aoqi@0 627 // c_rarg1: dest
aoqi@0 628 //
aoqi@0 629 // Result:
aoqi@0 630 // *dest += add_value
aoqi@0 631 // return *dest;
aoqi@0 632 address generate_atomic_add() {
aoqi@0 633 StubCodeMark mark(this, "StubRoutines", "atomic_add");
aoqi@0 634 address start = __ pc();
aoqi@0 635
aoqi@0 636 __ movl(rax, c_rarg0);
aoqi@0 637 if ( os::is_MP() ) __ lock();
aoqi@0 638 __ xaddl(Address(c_rarg1, 0), c_rarg0);
aoqi@0 639 __ addl(rax, c_rarg0);
aoqi@0 640 __ ret(0);
aoqi@0 641
aoqi@0 642 return start;
aoqi@0 643 }
aoqi@0 644
aoqi@0 645 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
aoqi@0 646 //
aoqi@0 647 // Arguments :
aoqi@0 648 // c_rarg0: add_value
aoqi@0 649 // c_rarg1: dest
aoqi@0 650 //
aoqi@0 651 // Result:
aoqi@0 652 // *dest += add_value
aoqi@0 653 // return *dest;
aoqi@0 654 address generate_atomic_add_ptr() {
aoqi@0 655 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
aoqi@0 656 address start = __ pc();
aoqi@0 657
aoqi@0 658 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
aoqi@0 659 if ( os::is_MP() ) __ lock();
aoqi@0 660 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
aoqi@0 661 __ addptr(rax, c_rarg0);
aoqi@0 662 __ ret(0);
aoqi@0 663
aoqi@0 664 return start;
aoqi@0 665 }
aoqi@0 666
aoqi@0 667 // Support for intptr_t OrderAccess::fence()
aoqi@0 668 //
aoqi@0 669 // Arguments :
aoqi@0 670 //
aoqi@0 671 // Result:
aoqi@0 672 address generate_orderaccess_fence() {
aoqi@0 673 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
aoqi@0 674 address start = __ pc();
aoqi@0 675 __ membar(Assembler::StoreLoad);
aoqi@0 676 __ ret(0);
aoqi@0 677
aoqi@0 678 return start;
aoqi@0 679 }
aoqi@0 680
aoqi@0 681 // Support for intptr_t get_previous_fp()
aoqi@0 682 //
aoqi@0 683 // This routine is used to find the previous frame pointer for the
aoqi@0 684 // caller (current_frame_guess). This is used as part of debugging
aoqi@0 685 // ps() is seemingly lost trying to find frames.
aoqi@0 686 // This code assumes that caller current_frame_guess) has a frame.
aoqi@0 687 address generate_get_previous_fp() {
aoqi@0 688 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
aoqi@0 689 const Address old_fp(rbp, 0);
aoqi@0 690 const Address older_fp(rax, 0);
aoqi@0 691 address start = __ pc();
aoqi@0 692
aoqi@0 693 __ enter();
aoqi@0 694 __ movptr(rax, old_fp); // callers fp
aoqi@0 695 __ movptr(rax, older_fp); // the frame for ps()
aoqi@0 696 __ pop(rbp);
aoqi@0 697 __ ret(0);
aoqi@0 698
aoqi@0 699 return start;
aoqi@0 700 }
aoqi@0 701
aoqi@0 702 // Support for intptr_t get_previous_sp()
aoqi@0 703 //
aoqi@0 704 // This routine is used to find the previous stack pointer for the
aoqi@0 705 // caller.
aoqi@0 706 address generate_get_previous_sp() {
aoqi@0 707 StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
aoqi@0 708 address start = __ pc();
aoqi@0 709
aoqi@0 710 __ movptr(rax, rsp);
aoqi@0 711 __ addptr(rax, 8); // return address is at the top of the stack.
aoqi@0 712 __ ret(0);
aoqi@0 713
aoqi@0 714 return start;
aoqi@0 715 }
aoqi@0 716
aoqi@0 717 //----------------------------------------------------------------------------------------------------
aoqi@0 718 // Support for void verify_mxcsr()
aoqi@0 719 //
aoqi@0 720 // This routine is used with -Xcheck:jni to verify that native
aoqi@0 721 // JNI code does not return to Java code without restoring the
aoqi@0 722 // MXCSR register to our expected state.
aoqi@0 723
aoqi@0 724 address generate_verify_mxcsr() {
aoqi@0 725 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
aoqi@0 726 address start = __ pc();
aoqi@0 727
aoqi@0 728 const Address mxcsr_save(rsp, 0);
aoqi@0 729
aoqi@0 730 if (CheckJNICalls) {
aoqi@0 731 Label ok_ret;
aoqi@0 732 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
aoqi@0 733 __ push(rax);
aoqi@0 734 __ subptr(rsp, wordSize); // allocate a temp location
aoqi@0 735 __ stmxcsr(mxcsr_save);
aoqi@0 736 __ movl(rax, mxcsr_save);
aoqi@0 737 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
aoqi@0 738 __ cmp32(rax, mxcsr_std);
aoqi@0 739 __ jcc(Assembler::equal, ok_ret);
aoqi@0 740
aoqi@0 741 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
aoqi@0 742
aoqi@0 743 __ ldmxcsr(mxcsr_std);
aoqi@0 744
aoqi@0 745 __ bind(ok_ret);
aoqi@0 746 __ addptr(rsp, wordSize);
aoqi@0 747 __ pop(rax);
aoqi@0 748 }
aoqi@0 749
aoqi@0 750 __ ret(0);
aoqi@0 751
aoqi@0 752 return start;
aoqi@0 753 }
aoqi@0 754
aoqi@0 755 address generate_f2i_fixup() {
aoqi@0 756 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
aoqi@0 757 Address inout(rsp, 5 * wordSize); // return address + 4 saves
aoqi@0 758
aoqi@0 759 address start = __ pc();
aoqi@0 760
aoqi@0 761 Label L;
aoqi@0 762
aoqi@0 763 __ push(rax);
aoqi@0 764 __ push(c_rarg3);
aoqi@0 765 __ push(c_rarg2);
aoqi@0 766 __ push(c_rarg1);
aoqi@0 767
aoqi@0 768 __ movl(rax, 0x7f800000);
aoqi@0 769 __ xorl(c_rarg3, c_rarg3);
aoqi@0 770 __ movl(c_rarg2, inout);
aoqi@0 771 __ movl(c_rarg1, c_rarg2);
aoqi@0 772 __ andl(c_rarg1, 0x7fffffff);
aoqi@0 773 __ cmpl(rax, c_rarg1); // NaN? -> 0
aoqi@0 774 __ jcc(Assembler::negative, L);
aoqi@0 775 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
aoqi@0 776 __ movl(c_rarg3, 0x80000000);
aoqi@0 777 __ movl(rax, 0x7fffffff);
aoqi@0 778 __ cmovl(Assembler::positive, c_rarg3, rax);
aoqi@0 779
aoqi@0 780 __ bind(L);
aoqi@0 781 __ movptr(inout, c_rarg3);
aoqi@0 782
aoqi@0 783 __ pop(c_rarg1);
aoqi@0 784 __ pop(c_rarg2);
aoqi@0 785 __ pop(c_rarg3);
aoqi@0 786 __ pop(rax);
aoqi@0 787
aoqi@0 788 __ ret(0);
aoqi@0 789
aoqi@0 790 return start;
aoqi@0 791 }
aoqi@0 792
aoqi@0 793 address generate_f2l_fixup() {
aoqi@0 794 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
aoqi@0 795 Address inout(rsp, 5 * wordSize); // return address + 4 saves
aoqi@0 796 address start = __ pc();
aoqi@0 797
aoqi@0 798 Label L;
aoqi@0 799
aoqi@0 800 __ push(rax);
aoqi@0 801 __ push(c_rarg3);
aoqi@0 802 __ push(c_rarg2);
aoqi@0 803 __ push(c_rarg1);
aoqi@0 804
aoqi@0 805 __ movl(rax, 0x7f800000);
aoqi@0 806 __ xorl(c_rarg3, c_rarg3);
aoqi@0 807 __ movl(c_rarg2, inout);
aoqi@0 808 __ movl(c_rarg1, c_rarg2);
aoqi@0 809 __ andl(c_rarg1, 0x7fffffff);
aoqi@0 810 __ cmpl(rax, c_rarg1); // NaN? -> 0
aoqi@0 811 __ jcc(Assembler::negative, L);
aoqi@0 812 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
aoqi@0 813 __ mov64(c_rarg3, 0x8000000000000000);
aoqi@0 814 __ mov64(rax, 0x7fffffffffffffff);
aoqi@0 815 __ cmov(Assembler::positive, c_rarg3, rax);
aoqi@0 816
aoqi@0 817 __ bind(L);
aoqi@0 818 __ movptr(inout, c_rarg3);
aoqi@0 819
aoqi@0 820 __ pop(c_rarg1);
aoqi@0 821 __ pop(c_rarg2);
aoqi@0 822 __ pop(c_rarg3);
aoqi@0 823 __ pop(rax);
aoqi@0 824
aoqi@0 825 __ ret(0);
aoqi@0 826
aoqi@0 827 return start;
aoqi@0 828 }
aoqi@0 829
aoqi@0 830 address generate_d2i_fixup() {
aoqi@0 831 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
aoqi@0 832 Address inout(rsp, 6 * wordSize); // return address + 5 saves
aoqi@0 833
aoqi@0 834 address start = __ pc();
aoqi@0 835
aoqi@0 836 Label L;
aoqi@0 837
aoqi@0 838 __ push(rax);
aoqi@0 839 __ push(c_rarg3);
aoqi@0 840 __ push(c_rarg2);
aoqi@0 841 __ push(c_rarg1);
aoqi@0 842 __ push(c_rarg0);
aoqi@0 843
aoqi@0 844 __ movl(rax, 0x7ff00000);
aoqi@0 845 __ movq(c_rarg2, inout);
aoqi@0 846 __ movl(c_rarg3, c_rarg2);
aoqi@0 847 __ mov(c_rarg1, c_rarg2);
aoqi@0 848 __ mov(c_rarg0, c_rarg2);
aoqi@0 849 __ negl(c_rarg3);
aoqi@0 850 __ shrptr(c_rarg1, 0x20);
aoqi@0 851 __ orl(c_rarg3, c_rarg2);
aoqi@0 852 __ andl(c_rarg1, 0x7fffffff);
aoqi@0 853 __ xorl(c_rarg2, c_rarg2);
aoqi@0 854 __ shrl(c_rarg3, 0x1f);
aoqi@0 855 __ orl(c_rarg1, c_rarg3);
aoqi@0 856 __ cmpl(rax, c_rarg1);
aoqi@0 857 __ jcc(Assembler::negative, L); // NaN -> 0
aoqi@0 858 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
aoqi@0 859 __ movl(c_rarg2, 0x80000000);
aoqi@0 860 __ movl(rax, 0x7fffffff);
aoqi@0 861 __ cmov(Assembler::positive, c_rarg2, rax);
aoqi@0 862
aoqi@0 863 __ bind(L);
aoqi@0 864 __ movptr(inout, c_rarg2);
aoqi@0 865
aoqi@0 866 __ pop(c_rarg0);
aoqi@0 867 __ pop(c_rarg1);
aoqi@0 868 __ pop(c_rarg2);
aoqi@0 869 __ pop(c_rarg3);
aoqi@0 870 __ pop(rax);
aoqi@0 871
aoqi@0 872 __ ret(0);
aoqi@0 873
aoqi@0 874 return start;
aoqi@0 875 }
aoqi@0 876
aoqi@0 877 address generate_d2l_fixup() {
aoqi@0 878 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
aoqi@0 879 Address inout(rsp, 6 * wordSize); // return address + 5 saves
aoqi@0 880
aoqi@0 881 address start = __ pc();
aoqi@0 882
aoqi@0 883 Label L;
aoqi@0 884
aoqi@0 885 __ push(rax);
aoqi@0 886 __ push(c_rarg3);
aoqi@0 887 __ push(c_rarg2);
aoqi@0 888 __ push(c_rarg1);
aoqi@0 889 __ push(c_rarg0);
aoqi@0 890
aoqi@0 891 __ movl(rax, 0x7ff00000);
aoqi@0 892 __ movq(c_rarg2, inout);
aoqi@0 893 __ movl(c_rarg3, c_rarg2);
aoqi@0 894 __ mov(c_rarg1, c_rarg2);
aoqi@0 895 __ mov(c_rarg0, c_rarg2);
aoqi@0 896 __ negl(c_rarg3);
aoqi@0 897 __ shrptr(c_rarg1, 0x20);
aoqi@0 898 __ orl(c_rarg3, c_rarg2);
aoqi@0 899 __ andl(c_rarg1, 0x7fffffff);
aoqi@0 900 __ xorl(c_rarg2, c_rarg2);
aoqi@0 901 __ shrl(c_rarg3, 0x1f);
aoqi@0 902 __ orl(c_rarg1, c_rarg3);
aoqi@0 903 __ cmpl(rax, c_rarg1);
aoqi@0 904 __ jcc(Assembler::negative, L); // NaN -> 0
aoqi@0 905 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
aoqi@0 906 __ mov64(c_rarg2, 0x8000000000000000);
aoqi@0 907 __ mov64(rax, 0x7fffffffffffffff);
aoqi@0 908 __ cmovq(Assembler::positive, c_rarg2, rax);
aoqi@0 909
aoqi@0 910 __ bind(L);
aoqi@0 911 __ movq(inout, c_rarg2);
aoqi@0 912
aoqi@0 913 __ pop(c_rarg0);
aoqi@0 914 __ pop(c_rarg1);
aoqi@0 915 __ pop(c_rarg2);
aoqi@0 916 __ pop(c_rarg3);
aoqi@0 917 __ pop(rax);
aoqi@0 918
aoqi@0 919 __ ret(0);
aoqi@0 920
aoqi@0 921 return start;
aoqi@0 922 }
aoqi@0 923
aoqi@0 924 address generate_fp_mask(const char *stub_name, int64_t mask) {
aoqi@0 925 __ align(CodeEntryAlignment);
aoqi@0 926 StubCodeMark mark(this, "StubRoutines", stub_name);
aoqi@0 927 address start = __ pc();
aoqi@0 928
aoqi@0 929 __ emit_data64( mask, relocInfo::none );
aoqi@0 930 __ emit_data64( mask, relocInfo::none );
aoqi@0 931
aoqi@0 932 return start;
aoqi@0 933 }
aoqi@0 934
aoqi@0 935 // The following routine generates a subroutine to throw an
aoqi@0 936 // asynchronous UnknownError when an unsafe access gets a fault that
aoqi@0 937 // could not be reasonably prevented by the programmer. (Example:
aoqi@0 938 // SIGBUS/OBJERR.)
aoqi@0 939 address generate_handler_for_unsafe_access() {
aoqi@0 940 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
aoqi@0 941 address start = __ pc();
aoqi@0 942
aoqi@0 943 __ push(0); // hole for return address-to-be
aoqi@0 944 __ pusha(); // push registers
aoqi@0 945 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
aoqi@0 946
aoqi@0 947 // FIXME: this probably needs alignment logic
aoqi@0 948
aoqi@0 949 __ subptr(rsp, frame::arg_reg_save_area_bytes);
aoqi@0 950 BLOCK_COMMENT("call handle_unsafe_access");
aoqi@0 951 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
aoqi@0 952 __ addptr(rsp, frame::arg_reg_save_area_bytes);
aoqi@0 953
aoqi@0 954 __ movptr(next_pc, rax); // stuff next address
aoqi@0 955 __ popa();
aoqi@0 956 __ ret(0); // jump to next address
aoqi@0 957
aoqi@0 958 return start;
aoqi@0 959 }
aoqi@0 960
aoqi@0 961 // Non-destructive plausibility checks for oops
aoqi@0 962 //
aoqi@0 963 // Arguments:
aoqi@0 964 // all args on stack!
aoqi@0 965 //
aoqi@0 966 // Stack after saving c_rarg3:
aoqi@0 967 // [tos + 0]: saved c_rarg3
aoqi@0 968 // [tos + 1]: saved c_rarg2
aoqi@0 969 // [tos + 2]: saved r12 (several TemplateTable methods use it)
aoqi@0 970 // [tos + 3]: saved flags
aoqi@0 971 // [tos + 4]: return address
aoqi@0 972 // * [tos + 5]: error message (char*)
aoqi@0 973 // * [tos + 6]: object to verify (oop)
aoqi@0 974 // * [tos + 7]: saved rax - saved by caller and bashed
aoqi@0 975 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
aoqi@0 976 // * = popped on exit
aoqi@0 977 address generate_verify_oop() {
aoqi@0 978 StubCodeMark mark(this, "StubRoutines", "verify_oop");
aoqi@0 979 address start = __ pc();
aoqi@0 980
aoqi@0 981 Label exit, error;
aoqi@0 982
aoqi@0 983 __ pushf();
aoqi@0 984 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
aoqi@0 985
aoqi@0 986 __ push(r12);
aoqi@0 987
aoqi@0 988 // save c_rarg2 and c_rarg3
aoqi@0 989 __ push(c_rarg2);
aoqi@0 990 __ push(c_rarg3);
aoqi@0 991
aoqi@0 992 enum {
aoqi@0 993 // After previous pushes.
aoqi@0 994 oop_to_verify = 6 * wordSize,
aoqi@0 995 saved_rax = 7 * wordSize,
aoqi@0 996 saved_r10 = 8 * wordSize,
aoqi@0 997
aoqi@0 998 // Before the call to MacroAssembler::debug(), see below.
aoqi@0 999 return_addr = 16 * wordSize,
aoqi@0 1000 error_msg = 17 * wordSize
aoqi@0 1001 };
aoqi@0 1002
aoqi@0 1003 // get object
aoqi@0 1004 __ movptr(rax, Address(rsp, oop_to_verify));
aoqi@0 1005
aoqi@0 1006 // make sure object is 'reasonable'
aoqi@0 1007 __ testptr(rax, rax);
aoqi@0 1008 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
aoqi@0 1009 // Check if the oop is in the right area of memory
aoqi@0 1010 __ movptr(c_rarg2, rax);
aoqi@0 1011 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
aoqi@0 1012 __ andptr(c_rarg2, c_rarg3);
aoqi@0 1013 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
aoqi@0 1014 __ cmpptr(c_rarg2, c_rarg3);
aoqi@0 1015 __ jcc(Assembler::notZero, error);
aoqi@0 1016
aoqi@0 1017 // set r12 to heapbase for load_klass()
aoqi@0 1018 __ reinit_heapbase();
aoqi@0 1019
aoqi@0 1020 // make sure klass is 'reasonable', which is not zero.
aoqi@0 1021 __ load_klass(rax, rax); // get klass
aoqi@0 1022 __ testptr(rax, rax);
aoqi@0 1023 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
aoqi@0 1024
aoqi@0 1025 // return if everything seems ok
aoqi@0 1026 __ bind(exit);
aoqi@0 1027 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
aoqi@0 1028 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
aoqi@0 1029 __ pop(c_rarg3); // restore c_rarg3
aoqi@0 1030 __ pop(c_rarg2); // restore c_rarg2
aoqi@0 1031 __ pop(r12); // restore r12
aoqi@0 1032 __ popf(); // restore flags
aoqi@0 1033 __ ret(4 * wordSize); // pop caller saved stuff
aoqi@0 1034
aoqi@0 1035 // handle errors
aoqi@0 1036 __ bind(error);
aoqi@0 1037 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
aoqi@0 1038 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
aoqi@0 1039 __ pop(c_rarg3); // get saved c_rarg3 back
aoqi@0 1040 __ pop(c_rarg2); // get saved c_rarg2 back
aoqi@0 1041 __ pop(r12); // get saved r12 back
aoqi@0 1042 __ popf(); // get saved flags off stack --
aoqi@0 1043 // will be ignored
aoqi@0 1044
aoqi@0 1045 __ pusha(); // push registers
aoqi@0 1046 // (rip is already
aoqi@0 1047 // already pushed)
aoqi@0 1048 // debug(char* msg, int64_t pc, int64_t regs[])
aoqi@0 1049 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
aoqi@0 1050 // pushed all the registers, so now the stack looks like:
aoqi@0 1051 // [tos + 0] 16 saved registers
aoqi@0 1052 // [tos + 16] return address
aoqi@0 1053 // * [tos + 17] error message (char*)
aoqi@0 1054 // * [tos + 18] object to verify (oop)
aoqi@0 1055 // * [tos + 19] saved rax - saved by caller and bashed
aoqi@0 1056 // * [tos + 20] saved r10 (rscratch1) - saved by caller
aoqi@0 1057 // * = popped on exit
aoqi@0 1058
aoqi@0 1059 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
aoqi@0 1060 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
aoqi@0 1061 __ movq(c_rarg2, rsp); // pass address of regs on stack
aoqi@0 1062 __ mov(r12, rsp); // remember rsp
aoqi@0 1063 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
aoqi@0 1064 __ andptr(rsp, -16); // align stack as required by ABI
aoqi@0 1065 BLOCK_COMMENT("call MacroAssembler::debug");
aoqi@0 1066 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
aoqi@0 1067 __ mov(rsp, r12); // restore rsp
aoqi@0 1068 __ popa(); // pop registers (includes r12)
aoqi@0 1069 __ ret(4 * wordSize); // pop caller saved stuff
aoqi@0 1070
aoqi@0 1071 return start;
aoqi@0 1072 }
aoqi@0 1073
aoqi@0 1074 //
aoqi@0 1075 // Verify that a register contains clean 32-bits positive value
aoqi@0 1076 // (high 32-bits are 0) so it could be used in 64-bits shifts.
