src/cpu/sparc/vm/assembler_sparc.hpp

Wed, 30 Apr 2014 14:14:01 -0700

author
kvn
date
Wed, 30 Apr 2014 14:14:01 -0700
changeset 6653
03214612e77e
parent 6620
17b2fbdb6637
child 6876
710a3c8b516e
child 7027
b20a35eae442
permissions
-rw-r--r--

8035936: SIGBUS in StubRoutines::aesencryptBlock, solaris-sparc
Summary: Fix the arbitrary alignment issue in SPARC AES crypto stub routines.
Reviewed-by: kvn, iveresov
Contributed-by: shrinivas.joshi@oracle.com

duke@435 1 /*
kvn@6653 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 27
twisti@4323 28 #include "asm/register.hpp"
duke@435 29
duke@435 30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 31 // level; i.e., what you write
duke@435 32 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 33
duke@435 34 class Assembler : public AbstractAssembler {
duke@435 35 friend class AbstractAssembler;
twisti@1162 36 friend class AddressLiteral;
duke@435 37
duke@435 38 // code patchers need various routines like inv_wdisp()
duke@435 39 friend class NativeInstruction;
duke@435 40 friend class NativeGeneralJump;
duke@435 41 friend class Relocation;
duke@435 42 friend class Label;
duke@435 43
duke@435 44 public:
duke@435 45 // op carries format info; see page 62 & 267
duke@435 46
duke@435 47 enum ops {
duke@435 48 call_op = 1, // fmt 1
duke@435 49 branch_op = 0, // also sethi (fmt2)
duke@435 50 arith_op = 2, // fmt 3, arith & misc
duke@435 51 ldst_op = 3 // fmt 3, load/store
duke@435 52 };
duke@435 53
duke@435 54 enum op2s {
duke@435 55 bpr_op2 = 3,
duke@435 56 fb_op2 = 6,
duke@435 57 fbp_op2 = 5,
duke@435 58 br_op2 = 2,
duke@435 59 bp_op2 = 1,
duke@435 60 sethi_op2 = 4
duke@435 61 };
duke@435 62
duke@435 63 enum op3s {
duke@435 64 // selected op3s
duke@435 65 add_op3 = 0x00,
duke@435 66 and_op3 = 0x01,
duke@435 67 or_op3 = 0x02,
duke@435 68 xor_op3 = 0x03,
duke@435 69 sub_op3 = 0x04,
duke@435 70 andn_op3 = 0x05,
duke@435 71 orn_op3 = 0x06,
duke@435 72 xnor_op3 = 0x07,
duke@435 73 addc_op3 = 0x08,
duke@435 74 mulx_op3 = 0x09,
duke@435 75 umul_op3 = 0x0a,
duke@435 76 smul_op3 = 0x0b,
duke@435 77 subc_op3 = 0x0c,
duke@435 78 udivx_op3 = 0x0d,
duke@435 79 udiv_op3 = 0x0e,
duke@435 80 sdiv_op3 = 0x0f,
duke@435 81
duke@435 82 addcc_op3 = 0x10,
duke@435 83 andcc_op3 = 0x11,
duke@435 84 orcc_op3 = 0x12,
duke@435 85 xorcc_op3 = 0x13,
duke@435 86 subcc_op3 = 0x14,
duke@435 87 andncc_op3 = 0x15,
duke@435 88 orncc_op3 = 0x16,
duke@435 89 xnorcc_op3 = 0x17,
duke@435 90 addccc_op3 = 0x18,
kvn@6312 91 aes4_op3 = 0x19,
duke@435 92 umulcc_op3 = 0x1a,
duke@435 93 smulcc_op3 = 0x1b,
duke@435 94 subccc_op3 = 0x1c,
duke@435 95 udivcc_op3 = 0x1e,
duke@435 96 sdivcc_op3 = 0x1f,
duke@435 97
duke@435 98 taddcc_op3 = 0x20,
duke@435 99 tsubcc_op3 = 0x21,
duke@435 100 taddcctv_op3 = 0x22,
duke@435 101 tsubcctv_op3 = 0x23,
duke@435 102 mulscc_op3 = 0x24,
duke@435 103 sll_op3 = 0x25,
duke@435 104 sllx_op3 = 0x25,
duke@435 105 srl_op3 = 0x26,
duke@435 106 srlx_op3 = 0x26,
duke@435 107 sra_op3 = 0x27,
duke@435 108 srax_op3 = 0x27,
duke@435 109 rdreg_op3 = 0x28,
duke@435 110 membar_op3 = 0x28,
duke@435 111
duke@435 112 flushw_op3 = 0x2b,
duke@435 113 movcc_op3 = 0x2c,
duke@435 114 sdivx_op3 = 0x2d,
duke@435 115 popc_op3 = 0x2e,
duke@435 116 movr_op3 = 0x2f,
duke@435 117
duke@435 118 sir_op3 = 0x30,
duke@435 119 wrreg_op3 = 0x30,
duke@435 120 saved_op3 = 0x31,
duke@435 121
duke@435 122 fpop1_op3 = 0x34,
duke@435 123 fpop2_op3 = 0x35,
duke@435 124 impdep1_op3 = 0x36,
kvn@6312 125 aes3_op3 = 0x36,
kvn@6653 126 alignaddr_op3 = 0x36,
kvn@6653 127 faligndata_op3 = 0x36,
kvn@6312 128 flog3_op3 = 0x36,
kvn@6653 129 edge_op3 = 0x36,
kvn@6653 130 fsrc_op3 = 0x36,
duke@435 131 impdep2_op3 = 0x37,
kvn@6653 132 stpartialf_op3 = 0x37,
duke@435 133 jmpl_op3 = 0x38,
duke@435 134 rett_op3 = 0x39,
