src/share/vm/opto/library_call.cpp

Wed, 29 Aug 2012 13:02:40 -0700

author
kvn
date
Wed, 29 Aug 2012 13:02:40 -0700
changeset 4023
0acd345fd810
parent 4002
09aad8452938
child 4037
da91efe96a93
permissions
-rw-r--r--

7160161: Missed safepoint in non-Counted loop
Summary: Do not remove safepoints during peeling optimization.
Reviewed-by: twisti

duke@435 1 /*
rbackman@3709 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
twisti@2687 28 #include "compiler/compileBroker.hpp"
stefank@2314 29 #include "compiler/compileLog.hpp"
stefank@2314 30 #include "oops/objArrayKlass.hpp"
stefank@2314 31 #include "opto/addnode.hpp"
stefank@2314 32 #include "opto/callGenerator.hpp"
stefank@2314 33 #include "opto/cfgnode.hpp"
stefank@2314 34 #include "opto/idealKit.hpp"
stefank@2314 35 #include "opto/mulnode.hpp"
stefank@2314 36 #include "opto/parse.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39 #include "prims/nativeLookup.hpp"
stefank@2314 40 #include "runtime/sharedRuntime.hpp"
duke@435 41
duke@435 42 class LibraryIntrinsic : public InlineCallGenerator {
duke@435 43 // Extend the set of intrinsics known to the runtime:
duke@435 44 public:
duke@435 45 private:
duke@435 46 bool _is_virtual;
duke@435 47 vmIntrinsics::ID _intrinsic_id;
duke@435 48
duke@435 49 public:
duke@435 50 LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
duke@435 51 : InlineCallGenerator(m),
duke@435 52 _is_virtual(is_virtual),
duke@435 53 _intrinsic_id(id)
duke@435 54 {
duke@435 55 }
duke@435 56 virtual bool is_intrinsic() const { return true; }
duke@435 57 virtual bool is_virtual() const { return _is_virtual; }
duke@435 58 virtual JVMState* generate(JVMState* jvms);
duke@435 59 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
duke@435 60 };
duke@435 61
duke@435 62
duke@435 63 // Local helper class for LibraryIntrinsic:
duke@435 64 class LibraryCallKit : public GraphKit {
duke@435 65 private:
duke@435 66 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
duke@435 67
duke@435 68 public:
duke@435 69 LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
duke@435 70 : GraphKit(caller),
duke@435 71 _intrinsic(intrinsic)
duke@435 72 {
duke@435 73 }
duke@435 74
duke@435 75 ciMethod* caller() const { return jvms()->method(); }
duke@435 76 int bci() const { return jvms()->bci(); }
duke@435 77 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
duke@435 78 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
duke@435 79 ciMethod* callee() const { return _intrinsic->method(); }
duke@435 80 ciSignature* signature() const { return callee()->signature(); }
duke@435 81 int arg_size() const { return callee()->arg_size(); }
duke@435 82
duke@435 83 bool try_to_inline();
duke@435 84
duke@435 85 // Helper functions to inline natives
duke@435 86 void push_result(RegionNode* region, PhiNode* value);
duke@435 87 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
duke@435 88 Node* generate_slow_guard(Node* test, RegionNode* region);
duke@435 89 Node* generate_fair_guard(Node* test, RegionNode* region);
duke@435 90 Node* generate_negative_guard(Node* index, RegionNode* region,
duke@435 91 // resulting CastII of index:
duke@435 92 Node* *pos_index = NULL);
duke@435 93 Node* generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 94 // resulting CastII of index:
duke@435 95 Node* *pos_index = NULL);
duke@435 96 Node* generate_limit_guard(Node* offset, Node* subseq_length,
duke@435 97 Node* array_length,
duke@435 98 RegionNode* region);
duke@435 99 Node* generate_current_thread(Node* &tls_output);
duke@435 100 address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
iveresov@2606 101 bool disjoint_bases, const char* &name, bool dest_uninitialized);
duke@435 102 Node* load_mirror_from_klass(Node* klass);
duke@435 103 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
duke@435 104 int nargs,
duke@435 105 RegionNode* region, int null_path,
duke@435 106 int offset);
duke@435 107 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
duke@435 108 RegionNode* region, int null_path) {
duke@435 109 int offset = java_lang_Class::klass_offset_in_bytes();
duke@435 110 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 111 region, null_path,
duke@435 112 offset);
duke@435 113 }
duke@435 114 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
duke@435 115 int nargs,
duke@435 116 RegionNode* region, int null_path) {
duke@435 117 int offset = java_lang_Class::array_klass_offset_in_bytes();
duke@435 118 return load_klass_from_mirror_common(mirror, never_see_null, nargs,
duke@435 119 region, null_path,
duke@435 120 offset);
duke@435 121 }
duke@435 122 Node* generate_access_flags_guard(Node* kls,
duke@435 123 int modifier_mask, int modifier_bits,
duke@435 124 RegionNode* region);
duke@435 125 Node* generate_interface_guard(Node* kls, RegionNode* region);
duke@435 126 Node* generate_array_guard(Node* kls, RegionNode* region) {
duke@435 127 return generate_array_guard_common(kls, region, false, false);
duke@435 128 }
duke@435 129 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
duke@435 130 return generate_array_guard_common(kls, region, false, true);
duke@435 131 }
duke@435 132 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
duke@435 133 return generate_array_guard_common(kls, region, true, false);
duke@435 134 }
duke@435 135 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
duke@435 136 return generate_array_guard_common(kls, region, true, true);
duke@435 137 }
duke@435 138 Node* generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 139 bool obj_array, bool not_array);
duke@435 140 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
duke@435 141 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
duke@435 142 bool is_virtual = false, bool is_static = false);
duke@435 143 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
duke@435 144 return generate_method_call(method_id, false, true);
duke@435 145 }
duke@435 146 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
duke@435 147 return generate_method_call(method_id, true, false);
duke@435 148 }
duke@435 149
kvn@3760 150 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
kvn@3760 151 Node* make_string_method_node(int opcode, Node* str1, Node* str2);
duke@435 152 bool inline_string_compareTo();
duke@435 153 bool inline_string_indexOf();
duke@435 154 Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
cfang@1116 155 bool inline_string_equals();
duke@435 156 Node* pop_math_arg();
duke@435 157 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 158 bool inline_math_native(vmIntrinsics::ID id);
duke@435 159 bool inline_trig(vmIntrinsics::ID id);
duke@435 160 bool inline_trans(vmIntrinsics::ID id);
duke@435 161 bool inline_abs(vmIntrinsics::ID id);
duke@435 162 bool inline_sqrt(vmIntrinsics::ID id);
roland@3908 163 void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
duke@435 164 bool inline_pow(vmIntrinsics::ID id);
duke@435 165 bool inline_exp(vmIntrinsics::ID id);
duke@435 166 bool inline_min_max(vmIntrinsics::ID id);
duke@435 167 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
duke@435 168 // This returns Type::AnyPtr, RawPtr, or OopPtr.
duke@435 169 int classify_unsafe_addr(Node* &base, Node* &offset);
duke@435 170 Node* make_unsafe_address(Node* base, Node* offset);
johnc@2781 171 // Helper for inline_unsafe_access.
johnc@2781 172 // Generates the guards that check whether the result of
johnc@2781 173 // Unsafe.getObject should be recorded in an SATB log buffer.
kvn@4002 174 void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, int nargs, bool need_mem_bar);
duke@435 175 bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
duke@435 176 bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
duke@435 177 bool inline_unsafe_allocate();
duke@435 178 bool inline_unsafe_copyMemory();
duke@435 179 bool inline_native_currentThread();
rbackman@3709 180 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 181 bool inline_native_classID();
rbackman@3709 182 bool inline_native_threadID();
rbackman@3709 183 #endif
rbackman@3709 184 bool inline_native_time_funcs(address method, const char* funcName);
duke@435 185 bool inline_native_isInterrupted();
duke@435 186 bool inline_native_Class_query(vmIntrinsics::ID id);
duke@435 187 bool inline_native_subtype_check();
duke@435 188
duke@435 189 bool inline_native_newArray();
duke@435 190 bool inline_native_getLength();
duke@435 191 bool inline_array_copyOf(bool is_copyOfRange);
rasbold@604 192 bool inline_array_equals();
kvn@1268 193 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
duke@435 194 bool inline_native_clone(bool is_virtual);
duke@435 195 bool inline_native_Reflection_getCallerClass();
duke@435 196 bool is_method_invoke_or_aux_frame(JVMState* jvms);
duke@435 197 // Helper function for inlining native object hash method
duke@435 198 bool inline_native_hashcode(bool is_virtual, bool is_static);
duke@435 199 bool inline_native_getClass();
duke@435 200
duke@435 201 // Helper functions for inlining arraycopy
duke@435 202 bool inline_arraycopy();
duke@435 203 void generate_arraycopy(const TypePtr* adr_type,
duke@435 204 BasicType basic_elem_type,
duke@435 205 Node* src, Node* src_offset,
duke@435 206 Node* dest, Node* dest_offset,
duke@435 207 Node* copy_length,
duke@435 208 bool disjoint_bases = false,
duke@435 209 bool length_never_negative = false,
duke@435 210 RegionNode* slow_region = NULL);
duke@435 211 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
duke@435 212 RegionNode* slow_region);
duke@435 213 void generate_clear_array(const TypePtr* adr_type,
duke@435 214 Node* dest,
duke@435 215 BasicType basic_elem_type,
duke@435 216 Node* slice_off,
duke@435 217 Node* slice_len,
duke@435 218 Node* slice_end);
duke@435 219 bool generate_block_arraycopy(const TypePtr* adr_type,
duke@435 220 BasicType basic_elem_type,
duke@435 221 AllocateNode* alloc,
duke@435 222 Node* src, Node* src_offset,
duke@435 223 Node* dest, Node* dest_offset,
iveresov@2606 224 Node* dest_size, bool dest_uninitialized);
duke@435 225 void generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 226 Node* src, Node* src_offset,
duke@435 227 Node* dest, Node* dest_offset,
iveresov@2606 228 Node* copy_length, bool dest_uninitialized);
duke@435 229 Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 230 Node* dest_elem_klass,
duke@435 231 Node* src, Node* src_offset,
duke@435 232 Node* dest, Node* dest_offset,
iveresov@2606 233 Node* copy_length, bool dest_uninitialized);
duke@435 234 Node* generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 235 Node* src, Node* src_offset,
duke@435 236 Node* dest, Node* dest_offset,
iveresov@2606 237 Node* copy_length, bool dest_uninitialized);
duke@435 238 void generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 239 BasicType basic_elem_type,
duke@435 240 bool disjoint_bases,
duke@435 241 Node* src, Node* src_offset,
duke@435 242 Node* dest, Node* dest_offset,
iveresov@2606 243 Node* copy_length, bool dest_uninitialized);
duke@435 244 bool inline_unsafe_CAS(BasicType type);
duke@435 245 bool inline_unsafe_ordered_store(BasicType type);
duke@435 246 bool inline_fp_conversions(vmIntrinsics::ID id);
twisti@1210 247 bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
twisti@1210 248 bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
twisti@1078 249 bool inline_bitCount(vmIntrinsics::ID id);
duke@435 250 bool inline_reverseBytes(vmIntrinsics::ID id);
johnc@2781 251
johnc@2781 252 bool inline_reference_get();
duke@435 253 };
duke@435 254
duke@435 255
duke@435 256 //---------------------------make_vm_intrinsic----------------------------
duke@435 257 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 258 vmIntrinsics::ID id = m->intrinsic_id();
duke@435 259 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
duke@435 260
duke@435 261 if (DisableIntrinsic[0] != '\0'
duke@435 262 && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
duke@435 263 // disabled by a user request on the command line:
duke@435 264 // example: -XX:DisableIntrinsic=_hashCode,_getClass
duke@435 265 return NULL;
duke@435 266 }
duke@435 267
duke@435 268 if (!m->is_loaded()) {
duke@435 269 // do not attempt to inline unloaded methods
duke@435 270 return NULL;
duke@435 271 }
duke@435 272
duke@435 273 // Only a few intrinsics implement a virtual dispatch.
duke@435 274 // They are expensive calls which are also frequently overridden.
duke@435 275 if (is_virtual) {
duke@435 276 switch (id) {
duke@435 277 case vmIntrinsics::_hashCode:
duke@435 278 case vmIntrinsics::_clone:
duke@435 279 // OK, Object.hashCode and Object.clone intrinsics come in both flavors
duke@435 280 break;
duke@435 281 default:
duke@435 282 return NULL;
duke@435 283 }
duke@435 284 }
duke@435 285
duke@435 286 // -XX:-InlineNatives disables nearly all intrinsics:
duke@435 287 if (!InlineNatives) {
duke@435 288 switch (id) {
duke@435 289 case vmIntrinsics::_indexOf:
duke@435 290 case vmIntrinsics::_compareTo:
cfang@1116 291 case vmIntrinsics::_equals:
rasbold@604 292 case vmIntrinsics::_equalsC:
duke@435 293 break; // InlineNatives does not control String.compareTo
kvn@4002 294 case vmIntrinsics::_Reference_get:
kvn@4002 295 break; // InlineNatives does not control Reference.get
duke@435 296 default:
duke@435 297 return NULL;
duke@435 298 }
duke@435 299 }
duke@435 300
duke@435 301 switch (id) {
duke@435 302 case vmIntrinsics::_compareTo:
duke@435 303 if (!SpecialStringCompareTo) return NULL;
duke@435 304 break;
duke@435 305 case vmIntrinsics::_indexOf:
duke@435 306 if (!SpecialStringIndexOf) return NULL;
duke@435 307 break;
cfang@1116 308 case vmIntrinsics::_equals:
cfang@1116 309 if (!SpecialStringEquals) return NULL;
cfang@1116 310 break;
rasbold@604 311 case vmIntrinsics::_equalsC:
rasbold@604 312 if (!SpecialArraysEquals) return NULL;
rasbold@604 313 break;
duke@435 314 case vmIntrinsics::_arraycopy:
duke@435 315 if (!InlineArrayCopy) return NULL;
duke@435 316 break;
duke@435 317 case vmIntrinsics::_copyMemory:
duke@435 318 if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
duke@435 319 if (!InlineArrayCopy) return NULL;
duke@435 320 break;
duke@435 321 case vmIntrinsics::_hashCode:
duke@435 322 if (!InlineObjectHash) return NULL;
duke@435 323 break;
duke@435 324 case vmIntrinsics::_clone:
duke@435 325 case vmIntrinsics::_copyOf:
duke@435 326 case vmIntrinsics::_copyOfRange:
duke@435 327 if (!InlineObjectCopy) return NULL;
duke@435 328 // These also use the arraycopy intrinsic mechanism:
duke@435 329 if (!InlineArrayCopy) return NULL;
duke@435 330 break;
duke@435 331 case vmIntrinsics::_checkIndex:
duke@435 332 // We do not intrinsify this. The optimizer does fine with it.
duke@435 333 return NULL;
duke@435 334
duke@435 335 case vmIntrinsics::_getCallerClass:
duke@435 336 if (!UseNewReflection) return NULL;
duke@435 337 if (!InlineReflectionGetCallerClass) return NULL;
duke@435 338 if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
duke@435 339 break;
duke@435 340
twisti@1078 341 case vmIntrinsics::_bitCount_i:
never@3637 342 if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
never@3631 343 break;
never@3631 344
twisti@1078 345 case vmIntrinsics::_bitCount_l:
never@3637 346 if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
never@3631 347 break;
never@3631 348
never@3631 349 case vmIntrinsics::_numberOfLeadingZeros_i:
never@3631 350 if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
never@3631 351 break;
never@3631 352
never@3631 353 case vmIntrinsics::_numberOfLeadingZeros_l:
never@3631 354 if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
never@3631 355 break;
never@3631 356
never@3631 357 case vmIntrinsics::_numberOfTrailingZeros_i:
never@3631 358 if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
never@3631 359 break;
never@3631 360
never@3631 361 case vmIntrinsics::_numberOfTrailingZeros_l:
never@3631 362 if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
twisti@1078 363 break;
twisti@1078 364
johnc@2781 365 case vmIntrinsics::_Reference_get:
kvn@4002 366 // Use the intrinsic version of Reference.get() so that the value in
kvn@4002 367 // the referent field can be registered by the G1 pre-barrier code.
kvn@4002 368 // Also add memory barrier to prevent commoning reads from this field
kvn@4002 369 // across safepoint since GC can change it value.
johnc@2781 370 break;
johnc@2781 371
duke@435 372 default:
jrose@1291 373 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
jrose@1291 374 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
duke@435 375 break;
duke@435 376 }
duke@435 377
duke@435 378 // -XX:-InlineClassNatives disables natives from the Class class.
duke@435 379 // The flag applies to all reflective calls, notably Array.newArray
duke@435 380 // (visible to Java programmers as Array.newInstance).
duke@435 381 if (m->holder()->name() == ciSymbol::java_lang_Class() ||
duke@435 382 m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
duke@435 383 if (!InlineClassNatives) return NULL;
duke@435 384 }
duke@435 385
duke@435 386 // -XX:-InlineThreadNatives disables natives from the Thread class.
duke@435 387 if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
duke@435 388 if (!InlineThreadNatives) return NULL;
duke@435 389 }
duke@435 390
duke@435 391 // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
duke@435 392 if (m->holder()->name() == ciSymbol::java_lang_Math() ||
duke@435 393 m->holder()->name() == ciSymbol::java_lang_Float() ||
duke@435 394 m->holder()->name() == ciSymbol::java_lang_Double()) {
duke@435 395 if (!InlineMathNatives) return NULL;
duke@435 396 }
duke@435 397
duke@435 398 // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
duke@435 399 if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
duke@435 400 if (!InlineUnsafeOps) return NULL;
duke@435 401 }
duke@435 402
duke@435 403 return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
duke@435 404 }
duke@435 405
duke@435 406 //----------------------register_library_intrinsics-----------------------
duke@435 407 // Initialize this file's data structures, for each Compile instance.
duke@435 408 void Compile::register_library_intrinsics() {
duke@435 409 // Nothing to do here.
duke@435 410 }
duke@435 411
duke@435 412 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
duke@435 413 LibraryCallKit kit(jvms, this);
duke@435 414 Compile* C = kit.C;
duke@435 415 int nodes = C->unique();
duke@435 416 #ifndef PRODUCT
duke@435 417 if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
duke@435 418 char buf[1000];
duke@435 419 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
duke@435 420 tty->print_cr("Intrinsic %s", str);
duke@435 421 }
duke@435 422 #endif
johnc@2781 423
duke@435 424 if (kit.try_to_inline()) {
duke@435 425 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
twisti@2687 426 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
duke@435 427 }
duke@435 428 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
duke@435 429 if (C->log()) {
duke@435 430 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
duke@435 431 vmIntrinsics::name_at(intrinsic_id()),
duke@435 432 (is_virtual() ? " virtual='1'" : ""),
duke@435 433 C->unique() - nodes);
duke@435 434 }
duke@435 435 return kit.transfer_exceptions_into_jvms();
duke@435 436 }
duke@435 437
never@3631 438 // The intrinsic bailed out
never@3631 439 if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
johnc@2781 440 if (jvms->has_method()) {
johnc@2781 441 // Not a root compile.
never@3631 442 const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
never@3631 443 CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
johnc@2781 444 } else {
johnc@2781 445 // Root compile
johnc@2781 446 tty->print("Did not generate intrinsic %s%s at bci:%d in",
jrose@1291 447 vmIntrinsics::name_at(intrinsic_id()),
jrose@1291 448 (is_virtual() ? " (virtual)" : ""), kit.bci());
johnc@2781 449 }
duke@435 450 }
duke@435 451 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
duke@435 452 return NULL;
duke@435 453 }
duke@435 454
duke@435 455 bool LibraryCallKit::try_to_inline() {
duke@435 456 // Handle symbolic names for otherwise undistinguished boolean switches:
duke@435 457 const bool is_store = true;
duke@435 458 const bool is_native_ptr = true;
duke@435 459 const bool is_static = true;
duke@435 460
johnc@2781 461 if (!jvms()->has_method()) {
johnc@2781 462 // Root JVMState has a null method.
johnc@2781 463 assert(map()->memory()->Opcode() == Op_Parm, "");
johnc@2781 464 // Insert the memory aliasing node
johnc@2781 465 set_all_memory(reset_memory());
johnc@2781 466 }
johnc@2781 467 assert(merged_memory(), "");
johnc@2781 468
duke@435 469 switch (intrinsic_id()) {
duke@435 470 case vmIntrinsics::_hashCode:
duke@435 471 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
duke@435 472 case vmIntrinsics::_identityHashCode:
duke@435 473 return inline_native_hashcode(/*!virtual*/ false, is_static);
duke@435 474 case vmIntrinsics::_getClass:
duke@435 475 return inline_native_getClass();
duke@435 476
duke@435 477 case vmIntrinsics::_dsin:
duke@435 478 case vmIntrinsics::_dcos:
duke@435 479 case vmIntrinsics::_dtan:
duke@435 480 case vmIntrinsics::_dabs:
duke@435 481 case vmIntrinsics::_datan2:
duke@435 482 case vmIntrinsics::_dsqrt:
duke@435 483 case vmIntrinsics::_dexp:
duke@435 484 case vmIntrinsics::_dlog:
duke@435 485 case vmIntrinsics::_dlog10:
duke@435 486 case vmIntrinsics::_dpow:
duke@435 487 return inline_math_native(intrinsic_id());
duke@435 488
duke@435 489 case vmIntrinsics::_min:
duke@435 490 case vmIntrinsics::_max:
duke@435 491 return inline_min_max(intrinsic_id());
duke@435 492
duke@435 493 case vmIntrinsics::_arraycopy:
duke@435 494 return inline_arraycopy();
duke@435 495
duke@435 496 case vmIntrinsics::_compareTo:
duke@435 497 return inline_string_compareTo();
duke@435 498 case vmIntrinsics::_indexOf:
duke@435 499 return inline_string_indexOf();
cfang@1116 500 case vmIntrinsics::_equals:
cfang@1116 501 return inline_string_equals();
duke@435 502
duke@435 503 case vmIntrinsics::_getObject:
duke@435 504 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
duke@435 505 case vmIntrinsics::_getBoolean:
duke@435 506 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
duke@435 507 case vmIntrinsics::_getByte:
duke@435 508 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
duke@435 509 case vmIntrinsics::_getShort:
duke@435 510 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
duke@435 511 case vmIntrinsics::_getChar:
duke@435 512 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
duke@435 513 case vmIntrinsics::_getInt:
duke@435 514 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
duke@435 515 case vmIntrinsics::_getLong:
duke@435 516 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
duke@435 517 case vmIntrinsics::_getFloat:
duke@435 518 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
duke@435 519 case vmIntrinsics::_getDouble:
duke@435 520 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 521
duke@435 522 case vmIntrinsics::_putObject:
duke@435 523 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
duke@435 524 case vmIntrinsics::_putBoolean:
duke@435 525 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
duke@435 526 case vmIntrinsics::_putByte:
duke@435 527 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
duke@435 528 case vmIntrinsics::_putShort:
duke@435 529 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
duke@435 530 case vmIntrinsics::_putChar:
duke@435 531 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
duke@435 532 case vmIntrinsics::_putInt:
duke@435 533 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
duke@435 534 case vmIntrinsics::_putLong:
duke@435 535 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
duke@435 536 case vmIntrinsics::_putFloat:
duke@435 537 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
duke@435 538 case vmIntrinsics::_putDouble:
duke@435 539 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
duke@435 540
duke@435 541 case vmIntrinsics::_getByte_raw:
duke@435 542 return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
duke@435 543 case vmIntrinsics::_getShort_raw:
duke@435 544 return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
duke@435 545 case vmIntrinsics::_getChar_raw:
duke@435 546 return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
duke@435 547 case vmIntrinsics::_getInt_raw:
duke@435 548 return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
duke@435 549 case vmIntrinsics::_getLong_raw:
duke@435 550 return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
duke@435 551 case vmIntrinsics::_getFloat_raw:
duke@435 552 return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
duke@435 553 case vmIntrinsics::_getDouble_raw:
duke@435 554 return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
duke@435 555 case vmIntrinsics::_getAddress_raw:
duke@435 556 return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
duke@435 557
duke@435 558 case vmIntrinsics::_putByte_raw:
duke@435 559 return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
duke@435 560 case vmIntrinsics::_putShort_raw:
duke@435 561 return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
duke@435 562 case vmIntrinsics::_putChar_raw:
duke@435 563 return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
duke@435 564 case vmIntrinsics::_putInt_raw:
duke@435 565 return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
duke@435 566 case vmIntrinsics::_putLong_raw:
duke@435 567 return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
duke@435 568 case vmIntrinsics::_putFloat_raw:
duke@435 569 return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
duke@435 570 case vmIntrinsics::_putDouble_raw:
duke@435 571 return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
duke@435 572 case vmIntrinsics::_putAddress_raw:
duke@435 573 return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
duke@435 574
duke@435 575 case vmIntrinsics::_getObjectVolatile:
duke@435 576 return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
duke@435 577 case vmIntrinsics::_getBooleanVolatile:
duke@435 578 return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
duke@435 579 case vmIntrinsics::_getByteVolatile:
duke@435 580 return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
duke@435 581 case vmIntrinsics::_getShortVolatile:
duke@435 582 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
duke@435 583 case vmIntrinsics::_getCharVolatile:
duke@435 584 return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
duke@435 585 case vmIntrinsics::_getIntVolatile:
duke@435 586 return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
duke@435 587 case vmIntrinsics::_getLongVolatile:
duke@435 588 return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
duke@435 589 case vmIntrinsics::_getFloatVolatile:
duke@435 590 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
duke@435 591 case vmIntrinsics::_getDoubleVolatile:
duke@435 592 return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
duke@435 593
duke@435 594 case vmIntrinsics::_putObjectVolatile:
duke@435 595 return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
duke@435 596 case vmIntrinsics::_putBooleanVolatile:
duke@435 597 return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
duke@435 598 case vmIntrinsics::_putByteVolatile:
duke@435 599 return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
duke@435 600 case vmIntrinsics::_putShortVolatile:
duke@435 601 return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
duke@435 602 case vmIntrinsics::_putCharVolatile:
duke@435 603 return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
duke@435 604 case vmIntrinsics::_putIntVolatile:
duke@435 605 return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
duke@435 606 case vmIntrinsics::_putLongVolatile:
duke@435 607 return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
duke@435 608 case vmIntrinsics::_putFloatVolatile:
duke@435 609 return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
duke@435 610 case vmIntrinsics::_putDoubleVolatile:
duke@435 611 return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
duke@435 612
duke@435 613 case vmIntrinsics::_prefetchRead:
duke@435 614 return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
duke@435 615 case vmIntrinsics::_prefetchWrite:
duke@435 616 return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
duke@435 617 case vmIntrinsics::_prefetchReadStatic:
duke@435 618 return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
duke@435 619 case vmIntrinsics::_prefetchWriteStatic:
duke@435 620 return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
duke@435 621
duke@435 622 case vmIntrinsics::_compareAndSwapObject:
duke@435 623 return inline_unsafe_CAS(T_OBJECT);
duke@435 624 case vmIntrinsics::_compareAndSwapInt:
duke@435 625 return inline_unsafe_CAS(T_INT);
duke@435 626 case vmIntrinsics::_compareAndSwapLong:
duke@435 627 return inline_unsafe_CAS(T_LONG);
duke@435 628
duke@435 629 case vmIntrinsics::_putOrderedObject:
duke@435 630 return inline_unsafe_ordered_store(T_OBJECT);
duke@435 631 case vmIntrinsics::_putOrderedInt:
duke@435 632 return inline_unsafe_ordered_store(T_INT);
duke@435 633 case vmIntrinsics::_putOrderedLong:
duke@435 634 return inline_unsafe_ordered_store(T_LONG);
duke@435 635
duke@435 636 case vmIntrinsics::_currentThread:
duke@435 637 return inline_native_currentThread();
duke@435 638 case vmIntrinsics::_isInterrupted:
duke@435 639 return inline_native_isInterrupted();
duke@435 640
rbackman@3709 641 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 642 case vmIntrinsics::_classID:
rbackman@3709 643 return inline_native_classID();
rbackman@3709 644 case vmIntrinsics::_threadID:
rbackman@3709 645 return inline_native_threadID();
rbackman@3709 646 case vmIntrinsics::_counterTime:
rbackman@3709 647 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
rbackman@3709 648 #endif
duke@435 649 case vmIntrinsics::_currentTimeMillis:
rbackman@3709 650 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
duke@435 651 case vmIntrinsics::_nanoTime:
rbackman@3709 652 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
duke@435 653 case vmIntrinsics::_allocateInstance:
duke@435 654 return inline_unsafe_allocate();
duke@435 655 case vmIntrinsics::_copyMemory:
duke@435 656 return inline_unsafe_copyMemory();
duke@435 657 case vmIntrinsics::_newArray:
duke@435 658 return inline_native_newArray();
duke@435 659 case vmIntrinsics::_getLength:
duke@435 660 return inline_native_getLength();
duke@435 661 case vmIntrinsics::_copyOf:
duke@435 662 return inline_array_copyOf(false);
duke@435 663 case vmIntrinsics::_copyOfRange:
duke@435 664 return inline_array_copyOf(true);
rasbold@604 665 case vmIntrinsics::_equalsC:
rasbold@604 666 return inline_array_equals();
duke@435 667 case vmIntrinsics::_clone:
duke@435 668 return inline_native_clone(intrinsic()->is_virtual());
duke@435 669
duke@435 670 case vmIntrinsics::_isAssignableFrom:
duke@435 671 return inline_native_subtype_check();
duke@435 672
duke@435 673 case vmIntrinsics::_isInstance:
duke@435 674 case vmIntrinsics::_getModifiers:
duke@435 675 case vmIntrinsics::_isInterface:
duke@435 676 case vmIntrinsics::_isArray:
duke@435 677 case vmIntrinsics::_isPrimitive:
duke@435 678 case vmIntrinsics::_getSuperclass:
duke@435 679 case vmIntrinsics::_getComponentType:
duke@435 680 case vmIntrinsics::_getClassAccessFlags:
duke@435 681 return inline_native_Class_query(intrinsic_id());
duke@435 682
duke@435 683 case vmIntrinsics::_floatToRawIntBits:
duke@435 684 case vmIntrinsics::_floatToIntBits:
duke@435 685 case vmIntrinsics::_intBitsToFloat:
duke@435 686 case vmIntrinsics::_doubleToRawLongBits:
duke@435 687 case vmIntrinsics::_doubleToLongBits:
duke@435 688 case vmIntrinsics::_longBitsToDouble:
duke@435 689 return inline_fp_conversions(intrinsic_id());
duke@435 690
twisti@1210 691 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 692 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 693 return inline_numberOfLeadingZeros(intrinsic_id());
twisti@1210 694
twisti@1210 695 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 696 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 697 return inline_numberOfTrailingZeros(intrinsic_id());
twisti@1210 698
twisti@1078 699 case vmIntrinsics::_bitCount_i:
twisti@1078 700 case vmIntrinsics::_bitCount_l:
twisti@1078 701 return inline_bitCount(intrinsic_id());
twisti@1078 702
duke@435 703 case vmIntrinsics::_reverseBytes_i:
duke@435 704 case vmIntrinsics::_reverseBytes_l:
never@1831 705 case vmIntrinsics::_reverseBytes_s:
never@1831 706 case vmIntrinsics::_reverseBytes_c:
duke@435 707 return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
duke@435 708
duke@435 709 case vmIntrinsics::_getCallerClass:
duke@435 710 return inline_native_Reflection_getCallerClass();
duke@435 711
johnc@2781 712 case vmIntrinsics::_Reference_get:
johnc@2781 713 return inline_reference_get();
johnc@2781 714
duke@435 715 default:
duke@435 716 // If you get here, it may be that someone has added a new intrinsic
duke@435 717 // to the list in vmSymbols.hpp without implementing it here.