aoqi@0 1077 //
aoqi@0 1078 // Input:
aoqi@0 1079 // Rint - 32-bits value
aoqi@0 1080 // Rtmp - scratch
aoqi@0 1081 //
aoqi@0 1082 void assert_clean_int(Register Rint, Register Rtmp) {
aoqi@0 1083 #ifdef ASSERT
aoqi@0 1084 Label L;
aoqi@0 1085 assert_different_registers(Rtmp, Rint);
aoqi@0 1086 __ movslq(Rtmp, Rint);
aoqi@0 1087 __ cmpq(Rtmp, Rint);
aoqi@0 1088 __ jcc(Assembler::equal, L);
aoqi@0 1089 __ stop("high 32-bits of int value are not 0");
aoqi@0 1090 __ bind(L);
aoqi@0 1091 #endif
aoqi@0 1092 }
aoqi@0 1093
aoqi@0 1094 // Generate overlap test for array copy stubs
aoqi@0 1095 //
aoqi@0 1096 // Input:
aoqi@0 1097 // c_rarg0 - from
aoqi@0 1098 // c_rarg1 - to
aoqi@0 1099 // c_rarg2 - element count
aoqi@0 1100 //
aoqi@0 1101 // Output:
aoqi@0 1102 // rax - &from[element count - 1]
aoqi@0 1103 //
aoqi@0 1104 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
aoqi@0 1105 assert(no_overlap_target != NULL, "must be generated");
aoqi@0 1106 array_overlap_test(no_overlap_target, NULL, sf);
aoqi@0 1107 }
aoqi@0 1108 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
aoqi@0 1109 array_overlap_test(NULL, &L_no_overlap, sf);
aoqi@0 1110 }
aoqi@0 1111 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
aoqi@0 1112 const Register from = c_rarg0;
aoqi@0 1113 const Register to = c_rarg1;
aoqi@0 1114 const Register count = c_rarg2;
aoqi@0 1115 const Register end_from = rax;
aoqi@0 1116
aoqi@0 1117 __ cmpptr(to, from);
aoqi@0 1118 __ lea(end_from, Address(from, count, sf, 0));
aoqi@0 1119 if (NOLp == NULL) {
aoqi@0 1120 ExternalAddress no_overlap(no_overlap_target);
aoqi@0 1121 __ jump_cc(Assembler::belowEqual, no_overlap);
aoqi@0 1122 __ cmpptr(to, end_from);
aoqi@0 1123 __ jump_cc(Assembler::aboveEqual, no_overlap);
aoqi@0 1124 } else {
aoqi@0 1125 __ jcc(Assembler::belowEqual, (*NOLp));
aoqi@0 1126 __ cmpptr(to, end_from);
aoqi@0 1127 __ jcc(Assembler::aboveEqual, (*NOLp));
aoqi@0 1128 }
aoqi@0 1129 }
aoqi@0 1130
aoqi@0 1131 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
aoqi@0 1132 //
aoqi@0 1133 // Outputs:
aoqi@0 1134 // rdi - rcx
aoqi@0 1135 // rsi - rdx
aoqi@0 1136 // rdx - r8
aoqi@0 1137 // rcx - r9
aoqi@0 1138 //
aoqi@0 1139 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
aoqi@0 1140 // are non-volatile. r9 and r10 should not be used by the caller.
aoqi@0 1141 //
aoqi@0 1142 void setup_arg_regs(int nargs = 3) {
aoqi@0 1143 const Register saved_rdi = r9;
aoqi@0 1144 const Register saved_rsi = r10;
aoqi@0 1145 assert(nargs == 3 || nargs == 4, "else fix");
aoqi@0 1146 #ifdef _WIN64
aoqi@0 1147 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
aoqi@0 1148 "unexpected argument registers");
aoqi@0 1149 if (nargs >= 4)
aoqi@0 1150 __ mov(rax, r9); // r9 is also saved_rdi
aoqi@0 1151 __ movptr(saved_rdi, rdi);
aoqi@0 1152 __ movptr(saved_rsi, rsi);
aoqi@0 1153 __ mov(rdi, rcx); // c_rarg0
aoqi@0 1154 __ mov(rsi, rdx); // c_rarg1
aoqi@0 1155 __ mov(rdx, r8); // c_rarg2
aoqi@0 1156 if (nargs >= 4)
aoqi@0 1157 __ mov(rcx, rax); // c_rarg3 (via rax)
aoqi@0 1158 #else
aoqi@0 1159 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
aoqi@0 1160 "unexpected argument registers");
aoqi@0 1161 #endif
aoqi@0 1162 }
aoqi@0 1163
aoqi@0 1164 void restore_arg_regs() {
aoqi@0 1165 const Register saved_rdi = r9;
aoqi@0 1166 const Register saved_rsi = r10;
aoqi@0 1167 #ifdef _WIN64
aoqi@0 1168 __ movptr(rdi, saved_rdi);
aoqi@0 1169 __ movptr(rsi, saved_rsi);
aoqi@0 1170 #endif
aoqi@0 1171 }
aoqi@0 1172
aoqi@0 1173 // Generate code for an array write pre barrier
aoqi@0 1174 //
aoqi@0 1175 // addr - starting address
aoqi@0 1176 // count - element count
aoqi@0 1177 // tmp - scratch register
aoqi@0 1178 //
aoqi@0 1179 // Destroy no registers!
aoqi@0 1180 //
aoqi@0 1181 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
aoqi@0 1182 BarrierSet* bs = Universe::heap()->barrier_set();
aoqi@0 1183 switch (bs->kind()) {
aoqi@0 1184 case BarrierSet::G1SATBCT:
aoqi@0 1185 case BarrierSet::G1SATBCTLogging:
aoqi@0 1186 // With G1, don't generate the call if we statically know that the target in uninitialized
aoqi@0 1187 if (!dest_uninitialized) {
aoqi@0 1188 __ pusha(); // push registers
aoqi@0 1189 if (count == c_rarg0) {
aoqi@0 1190 if (addr == c_rarg1) {
aoqi@0 1191 // exactly backwards!!
aoqi@0 1192 __ xchgptr(c_rarg1, c_rarg0);
aoqi@0 1193 } else {
aoqi@0 1194 __ movptr(c_rarg1, count);
aoqi@0 1195 __ movptr(c_rarg0, addr);
aoqi@0 1196 }
aoqi@0 1197 } else {
aoqi@0 1198 __ movptr(c_rarg0, addr);
aoqi@0 1199 __ movptr(c_rarg1, count);
aoqi@0 1200 }
aoqi@0 1201 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
aoqi@0 1202 __ popa();
aoqi@0 1203 }
aoqi@0 1204 break;
aoqi@0 1205 case BarrierSet::CardTableModRef:
aoqi@0 1206 case BarrierSet::CardTableExtension:
aoqi@0 1207 case BarrierSet::ModRef:
aoqi@0 1208 break;
aoqi@0 1209 default:
aoqi@0 1210 ShouldNotReachHere();
aoqi@0 1211
aoqi@0 1212 }
aoqi@0 1213 }
aoqi@0 1214
aoqi@0 1215 //
aoqi@0 1216 // Generate code for an array write post barrier
aoqi@0 1217 //
aoqi@0 1218 // Input:
aoqi@0 1219 // start - register containing starting address of destination array
aoqi@0 1220 // count - elements count
aoqi@0 1221 // scratch - scratch register
aoqi@0 1222 //
aoqi@0 1223 // The input registers are overwritten.
aoqi@0 1224 //
aoqi@0 1225 void gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) {
aoqi@0 1226 assert_different_registers(start, count, scratch);
aoqi@0 1227 BarrierSet* bs = Universe::heap()->barrier_set();
aoqi@0 1228 switch (bs->kind()) {
aoqi@0 1229 case BarrierSet::G1SATBCT:
aoqi@0 1230 case BarrierSet::G1SATBCTLogging:
aoqi@0 1231 {
aoqi@0 1232 __ pusha(); // push registers (overkill)
aoqi@0 1233 if (c_rarg0 == count) { // On win64 c_rarg0 == rcx
aoqi@0 1234 assert_different_registers(c_rarg1, start);
aoqi@0 1235 __ mov(c_rarg1, count);
aoqi@0 1236 __ mov(c_rarg0, start);
aoqi@0 1237 } else {
aoqi@0 1238 assert_different_registers(c_rarg0, count);
aoqi@0 1239 __ mov(c_rarg0, start);
aoqi@0 1240 __ mov(c_rarg1, count);
aoqi@0 1241 }
aoqi@0 1242 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
aoqi@0 1243 __ popa();
aoqi@0 1244 }
aoqi@0 1245 break;
aoqi@0 1246 case BarrierSet::CardTableModRef:
aoqi@0 1247 case BarrierSet::CardTableExtension:
aoqi@0 1248 {
aoqi@0 1249 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
aoqi@0 1250 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
aoqi@0 1251
aoqi@0 1252 Label L_loop;
aoqi@0 1253 const Register end = count;
aoqi@0 1254
aoqi@0 1255 __ leaq(end, Address(start, count, TIMES_OOP, 0)); // end == start+count*oop_size
aoqi@0 1256 __ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive
aoqi@0 1257 __ shrptr(start, CardTableModRefBS::card_shift);
aoqi@0 1258 __ shrptr(end, CardTableModRefBS::card_shift);
aoqi@0 1259 __ subptr(end, start); // end --> cards count
aoqi@0 1260
aoqi@0 1261 int64_t disp = (int64_t) ct->byte_map_base;
aoqi@0 1262 __ mov64(scratch, disp);
aoqi@0 1263 __ addptr(start, scratch);
aoqi@0 1264 __ BIND(L_loop);
aoqi@0 1265 __ movb(Address(start, count, Address::times_1), 0);
aoqi@0 1266 __ decrement(count);
aoqi@0 1267 __ jcc(Assembler::greaterEqual, L_loop);
aoqi@0 1268 }
aoqi@0 1269 break;
aoqi@0 1270 default:
aoqi@0 1271 ShouldNotReachHere();
aoqi@0 1272
aoqi@0 1273 }
aoqi@0 1274 }
aoqi@0 1275
aoqi@0 1276
aoqi@0 1277 // Copy big chunks forward
aoqi@0 1278 //
aoqi@0 1279 // Inputs:
aoqi@0 1280 // end_from - source arrays end address
aoqi@0 1281 // end_to - destination array end address
aoqi@0 1282 // qword_count - 64-bits element count, negative
aoqi@0 1283 // to - scratch
aoqi@0 1284 // L_copy_bytes - entry label
aoqi@0 1285 // L_copy_8_bytes - exit label
aoqi@0 1286 //
aoqi@0 1287 void copy_bytes_forward(Register end_from, Register end_to,
aoqi@0 1288 Register qword_count, Register to,
aoqi@0 1289 Label& L_copy_bytes, Label& L_copy_8_bytes) {
aoqi@0 1290 DEBUG_ONLY(__ stop("enter at entry label, not here"));
aoqi@0 1291 Label L_loop;
aoqi@0 1292 __ align(OptoLoopAlignment);
aoqi@0 1293 if (UseUnalignedLoadStores) {
aoqi@0 1294 Label L_end;
aoqi@0 1295 // Copy 64-bytes per iteration
aoqi@0 1296 __ BIND(L_loop);
aoqi@0 1297 if (UseAVX >= 2) {
aoqi@0 1298 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
aoqi@0 1299 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
aoqi@0 1300 __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
aoqi@0 1301 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
aoqi@0 1302 } else {
aoqi@0 1303 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
aoqi@0 1304 __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
aoqi@0 1305 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
aoqi@0 1306 __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
aoqi@0 1307 __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
aoqi@0 1308 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
aoqi@0 1309 __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
aoqi@0 1310 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
aoqi@0 1311 }
aoqi@0 1312 __ BIND(L_copy_bytes);
aoqi@0 1313 __ addptr(qword_count, 8);
aoqi@0 1314 __ jcc(Assembler::lessEqual, L_loop);
aoqi@0 1315 __ subptr(qword_count, 4); // sub(8) and add(4)
aoqi@0 1316 __ jccb(Assembler::greater, L_end);
aoqi@0 1317 // Copy trailing 32 bytes
aoqi@0 1318 if (UseAVX >= 2) {
aoqi@0 1319 __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
aoqi@0 1320 __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
aoqi@0 1321 } else {
aoqi@0 1322 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
aoqi@0 1323 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
aoqi@0 1324 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
aoqi@0 1325 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
aoqi@0 1326 }
aoqi@0 1327 __ addptr(qword_count, 4);
aoqi@0 1328 __ BIND(L_end);
aoqi@0 1329 if (UseAVX >= 2) {
aoqi@0 1330 // clean upper bits of YMM registers
aoqi@0 1331 __ vzeroupper();
aoqi@0 1332 }
aoqi@0 1333 } else {
aoqi@0 1334 // Copy 32-bytes per iteration
aoqi@0 1335 __ BIND(L_loop);
aoqi@0 1336 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
aoqi@0 1337 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
aoqi@0 1338 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
aoqi@0 1339 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
aoqi@0 1340 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
aoqi@0 1341 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
aoqi@0 1342 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
aoqi@0 1343 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
aoqi@0 1344
aoqi@0 1345 __ BIND(L_copy_bytes);
aoqi@0 1346 __ addptr(qword_count, 4);
aoqi@0 1347 __ jcc(Assembler::lessEqual, L_loop);
aoqi@0 1348 }
aoqi@0 1349 __ subptr(qword_count, 4);
aoqi@0 1350 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
aoqi@0 1351 }
aoqi@0 1352
aoqi@0 1353 // Copy big chunks backward
aoqi@0 1354 //
aoqi@0 1355 // Inputs:
aoqi@0 1356 // from - source arrays address
aoqi@0 1357 // dest - destination array address
aoqi@0 1358 // qword_count - 64-bits element count
aoqi@0 1359 // to - scratch
aoqi@0 1360 // L_copy_bytes - entry label
aoqi@0 1361 // L_copy_8_bytes - exit label
aoqi@0 1362 //
aoqi@0 1363 void copy_bytes_backward(Register from, Register dest,
aoqi@0 1364 Register qword_count, Register to,
aoqi@0 1365 Label& L_copy_bytes, Label& L_copy_8_bytes) {
aoqi@0 1366 DEBUG_ONLY(__ stop("enter at entry label, not here"));
aoqi@0 1367 Label L_loop;
aoqi@0 1368 __ align(OptoLoopAlignment);
aoqi@0 1369 if (UseUnalignedLoadStores) {
aoqi@0 1370 Label L_end;
aoqi@0 1371 // Copy 64-bytes per iteration
aoqi@0 1372 __ BIND(L_loop);
aoqi@0 1373 if (UseAVX >= 2) {
aoqi@0 1374 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
aoqi@0 1375 __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
aoqi@0 1376 __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
aoqi@0 1377 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
aoqi@0 1378 } else {
aoqi@0 1379 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
aoqi@0 1380 __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
aoqi@0 1381 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
aoqi@0 1382 __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
aoqi@0 1383 __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
aoqi@0 1384 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
aoqi@0 1385 __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0));
aoqi@0 1386 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3);
aoqi@0 1387 }
aoqi@0 1388 __ BIND(L_copy_bytes);
aoqi@0 1389 __ subptr(qword_count, 8);
aoqi@0 1390 __ jcc(Assembler::greaterEqual, L_loop);
aoqi@0 1391
aoqi@0 1392 __ addptr(qword_count, 4); // add(8) and sub(4)
aoqi@0 1393 __ jccb(Assembler::less, L_end);
aoqi@0 1394 // Copy trailing 32 bytes
aoqi@0 1395 if (UseAVX >= 2) {
aoqi@0 1396 __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
aoqi@0 1397 __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
aoqi@0 1398 } else {
aoqi@0 1399 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
aoqi@0 1400 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
aoqi@0 1401 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
aoqi@0 1402 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
aoqi@0 1403 }
aoqi@0 1404 __ subptr(qword_count, 4);
aoqi@0 1405 __ BIND(L_end);
aoqi@0 1406 if (UseAVX >= 2) {
aoqi@0 1407 // clean upper bits of YMM registers
aoqi@0 1408 __ vzeroupper();
aoqi@0 1409 }
aoqi@0 1410 } else {
aoqi@0 1411 // Copy 32-bytes per iteration
aoqi@0 1412 __ BIND(L_loop);
aoqi@0 1413 __ movq(to, Address(from, qword_count, Address::times_8, 24));
aoqi@0 1414 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
aoqi@0 1415 __ movq(to, Address(from, qword_count, Address::times_8, 16));
aoqi@0 1416 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
aoqi@0 1417 __ movq(to, Address(from, qword_count, Address::times_8, 8));
aoqi@0 1418 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
aoqi@0 1419 __ movq(to, Address(from, qword_count, Address::times_8, 0));
aoqi@0 1420 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
aoqi@0 1421
aoqi@0 1422 __ BIND(L_copy_bytes);
aoqi@0 1423 __ subptr(qword_count, 4);
aoqi@0 1424 __ jcc(Assembler::greaterEqual, L_loop);
aoqi@0 1425 }
aoqi@0 1426 __ addptr(qword_count, 4);
aoqi@0 1427 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
aoqi@0 1428 }
aoqi@0 1429
aoqi@0 1430
aoqi@0 1431 // Arguments:
aoqi@0 1432 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@0 1433 // ignored
aoqi@0 1434 // name - stub name string
aoqi@0 1435 //
aoqi@0 1436 // Inputs:
aoqi@0 1437 // c_rarg0 - source array address
aoqi@0 1438 // c_rarg1 - destination array address
aoqi@0 1439 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 1440 //
aoqi@0 1441 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
aoqi@0 1442 // we let the hardware handle it. The one to eight bytes within words,
aoqi@0 1443 // dwords or qwords that span cache line boundaries will still be loaded
aoqi@0 1444 // and stored atomically.
aoqi@0 1445 //
aoqi@0 1446 // Side Effects:
aoqi@0 1447 // disjoint_byte_copy_entry is set to the no-overlap entry point
aoqi@0 1448 // used by generate_conjoint_byte_copy().
aoqi@0 1449 //
aoqi@0 1450 address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
aoqi@0 1451 __ align(CodeEntryAlignment);
aoqi@0 1452 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1453 address start = __ pc();
aoqi@0 1454
aoqi@0 1455 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
aoqi@0 1456 Label L_copy_byte, L_exit;
aoqi@0 1457 const Register from = rdi; // source array address
aoqi@0 1458 const Register to = rsi; // destination array address
aoqi@0 1459 const Register count = rdx; // elements count
aoqi@0 1460 const Register byte_count = rcx;
aoqi@0 1461 const Register qword_count = count;
aoqi@0 1462 const Register end_from = from; // source array end address
aoqi@0 1463 const Register end_to = to; // destination array end address
aoqi@0 1464 // End pointers are inclusive, and if count is not zero they point
aoqi@0 1465 // to the last unit copied: end_to[0] := end_from[0]
aoqi@0 1466
aoqi@0 1467 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1468 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 1469
aoqi@0 1470 if (entry != NULL) {
aoqi@0 1471 *entry = __ pc();
aoqi@0 1472 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 1473 BLOCK_COMMENT("Entry:");
aoqi@0 1474 }
aoqi@0 1475
aoqi@0 1476 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 1477 // r9 and r10 may be used to save non-volatile registers
aoqi@0 1478
aoqi@0 1479 // 'from', 'to' and 'count' are now valid
aoqi@0 1480 __ movptr(byte_count, count);
aoqi@0 1481 __ shrptr(count, 3); // count => qword_count
aoqi@0 1482
aoqi@0 1483 // Copy from low to high addresses. Use 'to' as scratch.