duke@435 135 trap_op3 = 0x3a,
duke@435 136 flush_op3 = 0x3b,
duke@435 137 save_op3 = 0x3c,
duke@435 138 restore_op3 = 0x3d,
duke@435 139 done_op3 = 0x3e,
duke@435 140 retry_op3 = 0x3e,
duke@435 141
duke@435 142 lduw_op3 = 0x00,
duke@435 143 ldub_op3 = 0x01,
duke@435 144 lduh_op3 = 0x02,
duke@435 145 ldd_op3 = 0x03,
duke@435 146 stw_op3 = 0x04,
duke@435 147 stb_op3 = 0x05,
duke@435 148 sth_op3 = 0x06,
duke@435 149 std_op3 = 0x07,
duke@435 150 ldsw_op3 = 0x08,
duke@435 151 ldsb_op3 = 0x09,
duke@435 152 ldsh_op3 = 0x0a,
duke@435 153 ldx_op3 = 0x0b,
duke@435 154
duke@435 155 stx_op3 = 0x0e,
duke@435 156 swap_op3 = 0x0f,
duke@435 157
duke@435 158 stwa_op3 = 0x14,
duke@435 159 stxa_op3 = 0x1e,
duke@435 160
duke@435 161 ldf_op3 = 0x20,
duke@435 162 ldfsr_op3 = 0x21,
duke@435 163 ldqf_op3 = 0x22,
duke@435 164 lddf_op3 = 0x23,
duke@435 165 stf_op3 = 0x24,
duke@435 166 stfsr_op3 = 0x25,
duke@435 167 stqf_op3 = 0x26,
duke@435 168 stdf_op3 = 0x27,
duke@435 169
duke@435 170 prefetch_op3 = 0x2d,
duke@435 171
duke@435 172 casa_op3 = 0x3c,
duke@435 173 casxa_op3 = 0x3e,
duke@435 174
kvn@3001 175 mftoi_op3 = 0x36,
kvn@3001 176
duke@435 177 alt_bit_op3 = 0x10,
duke@435 178 cc_bit_op3 = 0x10
duke@435 179 };
duke@435 180
duke@435 181 enum opfs {
duke@435 182 // selected opfs
kvn@6653 183 edge8n_opf = 0x01,
kvn@6653 184
kvn@6312 185 fmovs_opf = 0x01,
kvn@6312 186 fmovd_opf = 0x02,
duke@435 187
kvn@6312 188 fnegs_opf = 0x05,
kvn@6312 189 fnegd_opf = 0x06,
duke@435 190
kvn@6653 191 alignaddr_opf = 0x18,
kvn@6653 192
kvn@6312 193 fadds_opf = 0x41,
kvn@6312 194 faddd_opf = 0x42,
kvn@6312 195 fsubs_opf = 0x45,
kvn@6312 196 fsubd_opf = 0x46,
duke@435 197
kvn@6653 198 faligndata_opf = 0x48,
kvn@6653 199
kvn@6312 200 fmuls_opf = 0x49,
kvn@6312 201 fmuld_opf = 0x4a,
kvn@6312 202 fdivs_opf = 0x4d,
kvn@6312 203 fdivd_opf = 0x4e,
duke@435 204
kvn@6312 205 fcmps_opf = 0x51,
kvn@6312 206 fcmpd_opf = 0x52,
duke@435 207
kvn@6312 208 fstox_opf = 0x81,
kvn@6312 209 fdtox_opf = 0x82,
kvn@6312 210 fxtos_opf = 0x84,
kvn@6312 211 fxtod_opf = 0x88,
kvn@6312 212 fitos_opf = 0xc4,
kvn@6312 213 fdtos_opf = 0xc6,
kvn@6312 214 fitod_opf = 0xc8,
kvn@6312 215 fstod_opf = 0xc9,
kvn@6312 216 fstoi_opf = 0xd1,
kvn@6312 217 fdtoi_opf = 0xd2,
kvn@3001 218
kvn@6312 219 mdtox_opf = 0x110,
kvn@6312 220 mstouw_opf = 0x111,
kvn@6312 221 mstosw_opf = 0x113,
kvn@6312 222 mxtod_opf = 0x118,
kvn@6312 223 mwtos_opf = 0x119,
kvn@6312 224
kvn@6312 225 aes_kexpand0_opf = 0x130,
kvn@6312 226 aes_kexpand2_opf = 0x131
kvn@6312 227 };
kvn@6312 228
kvn@6312 229 enum op5s {
kvn@6312 230 aes_eround01_op5 = 0x00,
kvn@6312 231 aes_eround23_op5 = 0x01,
kvn@6312 232 aes_dround01_op5 = 0x02,
kvn@6312 233 aes_dround23_op5 = 0x03,
kvn@6312 234 aes_eround01_l_op5 = 0x04,
kvn@6312 235 aes_eround23_l_op5 = 0x05,
kvn@6312 236 aes_dround01_l_op5 = 0x06,
kvn@6312 237 aes_dround23_l_op5 = 0x07,
kvn@6312 238 aes_kexpand1_op5 = 0x08
duke@435 239 };
duke@435 240
kvn@3037 241 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
duke@435 242
duke@435 243 enum Condition {
duke@435 244 // for FBfcc & FBPfcc instruction
duke@435 245 f_never = 0,
duke@435 246 f_notEqual = 1,
duke@435 247 f_notZero = 1,
duke@435 248 f_lessOrGreater = 2,
duke@435 249 f_unorderedOrLess = 3,
duke@435 250 f_less = 4,
duke@435 251 f_unorderedOrGreater = 5,
duke@435 252 f_greater = 6,
duke@435 253 f_unordered = 7,
duke@435 254 f_always = 8,
duke@435 255 f_equal = 9,
duke@435 256 f_zero = 9,
duke@435 257 f_unorderedOrEqual = 10,
duke@435 258 f_greaterOrEqual = 11,
duke@435 259 f_unorderedOrGreaterOrEqual = 12,
duke@435 260 f_lessOrEqual = 13,
duke@435 261 f_unorderedOrLessOrEqual = 14,
duke@435 262 f_ordered = 15,
duke@435 263
duke@435 264 // V8 coproc, pp 123 v8 manual
duke@435 265