duke@435 718 #ifndef PRODUCT
duke@435 719 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
duke@435 720 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
duke@435 721 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
duke@435 722 }
duke@435 723 #endif
duke@435 724 return false;
duke@435 725 }
duke@435 726 }
duke@435 727
duke@435 728 //------------------------------push_result------------------------------
duke@435 729 // Helper function for finishing intrinsics.
duke@435 730 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
duke@435 731 record_for_igvn(region);
duke@435 732 set_control(_gvn.transform(region));
duke@435 733 BasicType value_type = value->type()->basic_type();
duke@435 734 push_node(value_type, _gvn.transform(value));
duke@435 735 }
duke@435 736
duke@435 737 //------------------------------generate_guard---------------------------
duke@435 738 // Helper function for generating guarded fast-slow graph structures.
duke@435 739 // The given 'test', if true, guards a slow path. If the test fails
duke@435 740 // then a fast path can be taken. (We generally hope it fails.)
duke@435 741 // In all cases, GraphKit::control() is updated to the fast path.
duke@435 742 // The returned value represents the control for the slow path.
duke@435 743 // The return value is never 'top'; it is either a valid control
duke@435 744 // or NULL if it is obvious that the slow path can never be taken.
duke@435 745 // Also, if region and the slow control are not NULL, the slow edge
duke@435 746 // is appended to the region.
duke@435 747 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
duke@435 748 if (stopped()) {
duke@435 749 // Already short circuited.
duke@435 750 return NULL;
duke@435 751 }
duke@435 752
duke@435 753 // Build an if node and its projections.
duke@435 754 // If test is true we take the slow path, which we assume is uncommon.
duke@435 755 if (_gvn.type(test) == TypeInt::ZERO) {
duke@435 756 // The slow branch is never taken. No need to build this guard.
duke@435 757 return NULL;
duke@435 758 }
duke@435 759
duke@435 760 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
duke@435 761
duke@435 762 Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
duke@435 763 if (if_slow == top()) {
duke@435 764 // The slow branch is never taken. No need to build this guard.
duke@435 765 return NULL;
duke@435 766 }
duke@435 767
duke@435 768 if (region != NULL)
duke@435 769 region->add_req(if_slow);
duke@435 770
duke@435 771 Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
duke@435 772 set_control(if_fast);
duke@435 773
duke@435 774 return if_slow;
duke@435 775 }
duke@435 776
duke@435 777 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
duke@435 778 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
duke@435 779 }
duke@435 780 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
duke@435 781 return generate_guard(test, region, PROB_FAIR);
duke@435 782 }
duke@435 783
duke@435 784 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
duke@435 785 Node* *pos_index) {
duke@435 786 if (stopped())
duke@435 787 return NULL; // already stopped
duke@435 788 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
duke@435 789 return NULL; // index is already adequately typed
duke@435 790 Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 791 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 792 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
duke@435 793 if (is_neg != NULL && pos_index != NULL) {
duke@435 794 // Emulate effect of Parse::adjust_map_after_if.
duke@435 795 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
duke@435 796 ccast->set_req(0, control());
duke@435 797 (*pos_index) = _gvn.transform(ccast);
duke@435 798 }
duke@435 799 return is_neg;
duke@435 800 }
duke@435 801
duke@435 802 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
duke@435 803 Node* *pos_index) {
duke@435 804 if (stopped())
duke@435 805 return NULL; // already stopped
duke@435 806 if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
duke@435 807 return NULL; // index is already adequately typed
duke@435 808 Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
duke@435 809 BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
duke@435 810 Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
duke@435 811 Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
duke@435 812 if (is_notp != NULL && pos_index != NULL) {
duke@435 813 // Emulate effect of Parse::adjust_map_after_if.
duke@435 814 Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
duke@435 815 ccast->set_req(0, control());
duke@435 816 (*pos_index) = _gvn.transform(ccast);
duke@435 817 }
duke@435 818 return is_notp;
duke@435 819 }
duke@435 820
duke@435 821 // Make sure that 'position' is a valid limit index, in [0..length].
duke@435 822 // There are two equivalent plans for checking this:
duke@435 823 // A. (offset + copyLength) unsigned<= arrayLength
duke@435 824 // B. offset <= (arrayLength - copyLength)
duke@435 825 // We require that all of the values above, except for the sum and
duke@435 826 // difference, are already known to be non-negative.
duke@435 827 // Plan A is robust in the face of overflow, if offset and copyLength
duke@435 828 // are both hugely positive.
duke@435 829 //
duke@435 830 // Plan B is less direct and intuitive, but it does not overflow at
duke@435 831 // all, since the difference of two non-negatives is always
duke@435 832 // representable. Whenever Java methods must perform the equivalent
duke@435 833 // check they generally use Plan B instead of Plan A.
duke@435 834 // For the moment we use Plan A.
duke@435 835 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
duke@435 836 Node* subseq_length,
duke@435 837 Node* array_length,
duke@435 838 RegionNode* region) {
duke@435 839 if (stopped())
duke@435 840 return NULL; // already stopped
duke@435 841 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
kvn@3407 842 if (zero_offset && subseq_length->eqv_uncast(array_length))
duke@435 843 return NULL; // common case of whole-array copy
duke@435 844 Node* last = subseq_length;
duke@435 845 if (!zero_offset) // last += offset
duke@435 846 last = _gvn.transform( new (C, 3) AddINode(last, offset));
duke@435 847 Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
duke@435 848 Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 849 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
duke@435 850 return is_over;
duke@435 851 }
duke@435 852
duke@435 853
duke@435 854 //--------------------------generate_current_thread--------------------
duke@435 855 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
duke@435 856 ciKlass* thread_klass = env()->Thread_klass();
duke@435 857 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
duke@435 858 Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
duke@435 859 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
duke@435 860 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
duke@435 861 tls_output = thread;
duke@435 862 return threadObj;
duke@435 863 }
duke@435 864
duke@435 865
kvn@1421 866 //------------------------------make_string_method_node------------------------
kvn@3760 867 // Helper method for String intrinsic functions. This version is called
kvn@3760 868 // with str1 and str2 pointing to String object nodes.
kvn@3760 869 //
kvn@3760 870 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
kvn@1421 871 Node* no_ctrl = NULL;
kvn@1421 872
kvn@3760 873 // Get start addr of string
kvn@3760 874 Node* str1_value = load_String_value(no_ctrl, str1);
kvn@3760 875 Node* str1_offset = load_String_offset(no_ctrl, str1);
kvn@1421 876 Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
kvn@1421 877
kvn@3760 878 // Get length of string 1
kvn@3760 879 Node* str1_len = load_String_length(no_ctrl, str1);
kvn@3760 880
kvn@3760 881 Node* str2_value = load_String_value(no_ctrl, str2);
kvn@3760 882 Node* str2_offset = load_String_offset(no_ctrl, str2);
kvn@1421 883 Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
kvn@1421 884
kvn@3760 885 Node* str2_len = NULL;
kvn@1421 886 Node* result = NULL;
kvn@3760 887
kvn@1421 888 switch (opcode) {
kvn@1421 889 case Op_StrIndexOf:
kvn@3760 890 // Get length of string 2
kvn@3760 891 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 892
kvn@1421 893 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 894 str1_start, str1_len, str2_start, str2_len);
kvn@1421 895 break;
kvn@1421 896 case Op_StrComp:
kvn@3760 897 // Get length of string 2
kvn@3760 898 str2_len = load_String_length(no_ctrl, str2);
kvn@3760 899
kvn@1421 900 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 901 str1_start, str1_len, str2_start, str2_len);
kvn@1421 902 break;
kvn@1421 903 case Op_StrEquals:
kvn@1421 904 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 905 str1_start, str2_start, str1_len);
kvn@1421 906 break;
kvn@1421 907 default:
kvn@1421 908 ShouldNotReachHere();
kvn@1421 909 return NULL;
kvn@1421 910 }
kvn@1421 911
kvn@1421 912 // All these intrinsics have checks.
kvn@1421 913 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@1421 914
kvn@1421 915 return _gvn.transform(result);
kvn@1421 916 }
kvn@1421 917
kvn@3760 918 // Helper method for String intrinsic functions. This version is called
kvn@3760 919 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
kvn@3760 920 // to Int nodes containing the lenghts of str1 and str2.
kvn@3760 921 //
kvn@3760 922 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
kvn@3760 923
kvn@3760 924 Node* result = NULL;
kvn@3760 925 switch (opcode) {
kvn@3760 926 case Op_StrIndexOf:
kvn@3760 927 result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 928 str1_start, cnt1, str2_start, cnt2);
kvn@3760 929 break;
kvn@3760 930 case Op_StrComp:
kvn@3760 931 result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 932 str1_start, cnt1, str2_start, cnt2);
kvn@3760 933 break;
kvn@3760 934 case Op_StrEquals:
kvn@3760 935 result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
kvn@3760 936 str1_start, str2_start, cnt1);
kvn@3760 937 break;
kvn@3760 938 default:
kvn@3760 939 ShouldNotReachHere();
kvn@3760 940 return NULL;
kvn@3760 941 }
kvn@3760 942
kvn@3760 943 // All these intrinsics have checks.
kvn@3760 944 C->set_has_split_ifs(true); // Has chance for split-if optimization
kvn@3760 945
kvn@3760 946 return _gvn.transform(result);
kvn@3760 947 }
kvn@3760 948
duke@435 949 //------------------------------inline_string_compareTo------------------------
duke@435 950 bool LibraryCallKit::inline_string_compareTo() {
duke@435 951
cfang@1116 952 if (!Matcher::has_match_rule(Op_StrComp)) return false;
cfang@1116 953
duke@435 954 _sp += 2;
duke@435 955 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 956 Node *receiver = pop();
duke@435 957
duke@435 958 // Null check on self without removing any arguments. The argument
duke@435 959 // null check technically happens in the wrong place, which can lead to
duke@435 960 // invalid stack traces when string compare is inlined into a method
duke@435 961 // which handles NullPointerExceptions.
duke@435 962 _sp += 2;
duke@435 963 receiver = do_null_check(receiver, T_OBJECT);
duke@435 964 argument = do_null_check(argument, T_OBJECT);
duke@435 965 _sp -= 2;
duke@435 966 if (stopped()) {
duke@435 967 return true;
duke@435 968 }
duke@435 969
kvn@3760 970 Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
duke@435 971 push(compare);
duke@435 972 return true;
duke@435 973 }
duke@435 974
cfang@1116 975 //------------------------------inline_string_equals------------------------
cfang@1116 976 bool LibraryCallKit::inline_string_equals() {
cfang@1116 977
cfang@1116 978 if (!Matcher::has_match_rule(Op_StrEquals)) return false;
cfang@1116 979
jrose@2101 980 int nargs = 2;
jrose@2101 981 _sp += nargs;
cfang@1116 982 Node* argument = pop(); // pop non-receiver first: it was pushed second
cfang@1116 983 Node* receiver = pop();
cfang@1116 984
cfang@1116 985 // Null check on self without removing any arguments. The argument
cfang@1116 986 // null check technically happens in the wrong place, which can lead to
cfang@1116 987 // invalid stack traces when string compare is inlined into a method
cfang@1116 988 // which handles NullPointerExceptions.
jrose@2101 989 _sp += nargs;
cfang@1116 990 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 991 //should not do null check for argument for String.equals(), because spec
cfang@1116 992 //allows to specify NULL as argument.
jrose@2101 993 _sp -= nargs;
cfang@1116 994
cfang@1116 995 if (stopped()) {
cfang@1116 996 return true;
cfang@1116 997 }
cfang@1116 998
kvn@1421 999 // paths (plus control) merge
kvn@1421 1000 RegionNode* region = new (C, 5) RegionNode(5);
kvn@1421 1001 Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
kvn@1421 1002
kvn@1421 1003 // does source == target string?
kvn@1421 1004 Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
kvn@1421 1005 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
kvn@1421 1006
kvn@1421 1007 Node* if_eq = generate_slow_guard(bol, NULL);
kvn@1421 1008 if (if_eq != NULL) {
kvn@1421 1009 // receiver == argument
kvn@1421 1010 phi->init_req(2, intcon(1));
kvn@1421 1011 region->init_req(2, if_eq);
kvn@1421 1012 }
kvn@1421 1013
cfang@1116 1014 // get String klass for instanceOf
cfang@1116 1015 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1016
kvn@1421 1017 if (!stopped()) {
jrose@2101 1018 _sp += nargs; // gen_instanceof might do an uncommon trap
kvn@1421 1019 Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
jrose@2101 1020 _sp -= nargs;
kvn@1421 1021 Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
kvn@1421 1022 Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
kvn@1421 1023
kvn@1421 1024 Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
kvn@1421 1025 //instanceOf == true, fallthrough
kvn@1421 1026
kvn@1421 1027 if (inst_false != NULL) {
kvn@1421 1028 phi->init_req(3, intcon(0));
kvn@1421 1029 region->init_req(3, inst_false);
kvn@1421 1030 }
kvn@1421 1031 }
cfang@1116 1032
kvn@1421 1033 if (!stopped()) {
kvn@3760 1034 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
kvn@3760 1035
never@1851 1036 // Properly cast the argument to String
never@1851 1037 argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
kvn@2869 1038 // This path is taken only when argument's type is String:NotNull.
kvn@2869 1039 argument = cast_not_null(argument, false);
never@1851 1040
kvn@3760 1041 Node* no_ctrl = NULL;
kvn@3760 1042
kvn@3760 1043 // Get start addr of receiver
kvn@3760 1044 Node* receiver_val = load_String_value(no_ctrl, receiver);
kvn@3760 1045 Node* receiver_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1046 Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
kvn@3760 1047
kvn@3760 1048 // Get length of receiver
kvn@3760 1049 Node* receiver_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1050
kvn@3760 1051 // Get start addr of argument
kvn@3760 1052 Node* argument_val = load_String_value(no_ctrl, argument);
kvn@3760 1053 Node* argument_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1054 Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
kvn@3760 1055
kvn@3760 1056 // Get length of argument
kvn@3760 1057 Node* argument_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1058
kvn@1421 1059 // Check for receiver count != argument count
kvn@1421 1060 Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
kvn@1421 1061 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
kvn@1421 1062 Node* if_ne = generate_slow_guard(bol, NULL);
kvn@1421 1063 if (if_ne != NULL) {
kvn@1421 1064 phi->init_req(4, intcon(0));
kvn@1421 1065 region->init_req(4, if_ne);
kvn@1421 1066 }
kvn@3760 1067
kvn@3760 1068 // Check for count == 0 is done by assembler code for StrEquals.
kvn@3760 1069
kvn@3760 1070 if (!stopped()) {
kvn@3760 1071 Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
kvn@3760 1072 phi->init_req(1, equals);
kvn@3760 1073 region->init_req(1, control());
kvn@3760 1074 }
kvn@1421 1075 }
cfang@1116 1076
cfang@1116 1077 // post merge
cfang@1116 1078 set_control(_gvn.transform(region));
cfang@1116 1079 record_for_igvn(region);
cfang@1116 1080
cfang@1116 1081 push(_gvn.transform(phi));
cfang@1116 1082
cfang@1116 1083 return true;
cfang@1116 1084 }
cfang@1116 1085
rasbold@604 1086 //------------------------------inline_array_equals----------------------------
rasbold@604 1087 bool LibraryCallKit::inline_array_equals() {
rasbold@604 1088
rasbold@609 1089 if (!Matcher::has_match_rule(Op_AryEq)) return false;
rasbold@609 1090
rasbold@604 1091 _sp += 2;
rasbold@604 1092 Node *argument2 = pop();
rasbold@604 1093 Node *argument1 = pop();
rasbold@604 1094
rasbold@604 1095 Node* equals =
kvn@1421 1096 _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
kvn@1421 1097 argument1, argument2) );
rasbold@604 1098 push(equals);
rasbold@604 1099 return true;
rasbold@604 1100 }
rasbold@604 1101
duke@435 1102 // Java version of String.indexOf(constant string)
duke@435 1103 // class StringDecl {
duke@435 1104 // StringDecl(char[] ca) {
duke@435 1105 // offset = 0;
duke@435 1106 // count = ca.length;
duke@435 1107 // value = ca;
duke@435 1108 // }
duke@435 1109 // int offset;
duke@435 1110 // int count;
duke@435 1111 // char[] value;
duke@435 1112 // }
duke@435 1113 //
duke@435 1114 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
duke@435 1115 // int targetOffset, int cache_i, int md2) {
duke@435 1116 // int cache = cache_i;
duke@435 1117 // int sourceOffset = string_object.offset;
duke@435 1118 // int sourceCount = string_object.count;
duke@435 1119 // int targetCount = target_object.length;
duke@435 1120 //
duke@435 1121 // int targetCountLess1 = targetCount - 1;
duke@435 1122 // int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
duke@435 1123 //
duke@435 1124 // char[] source = string_object.value;
duke@435 1125 // char[] target = target_object;
duke@435 1126 // int lastChar = target[targetCountLess1];
duke@435 1127 //
duke@435 1128 // outer_loop:
duke@435 1129 // for (int i = sourceOffset; i < sourceEnd; ) {
duke@435 1130 // int src = source[i + targetCountLess1];
duke@435 1131 // if (src == lastChar) {
duke@435 1132 // // With random strings and a 4-character alphabet,
duke@435 1133 // // reverse matching at this point sets up 0.8% fewer
duke@435 1134 // // frames, but (paradoxically) makes 0.3% more probes.
duke@435 1135 // // Since those probes are nearer the lastChar probe,
duke@435 1136 // // there is may be a net D$ win with reverse matching.
duke@435 1137 // // But, reversing loop inhibits unroll of inner loop
duke@435 1138 // // for unknown reason. So, does running outer loop from
duke@435 1139 // // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
duke@435 1140 // for (int j = 0; j < targetCountLess1; j++) {
duke@435 1141 // if (target[targetOffset + j] != source[i+j]) {
duke@435 1142 // if ((cache & (1 << source[i+j])) == 0) {
duke@435 1143 // if (md2 < j+1) {
duke@435 1144 // i += j+1;
duke@435 1145 // continue outer_loop;
duke@435 1146 // }
duke@435 1147 // }
duke@435 1148 // i += md2;
duke@435 1149 // continue outer_loop;
duke@435 1150 // }
duke@435 1151 // }
duke@435 1152 // return i - sourceOffset;
duke@435 1153 // }
duke@435 1154 // if ((cache & (1 << src)) == 0) {
duke@435 1155 // i += targetCountLess1;
duke@435 1156 // } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
duke@435 1157 // i++;
duke@435 1158 // }
duke@435 1159 // return -1;
duke@435 1160 // }
duke@435 1161
duke@435 1162 //------------------------------string_indexOf------------------------
duke@435 1163 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
duke@435 1164 jint cache_i, jint md2_i) {
duke@435 1165
duke@435 1166 Node* no_ctrl = NULL;
duke@435 1167 float likely = PROB_LIKELY(0.9);
duke@435 1168 float unlikely = PROB_UNLIKELY(0.9);
duke@435 1169
kvn@2665 1170 const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
kvn@2665 1171
kvn@3760 1172 Node* source = load_String_value(no_ctrl, string_object);
kvn@3760 1173 Node* sourceOffset = load_String_offset(no_ctrl, string_object);
kvn@3760 1174 Node* sourceCount = load_String_length(no_ctrl, string_object);
duke@435 1175
jcoomes@2661 1176 Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
duke@435 1177 jint target_length = target_array->length();
duke@435 1178 const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
duke@435 1179 const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
duke@435 1180
kvn@2726 1181 IdealKit kit(this, false, true);
duke@435 1182 #define __ kit.
duke@435 1183 Node* zero = __ ConI(0);
duke@435 1184 Node* one = __ ConI(1);
duke@435 1185 Node* cache = __ ConI(cache_i);
duke@435 1186 Node* md2 = __ ConI(md2_i);
duke@435 1187 Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
duke@435 1188 Node* targetCount = __ ConI(target_length);
duke@435 1189 Node* targetCountLess1 = __ ConI(target_length - 1);
duke@435 1190 Node* targetOffset = __ ConI(targetOffset_i);
duke@435 1191 Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
duke@435 1192
kvn@1286 1193 IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
duke@435 1194 Node* outer_loop = __ make_label(2 /* goto */);
duke@435 1195 Node* return_ = __ make_label(1);
duke@435 1196
duke@435 1197 __ set(rtn,__ ConI(-1));
kvn@2665 1198 __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
duke@435 1199 Node* i2 = __ AddI(__ value(i), targetCountLess1);
duke@435 1200 // pin to prohibit loading of "next iteration" value which may SEGV (rare)
duke@435 1201 Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
duke@435 1202 __ if_then(src, BoolTest::eq, lastChar, unlikely); {
kvn@2665 1203 __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
duke@435 1204 Node* tpj = __ AddI(targetOffset, __ value(j));
duke@435 1205 Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
duke@435 1206 Node* ipj = __ AddI(__ value(i), __ value(j));
duke@435 1207 Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
duke@435 1208 __ if_then(targ, BoolTest::ne, src2); {
duke@435 1209 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
duke@435 1210 __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
duke@435 1211 __ increment(i, __ AddI(__ value(j), one));
duke@435 1212 __ goto_(outer_loop);
duke@435 1213 } __ end_if(); __ dead(j);
duke@435 1214 }__ end_if(); __ dead(j);
duke@435 1215 __ increment(i, md2);
duke@435 1216 __ goto_(outer_loop);
duke@435 1217 }__ end_if();
duke@435 1218 __ increment(j, one);
duke@435 1219 }__ end_loop(); __ dead(j);
duke@435 1220 __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
duke@435 1221 __ goto_(return_);
duke@435 1222 }__ end_if();
duke@435 1223 __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
duke@435 1224 __ increment(i, targetCountLess1);
duke@435 1225 }__ end_if();
duke@435 1226 __ increment(i, one);
duke@435 1227 __ bind(outer_loop);
duke@435 1228 }__ end_loop(); __ dead(i);
duke@435 1229 __ bind(return_);
kvn@1286 1230
kvn@1286 1231 // Final sync IdealKit and GraphKit.
kvn@2726 1232 final_sync(kit);
duke@435 1233 Node* result = __ value(rtn);
duke@435 1234 #undef __
duke@435 1235 C->set_has_loops(true);
duke@435 1236 return result;
duke@435 1237 }
duke@435 1238
duke@435 1239 //------------------------------inline_string_indexOf------------------------
duke@435 1240 bool LibraryCallKit::inline_string_indexOf() {
duke@435 1241
duke@435 1242 _sp += 2;
duke@435 1243 Node *argument = pop(); // pop non-receiver first: it was pushed second
duke@435 1244 Node *receiver = pop();
duke@435 1245
cfang@1116 1246 Node* result;
iveresov@1859 1247 // Disable the use of pcmpestri until it can be guaranteed that
iveresov@1859 1248 // the load doesn't cross into the uncommited space.
kvn@2602 1249 if (Matcher::has_match_rule(Op_StrIndexOf) &&
cfang@1116 1250 UseSSE42Intrinsics) {
cfang@1116 1251 // Generate SSE4.2 version of indexOf
cfang@1116 1252 // We currently only have match rules that use SSE4.2
cfang@1116 1253
cfang@1116 1254 // Null check on self without removing any arguments. The argument
cfang@1116 1255 // null check technically happens in the wrong place, which can lead to
cfang@1116 1256 // invalid stack traces when string compare is inlined into a method
cfang@1116 1257 // which handles NullPointerExceptions.
cfang@1116 1258 _sp += 2;
cfang@1116 1259 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1260 argument = do_null_check(argument, T_OBJECT);
cfang@1116 1261 _sp -= 2;
cfang@1116 1262
cfang@1116 1263 if (stopped()) {
cfang@1116 1264 return true;
cfang@1116 1265 }
cfang@1116 1266
kvn@2602 1267 ciInstanceKlass* str_klass = env()->String_klass();
kvn@2602 1268 const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
kvn@2602 1269
kvn@1421 1270 // Make the merge point
kvn@2602 1271 RegionNode* result_rgn = new (C, 4) RegionNode(4);
kvn@2602 1272 Node* result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
kvn@1421 1273 Node* no_ctrl = NULL;
kvn@1421 1274
kvn@3760 1275 // Get start addr of source string
kvn@3760 1276 Node* source = load_String_value(no_ctrl, receiver);
kvn@3760 1277 Node* source_offset = load_String_offset(no_ctrl, receiver);
kvn@3760 1278 Node* source_start = array_element_address(source, source_offset, T_CHAR);
kvn@3760 1279
kvn@3760 1280 // Get length of source string
kvn@3760 1281 Node* source_cnt = load_String_length(no_ctrl, receiver);
kvn@3760 1282
kvn@3760 1283 // Get start addr of substring
kvn@3760 1284 Node* substr = load_String_value(no_ctrl, argument);
kvn@3760 1285 Node* substr_offset = load_String_offset(no_ctrl, argument);
kvn@3760 1286 Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
kvn@3760 1287
kvn@3760 1288 // Get length of source string
kvn@3760 1289 Node* substr_cnt = load_String_length(no_ctrl, argument);
kvn@1421 1290
kvn@1421 1291 // Check for substr count > string count
kvn@1421 1292 Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
kvn@1421 1293 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
kvn@1421 1294 Node* if_gt = generate_slow_guard(bol, NULL);
kvn@1421 1295 if (if_gt != NULL) {
kvn@1421 1296 result_phi->init_req(2, intcon(-1));
kvn@1421 1297 result_rgn->init_req(2, if_gt);
kvn@1421 1298 }
kvn@1421 1299
kvn@1421 1300 if (!stopped()) {
kvn@2602 1301 // Check for substr count == 0
kvn@2602 1302 cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
kvn@2602 1303 bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
kvn@2602 1304 Node* if_zero = generate_slow_guard(bol, NULL);
kvn@2602 1305 if (if_zero != NULL) {
kvn@2602 1306 result_phi->init_req(3, intcon(0));
kvn@2602 1307 result_rgn->init_req(3, if_zero);
kvn@2602 1308 }
kvn@2602 1309 }
kvn@2602 1310
kvn@2602 1311 if (!stopped()) {
kvn@3760 1312 result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
kvn@1421 1313 result_phi->init_req(1, result);
kvn@1421 1314 result_rgn->init_req(1, control());
kvn@1421 1315 }
kvn@1421 1316 set_control(_gvn.transform(result_rgn));
kvn@1421 1317 record_for_igvn(result_rgn);
kvn@1421 1318 result = _gvn.transform(result_phi);
kvn@1421 1319
kvn@2602 1320 } else { // Use LibraryCallKit::string_indexOf
kvn@2602 1321 // don't intrinsify if argument isn't a constant string.
cfang@1116 1322 if (!argument->is_Con()) {
cfang@1116 1323 return false;
cfang@1116 1324 }
cfang@1116 1325 const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
cfang@1116 1326 if (str_type == NULL) {
cfang@1116 1327 return false;
cfang@1116 1328 }
cfang@1116 1329 ciInstanceKlass* klass = env()->String_klass();
cfang@1116 1330 ciObject* str_const = str_type->const_oop();
cfang@1116 1331 if (str_const == NULL || str_const->klass() != klass) {
cfang@1116 1332 return false;
cfang@1116 1333 }
cfang@1116 1334 ciInstance* str = str_const->as_instance();
cfang@1116 1335 assert(str != NULL, "must be instance");
cfang@1116 1336
kvn@3760 1337 ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
cfang@1116 1338 ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
cfang@1116 1339
kvn@3760 1340 int o;
kvn@3760 1341 int c;
kvn@3760 1342 if (java_lang_String::has_offset_field()) {
kvn@3760 1343 o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
kvn@3760 1344 c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
kvn@3760 1345 } else {
kvn@3760 1346 o = 0;
kvn@3760 1347 c = pat->length();
kvn@3760 1348 }
kvn@3760 1349
cfang@1116 1350 // constant strings have no offset and count == length which
cfang@1116 1351 // simplifies the resulting code somewhat so lets optimize for that.
cfang@1116 1352 if (o != 0 || c != pat->length()) {
cfang@1116 1353 return false;
cfang@1116 1354 }
cfang@1116 1355
cfang@1116 1356 // Null check on self without removing any arguments. The argument
cfang@1116 1357 // null check technically happens in the wrong place, which can lead to
cfang@1116 1358 // invalid stack traces when string compare is inlined into a method
cfang@1116 1359 // which handles NullPointerExceptions.
cfang@1116 1360 _sp += 2;
cfang@1116 1361 receiver = do_null_check(receiver, T_OBJECT);
cfang@1116 1362 // No null check on the argument is needed since it's a constant String oop.
cfang@1116 1363 _sp -= 2;
cfang@1116 1364 if (stopped()) {
kvn@2602 1365 return true;
cfang@1116 1366 }
cfang@1116 1367
cfang@1116 1368 // The null string as a pattern always returns 0 (match at beginning of string)
cfang@1116 1369 if (c == 0) {
cfang@1116 1370 push(intcon(0));
cfang@1116 1371 return true;
cfang@1116 1372 }
cfang@1116 1373
cfang@1116 1374 // Generate default indexOf
cfang@1116 1375 jchar lastChar = pat->char_at(o + (c - 1));
cfang@1116 1376 int cache = 0;
cfang@1116 1377 int i;
cfang@1116 1378 for (i = 0; i < c - 1; i++) {
cfang@1116 1379 assert(i < pat->length(), "out of range");
cfang@1116 1380 cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
cfang@1116 1381 }
cfang@1116 1382
cfang@1116 1383 int md2 = c;
cfang@1116 1384 for (i = 0; i < c - 1; i++) {
cfang@1116 1385 assert(i < pat->length(), "out of range");
cfang@1116 1386 if (pat->char_at(o + i) == lastChar) {
cfang@1116 1387 md2 = (c - 1) - i;
cfang@1116 1388 }
cfang@1116 1389 }
cfang@1116 1390
cfang@1116 1391 result = string_indexOf(receiver, pat, o, cache, md2);
duke@435 1392 }
cfang@1116 1393
duke@435 1394 push(result);
duke@435 1395 return true;
duke@435 1396 }
duke@435 1397
duke@435 1398 //--------------------------pop_math_arg--------------------------------
duke@435 1399 // Pop a double argument to a math function from the stack
duke@435 1400 // rounding it if necessary.
duke@435 1401 Node * LibraryCallKit::pop_math_arg() {
duke@435 1402 Node *arg = pop_pair();
duke@435 1403 if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
duke@435 1404 arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
duke@435 1405 return arg;
duke@435 1406 }
duke@435 1407
duke@435 1408 //------------------------------inline_trig----------------------------------
duke@435 1409 // Inline sin/cos/tan instructions, if possible. If rounding is required, do
duke@435 1410 // argument reduction which will turn into a fast/slow diamond.
duke@435 1411 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
duke@435 1412 _sp += arg_size(); // restore stack pointer
duke@435 1413 Node* arg = pop_math_arg();
duke@435 1414 Node* trig = NULL;
duke@435 1415
duke@435 1416 switch (id) {
duke@435 1417 case vmIntrinsics::_dsin:
duke@435 1418 trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
duke@435 1419 break;
duke@435 1420 case vmIntrinsics::_dcos:
duke@435 1421 trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
duke@435 1422 break;
duke@435 1423 case vmIntrinsics::_dtan:
duke@435 1424 trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
duke@435 1425 break;
duke@435 1426 default:
duke@435 1427 assert(false, "bad intrinsic was passed in");
duke@435 1428 return false;
duke@435 1429 }
duke@435 1430
duke@435 1431 // Rounding required? Check for argument reduction!