aoqi@0 1484 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
aoqi@0 1485 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
aoqi@0 1486 __ negptr(qword_count); // make the count negative
aoqi@0 1487 __ jmp(L_copy_bytes);
aoqi@0 1488
aoqi@0 1489 // Copy trailing qwords
aoqi@0 1490 __ BIND(L_copy_8_bytes);
aoqi@0 1491 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
aoqi@0 1492 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
aoqi@0 1493 __ increment(qword_count);
aoqi@0 1494 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 1495
aoqi@0 1496 // Check for and copy trailing dword
aoqi@0 1497 __ BIND(L_copy_4_bytes);
aoqi@0 1498 __ testl(byte_count, 4);
aoqi@0 1499 __ jccb(Assembler::zero, L_copy_2_bytes);
aoqi@0 1500 __ movl(rax, Address(end_from, 8));
aoqi@0 1501 __ movl(Address(end_to, 8), rax);
aoqi@0 1502
aoqi@0 1503 __ addptr(end_from, 4);
aoqi@0 1504 __ addptr(end_to, 4);
aoqi@0 1505
aoqi@0 1506 // Check for and copy trailing word
aoqi@0 1507 __ BIND(L_copy_2_bytes);
aoqi@0 1508 __ testl(byte_count, 2);
aoqi@0 1509 __ jccb(Assembler::zero, L_copy_byte);
aoqi@0 1510 __ movw(rax, Address(end_from, 8));
aoqi@0 1511 __ movw(Address(end_to, 8), rax);
aoqi@0 1512
aoqi@0 1513 __ addptr(end_from, 2);
aoqi@0 1514 __ addptr(end_to, 2);
aoqi@0 1515
aoqi@0 1516 // Check for and copy trailing byte
aoqi@0 1517 __ BIND(L_copy_byte);
aoqi@0 1518 __ testl(byte_count, 1);
aoqi@0 1519 __ jccb(Assembler::zero, L_exit);
aoqi@0 1520 __ movb(rax, Address(end_from, 8));
aoqi@0 1521 __ movb(Address(end_to, 8), rax);
aoqi@0 1522
aoqi@0 1523 __ BIND(L_exit);
aoqi@0 1524 restore_arg_regs();
aoqi@0 1525 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1526 __ xorptr(rax, rax); // return 0
aoqi@0 1527 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1528 __ ret(0);
aoqi@0 1529
aoqi@0 1530 // Copy in multi-bytes chunks
aoqi@0 1531 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 1532 __ jmp(L_copy_4_bytes);
aoqi@0 1533
aoqi@0 1534 return start;
aoqi@0 1535 }
aoqi@0 1536
aoqi@0 1537 // Arguments:
aoqi@0 1538 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@0 1539 // ignored
aoqi@0 1540 // name - stub name string
aoqi@0 1541 //
aoqi@0 1542 // Inputs:
aoqi@0 1543 // c_rarg0 - source array address
aoqi@0 1544 // c_rarg1 - destination array address
aoqi@0 1545 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 1546 //
aoqi@0 1547 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
aoqi@0 1548 // we let the hardware handle it. The one to eight bytes within words,
aoqi@0 1549 // dwords or qwords that span cache line boundaries will still be loaded
aoqi@0 1550 // and stored atomically.
aoqi@0 1551 //
aoqi@0 1552 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
aoqi@0 1553 address* entry, const char *name) {
aoqi@0 1554 __ align(CodeEntryAlignment);
aoqi@0 1555 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1556 address start = __ pc();
aoqi@0 1557
aoqi@0 1558 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
aoqi@0 1559 const Register from = rdi; // source array address
aoqi@0 1560 const Register to = rsi; // destination array address
aoqi@0 1561 const Register count = rdx; // elements count
aoqi@0 1562 const Register byte_count = rcx;
aoqi@0 1563 const Register qword_count = count;
aoqi@0 1564
aoqi@0 1565 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1566 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 1567
aoqi@0 1568 if (entry != NULL) {
aoqi@0 1569 *entry = __ pc();
aoqi@0 1570 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 1571 BLOCK_COMMENT("Entry:");
aoqi@0 1572 }
aoqi@0 1573
aoqi@0 1574 array_overlap_test(nooverlap_target, Address::times_1);
aoqi@0 1575 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 1576 // r9 and r10 may be used to save non-volatile registers
aoqi@0 1577
aoqi@0 1578 // 'from', 'to' and 'count' are now valid
aoqi@0 1579 __ movptr(byte_count, count);
aoqi@0 1580 __ shrptr(count, 3); // count => qword_count
aoqi@0 1581
aoqi@0 1582 // Copy from high to low addresses.
aoqi@0 1583
aoqi@0 1584 // Check for and copy trailing byte
aoqi@0 1585 __ testl(byte_count, 1);
aoqi@0 1586 __ jcc(Assembler::zero, L_copy_2_bytes);
aoqi@0 1587 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
aoqi@0 1588 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
aoqi@0 1589 __ decrement(byte_count); // Adjust for possible trailing word
aoqi@0 1590
aoqi@0 1591 // Check for and copy trailing word
aoqi@0 1592 __ BIND(L_copy_2_bytes);
aoqi@0 1593 __ testl(byte_count, 2);
aoqi@0 1594 __ jcc(Assembler::zero, L_copy_4_bytes);
aoqi@0 1595 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
aoqi@0 1596 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
aoqi@0 1597
aoqi@0 1598 // Check for and copy trailing dword
aoqi@0 1599 __ BIND(L_copy_4_bytes);
aoqi@0 1600 __ testl(byte_count, 4);
aoqi@0 1601 __ jcc(Assembler::zero, L_copy_bytes);
aoqi@0 1602 __ movl(rax, Address(from, qword_count, Address::times_8));
aoqi@0 1603 __ movl(Address(to, qword_count, Address::times_8), rax);
aoqi@0 1604 __ jmp(L_copy_bytes);
aoqi@0 1605
aoqi@0 1606 // Copy trailing qwords
aoqi@0 1607 __ BIND(L_copy_8_bytes);
aoqi@0 1608 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
aoqi@0 1609 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
aoqi@0 1610 __ decrement(qword_count);
aoqi@0 1611 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 1612
aoqi@0 1613 restore_arg_regs();
aoqi@0 1614 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1615 __ xorptr(rax, rax); // return 0
aoqi@0 1616 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1617 __ ret(0);
aoqi@0 1618
aoqi@0 1619 // Copy in multi-bytes chunks
aoqi@0 1620 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 1621
aoqi@0 1622 restore_arg_regs();
aoqi@0 1623 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1624 __ xorptr(rax, rax); // return 0
aoqi@0 1625 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1626 __ ret(0);
aoqi@0 1627
aoqi@0 1628 return start;
aoqi@0 1629 }
aoqi@0 1630
aoqi@0 1631 // Arguments:
aoqi@0 1632 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@0 1633 // ignored
aoqi@0 1634 // name - stub name string
aoqi@0 1635 //
aoqi@0 1636 // Inputs:
aoqi@0 1637 // c_rarg0 - source array address
aoqi@0 1638 // c_rarg1 - destination array address
aoqi@0 1639 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 1640 //
aoqi@0 1641 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
aoqi@0 1642 // let the hardware handle it. The two or four words within dwords
aoqi@0 1643 // or qwords that span cache line boundaries will still be loaded
aoqi@0 1644 // and stored atomically.
aoqi@0 1645 //
aoqi@0 1646 // Side Effects:
aoqi@0 1647 // disjoint_short_copy_entry is set to the no-overlap entry point
aoqi@0 1648 // used by generate_conjoint_short_copy().
aoqi@0 1649 //
aoqi@0 1650 address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
aoqi@0 1651 __ align(CodeEntryAlignment);
aoqi@0 1652 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1653 address start = __ pc();
aoqi@0 1654
aoqi@0 1655 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
aoqi@0 1656 const Register from = rdi; // source array address
aoqi@0 1657 const Register to = rsi; // destination array address
aoqi@0 1658 const Register count = rdx; // elements count
aoqi@0 1659 const Register word_count = rcx;
aoqi@0 1660 const Register qword_count = count;
aoqi@0 1661 const Register end_from = from; // source array end address
aoqi@0 1662 const Register end_to = to; // destination array end address
aoqi@0 1663 // End pointers are inclusive, and if count is not zero they point
aoqi@0 1664 // to the last unit copied: end_to[0] := end_from[0]
aoqi@0 1665
aoqi@0 1666 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1667 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 1668
aoqi@0 1669 if (entry != NULL) {
aoqi@0 1670 *entry = __ pc();
aoqi@0 1671 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 1672 BLOCK_COMMENT("Entry:");
aoqi@0 1673 }
aoqi@0 1674
aoqi@0 1675 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 1676 // r9 and r10 may be used to save non-volatile registers
aoqi@0 1677
aoqi@0 1678 // 'from', 'to' and 'count' are now valid
aoqi@0 1679 __ movptr(word_count, count);
aoqi@0 1680 __ shrptr(count, 2); // count => qword_count
aoqi@0 1681
aoqi@0 1682 // Copy from low to high addresses. Use 'to' as scratch.
aoqi@0 1683 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
aoqi@0 1684 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
aoqi@0 1685 __ negptr(qword_count);
aoqi@0 1686 __ jmp(L_copy_bytes);
aoqi@0 1687
aoqi@0 1688 // Copy trailing qwords
aoqi@0 1689 __ BIND(L_copy_8_bytes);
aoqi@0 1690 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
aoqi@0 1691 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
aoqi@0 1692 __ increment(qword_count);
aoqi@0 1693 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 1694
aoqi@0 1695 // Original 'dest' is trashed, so we can't use it as a
aoqi@0 1696 // base register for a possible trailing word copy
aoqi@0 1697
aoqi@0 1698 // Check for and copy trailing dword
aoqi@0 1699 __ BIND(L_copy_4_bytes);
aoqi@0 1700 __ testl(word_count, 2);
aoqi@0 1701 __ jccb(Assembler::zero, L_copy_2_bytes);
aoqi@0 1702 __ movl(rax, Address(end_from, 8));
aoqi@0 1703 __ movl(Address(end_to, 8), rax);
aoqi@0 1704
aoqi@0 1705 __ addptr(end_from, 4);
aoqi@0 1706 __ addptr(end_to, 4);
aoqi@0 1707
aoqi@0 1708 // Check for and copy trailing word
aoqi@0 1709 __ BIND(L_copy_2_bytes);
aoqi@0 1710 __ testl(word_count, 1);
aoqi@0 1711 __ jccb(Assembler::zero, L_exit);
aoqi@0 1712 __ movw(rax, Address(end_from, 8));
aoqi@0 1713 __ movw(Address(end_to, 8), rax);
aoqi@0 1714
aoqi@0 1715 __ BIND(L_exit);
aoqi@0 1716 restore_arg_regs();
aoqi@0 1717 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1718 __ xorptr(rax, rax); // return 0
aoqi@0 1719 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1720 __ ret(0);
aoqi@0 1721
aoqi@0 1722 // Copy in multi-bytes chunks
aoqi@0 1723 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 1724 __ jmp(L_copy_4_bytes);
aoqi@0 1725
aoqi@0 1726 return start;
aoqi@0 1727 }
aoqi@0 1728
aoqi@0 1729 address generate_fill(BasicType t, bool aligned, const char *name) {
aoqi@0 1730 __ align(CodeEntryAlignment);
aoqi@0 1731 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1732 address start = __ pc();
aoqi@0 1733
aoqi@0 1734 BLOCK_COMMENT("Entry:");
aoqi@0 1735
aoqi@0 1736 const Register to = c_rarg0; // source array address
aoqi@0 1737 const Register value = c_rarg1; // value
aoqi@0 1738 const Register count = c_rarg2; // elements count
aoqi@0 1739
aoqi@0 1740 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1741
aoqi@0 1742 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
aoqi@0 1743
aoqi@0 1744 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1745 __ ret(0);
aoqi@0 1746 return start;
aoqi@0 1747 }
aoqi@0 1748
aoqi@0 1749 // Arguments:
aoqi@0 1750 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@0 1751 // ignored
aoqi@0 1752 // name - stub name string
aoqi@0 1753 //
aoqi@0 1754 // Inputs:
aoqi@0 1755 // c_rarg0 - source array address
aoqi@0 1756 // c_rarg1 - destination array address
aoqi@0 1757 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 1758 //
aoqi@0 1759 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
aoqi@0 1760 // let the hardware handle it. The two or four words within dwords
aoqi@0 1761 // or qwords that span cache line boundaries will still be loaded
aoqi@0 1762 // and stored atomically.
aoqi@0 1763 //
aoqi@0 1764 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
aoqi@0 1765 address *entry, const char *name) {
aoqi@0 1766 __ align(CodeEntryAlignment);
aoqi@0 1767 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1768 address start = __ pc();
aoqi@0 1769
aoqi@0 1770 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
aoqi@0 1771 const Register from = rdi; // source array address
aoqi@0 1772 const Register to = rsi; // destination array address
aoqi@0 1773 const Register count = rdx; // elements count
aoqi@0 1774 const Register word_count = rcx;
aoqi@0 1775 const Register qword_count = count;
aoqi@0 1776
aoqi@0 1777 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1778 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 1779
aoqi@0 1780 if (entry != NULL) {
aoqi@0 1781 *entry = __ pc();
aoqi@0 1782 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 1783 BLOCK_COMMENT("Entry:");
aoqi@0 1784 }
aoqi@0 1785
aoqi@0 1786 array_overlap_test(nooverlap_target, Address::times_2);
aoqi@0 1787 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 1788 // r9 and r10 may be used to save non-volatile registers
aoqi@0 1789
aoqi@0 1790 // 'from', 'to' and 'count' are now valid
aoqi@0 1791 __ movptr(word_count, count);
aoqi@0 1792 __ shrptr(count, 2); // count => qword_count
aoqi@0 1793
aoqi@0 1794 // Copy from high to low addresses. Use 'to' as scratch.
aoqi@0 1795
aoqi@0 1796 // Check for and copy trailing word
aoqi@0 1797 __ testl(word_count, 1);
aoqi@0 1798 __ jccb(Assembler::zero, L_copy_4_bytes);
aoqi@0 1799 __ movw(rax, Address(from, word_count, Address::times_2, -2));
aoqi@0 1800 __ movw(Address(to, word_count, Address::times_2, -2), rax);
aoqi@0 1801
aoqi@0 1802 // Check for and copy trailing dword
aoqi@0 1803 __ BIND(L_copy_4_bytes);
aoqi@0 1804 __ testl(word_count, 2);
aoqi@0 1805 __ jcc(Assembler::zero, L_copy_bytes);
aoqi@0 1806 __ movl(rax, Address(from, qword_count, Address::times_8));
aoqi@0 1807 __ movl(Address(to, qword_count, Address::times_8), rax);
aoqi@0 1808 __ jmp(L_copy_bytes);
aoqi@0 1809
aoqi@0 1810 // Copy trailing qwords
aoqi@0 1811 __ BIND(L_copy_8_bytes);
aoqi@0 1812 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
aoqi@0 1813 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
aoqi@0 1814 __ decrement(qword_count);
aoqi@0 1815 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 1816
aoqi@0 1817 restore_arg_regs();
aoqi@0 1818 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1819 __ xorptr(rax, rax); // return 0
aoqi@0 1820 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1821 __ ret(0);
aoqi@0 1822
aoqi@0 1823 // Copy in multi-bytes chunks
aoqi@0 1824 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 1825
aoqi@0 1826 restore_arg_regs();
aoqi@0 1827 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1828 __ xorptr(rax, rax); // return 0
aoqi@0 1829 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1830 __ ret(0);
aoqi@0 1831
aoqi@0 1832 return start;
aoqi@0 1833 }
aoqi@0 1834
aoqi@0 1835 // Arguments:
aoqi@0 1836 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@0 1837 // ignored
aoqi@0 1838 // is_oop - true => oop array, so generate store check code
aoqi@0 1839 // name - stub name string
aoqi@0 1840 //
aoqi@0 1841 // Inputs:
aoqi@0 1842 // c_rarg0 - source array address
aoqi@0 1843 // c_rarg1 - destination array address
aoqi@0 1844 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 1845 //
aoqi@0 1846 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
aoqi@0 1847 // the hardware handle it. The two dwords within qwords that span
aoqi@0 1848 // cache line boundaries will still be loaded and stored atomicly.
aoqi@0 1849 //
aoqi@0 1850 // Side Effects:
aoqi@0 1851 // disjoint_int_copy_entry is set to the no-overlap entry point
aoqi@0 1852 // used by generate_conjoint_int_oop_copy().
aoqi@0 1853 //
aoqi@0 1854 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
aoqi@0 1855 const char *name, bool dest_uninitialized = false) {
aoqi@0 1856 __ align(CodeEntryAlignment);
aoqi@0 1857 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1858 address start = __ pc();
aoqi@0 1859
aoqi@0 1860 Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
aoqi@0 1861 const Register from = rdi; // source array address
aoqi@0 1862 const Register to = rsi; // destination array address
aoqi@0 1863 const Register count = rdx; // elements count
aoqi@0 1864 const Register dword_count = rcx;
aoqi@0 1865 const Register qword_count = count;
aoqi@0 1866 const Register end_from = from; // source array end address
aoqi@0 1867 const Register end_to = to; // destination array end address
aoqi@0 1868 const Register saved_to = r11; // saved destination array address
aoqi@0 1869 // End pointers are inclusive, and if count is not zero they point
aoqi@0 1870 // to the last unit copied: end_to[0] := end_from[0]
aoqi@0 1871
aoqi@0 1872 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1873 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 1874
aoqi@0 1875 if (entry != NULL) {
aoqi@0 1876 *entry = __ pc();
aoqi@0 1877 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 1878 BLOCK_COMMENT("Entry:");
aoqi@0 1879 }
aoqi@0 1880
aoqi@0 1881 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 1882 // r9 and r10 may be used to save non-volatile registers
aoqi@0 1883 if (is_oop) {
aoqi@0 1884 __ movq(saved_to, to);
aoqi@0 1885 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
aoqi@0 1886 }
aoqi@0 1887
aoqi@0 1888 // 'from', 'to' and 'count' are now valid
aoqi@0 1889 __ movptr(dword_count, count);
aoqi@0 1890 __ shrptr(count, 1); // count => qword_count
aoqi@0 1891
aoqi@0 1892 // Copy from low to high addresses. Use 'to' as scratch.
aoqi@0 1893 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
aoqi@0 1894 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
aoqi@0 1895 __ negptr(qword_count);
aoqi@0 1896 __ jmp(L_copy_bytes);
aoqi@0 1897
aoqi@0 1898 // Copy trailing qwords
aoqi@0 1899 __ BIND(L_copy_8_bytes);
aoqi@0 1900 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
aoqi@0 1901 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
aoqi@0 1902 __ increment(qword_count);
aoqi@0 1903 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 1904
aoqi@0 1905 // Check for and copy trailing dword
aoqi@0 1906 __ BIND(L_copy_4_bytes);
aoqi@0 1907 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
aoqi@0 1908 __ jccb(Assembler::zero, L_exit);
aoqi@0 1909 __ movl(rax, Address(end_from, 8));
aoqi@0 1910 __ movl(Address(end_to, 8), rax);
aoqi@0 1911
aoqi@0 1912 __ BIND(L_exit);
aoqi@0 1913 if (is_oop) {
aoqi@0 1914 gen_write_ref_array_post_barrier(saved_to, dword_count, rax);
aoqi@0 1915 }
aoqi@0 1916 restore_arg_regs();
aoqi@0 1917 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 1918 __ xorptr(rax, rax); // return 0
aoqi@0 1919 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1920 __ ret(0);
aoqi@0 1921
aoqi@0 1922 // Copy in multi-bytes chunks
aoqi@0 1923 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 1924 __ jmp(L_copy_4_bytes);
aoqi@0 1925
aoqi@0 1926 return start;
aoqi@0 1927 }
aoqi@0 1928
aoqi@0 1929 // Arguments:
aoqi@0 1930 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@0 1931 // ignored
aoqi@0 1932 // is_oop - true => oop array, so generate store check code
aoqi@0 1933 // name - stub name string
aoqi@0 1934 //
aoqi@0 1935 // Inputs:
aoqi@0 1936 // c_rarg0 - source array address
aoqi@0 1937 // c_rarg1 - destination array address
aoqi@0 1938 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 1939 //
aoqi@0 1940 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
aoqi@0 1941 // the hardware handle it. The two dwords within qwords that span
aoqi@0 1942 // cache line boundaries will still be loaded and stored atomicly.