duke@435 266 cp_always = 8,
duke@435 267 cp_never = 0,
duke@435 268 cp_3 = 7,
duke@435 269 cp_2 = 6,
duke@435 270 cp_2or3 = 5,
duke@435 271 cp_1 = 4,
duke@435 272 cp_1or3 = 3,
duke@435 273 cp_1or2 = 2,
duke@435 274 cp_1or2or3 = 1,
duke@435 275 cp_0 = 9,
duke@435 276 cp_0or3 = 10,
duke@435 277 cp_0or2 = 11,
duke@435 278 cp_0or2or3 = 12,
duke@435 279 cp_0or1 = 13,
duke@435 280 cp_0or1or3 = 14,
duke@435 281 cp_0or1or2 = 15,
duke@435 282
duke@435 283
duke@435 284 // for integers
duke@435 285
duke@435 286 never = 0,
duke@435 287 equal = 1,
duke@435 288 zero = 1,
duke@435 289 lessEqual = 2,
duke@435 290 less = 3,
duke@435 291 lessEqualUnsigned = 4,
duke@435 292 lessUnsigned = 5,
duke@435 293 carrySet = 5,
duke@435 294 negative = 6,
duke@435 295 overflowSet = 7,
duke@435 296 always = 8,
duke@435 297 notEqual = 9,
duke@435 298 notZero = 9,
duke@435 299 greater = 10,
duke@435 300 greaterEqual = 11,
duke@435 301 greaterUnsigned = 12,
duke@435 302 greaterEqualUnsigned = 13,
duke@435 303 carryClear = 13,
duke@435 304 positive = 14,
duke@435 305 overflowClear = 15
duke@435 306 };
duke@435 307
duke@435 308 enum CC {
duke@435 309 icc = 0, xcc = 2,
duke@435 310 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 311 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 312 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 313 };
duke@435 314
duke@435 315 enum PrefetchFcn {
duke@435 316 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 317 };
duke@435 318
duke@435 319 public:
duke@435 320 // Helper functions for groups of instructions
duke@435 321
duke@435 322 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 323
duke@435 324 enum Membar_mask_bits { // page 184, v9
duke@435 325 StoreStore = 1 << 3,
duke@435 326 LoadStore = 1 << 2,
duke@435 327 StoreLoad = 1 << 1,
duke@435 328 LoadLoad = 1 << 0,
duke@435 329
duke@435 330 Sync = 1 << 6,
duke@435 331 MemIssue = 1 << 5,
duke@435 332 Lookaside = 1 << 4
duke@435 333 };
duke@435 334
iveresov@2441 335 static bool is_in_wdisp_range(address a, address b, int nbits) {
iveresov@2441 336 intptr_t d = intptr_t(b) - intptr_t(a);
iveresov@2441 337 return is_simm(d, nbits + 2);
iveresov@2441 338 }
duke@435 339
kvn@3037 340 address target_distance(Label& L) {
kvn@3037 341 // Assembler::target(L) should be called only when
kvn@3037 342 // a branch instruction is emitted since non-bound
kvn@3037 343 // labels record current pc() as a branch address.
kvn@3037 344 if (L.is_bound()) return target(L);
kvn@3037 345 // Return current address for non-bound labels.
kvn@3037 346 return pc();
kvn@3037 347 }
kvn@3037 348
iveresov@2203 349 // test if label is in simm16 range in words (wdisp16).
iveresov@2203 350 bool is_in_wdisp16_range(Label& L) {
kvn@3037 351 return is_in_wdisp_range(target_distance(L), pc(), 16);
iveresov@2441 352 }
iveresov@2441 353 // test if the distance between two addresses fits in simm30 range in words
iveresov@2441 354 static bool is_in_wdisp30_range(address a, address b) {
iveresov@2441 355 return is_in_wdisp_range(a, b, 30);
iveresov@2203 356 }
iveresov@2203 357
duke@435 358 enum ASIs { // page 72, v9
kvn@3092 359 ASI_PRIMARY = 0x80,
kvn@3092 360 ASI_PRIMARY_NOFAULT = 0x82,
kvn@3092 361 ASI_PRIMARY_LITTLE = 0x88,
kvn@6653 362 // 8x8-bit partial store
kvn@6653 363 ASI_PST8_PRIMARY = 0xC0,
kvn@3052 364 // Block initializing store
kvn@3052 365 ASI_ST_BLKINIT_PRIMARY = 0xE2,
kvn@3052 366 // Most-Recently-Used (MRU) BIS variant
kvn@3052 367 ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
duke@435 368 // add more from book as needed
duke@435 369 };
duke@435 370
duke@435 371 protected:
duke@435 372 // helpers
duke@435 373
duke@435 374 // x is supposed to fit in a field "nbits" wide
duke@435 375 // and be sign-extended. Check the range.