duke@435 1432 if( Matcher::strict_fp_requires_explicit_rounding ) {
duke@435 1433
duke@435 1434 static const double pi_4 = 0.7853981633974483;
duke@435 1435 static const double neg_pi_4 = -0.7853981633974483;
duke@435 1436 // pi/2 in 80-bit extended precision
duke@435 1437 // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1438 // -pi/2 in 80-bit extended precision
duke@435 1439 // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
duke@435 1440 // Cutoff value for using this argument reduction technique
duke@435 1441 //static const double pi_2_minus_epsilon = 1.564660403643354;
duke@435 1442 //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
duke@435 1443
duke@435 1444 // Pseudocode for sin:
duke@435 1445 // if (x <= Math.PI / 4.0) {
duke@435 1446 // if (x >= -Math.PI / 4.0) return fsin(x);
duke@435 1447 // if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
duke@435 1448 // } else {
duke@435 1449 // if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
duke@435 1450 // }
duke@435 1451 // return StrictMath.sin(x);
duke@435 1452
duke@435 1453 // Pseudocode for cos:
duke@435 1454 // if (x <= Math.PI / 4.0) {
duke@435 1455 // if (x >= -Math.PI / 4.0) return fcos(x);
duke@435 1456 // if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
duke@435 1457 // } else {
duke@435 1458 // if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
duke@435 1459 // }
duke@435 1460 // return StrictMath.cos(x);
duke@435 1461
duke@435 1462 // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
duke@435 1463 // requires a special machine instruction to load it. Instead we'll try
duke@435 1464 // the 'easy' case. If we really need the extra range +/- PI/2 we'll
duke@435 1465 // probably do the math inside the SIN encoding.
duke@435 1466
duke@435 1467 // Make the merge point
duke@435 1468 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 1469 Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
duke@435 1470
duke@435 1471 // Flatten arg so we need only 1 test
duke@435 1472 Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
duke@435 1473 // Node for PI/4 constant
duke@435 1474 Node *pi4 = makecon(TypeD::make(pi_4));
duke@435 1475 // Check PI/4 : abs(arg)
duke@435 1476 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
duke@435 1477 // Check: If PI/4 < abs(arg) then go slow
duke@435 1478 Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
duke@435 1479 // Branch either way
duke@435 1480 IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 1481 set_control(opt_iff(r,iff));
duke@435 1482
duke@435 1483 // Set fast path result
duke@435 1484 phi->init_req(2,trig);
duke@435 1485
duke@435 1486 // Slow path - non-blocking leaf call
duke@435 1487 Node* call = NULL;
duke@435 1488 switch (id) {
duke@435 1489 case vmIntrinsics::_dsin:
duke@435 1490 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1491 CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
duke@435 1492 "Sin", NULL, arg, top());
duke@435 1493 break;
duke@435 1494 case vmIntrinsics::_dcos:
duke@435 1495 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1496 CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
duke@435 1497 "Cos", NULL, arg, top());
duke@435 1498 break;
duke@435 1499 case vmIntrinsics::_dtan:
duke@435 1500 call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
duke@435 1501 CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
duke@435 1502 "Tan", NULL, arg, top());
duke@435 1503 break;
duke@435 1504 }
duke@435 1505 assert(control()->in(0) == call, "");
duke@435 1506 Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
duke@435 1507 r->init_req(1,control());
duke@435 1508 phi->init_req(1,slow_result);
duke@435 1509
duke@435 1510 // Post-merge
duke@435 1511 set_control(_gvn.transform(r));
duke@435 1512 record_for_igvn(r);
duke@435 1513 trig = _gvn.transform(phi);
duke@435 1514
duke@435 1515 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1516 }
duke@435 1517 // Push result back on JVM stack
duke@435 1518 push_pair(trig);
duke@435 1519 return true;
duke@435 1520 }
duke@435 1521
duke@435 1522 //------------------------------inline_sqrt-------------------------------------
duke@435 1523 // Inline square root instruction, if possible.
duke@435 1524 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
duke@435 1525 assert(id == vmIntrinsics::_dsqrt, "Not square root");
duke@435 1526 _sp += arg_size(); // restore stack pointer
duke@435 1527 push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
duke@435 1528 return true;
duke@435 1529 }
duke@435 1530
duke@435 1531 //------------------------------inline_abs-------------------------------------
duke@435 1532 // Inline absolute value instruction, if possible.
duke@435 1533 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
duke@435 1534 assert(id == vmIntrinsics::_dabs, "Not absolute value");
duke@435 1535 _sp += arg_size(); // restore stack pointer
duke@435 1536 push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
duke@435 1537 return true;
duke@435 1538 }
duke@435 1539
roland@3908 1540 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
roland@3908 1541 //-------------------
roland@3908 1542 //result=(result.isNaN())? funcAddr():result;
roland@3908 1543 // Check: If isNaN() by checking result!=result? then either trap
roland@3908 1544 // or go to runtime
roland@3908 1545 Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
roland@3908 1546 // Build the boolean node
roland@3908 1547 Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
roland@3908 1548
roland@3908 1549 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
roland@3908 1550 {
roland@3908 1551 BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
roland@3908 1552 // End the current control-flow path
roland@3908 1553 push_pair(x);
roland@3908 1554 if (y != NULL) {
roland@3908 1555 push_pair(y);
roland@3908 1556 }
roland@3908 1557 // The pow or exp intrinsic returned a NaN, which requires a call
roland@3908 1558 // to the runtime. Recompile with the runtime call.
roland@3908 1559 uncommon_trap(Deoptimization::Reason_intrinsic,
roland@3908 1560 Deoptimization::Action_make_not_entrant);
roland@3908 1561 }
roland@3908 1562 push_pair(result);
roland@3908 1563 } else {
roland@3908 1564 // If this inlining ever returned NaN in the past, we compile a call
roland@3908 1565 // to the runtime to properly handle corner cases
roland@3908 1566
roland@3908 1567 IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
roland@3908 1568 Node* if_slow = _gvn.transform( new (C, 1) IfFalseNode(iff) );
roland@3908 1569 Node* if_fast = _gvn.transform( new (C, 1) IfTrueNode(iff) );
roland@3908 1570
roland@3908 1571 if (!if_slow->is_top()) {
roland@3908 1572 RegionNode* result_region = new(C, 3) RegionNode(3);
roland@3908 1573 PhiNode* result_val = new (C, 3) PhiNode(result_region, Type::DOUBLE);
roland@3908 1574
roland@3908 1575 result_region->init_req(1, if_fast);
roland@3908 1576 result_val->init_req(1, result);
roland@3908 1577
roland@3908 1578 set_control(if_slow);
roland@3908 1579
roland@3908 1580 const TypePtr* no_memory_effects = NULL;
roland@3908 1581 Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
roland@3908 1582 no_memory_effects,
roland@3908 1583 x, top(), y, y ? top() : NULL);
roland@3908 1584 Node* value = _gvn.transform(new (C, 1) ProjNode(rt, TypeFunc::Parms+0));
roland@3908 1585 #ifdef ASSERT
roland@3908 1586 Node* value_top = _gvn.transform(new (C, 1) ProjNode(rt, TypeFunc::Parms+1));
roland@3908 1587 assert(value_top == top(), "second value must be top");
roland@3908 1588 #endif
roland@3908 1589
roland@3908 1590 result_region->init_req(2, control());
roland@3908 1591 result_val->init_req(2, value);
roland@3908 1592 push_result(result_region, result_val);
roland@3908 1593 } else {
roland@3908 1594 push_pair(result);
roland@3908 1595 }
roland@3908 1596 }
roland@3908 1597 }
roland@3908 1598
duke@435 1599 //------------------------------inline_exp-------------------------------------
duke@435 1600 // Inline exp instructions, if possible. The Intel hardware only misses
duke@435 1601 // really odd corner cases (+/- Infinity). Just uncommon-trap them.
duke@435 1602 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
duke@435 1603 assert(id == vmIntrinsics::_dexp, "Not exp");
duke@435 1604
duke@435 1605 _sp += arg_size(); // restore stack pointer
duke@435 1606 Node *x = pop_math_arg();
duke@435 1607 Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
duke@435 1608
roland@3908 1609 finish_pow_exp(result, x, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1610
duke@435 1611 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1612
duke@435 1613 return true;
duke@435 1614 }
duke@435 1615
duke@435 1616 //------------------------------inline_pow-------------------------------------
duke@435 1617 // Inline power instructions, if possible.
duke@435 1618 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
duke@435 1619 assert(id == vmIntrinsics::_dpow, "Not pow");
duke@435 1620
duke@435 1621 // Pseudocode for pow
duke@435 1622 // if (x <= 0.0) {
roland@3908 1623 // long longy = (long)y;
roland@3908 1624 // if ((double)longy == y) { // if y is long
roland@3908 1625 // if (y + 1 == y) longy = 0; // huge number: even
roland@3908 1626 // result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
duke@435 1627 // } else {
duke@435 1628 // result = NaN;
duke@435 1629 // }
duke@435 1630 // } else {
duke@435 1631 // result = DPow(x,y);
duke@435 1632 // }
duke@435 1633 // if (result != result)? {
roland@3908 1634 // result = uncommon_trap() or runtime_call();
duke@435 1635 // }
duke@435 1636 // return result;
duke@435 1637
duke@435 1638 _sp += arg_size(); // restore stack pointer
duke@435 1639 Node* y = pop_math_arg();
duke@435 1640 Node* x = pop_math_arg();
duke@435 1641
roland@3908 1642 Node* result = NULL;
roland@3908 1643
roland@3908 1644 if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
roland@3908 1645 // Short form: skip the fancy tests and just check for NaN result.
roland@3908 1646 result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1647 } else {
roland@3908 1648 // If this inlining ever returned NaN in the past, include all
roland@3908 1649 // checks + call to the runtime.
duke@435 1650
duke@435 1651 // Set the merge point for If node with condition of (x <= 0.0)
duke@435 1652 // There are four possible paths to region node and phi node
duke@435 1653 RegionNode *r = new (C, 4) RegionNode(4);
duke@435 1654 Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
duke@435 1655
duke@435 1656 // Build the first if node: if (x <= 0.0)
duke@435 1657 // Node for 0 constant
duke@435 1658 Node *zeronode = makecon(TypeD::ZERO);
duke@435 1659 // Check x:0
duke@435 1660 Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
duke@435 1661 // Check: If (x<=0) then go complex path
duke@435 1662 Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
duke@435 1663 // Branch either way
duke@435 1664 IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
duke@435 1665 // Fast path taken; set region slot 3
roland@3908 1666 Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(if1) );
duke@435 1667 r->init_req(3,fast_taken); // Capture fast-control
duke@435 1668
duke@435 1669 // Fast path not-taken, i.e. slow path
roland@3908 1670 Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(if1) );
duke@435 1671
duke@435 1672 // Set fast path result
roland@3908 1673 Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
duke@435 1674 phi->init_req(3, fast_result);
duke@435 1675
duke@435 1676 // Complex path
roland@3908 1677 // Build the second if node (if y is long)
roland@3908 1678 // Node for (long)y
roland@3908 1679 Node *longy = _gvn.transform( new (C, 2) ConvD2LNode(y));
roland@3908 1680 // Node for (double)((long) y)
roland@3908 1681 Node *doublelongy= _gvn.transform( new (C, 2) ConvL2DNode(longy));
roland@3908 1682 // Check (double)((long) y) : y
roland@3908 1683 Node *cmplongy= _gvn.transform(new (C, 3) CmpDNode(doublelongy, y));
roland@3908 1684 // Check if (y isn't long) then go to slow path
roland@3908 1685
roland@3908 1686 Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmplongy, BoolTest::ne ) );
twisti@1040 1687 // Branch either way
duke@435 1688 IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
roland@3908 1689 Node* ylong_path = _gvn.transform( new (C, 1) IfFalseNode(if2));
roland@3908 1690
roland@3908 1691 Node *slow_path = _gvn.transform( new (C, 1) IfTrueNode(if2) );
roland@3908 1692
roland@3908 1693 // Calculate DPow(abs(x), y)*(1 & (long)y)
duke@435 1694 // Node for constant 1
roland@3908 1695 Node *conone = longcon(1);
roland@3908 1696 // 1& (long)y
roland@3908 1697 Node *signnode= _gvn.transform( new (C, 3) AndLNode(conone, longy) );
roland@3908 1698
roland@3908 1699 // A huge number is always even. Detect a huge number by checking
roland@3908 1700 // if y + 1 == y and set integer to be tested for parity to 0.
roland@3908 1701 // Required for corner case:
roland@3908 1702 // (long)9.223372036854776E18 = max_jlong
roland@3908 1703 // (double)(long)9.223372036854776E18 = 9.223372036854776E18
roland@3908 1704 // max_jlong is odd but 9.223372036854776E18 is even
roland@3908 1705 Node* yplus1 = _gvn.transform( new (C, 3) AddDNode(y, makecon(TypeD::make(1))));
roland@3908 1706 Node *cmpyplus1= _gvn.transform(new (C, 3) CmpDNode(yplus1, y));
roland@3908 1707 Node *bolyplus1 = _gvn.transform( new (C, 2) BoolNode( cmpyplus1, BoolTest::eq ) );
roland@3908 1708 Node* correctedsign = NULL;
roland@3908 1709 if (ConditionalMoveLimit != 0) {
roland@3908 1710 correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
roland@3908 1711 } else {
roland@3908 1712 IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
roland@3908 1713 RegionNode *r = new (C, 3) RegionNode(3);
roland@3908 1714 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
roland@3908 1715 r->init_req(1, _gvn.transform( new (C, 1) IfFalseNode(ifyplus1)));
roland@3908 1716 r->init_req(2, _gvn.transform( new (C, 1) IfTrueNode(ifyplus1)));
roland@3908 1717 phi->init_req(1, signnode);
roland@3908 1718 phi->init_req(2, longcon(0));
roland@3908 1719 correctedsign = _gvn.transform(phi);
roland@3908 1720 ylong_path = _gvn.transform(r);
roland@3908 1721 record_for_igvn(r);
roland@3908 1722 }
roland@3908 1723
duke@435 1724 // zero node
roland@3908 1725 Node *conzero = longcon(0);
roland@3908 1726 // Check (1&(long)y)==0?
roland@3908 1727 Node *cmpeq1 = _gvn.transform(new (C, 3) CmpLNode(correctedsign, conzero));
roland@3908 1728 // Check if (1&(long)y)!=0?, if so the result is negative
duke@435 1729 Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
duke@435 1730 // abs(x)
duke@435 1731 Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
duke@435 1732 // abs(x)^y
roland@3908 1733 Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, absx, y) );
duke@435 1734 // -abs(x)^y
duke@435 1735 Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
roland@3908 1736 // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
roland@3908 1737 Node *signresult = NULL;
roland@3908 1738 if (ConditionalMoveLimit != 0) {
roland@3908 1739 signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
roland@3908 1740 } else {
roland@3908 1741 IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
roland@3908 1742 RegionNode *r = new (C, 3) RegionNode(3);
roland@3908 1743 Node *phi = new (C, 3) PhiNode(r, Type::DOUBLE);
roland@3908 1744 r->init_req(1, _gvn.transform( new (C, 1) IfFalseNode(ifyeven)));
roland@3908 1745 r->init_req(2, _gvn.transform( new (C, 1) IfTrueNode(ifyeven)));
roland@3908 1746 phi->init_req(1, absxpowy);
roland@3908 1747 phi->init_req(2, negabsxpowy);
roland@3908 1748 signresult = _gvn.transform(phi);
roland@3908 1749 ylong_path = _gvn.transform(r);
roland@3908 1750 record_for_igvn(r);
roland@3908 1751 }
duke@435 1752 // Set complex path fast result
roland@3908 1753 r->init_req(2, ylong_path);
duke@435 1754 phi->init_req(2, signresult);
duke@435 1755
duke@435 1756 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 1757 Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
duke@435 1758 r->init_req(1,slow_path);
duke@435 1759 phi->init_req(1,slow_result);
duke@435 1760
duke@435 1761 // Post merge
duke@435 1762 set_control(_gvn.transform(r));
duke@435 1763 record_for_igvn(r);
duke@435 1764 result=_gvn.transform(phi);
duke@435 1765 }
duke@435 1766
roland@3908 1767 finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1768
duke@435 1769 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 1770
duke@435 1771 return true;
duke@435 1772 }
duke@435 1773
duke@435 1774 //------------------------------inline_trans-------------------------------------
duke@435 1775 // Inline transcendental instructions, if possible. The Intel hardware gets
duke@435 1776 // these right, no funny corner cases missed.
duke@435 1777 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
duke@435 1778 _sp += arg_size(); // restore stack pointer
duke@435 1779 Node* arg = pop_math_arg();
duke@435 1780 Node* trans = NULL;
duke@435 1781
duke@435 1782 switch (id) {
duke@435 1783 case vmIntrinsics::_dlog:
duke@435 1784 trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
duke@435 1785 break;
duke@435 1786 case vmIntrinsics::_dlog10:
duke@435 1787 trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
duke@435 1788 break;
duke@435 1789 default:
duke@435 1790 assert(false, "bad intrinsic was passed in");
duke@435 1791 return false;
duke@435 1792 }
duke@435 1793
duke@435 1794 // Push result back on JVM stack
duke@435 1795 push_pair(trans);
duke@435 1796 return true;
duke@435 1797 }
duke@435 1798
duke@435 1799 //------------------------------runtime_math-----------------------------
duke@435 1800 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
duke@435 1801 Node* a = NULL;
duke@435 1802 Node* b = NULL;
duke@435 1803
duke@435 1804 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
duke@435 1805 "must be (DD)D or (D)D type");
duke@435 1806
duke@435 1807 // Inputs
duke@435 1808 _sp += arg_size(); // restore stack pointer
duke@435 1809 if (call_type == OptoRuntime::Math_DD_D_Type()) {
duke@435 1810 b = pop_math_arg();
duke@435 1811 }
duke@435 1812 a = pop_math_arg();
duke@435 1813
duke@435 1814 const TypePtr* no_memory_effects = NULL;
duke@435 1815 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
duke@435 1816 no_memory_effects,
duke@435 1817 a, top(), b, b ? top() : NULL);
duke@435 1818 Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
duke@435 1819 #ifdef ASSERT
duke@435 1820 Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
duke@435 1821 assert(value_top == top(), "second value must be top");
duke@435 1822 #endif
duke@435 1823
duke@435 1824 push_pair(value);
duke@435 1825 return true;
duke@435 1826 }
duke@435 1827
duke@435 1828 //------------------------------inline_math_native-----------------------------
duke@435 1829 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
duke@435 1830 switch (id) {
duke@435 1831 // These intrinsics are not properly supported on all hardware
duke@435 1832 case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
duke@435 1833 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
duke@435 1834 case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
duke@435 1835 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
duke@435 1836 case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
duke@435 1837 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
duke@435 1838
duke@435 1839 case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
duke@435 1840 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
duke@435 1841 case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
duke@435 1842 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
duke@435 1843
duke@435 1844 // These intrinsics are supported on all hardware
duke@435 1845 case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
duke@435 1846 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
duke@435 1847
duke@435 1848 case vmIntrinsics::_dexp: return
roland@3787 1849 Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
duke@435 1850 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
duke@435 1851 case vmIntrinsics::_dpow: return
roland@3787 1852 Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
duke@435 1853 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
duke@435 1854
duke@435 1855 // These intrinsics are not yet correctly implemented
duke@435 1856 case vmIntrinsics::_datan2:
duke@435 1857 return false;
duke@435 1858
duke@435 1859 default:
duke@435 1860 ShouldNotReachHere();
duke@435 1861 return false;
duke@435 1862 }
duke@435 1863 }
duke@435 1864
duke@435 1865 static bool is_simple_name(Node* n) {
duke@435 1866 return (n->req() == 1 // constant
duke@435 1867 || (n->is_Type() && n->as_Type()->type()->singleton())
duke@435 1868 || n->is_Proj() // parameter or return value
duke@435 1869 || n->is_Phi() // local of some sort
duke@435 1870 );
duke@435 1871 }
duke@435 1872
duke@435 1873 //----------------------------inline_min_max-----------------------------------
duke@435 1874 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
duke@435 1875 push(generate_min_max(id, argument(0), argument(1)));
duke@435 1876
duke@435 1877 return true;
duke@435 1878 }
duke@435 1879
duke@435 1880 Node*
duke@435 1881 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
duke@435 1882 // These are the candidate return value:
duke@435 1883 Node* xvalue = x0;
duke@435 1884 Node* yvalue = y0;
duke@435 1885
duke@435 1886 if (xvalue == yvalue) {
duke@435 1887 return xvalue;
duke@435 1888 }
duke@435 1889
duke@435 1890 bool want_max = (id == vmIntrinsics::_max);
duke@435 1891
duke@435 1892 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
duke@435 1893 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
duke@435 1894 if (txvalue == NULL || tyvalue == NULL) return top();
duke@435 1895 // This is not really necessary, but it is consistent with a
duke@435 1896 // hypothetical MaxINode::Value method:
duke@435 1897 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
duke@435 1898
duke@435 1899 // %%% This folding logic should (ideally) be in a different place.
duke@435 1900 // Some should be inside IfNode, and there to be a more reliable
duke@435 1901 // transformation of ?: style patterns into cmoves. We also want
duke@435 1902 // more powerful optimizations around cmove and min/max.
duke@435 1903
duke@435 1904 // Try to find a dominating comparison of these guys.
duke@435 1905 // It can simplify the index computation for Arrays.copyOf
duke@435 1906 // and similar uses of System.arraycopy.
duke@435 1907 // First, compute the normalized version of CmpI(x, y).
duke@435 1908 int cmp_op = Op_CmpI;
duke@435 1909 Node* xkey = xvalue;
duke@435 1910 Node* ykey = yvalue;
duke@435 1911 Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
duke@435 1912 if (ideal_cmpxy->is_Cmp()) {
duke@435 1913 // E.g., if we have CmpI(length - offset, count),
duke@435 1914 // it might idealize to CmpI(length, count + offset)
duke@435 1915 cmp_op = ideal_cmpxy->Opcode();
duke@435 1916 xkey = ideal_cmpxy->in(1);
duke@435 1917 ykey = ideal_cmpxy->in(2);
duke@435 1918 }
duke@435 1919
duke@435 1920 // Start by locating any relevant comparisons.
duke@435 1921 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
duke@435 1922 Node* cmpxy = NULL;
duke@435 1923 Node* cmpyx = NULL;
duke@435 1924 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
duke@435 1925 Node* cmp = start_from->fast_out(k);
duke@435 1926 if (cmp->outcnt() > 0 && // must have prior uses
duke@435 1927 cmp->in(0) == NULL && // must be context-independent
duke@435 1928 cmp->Opcode() == cmp_op) { // right kind of compare
duke@435 1929 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
duke@435 1930 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
duke@435 1931 }
duke@435 1932 }
duke@435 1933
duke@435 1934 const int NCMPS = 2;
duke@435 1935 Node* cmps[NCMPS] = { cmpxy, cmpyx };
duke@435 1936 int cmpn;
duke@435 1937 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1938 if (cmps[cmpn] != NULL) break; // find a result
duke@435 1939 }
duke@435 1940 if (cmpn < NCMPS) {
duke@435 1941 // Look for a dominating test that tells us the min and max.
duke@435 1942 int depth = 0; // Limit search depth for speed
duke@435 1943 Node* dom = control();
duke@435 1944 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
duke@435 1945 if (++depth >= 100) break;
duke@435 1946 Node* ifproj = dom;
duke@435 1947 if (!ifproj->is_Proj()) continue;
duke@435 1948 Node* iff = ifproj->in(0);
duke@435 1949 if (!iff->is_If()) continue;
duke@435 1950 Node* bol = iff->in(1);
duke@435 1951 if (!bol->is_Bool()) continue;
duke@435 1952 Node* cmp = bol->in(1);
duke@435 1953 if (cmp == NULL) continue;
duke@435 1954 for (cmpn = 0; cmpn < NCMPS; cmpn++)
duke@435 1955 if (cmps[cmpn] == cmp) break;
duke@435 1956 if (cmpn == NCMPS) continue;
duke@435 1957 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1958 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
duke@435 1959 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1960 // At this point, we know that 'x btest y' is true.
duke@435 1961 switch (btest) {
duke@435 1962 case BoolTest::eq:
duke@435 1963 // They are proven equal, so we can collapse the min/max.
duke@435 1964 // Either value is the answer. Choose the simpler.
duke@435 1965 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
duke@435 1966 return yvalue;
duke@435 1967 return xvalue;
duke@435 1968 case BoolTest::lt: // x < y
duke@435 1969 case BoolTest::le: // x <= y
duke@435 1970 return (want_max ? yvalue : xvalue);
duke@435 1971 case BoolTest::gt: // x > y
duke@435 1972 case BoolTest::ge: // x >= y
duke@435 1973 return (want_max ? xvalue : yvalue);
duke@435 1974 }
duke@435 1975 }
duke@435 1976 }
duke@435 1977
duke@435 1978 // We failed to find a dominating test.
duke@435 1979 // Let's pick a test that might GVN with prior tests.
duke@435 1980 Node* best_bol = NULL;
duke@435 1981 BoolTest::mask best_btest = BoolTest::illegal;
duke@435 1982 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
duke@435 1983 Node* cmp = cmps[cmpn];
duke@435 1984 if (cmp == NULL) continue;
duke@435 1985 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
duke@435 1986 Node* bol = cmp->fast_out(j);
duke@435 1987 if (!bol->is_Bool()) continue;
duke@435 1988 BoolTest::mask btest = bol->as_Bool()->_test._test;
duke@435 1989 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
duke@435 1990 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
duke@435 1991 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
duke@435 1992 best_bol = bol->as_Bool();
duke@435 1993 best_btest = btest;
duke@435 1994 }
duke@435 1995 }
duke@435 1996 }
duke@435 1997
duke@435 1998 Node* answer_if_true = NULL;
duke@435 1999 Node* answer_if_false = NULL;
duke@435 2000 switch (best_btest) {
duke@435 2001 default:
duke@435 2002 if (cmpxy == NULL)
duke@435 2003 cmpxy = ideal_cmpxy;
duke@435 2004 best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
duke@435 2005 // and fall through:
duke@435 2006 case BoolTest::lt: // x < y
duke@435 2007 case BoolTest::le: // x <= y
duke@435 2008 answer_if_true = (want_max ? yvalue : xvalue);
duke@435 2009 answer_if_false = (want_max ? xvalue : yvalue);
duke@435 2010 break;
duke@435 2011 case BoolTest::gt: // x > y
duke@435 2012 case BoolTest::ge: // x >= y
duke@435 2013 answer_if_true = (want_max ? xvalue : yvalue);
duke@435 2014 answer_if_false = (want_max ? yvalue : xvalue);
duke@435 2015 break;
duke@435 2016 }
duke@435 2017
duke@435 2018 jint hi, lo;
duke@435 2019 if (want_max) {
duke@435 2020 // We can sharpen the minimum.
duke@435 2021 hi = MAX2(txvalue->_hi, tyvalue->_hi);
duke@435 2022 lo = MAX2(txvalue->_lo, tyvalue->_lo);
duke@435 2023 } else {
duke@435 2024 // We can sharpen the maximum.
duke@435 2025 hi = MIN2(txvalue->_hi, tyvalue->_hi);
duke@435 2026 lo = MIN2(txvalue->_lo, tyvalue->_lo);
duke@435 2027 }
duke@435 2028
duke@435 2029 // Use a flow-free graph structure, to avoid creating excess control edges
duke@435 2030 // which could hinder other optimizations.
duke@435 2031 // Since Math.min/max is often used with arraycopy, we want
duke@435 2032 // tightly_coupled_allocation to be able to see beyond min/max expressions.
duke@435 2033 Node* cmov = CMoveNode::make(C, NULL, best_bol,
duke@435 2034 answer_if_false, answer_if_true,
duke@435 2035 TypeInt::make(lo, hi, widen));
duke@435 2036
duke@435 2037 return _gvn.transform(cmov);
duke@435 2038
duke@435 2039 /*
duke@435 2040 // This is not as desirable as it may seem, since Min and Max
duke@435 2041 // nodes do not have a full set of optimizations.
duke@435 2042 // And they would interfere, anyway, with 'if' optimizations
duke@435 2043 // and with CMoveI canonical forms.
duke@435 2044 switch (id) {
duke@435 2045 case vmIntrinsics::_min:
duke@435 2046 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
duke@435 2047 case vmIntrinsics::_max:
duke@435 2048 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
duke@435 2049 default:
duke@435 2050 ShouldNotReachHere();
duke@435 2051 }
duke@435 2052 */
duke@435 2053 }
duke@435 2054
duke@435 2055 inline int
duke@435 2056 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
duke@435 2057 const TypePtr* base_type = TypePtr::NULL_PTR;
duke@435 2058 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
duke@435 2059 if (base_type == NULL) {
duke@435 2060 // Unknown type.
duke@435 2061 return Type::AnyPtr;
duke@435 2062 } else if (base_type == TypePtr::NULL_PTR) {
duke@435 2063 // Since this is a NULL+long form, we have to switch to a rawptr.
duke@435 2064 base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
duke@435 2065 offset = MakeConX(0);
duke@435 2066 return Type::RawPtr;
duke@435 2067 } else if (base_type->base() == Type::RawPtr) {
duke@435 2068 return Type::RawPtr;
duke@435 2069 } else if (base_type->isa_oopptr()) {
duke@435 2070 // Base is never null => always a heap address.
duke@435 2071 if (base_type->ptr() == TypePtr::NotNull) {
duke@435 2072 return Type::OopPtr;
duke@435 2073 }
duke@435 2074 // Offset is small => always a heap address.
duke@435 2075 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
duke@435 2076 if (offset_type != NULL &&
duke@435 2077 base_type->offset() == 0 && // (should always be?)
duke@435 2078 offset_type->_lo >= 0 &&
duke@435 2079 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
duke@435 2080 return Type::OopPtr;
duke@435 2081 }
duke@435 2082 // Otherwise, it might either be oop+off or NULL+addr.