aoqi@0 1943 //
aoqi@0 1944 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
aoqi@0 1945 address *entry, const char *name,
aoqi@0 1946 bool dest_uninitialized = false) {
aoqi@0 1947 __ align(CodeEntryAlignment);
aoqi@0 1948 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 1949 address start = __ pc();
aoqi@0 1950
aoqi@0 1951 Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
aoqi@0 1952 const Register from = rdi; // source array address
aoqi@0 1953 const Register to = rsi; // destination array address
aoqi@0 1954 const Register count = rdx; // elements count
aoqi@0 1955 const Register dword_count = rcx;
aoqi@0 1956 const Register qword_count = count;
aoqi@0 1957
aoqi@0 1958 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 1959 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 1960
aoqi@0 1961 if (entry != NULL) {
aoqi@0 1962 *entry = __ pc();
aoqi@0 1963 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 1964 BLOCK_COMMENT("Entry:");
aoqi@0 1965 }
aoqi@0 1966
aoqi@0 1967 array_overlap_test(nooverlap_target, Address::times_4);
aoqi@0 1968 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 1969 // r9 and r10 may be used to save non-volatile registers
aoqi@0 1970
aoqi@0 1971 if (is_oop) {
aoqi@0 1972 // no registers are destroyed by this call
aoqi@0 1973 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
aoqi@0 1974 }
aoqi@0 1975
aoqi@0 1976 assert_clean_int(count, rax); // Make sure 'count' is clean int.
aoqi@0 1977 // 'from', 'to' and 'count' are now valid
aoqi@0 1978 __ movptr(dword_count, count);
aoqi@0 1979 __ shrptr(count, 1); // count => qword_count
aoqi@0 1980
aoqi@0 1981 // Copy from high to low addresses. Use 'to' as scratch.
aoqi@0 1982
aoqi@0 1983 // Check for and copy trailing dword
aoqi@0 1984 __ testl(dword_count, 1);
aoqi@0 1985 __ jcc(Assembler::zero, L_copy_bytes);
aoqi@0 1986 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
aoqi@0 1987 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
aoqi@0 1988 __ jmp(L_copy_bytes);
aoqi@0 1989
aoqi@0 1990 // Copy trailing qwords
aoqi@0 1991 __ BIND(L_copy_8_bytes);
aoqi@0 1992 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
aoqi@0 1993 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
aoqi@0 1994 __ decrement(qword_count);
aoqi@0 1995 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 1996
aoqi@0 1997 if (is_oop) {
aoqi@0 1998 __ jmp(L_exit);
aoqi@0 1999 }
aoqi@0 2000 restore_arg_regs();
aoqi@0 2001 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2002 __ xorptr(rax, rax); // return 0
aoqi@0 2003 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2004 __ ret(0);
aoqi@0 2005
aoqi@0 2006 // Copy in multi-bytes chunks
aoqi@0 2007 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 2008
aoqi@0 2009 __ BIND(L_exit);
aoqi@0 2010 if (is_oop) {
aoqi@0 2011 gen_write_ref_array_post_barrier(to, dword_count, rax);
aoqi@0 2012 }
aoqi@0 2013 restore_arg_regs();
aoqi@0 2014 inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2015 __ xorptr(rax, rax); // return 0
aoqi@0 2016 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2017 __ ret(0);
aoqi@0 2018
aoqi@0 2019 return start;
aoqi@0 2020 }
aoqi@0 2021
aoqi@0 2022 // Arguments:
aoqi@0 2023 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
aoqi@0 2024 // ignored
aoqi@0 2025 // is_oop - true => oop array, so generate store check code
aoqi@0 2026 // name - stub name string
aoqi@0 2027 //
aoqi@0 2028 // Inputs:
aoqi@0 2029 // c_rarg0 - source array address
aoqi@0 2030 // c_rarg1 - destination array address
aoqi@0 2031 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 2032 //
aoqi@0 2033 // Side Effects:
aoqi@0 2034 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
aoqi@0 2035 // no-overlap entry point used by generate_conjoint_long_oop_copy().
aoqi@0 2036 //
aoqi@0 2037 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
aoqi@0 2038 const char *name, bool dest_uninitialized = false) {
aoqi@0 2039 __ align(CodeEntryAlignment);
aoqi@0 2040 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 2041 address start = __ pc();
aoqi@0 2042
aoqi@0 2043 Label L_copy_bytes, L_copy_8_bytes, L_exit;
aoqi@0 2044 const Register from = rdi; // source array address
aoqi@0 2045 const Register to = rsi; // destination array address
aoqi@0 2046 const Register qword_count = rdx; // elements count
aoqi@0 2047 const Register end_from = from; // source array end address
aoqi@0 2048 const Register end_to = rcx; // destination array end address
aoqi@0 2049 const Register saved_to = to;
aoqi@0 2050 const Register saved_count = r11;
aoqi@0 2051 // End pointers are inclusive, and if count is not zero they point
aoqi@0 2052 // to the last unit copied: end_to[0] := end_from[0]
aoqi@0 2053
aoqi@0 2054 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2055 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
aoqi@0 2056 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 2057
aoqi@0 2058 if (entry != NULL) {
aoqi@0 2059 *entry = __ pc();
aoqi@0 2060 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 2061 BLOCK_COMMENT("Entry:");
aoqi@0 2062 }
aoqi@0 2063
aoqi@0 2064 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 2065 // r9 and r10 may be used to save non-volatile registers
aoqi@0 2066 // 'from', 'to' and 'qword_count' are now valid
aoqi@0 2067 if (is_oop) {
aoqi@0 2068 // Save to and count for store barrier
aoqi@0 2069 __ movptr(saved_count, qword_count);
aoqi@0 2070 // no registers are destroyed by this call
aoqi@0 2071 gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
aoqi@0 2072 }
aoqi@0 2073
aoqi@0 2074 // Copy from low to high addresses. Use 'to' as scratch.
aoqi@0 2075 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
aoqi@0 2076 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
aoqi@0 2077 __ negptr(qword_count);
aoqi@0 2078 __ jmp(L_copy_bytes);
aoqi@0 2079
aoqi@0 2080 // Copy trailing qwords
aoqi@0 2081 __ BIND(L_copy_8_bytes);
aoqi@0 2082 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
aoqi@0 2083 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
aoqi@0 2084 __ increment(qword_count);
aoqi@0 2085 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 2086
aoqi@0 2087 if (is_oop) {
aoqi@0 2088 __ jmp(L_exit);
aoqi@0 2089 } else {
aoqi@0 2090 restore_arg_regs();
aoqi@0 2091 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2092 __ xorptr(rax, rax); // return 0
aoqi@0 2093 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2094 __ ret(0);
aoqi@0 2095 }
aoqi@0 2096
aoqi@0 2097 // Copy in multi-bytes chunks
aoqi@0 2098 copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 2099
aoqi@0 2100 if (is_oop) {
aoqi@0 2101 __ BIND(L_exit);
aoqi@0 2102 gen_write_ref_array_post_barrier(saved_to, saved_count, rax);
aoqi@0 2103 }
aoqi@0 2104 restore_arg_regs();
aoqi@0 2105 if (is_oop) {
aoqi@0 2106 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2107 } else {
aoqi@0 2108 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2109 }
aoqi@0 2110 __ xorptr(rax, rax); // return 0
aoqi@0 2111 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2112 __ ret(0);
aoqi@0 2113
aoqi@0 2114 return start;
aoqi@0 2115 }
aoqi@0 2116
aoqi@0 2117 // Arguments:
aoqi@0 2118 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
aoqi@0 2119 // ignored
aoqi@0 2120 // is_oop - true => oop array, so generate store check code
aoqi@0 2121 // name - stub name string
aoqi@0 2122 //
aoqi@0 2123 // Inputs:
aoqi@0 2124 // c_rarg0 - source array address
aoqi@0 2125 // c_rarg1 - destination array address
aoqi@0 2126 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 2127 //
aoqi@0 2128 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
aoqi@0 2129 address nooverlap_target, address *entry,
aoqi@0 2130 const char *name, bool dest_uninitialized = false) {
aoqi@0 2131 __ align(CodeEntryAlignment);
aoqi@0 2132 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 2133 address start = __ pc();
aoqi@0 2134
aoqi@0 2135 Label L_copy_bytes, L_copy_8_bytes, L_exit;
aoqi@0 2136 const Register from = rdi; // source array address
aoqi@0 2137 const Register to = rsi; // destination array address
aoqi@0 2138 const Register qword_count = rdx; // elements count
aoqi@0 2139 const Register saved_count = rcx;
aoqi@0 2140
aoqi@0 2141 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2142 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@0 2143
aoqi@0 2144 if (entry != NULL) {
aoqi@0 2145 *entry = __ pc();
aoqi@0 2146 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@0 2147 BLOCK_COMMENT("Entry:");
aoqi@0 2148 }
aoqi@0 2149
aoqi@0 2150 array_overlap_test(nooverlap_target, Address::times_8);
aoqi@0 2151 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@0 2152 // r9 and r10 may be used to save non-volatile registers
aoqi@0 2153 // 'from', 'to' and 'qword_count' are now valid
aoqi@0 2154 if (is_oop) {
aoqi@0 2155 // Save to and count for store barrier
aoqi@0 2156 __ movptr(saved_count, qword_count);
aoqi@0 2157 // No registers are destroyed by this call
aoqi@0 2158 gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
aoqi@0 2159 }
aoqi@0 2160
aoqi@0 2161 __ jmp(L_copy_bytes);
aoqi@0 2162
aoqi@0 2163 // Copy trailing qwords
aoqi@0 2164 __ BIND(L_copy_8_bytes);
aoqi@0 2165 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
aoqi@0 2166 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
aoqi@0 2167 __ decrement(qword_count);
aoqi@0 2168 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@0 2169
aoqi@0 2170 if (is_oop) {
aoqi@0 2171 __ jmp(L_exit);
aoqi@0 2172 } else {
aoqi@0 2173 restore_arg_regs();
aoqi@0 2174 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2175 __ xorptr(rax, rax); // return 0
aoqi@0 2176 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2177 __ ret(0);
aoqi@0 2178 }
aoqi@0 2179
aoqi@0 2180 // Copy in multi-bytes chunks
aoqi@0 2181 copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
aoqi@0 2182
aoqi@0 2183 if (is_oop) {
aoqi@0 2184 __ BIND(L_exit);
aoqi@0 2185 gen_write_ref_array_post_barrier(to, saved_count, rax);
aoqi@0 2186 }
aoqi@0 2187 restore_arg_regs();
aoqi@0 2188 if (is_oop) {
aoqi@0 2189 inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2190 } else {
aoqi@0 2191 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2192 }
aoqi@0 2193 __ xorptr(rax, rax); // return 0
aoqi@0 2194 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2195 __ ret(0);
aoqi@0 2196
aoqi@0 2197 return start;
aoqi@0 2198 }
aoqi@0 2199
aoqi@0 2200
aoqi@0 2201 // Helper for generating a dynamic type check.
aoqi@0 2202 // Smashes no registers.
aoqi@0 2203 void generate_type_check(Register sub_klass,
aoqi@0 2204 Register super_check_offset,
aoqi@0 2205 Register super_klass,
aoqi@0 2206 Label& L_success) {
aoqi@0 2207 assert_different_registers(sub_klass, super_check_offset, super_klass);
aoqi@0 2208
aoqi@0 2209 BLOCK_COMMENT("type_check:");
aoqi@0 2210
aoqi@0 2211 Label L_miss;
aoqi@0 2212
aoqi@0 2213 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
aoqi@0 2214 super_check_offset);
aoqi@0 2215 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
aoqi@0 2216
aoqi@0 2217 // Fall through on failure!
aoqi@0 2218 __ BIND(L_miss);
aoqi@0 2219 }
aoqi@0 2220
aoqi@0 2221 //
aoqi@0 2222 // Generate checkcasting array copy stub
aoqi@0 2223 //
aoqi@0 2224 // Input:
aoqi@0 2225 // c_rarg0 - source array address
aoqi@0 2226 // c_rarg1 - destination array address
aoqi@0 2227 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@0 2228 // c_rarg3 - size_t ckoff (super_check_offset)
aoqi@0 2229 // not Win64
aoqi@0 2230 // c_rarg4 - oop ckval (super_klass)
aoqi@0 2231 // Win64
aoqi@0 2232 // rsp+40 - oop ckval (super_klass)
aoqi@0 2233 //
aoqi@0 2234 // Output:
aoqi@0 2235 // rax == 0 - success
aoqi@0 2236 // rax == -1^K - failure, where K is partial transfer count
aoqi@0 2237 //
aoqi@0 2238 address generate_checkcast_copy(const char *name, address *entry,
aoqi@0 2239 bool dest_uninitialized = false) {
aoqi@0 2240
aoqi@0 2241 Label L_load_element, L_store_element, L_do_card_marks, L_done;
aoqi@0 2242
aoqi@0 2243 // Input registers (after setup_arg_regs)
aoqi@0 2244 const Register from = rdi; // source array address
aoqi@0 2245 const Register to = rsi; // destination array address
aoqi@0 2246 const Register length = rdx; // elements count
aoqi@0 2247 const Register ckoff = rcx; // super_check_offset
aoqi@0 2248 const Register ckval = r8; // super_klass
aoqi@0 2249
aoqi@0 2250 // Registers used as temps (r13, r14 are save-on-entry)
aoqi@0 2251 const Register end_from = from; // source array end address
aoqi@0 2252 const Register end_to = r13; // destination array end address
aoqi@0 2253 const Register count = rdx; // -(count_remaining)
aoqi@0 2254 const Register r14_length = r14; // saved copy of length
aoqi@0 2255 // End pointers are inclusive, and if length is not zero they point
aoqi@0 2256 // to the last unit copied: end_to[0] := end_from[0]
aoqi@0 2257
aoqi@0 2258 const Register rax_oop = rax; // actual oop copied
aoqi@0 2259 const Register r11_klass = r11; // oop._klass
aoqi@0 2260
aoqi@0 2261 //---------------------------------------------------------------
aoqi@0 2262 // Assembler stub will be used for this call to arraycopy
aoqi@0 2263 // if the two arrays are subtypes of Object[] but the
aoqi@0 2264 // destination array type is not equal to or a supertype
aoqi@0 2265 // of the source type. Each element must be separately
aoqi@0 2266 // checked.
aoqi@0 2267
aoqi@0 2268 __ align(CodeEntryAlignment);
aoqi@0 2269 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 2270 address start = __ pc();
aoqi@0 2271
aoqi@0 2272 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2273
aoqi@0 2274 #ifdef ASSERT
aoqi@0 2275 // caller guarantees that the arrays really are different
aoqi@0 2276 // otherwise, we would have to make conjoint checks
aoqi@0 2277 { Label L;
aoqi@0 2278 array_overlap_test(L, TIMES_OOP);
aoqi@0 2279 __ stop("checkcast_copy within a single array");
aoqi@0 2280 __ bind(L);
aoqi@0 2281 }
aoqi@0 2282 #endif //ASSERT
aoqi@0 2283
aoqi@0 2284 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
aoqi@0 2285 // ckoff => rcx, ckval => r8
aoqi@0 2286 // r9 and r10 may be used to save non-volatile registers
aoqi@0 2287 #ifdef _WIN64
aoqi@0 2288 // last argument (#4) is on stack on Win64
aoqi@0 2289 __ movptr(ckval, Address(rsp, 6 * wordSize));
aoqi@0 2290 #endif
aoqi@0 2291
aoqi@0 2292 // Caller of this entry point must set up the argument registers.
aoqi@0 2293 if (entry != NULL) {
aoqi@0 2294 *entry = __ pc();
aoqi@0 2295 BLOCK_COMMENT("Entry:");
aoqi@0 2296 }
aoqi@0 2297
aoqi@0 2298 // allocate spill slots for r13, r14
aoqi@0 2299 enum {
aoqi@0 2300 saved_r13_offset,
aoqi@0 2301 saved_r14_offset,
aoqi@0 2302 saved_rbp_offset
aoqi@0 2303 };
aoqi@0 2304 __ subptr(rsp, saved_rbp_offset * wordSize);
aoqi@0 2305 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
aoqi@0 2306 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
aoqi@0 2307
aoqi@0 2308 // check that int operands are properly extended to size_t
aoqi@0 2309 assert_clean_int(length, rax);
aoqi@0 2310 assert_clean_int(ckoff, rax);
aoqi@0 2311
aoqi@0 2312 #ifdef ASSERT
aoqi@0 2313 BLOCK_COMMENT("assert consistent ckoff/ckval");
aoqi@0 2314 // The ckoff and ckval must be mutually consistent,
aoqi@0 2315 // even though caller generates both.
aoqi@0 2316 { Label L;
aoqi@0 2317 int sco_offset = in_bytes(Klass::super_check_offset_offset());
aoqi@0 2318 __ cmpl(ckoff, Address(ckval, sco_offset));
aoqi@0 2319 __ jcc(Assembler::equal, L);
aoqi@0 2320 __ stop("super_check_offset inconsistent");
aoqi@0 2321 __ bind(L);
aoqi@0 2322 }
aoqi@0 2323 #endif //ASSERT
aoqi@0 2324
aoqi@0 2325 // Loop-invariant addresses. They are exclusive end pointers.
aoqi@0 2326 Address end_from_addr(from, length, TIMES_OOP, 0);
aoqi@0 2327 Address end_to_addr(to, length, TIMES_OOP, 0);
aoqi@0 2328 // Loop-variant addresses. They assume post-incremented count < 0.
aoqi@0 2329 Address from_element_addr(end_from, count, TIMES_OOP, 0);
aoqi@0 2330 Address to_element_addr(end_to, count, TIMES_OOP, 0);
aoqi@0 2331
aoqi@0 2332 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
aoqi@0 2333
aoqi@0 2334 // Copy from low to high addresses, indexed from the end of each array.
aoqi@0 2335 __ lea(end_from, end_from_addr);
aoqi@0 2336 __ lea(end_to, end_to_addr);
aoqi@0 2337 __ movptr(r14_length, length); // save a copy of the length
aoqi@0 2338 assert(length == count, ""); // else fix next line:
aoqi@0 2339 __ negptr(count); // negate and test the length
aoqi@0 2340 __ jcc(Assembler::notZero, L_load_element);
aoqi@0 2341
aoqi@0 2342 // Empty array: Nothing to do.
aoqi@0 2343 __ xorptr(rax, rax); // return 0 on (trivial) success
aoqi@0 2344 __ jmp(L_done);
aoqi@0 2345
aoqi@0 2346 // ======== begin loop ========
aoqi@0 2347 // (Loop is rotated; its entry is L_load_element.)
aoqi@0 2348 // Loop control:
aoqi@0 2349 // for (count = -count; count != 0; count++)
aoqi@0 2350 // Base pointers src, dst are biased by 8*(count-1),to last element.
aoqi@0 2351 __ align(OptoLoopAlignment);
aoqi@0 2352
aoqi@0 2353 __ BIND(L_store_element);
aoqi@0 2354 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
aoqi@0 2355 __ increment(count); // increment the count toward zero
aoqi@0 2356 __ jcc(Assembler::zero, L_do_card_marks);
aoqi@0 2357
aoqi@0 2358 // ======== loop entry is here ========
aoqi@0 2359 __ BIND(L_load_element);
aoqi@0 2360 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
aoqi@0 2361 __ testptr(rax_oop, rax_oop);
aoqi@0 2362 __ jcc(Assembler::zero, L_store_element);
aoqi@0 2363
aoqi@0 2364 __ load_klass(r11_klass, rax_oop);// query the object klass
aoqi@0 2365 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
aoqi@0 2366 // ======== end loop ========
aoqi@0 2367
aoqi@0 2368 // It was a real error; we must depend on the caller to finish the job.