duke@435 376
duke@435 377 static void assert_signed_range(intptr_t x, int nbits) {
never@2950 378 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
never@2950 379 err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
duke@435 380 }
duke@435 381
duke@435 382 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 383 assert( (x & 3) == 0, "not word aligned");
duke@435 384 assert_signed_range(x, nbits + 2);
duke@435 385 }
duke@435 386
duke@435 387 static void assert_unsigned_const(int x, int nbits) {
duke@435 388 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 389 }
duke@435 390
duke@435 391 // fields: note bits numbered from LSB = 0,
duke@435 392 // fields known by inclusive bit range
duke@435 393
duke@435 394 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 395 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 396 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 397 }
duke@435 398
duke@435 399 // inverse of u_field
duke@435 400
duke@435 401 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 402 juint r = juint(x) >> lo_bit;
duke@435 403 r &= fmask( hi_bit, lo_bit);
duke@435 404 return int(r);
duke@435 405 }
duke@435 406
duke@435 407
duke@435 408 // signed version: extract from field and sign-extend
duke@435 409
duke@435 410 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 411 int sign_shift = 31 - hi_bit;
duke@435 412 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 413 }
duke@435 414
duke@435 415 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 416 // LSB = 0), and an unsigned value for the field,
duke@435 417 // shift it into the field
duke@435 418
duke@435 419 #ifdef ASSERT
duke@435 420 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 421 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 422 "value out of range");
duke@435 423 int r = x << lo_bit;
duke@435 424 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 425 return r;
duke@435 426 }
duke@435 427 #else
duke@435 428 // make sure this is inlined as it will reduce code size significantly
duke@435 429 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 430 #endif
duke@435 431
duke@435 432 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 433 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 434 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 435 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 436
duke@435 437 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 438
duke@435 439 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 440 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 441 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 442
duke@435 443 static int op( int x) { return u_field(x, 31, 30); }
duke@435 444 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 445 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 446 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 447 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 448 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 449 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 450 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 451 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 452 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 453 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 454 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 455 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 456 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 457 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 458 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 459 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 460 static int opf_low5( int w) { return u_field(w, 9, 5); }
kvn@6312 461 static int op5( int x) { return u_field(x, 8, 5); }
duke@435 462 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 463 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 464 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 465
kvn@3037 466 static bool is_cbcond( int x ) {
kvn@3037 467 return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
kvn@3037 468 inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
kvn@3037 469 }
kvn@3037 470 static bool is_cxb( int x ) {
kvn@3037 471 assert(is_cbcond(x), "wrong instruction");
kvn@3037 472 return (x & (1<<21)) != 0;
kvn@3037 473 }
kvn@3037 474 static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
kvn@3037 475 static int inv_cond_cbcond(int x) {
kvn@3037 476 assert(is_cbcond(x), "wrong instruction");
kvn@3037 477 return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
kvn@3037 478 }
kvn@3037 479
duke@435 480 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 481 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 482
duke@435 483 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 484 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 485 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
kvn@6312 486 static int fs3(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13, 9); };
duke@435 487
duke@435 488 // some float instructions use this encoding on the op3 field
duke@435 489 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 490 int r;
duke@435 491 switch(w) {
duke@435 492 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 493 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 494 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 495 default: ShouldNotReachHere(); break;
duke@435 496 }
duke@435 497 return op3(r);
duke@435 498 }
duke@435 499
duke@435 500
duke@435 501 // compute inverse of simm
duke@435 502 static int inv_simm(int x, int nbits) {
duke@435 503 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 504 }
duke@435 505
duke@435 506 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 507
duke@435 508 // signed immediate, in low bits, nbits long
duke@435 509 static int simm(int x, int nbits) {
duke@435 510 assert_signed_range(x, nbits);
duke@435 511 return x & (( 1 << nbits ) - 1);
duke@435 512 }
duke@435 513
duke@435 514 // compute inverse of wdisp16
duke@435 515 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 516 int lo = x & (( 1 << 14 ) - 1);