duke@435 2083 return Type::AnyPtr;
duke@435 2084 } else {
duke@435 2085 // No information:
duke@435 2086 return Type::AnyPtr;
duke@435 2087 }
duke@435 2088 }
duke@435 2089
duke@435 2090 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
duke@435 2091 int kind = classify_unsafe_addr(base, offset);
duke@435 2092 if (kind == Type::RawPtr) {
duke@435 2093 return basic_plus_adr(top(), base, offset);
duke@435 2094 } else {
duke@435 2095 return basic_plus_adr(base, offset);
duke@435 2096 }
duke@435 2097 }
duke@435 2098
twisti@1210 2099 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
twisti@1210 2100 // inline int Integer.numberOfLeadingZeros(int)
twisti@1210 2101 // inline int Long.numberOfLeadingZeros(long)
twisti@1210 2102 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
twisti@1210 2103 assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
twisti@1210 2104 if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
twisti@1210 2105 if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
twisti@1210 2106 _sp += arg_size(); // restore stack pointer
twisti@1210 2107 switch (id) {
twisti@1210 2108 case vmIntrinsics::_numberOfLeadingZeros_i:
twisti@1210 2109 push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
twisti@1210 2110 break;
twisti@1210 2111 case vmIntrinsics::_numberOfLeadingZeros_l:
twisti@1210 2112 push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
twisti@1210 2113 break;
twisti@1210 2114 default:
twisti@1210 2115 ShouldNotReachHere();
twisti@1210 2116 }
twisti@1210 2117 return true;
twisti@1210 2118 }
twisti@1210 2119
twisti@1210 2120 //-------------------inline_numberOfTrailingZeros_int/long----------------------
twisti@1210 2121 // inline int Integer.numberOfTrailingZeros(int)
twisti@1210 2122 // inline int Long.numberOfTrailingZeros(long)
twisti@1210 2123 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
twisti@1210 2124 assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
twisti@1210 2125 if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
twisti@1210 2126 if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
twisti@1210 2127 _sp += arg_size(); // restore stack pointer
twisti@1210 2128 switch (id) {
twisti@1210 2129 case vmIntrinsics::_numberOfTrailingZeros_i:
twisti@1210 2130 push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
twisti@1210 2131 break;
twisti@1210 2132 case vmIntrinsics::_numberOfTrailingZeros_l:
twisti@1210 2133 push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
twisti@1210 2134 break;
twisti@1210 2135 default:
twisti@1210 2136 ShouldNotReachHere();
twisti@1210 2137 }
twisti@1210 2138 return true;
twisti@1210 2139 }
twisti@1210 2140
twisti@1078 2141 //----------------------------inline_bitCount_int/long-----------------------
twisti@1078 2142 // inline int Integer.bitCount(int)
twisti@1078 2143 // inline int Long.bitCount(long)
twisti@1078 2144 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
twisti@1078 2145 assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
twisti@1078 2146 if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
twisti@1078 2147 if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
twisti@1078 2148 _sp += arg_size(); // restore stack pointer
twisti@1078 2149 switch (id) {
twisti@1078 2150 case vmIntrinsics::_bitCount_i:
twisti@1078 2151 push(_gvn.transform(new (C, 2) PopCountINode(pop())));
twisti@1078 2152 break;
twisti@1078 2153 case vmIntrinsics::_bitCount_l:
twisti@1078 2154 push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
twisti@1078 2155 break;
twisti@1078 2156 default:
twisti@1078 2157 ShouldNotReachHere();
twisti@1078 2158 }
twisti@1078 2159 return true;
twisti@1078 2160 }
twisti@1078 2161
never@1831 2162 //----------------------------inline_reverseBytes_int/long/char/short-------------------
twisti@1040 2163 // inline Integer.reverseBytes(int)
twisti@1040 2164 // inline Long.reverseBytes(long)
never@1831 2165 // inline Character.reverseBytes(char)
never@1831 2166 // inline Short.reverseBytes(short)
duke@435 2167 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
never@1831 2168 assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
never@1831 2169 id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
never@1831 2170 "not reverse Bytes");
never@1831 2171 if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
never@1831 2172 if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
never@1831 2173 if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
never@1831 2174 if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
twisti@3969 2175 _sp += arg_size(); // restore stack pointer
duke@435 2176 switch (id) {
duke@435 2177 case vmIntrinsics::_reverseBytes_i:
duke@435 2178 push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
duke@435 2179 break;
duke@435 2180 case vmIntrinsics::_reverseBytes_l:
duke@435 2181 push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
duke@435 2182 break;
never@1831 2183 case vmIntrinsics::_reverseBytes_c:
never@1831 2184 push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
never@1831 2185 break;
never@1831 2186 case vmIntrinsics::_reverseBytes_s:
never@1831 2187 push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
never@1831 2188 break;
duke@435 2189 default:
duke@435 2190 ;
duke@435 2191 }
duke@435 2192 return true;
duke@435 2193 }
duke@435 2194
duke@435 2195 //----------------------------inline_unsafe_access----------------------------
duke@435 2196
duke@435 2197 const static BasicType T_ADDRESS_HOLDER = T_LONG;
duke@435 2198
kvn@4002 2199 // Helper that guards and inserts a pre-barrier.
kvn@4002 2200 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
kvn@4002 2201 Node* pre_val, int nargs, bool need_mem_bar) {
johnc@2781 2202 // We could be accessing the referent field of a reference object. If so, when G1
johnc@2781 2203 // is enabled, we need to log the value in the referent field in an SATB buffer.
johnc@2781 2204 // This routine performs some compile time filters and generates suitable
johnc@2781 2205 // runtime filters that guard the pre-barrier code.
kvn@4002 2206 // Also add memory barrier for non volatile load from the referent field
kvn@4002 2207 // to prevent commoning of loads across safepoint.
kvn@4002 2208 if (!UseG1GC && !need_mem_bar)
kvn@4002 2209 return;
johnc@2781 2210
johnc@2781 2211 // Some compile time checks.
johnc@2781 2212
johnc@2781 2213 // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
johnc@2781 2214 const TypeX* otype = offset->find_intptr_t_type();
johnc@2781 2215 if (otype != NULL && otype->is_con() &&
johnc@2781 2216 otype->get_con() != java_lang_ref_Reference::referent_offset) {
johnc@2781 2217 // Constant offset but not the reference_offset so just return
johnc@2781 2218 return;
johnc@2781 2219 }
johnc@2781 2220
johnc@2781 2221 // We only need to generate the runtime guards for instances.
johnc@2781 2222 const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
johnc@2781 2223 if (btype != NULL) {
johnc@2781 2224 if (btype->isa_aryptr()) {
johnc@2781 2225 // Array type so nothing to do
johnc@2781 2226 return;
johnc@2781 2227 }
johnc@2781 2228
johnc@2781 2229 const TypeInstPtr* itype = btype->isa_instptr();
johnc@2781 2230 if (itype != NULL) {
kvn@4002 2231 // Can the klass of base_oop be statically determined to be
kvn@4002 2232 // _not_ a sub-class of Reference and _not_ Object?
johnc@2781 2233 ciKlass* klass = itype->klass();
kvn@4002 2234 if ( klass->is_loaded() &&
kvn@4002 2235 !klass->is_subtype_of(env()->Reference_klass()) &&
kvn@4002 2236 !env()->Object_klass()->is_subtype_of(klass)) {
johnc@2781 2237 return;
johnc@2781 2238 }
johnc@2781 2239 }
johnc@2781 2240 }
johnc@2781 2241
johnc@2781 2242 // The compile time filters did not reject base_oop/offset so
johnc@2781 2243 // we need to generate the following runtime filters
johnc@2781 2244 //
johnc@2781 2245 // if (offset == java_lang_ref_Reference::_reference_offset) {
kvn@4002 2246 // if (instance_of(base, java.lang.ref.Reference)) {
kvn@4002 2247 // pre_barrier(_, pre_val, ...);
johnc@2781 2248 // }
johnc@2781 2249 // }
johnc@2781 2250
johnc@2781 2251 float likely = PROB_LIKELY(0.999);
johnc@2781 2252 float unlikely = PROB_UNLIKELY(0.999);
johnc@2781 2253
johnc@2787 2254 IdealKit ideal(this);
johnc@2781 2255 #define __ ideal.
johnc@2781 2256
johnc@2786 2257 Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
johnc@2781 2258
johnc@2781 2259 __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
johnc@2781 2260 // Update graphKit memory and control from IdealKit.
johnc@2787 2261 sync_kit(ideal);
johnc@2781 2262
johnc@2781 2263 Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
kvn@4002 2264 _sp += nargs; // gen_instanceof might do an uncommon trap
johnc@2781 2265 Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
kvn@4002 2266 _sp -= nargs;
johnc@2781 2267
johnc@2781 2268 // Update IdealKit memory and control from graphKit.
johnc@2787 2269 __ sync_kit(this);
johnc@2781 2270
johnc@2781 2271 Node* one = __ ConI(1);
kvn@4002 2272 // is_instof == 0 if base_oop == NULL
johnc@2781 2273 __ if_then(is_instof, BoolTest::eq, one, unlikely); {
johnc@2781 2274
johnc@2781 2275 // Update graphKit from IdeakKit.
johnc@2787 2276 sync_kit(ideal);
johnc@2781 2277
johnc@2781 2278 // Use the pre-barrier to record the value in the referent field
johnc@2781 2279 pre_barrier(false /* do_load */,
johnc@2781 2280 __ ctrl(),
johnc@2790 2281 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 2282 pre_val /* pre_val */,
johnc@2781 2283 T_OBJECT);
kvn@4002 2284 if (need_mem_bar) {
kvn@4002 2285 // Add memory barrier to prevent commoning reads from this field
kvn@4002 2286 // across safepoint since GC can change its value.
kvn@4002 2287 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 2288 }
johnc@2781 2289 // Update IdealKit from graphKit.
johnc@2787 2290 __ sync_kit(this);
johnc@2781 2291
johnc@2781 2292 } __ end_if(); // _ref_type != ref_none
johnc@2781 2293 } __ end_if(); // offset == referent_offset
johnc@2781 2294
johnc@2781 2295 // Final sync IdealKit and GraphKit.
johnc@2787 2296 final_sync(ideal);
johnc@2781 2297 #undef __
johnc@2781 2298 }
johnc@2781 2299
johnc@2781 2300
duke@435 2301 // Interpret Unsafe.fieldOffset cookies correctly:
duke@435 2302 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
duke@435 2303
duke@435 2304 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
duke@435 2305 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2306
duke@435 2307 #ifndef PRODUCT
duke@435 2308 {
duke@435 2309 ResourceMark rm;
duke@435 2310 // Check the signatures.
duke@435 2311 ciSignature* sig = signature();
duke@435 2312 #ifdef ASSERT
duke@435 2313 if (!is_store) {
duke@435 2314 // Object getObject(Object base, int/long offset), etc.
duke@435 2315 BasicType rtype = sig->return_type()->basic_type();
duke@435 2316 if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
duke@435 2317 rtype = T_ADDRESS; // it is really a C void*
duke@435 2318 assert(rtype == type, "getter must return the expected value");
duke@435 2319 if (!is_native_ptr) {
duke@435 2320 assert(sig->count() == 2, "oop getter has 2 arguments");
duke@435 2321 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
duke@435 2322 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
duke@435 2323 } else {
duke@435 2324 assert(sig->count() == 1, "native getter has 1 argument");
duke@435 2325 assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
duke@435 2326 }
duke@435 2327 } else {
duke@435 2328 // void putObject(Object base, int/long offset, Object x), etc.
duke@435 2329 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
duke@435 2330 if (!is_native_ptr) {
duke@435 2331 assert(sig->count() == 3, "oop putter has 3 arguments");
duke@435 2332 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
duke@435 2333 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
duke@435 2334 } else {
duke@435 2335 assert(sig->count() == 2, "native putter has 2 arguments");
duke@435 2336 assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
duke@435 2337 }
duke@435 2338 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
duke@435 2339 if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
duke@435 2340 vtype = T_ADDRESS; // it is really a C void*
duke@435 2341 assert(vtype == type, "putter must accept the expected value");
duke@435 2342 }
duke@435 2343 #endif // ASSERT
duke@435 2344 }
duke@435 2345 #endif //PRODUCT
duke@435 2346
duke@435 2347 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2348
duke@435 2349 int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
duke@435 2350
duke@435 2351 // Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
duke@435 2352 int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
twisti@3969 2353 assert(callee()->arg_size() == nargs, "must be");
duke@435 2354
duke@435 2355 debug_only(int saved_sp = _sp);
duke@435 2356 _sp += nargs;
duke@435 2357
duke@435 2358 Node* val;
duke@435 2359 debug_only(val = (Node*)(uintptr_t)-1);
duke@435 2360
duke@435 2361
duke@435 2362 if (is_store) {
duke@435 2363 // Get the value being stored. (Pop it first; it was pushed last.)
duke@435 2364 switch (type) {
duke@435 2365 case T_DOUBLE:
duke@435 2366 case T_LONG:
duke@435 2367 case T_ADDRESS:
duke@435 2368 val = pop_pair();
duke@435 2369 break;
duke@435 2370 default:
duke@435 2371 val = pop();
duke@435 2372 }
duke@435 2373 }
duke@435 2374
duke@435 2375 // Build address expression. See the code in inline_unsafe_prefetch.
duke@435 2376 Node *adr;
duke@435 2377 Node *heap_base_oop = top();
johnc@2781 2378 Node* offset = top();
johnc@2781 2379
duke@435 2380 if (!is_native_ptr) {
duke@435 2381 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
johnc@2781 2382 offset = pop_pair();
duke@435 2383 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2384 Node* base = pop();
duke@435 2385 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2386 // to be plain byte offsets, which are also the same as those accepted
duke@435 2387 // by oopDesc::field_base.
duke@435 2388 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2389 "fieldOffset must be byte-scaled");
duke@435 2390 // 32-bit machines ignore the high half!
duke@435 2391 offset = ConvL2X(offset);
duke@435 2392 adr = make_unsafe_address(base, offset);
duke@435 2393 heap_base_oop = base;
duke@435 2394 } else {
duke@435 2395 Node* ptr = pop_pair();
duke@435 2396 // Adjust Java long to machine word:
duke@435 2397 ptr = ConvL2X(ptr);
duke@435 2398 adr = make_unsafe_address(NULL, ptr);
duke@435 2399 }
duke@435 2400
duke@435 2401 // Pop receiver last: it was pushed first.
duke@435 2402 Node *receiver = pop();
duke@435 2403
duke@435 2404 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2405
duke@435 2406 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2407
duke@435 2408 // First guess at the value type.
duke@435 2409 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2410
duke@435 2411 // Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
duke@435 2412 // there was not enough information to nail it down.
duke@435 2413 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2414 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2415
duke@435 2416 // We will need memory barriers unless we can determine a unique
duke@435 2417 // alias category for this reference. (Note: If for some reason
duke@435 2418 // the barriers get omitted and the unsafe reference begins to "pollute"
duke@435 2419 // the alias analysis of the rest of the graph, either Compile::can_alias
duke@435 2420 // or Compile::must_alias will throw a diagnostic assert.)
duke@435 2421 bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
duke@435 2422
johnc@2781 2423 // If we are reading the value of the referent field of a Reference
johnc@2781 2424 // object (either by using Unsafe directly or through reflection)
johnc@2781 2425 // then, if G1 is enabled, we need to record the referent in an
johnc@2781 2426 // SATB log buffer using the pre-barrier mechanism.
kvn@4002 2427 // Also we need to add memory barrier to prevent commoning reads
kvn@4002 2428 // from this field across safepoint since GC can change its value.
kvn@4002 2429 bool need_read_barrier = !is_native_ptr && !is_store &&
johnc@2781 2430 offset != top() && heap_base_oop != top();
johnc@2781 2431
duke@435 2432 if (!is_store && type == T_OBJECT) {
duke@435 2433 // Attempt to infer a sharper value type from the offset and base type.
duke@435 2434 ciKlass* sharpened_klass = NULL;
duke@435 2435
duke@435 2436 // See if it is an instance field, with an object type.
duke@435 2437 if (alias_type->field() != NULL) {
duke@435 2438 assert(!is_native_ptr, "native pointer op cannot use a java address");
duke@435 2439 if (alias_type->field()->type()->is_klass()) {
duke@435 2440 sharpened_klass = alias_type->field()->type()->as_klass();
duke@435 2441 }
duke@435 2442 }
duke@435 2443
duke@435 2444 // See if it is a narrow oop array.
duke@435 2445 if (adr_type->isa_aryptr()) {
twisti@1330 2446 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
duke@435 2447 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
duke@435 2448 if (elem_type != NULL) {
duke@435 2449 sharpened_klass = elem_type->klass();
duke@435 2450 }
duke@435 2451 }
duke@435 2452 }
duke@435 2453
duke@435 2454 if (sharpened_klass != NULL) {
duke@435 2455 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
duke@435 2456
duke@435 2457 // Sharpen the value type.
duke@435 2458 value_type = tjp;
duke@435 2459
duke@435 2460 #ifndef PRODUCT
duke@435 2461 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 2462 tty->print(" from base type: "); adr_type->dump();
duke@435 2463 tty->print(" sharpened value: "); value_type->dump();
duke@435 2464 }
duke@435 2465 #endif
duke@435 2466 }
duke@435 2467 }
duke@435 2468
duke@435 2469 // Null check on self without removing any arguments. The argument
duke@435 2470 // null check technically happens in the wrong place, which can lead to
duke@435 2471 // invalid stack traces when the primitive is inlined into a method
duke@435 2472 // which handles NullPointerExceptions.
duke@435 2473 _sp += nargs;
duke@435 2474 do_null_check(receiver, T_OBJECT);
duke@435 2475 _sp -= nargs;
duke@435 2476 if (stopped()) {
duke@435 2477 return true;
duke@435 2478 }
duke@435 2479 // Heap pointers get a null-check from the interpreter,
duke@435 2480 // as a courtesy. However, this is not guaranteed by Unsafe,
duke@435 2481 // and it is not possible to fully distinguish unintended nulls
duke@435 2482 // from intended ones in this API.
duke@435 2483
duke@435 2484 if (is_volatile) {
duke@435 2485 // We need to emit leading and trailing CPU membars (see below) in
duke@435 2486 // addition to memory membars when is_volatile. This is a little
duke@435 2487 // too strong, but avoids the need to insert per-alias-type
duke@435 2488 // volatile membars (for stores; compare Parse::do_put_xxx), which
twisti@1040 2489 // we cannot do effectively here because we probably only have a
duke@435 2490 // rough approximation of type.
duke@435 2491 need_mem_bar = true;
duke@435 2492 // For Stores, place a memory ordering barrier now.
duke@435 2493 if (is_store)
duke@435 2494 insert_mem_bar(Op_MemBarRelease);
duke@435 2495 }
duke@435 2496
duke@435 2497 // Memory barrier to prevent normal and 'unsafe' accesses from
duke@435 2498 // bypassing each other. Happens after null checks, so the
duke@435 2499 // exception paths do not take memory state from the memory barrier,
duke@435 2500 // so there's no problems making a strong assert about mixing users
duke@435 2501 // of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
duke@435 2502 // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
duke@435 2503 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2504
duke@435 2505 if (!is_store) {
duke@435 2506 Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
duke@435 2507 // load value and push onto stack
duke@435 2508 switch (type) {
duke@435 2509 case T_BOOLEAN:
duke@435 2510 case T_CHAR:
duke@435 2511 case T_BYTE:
duke@435 2512 case T_SHORT:
duke@435 2513 case T_INT:
duke@435 2514 case T_FLOAT:
johnc@2781 2515 push(p);
johnc@2781 2516 break;
duke@435 2517 case T_OBJECT:
johnc@2781 2518 if (need_read_barrier) {
kvn@4002 2519 insert_pre_barrier(heap_base_oop, offset, p, nargs, !(is_volatile || need_mem_bar));
johnc@2781 2520 }
johnc@2781 2521 push(p);
duke@435 2522 break;
duke@435 2523 case T_ADDRESS:
duke@435 2524 // Cast to an int type.
duke@435 2525 p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
duke@435 2526 p = ConvX2L(p);
duke@435 2527 push_pair(p);
duke@435 2528 break;
duke@435 2529 case T_DOUBLE:
duke@435 2530 case T_LONG:
duke@435 2531 push_pair( p );
duke@435 2532 break;
duke@435 2533 default: ShouldNotReachHere();
duke@435 2534 }
duke@435 2535 } else {
duke@435 2536 // place effect of store into memory
duke@435 2537 switch (type) {
duke@435 2538 case T_DOUBLE:
duke@435 2539 val = dstore_rounding(val);
duke@435 2540 break;
duke@435 2541 case T_ADDRESS:
duke@435 2542 // Repackage the long as a pointer.
duke@435 2543 val = ConvL2X(val);
duke@435 2544 val = _gvn.transform( new (C, 2) CastX2PNode(val) );
duke@435 2545 break;
duke@435 2546 }
duke@435 2547
duke@435 2548 if (type != T_OBJECT ) {
duke@435 2549 (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
duke@435 2550 } else {
duke@435 2551 // Possibly an oop being stored to Java heap or native memory
duke@435 2552 if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
duke@435 2553 // oop to Java heap.
never@1260 2554 (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
duke@435 2555 } else {
duke@435 2556 // We can't tell at compile time if we are storing in the Java heap or outside
duke@435 2557 // of it. So we need to emit code to conditionally do the proper type of
duke@435 2558 // store.
duke@435 2559
kvn@2726 2560 IdealKit ideal(this);
kvn@1286 2561 #define __ ideal.
duke@435 2562 // QQQ who knows what probability is here??
kvn@1286 2563 __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
kvn@1286 2564 // Sync IdealKit and graphKit.
kvn@2726 2565 sync_kit(ideal);
kvn@1286 2566 Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
kvn@1286 2567 // Update IdealKit memory.
kvn@2726 2568 __ sync_kit(this);
kvn@1286 2569 } __ else_(); {
kvn@1286 2570 __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
kvn@1286 2571 } __ end_if();
kvn@1286 2572 // Final sync IdealKit and GraphKit.
kvn@2726 2573 final_sync(ideal);
kvn@1286 2574 #undef __
duke@435 2575 }
duke@435 2576 }
duke@435 2577 }
duke@435 2578
duke@435 2579 if (is_volatile) {
duke@435 2580 if (!is_store)
duke@435 2581 insert_mem_bar(Op_MemBarAcquire);
duke@435 2582 else
duke@435 2583 insert_mem_bar(Op_MemBarVolatile);
duke@435 2584 }
duke@435 2585
duke@435 2586 if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2587
duke@435 2588 return true;
duke@435 2589 }
duke@435 2590
duke@435 2591 //----------------------------inline_unsafe_prefetch----------------------------
duke@435 2592
duke@435 2593 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
duke@435 2594 #ifndef PRODUCT
duke@435 2595 {
duke@435 2596 ResourceMark rm;
duke@435 2597 // Check the signatures.
duke@435 2598 ciSignature* sig = signature();
duke@435 2599 #ifdef ASSERT
duke@435 2600 // Object getObject(Object base, int/long offset), etc.
duke@435 2601 BasicType rtype = sig->return_type()->basic_type();
duke@435 2602 if (!is_native_ptr) {
duke@435 2603 assert(sig->count() == 2, "oop prefetch has 2 arguments");
duke@435 2604 assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
duke@435 2605 assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
duke@435 2606 } else {
duke@435 2607 assert(sig->count() == 1, "native prefetch has 1 argument");
duke@435 2608 assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
duke@435 2609 }
duke@435 2610 #endif // ASSERT
duke@435 2611 }
duke@435 2612 #endif // !PRODUCT
duke@435 2613
duke@435 2614 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2615
duke@435 2616 // Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
duke@435 2617 int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
duke@435 2618
duke@435 2619 debug_only(int saved_sp = _sp);
duke@435 2620 _sp += nargs;
duke@435 2621
duke@435 2622 // Build address expression. See the code in inline_unsafe_access.
duke@435 2623 Node *adr;
duke@435 2624 if (!is_native_ptr) {
duke@435 2625 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
duke@435 2626 Node* offset = pop_pair();
duke@435 2627 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
duke@435 2628 Node* base = pop();
duke@435 2629 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2630 // to be plain byte offsets, which are also the same as those accepted
duke@435 2631 // by oopDesc::field_base.
duke@435 2632 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 2633 "fieldOffset must be byte-scaled");
duke@435 2634 // 32-bit machines ignore the high half!
duke@435 2635 offset = ConvL2X(offset);
duke@435 2636 adr = make_unsafe_address(base, offset);
duke@435 2637 } else {
duke@435 2638 Node* ptr = pop_pair();
duke@435 2639 // Adjust Java long to machine word:
duke@435 2640 ptr = ConvL2X(ptr);
duke@435 2641 adr = make_unsafe_address(NULL, ptr);
duke@435 2642 }
duke@435 2643
duke@435 2644 if (is_static) {
duke@435 2645 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2646 } else {
duke@435 2647 // Pop receiver last: it was pushed first.
duke@435 2648 Node *receiver = pop();
duke@435 2649 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2650
duke@435 2651 // Null check on self without removing any arguments. The argument
duke@435 2652 // null check technically happens in the wrong place, which can lead to
duke@435 2653 // invalid stack traces when the primitive is inlined into a method
duke@435 2654 // which handles NullPointerExceptions.
duke@435 2655 _sp += nargs;
duke@435 2656 do_null_check(receiver, T_OBJECT);
duke@435 2657 _sp -= nargs;
duke@435 2658 if (stopped()) {
duke@435 2659 return true;
duke@435 2660 }
duke@435 2661 }
duke@435 2662
duke@435 2663 // Generate the read or write prefetch
duke@435 2664 Node *prefetch;
duke@435 2665 if (is_store) {
duke@435 2666 prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
duke@435 2667 } else {
duke@435 2668 prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
duke@435 2669 }
duke@435 2670 prefetch->init_req(0, control());
duke@435 2671 set_i_o(_gvn.transform(prefetch));
duke@435 2672
duke@435 2673 return true;
duke@435 2674 }
duke@435 2675
duke@435 2676 //----------------------------inline_unsafe_CAS----------------------------
duke@435 2677
duke@435 2678 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
duke@435 2679 // This basic scheme here is the same as inline_unsafe_access, but
duke@435 2680 // differs in enough details that combining them would make the code
duke@435 2681 // overly confusing. (This is a true fact! I originally combined
duke@435 2682 // them, but even I was confused by it!) As much code/comments as
duke@435 2683 // possible are retained from inline_unsafe_access though to make
twisti@1040 2684 // the correspondences clearer. - dl
duke@435 2685
duke@435 2686 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2687
duke@435 2688 #ifndef PRODUCT
duke@435 2689 {
duke@435 2690 ResourceMark rm;
duke@435 2691 // Check the signatures.
duke@435 2692 ciSignature* sig = signature();
duke@435 2693 #ifdef ASSERT
duke@435 2694 BasicType rtype = sig->return_type()->basic_type();
duke@435 2695 assert(rtype == T_BOOLEAN, "CAS must return boolean");
duke@435 2696 assert(sig->count() == 4, "CAS has 4 arguments");
duke@435 2697 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
duke@435 2698 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
duke@435 2699 #endif // ASSERT
duke@435 2700 }
duke@435 2701 #endif //PRODUCT
duke@435 2702
duke@435 2703 // number of stack slots per value argument (1 or 2)
duke@435 2704 int type_words = type2size[type];
duke@435 2705
duke@435 2706 // Cannot inline wide CAS on machines that don't support it natively
kvn@464 2707 if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
duke@435 2708 return false;
duke@435 2709
duke@435 2710 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2711
duke@435 2712 // Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
duke@435 2713 int nargs = 1 + 1 + 2 + type_words + type_words;
duke@435 2714
duke@435 2715 // pop arguments: newval, oldval, offset, base, and receiver
duke@435 2716 debug_only(int saved_sp = _sp);
duke@435 2717 _sp += nargs;
duke@435 2718 Node* newval = (type_words == 1) ? pop() : pop_pair();
duke@435 2719 Node* oldval = (type_words == 1) ? pop() : pop_pair();
duke@435 2720 Node *offset = pop_pair();
duke@435 2721 Node *base = pop();
duke@435 2722 Node *receiver = pop();
duke@435 2723 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2724
duke@435 2725 // Null check receiver.
duke@435 2726 _sp += nargs;
duke@435 2727 do_null_check(receiver, T_OBJECT);
duke@435 2728 _sp -= nargs;
duke@435 2729 if (stopped()) {
duke@435 2730 return true;
duke@435 2731 }
duke@435 2732
duke@435 2733 // Build field offset expression.
duke@435 2734 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
duke@435 2735 // to be plain byte offsets, which are also the same as those accepted
duke@435 2736 // by oopDesc::field_base.
duke@435 2737 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2738 // 32-bit machines ignore the high half of long offsets
duke@435 2739 offset = ConvL2X(offset);
duke@435 2740 Node* adr = make_unsafe_address(base, offset);
duke@435 2741 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2742
duke@435 2743 // (Unlike inline_unsafe_access, there seems no point in trying
duke@435 2744 // to refine types. Just use the coarse types here.
duke@435 2745 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2746 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2747 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
duke@435 2748 int alias_idx = C->get_alias_index(adr_type);
duke@435 2749
duke@435 2750 // Memory-model-wise, a CAS acts like a little synchronized block,
twisti@1040 2751 // so needs barriers on each side. These don't translate into
duke@435 2752 // actual barriers on most machines, but we still need rest of
duke@435 2753 // compiler to respect ordering.
duke@435 2754
duke@435 2755 insert_mem_bar(Op_MemBarRelease);
duke@435 2756 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2757
duke@435 2758 // 4984716: MemBars must be inserted before this
duke@435 2759 // memory node in order to avoid a false
duke@435 2760 // dependency which will confuse the scheduler.
duke@435 2761 Node *mem = memory(alias_idx);
duke@435 2762
duke@435 2763 // For now, we handle only those cases that actually exist: ints,
duke@435 2764 // longs, and Object. Adding others should be straightforward.
duke@435 2765 Node* cas;
duke@435 2766 switch(type) {
duke@435 2767 case T_INT:
duke@435 2768 cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
duke@435 2769 break;
duke@435 2770 case T_LONG:
duke@435 2771 cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
duke@435 2772 break;
duke@435 2773 case T_OBJECT:
kvn@3521 2774 // Transformation of a value which could be NULL pointer (CastPP #NULL)
kvn@3521 2775 // could be delayed during Parse (for example, in adjust_map_after_if()).
kvn@3521 2776 // Execute transformation here to avoid barrier generation in such case.
kvn@3521 2777 if (_gvn.type(newval) == TypePtr::NULL_PTR)
kvn@3521 2778 newval = _gvn.makecon(TypePtr::NULL_PTR);
kvn@3521 2779
kvn@3521 2780 // Reference stores need a store barrier.
duke@435 2781 // (They don't if CAS fails, but it isn't worth checking.)
johnc@2781 2782 pre_barrier(true /* do_load*/,
johnc@2781 2783 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
johnc@2781 2784 NULL /* pre_val*/,
johnc@2781 2785 T_OBJECT);
coleenp@548 2786 #ifdef _LP64
kvn@598 2787 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
kvn@656 2788 Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
kvn@656 2789 Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
coleenp@548 2790 cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
kvn@656 2791 newval_enc, oldval_enc));
coleenp@548 2792 } else
coleenp@548 2793 #endif
kvn@656 2794 {
kvn@656 2795 cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
kvn@656 2796 }
duke@435 2797 post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
duke@435 2798 break;
duke@435 2799 default:
duke@435 2800 ShouldNotReachHere();
duke@435 2801 break;
duke@435 2802 }
duke@435 2803
duke@435 2804 // SCMemProjNodes represent the memory state of CAS. Their main
duke@435 2805 // role is to prevent CAS nodes from being optimized away when their
duke@435 2806 // results aren't used.
duke@435 2807 Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
duke@435 2808 set_memory(proj, alias_idx);
duke@435 2809
duke@435 2810 // Add the trailing membar surrounding the access
duke@435 2811 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2812 insert_mem_bar(Op_MemBarAcquire);
duke@435 2813
duke@435 2814 push(cas);
duke@435 2815 return true;
duke@435 2816 }
duke@435 2817
duke@435 2818 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
duke@435 2819 // This is another variant of inline_unsafe_access, differing in
duke@435 2820 // that it always issues store-store ("release") barrier and ensures
duke@435 2821 // store-atomicity (which only matters for "long").
duke@435 2822
duke@435 2823 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2824
duke@435 2825 #ifndef PRODUCT
duke@435 2826 {
duke@435 2827 ResourceMark rm;
duke@435 2828 // Check the signatures.