aoqi@0 2369 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
aoqi@0 2370 // Emit GC store barriers for the oops we have copied (r14 + rdx),
aoqi@0 2371 // and report their number to the caller.
aoqi@0 2372 assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
aoqi@0 2373 Label L_post_barrier;
aoqi@0 2374 __ addptr(r14_length, count); // K = (original - remaining) oops
aoqi@0 2375 __ movptr(rax, r14_length); // save the value
aoqi@0 2376 __ notptr(rax); // report (-1^K) to caller (does not affect flags)
aoqi@0 2377 __ jccb(Assembler::notZero, L_post_barrier);
aoqi@0 2378 __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
aoqi@0 2379
aoqi@0 2380 // Come here on success only.
aoqi@0 2381 __ BIND(L_do_card_marks);
aoqi@0 2382 __ xorptr(rax, rax); // return 0 on success
aoqi@0 2383
aoqi@0 2384 __ BIND(L_post_barrier);
aoqi@0 2385 gen_write_ref_array_post_barrier(to, r14_length, rscratch1);
aoqi@0 2386
aoqi@0 2387 // Common exit point (success or failure).
aoqi@0 2388 __ BIND(L_done);
aoqi@0 2389 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
aoqi@0 2390 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
aoqi@0 2391 restore_arg_regs();
aoqi@0 2392 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
aoqi@0 2393 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2394 __ ret(0);
aoqi@0 2395
aoqi@0 2396 return start;
aoqi@0 2397 }
aoqi@0 2398
aoqi@0 2399 //
aoqi@0 2400 // Generate 'unsafe' array copy stub
aoqi@0 2401 // Though just as safe as the other stubs, it takes an unscaled
aoqi@0 2402 // size_t argument instead of an element count.
aoqi@0 2403 //
aoqi@0 2404 // Input:
aoqi@0 2405 // c_rarg0 - source array address
aoqi@0 2406 // c_rarg1 - destination array address
aoqi@0 2407 // c_rarg2 - byte count, treated as ssize_t, can be zero
aoqi@0 2408 //
aoqi@0 2409 // Examines the alignment of the operands and dispatches
aoqi@0 2410 // to a long, int, short, or byte copy loop.
aoqi@0 2411 //
aoqi@0 2412 address generate_unsafe_copy(const char *name,
aoqi@0 2413 address byte_copy_entry, address short_copy_entry,
aoqi@0 2414 address int_copy_entry, address long_copy_entry) {
aoqi@0 2415
aoqi@0 2416 Label L_long_aligned, L_int_aligned, L_short_aligned;
aoqi@0 2417
aoqi@0 2418 // Input registers (before setup_arg_regs)
aoqi@0 2419 const Register from = c_rarg0; // source array address
aoqi@0 2420 const Register to = c_rarg1; // destination array address
aoqi@0 2421 const Register size = c_rarg2; // byte count (size_t)
aoqi@0 2422
aoqi@0 2423 // Register used as a temp
aoqi@0 2424 const Register bits = rax; // test copy of low bits
aoqi@0 2425
aoqi@0 2426 __ align(CodeEntryAlignment);
aoqi@0 2427 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 2428 address start = __ pc();
aoqi@0 2429
aoqi@0 2430 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2431
aoqi@0 2432 // bump this on entry, not on exit:
aoqi@0 2433 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
aoqi@0 2434
aoqi@0 2435 __ mov(bits, from);
aoqi@0 2436 __ orptr(bits, to);
aoqi@0 2437 __ orptr(bits, size);
aoqi@0 2438
aoqi@0 2439 __ testb(bits, BytesPerLong-1);
aoqi@0 2440 __ jccb(Assembler::zero, L_long_aligned);
aoqi@0 2441
aoqi@0 2442 __ testb(bits, BytesPerInt-1);
aoqi@0 2443 __ jccb(Assembler::zero, L_int_aligned);
aoqi@0 2444
aoqi@0 2445 __ testb(bits, BytesPerShort-1);
aoqi@0 2446 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
aoqi@0 2447
aoqi@0 2448 __ BIND(L_short_aligned);
aoqi@0 2449 __ shrptr(size, LogBytesPerShort); // size => short_count
aoqi@0 2450 __ jump(RuntimeAddress(short_copy_entry));
aoqi@0 2451
aoqi@0 2452 __ BIND(L_int_aligned);
aoqi@0 2453 __ shrptr(size, LogBytesPerInt); // size => int_count
aoqi@0 2454 __ jump(RuntimeAddress(int_copy_entry));
aoqi@0 2455
aoqi@0 2456 __ BIND(L_long_aligned);
aoqi@0 2457 __ shrptr(size, LogBytesPerLong); // size => qword_count
aoqi@0 2458 __ jump(RuntimeAddress(long_copy_entry));
aoqi@0 2459
aoqi@0 2460 return start;
aoqi@0 2461 }
aoqi@0 2462
aoqi@0 2463 // Perform range checks on the proposed arraycopy.
aoqi@0 2464 // Kills temp, but nothing else.
aoqi@0 2465 // Also, clean the sign bits of src_pos and dst_pos.
aoqi@0 2466 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
aoqi@0 2467 Register src_pos, // source position (c_rarg1)
aoqi@0 2468 Register dst, // destination array oo (c_rarg2)
aoqi@0 2469 Register dst_pos, // destination position (c_rarg3)
aoqi@0 2470 Register length,
aoqi@0 2471 Register temp,
aoqi@0 2472 Label& L_failed) {
aoqi@0 2473 BLOCK_COMMENT("arraycopy_range_checks:");
aoqi@0 2474
aoqi@0 2475 // if (src_pos + length > arrayOop(src)->length()) FAIL;
aoqi@0 2476 __ movl(temp, length);
aoqi@0 2477 __ addl(temp, src_pos); // src_pos + length
aoqi@0 2478 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
aoqi@0 2479 __ jcc(Assembler::above, L_failed);
aoqi@0 2480
aoqi@0 2481 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
aoqi@0 2482 __ movl(temp, length);
aoqi@0 2483 __ addl(temp, dst_pos); // dst_pos + length
aoqi@0 2484 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
aoqi@0 2485 __ jcc(Assembler::above, L_failed);
aoqi@0 2486
aoqi@0 2487 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
aoqi@0 2488 // Move with sign extension can be used since they are positive.
aoqi@0 2489 __ movslq(src_pos, src_pos);
aoqi@0 2490 __ movslq(dst_pos, dst_pos);
aoqi@0 2491
aoqi@0 2492 BLOCK_COMMENT("arraycopy_range_checks done");
aoqi@0 2493 }
aoqi@0 2494
aoqi@0 2495 //
aoqi@0 2496 // Generate generic array copy stubs
aoqi@0 2497 //
aoqi@0 2498 // Input:
aoqi@0 2499 // c_rarg0 - src oop
aoqi@0 2500 // c_rarg1 - src_pos (32-bits)
aoqi@0 2501 // c_rarg2 - dst oop
aoqi@0 2502 // c_rarg3 - dst_pos (32-bits)
aoqi@0 2503 // not Win64
aoqi@0 2504 // c_rarg4 - element count (32-bits)
aoqi@0 2505 // Win64
aoqi@0 2506 // rsp+40 - element count (32-bits)
aoqi@0 2507 //
aoqi@0 2508 // Output:
aoqi@0 2509 // rax == 0 - success
aoqi@0 2510 // rax == -1^K - failure, where K is partial transfer count
aoqi@0 2511 //
aoqi@0 2512 address generate_generic_copy(const char *name,
aoqi@0 2513 address byte_copy_entry, address short_copy_entry,
aoqi@0 2514 address int_copy_entry, address oop_copy_entry,
aoqi@0 2515 address long_copy_entry, address checkcast_copy_entry) {
aoqi@0 2516
aoqi@0 2517 Label L_failed, L_failed_0, L_objArray;
aoqi@0 2518 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
aoqi@0 2519
aoqi@0 2520 // Input registers
aoqi@0 2521 const Register src = c_rarg0; // source array oop
aoqi@0 2522 const Register src_pos = c_rarg1; // source position
aoqi@0 2523 const Register dst = c_rarg2; // destination array oop
aoqi@0 2524 const Register dst_pos = c_rarg3; // destination position
aoqi@0 2525 #ifndef _WIN64
aoqi@0 2526 const Register length = c_rarg4;
aoqi@0 2527 #else
aoqi@0 2528 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
aoqi@0 2529 #endif
aoqi@0 2530
aoqi@0 2531 { int modulus = CodeEntryAlignment;
aoqi@0 2532 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
aoqi@0 2533 int advance = target - (__ offset() % modulus);
aoqi@0 2534 if (advance < 0) advance += modulus;
aoqi@0 2535 if (advance > 0) __ nop(advance);
aoqi@0 2536 }
aoqi@0 2537 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 2538
aoqi@0 2539 // Short-hop target to L_failed. Makes for denser prologue code.
aoqi@0 2540 __ BIND(L_failed_0);
aoqi@0 2541 __ jmp(L_failed);
aoqi@0 2542 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
aoqi@0 2543
aoqi@0 2544 __ align(CodeEntryAlignment);
aoqi@0 2545 address start = __ pc();
aoqi@0 2546
aoqi@0 2547 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2548
aoqi@0 2549 // bump this on entry, not on exit:
aoqi@0 2550 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
aoqi@0 2551
aoqi@0 2552 //-----------------------------------------------------------------------
aoqi@0 2553 // Assembler stub will be used for this call to arraycopy
aoqi@0 2554 // if the following conditions are met:
aoqi@0 2555 //
aoqi@0 2556 // (1) src and dst must not be null.
aoqi@0 2557 // (2) src_pos must not be negative.
aoqi@0 2558 // (3) dst_pos must not be negative.
aoqi@0 2559 // (4) length must not be negative.
aoqi@0 2560 // (5) src klass and dst klass should be the same and not NULL.
aoqi@0 2561 // (6) src and dst should be arrays.
aoqi@0 2562 // (7) src_pos + length must not exceed length of src.
aoqi@0 2563 // (8) dst_pos + length must not exceed length of dst.
aoqi@0 2564 //
aoqi@0 2565
aoqi@0 2566 // if (src == NULL) return -1;
aoqi@0 2567 __ testptr(src, src); // src oop
aoqi@0 2568 size_t j1off = __ offset();
aoqi@0 2569 __ jccb(Assembler::zero, L_failed_0);
aoqi@0 2570
aoqi@0 2571 // if (src_pos < 0) return -1;
aoqi@0 2572 __ testl(src_pos, src_pos); // src_pos (32-bits)
aoqi@0 2573 __ jccb(Assembler::negative, L_failed_0);
aoqi@0 2574
aoqi@0 2575 // if (dst == NULL) return -1;
aoqi@0 2576 __ testptr(dst, dst); // dst oop
aoqi@0 2577 __ jccb(Assembler::zero, L_failed_0);
aoqi@0 2578
aoqi@0 2579 // if (dst_pos < 0) return -1;
aoqi@0 2580 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
aoqi@0 2581 size_t j4off = __ offset();
aoqi@0 2582 __ jccb(Assembler::negative, L_failed_0);
aoqi@0 2583
aoqi@0 2584 // The first four tests are very dense code,
aoqi@0 2585 // but not quite dense enough to put four
aoqi@0 2586 // jumps in a 16-byte instruction fetch buffer.
aoqi@0 2587 // That's good, because some branch predicters
aoqi@0 2588 // do not like jumps so close together.
aoqi@0 2589 // Make sure of this.
aoqi@0 2590 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
aoqi@0 2591
aoqi@0 2592 // registers used as temp
aoqi@0 2593 const Register r11_length = r11; // elements count to copy
aoqi@0 2594 const Register r10_src_klass = r10; // array klass
aoqi@0 2595
aoqi@0 2596 // if (length < 0) return -1;
aoqi@0 2597 __ movl(r11_length, length); // length (elements count, 32-bits value)
aoqi@0 2598 __ testl(r11_length, r11_length);
aoqi@0 2599 __ jccb(Assembler::negative, L_failed_0);
aoqi@0 2600
aoqi@0 2601 __ load_klass(r10_src_klass, src);
aoqi@0 2602 #ifdef ASSERT
aoqi@0 2603 // assert(src->klass() != NULL);
aoqi@0 2604 {
aoqi@0 2605 BLOCK_COMMENT("assert klasses not null {");
aoqi@0 2606 Label L1, L2;
aoqi@0 2607 __ testptr(r10_src_klass, r10_src_klass);
aoqi@0 2608 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
aoqi@0 2609 __ bind(L1);
aoqi@0 2610 __ stop("broken null klass");
aoqi@0 2611 __ bind(L2);
aoqi@0 2612 __ load_klass(rax, dst);
aoqi@0 2613 __ cmpq(rax, 0);
aoqi@0 2614 __ jcc(Assembler::equal, L1); // this would be broken also
aoqi@0 2615 BLOCK_COMMENT("} assert klasses not null done");
aoqi@0 2616 }
aoqi@0 2617 #endif
aoqi@0 2618
aoqi@0 2619 // Load layout helper (32-bits)
aoqi@0 2620 //
aoqi@0 2621 // |array_tag| | header_size | element_type | |log2_element_size|
aoqi@0 2622 // 32 30 24 16 8 2 0
aoqi@0 2623 //
aoqi@0 2624 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
aoqi@0 2625 //
aoqi@0 2626
aoqi@0 2627 const int lh_offset = in_bytes(Klass::layout_helper_offset());
aoqi@0 2628
aoqi@0 2629 // Handle objArrays completely differently...
aoqi@0 2630 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
aoqi@0 2631 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
aoqi@0 2632 __ jcc(Assembler::equal, L_objArray);
aoqi@0 2633
aoqi@0 2634 // if (src->klass() != dst->klass()) return -1;
aoqi@0 2635 __ load_klass(rax, dst);
aoqi@0 2636 __ cmpq(r10_src_klass, rax);
aoqi@0 2637 __ jcc(Assembler::notEqual, L_failed);
aoqi@0 2638
aoqi@0 2639 const Register rax_lh = rax; // layout helper
aoqi@0 2640 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
aoqi@0 2641
aoqi@0 2642 // if (!src->is_Array()) return -1;
aoqi@0 2643 __ cmpl(rax_lh, Klass::_lh_neutral_value);
aoqi@0 2644 __ jcc(Assembler::greaterEqual, L_failed);
aoqi@0 2645
aoqi@0 2646 // At this point, it is known to be a typeArray (array_tag 0x3).
aoqi@0 2647 #ifdef ASSERT
aoqi@0 2648 {
aoqi@0 2649 BLOCK_COMMENT("assert primitive array {");
aoqi@0 2650 Label L;
aoqi@0 2651 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
aoqi@0 2652 __ jcc(Assembler::greaterEqual, L);
aoqi@0 2653 __ stop("must be a primitive array");
aoqi@0 2654 __ bind(L);
aoqi@0 2655 BLOCK_COMMENT("} assert primitive array done");
aoqi@0 2656 }
aoqi@0 2657 #endif
aoqi@0 2658
aoqi@0 2659 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
aoqi@0 2660 r10, L_failed);
aoqi@0 2661
aoqi@0 2662 // TypeArrayKlass
aoqi@0 2663 //
aoqi@0 2664 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
aoqi@0 2665 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
aoqi@0 2666 //
aoqi@0 2667
aoqi@0 2668 const Register r10_offset = r10; // array offset
aoqi@0 2669 const Register rax_elsize = rax_lh; // element size
aoqi@0 2670
aoqi@0 2671 __ movl(r10_offset, rax_lh);
aoqi@0 2672 __ shrl(r10_offset, Klass::_lh_header_size_shift);
aoqi@0 2673 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
aoqi@0 2674 __ addptr(src, r10_offset); // src array offset
aoqi@0 2675 __ addptr(dst, r10_offset); // dst array offset
aoqi@0 2676 BLOCK_COMMENT("choose copy loop based on element size");
aoqi@0 2677 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
aoqi@0 2678
aoqi@0 2679 // next registers should be set before the jump to corresponding stub
aoqi@0 2680 const Register from = c_rarg0; // source array address
aoqi@0 2681 const Register to = c_rarg1; // destination array address
aoqi@0 2682 const Register count = c_rarg2; // elements count
aoqi@0 2683
aoqi@0 2684 // 'from', 'to', 'count' registers should be set in such order
aoqi@0 2685 // since they are the same as 'src', 'src_pos', 'dst'.
aoqi@0 2686
aoqi@0 2687 __ BIND(L_copy_bytes);
aoqi@0 2688 __ cmpl(rax_elsize, 0);
aoqi@0 2689 __ jccb(Assembler::notEqual, L_copy_shorts);
aoqi@0 2690 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
aoqi@0 2691 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
aoqi@0 2692 __ movl2ptr(count, r11_length); // length
aoqi@0 2693 __ jump(RuntimeAddress(byte_copy_entry));
aoqi@0 2694
aoqi@0 2695 __ BIND(L_copy_shorts);
aoqi@0 2696 __ cmpl(rax_elsize, LogBytesPerShort);
aoqi@0 2697 __ jccb(Assembler::notEqual, L_copy_ints);
aoqi@0 2698 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
aoqi@0 2699 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
aoqi@0 2700 __ movl2ptr(count, r11_length); // length
aoqi@0 2701 __ jump(RuntimeAddress(short_copy_entry));
aoqi@0 2702
aoqi@0 2703 __ BIND(L_copy_ints);
aoqi@0 2704 __ cmpl(rax_elsize, LogBytesPerInt);
aoqi@0 2705 __ jccb(Assembler::notEqual, L_copy_longs);
aoqi@0 2706 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
aoqi@0 2707 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
aoqi@0 2708 __ movl2ptr(count, r11_length); // length
aoqi@0 2709 __ jump(RuntimeAddress(int_copy_entry));
aoqi@0 2710
aoqi@0 2711 __ BIND(L_copy_longs);
aoqi@0 2712 #ifdef ASSERT
aoqi@0 2713 {
aoqi@0 2714 BLOCK_COMMENT("assert long copy {");
aoqi@0 2715 Label L;
aoqi@0 2716 __ cmpl(rax_elsize, LogBytesPerLong);
aoqi@0 2717 __ jcc(Assembler::equal, L);
aoqi@0 2718 __ stop("must be long copy, but elsize is wrong");
aoqi@0 2719 __ bind(L);
aoqi@0 2720 BLOCK_COMMENT("} assert long copy done");
aoqi@0 2721 }
aoqi@0 2722 #endif
aoqi@0 2723 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
aoqi@0 2724 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
aoqi@0 2725 __ movl2ptr(count, r11_length); // length
aoqi@0 2726 __ jump(RuntimeAddress(long_copy_entry));
aoqi@0 2727
aoqi@0 2728 // ObjArrayKlass
aoqi@0 2729 __ BIND(L_objArray);
aoqi@0 2730 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
aoqi@0 2731
aoqi@0 2732 Label L_plain_copy, L_checkcast_copy;
aoqi@0 2733 // test array classes for subtyping
aoqi@0 2734 __ load_klass(rax, dst);
aoqi@0 2735 __ cmpq(r10_src_klass, rax); // usual case is exact equality
aoqi@0 2736 __ jcc(Assembler::notEqual, L_checkcast_copy);
aoqi@0 2737
aoqi@0 2738 // Identically typed arrays can be copied without element-wise checks.
aoqi@0 2739 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
aoqi@0 2740 r10, L_failed);
aoqi@0 2741
aoqi@0 2742 __ lea(from, Address(src, src_pos, TIMES_OOP,
aoqi@0 2743 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
aoqi@0 2744 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
aoqi@0 2745 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
aoqi@0 2746 __ movl2ptr(count, r11_length); // length
aoqi@0 2747 __ BIND(L_plain_copy);
aoqi@0 2748 __ jump(RuntimeAddress(oop_copy_entry));
aoqi@0 2749
aoqi@0 2750 __ BIND(L_checkcast_copy);
aoqi@0 2751 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
aoqi@0 2752 {
aoqi@0 2753 // Before looking at dst.length, make sure dst is also an objArray.