duke@435 517 int hi = (x >> 20) & 3;
duke@435 518 if (hi >= 2) hi |= ~1;
duke@435 519 return (((hi << 14) | lo) << 2) + pos;
duke@435 520 }
duke@435 521
duke@435 522 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 523 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 524 intptr_t xx = x - off;
duke@435 525 assert_signed_word_disp_range(xx, 16);
duke@435 526 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 527 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 528 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 529 return r;
duke@435 530 }
duke@435 531
kvn@3037 532 // compute inverse of wdisp10
kvn@3037 533 static intptr_t inv_wdisp10(int x, intptr_t pos) {
kvn@3037 534 assert(is_cbcond(x), "wrong instruction");
kvn@3037 535 int lo = inv_u_field(x, 12, 5);
kvn@3037 536 int hi = (x >> 19) & 3;
kvn@3037 537 if (hi >= 2) hi |= ~1;
kvn@3037 538 return (((hi << 8) | lo) << 2) + pos;
kvn@3037 539 }
kvn@3037 540
kvn@3037 541 // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
kvn@3037 542 static int wdisp10(intptr_t x, intptr_t off) {
kvn@3037 543 assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
kvn@3037 544 intptr_t xx = x - off;
kvn@3037 545 assert_signed_word_disp_range(xx, 10);
kvn@3037 546 int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
kvn@3037 547 | ( ( (xx >> (2+8)) & 3 ) << 19 );
kvn@3037 548 // Have to fake cbcond instruction to pass assert in inv_wdisp10()
kvn@3037 549 assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
kvn@3037 550 return r;
kvn@3037 551 }
duke@435 552
duke@435 553 // word displacement in low-order nbits bits
duke@435 554
duke@435 555 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 556 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 557 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 558 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 559 : pre_sign_extend;
duke@435 560 return (r << 2) + pos;
duke@435 561 }
duke@435 562
duke@435 563 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 564 intptr_t xx = x - off;
duke@435 565 assert_signed_word_disp_range(xx, nbits);
duke@435 566 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 567 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 568 return r;
duke@435 569 }
duke@435 570
duke@435 571
duke@435 572 // Extract the top 32 bits in a 64 bit word
duke@435 573 static int32_t hi32( int64_t x ) {
duke@435 574 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 575 return r;
duke@435 576 }
duke@435 577
duke@435 578 // given a sethi instruction, extract the constant, left-justified
duke@435 579 static int inv_hi22( int x ) {
duke@435 580 return x << 10;
duke@435 581 }
duke@435 582
duke@435 583 // create an imm22 field, given a 32-bit left-justified constant
duke@435 584 static int hi22( int x ) {
duke@435 585 int r = int( juint(x) >> 10 );
duke@435 586 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 587 return r;
duke@435 588 }
duke@435 589
duke@435 590 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 591 static int low10( int x ) {
duke@435 592 return x & ((1 << 10) - 1);
duke@435 593 }
duke@435 594
kvn@6312 595 // AES crypto instructions supported only on certain processors
kvn@6312 596 static void aes_only() { assert( VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
kvn@6312 597
kvn@6312 598 // instruction only in VIS1
kvn@6312 599 static void vis1_only() { assert( VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
kvn@6312 600
kvn@6653 601 // instruction only in VIS2
kvn@6653 602 static void vis2_only() { assert( VM_Version::has_vis2(), "This instruction only works on SPARC with VIS2"); }
kvn@6653 603
kvn@3001 604 // instruction only in VIS3
kvn@3001 605 static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
kvn@3001 606
duke@435 607 // instruction only in v9
morris@5283 608 static void v9_only() { } // do nothing
duke@435 609
duke@435 610 // instruction deprecated in v9
duke@435 611 static void v9_dep() { } // do nothing for now
duke@435 612
duke@435 613 // v8 has no CC field
duke@435 614 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 615
duke@435 616 protected:
duke@435 617 // Simple delay-slot scheme:
duke@435 618 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 619 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 620 // Also, when putting an instruction into a delay slot, you must say
duke@435 621 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 622 // delay-slot instructions.
duke@435 623 // To implement this, we use a simple FSA
duke@435 624
duke@435 625 #ifdef ASSERT
duke@435 626 #define CHECK_DELAY
duke@435 627 #endif
duke@435 628 #ifdef CHECK_DELAY
duke@435 629 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 630 #endif
duke@435 631
duke@435 632 public:
duke@435 633 // Tells assembler next instruction must NOT be in delay slot.
duke@435 634 // Use at start of multinstruction macros.
duke@435 635 void assert_not_delayed() {
duke@435 636 // This is a separate overloading to avoid creation of string constants
duke@435 637 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 638 #ifdef CHECK_DELAY
duke@435 639 assert_not_delayed("next instruction should not be a delay slot");
duke@435 640 #endif
duke@435 641 }
duke@435 642 void assert_not_delayed(const char* msg) {
duke@435 643 #ifdef CHECK_DELAY
jcoomes@1845 644 assert(delay_state == no_delay, msg);
duke@435 645 #endif
duke@435 646 }
duke@435 647
duke@435 648 protected:
iveresov@6620 649 // Insert a nop if the previous is cbcond
iveresov@6620 650 void insert_nop_after_cbcond() {
iveresov@6620 651 if (UseCBCond && cbcond_before()) {
iveresov@6620 652 nop();
iveresov@6620 653 }
iveresov@6620 654 }
duke@435 655 // Delay slot helpers
duke@435 656 // cti is called when emitting control-transfer instruction,
duke@435 657 // BEFORE doing the emitting.
duke@435 658 // Only effective when assertion-checking is enabled.
duke@435 659 void cti() {
iveresov@6620 660 // A cbcond instruction immediately followed by a CTI
iveresov@6620 661 // instruction introduces pipeline stalls, we need to avoid that.