duke@435 2829 ciSignature* sig = signature();
duke@435 2830 #ifdef ASSERT
duke@435 2831 BasicType rtype = sig->return_type()->basic_type();
duke@435 2832 assert(rtype == T_VOID, "must return void");
duke@435 2833 assert(sig->count() == 3, "has 3 arguments");
duke@435 2834 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
duke@435 2835 assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
duke@435 2836 #endif // ASSERT
duke@435 2837 }
duke@435 2838 #endif //PRODUCT
duke@435 2839
duke@435 2840 // number of stack slots per value argument (1 or 2)
duke@435 2841 int type_words = type2size[type];
duke@435 2842
duke@435 2843 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 2844
duke@435 2845 // Argument words: "this" plus oop plus offset plus value;
duke@435 2846 int nargs = 1 + 1 + 2 + type_words;
duke@435 2847
duke@435 2848 // pop arguments: val, offset, base, and receiver
duke@435 2849 debug_only(int saved_sp = _sp);
duke@435 2850 _sp += nargs;
duke@435 2851 Node* val = (type_words == 1) ? pop() : pop_pair();
duke@435 2852 Node *offset = pop_pair();
duke@435 2853 Node *base = pop();
duke@435 2854 Node *receiver = pop();
duke@435 2855 assert(saved_sp == _sp, "must have correct argument count");
duke@435 2856
duke@435 2857 // Null check receiver.
duke@435 2858 _sp += nargs;
duke@435 2859 do_null_check(receiver, T_OBJECT);
duke@435 2860 _sp -= nargs;
duke@435 2861 if (stopped()) {
duke@435 2862 return true;
duke@435 2863 }
duke@435 2864
duke@435 2865 // Build field offset expression.
duke@435 2866 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
duke@435 2867 // 32-bit machines ignore the high half of long offsets
duke@435 2868 offset = ConvL2X(offset);
duke@435 2869 Node* adr = make_unsafe_address(base, offset);
duke@435 2870 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
duke@435 2871 const Type *value_type = Type::get_const_basic_type(type);
duke@435 2872 Compile::AliasType* alias_type = C->alias_type(adr_type);
duke@435 2873
duke@435 2874 insert_mem_bar(Op_MemBarRelease);
duke@435 2875 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2876 // Ensure that the store is atomic for longs:
duke@435 2877 bool require_atomic_access = true;
duke@435 2878 Node* store;
duke@435 2879 if (type == T_OBJECT) // reference stores need a store barrier.
never@1260 2880 store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
duke@435 2881 else {
duke@435 2882 store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
duke@435 2883 }
duke@435 2884 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 2885 return true;
duke@435 2886 }
duke@435 2887
duke@435 2888 bool LibraryCallKit::inline_unsafe_allocate() {
duke@435 2889 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 2890 int nargs = 1 + 1;
duke@435 2891 assert(signature()->size() == nargs-1, "alloc has 1 argument");
duke@435 2892 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 2893 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2894 Node* cls = do_null_check(argument(1), T_OBJECT);
duke@435 2895 _sp -= nargs;
duke@435 2896 if (stopped()) return true;
duke@435 2897
duke@435 2898 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
duke@435 2899 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 2900 kls = do_null_check(kls, T_OBJECT);
duke@435 2901 _sp -= nargs;
duke@435 2902 if (stopped()) return true; // argument was like int.class
duke@435 2903
duke@435 2904 // Note: The argument might still be an illegal value like
duke@435 2905 // Serializable.class or Object[].class. The runtime will handle it.
duke@435 2906 // But we must make an explicit check for initialization.
stefank@3391 2907 Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
coleenp@3368 2908 // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
coleenp@3368 2909 // can generate code to load it as unsigned byte.
coleenp@3368 2910 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
duke@435 2911 Node* bits = intcon(instanceKlass::fully_initialized);
duke@435 2912 Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
duke@435 2913 // The 'test' is non-zero if we need to take a slow path.
duke@435 2914
duke@435 2915 Node* obj = new_instance(kls, test);
duke@435 2916 push(obj);
duke@435 2917
duke@435 2918 return true;
duke@435 2919 }
duke@435 2920
rbackman@3709 2921 #ifdef TRACE_HAVE_INTRINSICS
rbackman@3709 2922 /*
rbackman@3709 2923 * oop -> myklass
rbackman@3709 2924 * myklass->trace_id |= USED
rbackman@3709 2925 * return myklass->trace_id & ~0x3
rbackman@3709 2926 */
rbackman@3709 2927 bool LibraryCallKit::inline_native_classID() {
rbackman@3709 2928 int nargs = 1 + 1;
rbackman@3709 2929 null_check_receiver(callee()); // check then ignore argument(0)
rbackman@3709 2930 _sp += nargs;
rbackman@3709 2931 Node* cls = do_null_check(argument(1), T_OBJECT);
rbackman@3709 2932 _sp -= nargs;
rbackman@3709 2933 Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
rbackman@3709 2934 _sp += nargs;
rbackman@3709 2935 kls = do_null_check(kls, T_OBJECT);
rbackman@3709 2936 _sp -= nargs;
rbackman@3709 2937 ByteSize offset = TRACE_ID_OFFSET;
rbackman@3709 2938 Node* insp = basic_plus_adr(kls, in_bytes(offset));
rbackman@3709 2939 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
rbackman@3709 2940 Node* bits = longcon(~0x03l); // ignore bit 0 & 1
rbackman@3709 2941 Node* andl = _gvn.transform(new (C, 3) AndLNode(tvalue, bits));
rbackman@3709 2942 Node* clsused = longcon(0x01l); // set the class bit
rbackman@3709 2943 Node* orl = _gvn.transform(new (C, 3) OrLNode(tvalue, clsused));
rbackman@3709 2944
rbackman@3709 2945 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
rbackman@3709 2946 store_to_memory(control(), insp, orl, T_LONG, adr_type);
rbackman@3709 2947 push_pair(andl);
rbackman@3709 2948 return true;
rbackman@3709 2949 }
rbackman@3709 2950
rbackman@3709 2951 bool LibraryCallKit::inline_native_threadID() {
rbackman@3709 2952 Node* tls_ptr = NULL;
rbackman@3709 2953 Node* cur_thr = generate_current_thread(tls_ptr);
rbackman@3709 2954 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
rbackman@3709 2955 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
rbackman@3709 2956 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
rbackman@3709 2957
rbackman@3709 2958 Node* threadid = NULL;
rbackman@3709 2959 size_t thread_id_size = OSThread::thread_id_size();
rbackman@3709 2960 if (thread_id_size == (size_t) BytesPerLong) {
rbackman@3709 2961 threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
rbackman@3709 2962 push(threadid);
rbackman@3709 2963 } else if (thread_id_size == (size_t) BytesPerInt) {
rbackman@3709 2964 threadid = make_load(control(), p, TypeInt::INT, T_INT);
rbackman@3709 2965 push(threadid);
rbackman@3709 2966 } else {
rbackman@3709 2967 ShouldNotReachHere();
rbackman@3709 2968 }
rbackman@3709 2969 return true;
rbackman@3709 2970 }
rbackman@3709 2971 #endif
rbackman@3709 2972
duke@435 2973 //------------------------inline_native_time_funcs--------------
duke@435 2974 // inline code for System.currentTimeMillis() and System.nanoTime()
duke@435 2975 // these have the same type and signature
rbackman@3709 2976 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
rbackman@3709 2977 const TypeFunc *tf = OptoRuntime::void_long_Type();
duke@435 2978 const TypePtr* no_memory_effects = NULL;
duke@435 2979 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
duke@435 2980 Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
duke@435 2981 #ifdef ASSERT
duke@435 2982 Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
duke@435 2983 assert(value_top == top(), "second value must be top");
duke@435 2984 #endif
duke@435 2985 push_pair(value);
duke@435 2986 return true;
duke@435 2987 }
duke@435 2988
duke@435 2989 //------------------------inline_native_currentThread------------------
duke@435 2990 bool LibraryCallKit::inline_native_currentThread() {
duke@435 2991 Node* junk = NULL;
duke@435 2992 push(generate_current_thread(junk));
duke@435 2993 return true;
duke@435 2994 }
duke@435 2995
duke@435 2996 //------------------------inline_native_isInterrupted------------------
duke@435 2997 bool LibraryCallKit::inline_native_isInterrupted() {
duke@435 2998 const int nargs = 1+1; // receiver + boolean
duke@435 2999 assert(nargs == arg_size(), "sanity");
duke@435 3000 // Add a fast path to t.isInterrupted(clear_int):
duke@435 3001 // (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
duke@435 3002 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
duke@435 3003 // So, in the common case that the interrupt bit is false,
duke@435 3004 // we avoid making a call into the VM. Even if the interrupt bit
duke@435 3005 // is true, if the clear_int argument is false, we avoid the VM call.
duke@435 3006 // However, if the receiver is not currentThread, we must call the VM,
duke@435 3007 // because there must be some locking done around the operation.
duke@435 3008
duke@435 3009 // We only go to the fast case code if we pass two guards.
duke@435 3010 // Paths which do not pass are accumulated in the slow_region.
duke@435 3011 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3012 record_for_igvn(slow_region);
duke@435 3013 RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
duke@435 3014 PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
duke@435 3015 enum { no_int_result_path = 1,
duke@435 3016 no_clear_result_path = 2,
duke@435 3017 slow_result_path = 3
duke@435 3018 };
duke@435 3019
duke@435 3020 // (a) Receiving thread must be the current thread.
duke@435 3021 Node* rec_thr = argument(0);
duke@435 3022 Node* tls_ptr = NULL;
duke@435 3023 Node* cur_thr = generate_current_thread(tls_ptr);
duke@435 3024 Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
duke@435 3025 Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
duke@435 3026
duke@435 3027 bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
duke@435 3028 if (!known_current_thread)
duke@435 3029 generate_slow_guard(bol_thr, slow_region);
duke@435 3030
duke@435 3031 // (b) Interrupt bit on TLS must be false.
duke@435 3032 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
duke@435 3033 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
duke@435 3034 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
kvn@1222 3035 // Set the control input on the field _interrupted read to prevent it floating up.
kvn@1222 3036 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
duke@435 3037 Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
duke@435 3038 Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
duke@435 3039
duke@435 3040 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
duke@435 3041
duke@435 3042 // First fast path: if (!TLS._interrupted) return false;
duke@435 3043 Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
duke@435 3044 result_rgn->init_req(no_int_result_path, false_bit);
duke@435 3045 result_val->init_req(no_int_result_path, intcon(0));
duke@435 3046
duke@435 3047 // drop through to next case
duke@435 3048 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
duke@435 3049
duke@435 3050 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
duke@435 3051 Node* clr_arg = argument(1);
duke@435 3052 Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
duke@435 3053 Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
duke@435 3054 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
duke@435 3055
duke@435 3056 // Second fast path: ... else if (!clear_int) return true;
duke@435 3057 Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
duke@435 3058 result_rgn->init_req(no_clear_result_path, false_arg);
duke@435 3059 result_val->init_req(no_clear_result_path, intcon(1));
duke@435 3060
duke@435 3061 // drop through to next case
duke@435 3062 set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
duke@435 3063
duke@435 3064 // (d) Otherwise, go to the slow path.
duke@435 3065 slow_region->add_req(control());
duke@435 3066 set_control( _gvn.transform(slow_region) );
duke@435 3067
duke@435 3068 if (stopped()) {
duke@435 3069 // There is no slow path.
duke@435 3070 result_rgn->init_req(slow_result_path, top());
duke@435 3071 result_val->init_req(slow_result_path, top());
duke@435 3072 } else {
duke@435 3073 // non-virtual because it is a private non-static
duke@435 3074 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
duke@435 3075
duke@435 3076 Node* slow_val = set_results_for_java_call(slow_call);
duke@435 3077 // this->control() comes from set_results_for_java_call
duke@435 3078
duke@435 3079 // If we know that the result of the slow call will be true, tell the optimizer!
duke@435 3080 if (known_current_thread) slow_val = intcon(1);
duke@435 3081
duke@435 3082 Node* fast_io = slow_call->in(TypeFunc::I_O);
duke@435 3083 Node* fast_mem = slow_call->in(TypeFunc::Memory);
duke@435 3084 // These two phis are pre-filled with copies of of the fast IO and Memory
duke@435 3085 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
duke@435 3086 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
duke@435 3087
duke@435 3088 result_rgn->init_req(slow_result_path, control());
duke@435 3089 io_phi ->init_req(slow_result_path, i_o());
duke@435 3090 mem_phi ->init_req(slow_result_path, reset_memory());
duke@435 3091 result_val->init_req(slow_result_path, slow_val);
duke@435 3092
duke@435 3093 set_all_memory( _gvn.transform(mem_phi) );
duke@435 3094 set_i_o( _gvn.transform(io_phi) );
duke@435 3095 }
duke@435 3096
duke@435 3097 push_result(result_rgn, result_val);
duke@435 3098 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3099
duke@435 3100 return true;
duke@435 3101 }
duke@435 3102
duke@435 3103 //---------------------------load_mirror_from_klass----------------------------
duke@435 3104 // Given a klass oop, load its java mirror (a java.lang.Class oop).
duke@435 3105 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
stefank@3391 3106 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
duke@435 3107 return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3108 }
duke@435 3109
duke@435 3110 //-----------------------load_klass_from_mirror_common-------------------------
duke@435 3111 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
duke@435 3112 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
duke@435 3113 // and branch to the given path on the region.
duke@435 3114 // If never_see_null, take an uncommon trap on null, so we can optimistically
duke@435 3115 // compile for the non-null case.
duke@435 3116 // If the region is NULL, force never_see_null = true.
duke@435 3117 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
duke@435 3118 bool never_see_null,
duke@435 3119 int nargs,
duke@435 3120 RegionNode* region,
duke@435 3121 int null_path,
duke@435 3122 int offset) {
duke@435 3123 if (region == NULL) never_see_null = true;
duke@435 3124 Node* p = basic_plus_adr(mirror, offset);
duke@435 3125 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
kvn@599 3126 Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
duke@435 3127 _sp += nargs; // any deopt will start just before call to enclosing method
duke@435 3128 Node* null_ctl = top();
duke@435 3129 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3130 if (region != NULL) {
duke@435 3131 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
duke@435 3132 region->init_req(null_path, null_ctl);
duke@435 3133 } else {
duke@435 3134 assert(null_ctl == top(), "no loose ends");
duke@435 3135 }
duke@435 3136 _sp -= nargs;
duke@435 3137 return kls;
duke@435 3138 }
duke@435 3139
duke@435 3140 //--------------------(inline_native_Class_query helpers)---------------------
duke@435 3141 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
duke@435 3142 // Fall through if (mods & mask) == bits, take the guard otherwise.
duke@435 3143 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
duke@435 3144 // Branch around if the given klass has the given modifier bit set.
duke@435 3145 // Like generate_guard, adds a new path onto the region.
stefank@3391 3146 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3147 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
duke@435 3148 Node* mask = intcon(modifier_mask);
duke@435 3149 Node* bits = intcon(modifier_bits);
duke@435 3150 Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
duke@435 3151 Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
duke@435 3152 Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
duke@435 3153 return generate_fair_guard(bol, region);
duke@435 3154 }
duke@435 3155 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
duke@435 3156 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
duke@435 3157 }
duke@435 3158
duke@435 3159 //-------------------------inline_native_Class_query-------------------
duke@435 3160 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
duke@435 3161 int nargs = 1+0; // just the Class mirror, in most cases
duke@435 3162 const Type* return_type = TypeInt::BOOL;
duke@435 3163 Node* prim_return_value = top(); // what happens if it's a primitive class?
duke@435 3164 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3165 bool expect_prim = false; // most of these guys expect to work on refs
duke@435 3166
duke@435 3167 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
duke@435 3168
duke@435 3169 switch (id) {
duke@435 3170 case vmIntrinsics::_isInstance:
duke@435 3171 nargs = 1+1; // the Class mirror, plus the object getting queried about
duke@435 3172 // nothing is an instance of a primitive type
duke@435 3173 prim_return_value = intcon(0);
duke@435 3174 break;
duke@435 3175 case vmIntrinsics::_getModifiers:
duke@435 3176 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3177 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
duke@435 3178 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
duke@435 3179 break;
duke@435 3180 case vmIntrinsics::_isInterface:
duke@435 3181 prim_return_value = intcon(0);
duke@435 3182 break;
duke@435 3183 case vmIntrinsics::_isArray:
duke@435 3184 prim_return_value = intcon(0);
duke@435 3185 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
duke@435 3186 break;
duke@435 3187 case vmIntrinsics::_isPrimitive:
duke@435 3188 prim_return_value = intcon(1);
duke@435 3189 expect_prim = true; // obviously
duke@435 3190 break;
duke@435 3191 case vmIntrinsics::_getSuperclass:
duke@435 3192 prim_return_value = null();
duke@435 3193 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3194 break;
duke@435 3195 case vmIntrinsics::_getComponentType:
duke@435 3196 prim_return_value = null();
duke@435 3197 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
duke@435 3198 break;
duke@435 3199 case vmIntrinsics::_getClassAccessFlags:
duke@435 3200 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
duke@435 3201 return_type = TypeInt::INT; // not bool! 6297094
duke@435 3202 break;
duke@435 3203 default:
duke@435 3204 ShouldNotReachHere();
duke@435 3205 }
duke@435 3206
duke@435 3207 Node* mirror = argument(0);
duke@435 3208 Node* obj = (nargs <= 1)? top(): argument(1);
duke@435 3209
duke@435 3210 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
duke@435 3211 if (mirror_con == NULL) return false; // cannot happen?
duke@435 3212
duke@435 3213 #ifndef PRODUCT
duke@435 3214 if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
duke@435 3215 ciType* k = mirror_con->java_mirror_type();
duke@435 3216 if (k) {
duke@435 3217 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
duke@435 3218 k->print_name();
duke@435 3219 tty->cr();
duke@435 3220 }
duke@435 3221 }
duke@435 3222 #endif
duke@435 3223
duke@435 3224 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
duke@435 3225 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3226 record_for_igvn(region);
duke@435 3227 PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
duke@435 3228
duke@435 3229 // The mirror will never be null of Reflection.getClassAccessFlags, however
duke@435 3230 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
duke@435 3231 // if it is. See bug 4774291.
duke@435 3232
duke@435 3233 // For Reflection.getClassAccessFlags(), the null check occurs in
duke@435 3234 // the wrong place; see inline_unsafe_access(), above, for a similar
duke@435 3235 // situation.
duke@435 3236 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3237 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3238 _sp -= nargs;
duke@435 3239 // If mirror or obj is dead, only null-path is taken.
duke@435 3240 if (stopped()) return true;
duke@435 3241
duke@435 3242 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
duke@435 3243
duke@435 3244 // Now load the mirror's klass metaobject, and null-check it.
duke@435 3245 // Side-effects region with the control path if the klass is null.
duke@435 3246 Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
duke@435 3247 region, _prim_path);
duke@435 3248 // If kls is null, we have a primitive mirror.
duke@435 3249 phi->init_req(_prim_path, prim_return_value);
duke@435 3250 if (stopped()) { push_result(region, phi); return true; }
duke@435 3251
duke@435 3252 Node* p; // handy temp
duke@435 3253 Node* null_ctl;
duke@435 3254
duke@435 3255 // Now that we have the non-null klass, we can perform the real query.
duke@435 3256 // For constant classes, the query will constant-fold in LoadNode::Value.
duke@435 3257 Node* query_value = top();
duke@435 3258 switch (id) {
duke@435 3259 case vmIntrinsics::_isInstance:
duke@435 3260 // nothing is an instance of a primitive type
jrose@2101 3261 _sp += nargs; // gen_instanceof might do an uncommon trap
duke@435 3262 query_value = gen_instanceof(obj, kls);
jrose@2101 3263 _sp -= nargs;
duke@435 3264 break;
duke@435 3265
duke@435 3266 case vmIntrinsics::_getModifiers:
stefank@3391 3267 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
duke@435 3268 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3269 break;
duke@435 3270
duke@435 3271 case vmIntrinsics::_isInterface:
duke@435 3272 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3273 if (generate_interface_guard(kls, region) != NULL)
duke@435 3274 // A guard was added. If the guard is taken, it was an interface.
duke@435 3275 phi->add_req(intcon(1));
duke@435 3276 // If we fall through, it's a plain class.
duke@435 3277 query_value = intcon(0);
duke@435 3278 break;
duke@435 3279
duke@435 3280 case vmIntrinsics::_isArray:
duke@435 3281 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
duke@435 3282 if (generate_array_guard(kls, region) != NULL)
duke@435 3283 // A guard was added. If the guard is taken, it was an array.
duke@435 3284 phi->add_req(intcon(1));
duke@435 3285 // If we fall through, it's a plain class.
duke@435 3286 query_value = intcon(0);
duke@435 3287 break;
duke@435 3288
duke@435 3289 case vmIntrinsics::_isPrimitive:
duke@435 3290 query_value = intcon(0); // "normal" path produces false
duke@435 3291 break;
duke@435 3292
duke@435 3293 case vmIntrinsics::_getSuperclass:
duke@435 3294 // The rules here are somewhat unfortunate, but we can still do better
duke@435 3295 // with random logic than with a JNI call.
duke@435 3296 // Interfaces store null or Object as _super, but must report null.
duke@435 3297 // Arrays store an intermediate super as _super, but must report Object.
duke@435 3298 // Other types can report the actual _super.
duke@435 3299 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
duke@435 3300 if (generate_interface_guard(kls, region) != NULL)
duke@435 3301 // A guard was added. If the guard is taken, it was an interface.
duke@435 3302 phi->add_req(null());
duke@435 3303 if (generate_array_guard(kls, region) != NULL)
duke@435 3304 // A guard was added. If the guard is taken, it was an array.
duke@435 3305 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
duke@435 3306 // If we fall through, it's a plain class. Get its _super.
stefank@3391 3307 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kvn@599 3308 kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
duke@435 3309 null_ctl = top();
duke@435 3310 kls = null_check_oop(kls, &null_ctl);
duke@435 3311 if (null_ctl != top()) {
duke@435 3312 // If the guard is taken, Object.superClass is null (both klass and mirror).
duke@435 3313 region->add_req(null_ctl);
duke@435 3314 phi ->add_req(null());
duke@435 3315 }
duke@435 3316 if (!stopped()) {
duke@435 3317 query_value = load_mirror_from_klass(kls);
duke@435 3318 }
duke@435 3319 break;
duke@435 3320
duke@435 3321 case vmIntrinsics::_getComponentType:
duke@435 3322 if (generate_array_guard(kls, region) != NULL) {
duke@435 3323 // Be sure to pin the oop load to the guard edge just created:
duke@435 3324 Node* is_array_ctrl = region->in(region->req()-1);
stefank@3391 3325 Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
duke@435 3326 Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
duke@435 3327 phi->add_req(cmo);
duke@435 3328 }
duke@435 3329 query_value = null(); // non-array case is null
duke@435 3330 break;
duke@435 3331
duke@435 3332 case vmIntrinsics::_getClassAccessFlags:
stefank@3391 3333 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
duke@435 3334 query_value = make_load(NULL, p, TypeInt::INT, T_INT);
duke@435 3335 break;
duke@435 3336
duke@435 3337 default:
duke@435 3338 ShouldNotReachHere();
duke@435 3339 }
duke@435 3340
duke@435 3341 // Fall-through is the normal case of a query to a real class.
duke@435 3342 phi->init_req(1, query_value);
duke@435 3343 region->init_req(1, control());
duke@435 3344
duke@435 3345 push_result(region, phi);
duke@435 3346 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3347
duke@435 3348 return true;
duke@435 3349 }
duke@435 3350
duke@435 3351 //--------------------------inline_native_subtype_check------------------------
duke@435 3352 // This intrinsic takes the JNI calls out of the heart of
duke@435 3353 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
duke@435 3354 bool LibraryCallKit::inline_native_subtype_check() {
duke@435 3355 int nargs = 1+1; // the Class mirror, plus the other class getting examined
duke@435 3356
duke@435 3357 // Pull both arguments off the stack.
duke@435 3358 Node* args[2]; // two java.lang.Class mirrors: superc, subc
duke@435 3359 args[0] = argument(0);
duke@435 3360 args[1] = argument(1);
duke@435 3361 Node* klasses[2]; // corresponding Klasses: superk, subk
duke@435 3362 klasses[0] = klasses[1] = top();
duke@435 3363
duke@435 3364 enum {
duke@435 3365 // A full decision tree on {superc is prim, subc is prim}:
duke@435 3366 _prim_0_path = 1, // {P,N} => false
duke@435 3367 // {P,P} & superc!=subc => false
duke@435 3368 _prim_same_path, // {P,P} & superc==subc => true
duke@435 3369 _prim_1_path, // {N,P} => false
duke@435 3370 _ref_subtype_path, // {N,N} & subtype check wins => true
duke@435 3371 _both_ref_path, // {N,N} & subtype check loses => false
duke@435 3372 PATH_LIMIT
duke@435 3373 };
duke@435 3374
duke@435 3375 RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3376 Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
duke@435 3377 record_for_igvn(region);
duke@435 3378
duke@435 3379 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
duke@435 3380 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3381 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
duke@435 3382
duke@435 3383 // First null-check both mirrors and load each mirror's klass metaobject.
duke@435 3384 int which_arg;
duke@435 3385 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3386 Node* arg = args[which_arg];
duke@435 3387 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3388 arg = do_null_check(arg, T_OBJECT);
duke@435 3389 _sp -= nargs;
duke@435 3390 if (stopped()) break;
duke@435 3391 args[which_arg] = _gvn.transform(arg);
duke@435 3392
duke@435 3393 Node* p = basic_plus_adr(arg, class_klass_offset);
kvn@599 3394 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
duke@435 3395 klasses[which_arg] = _gvn.transform(kls);
duke@435 3396 }
duke@435 3397
duke@435 3398 // Having loaded both klasses, test each for null.
duke@435 3399 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3400 for (which_arg = 0; which_arg <= 1; which_arg++) {
duke@435 3401 Node* kls = klasses[which_arg];
duke@435 3402 Node* null_ctl = top();
duke@435 3403 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3404 kls = null_check_oop(kls, &null_ctl, never_see_null);
duke@435 3405 _sp -= nargs;
duke@435 3406 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
duke@435 3407 region->init_req(prim_path, null_ctl);
duke@435 3408 if (stopped()) break;
duke@435 3409 klasses[which_arg] = kls;
duke@435 3410 }
duke@435 3411
duke@435 3412 if (!stopped()) {
duke@435 3413 // now we have two reference types, in klasses[0..1]
duke@435 3414 Node* subk = klasses[1]; // the argument to isAssignableFrom
duke@435 3415 Node* superk = klasses[0]; // the receiver
duke@435 3416 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
duke@435 3417 // now we have a successful reference subtype check
duke@435 3418 region->set_req(_ref_subtype_path, control());
duke@435 3419 }
duke@435 3420
duke@435 3421 // If both operands are primitive (both klasses null), then
duke@435 3422 // we must return true when they are identical primitives.
duke@435 3423 // It is convenient to test this after the first null klass check.
duke@435 3424 set_control(region->in(_prim_0_path)); // go back to first null check
duke@435 3425 if (!stopped()) {
duke@435 3426 // Since superc is primitive, make a guard for the superc==subc case.
duke@435 3427 Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
duke@435 3428 Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
duke@435 3429 generate_guard(bol_eq, region, PROB_FAIR);
duke@435 3430 if (region->req() == PATH_LIMIT+1) {
duke@435 3431 // A guard was added. If the added guard is taken, superc==subc.
duke@435 3432 region->swap_edges(PATH_LIMIT, _prim_same_path);
duke@435 3433 region->del_req(PATH_LIMIT);
duke@435 3434 }
duke@435 3435 region->set_req(_prim_0_path, control()); // Not equal after all.
duke@435 3436 }
duke@435 3437
duke@435 3438 // these are the only paths that produce 'true':
duke@435 3439 phi->set_req(_prim_same_path, intcon(1));
duke@435 3440 phi->set_req(_ref_subtype_path, intcon(1));
duke@435 3441
duke@435 3442 // pull together the cases:
duke@435 3443 assert(region->req() == PATH_LIMIT, "sane region");
duke@435 3444 for (uint i = 1; i < region->req(); i++) {
duke@435 3445 Node* ctl = region->in(i);
duke@435 3446 if (ctl == NULL || ctl == top()) {
duke@435 3447 region->set_req(i, top());
duke@435 3448 phi ->set_req(i, top());
duke@435 3449 } else if (phi->in(i) == NULL) {
duke@435 3450 phi->set_req(i, intcon(0)); // all other paths produce 'false'
duke@435 3451 }
duke@435 3452 }
duke@435 3453
duke@435 3454 set_control(_gvn.transform(region));
duke@435 3455 push(_gvn.transform(phi));
duke@435 3456
duke@435 3457 return true;
duke@435 3458 }
duke@435 3459
duke@435 3460 //---------------------generate_array_guard_common------------------------
duke@435 3461 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
duke@435 3462 bool obj_array, bool not_array) {
duke@435 3463 // If obj_array/non_array==false/false:
duke@435 3464 // Branch around if the given klass is in fact an array (either obj or prim).
duke@435 3465 // If obj_array/non_array==false/true:
duke@435 3466 // Branch around if the given klass is not an array klass of any kind.
duke@435 3467 // If obj_array/non_array==true/true:
duke@435 3468 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
duke@435 3469 // If obj_array/non_array==true/false:
duke@435 3470 // Branch around if the kls is an oop array (Object[] or subtype)
duke@435 3471 //
duke@435 3472 // Like generate_guard, adds a new path onto the region.
duke@435 3473 jint layout_con = 0;
duke@435 3474 Node* layout_val = get_layout_helper(kls, layout_con);
duke@435 3475 if (layout_val == NULL) {
duke@435 3476 bool query = (obj_array
duke@435 3477 ? Klass::layout_helper_is_objArray(layout_con)
duke@435 3478 : Klass::layout_helper_is_javaArray(layout_con));
duke@435 3479 if (query == not_array) {
duke@435 3480 return NULL; // never a branch
duke@435 3481 } else { // always a branch
duke@435 3482 Node* always_branch = control();
duke@435 3483 if (region != NULL)
duke@435 3484 region->add_req(always_branch);
duke@435 3485 set_control(top());
duke@435 3486 return always_branch;
duke@435 3487 }
duke@435 3488 }
duke@435 3489 // Now test the correct condition.
duke@435 3490 jint nval = (obj_array
duke@435 3491 ? ((jint)Klass::_lh_array_tag_type_value
duke@435 3492 << Klass::_lh_array_tag_shift)
duke@435 3493 : Klass::_lh_neutral_value);
duke@435 3494 Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
duke@435 3495 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
duke@435 3496 // invert the test if we are looking for a non-array
duke@435 3497 if (not_array) btest = BoolTest(btest).negate();
duke@435 3498 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
duke@435 3499 return generate_fair_guard(bol, region);
duke@435 3500 }
duke@435 3501
duke@435 3502
duke@435 3503 //-----------------------inline_native_newArray--------------------------
duke@435 3504 bool LibraryCallKit::inline_native_newArray() {
duke@435 3505 int nargs = 2;
duke@435 3506 Node* mirror = argument(0);
duke@435 3507 Node* count_val = argument(1);
duke@435 3508
duke@435 3509 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3510 mirror = do_null_check(mirror, T_OBJECT);
duke@435 3511 _sp -= nargs;
kvn@598 3512 // If mirror or obj is dead, only null-path is taken.