aoqi@0 2754 __ cmpl(Address(rax, lh_offset), objArray_lh);
aoqi@0 2755 __ jcc(Assembler::notEqual, L_failed);
aoqi@0 2756
aoqi@0 2757 // It is safe to examine both src.length and dst.length.
aoqi@0 2758 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
aoqi@0 2759 rax, L_failed);
aoqi@0 2760
aoqi@0 2761 const Register r11_dst_klass = r11;
aoqi@0 2762 __ load_klass(r11_dst_klass, dst); // reload
aoqi@0 2763
aoqi@0 2764 // Marshal the base address arguments now, freeing registers.
aoqi@0 2765 __ lea(from, Address(src, src_pos, TIMES_OOP,
aoqi@0 2766 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
aoqi@0 2767 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
aoqi@0 2768 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
aoqi@0 2769 __ movl(count, length); // length (reloaded)
aoqi@0 2770 Register sco_temp = c_rarg3; // this register is free now
aoqi@0 2771 assert_different_registers(from, to, count, sco_temp,
aoqi@0 2772 r11_dst_klass, r10_src_klass);
aoqi@0 2773 assert_clean_int(count, sco_temp);
aoqi@0 2774
aoqi@0 2775 // Generate the type check.
aoqi@0 2776 const int sco_offset = in_bytes(Klass::super_check_offset_offset());
aoqi@0 2777 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
aoqi@0 2778 assert_clean_int(sco_temp, rax);
aoqi@0 2779 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
aoqi@0 2780
aoqi@0 2781 // Fetch destination element klass from the ObjArrayKlass header.
aoqi@0 2782 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
aoqi@0 2783 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
aoqi@0 2784 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
aoqi@0 2785 assert_clean_int(sco_temp, rax);
aoqi@0 2786
aoqi@0 2787 // the checkcast_copy loop needs two extra arguments:
aoqi@0 2788 assert(c_rarg3 == sco_temp, "#3 already in place");
aoqi@0 2789 // Set up arguments for checkcast_copy_entry.
aoqi@0 2790 setup_arg_regs(4);
aoqi@0 2791 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
aoqi@0 2792 __ jump(RuntimeAddress(checkcast_copy_entry));
aoqi@0 2793 }
aoqi@0 2794
aoqi@0 2795 __ BIND(L_failed);
aoqi@0 2796 __ xorptr(rax, rax);
aoqi@0 2797 __ notptr(rax); // return -1
aoqi@0 2798 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 2799 __ ret(0);
aoqi@0 2800
aoqi@0 2801 return start;
aoqi@0 2802 }
aoqi@0 2803
aoqi@0 2804 void generate_arraycopy_stubs() {
aoqi@0 2805 address entry;
aoqi@0 2806 address entry_jbyte_arraycopy;
aoqi@0 2807 address entry_jshort_arraycopy;
aoqi@0 2808 address entry_jint_arraycopy;
aoqi@0 2809 address entry_oop_arraycopy;
aoqi@0 2810 address entry_jlong_arraycopy;
aoqi@0 2811 address entry_checkcast_arraycopy;
aoqi@0 2812
aoqi@0 2813 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
aoqi@0 2814 "jbyte_disjoint_arraycopy");
aoqi@0 2815 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
aoqi@0 2816 "jbyte_arraycopy");
aoqi@0 2817
aoqi@0 2818 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
aoqi@0 2819 "jshort_disjoint_arraycopy");
aoqi@0 2820 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
aoqi@0 2821 "jshort_arraycopy");
aoqi@0 2822
aoqi@0 2823 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry,
aoqi@0 2824 "jint_disjoint_arraycopy");
aoqi@0 2825 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry,
aoqi@0 2826 &entry_jint_arraycopy, "jint_arraycopy");
aoqi@0 2827
aoqi@0 2828 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry,
aoqi@0 2829 "jlong_disjoint_arraycopy");
aoqi@0 2830 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry,
aoqi@0 2831 &entry_jlong_arraycopy, "jlong_arraycopy");
aoqi@0 2832
aoqi@0 2833
aoqi@0 2834 if (UseCompressedOops) {
aoqi@0 2835 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry,
aoqi@0 2836 "oop_disjoint_arraycopy");
aoqi@0 2837 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry,
aoqi@0 2838 &entry_oop_arraycopy, "oop_arraycopy");
aoqi@0 2839 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry,
aoqi@0 2840 "oop_disjoint_arraycopy_uninit",
aoqi@0 2841 /*dest_uninitialized*/true);
aoqi@0 2842 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry,
aoqi@0 2843 NULL, "oop_arraycopy_uninit",
aoqi@0 2844 /*dest_uninitialized*/true);
aoqi@0 2845 } else {
aoqi@0 2846 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry,
aoqi@0 2847 "oop_disjoint_arraycopy");
aoqi@0 2848 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry,
aoqi@0 2849 &entry_oop_arraycopy, "oop_arraycopy");
aoqi@0 2850 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry,
aoqi@0 2851 "oop_disjoint_arraycopy_uninit",
aoqi@0 2852 /*dest_uninitialized*/true);
aoqi@0 2853 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry,
aoqi@0 2854 NULL, "oop_arraycopy_uninit",
aoqi@0 2855 /*dest_uninitialized*/true);
aoqi@0 2856 }
aoqi@0 2857
aoqi@0 2858 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
aoqi@0 2859 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
aoqi@0 2860 /*dest_uninitialized*/true);
aoqi@0 2861
aoqi@0 2862 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
aoqi@0 2863 entry_jbyte_arraycopy,
aoqi@0 2864 entry_jshort_arraycopy,
aoqi@0 2865 entry_jint_arraycopy,
aoqi@0 2866 entry_jlong_arraycopy);
aoqi@0 2867 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
aoqi@0 2868 entry_jbyte_arraycopy,
aoqi@0 2869 entry_jshort_arraycopy,
aoqi@0 2870 entry_jint_arraycopy,
aoqi@0 2871 entry_oop_arraycopy,
aoqi@0 2872 entry_jlong_arraycopy,
aoqi@0 2873 entry_checkcast_arraycopy);
aoqi@0 2874
aoqi@0 2875 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
aoqi@0 2876 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
aoqi@0 2877 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
aoqi@0 2878 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
aoqi@0 2879 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
aoqi@0 2880 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
aoqi@0 2881
aoqi@0 2882 // We don't generate specialized code for HeapWord-aligned source
aoqi@0 2883 // arrays, so just use the code we've already generated
aoqi@0 2884 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
aoqi@0 2885 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
aoqi@0 2886
aoqi@0 2887 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
aoqi@0 2888 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
aoqi@0 2889
aoqi@0 2890 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
aoqi@0 2891 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
aoqi@0 2892
aoqi@0 2893 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
aoqi@0 2894 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
aoqi@0 2895
aoqi@0 2896 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
aoqi@0 2897 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
aoqi@0 2898
aoqi@0 2899 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
aoqi@0 2900 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
aoqi@0 2901 }
aoqi@0 2902
aoqi@0 2903 void generate_math_stubs() {
aoqi@0 2904 {
aoqi@0 2905 StubCodeMark mark(this, "StubRoutines", "log");
aoqi@0 2906 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
aoqi@0 2907
aoqi@0 2908 __ subq(rsp, 8);
aoqi@0 2909 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2910 __ fld_d(Address(rsp, 0));
aoqi@0 2911 __ flog();
aoqi@0 2912 __ fstp_d(Address(rsp, 0));
aoqi@0 2913 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2914 __ addq(rsp, 8);
aoqi@0 2915 __ ret(0);
aoqi@0 2916 }
aoqi@0 2917 {
aoqi@0 2918 StubCodeMark mark(this, "StubRoutines", "log10");
aoqi@0 2919 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
aoqi@0 2920
aoqi@0 2921 __ subq(rsp, 8);
aoqi@0 2922 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2923 __ fld_d(Address(rsp, 0));
aoqi@0 2924 __ flog10();
aoqi@0 2925 __ fstp_d(Address(rsp, 0));
aoqi@0 2926 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2927 __ addq(rsp, 8);
aoqi@0 2928 __ ret(0);
aoqi@0 2929 }
aoqi@0 2930 {
aoqi@0 2931 StubCodeMark mark(this, "StubRoutines", "sin");
aoqi@0 2932 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
aoqi@0 2933
aoqi@0 2934 __ subq(rsp, 8);
aoqi@0 2935 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2936 __ fld_d(Address(rsp, 0));
aoqi@0 2937 __ trigfunc('s');
aoqi@0 2938 __ fstp_d(Address(rsp, 0));
aoqi@0 2939 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2940 __ addq(rsp, 8);
aoqi@0 2941 __ ret(0);
aoqi@0 2942 }
aoqi@0 2943 {
aoqi@0 2944 StubCodeMark mark(this, "StubRoutines", "cos");
aoqi@0 2945 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
aoqi@0 2946
aoqi@0 2947 __ subq(rsp, 8);
aoqi@0 2948 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2949 __ fld_d(Address(rsp, 0));
aoqi@0 2950 __ trigfunc('c');
aoqi@0 2951 __ fstp_d(Address(rsp, 0));
aoqi@0 2952 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2953 __ addq(rsp, 8);
aoqi@0 2954 __ ret(0);
aoqi@0 2955 }
aoqi@0 2956 {
aoqi@0 2957 StubCodeMark mark(this, "StubRoutines", "tan");
aoqi@0 2958 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
aoqi@0 2959
aoqi@0 2960 __ subq(rsp, 8);
aoqi@0 2961 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2962 __ fld_d(Address(rsp, 0));
aoqi@0 2963 __ trigfunc('t');
aoqi@0 2964 __ fstp_d(Address(rsp, 0));
aoqi@0 2965 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2966 __ addq(rsp, 8);
aoqi@0 2967 __ ret(0);
aoqi@0 2968 }
aoqi@0 2969 {
aoqi@0 2970 StubCodeMark mark(this, "StubRoutines", "exp");
aoqi@0 2971 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
aoqi@0 2972
aoqi@0 2973 __ subq(rsp, 8);
aoqi@0 2974 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2975 __ fld_d(Address(rsp, 0));
aoqi@0 2976 __ exp_with_fallback(0);
aoqi@0 2977 __ fstp_d(Address(rsp, 0));
aoqi@0 2978 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2979 __ addq(rsp, 8);
aoqi@0 2980 __ ret(0);
aoqi@0 2981 }
aoqi@0 2982 {
aoqi@0 2983 StubCodeMark mark(this, "StubRoutines", "pow");
aoqi@0 2984 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
aoqi@0 2985
aoqi@0 2986 __ subq(rsp, 8);
aoqi@0 2987 __ movdbl(Address(rsp, 0), xmm1);
aoqi@0 2988 __ fld_d(Address(rsp, 0));
aoqi@0 2989 __ movdbl(Address(rsp, 0), xmm0);
aoqi@0 2990 __ fld_d(Address(rsp, 0));
aoqi@0 2991 __ pow_with_fallback(0);
aoqi@0 2992 __ fstp_d(Address(rsp, 0));
aoqi@0 2993 __ movdbl(xmm0, Address(rsp, 0));
aoqi@0 2994 __ addq(rsp, 8);
aoqi@0 2995 __ ret(0);
aoqi@0 2996 }
aoqi@0 2997 }
aoqi@0 2998
aoqi@0 2999 // AES intrinsic stubs
aoqi@0 3000 enum {AESBlockSize = 16};
aoqi@0 3001
aoqi@0 3002 address generate_key_shuffle_mask() {
aoqi@0 3003 __ align(16);
aoqi@0 3004 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
aoqi@0 3005 address start = __ pc();
aoqi@0 3006 __ emit_data64( 0x0405060700010203, relocInfo::none );
aoqi@0 3007 __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
aoqi@0 3008 return start;
aoqi@0 3009 }
aoqi@0 3010
aoqi@0 3011 // Utility routine for loading a 128-bit key word in little endian format
aoqi@0 3012 // can optionally specify that the shuffle mask is already in an xmmregister
aoqi@0 3013 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
aoqi@0 3014 __ movdqu(xmmdst, Address(key, offset));
aoqi@0 3015 if (xmm_shuf_mask != NULL) {
aoqi@0 3016 __ pshufb(xmmdst, xmm_shuf_mask);
aoqi@0 3017 } else {
aoqi@0 3018 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
aoqi@0 3019 }
aoqi@0 3020 }
aoqi@0 3021
aoqi@0 3022 // Arguments:
aoqi@0 3023 //
aoqi@0 3024 // Inputs:
aoqi@0 3025 // c_rarg0 - source byte array address
aoqi@0 3026 // c_rarg1 - destination byte array address
aoqi@0 3027 // c_rarg2 - K (key) in little endian int array
aoqi@0 3028 //
aoqi@0 3029 address generate_aescrypt_encryptBlock() {
aoqi@0 3030 assert(UseAES, "need AES instructions and misaligned SSE support");
aoqi@0 3031 __ align(CodeEntryAlignment);
aoqi@0 3032 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
aoqi@0 3033 Label L_doLast;
aoqi@0 3034 address start = __ pc();
aoqi@0 3035
aoqi@0 3036 const Register from = c_rarg0; // source array address
aoqi@0 3037 const Register to = c_rarg1; // destination array address
aoqi@0 3038 const Register key = c_rarg2; // key array address
aoqi@0 3039 const Register keylen = rax;
aoqi@0 3040
aoqi@0 3041 const XMMRegister xmm_result = xmm0;
aoqi@0 3042 const XMMRegister xmm_key_shuf_mask = xmm1;
aoqi@0 3043 // On win64 xmm6-xmm15 must be preserved so don't use them.
aoqi@0 3044 const XMMRegister xmm_temp1 = xmm2;
aoqi@0 3045 const XMMRegister xmm_temp2 = xmm3;
aoqi@0 3046 const XMMRegister xmm_temp3 = xmm4;
aoqi@0 3047 const XMMRegister xmm_temp4 = xmm5;
aoqi@0 3048
aoqi@0 3049 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3050
aoqi@0 3051 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
aoqi@0 3052 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
aoqi@0 3053
aoqi@0 3054 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
aoqi@0 3055 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
aoqi@0 3056
aoqi@0 3057 // For encryption, the java expanded key ordering is just what we need
aoqi@0 3058 // we don't know if the key is aligned, hence not using load-execute form
aoqi@0 3059
aoqi@0 3060 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
aoqi@0 3061 __ pxor(xmm_result, xmm_temp1);
aoqi@0 3062
aoqi@0 3063 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
aoqi@0 3064 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
aoqi@0 3065 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
aoqi@0 3066 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
aoqi@0 3067
aoqi@0 3068 __ aesenc(xmm_result, xmm_temp1);
aoqi@0 3069 __ aesenc(xmm_result, xmm_temp2);
aoqi@0 3070 __ aesenc(xmm_result, xmm_temp3);
aoqi@0 3071 __ aesenc(xmm_result, xmm_temp4);
aoqi@0 3072
aoqi@0 3073 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
aoqi@0 3074 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
aoqi@0 3075 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
aoqi@0 3076 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
aoqi@0 3077
aoqi@0 3078 __ aesenc(xmm_result, xmm_temp1);
aoqi@0 3079 __ aesenc(xmm_result, xmm_temp2);
aoqi@0 3080 __ aesenc(xmm_result, xmm_temp3);
aoqi@0 3081 __ aesenc(xmm_result, xmm_temp4);
aoqi@0 3082
aoqi@0 3083 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
aoqi@0 3084 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
aoqi@0 3085
aoqi@0 3086 __ cmpl(keylen, 44);
aoqi@0 3087 __ jccb(Assembler::equal, L_doLast);
aoqi@0 3088
aoqi@0 3089 __ aesenc(xmm_result, xmm_temp1);
aoqi@0 3090 __ aesenc(xmm_result, xmm_temp2);
aoqi@0 3091
aoqi@0 3092 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
aoqi@0 3093 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
aoqi@0 3094
aoqi@0 3095 __ cmpl(keylen, 52);
aoqi@0 3096 __ jccb(Assembler::equal, L_doLast);
aoqi@0 3097
aoqi@0 3098 __ aesenc(xmm_result, xmm_temp1);
aoqi@0 3099 __ aesenc(xmm_result, xmm_temp2);
aoqi@0 3100
aoqi@0 3101 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
aoqi@0 3102 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
aoqi@0 3103
aoqi@0 3104 __ BIND(L_doLast);
aoqi@0 3105 __ aesenc(xmm_result, xmm_temp1);
aoqi@0 3106 __ aesenclast(xmm_result, xmm_temp2);
aoqi@0 3107 __ movdqu(Address(to, 0), xmm_result); // store the result
aoqi@0 3108 __ xorptr(rax, rax); // return 0
aoqi@0 3109 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3110 __ ret(0);
aoqi@0 3111
aoqi@0 3112 return start;
aoqi@0 3113 }
aoqi@0 3114
aoqi@0 3115
aoqi@0 3116 // Arguments:
aoqi@0 3117 //
aoqi@0 3118 // Inputs:
aoqi@0 3119 // c_rarg0 - source byte array address
aoqi@0 3120 // c_rarg1 - destination byte array address
aoqi@0 3121 // c_rarg2 - K (key) in little endian int array
aoqi@0 3122 //
aoqi@0 3123 address generate_aescrypt_decryptBlock() {
aoqi@0 3124 assert(UseAES, "need AES instructions and misaligned SSE support");
aoqi@0 3125 __ align(CodeEntryAlignment);
aoqi@0 3126 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
aoqi@0 3127 Label L_doLast;
aoqi@0 3128 address start = __ pc();
aoqi@0 3129
aoqi@0 3130 const Register from = c_rarg0; // source array address
aoqi@0 3131 const Register to = c_rarg1; // destination array address
aoqi@0 3132 const Register key = c_rarg2; // key array address
aoqi@0 3133 const Register keylen = rax;
aoqi@0 3134
aoqi@0 3135 const XMMRegister xmm_result = xmm0;
aoqi@0 3136 const XMMRegister xmm_key_shuf_mask = xmm1;
aoqi@0 3137 // On win64 xmm6-xmm15 must be preserved so don't use them.