iveresov@6620 662 no_cbcond_before();
duke@435 663 #ifdef CHECK_DELAY
duke@435 664 assert_not_delayed("cti should not be in delay slot");
duke@435 665 #endif
duke@435 666 }
duke@435 667
duke@435 668 // called when emitting cti with a delay slot, AFTER emitting
duke@435 669 void has_delay_slot() {
duke@435 670 #ifdef CHECK_DELAY
duke@435 671 assert_not_delayed("just checking");
duke@435 672 delay_state = at_delay_slot;
duke@435 673 #endif
duke@435 674 }
duke@435 675
kvn@3037 676 // cbcond instruction should not be generated one after an other
kvn@3037 677 bool cbcond_before() {
kvn@3037 678 if (offset() == 0) return false; // it is first instruction
kvn@3037 679 int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
kvn@3037 680 return is_cbcond(x);
kvn@3037 681 }
kvn@3037 682
kvn@3037 683 void no_cbcond_before() {
kvn@3037 684 assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
kvn@3037 685 }
kvn@3049 686 public:
kvn@3049 687
kvn@3037 688 bool use_cbcond(Label& L) {
kvn@3037 689 if (!UseCBCond || cbcond_before()) return false;
kvn@3037 690 intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
kvn@3037 691 assert( (x & 3) == 0, "not word aligned");
twisti@3310 692 return is_simm12(x);
kvn@3037 693 }
kvn@3037 694
duke@435 695 // Tells assembler you know that next instruction is delayed
duke@435 696 Assembler* delayed() {
duke@435 697 #ifdef CHECK_DELAY
duke@435 698 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 699 delay_state = filling_delay_slot;
duke@435 700 #endif
duke@435 701 return this;
duke@435 702 }
duke@435 703
duke@435 704 void flush() {
duke@435 705 #ifdef CHECK_DELAY
duke@435 706 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 707 #endif
duke@435 708 AbstractAssembler::flush();
duke@435 709 }
duke@435 710
twisti@4412 711 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
twisti@4412 712 inline void emit_data(int x) { emit_int32(x); }
duke@435 713 inline void emit_data(int, RelocationHolder const&);
duke@435 714 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 715 // helper for above fcns
duke@435 716 inline void check_delay();
duke@435 717
duke@435 718
duke@435 719 public:
duke@435 720 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 721
duke@435 722 // pp 135 (addc was addx in v8)
duke@435 723
twisti@1162 724 inline void add(Register s1, Register s2, Register d );
twisti@4323 725 inline void add(Register s1, int simm13a, Register d );
duke@435 726
twisti@4412 727 void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 728 void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 729 void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 730 void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 731 void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 732 void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 733
kvn@3037 734
kvn@6312 735 // 4-operand AES instructions
kvn@6312 736
kvn@6312 737 void aes_eround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 738 void aes_eround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 739 void aes_dround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 740 void aes_dround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 741 void aes_eround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 742 void aes_eround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 743 void aes_dround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 744 void aes_dround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 745 void aes_kexpand1( FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | u_field(imm5a, 13, 9) | op5(aes_kexpand1_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 746
kvn@6312 747
kvn@6312 748 // 3-operand AES instructions
kvn@6312 749
kvn@6312 750 void aes_kexpand0( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand0_opf) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 751 void aes_kexpand2( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand2_opf) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 752
duke@435 753 // pp 136
duke@435 754
kvn@3037 755 inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
kvn@3037 756 inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 757
kvn@3037 758 // compare and branch
kvn@3037 759 inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
kvn@3037 760 inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
kvn@3037 761
kvn@3049 762 protected: // use MacroAssembler::br instead
kvn@3049 763
kvn@3049 764 // pp 138
kvn@3049 765
kvn@3049 766 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 767 inline void fb( Condition c, bool a, Label& L );
kvn@3049 768
kvn@3049 769 // pp 141
kvn@3049 770
kvn@3049 771 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 772 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 773
kvn@3049 774 // pp 144
kvn@3049 775
kvn@3049 776 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 777 inline void br( Condition c, bool a, Label& L );
kvn@3049 778
kvn@3049 779 // pp 146
kvn@3049 780
kvn@3049 781 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 782 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 783
duke@435 784 // pp 149
duke@435 785
duke@435 786 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 787 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 788
kvn@3037 789 public:
kvn@3037 790
duke@435 791 // pp 150
duke@435 792
duke@435 793 // These instructions compare the contents of s2 with the contents of
duke@435 794 // memory at address in s1. If the values are equal, the contents of memory
duke@435 795 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 796 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 797
twisti@4412 798 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
twisti@4412 799 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 800
duke@435 801 // pp 152
duke@435 802
twisti@4412 803 void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
twisti@4412 804 void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 805 void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
twisti@4412 806 void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 807 void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
twisti@4412 808 void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 809 void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
twisti@4412 810 void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 811
duke@435 812 // pp 155
duke@435 813
twisti@4412 814 void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
twisti@4412 815 void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 816
duke@435 817 // pp 156
duke@435 818
twisti@4412 819 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
twisti@4412 820 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 821
duke@435 822 // pp 157
duke@435 823
morris@5283 824 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
morris@5283 825 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 826
duke@435 827 // pp 159
duke@435 828
twisti@4412 829 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
twisti@4412 830 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 831
duke@435 832 // pp 160
duke@435 833
twisti@4412 834 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 835
duke@435 836 // pp 161
duke@435 837
twisti@4412 838 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
twisti@4412 839 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
duke@435 840
duke@435 841 // pp 162
duke@435 842
morris@5283 843 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 844
morris@5283 845 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 846
morris@5283 847 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 848
duke@435 849 // pp 163
duke@435 850
twisti@4412 851 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
twisti@4412 852 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
twisti@4412 853 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 854
kvn@6312 855 // FXORs/FXORd instructions
kvn@6312 856
kvn@6312 857 void fxor( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(flog3_op3) | fs1(s1, w) | opf(0x6E - w) | fs2(s2, w)); }
kvn@6312 858
duke@435 859 // pp 164
duke@435 860