kvn@598 3513 if (stopped()) return true;
duke@435 3514
duke@435 3515 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
duke@435 3516 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3517 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3518 TypeInstPtr::NOTNULL);
duke@435 3519 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3520 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3521 TypePtr::BOTTOM);
duke@435 3522
duke@435 3523 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
duke@435 3524 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
duke@435 3525 nargs,
duke@435 3526 result_reg, _slow_path);
duke@435 3527 Node* normal_ctl = control();
duke@435 3528 Node* no_array_ctl = result_reg->in(_slow_path);
duke@435 3529
duke@435 3530 // Generate code for the slow case. We make a call to newArray().
duke@435 3531 set_control(no_array_ctl);
duke@435 3532 if (!stopped()) {
duke@435 3533 // Either the input type is void.class, or else the
duke@435 3534 // array klass has not yet been cached. Either the
duke@435 3535 // ensuing call will throw an exception, or else it
duke@435 3536 // will cache the array klass for next time.
duke@435 3537 PreserveJVMState pjvms(this);
duke@435 3538 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
duke@435 3539 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3540 // this->control() comes from set_results_for_java_call
duke@435 3541 result_reg->set_req(_slow_path, control());
duke@435 3542 result_val->set_req(_slow_path, slow_result);
duke@435 3543 result_io ->set_req(_slow_path, i_o());
duke@435 3544 result_mem->set_req(_slow_path, reset_memory());
duke@435 3545 }
duke@435 3546
duke@435 3547 set_control(normal_ctl);
duke@435 3548 if (!stopped()) {
duke@435 3549 // Normal case: The array type has been cached in the java.lang.Class.
duke@435 3550 // The following call works fine even if the array type is polymorphic.
duke@435 3551 // It could be a dynamic mix of int[], boolean[], Object[], etc.
cfang@1165 3552 Node* obj = new_array(klass_node, count_val, nargs);
duke@435 3553 result_reg->init_req(_normal_path, control());
duke@435 3554 result_val->init_req(_normal_path, obj);
duke@435 3555 result_io ->init_req(_normal_path, i_o());
duke@435 3556 result_mem->init_req(_normal_path, reset_memory());
duke@435 3557 }
duke@435 3558
duke@435 3559 // Return the combined state.
duke@435 3560 set_i_o( _gvn.transform(result_io) );
duke@435 3561 set_all_memory( _gvn.transform(result_mem) );
duke@435 3562 push_result(result_reg, result_val);
duke@435 3563 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3564
duke@435 3565 return true;
duke@435 3566 }
duke@435 3567
duke@435 3568 //----------------------inline_native_getLength--------------------------
duke@435 3569 bool LibraryCallKit::inline_native_getLength() {
duke@435 3570 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3571
duke@435 3572 int nargs = 1;
duke@435 3573 Node* array = argument(0);
duke@435 3574
duke@435 3575 _sp += nargs; // set original stack for use by uncommon_trap
duke@435 3576 array = do_null_check(array, T_OBJECT);
duke@435 3577 _sp -= nargs;
duke@435 3578
duke@435 3579 // If array is dead, only null-path is taken.
duke@435 3580 if (stopped()) return true;
duke@435 3581
duke@435 3582 // Deoptimize if it is a non-array.
duke@435 3583 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
duke@435 3584
duke@435 3585 if (non_array != NULL) {
duke@435 3586 PreserveJVMState pjvms(this);
duke@435 3587 set_control(non_array);
duke@435 3588 _sp += nargs; // push the arguments back on the stack
duke@435 3589 uncommon_trap(Deoptimization::Reason_intrinsic,
duke@435 3590 Deoptimization::Action_maybe_recompile);
duke@435 3591 }
duke@435 3592
duke@435 3593 // If control is dead, only non-array-path is taken.
duke@435 3594 if (stopped()) return true;
duke@435 3595
duke@435 3596 // The works fine even if the array type is polymorphic.
duke@435 3597 // It could be a dynamic mix of int[], boolean[], Object[], etc.
duke@435 3598 push( load_array_length(array) );
duke@435 3599
duke@435 3600 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3601
duke@435 3602 return true;
duke@435 3603 }
duke@435 3604
duke@435 3605 //------------------------inline_array_copyOf----------------------------
duke@435 3606 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
duke@435 3607 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
duke@435 3608
duke@435 3609 // Restore the stack and pop off the arguments.
duke@435 3610 int nargs = 3 + (is_copyOfRange? 1: 0);
duke@435 3611 Node* original = argument(0);
duke@435 3612 Node* start = is_copyOfRange? argument(1): intcon(0);
duke@435 3613 Node* end = is_copyOfRange? argument(2): argument(1);
duke@435 3614 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
duke@435 3615
cfang@1337 3616 Node* newcopy;
cfang@1337 3617
cfang@1337 3618 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1337 3619 //the bytecode that invokes Arrays.copyOf if deoptimization happens
cfang@1337 3620 { PreserveReexecuteState preexecs(this);
cfang@1337 3621 _sp += nargs;
cfang@1337 3622 jvms()->set_should_reexecute(true);
cfang@1337 3623
cfang@1337 3624 array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
cfang@1337 3625 original = do_null_check(original, T_OBJECT);
cfang@1337 3626
cfang@1337 3627 // Check if a null path was taken unconditionally.
cfang@1337 3628 if (stopped()) return true;
cfang@1337 3629
cfang@1337 3630 Node* orig_length = load_array_length(original);
cfang@1337 3631
cfang@1337 3632 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
cfang@1337 3633 NULL, 0);
cfang@1337 3634 klass_node = do_null_check(klass_node, T_OBJECT);
cfang@1337 3635
cfang@1337 3636 RegionNode* bailout = new (C, 1) RegionNode(1);
cfang@1337 3637 record_for_igvn(bailout);
cfang@1337 3638
cfang@1337 3639 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
cfang@1337 3640 // Bail out if that is so.
cfang@1337 3641 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
cfang@1337 3642 if (not_objArray != NULL) {
cfang@1337 3643 // Improve the klass node's type from the new optimistic assumption:
cfang@1337 3644 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
cfang@1337 3645 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
cfang@1337 3646 Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cfang@1337 3647 cast->init_req(0, control());
cfang@1337 3648 klass_node = _gvn.transform(cast);
cfang@1337 3649 }
cfang@1337 3650
cfang@1337 3651 // Bail out if either start or end is negative.
cfang@1337 3652 generate_negative_guard(start, bailout, &start);
cfang@1337 3653 generate_negative_guard(end, bailout, &end);
cfang@1337 3654
cfang@1337 3655 Node* length = end;
cfang@1337 3656 if (_gvn.type(start) != TypeInt::ZERO) {
cfang@1337 3657 length = _gvn.transform( new (C, 3) SubINode(end, start) );
cfang@1337 3658 }
cfang@1337 3659
cfang@1337 3660 // Bail out if length is negative.
roland@3883 3661 // Without this the new_array would throw
roland@3883 3662 // NegativeArraySizeException but IllegalArgumentException is what
roland@3883 3663 // should be thrown
roland@3883 3664 generate_negative_guard(length, bailout, &length);
cfang@1337 3665
cfang@1337 3666 if (bailout->req() > 1) {
cfang@1337 3667 PreserveJVMState pjvms(this);
cfang@1337 3668 set_control( _gvn.transform(bailout) );
cfang@1337 3669 uncommon_trap(Deoptimization::Reason_intrinsic,
cfang@1337 3670 Deoptimization::Action_maybe_recompile);
cfang@1337 3671 }
cfang@1337 3672
cfang@1337 3673 if (!stopped()) {
cfang@1335 3674
cfang@1335 3675 // How many elements will we copy from the original?
cfang@1335 3676 // The answer is MinI(orig_length - start, length).
cfang@1335 3677 Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
cfang@1335 3678 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
cfang@1335 3679
kvn@2810 3680 newcopy = new_array(klass_node, length, 0);
cfang@1335 3681
cfang@1335 3682 // Generate a direct call to the right arraycopy function(s).
cfang@1335 3683 // We know the copy is disjoint but we might not know if the
cfang@1335 3684 // oop stores need checking.
cfang@1335 3685 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
cfang@1335 3686 // This will fail a store-check if x contains any non-nulls.
cfang@1335 3687 bool disjoint_bases = true;
roland@3883 3688 // if start > orig_length then the length of the copy may be
roland@3883 3689 // negative.
roland@3883 3690 bool length_never_negative = !is_copyOfRange;
cfang@1335 3691 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 3692 original, start, newcopy, intcon(0), moved,
cfang@1335 3693 disjoint_bases, length_never_negative);
cfang@1337 3694 }
cfang@1337 3695 } //original reexecute and sp are set back here
cfang@1337 3696
cfang@1337 3697 if(!stopped()) {
duke@435 3698 push(newcopy);
duke@435 3699 }
duke@435 3700
duke@435 3701 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 3702
duke@435 3703 return true;
duke@435 3704 }
duke@435 3705
duke@435 3706
duke@435 3707 //----------------------generate_virtual_guard---------------------------
duke@435 3708 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
duke@435 3709 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
duke@435 3710 RegionNode* slow_region) {
duke@435 3711 ciMethod* method = callee();
duke@435 3712 int vtable_index = method->vtable_index();
duke@435 3713 // Get the methodOop out of the appropriate vtable entry.
duke@435 3714 int entry_offset = (instanceKlass::vtable_start_offset() +
duke@435 3715 vtable_index*vtableEntry::size()) * wordSize +
duke@435 3716 vtableEntry::method_offset_in_bytes();
duke@435 3717 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
duke@435 3718 Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
duke@435 3719
duke@435 3720 // Compare the target method with the expected method (e.g., Object.hashCode).
duke@435 3721 const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
duke@435 3722
duke@435 3723 Node* native_call = makecon(native_call_addr);
duke@435 3724 Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
duke@435 3725 Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
duke@435 3726
duke@435 3727 return generate_slow_guard(test_native, slow_region);
duke@435 3728 }
duke@435 3729
duke@435 3730 //-----------------------generate_method_call----------------------------
duke@435 3731 // Use generate_method_call to make a slow-call to the real
duke@435 3732 // method if the fast path fails. An alternative would be to
duke@435 3733 // use a stub like OptoRuntime::slow_arraycopy_Java.
duke@435 3734 // This only works for expanding the current library call,
duke@435 3735 // not another intrinsic. (E.g., don't use this for making an
duke@435 3736 // arraycopy call inside of the copyOf intrinsic.)
duke@435 3737 CallJavaNode*
duke@435 3738 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
duke@435 3739 // When compiling the intrinsic method itself, do not use this technique.
duke@435 3740 guarantee(callee() != C->method(), "cannot make slow-call to self");
duke@435 3741
duke@435 3742 ciMethod* method = callee();
duke@435 3743 // ensure the JVMS we have will be correct for this call
duke@435 3744 guarantee(method_id == method->intrinsic_id(), "must match");
duke@435 3745
duke@435 3746 const TypeFunc* tf = TypeFunc::make(method);
duke@435 3747 int tfdc = tf->domain()->cnt();
duke@435 3748 CallJavaNode* slow_call;
duke@435 3749 if (is_static) {
duke@435 3750 assert(!is_virtual, "");
duke@435 3751 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3752 SharedRuntime::get_resolve_static_call_stub(),
duke@435 3753 method, bci());
duke@435 3754 } else if (is_virtual) {
duke@435 3755 null_check_receiver(method);
duke@435 3756 int vtable_index = methodOopDesc::invalid_vtable_index;
duke@435 3757 if (UseInlineCaches) {
duke@435 3758 // Suppress the vtable call
duke@435 3759 } else {
duke@435 3760 // hashCode and clone are not a miranda methods,
duke@435 3761 // so the vtable index is fixed.
duke@435 3762 // No need to use the linkResolver to get it.
duke@435 3763 vtable_index = method->vtable_index();
duke@435 3764 }
duke@435 3765 slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
duke@435 3766 SharedRuntime::get_resolve_virtual_call_stub(),
duke@435 3767 method, vtable_index, bci());
duke@435 3768 } else { // neither virtual nor static: opt_virtual
duke@435 3769 null_check_receiver(method);
duke@435 3770 slow_call = new(C, tfdc) CallStaticJavaNode(tf,
duke@435 3771 SharedRuntime::get_resolve_opt_virtual_call_stub(),
duke@435 3772 method, bci());
duke@435 3773 slow_call->set_optimized_virtual(true);
duke@435 3774 }
duke@435 3775 set_arguments_for_java_call(slow_call);
duke@435 3776 set_edges_for_java_call(slow_call);
duke@435 3777 return slow_call;
duke@435 3778 }
duke@435 3779
duke@435 3780
duke@435 3781 //------------------------------inline_native_hashcode--------------------
duke@435 3782 // Build special case code for calls to hashCode on an object.
duke@435 3783 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
duke@435 3784 assert(is_static == callee()->is_static(), "correct intrinsic selection");
duke@435 3785 assert(!(is_virtual && is_static), "either virtual, special, or static");
duke@435 3786
duke@435 3787 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
duke@435 3788
duke@435 3789 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 3790 PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
duke@435 3791 TypeInt::INT);
duke@435 3792 PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
duke@435 3793 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
duke@435 3794 TypePtr::BOTTOM);
duke@435 3795 Node* obj = NULL;
duke@435 3796 if (!is_static) {
duke@435 3797 // Check for hashing null object
duke@435 3798 obj = null_check_receiver(callee());
duke@435 3799 if (stopped()) return true; // unconditionally null
duke@435 3800 result_reg->init_req(_null_path, top());
duke@435 3801 result_val->init_req(_null_path, top());
duke@435 3802 } else {
duke@435 3803 // Do a null check, and return zero if null.
duke@435 3804 // System.identityHashCode(null) == 0
duke@435 3805 obj = argument(0);
duke@435 3806 Node* null_ctl = top();
duke@435 3807 obj = null_check_oop(obj, &null_ctl);
duke@435 3808 result_reg->init_req(_null_path, null_ctl);
duke@435 3809 result_val->init_req(_null_path, _gvn.intcon(0));
duke@435 3810 }
duke@435 3811
duke@435 3812 // Unconditionally null? Then return right away.
duke@435 3813 if (stopped()) {
duke@435 3814 set_control( result_reg->in(_null_path) );
duke@435 3815 if (!stopped())
duke@435 3816 push( result_val ->in(_null_path) );
duke@435 3817 return true;
duke@435 3818 }
duke@435 3819
duke@435 3820 // After null check, get the object's klass.
duke@435 3821 Node* obj_klass = load_object_klass(obj);
duke@435 3822
duke@435 3823 // This call may be virtual (invokevirtual) or bound (invokespecial).
duke@435 3824 // For each case we generate slightly different code.
duke@435 3825
duke@435 3826 // We only go to the fast case code if we pass a number of guards. The
duke@435 3827 // paths which do not pass are accumulated in the slow_region.
duke@435 3828 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 3829 record_for_igvn(slow_region);
duke@435 3830
duke@435 3831 // If this is a virtual call, we generate a funny guard. We pull out
duke@435 3832 // the vtable entry corresponding to hashCode() from the target object.
duke@435 3833 // If the target method which we are calling happens to be the native
duke@435 3834 // Object hashCode() method, we pass the guard. We do not need this
duke@435 3835 // guard for non-virtual calls -- the caller is known to be the native
duke@435 3836 // Object hashCode().
duke@435 3837 if (is_virtual) {
duke@435 3838 generate_virtual_guard(obj_klass, slow_region);
duke@435 3839 }
duke@435 3840
duke@435 3841 // Get the header out of the object, use LoadMarkNode when available
duke@435 3842 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
kvn@1964 3843 Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
duke@435 3844
duke@435 3845 // Test the header to see if it is unlocked.
duke@435 3846 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
duke@435 3847 Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
duke@435 3848 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
duke@435 3849 Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
duke@435 3850 Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
duke@435 3851
duke@435 3852 generate_slow_guard(test_unlocked, slow_region);
duke@435 3853
duke@435 3854 // Get the hash value and check to see that it has been properly assigned.
duke@435 3855 // We depend on hash_mask being at most 32 bits and avoid the use of
duke@435 3856 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
duke@435 3857 // vm: see markOop.hpp.
duke@435 3858 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
duke@435 3859 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
duke@435 3860 Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
duke@435 3861 // This hack lets the hash bits live anywhere in the mark object now, as long
twisti@1040 3862 // as the shift drops the relevant bits into the low 32 bits. Note that
duke@435 3863 // Java spec says that HashCode is an int so there's no point in capturing
duke@435 3864 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
duke@435 3865 hshifted_header = ConvX2I(hshifted_header);
duke@435 3866 Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
duke@435 3867
duke@435 3868 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
duke@435 3869 Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
duke@435 3870 Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
duke@435 3871
duke@435 3872 generate_slow_guard(test_assigned, slow_region);
duke@435 3873
duke@435 3874 Node* init_mem = reset_memory();
duke@435 3875 // fill in the rest of the null path:
duke@435 3876 result_io ->init_req(_null_path, i_o());
duke@435 3877 result_mem->init_req(_null_path, init_mem);
duke@435 3878
duke@435 3879 result_val->init_req(_fast_path, hash_val);
duke@435 3880 result_reg->init_req(_fast_path, control());
duke@435 3881 result_io ->init_req(_fast_path, i_o());
duke@435 3882 result_mem->init_req(_fast_path, init_mem);
duke@435 3883
duke@435 3884 // Generate code for the slow case. We make a call to hashCode().
duke@435 3885 set_control(_gvn.transform(slow_region));
duke@435 3886 if (!stopped()) {
duke@435 3887 // No need for PreserveJVMState, because we're using up the present state.
duke@435 3888 set_all_memory(init_mem);
duke@435 3889 vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
duke@435 3890 if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
duke@435 3891 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
duke@435 3892 Node* slow_result = set_results_for_java_call(slow_call);
duke@435 3893 // this->control() comes from set_results_for_java_call
duke@435 3894 result_reg->init_req(_slow_path, control());
duke@435 3895 result_val->init_req(_slow_path, slow_result);
duke@435 3896 result_io ->set_req(_slow_path, i_o());
duke@435 3897 result_mem ->set_req(_slow_path, reset_memory());
duke@435 3898 }
duke@435 3899
duke@435 3900 // Return the combined state.
duke@435 3901 set_i_o( _gvn.transform(result_io) );
duke@435 3902 set_all_memory( _gvn.transform(result_mem) );
duke@435 3903 push_result(result_reg, result_val);
duke@435 3904
duke@435 3905 return true;
duke@435 3906 }
duke@435 3907
duke@435 3908 //---------------------------inline_native_getClass----------------------------
twisti@1040 3909 // Build special case code for calls to getClass on an object.
duke@435 3910 bool LibraryCallKit::inline_native_getClass() {
duke@435 3911 Node* obj = null_check_receiver(callee());
duke@435 3912 if (stopped()) return true;
duke@435 3913 push( load_mirror_from_klass(load_object_klass(obj)) );
duke@435 3914 return true;
duke@435 3915 }
duke@435 3916
duke@435 3917 //-----------------inline_native_Reflection_getCallerClass---------------------
duke@435 3918 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
duke@435 3919 //
duke@435 3920 // NOTE that this code must perform the same logic as
duke@435 3921 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3922 // Method.invoke() and auxiliary frames.
duke@435 3923
duke@435 3924
duke@435 3925
duke@435 3926
duke@435 3927 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
duke@435 3928 ciMethod* method = callee();
duke@435 3929
duke@435 3930 #ifndef PRODUCT
duke@435 3931 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3932 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
duke@435 3933 }
duke@435 3934 #endif
duke@435 3935
duke@435 3936 debug_only(int saved_sp = _sp);
duke@435 3937
duke@435 3938 // Argument words: (int depth)
duke@435 3939 int nargs = 1;
duke@435 3940
duke@435 3941 _sp += nargs;
duke@435 3942 Node* caller_depth_node = pop();
duke@435 3943
duke@435 3944 assert(saved_sp == _sp, "must have correct argument count");
duke@435 3945
duke@435 3946 // The depth value must be a constant in order for the runtime call
duke@435 3947 // to be eliminated.
duke@435 3948 const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
duke@435 3949 if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
duke@435 3950 #ifndef PRODUCT
duke@435 3951 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3952 tty->print_cr(" Bailing out because caller depth was not a constant");
duke@435 3953 }
duke@435 3954 #endif
duke@435 3955 return false;
duke@435 3956 }
duke@435 3957 // Note that the JVM state at this point does not include the
duke@435 3958 // getCallerClass() frame which we are trying to inline. The
duke@435 3959 // semantics of getCallerClass(), however, are that the "first"
duke@435 3960 // frame is the getCallerClass() frame, so we subtract one from the
duke@435 3961 // requested depth before continuing. We don't inline requests of
duke@435 3962 // getCallerClass(0).
duke@435 3963 int caller_depth = caller_depth_type->get_con() - 1;
duke@435 3964 if (caller_depth < 0) {
duke@435 3965 #ifndef PRODUCT
duke@435 3966 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3967 tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
duke@435 3968 }
duke@435 3969 #endif
duke@435 3970 return false;
duke@435 3971 }
duke@435 3972
duke@435 3973 if (!jvms()->has_method()) {
duke@435 3974 #ifndef PRODUCT
duke@435 3975 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 3976 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
duke@435 3977 }
duke@435 3978 #endif
duke@435 3979 return false;
duke@435 3980 }
duke@435 3981 int _depth = jvms()->depth(); // cache call chain depth
duke@435 3982
duke@435 3983 // Walk back up the JVM state to find the caller at the required
duke@435 3984 // depth. NOTE that this code must perform the same logic as
duke@435 3985 // vframeStream::security_get_caller_frame in that it must skip
duke@435 3986 // Method.invoke() and auxiliary frames. Note also that depth is
duke@435 3987 // 1-based (1 is the bottom of the inlining).
duke@435 3988 int inlining_depth = _depth;
duke@435 3989 JVMState* caller_jvms = NULL;
duke@435 3990
duke@435 3991 if (inlining_depth > 0) {
duke@435 3992 caller_jvms = jvms();
duke@435 3993 assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
duke@435 3994 do {
duke@435 3995 // The following if-tests should be performed in this order
duke@435 3996 if (is_method_invoke_or_aux_frame(caller_jvms)) {
duke@435 3997 // Skip a Method.invoke() or auxiliary frame
duke@435 3998 } else if (caller_depth > 0) {
duke@435 3999 // Skip real frame
duke@435 4000 --caller_depth;
duke@435 4001 } else {
duke@435 4002 // We're done: reached desired caller after skipping.
duke@435 4003 break;
duke@435 4004 }
duke@435 4005 caller_jvms = caller_jvms->caller();
duke@435 4006 --inlining_depth;
duke@435 4007 } while (inlining_depth > 0);
duke@435 4008 }
duke@435 4009
duke@435 4010 if (inlining_depth == 0) {
duke@435 4011 #ifndef PRODUCT
duke@435 4012 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 4013 tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
duke@435 4014 tty->print_cr(" JVM state at this point:");
duke@435 4015 for (int i = _depth; i >= 1; i--) {
duke@435 4016 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 4017 }
duke@435 4018 }
duke@435 4019 #endif
duke@435 4020 return false; // Reached end of inlining
duke@435 4021 }
duke@435 4022
duke@435 4023 // Acquire method holder as java.lang.Class
duke@435 4024 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
duke@435 4025 ciInstance* caller_mirror = caller_klass->java_mirror();
duke@435 4026 // Push this as a constant
duke@435 4027 push(makecon(TypeInstPtr::make(caller_mirror)));
duke@435 4028 #ifndef PRODUCT
duke@435 4029 if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
duke@435 4030 tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
duke@435 4031 tty->print_cr(" JVM state at this point:");
duke@435 4032 for (int i = _depth; i >= 1; i--) {
duke@435 4033 tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
duke@435 4034 }
duke@435 4035 }
duke@435 4036 #endif
duke@435 4037 return true;
duke@435 4038 }
duke@435 4039
duke@435 4040 // Helper routine for above
duke@435 4041 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
twisti@1587 4042 ciMethod* method = jvms->method();
twisti@1587 4043
duke@435 4044 // Is this the Method.invoke method itself?
twisti@1587 4045 if (method->intrinsic_id() == vmIntrinsics::_invoke)
duke@435 4046 return true;
duke@435 4047
duke@435 4048 // Is this a helper, defined somewhere underneath MethodAccessorImpl.
twisti@1587 4049 ciKlass* k = method->holder();
duke@435 4050 if (k->is_instance_klass()) {
duke@435 4051 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 4052 for (; ik != NULL; ik = ik->super()) {
duke@435 4053 if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
duke@435 4054 ik == env()->find_system_klass(ik->name())) {
duke@435 4055 return true;
duke@435 4056 }
duke@435 4057 }
duke@435 4058 }
twisti@3969 4059 else if (method->is_method_handle_intrinsic() ||
twisti@3969 4060 method->is_compiled_lambda_form()) {
twisti@1587 4061 // This is an internal adapter frame from the MethodHandleCompiler -- skip it
twisti@1587 4062 return true;
twisti@1587 4063 }
duke@435 4064
duke@435 4065 return false;
duke@435 4066 }
duke@435 4067
duke@435 4068 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
duke@435 4069 // restore the arguments
duke@435 4070 _sp += arg_size();
duke@435 4071
duke@435 4072 switch (id) {
duke@435 4073 case vmIntrinsics::_floatToRawIntBits:
duke@435 4074 push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
duke@435 4075 break;
duke@435 4076
duke@435 4077 case vmIntrinsics::_intBitsToFloat:
duke@435 4078 push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
duke@435 4079 break;
duke@435 4080
duke@435 4081 case vmIntrinsics::_doubleToRawLongBits:
duke@435 4082 push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
duke@435 4083 break;
duke@435 4084
duke@435 4085 case vmIntrinsics::_longBitsToDouble:
duke@435 4086 push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
duke@435 4087 break;
duke@435 4088
duke@435 4089 case vmIntrinsics::_doubleToLongBits: {
duke@435 4090 Node* value = pop_pair();
duke@435 4091
duke@435 4092 // two paths (plus control) merge in a wood
duke@435 4093 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4094 Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
duke@435 4095
duke@435 4096 Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
duke@435 4097 // Build the boolean node
duke@435 4098 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4099
duke@435 4100 // Branch either way.
duke@435 4101 // NaN case is less traveled, which makes all the difference.
duke@435 4102 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4103 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4104 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4105 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4106 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4107
duke@435 4108 set_control(iftrue);
duke@435 4109
duke@435 4110 static const jlong nan_bits = CONST64(0x7ff8000000000000);
duke@435 4111 Node *slow_result = longcon(nan_bits); // return NaN
duke@435 4112 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4113 r->init_req(1, iftrue);
duke@435 4114
duke@435 4115 // Else fall through
duke@435 4116 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4117 set_control(iffalse);
duke@435 4118
duke@435 4119 phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
duke@435 4120 r->init_req(2, iffalse);
duke@435 4121
duke@435 4122 // Post merge
duke@435 4123 set_control(_gvn.transform(r));
duke@435 4124 record_for_igvn(r);
duke@435 4125
duke@435 4126 Node* result = _gvn.transform(phi);
duke@435 4127 assert(result->bottom_type()->isa_long(), "must be");
duke@435 4128 push_pair(result);
duke@435 4129
duke@435 4130 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4131
duke@435 4132 break;
duke@435 4133 }
duke@435 4134
duke@435 4135 case vmIntrinsics::_floatToIntBits: {
duke@435 4136 Node* value = pop();
duke@435 4137
duke@435 4138 // two paths (plus control) merge in a wood
duke@435 4139 RegionNode *r = new (C, 3) RegionNode(3);
duke@435 4140 Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
duke@435 4141
duke@435 4142 Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
duke@435 4143 // Build the boolean node
duke@435 4144 Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
duke@435 4145
duke@435 4146 // Branch either way.
duke@435 4147 // NaN case is less traveled, which makes all the difference.
duke@435 4148 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
duke@435 4149 Node *opt_isnan = _gvn.transform(ifisnan);
duke@435 4150 assert( opt_isnan->is_If(), "Expect an IfNode");
duke@435 4151 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
duke@435 4152 Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
duke@435 4153
duke@435 4154 set_control(iftrue);
duke@435 4155
duke@435 4156 static const jint nan_bits = 0x7fc00000;
duke@435 4157 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
duke@435 4158 phi->init_req(1, _gvn.transform( slow_result ));
duke@435 4159 r->init_req(1, iftrue);
duke@435 4160
duke@435 4161 // Else fall through
duke@435 4162 Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
duke@435 4163 set_control(iffalse);
duke@435 4164
duke@435 4165 phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
duke@435 4166 r->init_req(2, iffalse);
duke@435 4167
duke@435 4168 // Post merge
duke@435 4169 set_control(_gvn.transform(r));
duke@435 4170 record_for_igvn(r);
duke@435 4171
duke@435 4172 Node* result = _gvn.transform(phi);
duke@435 4173 assert(result->bottom_type()->isa_int(), "must be");
duke@435 4174 push(result);
duke@435 4175
duke@435 4176 C->set_has_split_ifs(true); // Has chance for split-if optimization
duke@435 4177
duke@435 4178 break;
duke@435 4179 }
duke@435 4180
duke@435 4181 default:
duke@435 4182 ShouldNotReachHere();
duke@435 4183 }
duke@435 4184
duke@435 4185 return true;
duke@435 4186 }
duke@435 4187
duke@435 4188 #ifdef _LP64
duke@435 4189 #define XTOP ,top() /*additional argument*/
duke@435 4190 #else //_LP64
duke@435 4191 #define XTOP /*no additional argument*/
duke@435 4192 #endif //_LP64
duke@435 4193
duke@435 4194 //----------------------inline_unsafe_copyMemory-------------------------
duke@435 4195 bool LibraryCallKit::inline_unsafe_copyMemory() {
duke@435 4196 if (callee()->is_static()) return false; // caller must have the capability!
duke@435 4197 int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
duke@435 4198 assert(signature()->size() == nargs-1, "copy has 5 arguments");
duke@435 4199 null_check_receiver(callee()); // check then ignore argument(0)
duke@435 4200 if (stopped()) return true;
duke@435 4201
duke@435 4202 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
duke@435 4203
duke@435 4204 Node* src_ptr = argument(1);
duke@435 4205 Node* src_off = ConvL2X(argument(2));
duke@435 4206 assert(argument(3)->is_top(), "2nd half of long");
duke@435 4207 Node* dst_ptr = argument(4);
duke@435 4208 Node* dst_off = ConvL2X(argument(5));
duke@435 4209 assert(argument(6)->is_top(), "2nd half of long");
duke@435 4210 Node* size = ConvL2X(argument(7));
duke@435 4211 assert(argument(8)->is_top(), "2nd half of long");
duke@435 4212
duke@435 4213 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
duke@435 4214 "fieldOffset must be byte-scaled");
duke@435 4215
duke@435 4216 Node* src = make_unsafe_address(src_ptr, src_off);
duke@435 4217 Node* dst = make_unsafe_address(dst_ptr, dst_off);
duke@435 4218
duke@435 4219 // Conservatively insert a memory barrier on all memory slices.
duke@435 4220 // Do not let writes of the copy source or destination float below the copy.
duke@435 4221 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4222
duke@435 4223 // Call it. Note that the length argument is not scaled.
duke@435 4224 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 4225 OptoRuntime::fast_arraycopy_Type(),
duke@435 4226 StubRoutines::unsafe_arraycopy(),
duke@435 4227 "unsafe_arraycopy",
duke@435 4228 TypeRawPtr::BOTTOM,
duke@435 4229 src, dst, size XTOP);
duke@435 4230
duke@435 4231 // Do not let reads of the copy destination float above the copy.
duke@435 4232 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4233
duke@435 4234 return true;
duke@435 4235 }
duke@435 4236
kvn@1268 4237 //------------------------clone_coping-----------------------------------
kvn@1268 4238 // Helper function for inline_native_clone.
kvn@1268 4239 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
kvn@1268 4240 assert(obj_size != NULL, "");
kvn@1268 4241 Node* raw_obj = alloc_obj->in(1);
kvn@1268 4242 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
kvn@1268 4243
roland@3392 4244 AllocateNode* alloc = NULL;
kvn@1268 4245 if (ReduceBulkZeroing) {
kvn@1268 4246 // We will be completely responsible for initializing this object -
kvn@1268 4247 // mark Initialize node as complete.
roland@3392 4248 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
kvn@1268 4249 // The object was just allocated - there should be no any stores!
kvn@1268 4250 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
roland@3392 4251 // Mark as complete_with_arraycopy so that on AllocateNode
roland@3392 4252 // expansion, we know this AllocateNode is initialized by an array
roland@3392 4253 // copy and a StoreStore barrier exists after the array copy.
roland@3392 4254 alloc->initialization()->set_complete_with_arraycopy();
kvn@1268 4255 }
kvn@1268 4256
kvn@1268 4257 // Copy the fastest available way.
kvn@1268 4258 // TODO: generate fields copies for small objects instead.
kvn@1268 4259 Node* src = obj;
kvn@1393 4260 Node* dest = alloc_obj;
kvn@1268 4261 Node* size = _gvn.transform(obj_size);
kvn@1268 4262
kvn@1268 4263 // Exclude the header but include array length to copy by 8 bytes words.
kvn@1268 4264 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
kvn@1268 4265 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
kvn@1268 4266 instanceOopDesc::base_offset_in_bytes();
kvn@1268 4267 // base_off:
kvn@1268 4268 // 8 - 32-bit VM
kvn@1268 4269 // 12 - 64-bit VM, compressed oops
kvn@1268 4270 // 16 - 64-bit VM, normal oops
kvn@1268 4271 if (base_off % BytesPerLong != 0) {
kvn@1268 4272 assert(UseCompressedOops, "");
kvn@1268 4273 if (is_array) {
kvn@1268 4274 // Exclude length to copy by 8 bytes words.
kvn@1268 4275 base_off += sizeof(int);
kvn@1268 4276 } else {
kvn@1268 4277 // Include klass to copy by 8 bytes words.
kvn@1268 4278 base_off = instanceOopDesc::klass_offset_in_bytes();
kvn@1268 4279 }
kvn@1268 4280 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
kvn@1268 4281 }
kvn@1268 4282 src = basic_plus_adr(src, base_off);
kvn@1268 4283 dest = basic_plus_adr(dest, base_off);
kvn@1268 4284
kvn@1268 4285 // Compute the length also, if needed:
kvn@1268 4286 Node* countx = size;
kvn@1268 4287 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
kvn@1268 4288 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
kvn@1268 4289
kvn@1268 4290 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
kvn@1268 4291 bool disjoint_bases = true;
kvn@1268 4292 generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
iveresov@2606 4293 src, NULL, dest, NULL, countx,
iveresov@2606 4294 /*dest_uninitialized*/true);
kvn@1268 4295
kvn@1268 4296 // If necessary, emit some card marks afterwards. (Non-arrays only.)
kvn@1268 4297 if (card_mark) {
kvn@1268 4298 assert(!is_array, "");
kvn@1268 4299 // Put in store barrier for any and all oops we are sticking
kvn@1268 4300 // into this object. (We could avoid this if we could prove
kvn@1268 4301 // that the object type contains no oop fields at all.)
kvn@1268 4302 Node* no_particular_value = NULL;
kvn@1268 4303 Node* no_particular_field = NULL;
kvn@1268 4304 int raw_adr_idx = Compile::AliasIdxRaw;
kvn@1268 4305 post_barrier(control(),
kvn@1268 4306 memory(raw_adr_type),
kvn@1393 4307 alloc_obj,
kvn@1268 4308 no_particular_field,
kvn@1268 4309 raw_adr_idx,
kvn@1268 4310 no_particular_value,
kvn@1268 4311 T_OBJECT,
kvn@1268 4312 false);
kvn@1268 4313 }
kvn@1268 4314
kvn@1393 4315 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 4316 if (alloc != NULL) {
roland@3392 4317 // Do not let stores that initialize this object be reordered with
roland@3392 4318 // a subsequent store that would make this object accessible by
roland@3392 4319 // other threads.
roland@3392 4320 // Record what AllocateNode this StoreStore protects so that
roland@3392 4321 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 4322 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 4323 // based on the escape status of the AllocateNode.
roland@3392 4324 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 4325 } else {
roland@3392 4326 insert_mem_bar(Op_MemBarCPUOrder);
roland@3392 4327 }
kvn@1268 4328 }
duke@435 4329
duke@435 4330 //------------------------inline_native_clone----------------------------
duke@435 4331 // Here are the simple edge cases:
duke@435 4332 // null receiver => normal trap
duke@435 4333 // virtual and clone was overridden => slow path to out-of-line clone
duke@435 4334 // not cloneable or finalizer => slow path to out-of-line Object.clone
duke@435 4335 //
duke@435 4336 // The general case has two steps, allocation and copying.
duke@435 4337 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
duke@435 4338 //
duke@435 4339 // Copying also has two cases, oop arrays and everything else.
duke@435 4340 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
duke@435 4341 // Everything else uses the tight inline loop supplied by CopyArrayNode.
duke@435 4342 //
duke@435 4343 // These steps fold up nicely if and when the cloned object's klass
duke@435 4344 // can be sharply typed as an object array, a type array, or an instance.
duke@435 4345 //
duke@435 4346 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
duke@435 4347 int nargs = 1;
cfang@1337 4348 PhiNode* result_val;
duke@435 4349
cfang@1335 4350 //set the original stack and the reexecute bit for the interpreter to reexecute
cfang@1335 4351 //the bytecode that invokes Object.clone if deoptimization happens
cfang@1335 4352 { PreserveReexecuteState preexecs(this);
cfang@1337 4353 jvms()->set_should_reexecute(true);
cfang@1337 4354
cfang@1337 4355 //null_check_receiver will adjust _sp (push and pop)
cfang@1337 4356 Node* obj = null_check_receiver(callee());
cfang@1337 4357 if (stopped()) return true;
cfang@1337 4358
cfang@1335 4359 _sp += nargs;
cfang@1337 4360
cfang@1337 4361 Node* obj_klass = load_object_klass(obj);
cfang@1337 4362 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
cfang@1337 4363 const TypeOopPtr* toop = ((tklass != NULL)
cfang@1337 4364 ? tklass->as_instance_type()
cfang@1337 4365 : TypeInstPtr::NOTNULL);
cfang@1337 4366
cfang@1337 4367 // Conservatively insert a memory barrier on all memory slices.
cfang@1337 4368 // Do not let writes into the original float below the clone.
cfang@1337 4369 insert_mem_bar(Op_MemBarCPUOrder);
cfang@1337 4370
cfang@1337 4371 // paths into result_reg:
cfang@1337 4372 enum {
cfang@1337 4373 _slow_path = 1, // out-of-line call to clone method (virtual or not)
cfang@1337 4374 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
cfang@1337 4375 _array_path, // plain array allocation, plus arrayof_long_arraycopy
cfang@1337 4376 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
cfang@1337 4377 PATH_LIMIT
cfang@1337 4378 };
cfang@1337 4379 RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
cfang@1337 4380 result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
cfang@1337 4381 TypeInstPtr::NOTNULL);
cfang@1337 4382 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
cfang@1337 4383 PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
cfang@1337 4384 TypePtr::BOTTOM);
cfang@1337 4385 record_for_igvn(result_reg);
cfang@1337 4386
cfang@1337 4387 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
cfang@1337 4388 int raw_adr_idx = Compile::AliasIdxRaw;
cfang@1335 4389
cfang@1335 4390 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4391 if (array_ctl != NULL) {
cfang@1335 4392 // It's an array.
cfang@1335 4393 PreserveJVMState pjvms(this);
cfang@1335 4394 set_control(array_ctl);
cfang@1335 4395 Node* obj_length = load_array_length(obj);
cfang@1335 4396 Node* obj_size = NULL;
kvn@2810 4397 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
cfang@1335 4398
cfang@1335 4399 if (!use_ReduceInitialCardMarks()) {
cfang@1335 4400 // If it is an oop array, it requires very special treatment,
cfang@1335 4401 // because card marking is required on each card of the array.
cfang@1335 4402 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
cfang@1335 4403 if (is_obja != NULL) {
cfang@1335 4404 PreserveJVMState pjvms2(this);
cfang@1335 4405 set_control(is_obja);
cfang@1335 4406 // Generate a direct call to the right arraycopy function(s).
cfang@1335 4407 bool disjoint_bases = true;
cfang@1335 4408 bool length_never_negative = true;
cfang@1335 4409 generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
cfang@1335 4410 obj, intcon(0), alloc_obj, intcon(0),
cfang@1335 4411 obj_length,
cfang@1335 4412 disjoint_bases, length_never_negative);
cfang@1335 4413 result_reg->init_req(_objArray_path, control());
cfang@1335 4414 result_val->init_req(_objArray_path, alloc_obj);
cfang@1335 4415 result_i_o ->set_req(_objArray_path, i_o());
cfang@1335 4416 result_mem ->set_req(_objArray_path, reset_memory());
cfang@1335 4417 }
cfang@1335 4418 }
cfang@1335 4419 // Otherwise, there are no card marks to worry about.
ysr@1462 4420 // (We can dispense with card marks if we know the allocation
ysr@1462 4421 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
ysr@1462 4422 // causes the non-eden paths to take compensating steps to
ysr@1462 4423 // simulate a fresh allocation, so that no further
ysr@1462 4424 // card marks are required in compiled code to initialize
ysr@1462 4425 // the object.)
cfang@1335 4426
cfang@1335 4427 if (!stopped()) {
cfang@1335 4428 copy_to_clone(obj, alloc_obj, obj_size, true, false);
cfang@1335 4429
cfang@1335 4430 // Present the results of the copy.
cfang@1335 4431 result_reg->init_req(_array_path, control());
cfang@1335 4432 result_val->init_req(_array_path, alloc_obj);
cfang@1335 4433 result_i_o ->set_req(_array_path, i_o());
cfang@1335 4434 result_mem ->set_req(_array_path, reset_memory());
duke@435 4435 }
duke@435 4436 }
cfang@1335 4437
cfang@1335 4438 // We only go to the instance fast case code if we pass a number of guards.
cfang@1335 4439 // The paths which do not pass are accumulated in the slow_region.
cfang@1335 4440 RegionNode* slow_region = new (C, 1) RegionNode(1);
cfang@1335 4441 record_for_igvn(slow_region);
kvn@1268 4442 if (!stopped()) {
cfang@1335 4443 // It's an instance (we did array above). Make the slow-path tests.
cfang@1335 4444 // If this is a virtual call, we generate a funny guard. We grab
cfang@1335 4445 // the vtable entry corresponding to clone() from the target object.
cfang@1335 4446 // If the target method which we are calling happens to be the
cfang@1335 4447 // Object clone() method, we pass the guard. We do not need this
cfang@1335 4448 // guard for non-virtual calls; the caller is known to be the native
cfang@1335 4449 // Object clone().
cfang@1335 4450 if (is_virtual) {
cfang@1335 4451 generate_virtual_guard(obj_klass, slow_region);
cfang@1335 4452 }
cfang@1335 4453
cfang@1335 4454 // The object must be cloneable and must not have a finalizer.
cfang@1335 4455 // Both of these conditions may be checked in a single test.
cfang@1335 4456 // We could optimize the cloneable test further, but we don't care.
cfang@1335 4457 generate_access_flags_guard(obj_klass,
cfang@1335 4458 // Test both conditions:
cfang@1335 4459 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
cfang@1335 4460 // Must be cloneable but not finalizer:
cfang@1335 4461 JVM_ACC_IS_CLONEABLE,
cfang@1335 4462 slow_region);
kvn@1268 4463 }
cfang@1335 4464
cfang@1335 4465 if (!stopped()) {
cfang@1335 4466 // It's an instance, and it passed the slow-path tests.
cfang@1335 4467 PreserveJVMState pjvms(this);
cfang@1335 4468 Node* obj_size = NULL;
kvn@2810 4469 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
cfang@1335 4470
cfang@1335 4471 copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
cfang@1335 4472
cfang@1335 4473 // Present the results of the slow call.
cfang@1335 4474 result_reg->init_req(_instance_path, control());
cfang@1335 4475 result_val->init_req(_instance_path, alloc_obj);
cfang@1335 4476 result_i_o ->set_req(_instance_path, i_o());
cfang@1335 4477 result_mem ->set_req(_instance_path, reset_memory());
duke@435 4478 }
duke@435 4479
cfang@1335 4480 // Generate code for the slow case. We make a call to clone().
cfang@1335 4481 set_control(_gvn.transform(slow_region));
cfang@1335 4482 if (!stopped()) {
cfang@1335 4483 PreserveJVMState pjvms(this);
cfang@1335 4484 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
cfang@1335 4485 Node* slow_result = set_results_for_java_call(slow_call);
cfang@1335 4486 // this->control() comes from set_results_for_java_call
cfang@1335 4487 result_reg->init_req(_slow_path, control());
cfang@1335 4488 result_val->init_req(_slow_path, slow_result);
cfang@1335 4489 result_i_o ->set_req(_slow_path, i_o());
cfang@1335 4490 result_mem ->set_req(_slow_path, reset_memory());
cfang@1335 4491 }
cfang@1337 4492
cfang@1337 4493 // Return the combined state.
cfang@1337 4494 set_control( _gvn.transform(result_reg) );
cfang@1337 4495 set_i_o( _gvn.transform(result_i_o) );
cfang@1337 4496 set_all_memory( _gvn.transform(result_mem) );
cfang@1335 4497 } //original reexecute and sp are set back here
duke@435 4498
kvn@1268 4499 push(_gvn.transform(result_val));
duke@435 4500
duke@435 4501 return true;
duke@435 4502 }
duke@435 4503
duke@435 4504 //------------------------------basictype2arraycopy----------------------------
duke@435 4505 address LibraryCallKit::basictype2arraycopy(BasicType t,
duke@435 4506 Node* src_offset,
duke@435 4507 Node* dest_offset,
duke@435 4508 bool disjoint_bases,
iveresov@2606 4509 const char* &name,
iveresov@2606 4510 bool dest_uninitialized) {
duke@435 4511 const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
duke@435 4512 const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
duke@435 4513
duke@435 4514 bool aligned = false;
duke@435 4515 bool disjoint = disjoint_bases;
duke@435 4516
duke@435 4517 // if the offsets are the same, we can treat the memory regions as
duke@435 4518 // disjoint, because either the memory regions are in different arrays,
duke@435 4519 // or they are identical (which we can treat as disjoint.) We can also
duke@435 4520 // treat a copy with a destination index less that the source index
duke@435 4521 // as disjoint since a low->high copy will work correctly in this case.
duke@435 4522 if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
duke@435 4523 dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
duke@435 4524 // both indices are constants
duke@435 4525 int s_offs = src_offset_inttype->get_con();
duke@435 4526 int d_offs = dest_offset_inttype->get_con();
kvn@464 4527 int element_size = type2aelembytes(t);
duke@435 4528 aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
duke@435 4529 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
duke@435 4530 if (s_offs >= d_offs) disjoint = true;
duke@435 4531 } else if (src_offset == dest_offset && src_offset != NULL) {
duke@435 4532 // This can occur if the offsets are identical non-constants.
duke@435 4533 disjoint = true;
duke@435 4534 }
duke@435 4535
roland@2728 4536 return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
duke@435 4537 }
duke@435 4538
duke@435 4539
duke@435 4540 //------------------------------inline_arraycopy-----------------------
duke@435 4541 bool LibraryCallKit::inline_arraycopy() {
duke@435 4542 // Restore the stack and pop off the arguments.
duke@435 4543 int nargs = 5; // 2 oops, 3 ints, no size_t or long
duke@435 4544 assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
duke@435 4545
duke@435 4546 Node *src = argument(0);
duke@435 4547 Node *src_offset = argument(1);
duke@435 4548 Node *dest = argument(2);
duke@435 4549 Node *dest_offset = argument(3);
duke@435 4550 Node *length = argument(4);
duke@435 4551
duke@435 4552 // Compile time checks. If any of these checks cannot be verified at compile time,
duke@435 4553 // we do not make a fast path for this call. Instead, we let the call remain as it
duke@435 4554 // is. The checks we choose to mandate at compile time are:
duke@435 4555 //
duke@435 4556 // (1) src and dest are arrays.
duke@435 4557 const Type* src_type = src->Value(&_gvn);
duke@435 4558 const Type* dest_type = dest->Value(&_gvn);
duke@435 4559 const TypeAryPtr* top_src = src_type->isa_aryptr();
duke@435 4560 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
duke@435 4561 if (top_src == NULL || top_src->klass() == NULL ||
duke@435 4562 top_dest == NULL || top_dest->klass() == NULL) {
duke@435 4563 // Conservatively insert a memory barrier on all memory slices.
duke@435 4564 // Do not let writes into the source float below the arraycopy.
duke@435 4565 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4566
duke@435 4567 // Call StubRoutines::generic_arraycopy stub.
duke@435 4568 generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
kvn@1268 4569 src, src_offset, dest, dest_offset, length);
duke@435 4570
duke@435 4571 // Do not let reads from the destination float above the arraycopy.
duke@435 4572 // Since we cannot type the arrays, we don't know which slices
duke@435 4573 // might be affected. We could restrict this barrier only to those
duke@435 4574 // memory slices which pertain to array elements--but don't bother.
duke@435 4575 if (!InsertMemBarAfterArraycopy)
duke@435 4576 // (If InsertMemBarAfterArraycopy, there is already one in place.)
duke@435 4577 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 4578 return true;
duke@435 4579 }
duke@435 4580
duke@435 4581 // (2) src and dest arrays must have elements of the same BasicType
duke@435 4582 // Figure out the size and type of the elements we will be copying.
duke@435 4583 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4584 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
duke@435 4585 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
duke@435 4586 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
duke@435 4587
duke@435 4588 if (src_elem != dest_elem || dest_elem == T_VOID) {
duke@435 4589 // The component types are not the same or are not recognized. Punt.
duke@435 4590 // (But, avoid the native method wrapper to JVM_ArrayCopy.)
duke@435 4591 generate_slow_arraycopy(TypePtr::BOTTOM,
iveresov@2606 4592 src, src_offset, dest, dest_offset, length,
iveresov@2606 4593 /*dest_uninitialized*/false);
duke@435 4594 return true;
duke@435 4595 }
duke@435 4596
duke@435 4597 //---------------------------------------------------------------------------
duke@435 4598 // We will make a fast path for this call to arraycopy.
duke@435 4599
duke@435 4600 // We have the following tests left to perform:
duke@435 4601 //
duke@435 4602 // (3) src and dest must not be null.
duke@435 4603 // (4) src_offset must not be negative.
duke@435 4604 // (5) dest_offset must not be negative.
duke@435 4605 // (6) length must not be negative.
duke@435 4606 // (7) src_offset + length must not exceed length of src.
duke@435 4607 // (8) dest_offset + length must not exceed length of dest.
duke@435 4608 // (9) each element of an oop array must be assignable
duke@435 4609
duke@435 4610 RegionNode* slow_region = new (C, 1) RegionNode(1);
duke@435 4611 record_for_igvn(slow_region);
duke@435 4612
duke@435 4613 // (3) operands must not be null
duke@435 4614 // We currently perform our null checks with the do_null_check routine.
duke@435 4615 // This means that the null exceptions will be reported in the caller
duke@435 4616 // rather than (correctly) reported inside of the native arraycopy call.
duke@435 4617 // This should be corrected, given time. We do our null check with the
duke@435 4618 // stack pointer restored.
duke@435 4619 _sp += nargs;
duke@435 4620 src = do_null_check(src, T_ARRAY);
duke@435 4621 dest = do_null_check(dest, T_ARRAY);
duke@435 4622 _sp -= nargs;
duke@435 4623
duke@435 4624 // (4) src_offset must not be negative.
duke@435 4625 generate_negative_guard(src_offset, slow_region);
duke@435 4626
duke@435 4627 // (5) dest_offset must not be negative.
duke@435 4628 generate_negative_guard(dest_offset, slow_region);
duke@435 4629
duke@435 4630 // (6) length must not be negative (moved to generate_arraycopy()).
duke@435 4631 // generate_negative_guard(length, slow_region);
duke@435 4632
duke@435 4633 // (7) src_offset + length must not exceed length of src.
duke@435 4634 generate_limit_guard(src_offset, length,
duke@435 4635 load_array_length(src),
duke@435 4636 slow_region);
duke@435 4637
duke@435 4638 // (8) dest_offset + length must not exceed length of dest.
duke@435 4639 generate_limit_guard(dest_offset, length,
duke@435 4640 load_array_length(dest),
duke@435 4641 slow_region);
duke@435 4642
duke@435 4643 // (9) each element of an oop array must be assignable
duke@435 4644 // The generate_arraycopy subroutine checks this.
duke@435 4645
duke@435 4646 // This is where the memory effects are placed:
duke@435 4647 const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
duke@435 4648 generate_arraycopy(adr_type, dest_elem,
duke@435 4649 src, src_offset, dest, dest_offset, length,
kvn@1268 4650 false, false, slow_region);
duke@435 4651
duke@435 4652 return true;
duke@435 4653 }
duke@435 4654
duke@435 4655 //-----------------------------generate_arraycopy----------------------
duke@435 4656 // Generate an optimized call to arraycopy.
duke@435 4657 // Caller must guard against non-arrays.
duke@435 4658 // Caller must determine a common array basic-type for both arrays.
duke@435 4659 // Caller must validate offsets against array bounds.
duke@435 4660 // The slow_region has already collected guard failure paths
duke@435 4661 // (such as out of bounds length or non-conformable array types).
duke@435 4662 // The generated code has this shape, in general:
duke@435 4663 //
duke@435 4664 // if (length == 0) return // via zero_path
duke@435 4665 // slowval = -1
duke@435 4666 // if (types unknown) {
duke@435 4667 // slowval = call generic copy loop
duke@435 4668 // if (slowval == 0) return // via checked_path
duke@435 4669 // } else if (indexes in bounds) {
duke@435 4670 // if ((is object array) && !(array type check)) {
duke@435 4671 // slowval = call checked copy loop
duke@435 4672 // if (slowval == 0) return // via checked_path
duke@435 4673 // } else {
duke@435 4674 // call bulk copy loop
duke@435 4675 // return // via fast_path
duke@435 4676 // }
duke@435 4677 // }
duke@435 4678 // // adjust params for remaining work:
duke@435 4679 // if (slowval != -1) {
duke@435 4680 // n = -1^slowval; src_offset += n; dest_offset += n; length -= n
duke@435 4681 // }
duke@435 4682 // slow_region:
duke@435 4683 // call slow arraycopy(src, src_offset, dest, dest_offset, length)
duke@435 4684 // return // via slow_call_path
duke@435 4685 //
duke@435 4686 // This routine is used from several intrinsics: System.arraycopy,
duke@435 4687 // Object.clone (the array subcase), and Arrays.copyOf[Range].
duke@435 4688 //
duke@435 4689 void
duke@435 4690 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
duke@435 4691 BasicType basic_elem_type,
duke@435 4692 Node* src, Node* src_offset,
duke@435 4693 Node* dest, Node* dest_offset,
duke@435 4694 Node* copy_length,
duke@435 4695 bool disjoint_bases,
duke@435 4696 bool length_never_negative,
duke@435 4697 RegionNode* slow_region) {
duke@435 4698
duke@435 4699 if (slow_region == NULL) {
duke@435 4700 slow_region = new(C,1) RegionNode(1);
duke@435 4701 record_for_igvn(slow_region);
duke@435 4702 }
duke@435 4703
duke@435 4704 Node* original_dest = dest;
duke@435 4705 AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
iveresov@2606 4706 bool dest_uninitialized = false;
duke@435 4707
duke@435 4708 // See if this is the initialization of a newly-allocated array.
duke@435 4709 // If so, we will take responsibility here for initializing it to zero.
duke@435 4710 // (Note: Because tightly_coupled_allocation performs checks on the
duke@435 4711 // out-edges of the dest, we need to avoid making derived pointers
duke@435 4712 // from it until we have checked its uses.)
duke@435 4713 if (ReduceBulkZeroing
duke@435 4714 && !ZeroTLAB // pointless if already zeroed
duke@435 4715 && basic_elem_type != T_CONFLICT // avoid corner case
kvn@3407 4716 && !src->eqv_uncast(dest)
duke@435 4717 && ((alloc = tightly_coupled_allocation(dest, slow_region))
duke@435 4718 != NULL)
kvn@469 4719 && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
duke@435 4720 && alloc->maybe_set_complete(&_gvn)) {
duke@435 4721 // "You break it, you buy it."
duke@435 4722 InitializeNode* init = alloc->initialization();
duke@435 4723 assert(init->is_complete(), "we just did this");
kvn@3157 4724 init->set_complete_with_arraycopy();
kvn@1268 4725 assert(dest->is_CheckCastPP(), "sanity");
duke@435 4726 assert(dest->in(0)->in(0) == init, "dest pinned");
duke@435 4727 adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
duke@435 4728 // From this point on, every exit path is responsible for
duke@435 4729 // initializing any non-copied parts of the object to zero.
iveresov@2606 4730 // Also, if this flag is set we make sure that arraycopy interacts properly
iveresov@2606 4731 // with G1, eliding pre-barriers. See CR 6627983.
iveresov@2606 4732 dest_uninitialized = true;
duke@435 4733 } else {
duke@435 4734 // No zeroing elimination here.
duke@435 4735 alloc = NULL;
duke@435 4736 //original_dest = dest;
iveresov@2606 4737 //dest_uninitialized = false;
duke@435 4738 }
duke@435 4739
duke@435 4740 // Results are placed here:
duke@435 4741 enum { fast_path = 1, // normal void-returning assembly stub
duke@435 4742 checked_path = 2, // special assembly stub with cleanup
duke@435 4743 slow_call_path = 3, // something went wrong; call the VM
duke@435 4744 zero_path = 4, // bypass when length of copy is zero
duke@435 4745 bcopy_path = 5, // copy primitive array by 64-bit blocks
duke@435 4746 PATH_LIMIT = 6
duke@435 4747 };
duke@435 4748 RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
duke@435 4749 PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
duke@435 4750 PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
duke@435 4751 record_for_igvn(result_region);
duke@435 4752 _gvn.set_type_bottom(result_i_o);
duke@435 4753 _gvn.set_type_bottom(result_memory);
duke@435 4754 assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
duke@435 4755
duke@435 4756 // The slow_control path:
duke@435 4757 Node* slow_control;
duke@435 4758 Node* slow_i_o = i_o();
duke@435 4759 Node* slow_mem = memory(adr_type);
duke@435 4760 debug_only(slow_control = (Node*) badAddress);
duke@435 4761
duke@435 4762 // Checked control path:
duke@435 4763 Node* checked_control = top();
duke@435 4764 Node* checked_mem = NULL;
duke@435 4765 Node* checked_i_o = NULL;
duke@435 4766 Node* checked_value = NULL;
duke@435 4767
duke@435 4768 if (basic_elem_type == T_CONFLICT) {
iveresov@2606 4769 assert(!dest_uninitialized, "");
duke@435 4770 Node* cv = generate_generic_arraycopy(adr_type,
duke@435 4771 src, src_offset, dest, dest_offset,
iveresov@2606 4772 copy_length, dest_uninitialized);
duke@435 4773 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4774 checked_control = control();
duke@435 4775 checked_i_o = i_o();
duke@435 4776 checked_mem = memory(adr_type);
duke@435 4777 checked_value = cv;
duke@435 4778 set_control(top()); // no fast path
duke@435 4779 }
duke@435 4780
duke@435 4781 Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
duke@435 4782 if (not_pos != NULL) {
duke@435 4783 PreserveJVMState pjvms(this);
duke@435 4784 set_control(not_pos);
duke@435 4785
duke@435 4786 // (6) length must not be negative.
duke@435 4787 if (!length_never_negative) {
duke@435 4788 generate_negative_guard(copy_length, slow_region);
duke@435 4789 }
duke@435 4790
kvn@1271 4791 // copy_length is 0.
iveresov@2606 4792 if (!stopped() && dest_uninitialized) {
duke@435 4793 Node* dest_length = alloc->in(AllocateNode::ALength);
kvn@3407 4794 if (copy_length->eqv_uncast(dest_length)
duke@435 4795 || _gvn.find_int_con(dest_length, 1) <= 0) {
kvn@1271 4796 // There is no zeroing to do. No need for a secondary raw memory barrier.
duke@435 4797 } else {
duke@435 4798 // Clear the whole thing since there are no source elements to copy.
duke@435 4799 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4800 intcon(0), NULL,
duke@435 4801 alloc->in(AllocateNode::AllocSize));
kvn@1271 4802 // Use a secondary InitializeNode as raw memory barrier.
kvn@1271 4803 // Currently it is needed only on this path since other
kvn@1271 4804 // paths have stub or runtime calls as raw memory barriers.
kvn@1271 4805 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
kvn@1271 4806 Compile::AliasIdxRaw,
kvn@1271 4807 top())->as_Initialize();
kvn@1271 4808 init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
duke@435 4809 }
duke@435 4810 }
duke@435 4811
duke@435 4812 // Present the results of the fast call.
duke@435 4813 result_region->init_req(zero_path, control());
duke@435 4814 result_i_o ->init_req(zero_path, i_o());
duke@435 4815 result_memory->init_req(zero_path, memory(adr_type));
duke@435 4816 }
duke@435 4817
iveresov@2606 4818 if (!stopped() && dest_uninitialized) {
duke@435 4819 // We have to initialize the *uncopied* part of the array to zero.
duke@435 4820 // The copy destination is the slice dest[off..off+len]. The other slices
duke@435 4821 // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
duke@435 4822 Node* dest_size = alloc->in(AllocateNode::AllocSize);
duke@435 4823 Node* dest_length = alloc->in(AllocateNode::ALength);
duke@435 4824 Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
duke@435 4825 copy_length) );
duke@435 4826
duke@435 4827 // If there is a head section that needs zeroing, do it now.
duke@435 4828 if (find_int_con(dest_offset, -1) != 0) {
duke@435 4829 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4830 intcon(0), dest_offset,
duke@435 4831 NULL);
duke@435 4832 }
duke@435 4833
duke@435 4834 // Next, perform a dynamic check on the tail length.
duke@435 4835 // It is often zero, and we can win big if we prove this.
duke@435 4836 // There are two wins: Avoid generating the ClearArray
duke@435 4837 // with its attendant messy index arithmetic, and upgrade
duke@435 4838 // the copy to a more hardware-friendly word size of 64 bits.
duke@435 4839 Node* tail_ctl = NULL;
kvn@3407 4840 if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
duke@435 4841 Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
duke@435 4842 Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
duke@435 4843 tail_ctl = generate_slow_guard(bol_lt, NULL);
duke@435 4844 assert(tail_ctl != NULL || !stopped(), "must be an outcome");
duke@435 4845 }
duke@435 4846
duke@435 4847 // At this point, let's assume there is no tail.
duke@435 4848 if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
duke@435 4849 // There is no tail. Try an upgrade to a 64-bit copy.
duke@435 4850 bool didit = false;
duke@435 4851 { PreserveJVMState pjvms(this);
duke@435 4852 didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
duke@435 4853 src, src_offset, dest, dest_offset,
iveresov@2606 4854 dest_size, dest_uninitialized);
duke@435 4855 if (didit) {
duke@435 4856 // Present the results of the block-copying fast call.
duke@435 4857 result_region->init_req(bcopy_path, control());
duke@435 4858 result_i_o ->init_req(bcopy_path, i_o());
duke@435 4859 result_memory->init_req(bcopy_path, memory(adr_type));
duke@435 4860 }
duke@435 4861 }
duke@435 4862 if (didit)
duke@435 4863 set_control(top()); // no regular fast path
duke@435 4864 }
duke@435 4865
duke@435 4866 // Clear the tail, if any.
duke@435 4867 if (tail_ctl != NULL) {
duke@435 4868 Node* notail_ctl = stopped() ? NULL : control();
duke@435 4869 set_control(tail_ctl);
duke@435 4870 if (notail_ctl == NULL) {
duke@435 4871 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4872 dest_tail, NULL,
duke@435 4873 dest_size);
duke@435 4874 } else {
duke@435 4875 // Make a local merge.
duke@435 4876 Node* done_ctl = new(C,3) RegionNode(3);
duke@435 4877 Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
duke@435 4878 done_ctl->init_req(1, notail_ctl);
duke@435 4879 done_mem->init_req(1, memory(adr_type));
duke@435 4880 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 4881 dest_tail, NULL,
duke@435 4882 dest_size);
duke@435 4883 done_ctl->init_req(2, control());
duke@435 4884 done_mem->init_req(2, memory(adr_type));
duke@435 4885 set_control( _gvn.transform(done_ctl) );
duke@435 4886 set_memory( _gvn.transform(done_mem), adr_type );
duke@435 4887 }
duke@435 4888 }
duke@435 4889 }
duke@435 4890
duke@435 4891 BasicType copy_type = basic_elem_type;
duke@435 4892 assert(basic_elem_type != T_ARRAY, "caller must fix this");
duke@435 4893 if (!stopped() && copy_type == T_OBJECT) {
duke@435 4894 // If src and dest have compatible element types, we can copy bits.
duke@435 4895 // Types S[] and D[] are compatible if D is a supertype of S.
duke@435 4896 //
duke@435 4897 // If they are not, we will use checked_oop_disjoint_arraycopy,
duke@435 4898 // which performs a fast optimistic per-oop check, and backs off
duke@435 4899 // further to JVM_ArrayCopy on the first per-oop check that fails.
duke@435 4900 // (Actually, we don't move raw bits only; the GC requires card marks.)
duke@435 4901
duke@435 4902 // Get the klassOop for both src and dest
duke@435 4903 Node* src_klass = load_object_klass(src);
duke@435 4904 Node* dest_klass = load_object_klass(dest);
duke@435 4905
duke@435 4906 // Generate the subtype check.
duke@435 4907 // This might fold up statically, or then again it might not.
duke@435 4908 //
duke@435 4909 // Non-static example: Copying List<String>.elements to a new String[].
duke@435 4910 // The backing store for a List<String> is always an Object[],
duke@435 4911 // but its elements are always type String, if the generic types
duke@435 4912 // are correct at the source level.
duke@435 4913 //
duke@435 4914 // Test S[] against D[], not S against D, because (probably)
duke@435 4915 // the secondary supertype cache is less busy for S[] than S.
duke@435 4916 // This usually only matters when D is an interface.
duke@435 4917 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
duke@435 4918 // Plug failing path into checked_oop_disjoint_arraycopy
duke@435 4919 if (not_subtype_ctrl != top()) {
duke@435 4920 PreserveJVMState pjvms(this);
duke@435 4921 set_control(not_subtype_ctrl);
duke@435 4922 // (At this point we can assume disjoint_bases, since types differ.)
stefank@3391 4923 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
duke@435 4924 Node* p1 = basic_plus_adr(dest_klass, ek_offset);
kvn@599 4925 Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
duke@435 4926 Node* dest_elem_klass = _gvn.transform(n1);
duke@435 4927 Node* cv = generate_checkcast_arraycopy(adr_type,
duke@435 4928 dest_elem_klass,
duke@435 4929 src, src_offset, dest, dest_offset,
iveresov@2606 4930 ConvI2X(copy_length), dest_uninitialized);
duke@435 4931 if (cv == NULL) cv = intcon(-1); // failure (no stub available)
duke@435 4932 checked_control = control();
duke@435 4933 checked_i_o = i_o();
duke@435 4934 checked_mem = memory(adr_type);
duke@435 4935 checked_value = cv;
duke@435 4936 }
duke@435 4937 // At this point we know we do not need type checks on oop stores.
duke@435 4938
duke@435 4939 // Let's see if we need card marks:
duke@435 4940 if (alloc != NULL && use_ReduceInitialCardMarks()) {
duke@435 4941 // If we do not need card marks, copy using the jint or jlong stub.
coleenp@548 4942 copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
kvn@464 4943 assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
duke@435 4944 "sizes agree");
duke@435 4945 }
duke@435 4946 }
duke@435 4947
duke@435 4948 if (!stopped()) {
duke@435 4949 // Generate the fast path, if possible.
duke@435 4950 PreserveJVMState pjvms(this);
duke@435 4951 generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
duke@435 4952 src, src_offset, dest, dest_offset,
iveresov@2606 4953 ConvI2X(copy_length), dest_uninitialized);
duke@435 4954
duke@435 4955 // Present the results of the fast call.
duke@435 4956 result_region->init_req(fast_path, control());
duke@435 4957 result_i_o ->init_req(fast_path, i_o());
duke@435 4958 result_memory->init_req(fast_path, memory(adr_type));
duke@435 4959 }
duke@435 4960
duke@435 4961 // Here are all the slow paths up to this point, in one bundle:
duke@435 4962 slow_control = top();
duke@435 4963 if (slow_region != NULL)
duke@435 4964 slow_control = _gvn.transform(slow_region);
duke@435 4965 debug_only(slow_region = (RegionNode*)badAddress);
duke@435 4966
duke@435 4967 set_control(checked_control);
duke@435 4968 if (!stopped()) {
duke@435 4969 // Clean up after the checked call.
duke@435 4970 // The returned value is either 0 or -1^K,
duke@435 4971 // where K = number of partially transferred array elements.
duke@435 4972 Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
duke@435 4973 Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
duke@435 4974 IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
duke@435 4975
duke@435 4976 // If it is 0, we are done, so transfer to the end.
duke@435 4977 Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
duke@435 4978 result_region->init_req(checked_path, checks_done);
duke@435 4979 result_i_o ->init_req(checked_path, checked_i_o);
duke@435 4980 result_memory->init_req(checked_path, checked_mem);
duke@435 4981
duke@435 4982 // If it is not zero, merge into the slow call.
duke@435 4983 set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
duke@435 4984 RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
duke@435 4985 PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
duke@435 4986 PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
duke@435 4987 record_for_igvn(slow_reg2);
duke@435 4988 slow_reg2 ->init_req(1, slow_control);
duke@435 4989 slow_i_o2 ->init_req(1, slow_i_o);
duke@435 4990 slow_mem2 ->init_req(1, slow_mem);
duke@435 4991 slow_reg2 ->init_req(2, control());
kvn@1268 4992 slow_i_o2 ->init_req(2, checked_i_o);
kvn@1268 4993 slow_mem2 ->init_req(2, checked_mem);
duke@435 4994
duke@435 4995 slow_control = _gvn.transform(slow_reg2);
duke@435 4996 slow_i_o = _gvn.transform(slow_i_o2);
duke@435 4997 slow_mem = _gvn.transform(slow_mem2);
duke@435 4998
duke@435 4999 if (alloc != NULL) {
duke@435 5000 // We'll restart from the very beginning, after zeroing the whole thing.
duke@435 5001 // This can cause double writes, but that's OK since dest is brand new.
duke@435 5002 // So we ignore the low 31 bits of the value returned from the stub.
duke@435 5003 } else {
duke@435 5004 // We must continue the copy exactly where it failed, or else
duke@435 5005 // another thread might see the wrong number of writes to dest.
duke@435 5006 Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
duke@435 5007 Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
duke@435 5008 slow_offset->init_req(1, intcon(0));
duke@435 5009 slow_offset->init_req(2, checked_offset);
duke@435 5010 slow_offset = _gvn.transform(slow_offset);
duke@435 5011
duke@435 5012 // Adjust the arguments by the conditionally incoming offset.
duke@435 5013 Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
duke@435 5014 Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
duke@435 5015 Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
duke@435 5016
duke@435 5017 // Tweak the node variables to adjust the code produced below:
duke@435 5018 src_offset = src_off_plus;
duke@435 5019 dest_offset = dest_off_plus;
duke@435 5020 copy_length = length_minus;
duke@435 5021 }
duke@435 5022 }
duke@435 5023
duke@435 5024 set_control(slow_control);
duke@435 5025 if (!stopped()) {
duke@435 5026 // Generate the slow path, if needed.
duke@435 5027 PreserveJVMState pjvms(this); // replace_in_map may trash the map
duke@435 5028
duke@435 5029 set_memory(slow_mem, adr_type);
duke@435 5030 set_i_o(slow_i_o);
duke@435 5031
iveresov@2606 5032 if (dest_uninitialized) {
duke@435 5033 generate_clear_array(adr_type, dest, basic_elem_type,
duke@435 5034 intcon(0), NULL,
duke@435 5035 alloc->in(AllocateNode::AllocSize));
duke@435 5036 }
duke@435 5037
duke@435 5038 generate_slow_arraycopy(adr_type,
duke@435 5039 src, src_offset, dest, dest_offset,
iveresov@2606 5040 copy_length, /*dest_uninitialized*/false);
duke@435 5041
duke@435 5042 result_region->init_req(slow_call_path, control());
duke@435 5043 result_i_o ->init_req(slow_call_path, i_o());
duke@435 5044 result_memory->init_req(slow_call_path, memory(adr_type));
duke@435 5045 }
duke@435 5046
duke@435 5047 // Remove unused edges.
duke@435 5048 for (uint i = 1; i < result_region->req(); i++) {
duke@435 5049 if (result_region->in(i) == NULL)
duke@435 5050 result_region->init_req(i, top());
duke@435 5051 }
duke@435 5052
duke@435 5053 // Finished; return the combined state.
duke@435 5054 set_control( _gvn.transform(result_region) );
duke@435 5055 set_i_o( _gvn.transform(result_i_o) );
duke@435 5056 set_memory( _gvn.transform(result_memory), adr_type );
duke@435 5057
duke@435 5058 // The memory edges above are precise in order to model effects around
twisti@1040 5059 // array copies accurately to allow value numbering of field loads around
duke@435 5060 // arraycopy. Such field loads, both before and after, are common in Java
duke@435 5061 // collections and similar classes involving header/array data structures.
duke@435 5062 //
duke@435 5063 // But with low number of register or when some registers are used or killed
duke@435 5064 // by arraycopy calls it causes registers spilling on stack. See 6544710.
duke@435 5065 // The next memory barrier is added to avoid it. If the arraycopy can be
duke@435 5066 // optimized away (which it can, sometimes) then we can manually remove
duke@435 5067 // the membar also.
kvn@1393 5068 //
kvn@1393 5069 // Do not let reads from the cloned object float above the arraycopy.
roland@3392 5070 if (alloc != NULL) {
roland@3392 5071 // Do not let stores that initialize this object be reordered with
roland@3392 5072 // a subsequent store that would make this object accessible by
roland@3392 5073 // other threads.
roland@3392 5074 // Record what AllocateNode this StoreStore protects so that
roland@3392 5075 // escape analysis can go from the MemBarStoreStoreNode to the
roland@3392 5076 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
roland@3392 5077 // based on the escape status of the AllocateNode.
roland@3392 5078 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
roland@3392 5079 } else if (InsertMemBarAfterArraycopy)
duke@435 5080 insert_mem_bar(Op_MemBarCPUOrder);
duke@435 5081 }
duke@435 5082
duke@435 5083
duke@435 5084 // Helper function which determines if an arraycopy immediately follows
duke@435 5085 // an allocation, with no intervening tests or other escapes for the object.
duke@435 5086 AllocateArrayNode*
duke@435 5087 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
duke@435 5088 RegionNode* slow_region) {
duke@435 5089 if (stopped()) return NULL; // no fast path
duke@435 5090 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
duke@435 5091
duke@435 5092 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
duke@435 5093 if (alloc == NULL) return NULL;
duke@435 5094
duke@435 5095 Node* rawmem = memory(Compile::AliasIdxRaw);
duke@435 5096 // Is the allocation's memory state untouched?
duke@435 5097 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
duke@435 5098 // Bail out if there have been raw-memory effects since the allocation.
duke@435 5099 // (Example: There might have been a call or safepoint.)
duke@435 5100 return NULL;
duke@435 5101 }
duke@435 5102 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
duke@435 5103 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
duke@435 5104 return NULL;
duke@435 5105 }
duke@435 5106
duke@435 5107 // There must be no unexpected observers of this allocation.
duke@435 5108 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
duke@435 5109 Node* obs = ptr->fast_out(i);
duke@435 5110 if (obs != this->map()) {
duke@435 5111 return NULL;
duke@435 5112 }
duke@435 5113 }
duke@435 5114
duke@435 5115 // This arraycopy must unconditionally follow the allocation of the ptr.
duke@435 5116 Node* alloc_ctl = ptr->in(0);
duke@435 5117 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
duke@435 5118
duke@435 5119 Node* ctl = control();
duke@435 5120 while (ctl != alloc_ctl) {
duke@435 5121 // There may be guards which feed into the slow_region.
duke@435 5122 // Any other control flow means that we might not get a chance
duke@435 5123 // to finish initializing the allocated object.
duke@435 5124 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
duke@435 5125 IfNode* iff = ctl->in(0)->as_If();
duke@435 5126 Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
duke@435 5127 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
duke@435 5128 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
duke@435 5129 ctl = iff->in(0); // This test feeds the known slow_region.
duke@435 5130 continue;
duke@435 5131 }
duke@435 5132 // One more try: Various low-level checks bottom out in
duke@435 5133 // uncommon traps. If the debug-info of the trap omits
duke@435 5134 // any reference to the allocation, as we've already
duke@435 5135 // observed, then there can be no objection to the trap.
duke@435 5136 bool found_trap = false;
duke@435 5137 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
duke@435 5138 Node* obs = not_ctl->fast_out(j);
duke@435 5139 if (obs->in(0) == not_ctl && obs->is_Call() &&
twisti@2103 5140 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
duke@435 5141 found_trap = true; break;
duke@435 5142 }
duke@435 5143 }
duke@435 5144 if (found_trap) {
duke@435 5145 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
duke@435 5146 continue;
duke@435 5147 }
duke@435 5148 }
duke@435 5149 return NULL;
duke@435 5150 }
duke@435 5151
duke@435 5152 // If we get this far, we have an allocation which immediately
duke@435 5153 // precedes the arraycopy, and we can take over zeroing the new object.
duke@435 5154 // The arraycopy will finish the initialization, and provide
duke@435 5155 // a new control state to which we will anchor the destination pointer.
duke@435 5156
duke@435 5157 return alloc;
duke@435 5158 }
duke@435 5159
duke@435 5160 // Helper for initialization of arrays, creating a ClearArray.
duke@435 5161 // It writes zero bits in [start..end), within the body of an array object.
duke@435 5162 // The memory effects are all chained onto the 'adr_type' alias category.
duke@435 5163 //
duke@435 5164 // Since the object is otherwise uninitialized, we are free
duke@435 5165 // to put a little "slop" around the edges of the cleared area,
duke@435 5166 // as long as it does not go back into the array's header,
duke@435 5167 // or beyond the array end within the heap.
duke@435 5168 //
duke@435 5169 // The lower edge can be rounded down to the nearest jint and the
duke@435 5170 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
duke@435 5171 //
duke@435 5172 // Arguments:
duke@435 5173 // adr_type memory slice where writes are generated
duke@435 5174 // dest oop of the destination array
duke@435 5175 // basic_elem_type element type of the destination
duke@435 5176 // slice_idx array index of first element to store
duke@435 5177 // slice_len number of elements to store (or NULL)
duke@435 5178 // dest_size total size in bytes of the array object
duke@435 5179 //
duke@435 5180 // Exactly one of slice_len or dest_size must be non-NULL.
duke@435 5181 // If dest_size is non-NULL, zeroing extends to the end of the object.
duke@435 5182 // If slice_len is non-NULL, the slice_idx value must be a constant.
duke@435 5183 void
duke@435 5184 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
duke@435 5185 Node* dest,
duke@435 5186 BasicType basic_elem_type,
duke@435 5187 Node* slice_idx,
duke@435 5188 Node* slice_len,
duke@435 5189 Node* dest_size) {
duke@435 5190 // one or the other but not both of slice_len and dest_size:
duke@435 5191 assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
duke@435 5192 if (slice_len == NULL) slice_len = top();
duke@435 5193 if (dest_size == NULL) dest_size = top();
duke@435 5194
duke@435 5195 // operate on this memory slice:
duke@435 5196 Node* mem = memory(adr_type); // memory slice to operate on
duke@435 5197
duke@435 5198 // scaling and rounding of indexes:
kvn@464 5199 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5200 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
duke@435 5201 int clear_low = (-1 << scale) & (BytesPerInt - 1);
duke@435 5202 int bump_bit = (-1 << scale) & BytesPerInt;
duke@435 5203
duke@435 5204 // determine constant starts and ends
duke@435 5205 const intptr_t BIG_NEG = -128;
duke@435 5206 assert(BIG_NEG + 2*abase < 0, "neg enough");
duke@435 5207 intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
duke@435 5208 intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
duke@435 5209 if (slice_len_con == 0) {
duke@435 5210 return; // nothing to do here
duke@435 5211 }
duke@435 5212 intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
duke@435 5213 intptr_t end_con = find_intptr_t_con(dest_size, -1);
duke@435 5214 if (slice_idx_con >= 0 && slice_len_con >= 0) {
duke@435 5215 assert(end_con < 0, "not two cons");
duke@435 5216 end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
duke@435 5217 BytesPerLong);
duke@435 5218 }
duke@435 5219
duke@435 5220 if (start_con >= 0 && end_con >= 0) {
duke@435 5221 // Constant start and end. Simple.
duke@435 5222 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5223 start_con, end_con, &_gvn);
duke@435 5224 } else if (start_con >= 0 && dest_size != top()) {
duke@435 5225 // Constant start, pre-rounded end after the tail of the array.
duke@435 5226 Node* end = dest_size;
duke@435 5227 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5228 start_con, end, &_gvn);
duke@435 5229 } else if (start_con >= 0 && slice_len != top()) {
duke@435 5230 // Constant start, non-constant end. End needs rounding up.
duke@435 5231 // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
duke@435 5232 intptr_t end_base = abase + (slice_idx_con << scale);
duke@435 5233 int end_round = (-1 << scale) & (BytesPerLong - 1);
duke@435 5234 Node* end = ConvI2X(slice_len);
duke@435 5235 if (scale != 0)
duke@435 5236 end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
duke@435 5237 end_base += end_round;
duke@435 5238 end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
duke@435 5239 end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
duke@435 5240 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5241 start_con, end, &_gvn);
duke@435 5242 } else if (start_con < 0 && dest_size != top()) {
duke@435 5243 // Non-constant start, pre-rounded end after the tail of the array.
duke@435 5244 // This is almost certainly a "round-to-end" operation.
duke@435 5245 Node* start = slice_idx;
duke@435 5246 start = ConvI2X(start);
duke@435 5247 if (scale != 0)
duke@435 5248 start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
duke@435 5249 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
duke@435 5250 if ((bump_bit | clear_low) != 0) {
duke@435 5251 int to_clear = (bump_bit | clear_low);
duke@435 5252 // Align up mod 8, then store a jint zero unconditionally
duke@435 5253 // just before the mod-8 boundary.
coleenp@548 5254 if (((abase + bump_bit) & ~to_clear) - bump_bit
coleenp@548 5255 < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
coleenp@548 5256 bump_bit = 0;
coleenp@548 5257 assert((abase & to_clear) == 0, "array base must be long-aligned");
coleenp@548 5258 } else {
coleenp@548 5259 // Bump 'start' up to (or past) the next jint boundary:
coleenp@548 5260 start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
coleenp@548 5261 assert((abase & clear_low) == 0, "array base must be int-aligned");
coleenp@548 5262 }
duke@435 5263 // Round bumped 'start' down to jlong boundary in body of array.
duke@435 5264 start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
coleenp@548 5265 if (bump_bit != 0) {
coleenp@548 5266 // Store a zero to the immediately preceding jint:
coleenp@548 5267 Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
coleenp@548 5268 Node* p1 = basic_plus_adr(dest, x1);
coleenp@548 5269 mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
coleenp@548 5270 mem = _gvn.transform(mem);
coleenp@548 5271 }
duke@435 5272 }
duke@435 5273 Node* end = dest_size; // pre-rounded
duke@435 5274 mem = ClearArrayNode::clear_memory(control(), mem, dest,
duke@435 5275 start, end, &_gvn);
duke@435 5276 } else {
duke@435 5277 // Non-constant start, unrounded non-constant end.
duke@435 5278 // (Nobody zeroes a random midsection of an array using this routine.)
duke@435 5279 ShouldNotReachHere(); // fix caller
duke@435 5280 }
duke@435 5281
duke@435 5282 // Done.
duke@435 5283 set_memory(mem, adr_type);
duke@435 5284 }
duke@435 5285
duke@435 5286
duke@435 5287 bool
duke@435 5288 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
duke@435 5289 BasicType basic_elem_type,
duke@435 5290 AllocateNode* alloc,
duke@435 5291 Node* src, Node* src_offset,
duke@435 5292 Node* dest, Node* dest_offset,
iveresov@2606 5293 Node* dest_size, bool dest_uninitialized) {
duke@435 5294 // See if there is an advantage from block transfer.
kvn@464 5295 int scale = exact_log2(type2aelembytes(basic_elem_type));
duke@435 5296 if (scale >= LogBytesPerLong)
duke@435 5297 return false; // it is already a block transfer
duke@435 5298
duke@435 5299 // Look at the alignment of the starting offsets.
duke@435 5300 int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@2939 5301
kvn@2939 5302 intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
kvn@2939 5303 intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
kvn@2939 5304 if (src_off_con < 0 || dest_off_con < 0)
duke@435 5305 // At present, we can only understand constants.
duke@435 5306 return false;
duke@435 5307
kvn@2939 5308 intptr_t src_off = abase + (src_off_con << scale);
kvn@2939 5309 intptr_t dest_off = abase + (dest_off_con << scale);
kvn@2939 5310
duke@435 5311 if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
duke@435 5312 // Non-aligned; too bad.
duke@435 5313 // One more chance: Pick off an initial 32-bit word.
duke@435 5314 // This is a common case, since abase can be odd mod 8.
duke@435 5315 if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
duke@435 5316 ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
duke@435 5317 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5318 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5319 Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
duke@435 5320 store_to_memory(control(), dptr, sval, T_INT, adr_type);
duke@435 5321 src_off += BytesPerInt;
duke@435 5322 dest_off += BytesPerInt;
duke@435 5323 } else {
duke@435 5324 return false;
duke@435 5325 }
duke@435 5326 }
duke@435 5327 assert(src_off % BytesPerLong == 0, "");
duke@435 5328 assert(dest_off % BytesPerLong == 0, "");
duke@435 5329
duke@435 5330 // Do this copy by giant steps.
duke@435 5331 Node* sptr = basic_plus_adr(src, src_off);
duke@435 5332 Node* dptr = basic_plus_adr(dest, dest_off);
duke@435 5333 Node* countx = dest_size;
duke@435 5334 countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
duke@435 5335 countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
duke@435 5336
duke@435 5337 bool disjoint_bases = true; // since alloc != NULL
duke@435 5338 generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
iveresov@2606 5339 sptr, NULL, dptr, NULL, countx, dest_uninitialized);
duke@435 5340
duke@435 5341 return true;
duke@435 5342 }
duke@435 5343
duke@435 5344
duke@435 5345 // Helper function; generates code for the slow case.
duke@435 5346 // We make a call to a runtime method which emulates the native method,
duke@435 5347 // but without the native wrapper overhead.
duke@435 5348 void
duke@435 5349 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
duke@435 5350 Node* src, Node* src_offset,
duke@435 5351 Node* dest, Node* dest_offset,
iveresov@2606 5352 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5353 assert(!dest_uninitialized, "Invariant");
duke@435 5354 Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
duke@435 5355 OptoRuntime::slow_arraycopy_Type(),
duke@435 5356 OptoRuntime::slow_arraycopy_Java(),
duke@435 5357 "slow_arraycopy", adr_type,
duke@435 5358 src, src_offset, dest, dest_offset,
duke@435 5359 copy_length);
duke@435 5360
duke@435 5361 // Handle exceptions thrown by this fellow:
duke@435 5362 make_slow_call_ex(call, env()->Throwable_klass(), false);
duke@435 5363 }
duke@435 5364
duke@435 5365 // Helper function; generates code for cases requiring runtime checks.
duke@435 5366 Node*
duke@435 5367 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
duke@435 5368 Node* dest_elem_klass,
duke@435 5369 Node* src, Node* src_offset,
duke@435 5370 Node* dest, Node* dest_offset,
iveresov@2606 5371 Node* copy_length, bool dest_uninitialized) {
duke@435 5372 if (stopped()) return NULL;
duke@435 5373
iveresov@2606 5374 address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
duke@435 5375 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5376 return NULL;
duke@435 5377 }
duke@435 5378
duke@435 5379 // Pick out the parameters required to perform a store-check
duke@435 5380 // for the target array. This is an optimistic check. It will
duke@435 5381 // look in each non-null element's class, at the desired klass's
duke@435 5382 // super_check_offset, for the desired klass.
stefank@3391 5383 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 5384 Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
kvn@1964 5385 Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
never@2199 5386 Node* check_offset = ConvI2X(_gvn.transform(n3));
duke@435 5387 Node* check_value = dest_elem_klass;
duke@435 5388
duke@435 5389 Node* src_start = array_element_address(src, src_offset, T_OBJECT);
duke@435 5390 Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
duke@435 5391
duke@435 5392 // (We know the arrays are never conjoint, because their types differ.)
duke@435 5393 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5394 OptoRuntime::checkcast_arraycopy_Type(),
duke@435 5395 copyfunc_addr, "checkcast_arraycopy", adr_type,
duke@435 5396 // five arguments, of which two are
duke@435 5397 // intptr_t (jlong in LP64)
duke@435 5398 src_start, dest_start,
duke@435 5399 copy_length XTOP,
duke@435 5400 check_offset XTOP,
duke@435 5401 check_value);
duke@435 5402
duke@435 5403 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5404 }
duke@435 5405
duke@435 5406
duke@435 5407 // Helper function; generates code for cases requiring runtime checks.
duke@435 5408 Node*
duke@435 5409 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
duke@435 5410 Node* src, Node* src_offset,
duke@435 5411 Node* dest, Node* dest_offset,
iveresov@2606 5412 Node* copy_length, bool dest_uninitialized) {
iveresov@2606 5413 assert(!dest_uninitialized, "Invariant");
duke@435 5414 if (stopped()) return NULL;
duke@435 5415 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 5416 if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
duke@435 5417 return NULL;
duke@435 5418 }
duke@435 5419
duke@435 5420 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5421 OptoRuntime::generic_arraycopy_Type(),
duke@435 5422 copyfunc_addr, "generic_arraycopy", adr_type,
duke@435 5423 src, src_offset, dest, dest_offset, copy_length);
duke@435 5424
duke@435 5425 return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
duke@435 5426 }
duke@435 5427
duke@435 5428 // Helper function; generates the fast out-of-line call to an arraycopy stub.
duke@435 5429 void
duke@435 5430 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
duke@435 5431 BasicType basic_elem_type,
duke@435 5432 bool disjoint_bases,
duke@435 5433 Node* src, Node* src_offset,
duke@435 5434 Node* dest, Node* dest_offset,
iveresov@2606 5435 Node* copy_length, bool dest_uninitialized) {
duke@435 5436 if (stopped()) return; // nothing to do
duke@435 5437
duke@435 5438 Node* src_start = src;
duke@435 5439 Node* dest_start = dest;
duke@435 5440 if (src_offset != NULL || dest_offset != NULL) {
duke@435 5441 assert(src_offset != NULL && dest_offset != NULL, "");
duke@435 5442 src_start = array_element_address(src, src_offset, basic_elem_type);
duke@435 5443 dest_start = array_element_address(dest, dest_offset, basic_elem_type);
duke@435 5444 }
duke@435 5445
duke@435 5446 // Figure out which arraycopy runtime method to call.
duke@435 5447 const char* copyfunc_name = "arraycopy";
duke@435 5448 address copyfunc_addr =
duke@435 5449 basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
iveresov@2606 5450 disjoint_bases, copyfunc_name, dest_uninitialized);
duke@435 5451
duke@435 5452 // Call it. Note that the count_ix value is not scaled to a byte-size.
duke@435 5453 make_runtime_call(RC_LEAF|RC_NO_FP,
duke@435 5454 OptoRuntime::fast_arraycopy_Type(),
duke@435 5455 copyfunc_addr, copyfunc_name, adr_type,
duke@435 5456 src_start, dest_start, copy_length XTOP);
duke@435 5457 }
johnc@2781 5458
johnc@2781 5459 //----------------------------inline_reference_get----------------------------
johnc@2781 5460
johnc@2781 5461 bool LibraryCallKit::inline_reference_get() {
johnc@2781 5462 const int nargs = 1; // self
johnc@2781 5463
johnc@2781 5464 guarantee(java_lang_ref_Reference::referent_offset > 0,
johnc@2781 5465 "should have already been set");
johnc@2781 5466
johnc@2781 5467 int referent_offset = java_lang_ref_Reference::referent_offset;
johnc@2781 5468
johnc@2781 5469 // Restore the stack and pop off the argument
johnc@2781 5470 _sp += nargs;
johnc@2781 5471 Node *reference_obj = pop();
johnc@2781 5472
johnc@2781 5473 // Null check on self without removing any arguments.
johnc@2781 5474 _sp += nargs;
johnc@2781 5475 reference_obj = do_null_check(reference_obj, T_OBJECT);
johnc@2781 5476 _sp -= nargs;;
johnc@2781 5477
johnc@2781 5478 if (stopped()) return true;
johnc@2781 5479
johnc@2781 5480 Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
johnc@2781 5481
johnc@2781 5482 ciInstanceKlass* klass = env()->Object_klass();
johnc@2781 5483 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
johnc@2781 5484
johnc@2781 5485 Node* no_ctrl = NULL;
johnc@2781 5486 Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
johnc@2781 5487
johnc@2781 5488 // Use the pre-barrier to record the value in the referent field
johnc@2781 5489 pre_barrier(false /* do_load */,
johnc@2781 5490 control(),
johnc@2790 5491 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
johnc@2781 5492 result /* pre_val */,
johnc@2781 5493 T_OBJECT);
johnc@2781 5494
kvn@4002 5495 // Add memory barrier to prevent commoning reads from this field
kvn@4002 5496 // across safepoint since GC can change its value.
kvn@4002 5497 insert_mem_bar(Op_MemBarCPUOrder);
kvn@4002 5498
johnc@2781 5499 push(result);
johnc@2781 5500 return true;
johnc@2781 5501 }

mercurial