aoqi@0 3138 const XMMRegister xmm_temp1 = xmm2;
aoqi@0 3139 const XMMRegister xmm_temp2 = xmm3;
aoqi@0 3140 const XMMRegister xmm_temp3 = xmm4;
aoqi@0 3141 const XMMRegister xmm_temp4 = xmm5;
aoqi@0 3142
aoqi@0 3143 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3144
aoqi@0 3145 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
aoqi@0 3146 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
aoqi@0 3147
aoqi@0 3148 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
aoqi@0 3149 __ movdqu(xmm_result, Address(from, 0));
aoqi@0 3150
aoqi@0 3151 // for decryption java expanded key ordering is rotated one position from what we want
aoqi@0 3152 // so we start from 0x10 here and hit 0x00 last
aoqi@0 3153 // we don't know if the key is aligned, hence not using load-execute form
aoqi@0 3154 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
aoqi@0 3155 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
aoqi@0 3156 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
aoqi@0 3157 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
aoqi@0 3158
aoqi@0 3159 __ pxor (xmm_result, xmm_temp1);
aoqi@0 3160 __ aesdec(xmm_result, xmm_temp2);
aoqi@0 3161 __ aesdec(xmm_result, xmm_temp3);
aoqi@0 3162 __ aesdec(xmm_result, xmm_temp4);
aoqi@0 3163
aoqi@0 3164 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
aoqi@0 3165 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
aoqi@0 3166 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
aoqi@0 3167 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
aoqi@0 3168
aoqi@0 3169 __ aesdec(xmm_result, xmm_temp1);
aoqi@0 3170 __ aesdec(xmm_result, xmm_temp2);
aoqi@0 3171 __ aesdec(xmm_result, xmm_temp3);
aoqi@0 3172 __ aesdec(xmm_result, xmm_temp4);
aoqi@0 3173
aoqi@0 3174 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
aoqi@0 3175 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
aoqi@0 3176 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
aoqi@0 3177
aoqi@0 3178 __ cmpl(keylen, 44);
aoqi@0 3179 __ jccb(Assembler::equal, L_doLast);
aoqi@0 3180
aoqi@0 3181 __ aesdec(xmm_result, xmm_temp1);
aoqi@0 3182 __ aesdec(xmm_result, xmm_temp2);
aoqi@0 3183
aoqi@0 3184 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
aoqi@0 3185 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
aoqi@0 3186
aoqi@0 3187 __ cmpl(keylen, 52);
aoqi@0 3188 __ jccb(Assembler::equal, L_doLast);
aoqi@0 3189
aoqi@0 3190 __ aesdec(xmm_result, xmm_temp1);
aoqi@0 3191 __ aesdec(xmm_result, xmm_temp2);
aoqi@0 3192
aoqi@0 3193 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
aoqi@0 3194 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
aoqi@0 3195
aoqi@0 3196 __ BIND(L_doLast);
aoqi@0 3197 __ aesdec(xmm_result, xmm_temp1);
aoqi@0 3198 __ aesdec(xmm_result, xmm_temp2);
aoqi@0 3199
aoqi@0 3200 // for decryption the aesdeclast operation is always on key+0x00
aoqi@0 3201 __ aesdeclast(xmm_result, xmm_temp3);
aoqi@0 3202 __ movdqu(Address(to, 0), xmm_result); // store the result
aoqi@0 3203 __ xorptr(rax, rax); // return 0
aoqi@0 3204 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3205 __ ret(0);
aoqi@0 3206
aoqi@0 3207 return start;
aoqi@0 3208 }
aoqi@0 3209
aoqi@0 3210
aoqi@0 3211 // Arguments:
aoqi@0 3212 //
aoqi@0 3213 // Inputs:
aoqi@0 3214 // c_rarg0 - source byte array address
aoqi@0 3215 // c_rarg1 - destination byte array address
aoqi@0 3216 // c_rarg2 - K (key) in little endian int array
aoqi@0 3217 // c_rarg3 - r vector byte array address
aoqi@0 3218 // c_rarg4 - input length
aoqi@0 3219 //
aoqi@0 3220 // Output:
aoqi@0 3221 // rax - input length
aoqi@0 3222 //
aoqi@0 3223 address generate_cipherBlockChaining_encryptAESCrypt() {
aoqi@0 3224 assert(UseAES, "need AES instructions and misaligned SSE support");
aoqi@0 3225 __ align(CodeEntryAlignment);
aoqi@0 3226 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
aoqi@0 3227 address start = __ pc();
aoqi@0 3228
aoqi@0 3229 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
aoqi@0 3230 const Register from = c_rarg0; // source array address
aoqi@0 3231 const Register to = c_rarg1; // destination array address
aoqi@0 3232 const Register key = c_rarg2; // key array address
aoqi@0 3233 const Register rvec = c_rarg3; // r byte array initialized from initvector array address
aoqi@0 3234 // and left with the results of the last encryption block
aoqi@0 3235 #ifndef _WIN64
aoqi@0 3236 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
aoqi@0 3237 #else
aoqi@0 3238 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
aoqi@0 3239 const Register len_reg = r10; // pick the first volatile windows register
aoqi@0 3240 #endif
aoqi@0 3241 const Register pos = rax;
aoqi@0 3242
aoqi@0 3243 // xmm register assignments for the loops below
aoqi@0 3244 const XMMRegister xmm_result = xmm0;
aoqi@0 3245 const XMMRegister xmm_temp = xmm1;
aoqi@0 3246 // keys 0-10 preloaded into xmm2-xmm12
aoqi@0 3247 const int XMM_REG_NUM_KEY_FIRST = 2;
aoqi@0 3248 const int XMM_REG_NUM_KEY_LAST = 15;
aoqi@0 3249 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
aoqi@0 3250 const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
aoqi@0 3251 const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
aoqi@0 3252 const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
aoqi@0 3253 const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
aoqi@0 3254
aoqi@0 3255 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3256
aoqi@0 3257 #ifdef _WIN64
aoqi@0 3258 // on win64, fill len_reg from stack position
aoqi@0 3259 __ movl(len_reg, len_mem);
aoqi@0 3260 // save the xmm registers which must be preserved 6-15
aoqi@0 3261 __ subptr(rsp, -rsp_after_call_off * wordSize);
aoqi@0 3262 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
aoqi@0 3263 __ movdqu(xmm_save(i), as_XMMRegister(i));
aoqi@0 3264 }
aoqi@0 3265 #else
aoqi@0 3266 __ push(len_reg); // Save
aoqi@0 3267 #endif
aoqi@0 3268
aoqi@0 3269 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
aoqi@0 3270 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
aoqi@0 3271 // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
aoqi@0 3272 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
aoqi@0 3273 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
aoqi@0 3274 offset += 0x10;
aoqi@0 3275 }
aoqi@0 3276 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
aoqi@0 3277
aoqi@0 3278 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
aoqi@0 3279 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
aoqi@0 3280 __ cmpl(rax, 44);
aoqi@0 3281 __ jcc(Assembler::notEqual, L_key_192_256);
aoqi@0 3282
aoqi@0 3283 // 128 bit code follows here
aoqi@0 3284 __ movptr(pos, 0);
aoqi@0 3285 __ align(OptoLoopAlignment);
aoqi@0 3286
aoqi@0 3287 __ BIND(L_loopTop_128);
aoqi@0 3288 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
aoqi@0 3289 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
aoqi@0 3290 __ pxor (xmm_result, xmm_key0); // do the aes rounds
aoqi@0 3291 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
aoqi@0 3292 __ aesenc(xmm_result, as_XMMRegister(rnum));
aoqi@0 3293 }
aoqi@0 3294 __ aesenclast(xmm_result, xmm_key10);
aoqi@0 3295 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
aoqi@0 3296 // no need to store r to memory until we exit
aoqi@0 3297 __ addptr(pos, AESBlockSize);
aoqi@0 3298 __ subptr(len_reg, AESBlockSize);
aoqi@0 3299 __ jcc(Assembler::notEqual, L_loopTop_128);
aoqi@0 3300
aoqi@0 3301 __ BIND(L_exit);
aoqi@0 3302 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
aoqi@0 3303
aoqi@0 3304 #ifdef _WIN64
aoqi@0 3305 // restore xmm regs belonging to calling function
aoqi@0 3306 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
aoqi@0 3307 __ movdqu(as_XMMRegister(i), xmm_save(i));
aoqi@0 3308 }
aoqi@0 3309 __ movl(rax, len_mem);
aoqi@0 3310 #else
aoqi@0 3311 __ pop(rax); // return length
aoqi@0 3312 #endif
aoqi@0 3313 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3314 __ ret(0);
aoqi@0 3315
aoqi@0 3316 __ BIND(L_key_192_256);
aoqi@0 3317 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
aoqi@0 3318 load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
aoqi@0 3319 load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
aoqi@0 3320 __ cmpl(rax, 52);
aoqi@0 3321 __ jcc(Assembler::notEqual, L_key_256);
aoqi@0 3322
aoqi@0 3323 // 192-bit code follows here (could be changed to use more xmm registers)
aoqi@0 3324 __ movptr(pos, 0);
aoqi@0 3325 __ align(OptoLoopAlignment);
aoqi@0 3326
aoqi@0 3327 __ BIND(L_loopTop_192);
aoqi@0 3328 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
aoqi@0 3329 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
aoqi@0 3330 __ pxor (xmm_result, xmm_key0); // do the aes rounds
aoqi@0 3331 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
aoqi@0 3332 __ aesenc(xmm_result, as_XMMRegister(rnum));
aoqi@0 3333 }
aoqi@0 3334 __ aesenclast(xmm_result, xmm_key12);
aoqi@0 3335 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
aoqi@0 3336 // no need to store r to memory until we exit
aoqi@0 3337 __ addptr(pos, AESBlockSize);
aoqi@0 3338 __ subptr(len_reg, AESBlockSize);
aoqi@0 3339 __ jcc(Assembler::notEqual, L_loopTop_192);
aoqi@0 3340 __ jmp(L_exit);
aoqi@0 3341
aoqi@0 3342 __ BIND(L_key_256);
aoqi@0 3343 // 256-bit code follows here (could be changed to use more xmm registers)
aoqi@0 3344 load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
aoqi@0 3345 __ movptr(pos, 0);
aoqi@0 3346 __ align(OptoLoopAlignment);
aoqi@0 3347
aoqi@0 3348 __ BIND(L_loopTop_256);
aoqi@0 3349 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
aoqi@0 3350 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
aoqi@0 3351 __ pxor (xmm_result, xmm_key0); // do the aes rounds
aoqi@0 3352 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
aoqi@0 3353 __ aesenc(xmm_result, as_XMMRegister(rnum));
aoqi@0 3354 }
aoqi@0 3355 load_key(xmm_temp, key, 0xe0);
aoqi@0 3356 __ aesenclast(xmm_result, xmm_temp);
aoqi@0 3357 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
aoqi@0 3358 // no need to store r to memory until we exit
aoqi@0 3359 __ addptr(pos, AESBlockSize);
aoqi@0 3360 __ subptr(len_reg, AESBlockSize);
aoqi@0 3361 __ jcc(Assembler::notEqual, L_loopTop_256);
aoqi@0 3362 __ jmp(L_exit);
aoqi@0 3363
aoqi@0 3364 return start;
aoqi@0 3365 }
aoqi@0 3366
aoqi@0 3367 // Safefetch stubs.
aoqi@0 3368 void generate_safefetch(const char* name, int size, address* entry,
aoqi@0 3369 address* fault_pc, address* continuation_pc) {
aoqi@0 3370 // safefetch signatures:
aoqi@0 3371 // int SafeFetch32(int* adr, int errValue);
aoqi@0 3372 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
aoqi@0 3373 //
aoqi@0 3374 // arguments:
aoqi@0 3375 // c_rarg0 = adr
aoqi@0 3376 // c_rarg1 = errValue
aoqi@0 3377 //
aoqi@0 3378 // result:
aoqi@0 3379 // PPC_RET = *adr or errValue
aoqi@0 3380
aoqi@0 3381 StubCodeMark mark(this, "StubRoutines", name);
aoqi@0 3382
aoqi@0 3383 // Entry point, pc or function descriptor.
aoqi@0 3384 *entry = __ pc();
aoqi@0 3385
aoqi@0 3386 // Load *adr into c_rarg1, may fault.
aoqi@0 3387 *fault_pc = __ pc();
aoqi@0 3388 switch (size) {
aoqi@0 3389 case 4:
aoqi@0 3390 // int32_t
aoqi@0 3391 __ movl(c_rarg1, Address(c_rarg0, 0));
aoqi@0 3392 break;
aoqi@0 3393 case 8:
aoqi@0 3394 // int64_t
aoqi@0 3395 __ movq(c_rarg1, Address(c_rarg0, 0));
aoqi@0 3396 break;
aoqi@0 3397 default:
aoqi@0 3398 ShouldNotReachHere();
aoqi@0 3399 }
aoqi@0 3400
aoqi@0 3401 // return errValue or *adr
aoqi@0 3402 *continuation_pc = __ pc();
aoqi@0 3403 __ movq(rax, c_rarg1);
aoqi@0 3404 __ ret(0);
aoqi@0 3405 }
aoqi@0 3406
aoqi@0 3407 // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
aoqi@0 3408 // to hide instruction latency
aoqi@0 3409 //
aoqi@0 3410 // Arguments:
aoqi@0 3411 //
aoqi@0 3412 // Inputs:
aoqi@0 3413 // c_rarg0 - source byte array address
aoqi@0 3414 // c_rarg1 - destination byte array address
aoqi@0 3415 // c_rarg2 - K (key) in little endian int array
aoqi@0 3416 // c_rarg3 - r vector byte array address
aoqi@0 3417 // c_rarg4 - input length
aoqi@0 3418 //
aoqi@0 3419 // Output:
aoqi@0 3420 // rax - input length
aoqi@0 3421 //
aoqi@0 3422
aoqi@0 3423 address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
aoqi@0 3424 assert(UseAES, "need AES instructions and misaligned SSE support");
aoqi@0 3425 __ align(CodeEntryAlignment);
aoqi@0 3426 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
aoqi@0 3427 address start = __ pc();
aoqi@0 3428
aoqi@0 3429 Label L_exit, L_key_192_256, L_key_256;
aoqi@0 3430 Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
aoqi@0 3431 Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
aoqi@0 3432 const Register from = c_rarg0; // source array address
aoqi@0 3433 const Register to = c_rarg1; // destination array address
aoqi@0 3434 const Register key = c_rarg2; // key array address
aoqi@0 3435 const Register rvec = c_rarg3; // r byte array initialized from initvector array address
aoqi@0 3436 // and left with the results of the last encryption block
aoqi@0 3437 #ifndef _WIN64
aoqi@0 3438 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16)
aoqi@0 3439 #else
aoqi@0 3440 const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64
aoqi@0 3441 const Register len_reg = r10; // pick the first volatile windows register
aoqi@0 3442 #endif
aoqi@0 3443 const Register pos = rax;
aoqi@0 3444
aoqi@0 3445 // keys 0-10 preloaded into xmm2-xmm12
aoqi@0 3446 const int XMM_REG_NUM_KEY_FIRST = 5;
aoqi@0 3447 const int XMM_REG_NUM_KEY_LAST = 15;
aoqi@0 3448 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
aoqi@0 3449 const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
aoqi@0 3450
aoqi@0 3451 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3452
aoqi@0 3453 #ifdef _WIN64
aoqi@0 3454 // on win64, fill len_reg from stack position
aoqi@0 3455 __ movl(len_reg, len_mem);
aoqi@0 3456 // save the xmm registers which must be preserved 6-15
aoqi@0 3457 __ subptr(rsp, -rsp_after_call_off * wordSize);
aoqi@0 3458 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
aoqi@0 3459 __ movdqu(xmm_save(i), as_XMMRegister(i));
aoqi@0 3460 }
aoqi@0 3461 #else
aoqi@0 3462 __ push(len_reg); // Save
aoqi@0 3463 #endif
aoqi@0 3464
aoqi@0 3465 // the java expanded key ordering is rotated one position from what we want
aoqi@0 3466 // so we start from 0x10 here and hit 0x00 last
aoqi@0 3467 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
aoqi@0 3468 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
aoqi@0 3469 // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
aoqi@0 3470 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
aoqi@0 3471 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
aoqi@0 3472 offset += 0x10;
aoqi@0 3473 }
aoqi@0 3474 load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
aoqi@0 3475
aoqi@0 3476 const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block
aoqi@0 3477
aoqi@0 3478 // registers holding the four results in the parallelized loop
aoqi@0 3479 const XMMRegister xmm_result0 = xmm0;
aoqi@0 3480 const XMMRegister xmm_result1 = xmm2;
aoqi@0 3481 const XMMRegister xmm_result2 = xmm3;
aoqi@0 3482 const XMMRegister xmm_result3 = xmm4;
aoqi@0 3483
aoqi@0 3484 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
aoqi@0 3485
aoqi@0 3486 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
aoqi@0 3487 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
aoqi@0 3488 __ cmpl(rax, 44);
aoqi@0 3489 __ jcc(Assembler::notEqual, L_key_192_256);
aoqi@0 3490
aoqi@0 3491
aoqi@0 3492 // 128-bit code follows here, parallelized
aoqi@0 3493 __ movptr(pos, 0);
aoqi@0 3494 __ align(OptoLoopAlignment);
aoqi@0 3495 __ BIND(L_multiBlock_loopTop_128);
aoqi@0 3496 __ cmpptr(len_reg, 4*AESBlockSize); // see if at least 4 blocks left
aoqi@0 3497 __ jcc(Assembler::less, L_singleBlock_loopTop_128);
aoqi@0 3498
aoqi@0 3499 __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize)); // get next 4 blocks into xmmresult registers
aoqi@0 3500 __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
aoqi@0 3501 __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
aoqi@0 3502 __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
aoqi@0 3503
aoqi@0 3504 #define DoFour(opc, src_reg) \
aoqi@0 3505 __ opc(xmm_result0, src_reg); \
aoqi@0 3506 __ opc(xmm_result1, src_reg); \
aoqi@0 3507 __ opc(xmm_result2, src_reg); \
aoqi@0 3508 __ opc(xmm_result3, src_reg);
aoqi@0 3509
aoqi@0 3510 DoFour(pxor, xmm_key_first);
aoqi@0 3511 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
aoqi@0 3512 DoFour(aesdec, as_XMMRegister(rnum));
aoqi@0 3513 }
aoqi@0 3514 DoFour(aesdeclast, xmm_key_last);
aoqi@0 3515 // for each result, xor with the r vector of previous cipher block
aoqi@0 3516 __ pxor(xmm_result0, xmm_prev_block_cipher);
aoqi@0 3517 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
aoqi@0 3518 __ pxor(xmm_result1, xmm_prev_block_cipher);
aoqi@0 3519 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
aoqi@0 3520 __ pxor(xmm_result2, xmm_prev_block_cipher);
aoqi@0 3521 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
aoqi@0 3522 __ pxor(xmm_result3, xmm_prev_block_cipher);
aoqi@0 3523 __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize)); // this will carry over to next set of blocks
aoqi@0 3524
aoqi@0 3525 __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output
aoqi@0 3526 __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
aoqi@0 3527 __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
aoqi@0 3528 __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
aoqi@0 3529
aoqi@0 3530 __ addptr(pos, 4*AESBlockSize);
aoqi@0 3531 __ subptr(len_reg, 4*AESBlockSize);
aoqi@0 3532 __ jmp(L_multiBlock_loopTop_128);
aoqi@0 3533
aoqi@0 3534 // registers used in the non-parallelized loops
aoqi@0 3535 // xmm register assignments for the loops below
aoqi@0 3536 const XMMRegister xmm_result = xmm0;
aoqi@0 3537 const XMMRegister xmm_prev_block_cipher_save = xmm2;
aoqi@0 3538 const XMMRegister xmm_key11 = xmm3;
aoqi@0 3539 const XMMRegister xmm_key12 = xmm4;
aoqi@0 3540 const XMMRegister xmm_temp = xmm4;
aoqi@0 3541
aoqi@0 3542 __ align(OptoLoopAlignment);
aoqi@0 3543 __ BIND(L_singleBlock_loopTop_128);
aoqi@0 3544 __ cmpptr(len_reg, 0); // any blocks left??