twisti@4412 861 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 862
duke@435 863 // pp 165
duke@435 864
duke@435 865 inline void flush( Register s1, Register s2 );
duke@435 866 inline void flush( Register s1, int simm13a);
duke@435 867
duke@435 868 // pp 167
duke@435 869
twisti@4412 870 void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); }
duke@435 871
duke@435 872 // pp 168
duke@435 873
twisti@4412 874 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 875 // v8 unimp == illtrap(0)
duke@435 876
duke@435 877 // pp 169
duke@435 878
twisti@4412 879 void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
twisti@4412 880 void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 881
duke@435 882 // pp 170
duke@435 883
duke@435 884 void jmpl( Register s1, Register s2, Register d );
duke@435 885 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 886
duke@435 887 // 171
duke@435 888
twisti@1162 889 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
twisti@1162 890 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
twisti@1162 891
duke@435 892
duke@435 893 inline void ldfsr( Register s1, Register s2 );
duke@435 894 inline void ldfsr( Register s1, int simm13a);
duke@435 895 inline void ldxfsr( Register s1, Register s2 );
duke@435 896 inline void ldxfsr( Register s1, int simm13a);
duke@435 897
duke@435 898 // 173
duke@435 899
twisti@4412 900 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 901 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 902
duke@435 903 // pp 175, lduw is ld on v8
duke@435 904
duke@435 905 inline void ldsb( Register s1, Register s2, Register d );
duke@435 906 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 907 inline void ldsh( Register s1, Register s2, Register d );
duke@435 908 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 909 inline void ldsw( Register s1, Register s2, Register d );
duke@435 910 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 911 inline void ldub( Register s1, Register s2, Register d );
duke@435 912 inline void ldub( Register s1, int simm13a, Register d);
duke@435 913 inline void lduh( Register s1, Register s2, Register d );
duke@435 914 inline void lduh( Register s1, int simm13a, Register d);
duke@435 915 inline void lduw( Register s1, Register s2, Register d );
duke@435 916 inline void lduw( Register s1, int simm13a, Register d);
duke@435 917 inline void ldx( Register s1, Register s2, Register d );
duke@435 918 inline void ldx( Register s1, int simm13a, Register d);
duke@435 919 inline void ldd( Register s1, Register s2, Register d );
duke@435 920 inline void ldd( Register s1, int simm13a, Register d);
duke@435 921
duke@435 922 // pp 177
duke@435 923
twisti@4412 924 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 925 void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 926 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 927 void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 928 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 929 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 930 void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 931 void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 932 void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 933 void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 934 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 935 void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 936 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 937 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 938
duke@435 939 // pp 181
duke@435 940
twisti@4412 941 void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 942 void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 943 void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 944 void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 945 void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 946 void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 947 void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 948 void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 949 void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 950 void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 951 void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 952 void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 953 void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 954 void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 955 void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 956 void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 957 void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 958 void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 959 void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 960 void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 961 void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 962 void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 963 void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 964 void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 965
duke@435 966 // pp 183
duke@435 967
twisti@4412 968 void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 969
duke@435 970 // pp 185
duke@435 971
twisti@4412 972 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 973
duke@435 974 // pp 189
duke@435 975
twisti@4412 976 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 977
duke@435 978 // pp 191
duke@435 979
twisti@4412 980 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
twisti@4412 981 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 982
duke@435 983 // pp 195
duke@435 984
twisti@4412 985 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
twisti@4412 986 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 987
duke@435 988 // pp 196
duke@435 989
twisti@4412 990 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 991 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 992 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 993 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 994 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 995 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 996
duke@435 997 // pp 197
duke@435 998
twisti@4412 999 void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1000 void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1001 void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1002 void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1003 void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1004 void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1005 void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1006 void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1007
duke@435 1008 // pp 201
duke@435 1009
twisti@4412 1010 void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
duke@435 1011
duke@435 1012
duke@435 1013 // pp 202
duke@435 1014
twisti@4412 1015 void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
twisti@4412 1016 void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1017
duke@435 1018 // pp 203
duke@435 1019
twisti@4412 1020 void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
twisti@4323 1021 void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
twisti@4323 1022
twisti@4412 1023 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1024 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1025
duke@435 1026 // pp 208
duke@435 1027
duke@435 1028 // not implementing read privileged register
duke@435 1029
twisti@4412 1030 inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
twisti@4412 1031 inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
twisti@4412 1032 inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
twisti@4412 1033 inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
twisti@4412 1034 inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
twisti@4412 1035 inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1036
duke@435 1037 // pp 213
duke@435 1038
duke@435 1039 inline void rett( Register s1, Register s2);
duke@435 1040 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1041
duke@435 1042 // pp 214
duke@435 1043
twisti@4412 1044 void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