aoqi@0 3545 __ jcc(Assembler::equal, L_exit);
aoqi@0 3546 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
aoqi@0 3547 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
aoqi@0 3548 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
aoqi@0 3549 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
aoqi@0 3550 __ aesdec(xmm_result, as_XMMRegister(rnum));
aoqi@0 3551 }
aoqi@0 3552 __ aesdeclast(xmm_result, xmm_key_last);
aoqi@0 3553 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
aoqi@0 3554 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
aoqi@0 3555 // no need to store r to memory until we exit
aoqi@0 3556 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
aoqi@0 3557
aoqi@0 3558 __ addptr(pos, AESBlockSize);
aoqi@0 3559 __ subptr(len_reg, AESBlockSize);
aoqi@0 3560 __ jmp(L_singleBlock_loopTop_128);
aoqi@0 3561
aoqi@0 3562
aoqi@0 3563 __ BIND(L_exit);
aoqi@0 3564 __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
aoqi@0 3565 #ifdef _WIN64
aoqi@0 3566 // restore regs belonging to calling function
aoqi@0 3567 for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
aoqi@0 3568 __ movdqu(as_XMMRegister(i), xmm_save(i));
aoqi@0 3569 }
aoqi@0 3570 __ movl(rax, len_mem);
aoqi@0 3571 #else
aoqi@0 3572 __ pop(rax); // return length
aoqi@0 3573 #endif
aoqi@0 3574 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3575 __ ret(0);
aoqi@0 3576
aoqi@0 3577
aoqi@0 3578 __ BIND(L_key_192_256);
aoqi@0 3579 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
aoqi@0 3580 load_key(xmm_key11, key, 0xb0);
aoqi@0 3581 __ cmpl(rax, 52);
aoqi@0 3582 __ jcc(Assembler::notEqual, L_key_256);
aoqi@0 3583
aoqi@0 3584 // 192-bit code follows here (could be optimized to use parallelism)
aoqi@0 3585 load_key(xmm_key12, key, 0xc0); // 192-bit key goes up to c0
aoqi@0 3586 __ movptr(pos, 0);
aoqi@0 3587 __ align(OptoLoopAlignment);
aoqi@0 3588
aoqi@0 3589 __ BIND(L_singleBlock_loopTop_192);
aoqi@0 3590 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
aoqi@0 3591 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
aoqi@0 3592 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
aoqi@0 3593 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
aoqi@0 3594 __ aesdec(xmm_result, as_XMMRegister(rnum));
aoqi@0 3595 }
aoqi@0 3596 __ aesdec(xmm_result, xmm_key11);
aoqi@0 3597 __ aesdec(xmm_result, xmm_key12);
aoqi@0 3598 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0
aoqi@0 3599 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
aoqi@0 3600 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
aoqi@0 3601 // no need to store r to memory until we exit
aoqi@0 3602 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
aoqi@0 3603 __ addptr(pos, AESBlockSize);
aoqi@0 3604 __ subptr(len_reg, AESBlockSize);
aoqi@0 3605 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
aoqi@0 3606 __ jmp(L_exit);
aoqi@0 3607
aoqi@0 3608 __ BIND(L_key_256);
aoqi@0 3609 // 256-bit code follows here (could be optimized to use parallelism)
aoqi@0 3610 __ movptr(pos, 0);
aoqi@0 3611 __ align(OptoLoopAlignment);
aoqi@0 3612
aoqi@0 3613 __ BIND(L_singleBlock_loopTop_256);
aoqi@0 3614 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
aoqi@0 3615 __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector
aoqi@0 3616 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
aoqi@0 3617 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
aoqi@0 3618 __ aesdec(xmm_result, as_XMMRegister(rnum));
aoqi@0 3619 }
aoqi@0 3620 __ aesdec(xmm_result, xmm_key11);
aoqi@0 3621 load_key(xmm_temp, key, 0xc0);
aoqi@0 3622 __ aesdec(xmm_result, xmm_temp);
aoqi@0 3623 load_key(xmm_temp, key, 0xd0);
aoqi@0 3624 __ aesdec(xmm_result, xmm_temp);
aoqi@0 3625 load_key(xmm_temp, key, 0xe0); // 256-bit key goes up to e0
aoqi@0 3626 __ aesdec(xmm_result, xmm_temp);
aoqi@0 3627 __ aesdeclast(xmm_result, xmm_key_last); // xmm15 came from key+0
aoqi@0 3628 __ pxor (xmm_result, xmm_prev_block_cipher); // xor with the current r vector
aoqi@0 3629 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
aoqi@0 3630 // no need to store r to memory until we exit
aoqi@0 3631 __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block
aoqi@0 3632 __ addptr(pos, AESBlockSize);
aoqi@0 3633 __ subptr(len_reg, AESBlockSize);
aoqi@0 3634 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
aoqi@0 3635 __ jmp(L_exit);
aoqi@0 3636
aoqi@0 3637 return start;
aoqi@0 3638 }
aoqi@0 3639
aoqi@0 3640 /**
aoqi@0 3641 * Arguments:
aoqi@0 3642 *
aoqi@0 3643 * Inputs:
aoqi@0 3644 * c_rarg0 - int crc
aoqi@0 3645 * c_rarg1 - byte* buf
aoqi@0 3646 * c_rarg2 - int length
aoqi@0 3647 *
aoqi@0 3648 * Ouput:
aoqi@0 3649 * rax - int crc result
aoqi@0 3650 */
aoqi@0 3651 address generate_updateBytesCRC32() {
aoqi@0 3652 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
aoqi@0 3653
aoqi@0 3654 __ align(CodeEntryAlignment);
aoqi@0 3655 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
aoqi@0 3656
aoqi@0 3657 address start = __ pc();
aoqi@0 3658 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
aoqi@0 3659 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
aoqi@0 3660 // rscratch1: r10
aoqi@0 3661 const Register crc = c_rarg0; // crc
aoqi@0 3662 const Register buf = c_rarg1; // source java byte array address
aoqi@0 3663 const Register len = c_rarg2; // length
aoqi@0 3664 const Register table = c_rarg3; // crc_table address (reuse register)
aoqi@0 3665 const Register tmp = r11;
aoqi@0 3666 assert_different_registers(crc, buf, len, table, tmp, rax);
aoqi@0 3667
aoqi@0 3668 BLOCK_COMMENT("Entry:");
aoqi@0 3669 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3670
aoqi@0 3671 __ kernel_crc32(crc, buf, len, table, tmp);
aoqi@0 3672
aoqi@0 3673 __ movl(rax, crc);
aoqi@0 3674 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3675 __ ret(0);
aoqi@0 3676
aoqi@0 3677 return start;
aoqi@0 3678 }
aoqi@0 3679
kvn@7152 3680
kvn@7152 3681 /**
kvn@7152 3682 * Arguments:
kvn@7152 3683 *
kvn@7152 3684 * Input:
kvn@7152 3685 * c_rarg0 - x address
kvn@7152 3686 * c_rarg1 - x length
kvn@7152 3687 * c_rarg2 - y address
kvn@7152 3688 * c_rarg3 - y lenth
kvn@7152 3689 * not Win64
kvn@7152 3690 * c_rarg4 - z address
kvn@7152 3691 * c_rarg5 - z length
kvn@7152 3692 * Win64
kvn@7152 3693 * rsp+40 - z address
kvn@7152 3694 * rsp+48 - z length
kvn@7152 3695 */
kvn@7152 3696 address generate_multiplyToLen() {
kvn@7152 3697 __ align(CodeEntryAlignment);
kvn@7152 3698 StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
kvn@7152 3699
kvn@7152 3700 address start = __ pc();
kvn@7152 3701 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
kvn@7152 3702 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
kvn@7152 3703 const Register x = rdi;
kvn@7152 3704 const Register xlen = rax;
kvn@7152 3705 const Register y = rsi;
kvn@7152 3706 const Register ylen = rcx;
kvn@7152 3707 const Register z = r8;
kvn@7152 3708 const Register zlen = r11;
kvn@7152 3709
kvn@7152 3710 // Next registers will be saved on stack in multiply_to_len().
kvn@7152 3711 const Register tmp1 = r12;
kvn@7152 3712 const Register tmp2 = r13;
kvn@7152 3713 const Register tmp3 = r14;
kvn@7152 3714 const Register tmp4 = r15;
kvn@7152 3715 const Register tmp5 = rbx;
kvn@7152 3716
kvn@7152 3717 BLOCK_COMMENT("Entry:");
kvn@7152 3718 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@7152 3719
kvn@7152 3720 #ifndef _WIN64
kvn@7152 3721 __ movptr(zlen, r9); // Save r9 in r11 - zlen
kvn@7152 3722 #endif
kvn@7152 3723 setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx
kvn@7152 3724 // ylen => rcx, z => r8, zlen => r11
kvn@7152 3725 // r9 and r10 may be used to save non-volatile registers
kvn@7152 3726 #ifdef _WIN64
kvn@7152 3727 // last 2 arguments (#4, #5) are on stack on Win64
kvn@7152 3728 __ movptr(z, Address(rsp, 6 * wordSize));
kvn@7152 3729 __ movptr(zlen, Address(rsp, 7 * wordSize));
kvn@7152 3730 #endif
kvn@7152 3731
kvn@7152 3732 __ movptr(xlen, rsi);
kvn@7152 3733 __ movptr(y, rdx);
kvn@7152 3734 __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5);
kvn@7152 3735
kvn@7152 3736 restore_arg_regs();
kvn@7152 3737
kvn@7152 3738 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@7152 3739 __ ret(0);
kvn@7152 3740
kvn@7152 3741 return start;
kvn@7152 3742 }
kvn@7152 3743
aoqi@0 3744 #undef __
aoqi@0 3745 #define __ masm->
aoqi@0 3746
aoqi@0 3747 // Continuation point for throwing of implicit exceptions that are
aoqi@0 3748 // not handled in the current activation. Fabricates an exception
aoqi@0 3749 // oop and initiates normal exception dispatching in this
aoqi@0 3750 // frame. Since we need to preserve callee-saved values (currently
aoqi@0 3751 // only for C2, but done for C1 as well) we need a callee-saved oop
aoqi@0 3752 // map and therefore have to make these stubs into RuntimeStubs
aoqi@0 3753 // rather than BufferBlobs. If the compiler needs all registers to
aoqi@0 3754 // be preserved between the fault point and the exception handler
aoqi@0 3755 // then it must assume responsibility for that in
aoqi@0 3756 // AbstractCompiler::continuation_for_implicit_null_exception or
aoqi@0 3757 // continuation_for_implicit_division_by_zero_exception. All other
aoqi@0 3758 // implicit exceptions (e.g., NullPointerException or
aoqi@0 3759 // AbstractMethodError on entry) are either at call sites or
aoqi@0 3760 // otherwise assume that stack unwinding will be initiated, so
aoqi@0 3761 // caller saved registers were assumed volatile in the compiler.
aoqi@0 3762 address generate_throw_exception(const char* name,
aoqi@0 3763 address runtime_entry,
aoqi@0 3764 Register arg1 = noreg,
aoqi@0 3765 Register arg2 = noreg) {
aoqi@0 3766 // Information about frame layout at time of blocking runtime call.
aoqi@0 3767 // Note that we only have to preserve callee-saved registers since
aoqi@0 3768 // the compilers are responsible for supplying a continuation point
aoqi@0 3769 // if they expect all registers to be preserved.
aoqi@0 3770 enum layout {
aoqi@0 3771 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
aoqi@0 3772 rbp_off2,
aoqi@0 3773 return_off,
aoqi@0 3774 return_off2,
aoqi@0 3775 framesize // inclusive of return address
aoqi@0 3776 };
aoqi@0 3777
aoqi@0 3778 int insts_size = 512;
aoqi@0 3779 int locs_size = 64;
aoqi@0 3780
aoqi@0 3781 CodeBuffer code(name, insts_size, locs_size);
aoqi@0 3782 OopMapSet* oop_maps = new OopMapSet();
aoqi@0 3783 MacroAssembler* masm = new MacroAssembler(&code);
aoqi@0 3784
aoqi@0 3785 address start = __ pc();
aoqi@0 3786
aoqi@0 3787 // This is an inlined and slightly modified version of call_VM
aoqi@0 3788 // which has the ability to fetch the return PC out of
aoqi@0 3789 // thread-local storage and also sets up last_Java_sp slightly
aoqi@0 3790 // differently than the real call_VM
aoqi@0 3791
aoqi@0 3792 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3793
aoqi@0 3794 assert(is_even(framesize/2), "sp not 16-byte aligned");
aoqi@0 3795
aoqi@0 3796 // return address and rbp are already in place
aoqi@0 3797 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
aoqi@0 3798
aoqi@0 3799 int frame_complete = __ pc() - start;
aoqi@0 3800
aoqi@0 3801 // Set up last_Java_sp and last_Java_fp
aoqi@0 3802 address the_pc = __ pc();
aoqi@0 3803 __ set_last_Java_frame(rsp, rbp, the_pc);
aoqi@0 3804 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
aoqi@0 3805
aoqi@0 3806 // Call runtime
aoqi@0 3807 if (arg1 != noreg) {
aoqi@0 3808 assert(arg2 != c_rarg1, "clobbered");
aoqi@0 3809 __ movptr(c_rarg1, arg1);
aoqi@0 3810 }
aoqi@0 3811 if (arg2 != noreg) {
aoqi@0 3812 __ movptr(c_rarg2, arg2);
aoqi@0 3813 }
aoqi@0 3814 __ movptr(c_rarg0, r15_thread);
aoqi@0 3815 BLOCK_COMMENT("call runtime_entry");
aoqi@0 3816 __ call(RuntimeAddress(runtime_entry));
aoqi@0 3817
aoqi@0 3818 // Generate oop map
aoqi@0 3819 OopMap* map = new OopMap(framesize, 0);
aoqi@0 3820
aoqi@0 3821 oop_maps->add_gc_map(the_pc - start, map);
aoqi@0 3822
aoqi@0 3823 __ reset_last_Java_frame(true, true);
aoqi@0 3824
aoqi@0 3825 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@0 3826
aoqi@0 3827 // check for pending exceptions
aoqi@0 3828 #ifdef ASSERT
aoqi@0 3829 Label L;
aoqi@0 3830 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
aoqi@0 3831 (int32_t) NULL_WORD);
aoqi@0 3832 __ jcc(Assembler::notEqual, L);
aoqi@0 3833 __ should_not_reach_here();
aoqi@0 3834 __ bind(L);
aoqi@0 3835 #endif // ASSERT
aoqi@0 3836 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
aoqi@0 3837
aoqi@0 3838
aoqi@0 3839 // codeBlob framesize is in words (not VMRegImpl::slot_size)
aoqi@0 3840 RuntimeStub* stub =
aoqi@0 3841 RuntimeStub::new_runtime_stub(name,
aoqi@0 3842 &code,
aoqi@0 3843 frame_complete,
aoqi@0 3844 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
aoqi@0 3845 oop_maps, false);
aoqi@0 3846 return stub->entry_point();
aoqi@0 3847 }
aoqi@0 3848
aoqi@0 3849 void create_control_words() {
aoqi@0 3850 // Round to nearest, 53-bit mode, exceptions masked
aoqi@0 3851 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
aoqi@0 3852 // Round to zero, 53-bit mode, exception mased
aoqi@0 3853 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
aoqi@0 3854 // Round to nearest, 24-bit mode, exceptions masked
aoqi@0 3855 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
aoqi@0 3856 // Round to nearest, 64-bit mode, exceptions masked
aoqi@0 3857 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
aoqi@0 3858 // Round to nearest, 64-bit mode, exceptions masked
aoqi@0 3859 StubRoutines::_mxcsr_std = 0x1F80;
aoqi@0 3860 // Note: the following two constants are 80-bit values
aoqi@0 3861 // layout is critical for correct loading by FPU.
aoqi@0 3862 // Bias for strict fp multiply/divide
aoqi@0 3863 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
aoqi@0 3864 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
aoqi@0 3865 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
aoqi@0 3866 // Un-Bias for strict fp multiply/divide
aoqi@0 3867 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
aoqi@0 3868 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
aoqi@0 3869 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
aoqi@0 3870 }
aoqi@0 3871
aoqi@0 3872 // Initialization
aoqi@0 3873 void generate_initial() {
aoqi@0 3874 // Generates all stubs and initializes the entry points
aoqi@0 3875
aoqi@0 3876 // This platform-specific settings are needed by generate_call_stub()
aoqi@0 3877 create_control_words();
aoqi@0 3878
aoqi@0 3879 // entry points that exist in all platforms Note: This is code
aoqi@0 3880 // that could be shared among different platforms - however the
aoqi@0 3881 // benefit seems to be smaller than the disadvantage of having a
aoqi@0 3882 // much more complicated generator structure. See also comment in
aoqi@0 3883 // stubRoutines.hpp.
aoqi@0 3884
aoqi@0 3885 StubRoutines::_forward_exception_entry = generate_forward_exception();
aoqi@0 3886
aoqi@0 3887 StubRoutines::_call_stub_entry =
aoqi@0 3888 generate_call_stub(StubRoutines::_call_stub_return_address);
aoqi@0 3889
aoqi@0 3890 // is referenced by megamorphic call
aoqi@0 3891 StubRoutines::_catch_exception_entry = generate_catch_exception();
aoqi@0 3892
aoqi@0 3893 // atomic calls
aoqi@0 3894 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
aoqi@0 3895 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
aoqi@0 3896 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
aoqi@0 3897 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
aoqi@0 3898 StubRoutines::_atomic_add_entry = generate_atomic_add();
aoqi@0 3899 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
aoqi@0 3900 StubRoutines::_fence_entry = generate_orderaccess_fence();
aoqi@0 3901
aoqi@0 3902 StubRoutines::_handler_for_unsafe_access_entry =
aoqi@0 3903 generate_handler_for_unsafe_access();
aoqi@0 3904
aoqi@0 3905 // platform dependent
aoqi@0 3906 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
aoqi@0 3907 StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
aoqi@0 3908
aoqi@0 3909 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
aoqi@0 3910
aoqi@0 3911 // Build this early so it's available for the interpreter.
aoqi@0 3912 StubRoutines::_throw_StackOverflowError_entry =
aoqi@0 3913 generate_throw_exception("StackOverflowError throw_exception",
aoqi@0 3914 CAST_FROM_FN_PTR(address,
aoqi@0 3915 SharedRuntime::
aoqi@0 3916 throw_StackOverflowError));
aoqi@0 3917 if (UseCRC32Intrinsics) {
aoqi@0 3918 // set table address before stub generation which use it
aoqi@0 3919 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
aoqi@0 3920 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
aoqi@0 3921 }
aoqi@0 3922 }
aoqi@0 3923
aoqi@0 3924 void generate_all() {
aoqi@0 3925 // Generates all stubs and initializes the entry points
aoqi@0 3926
aoqi@0 3927 // These entry points require SharedInfo::stack0 to be set up in
aoqi@0 3928 // non-core builds and need to be relocatable, so they each
aoqi@0 3929 // fabricate a RuntimeStub internally.
aoqi@0 3930 StubRoutines::_throw_AbstractMethodError_entry =
aoqi@0 3931 generate_throw_exception("AbstractMethodError throw_exception",
aoqi@0 3932 CAST_FROM_FN_PTR(address,
aoqi@0 3933 SharedRuntime::
aoqi@0 3934 throw_AbstractMethodError));
aoqi@0 3935
aoqi@0 3936 StubRoutines::_throw_IncompatibleClassChangeError_entry =
aoqi@0 3937 generate_throw_exception("IncompatibleClassChangeError throw_exception",
aoqi@0 3938 CAST_FROM_FN_PTR(address,
aoqi@0 3939 SharedRuntime::
aoqi@0 3940 throw_IncompatibleClassChangeError));
aoqi@0 3941
aoqi@0 3942 StubRoutines::_throw_NullPointerException_at_call_entry =
aoqi@0 3943 generate_throw_exception("NullPointerException at call throw_exception",
aoqi@0 3944 CAST_FROM_FN_PTR(address,
aoqi@0 3945 SharedRuntime::
aoqi@0 3946 throw_NullPointerException_at_call));
aoqi@0 3947
aoqi@0 3948 // entry points that are platform specific
aoqi@0 3949 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
aoqi@0 3950 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
aoqi@0 3951 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
aoqi@0 3952 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
aoqi@0 3953
aoqi@0 3954 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
aoqi@0 3955 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
aoqi@0 3956 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
aoqi@0 3957 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
aoqi@0 3958
aoqi@0 3959 // support for verify_oop (must happen after universe_init)
aoqi@0 3960 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
aoqi@0 3961
aoqi@0 3962 // arraycopy stubs used by compilers
aoqi@0 3963 generate_arraycopy_stubs();
aoqi@0 3964
aoqi@0 3965 generate_math_stubs();
aoqi@0 3966
aoqi@0 3967 // don't bother generating these AES intrinsic stubs unless global flag is set
aoqi@0 3968 if (UseAESIntrinsics) {
aoqi@0 3969 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others
aoqi@0 3970
aoqi@0 3971 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
aoqi@0 3972 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
aoqi@0 3973 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
aoqi@0 3974 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
aoqi@0 3975 }
aoqi@0 3976
aoqi@0 3977 // Safefetch stubs.
aoqi@0 3978 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
aoqi@0 3979 &StubRoutines::_safefetch32_fault_pc,
aoqi@0 3980 &StubRoutines::_safefetch32_continuation_pc);
aoqi@0 3981 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
aoqi@0 3982 &StubRoutines::_safefetchN_fault_pc,
aoqi@0 3983 &StubRoutines::_safefetchN_continuation_pc);
kvn@7152 3984 #ifdef COMPILER2
kvn@7152 3985 if (UseMultiplyToLenIntrinsic) {
kvn@7152 3986 StubRoutines::_multiplyToLen = generate_multiplyToLen();
kvn@7152 3987 }
kvn@7152 3988 #endif
aoqi@0 3989 }
aoqi@0 3990
aoqi@0 3991 public:
aoqi@0 3992 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
aoqi@0 3993 if (all) {
aoqi@0 3994 generate_all();
aoqi@0 3995 } else {
aoqi@0 3996 generate_initial();
aoqi@0 3997 }
aoqi@0 3998 }
aoqi@0 3999 }; // end class declaration
aoqi@0 4000
aoqi@0 4001 void StubGenerator_generate(CodeBuffer* code, bool all) {
aoqi@0 4002 StubGenerator g(code, all);
aoqi@0 4003 }

mercurial