ysr@777 1045 void save( Register s1, int simm13a, Register d ) {
ysr@777 1046 // make sure frame is at least large enough for the register save area
ysr@777 1047 assert(-simm13a >= 16 * wordSize, "frame too small");
twisti@4412 1048 emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
ysr@777 1049 }
duke@435 1050
twisti@4412 1051 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1052 void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1053
duke@435 1054 // pp 216
duke@435 1055
twisti@4412 1056 void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
twisti@4412 1057 void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1058
duke@435 1059 // pp 217
duke@435 1060
duke@435 1061 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1062 // pp 218
duke@435 1063
twisti@4412 1064 void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1065 void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
twisti@4412 1066 void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1067 void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
twisti@4412 1068 void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1069 void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1070
twisti@4412 1071 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1072 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
twisti@4412 1073 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1074 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
twisti@4412 1075 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1076 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1077
duke@435 1078 // pp 220
duke@435 1079
twisti@4412 1080 void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1081
duke@435 1082 // pp 221
duke@435 1083
twisti@4412 1084 void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1085
duke@435 1086 // pp 222
duke@435 1087
twisti@1441 1088 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
duke@435 1089 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1090
duke@435 1091 inline void stfsr( Register s1, Register s2 );
duke@435 1092 inline void stfsr( Register s1, int simm13a);
duke@435 1093 inline void stxfsr( Register s1, Register s2 );
duke@435 1094 inline void stxfsr( Register s1, int simm13a);
duke@435 1095
duke@435 1096 // pp 224
duke@435 1097
twisti@4412 1098 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1099 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1100
duke@435 1101 // p 226
duke@435 1102
duke@435 1103 inline void stb( Register d, Register s1, Register s2 );
duke@435 1104 inline void stb( Register d, Register s1, int simm13a);
duke@435 1105 inline void sth( Register d, Register s1, Register s2 );
duke@435 1106 inline void sth( Register d, Register s1, int simm13a);
duke@435 1107 inline void stw( Register d, Register s1, Register s2 );
duke@435 1108 inline void stw( Register d, Register s1, int simm13a);
duke@435 1109 inline void stx( Register d, Register s1, Register s2 );
duke@435 1110 inline void stx( Register d, Register s1, int simm13a);
duke@435 1111 inline void std( Register d, Register s1, Register s2 );
duke@435 1112 inline void std( Register d, Register s1, int simm13a);
duke@435 1113
duke@435 1114 // pp 177
duke@435 1115
twisti@4412 1116 void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1117 void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1118 void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1119 void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1120 void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1121 void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1122 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1123 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1124 void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1125 void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1126
duke@435 1127 // pp 230
duke@435 1128
twisti@4412 1129 void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1130 void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@2350 1131
twisti@4412 1132 void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1133 void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1134 void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1135 void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1136 void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1137 void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1138
duke@435 1139 // pp 231
duke@435 1140
duke@435 1141 inline void swap( Register s1, Register s2, Register d );
duke@435 1142 inline void swap( Register s1, int simm13a, Register d);
duke@435 1143
duke@435 1144 // pp 232
duke@435 1145
twisti@4412 1146 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1147 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1148
duke@435 1149 // pp 234, note op in book is wrong, see pp 268
duke@435 1150
twisti@4412 1151 void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1152 void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1153
duke@435 1154 // pp 235
duke@435 1155
twisti@4412 1156 void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1157 void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1158
duke@435 1159 // pp 237
duke@435 1160
morris@5283 1161 void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
morris@5283 1162 void trap( Condition c, CC cc, Register s1, int trapa ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1163 // simple uncond. trap
duke@435 1164 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1165
duke@435 1166 // pp 239 omit write priv register for now
duke@435 1167
twisti@4412 1168 inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
twisti@4412 1169 inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
twisti@4412 1170 inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
duke@435 1171 rs1(s) |
duke@435 1172 op3(wrreg_op3) |
duke@435 1173 u_field(2, 29, 25) |
kvn@3092 1174 immed(true) |
duke@435 1175 simm(simm13a, 13)); }
twisti@4412 1176 inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
kvn@3092 1177 // wrasi(d, imm) stores (d xor imm) to asi
twisti@4412 1178 inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
kvn@3092 1179 u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
twisti@4412 1180 inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1181
kvn@3001 1182
kvn@6653 1183 // VIS1 instructions
kvn@6653 1184
kvn@6653 1185 void alignaddr( Register s1, Register s2, Register d ) { vis1_only(); emit_int32( op(arith_op) | rd(d) | op3(alignaddr_op3) | rs1(s1) | opf(alignaddr_opf) | rs2(s2)); }
kvn@6653 1186
kvn@6653 1187 void faligndata( FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(faligndata_op3) | fs1(s1, FloatRegisterImpl::D) | opf(faligndata_opf) | fs2(s2, FloatRegisterImpl::D)); }
kvn@6653 1188
kvn@6653 1189 void fsrc2( FloatRegisterImpl::Width w, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fsrc_op3) | opf(0x7A - w) | fs2(s2, w)); }
kvn@6653 1190
kvn@6653 1191 void stpartialf( Register s1, Register s2, FloatRegister d, int ia = -1 ) { vis1_only(); emit_int32( op(ldst_op) | fd(d, FloatRegisterImpl::D) | op3(stpartialf_op3) | rs1(s1) | imm_asi(ia) | rs2(s2)); }
kvn@6653 1192
kvn@6653 1193 // VIS2 instructions
kvn@6653 1194
kvn@6653 1195 void edge8n( Register s1, Register s2, Register d ) { vis2_only(); emit_int32( op(arith_op) | rd(d) | op3(edge_op3) | rs1(s1) | opf(edge8n_opf) | rs2(s2)); }
kvn@6653 1196
kvn@3001 1197 // VIS3 instructions
kvn@3001 1198
twisti@4412 1199 void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
twisti@4412 1200 void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
twisti@4412 1201 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
kvn@3001 1202
twisti@4412 1203 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
twisti@4412 1204 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
kvn@3001 1205
duke@435 1206 // Creation
duke@435 1207 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1208 #ifdef CHECK_DELAY
duke@435 1209 delay_state = no_delay;
duke@435 1210 #endif
duke@435 1211 }
duke@435 1212 };
duke@435 1213
stefank@2314 1214 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial