src/cpu/sparc/vm/assembler_sparc.hpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 6198
55fb97c4c58d
child 6620
17b2fbdb6637
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 27
twisti@4323 28 #include "asm/register.hpp"
duke@435 29
duke@435 30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 31 // level; i.e., what you write
duke@435 32 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 33
duke@435 34 class Assembler : public AbstractAssembler {
duke@435 35 friend class AbstractAssembler;
twisti@1162 36 friend class AddressLiteral;
duke@435 37
duke@435 38 // code patchers need various routines like inv_wdisp()
duke@435 39 friend class NativeInstruction;
duke@435 40 friend class NativeGeneralJump;
duke@435 41 friend class Relocation;
duke@435 42 friend class Label;
duke@435 43
duke@435 44 public:
duke@435 45 // op carries format info; see page 62 & 267
duke@435 46
duke@435 47 enum ops {
duke@435 48 call_op = 1, // fmt 1
duke@435 49 branch_op = 0, // also sethi (fmt2)
duke@435 50 arith_op = 2, // fmt 3, arith & misc
duke@435 51 ldst_op = 3 // fmt 3, load/store
duke@435 52 };
duke@435 53
duke@435 54 enum op2s {
duke@435 55 bpr_op2 = 3,
duke@435 56 fb_op2 = 6,
duke@435 57 fbp_op2 = 5,
duke@435 58 br_op2 = 2,
duke@435 59 bp_op2 = 1,
duke@435 60 sethi_op2 = 4
duke@435 61 };
duke@435 62
duke@435 63 enum op3s {
duke@435 64 // selected op3s
duke@435 65 add_op3 = 0x00,
duke@435 66 and_op3 = 0x01,
duke@435 67 or_op3 = 0x02,
duke@435 68 xor_op3 = 0x03,
duke@435 69 sub_op3 = 0x04,
duke@435 70 andn_op3 = 0x05,
duke@435 71 orn_op3 = 0x06,
duke@435 72 xnor_op3 = 0x07,
duke@435 73 addc_op3 = 0x08,
duke@435 74 mulx_op3 = 0x09,
duke@435 75 umul_op3 = 0x0a,
duke@435 76 smul_op3 = 0x0b,
duke@435 77 subc_op3 = 0x0c,
duke@435 78 udivx_op3 = 0x0d,
duke@435 79 udiv_op3 = 0x0e,
duke@435 80 sdiv_op3 = 0x0f,
duke@435 81
duke@435 82 addcc_op3 = 0x10,
duke@435 83 andcc_op3 = 0x11,
duke@435 84 orcc_op3 = 0x12,
duke@435 85 xorcc_op3 = 0x13,
duke@435 86 subcc_op3 = 0x14,
duke@435 87 andncc_op3 = 0x15,
duke@435 88 orncc_op3 = 0x16,
duke@435 89 xnorcc_op3 = 0x17,
duke@435 90 addccc_op3 = 0x18,
kvn@6312 91 aes4_op3 = 0x19,
duke@435 92 umulcc_op3 = 0x1a,
duke@435 93 smulcc_op3 = 0x1b,
duke@435 94 subccc_op3 = 0x1c,
duke@435 95 udivcc_op3 = 0x1e,
duke@435 96 sdivcc_op3 = 0x1f,
duke@435 97
duke@435 98 taddcc_op3 = 0x20,
duke@435 99 tsubcc_op3 = 0x21,
duke@435 100 taddcctv_op3 = 0x22,
duke@435 101 tsubcctv_op3 = 0x23,
duke@435 102 mulscc_op3 = 0x24,
duke@435 103 sll_op3 = 0x25,
duke@435 104 sllx_op3 = 0x25,
duke@435 105 srl_op3 = 0x26,
duke@435 106 srlx_op3 = 0x26,
duke@435 107 sra_op3 = 0x27,
duke@435 108 srax_op3 = 0x27,
duke@435 109 rdreg_op3 = 0x28,
duke@435 110 membar_op3 = 0x28,
duke@435 111
duke@435 112 flushw_op3 = 0x2b,
duke@435 113 movcc_op3 = 0x2c,
duke@435 114 sdivx_op3 = 0x2d,
duke@435 115 popc_op3 = 0x2e,
duke@435 116 movr_op3 = 0x2f,
duke@435 117
duke@435 118 sir_op3 = 0x30,
duke@435 119 wrreg_op3 = 0x30,
duke@435 120 saved_op3 = 0x31,
duke@435 121
duke@435 122 fpop1_op3 = 0x34,
duke@435 123 fpop2_op3 = 0x35,
duke@435 124 impdep1_op3 = 0x36,
kvn@6312 125 aes3_op3 = 0x36,
kvn@6312 126 flog3_op3 = 0x36,
duke@435 127 impdep2_op3 = 0x37,
duke@435 128 jmpl_op3 = 0x38,
duke@435 129 rett_op3 = 0x39,
duke@435 130 trap_op3 = 0x3a,
duke@435 131 flush_op3 = 0x3b,
duke@435 132 save_op3 = 0x3c,
duke@435 133 restore_op3 = 0x3d,
duke@435 134 done_op3 = 0x3e,
duke@435 135 retry_op3 = 0x3e,
duke@435 136
duke@435 137 lduw_op3 = 0x00,
duke@435 138 ldub_op3 = 0x01,
duke@435 139 lduh_op3 = 0x02,
duke@435 140 ldd_op3 = 0x03,
duke@435 141 stw_op3 = 0x04,
duke@435 142 stb_op3 = 0x05,
duke@435 143 sth_op3 = 0x06,
duke@435 144 std_op3 = 0x07,
duke@435 145 ldsw_op3 = 0x08,
duke@435 146 ldsb_op3 = 0x09,
duke@435 147 ldsh_op3 = 0x0a,
duke@435 148 ldx_op3 = 0x0b,
duke@435 149
duke@435 150 stx_op3 = 0x0e,
duke@435 151 swap_op3 = 0x0f,
duke@435 152
duke@435 153 stwa_op3 = 0x14,
duke@435 154 stxa_op3 = 0x1e,
duke@435 155
duke@435 156 ldf_op3 = 0x20,
duke@435 157 ldfsr_op3 = 0x21,
duke@435 158 ldqf_op3 = 0x22,
duke@435 159 lddf_op3 = 0x23,
duke@435 160 stf_op3 = 0x24,
duke@435 161 stfsr_op3 = 0x25,
duke@435 162 stqf_op3 = 0x26,
duke@435 163 stdf_op3 = 0x27,
duke@435 164
duke@435 165 prefetch_op3 = 0x2d,
duke@435 166
duke@435 167 casa_op3 = 0x3c,
duke@435 168 casxa_op3 = 0x3e,
duke@435 169
kvn@3001 170 mftoi_op3 = 0x36,
kvn@3001 171
duke@435 172 alt_bit_op3 = 0x10,
duke@435 173 cc_bit_op3 = 0x10
duke@435 174 };
duke@435 175
duke@435 176 enum opfs {
duke@435 177 // selected opfs
kvn@6312 178 fmovs_opf = 0x01,
kvn@6312 179 fmovd_opf = 0x02,
duke@435 180
kvn@6312 181 fnegs_opf = 0x05,
kvn@6312 182 fnegd_opf = 0x06,
duke@435 183
kvn@6312 184 fadds_opf = 0x41,
kvn@6312 185 faddd_opf = 0x42,
kvn@6312 186 fsubs_opf = 0x45,
kvn@6312 187 fsubd_opf = 0x46,
duke@435 188
kvn@6312 189 fmuls_opf = 0x49,
kvn@6312 190 fmuld_opf = 0x4a,
kvn@6312 191 fdivs_opf = 0x4d,
kvn@6312 192 fdivd_opf = 0x4e,
duke@435 193
kvn@6312 194 fcmps_opf = 0x51,
kvn@6312 195 fcmpd_opf = 0x52,
duke@435 196
kvn@6312 197 fstox_opf = 0x81,
kvn@6312 198 fdtox_opf = 0x82,
kvn@6312 199 fxtos_opf = 0x84,
kvn@6312 200 fxtod_opf = 0x88,
kvn@6312 201 fitos_opf = 0xc4,
kvn@6312 202 fdtos_opf = 0xc6,
kvn@6312 203 fitod_opf = 0xc8,
kvn@6312 204 fstod_opf = 0xc9,
kvn@6312 205 fstoi_opf = 0xd1,
kvn@6312 206 fdtoi_opf = 0xd2,
kvn@3001 207
kvn@6312 208 mdtox_opf = 0x110,
kvn@6312 209 mstouw_opf = 0x111,
kvn@6312 210 mstosw_opf = 0x113,
kvn@6312 211 mxtod_opf = 0x118,
kvn@6312 212 mwtos_opf = 0x119,
kvn@6312 213
kvn@6312 214 aes_kexpand0_opf = 0x130,
kvn@6312 215 aes_kexpand2_opf = 0x131
kvn@6312 216 };
kvn@6312 217
kvn@6312 218 enum op5s {
kvn@6312 219 aes_eround01_op5 = 0x00,
kvn@6312 220 aes_eround23_op5 = 0x01,
kvn@6312 221 aes_dround01_op5 = 0x02,
kvn@6312 222 aes_dround23_op5 = 0x03,
kvn@6312 223 aes_eround01_l_op5 = 0x04,
kvn@6312 224 aes_eround23_l_op5 = 0x05,
kvn@6312 225 aes_dround01_l_op5 = 0x06,
kvn@6312 226 aes_dround23_l_op5 = 0x07,
kvn@6312 227 aes_kexpand1_op5 = 0x08
duke@435 228 };
duke@435 229
kvn@3037 230 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
duke@435 231
duke@435 232 enum Condition {
duke@435 233 // for FBfcc & FBPfcc instruction
duke@435 234 f_never = 0,
duke@435 235 f_notEqual = 1,
duke@435 236 f_notZero = 1,
duke@435 237 f_lessOrGreater = 2,
duke@435 238 f_unorderedOrLess = 3,
duke@435 239 f_less = 4,
duke@435 240 f_unorderedOrGreater = 5,
duke@435 241 f_greater = 6,
duke@435 242 f_unordered = 7,
duke@435 243 f_always = 8,
duke@435 244 f_equal = 9,
duke@435 245 f_zero = 9,
duke@435 246 f_unorderedOrEqual = 10,
duke@435 247 f_greaterOrEqual = 11,
duke@435 248 f_unorderedOrGreaterOrEqual = 12,
duke@435 249 f_lessOrEqual = 13,
duke@435 250 f_unorderedOrLessOrEqual = 14,
duke@435 251 f_ordered = 15,
duke@435 252
duke@435 253 // V8 coproc, pp 123 v8 manual
duke@435 254
duke@435 255 cp_always = 8,
duke@435 256 cp_never = 0,
duke@435 257 cp_3 = 7,
duke@435 258 cp_2 = 6,
duke@435 259 cp_2or3 = 5,
duke@435 260 cp_1 = 4,
duke@435 261 cp_1or3 = 3,
duke@435 262 cp_1or2 = 2,
duke@435 263 cp_1or2or3 = 1,
duke@435 264 cp_0 = 9,
duke@435 265 cp_0or3 = 10,
duke@435 266 cp_0or2 = 11,
duke@435 267 cp_0or2or3 = 12,
duke@435 268 cp_0or1 = 13,
duke@435 269 cp_0or1or3 = 14,
duke@435 270 cp_0or1or2 = 15,
duke@435 271
duke@435 272
duke@435 273 // for integers
duke@435 274
duke@435 275 never = 0,
duke@435 276 equal = 1,
duke@435 277 zero = 1,
duke@435 278 lessEqual = 2,
duke@435 279 less = 3,
duke@435 280 lessEqualUnsigned = 4,
duke@435 281 lessUnsigned = 5,
duke@435 282 carrySet = 5,
duke@435 283 negative = 6,
duke@435 284 overflowSet = 7,
duke@435 285 always = 8,
duke@435 286 notEqual = 9,
duke@435 287 notZero = 9,
duke@435 288 greater = 10,
duke@435 289 greaterEqual = 11,
duke@435 290 greaterUnsigned = 12,
duke@435 291 greaterEqualUnsigned = 13,
duke@435 292 carryClear = 13,
duke@435 293 positive = 14,
duke@435 294 overflowClear = 15
duke@435 295 };
duke@435 296
duke@435 297 enum CC {
duke@435 298 icc = 0, xcc = 2,
duke@435 299 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 300 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 301 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 302 };
duke@435 303
duke@435 304 enum PrefetchFcn {
duke@435 305 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 306 };
duke@435 307
duke@435 308 public:
duke@435 309 // Helper functions for groups of instructions
duke@435 310
duke@435 311 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 312
duke@435 313 enum Membar_mask_bits { // page 184, v9
duke@435 314 StoreStore = 1 << 3,
duke@435 315 LoadStore = 1 << 2,
duke@435 316 StoreLoad = 1 << 1,
duke@435 317 LoadLoad = 1 << 0,
duke@435 318
duke@435 319 Sync = 1 << 6,
duke@435 320 MemIssue = 1 << 5,
duke@435 321 Lookaside = 1 << 4
duke@435 322 };
duke@435 323
iveresov@2441 324 static bool is_in_wdisp_range(address a, address b, int nbits) {
iveresov@2441 325 intptr_t d = intptr_t(b) - intptr_t(a);
iveresov@2441 326 return is_simm(d, nbits + 2);
iveresov@2441 327 }
duke@435 328
kvn@3037 329 address target_distance(Label& L) {
kvn@3037 330 // Assembler::target(L) should be called only when
kvn@3037 331 // a branch instruction is emitted since non-bound
kvn@3037 332 // labels record current pc() as a branch address.
kvn@3037 333 if (L.is_bound()) return target(L);
kvn@3037 334 // Return current address for non-bound labels.
kvn@3037 335 return pc();
kvn@3037 336 }
kvn@3037 337
iveresov@2203 338 // test if label is in simm16 range in words (wdisp16).
iveresov@2203 339 bool is_in_wdisp16_range(Label& L) {
kvn@3037 340 return is_in_wdisp_range(target_distance(L), pc(), 16);
iveresov@2441 341 }
iveresov@2441 342 // test if the distance between two addresses fits in simm30 range in words
iveresov@2441 343 static bool is_in_wdisp30_range(address a, address b) {
iveresov@2441 344 return is_in_wdisp_range(a, b, 30);
iveresov@2203 345 }
iveresov@2203 346
duke@435 347 enum ASIs { // page 72, v9
kvn@3092 348 ASI_PRIMARY = 0x80,
kvn@3092 349 ASI_PRIMARY_NOFAULT = 0x82,
kvn@3092 350 ASI_PRIMARY_LITTLE = 0x88,
kvn@3052 351 // Block initializing store
kvn@3052 352 ASI_ST_BLKINIT_PRIMARY = 0xE2,
kvn@3052 353 // Most-Recently-Used (MRU) BIS variant
kvn@3052 354 ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
duke@435 355 // add more from book as needed
duke@435 356 };
duke@435 357
duke@435 358 protected:
duke@435 359 // helpers
duke@435 360
duke@435 361 // x is supposed to fit in a field "nbits" wide
duke@435 362 // and be sign-extended. Check the range.
duke@435 363
duke@435 364 static void assert_signed_range(intptr_t x, int nbits) {
never@2950 365 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
never@2950 366 err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
duke@435 367 }
duke@435 368
duke@435 369 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 370 assert( (x & 3) == 0, "not word aligned");
duke@435 371 assert_signed_range(x, nbits + 2);
duke@435 372 }
duke@435 373
duke@435 374 static void assert_unsigned_const(int x, int nbits) {
duke@435 375 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 376 }
duke@435 377
duke@435 378 // fields: note bits numbered from LSB = 0,
duke@435 379 // fields known by inclusive bit range
duke@435 380
duke@435 381 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 382 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 383 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 384 }
duke@435 385
duke@435 386 // inverse of u_field
duke@435 387
duke@435 388 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 389 juint r = juint(x) >> lo_bit;
duke@435 390 r &= fmask( hi_bit, lo_bit);
duke@435 391 return int(r);
duke@435 392 }
duke@435 393
duke@435 394
duke@435 395 // signed version: extract from field and sign-extend
duke@435 396
duke@435 397 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 398 int sign_shift = 31 - hi_bit;
duke@435 399 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 400 }
duke@435 401
duke@435 402 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 403 // LSB = 0), and an unsigned value for the field,
duke@435 404 // shift it into the field
duke@435 405
duke@435 406 #ifdef ASSERT
duke@435 407 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 408 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 409 "value out of range");
duke@435 410 int r = x << lo_bit;
duke@435 411 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 412 return r;
duke@435 413 }
duke@435 414 #else
duke@435 415 // make sure this is inlined as it will reduce code size significantly
duke@435 416 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 417 #endif
duke@435 418
duke@435 419 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 420 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 421 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 422 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 423
duke@435 424 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 425
duke@435 426 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 427 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 428 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 429
duke@435 430 static int op( int x) { return u_field(x, 31, 30); }
duke@435 431 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 432 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 433 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 434 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 435 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 436 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 437 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 438 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 439 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 440 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 441 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 442 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 443 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 444 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 445 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 446 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 447 static int opf_low5( int w) { return u_field(w, 9, 5); }
kvn@6312 448 static int op5( int x) { return u_field(x, 8, 5); }
duke@435 449 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 450 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 451 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 452
kvn@3037 453 static bool is_cbcond( int x ) {
kvn@3037 454 return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
kvn@3037 455 inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
kvn@3037 456 }
kvn@3037 457 static bool is_cxb( int x ) {
kvn@3037 458 assert(is_cbcond(x), "wrong instruction");
kvn@3037 459 return (x & (1<<21)) != 0;
kvn@3037 460 }
kvn@3037 461 static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
kvn@3037 462 static int inv_cond_cbcond(int x) {
kvn@3037 463 assert(is_cbcond(x), "wrong instruction");
kvn@3037 464 return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
kvn@3037 465 }
kvn@3037 466
duke@435 467 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 468 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 469
duke@435 470 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 471 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 472 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
kvn@6312 473 static int fs3(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13, 9); };
duke@435 474
duke@435 475 // some float instructions use this encoding on the op3 field
duke@435 476 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 477 int r;
duke@435 478 switch(w) {
duke@435 479 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 480 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 481 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 482 default: ShouldNotReachHere(); break;
duke@435 483 }
duke@435 484 return op3(r);
duke@435 485 }
duke@435 486
duke@435 487
duke@435 488 // compute inverse of simm
duke@435 489 static int inv_simm(int x, int nbits) {
duke@435 490 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 491 }
duke@435 492
duke@435 493 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 494
duke@435 495 // signed immediate, in low bits, nbits long
duke@435 496 static int simm(int x, int nbits) {
duke@435 497 assert_signed_range(x, nbits);
duke@435 498 return x & (( 1 << nbits ) - 1);
duke@435 499 }
duke@435 500
duke@435 501 // compute inverse of wdisp16
duke@435 502 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 503 int lo = x & (( 1 << 14 ) - 1);
duke@435 504 int hi = (x >> 20) & 3;
duke@435 505 if (hi >= 2) hi |= ~1;
duke@435 506 return (((hi << 14) | lo) << 2) + pos;
duke@435 507 }
duke@435 508
duke@435 509 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 510 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 511 intptr_t xx = x - off;
duke@435 512 assert_signed_word_disp_range(xx, 16);
duke@435 513 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 514 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 515 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 516 return r;
duke@435 517 }
duke@435 518
kvn@3037 519 // compute inverse of wdisp10
kvn@3037 520 static intptr_t inv_wdisp10(int x, intptr_t pos) {
kvn@3037 521 assert(is_cbcond(x), "wrong instruction");
kvn@3037 522 int lo = inv_u_field(x, 12, 5);
kvn@3037 523 int hi = (x >> 19) & 3;
kvn@3037 524 if (hi >= 2) hi |= ~1;
kvn@3037 525 return (((hi << 8) | lo) << 2) + pos;
kvn@3037 526 }
kvn@3037 527
kvn@3037 528 // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
kvn@3037 529 static int wdisp10(intptr_t x, intptr_t off) {
kvn@3037 530 assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
kvn@3037 531 intptr_t xx = x - off;
kvn@3037 532 assert_signed_word_disp_range(xx, 10);
kvn@3037 533 int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
kvn@3037 534 | ( ( (xx >> (2+8)) & 3 ) << 19 );
kvn@3037 535 // Have to fake cbcond instruction to pass assert in inv_wdisp10()
kvn@3037 536 assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
kvn@3037 537 return r;
kvn@3037 538 }
duke@435 539
duke@435 540 // word displacement in low-order nbits bits
duke@435 541
duke@435 542 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 543 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 544 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 545 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 546 : pre_sign_extend;
duke@435 547 return (r << 2) + pos;
duke@435 548 }
duke@435 549
duke@435 550 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 551 intptr_t xx = x - off;
duke@435 552 assert_signed_word_disp_range(xx, nbits);
duke@435 553 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 554 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 555 return r;
duke@435 556 }
duke@435 557
duke@435 558
duke@435 559 // Extract the top 32 bits in a 64 bit word
duke@435 560 static int32_t hi32( int64_t x ) {
duke@435 561 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 562 return r;
duke@435 563 }
duke@435 564
duke@435 565 // given a sethi instruction, extract the constant, left-justified
duke@435 566 static int inv_hi22( int x ) {
duke@435 567 return x << 10;
duke@435 568 }
duke@435 569
duke@435 570 // create an imm22 field, given a 32-bit left-justified constant
duke@435 571 static int hi22( int x ) {
duke@435 572 int r = int( juint(x) >> 10 );
duke@435 573 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 574 return r;
duke@435 575 }
duke@435 576
duke@435 577 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 578 static int low10( int x ) {
duke@435 579 return x & ((1 << 10) - 1);
duke@435 580 }
duke@435 581
kvn@6312 582 // AES crypto instructions supported only on certain processors
kvn@6312 583 static void aes_only() { assert( VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
kvn@6312 584
kvn@6312 585 // instruction only in VIS1
kvn@6312 586 static void vis1_only() { assert( VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
kvn@6312 587
kvn@3001 588 // instruction only in VIS3
kvn@3001 589 static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
kvn@3001 590
duke@435 591 // instruction only in v9
morris@5283 592 static void v9_only() { } // do nothing
duke@435 593
duke@435 594 // instruction deprecated in v9
duke@435 595 static void v9_dep() { } // do nothing for now
duke@435 596
duke@435 597 // v8 has no CC field
duke@435 598 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 599
duke@435 600 protected:
duke@435 601 // Simple delay-slot scheme:
duke@435 602 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 603 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 604 // Also, when putting an instruction into a delay slot, you must say
duke@435 605 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 606 // delay-slot instructions.
duke@435 607 // To implement this, we use a simple FSA
duke@435 608
duke@435 609 #ifdef ASSERT
duke@435 610 #define CHECK_DELAY
duke@435 611 #endif
duke@435 612 #ifdef CHECK_DELAY
duke@435 613 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 614 #endif
duke@435 615
duke@435 616 public:
duke@435 617 // Tells assembler next instruction must NOT be in delay slot.
duke@435 618 // Use at start of multinstruction macros.
duke@435 619 void assert_not_delayed() {
duke@435 620 // This is a separate overloading to avoid creation of string constants
duke@435 621 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 622 #ifdef CHECK_DELAY
duke@435 623 assert_not_delayed("next instruction should not be a delay slot");
duke@435 624 #endif
duke@435 625 }
duke@435 626 void assert_not_delayed(const char* msg) {
duke@435 627 #ifdef CHECK_DELAY
jcoomes@1845 628 assert(delay_state == no_delay, msg);
duke@435 629 #endif
duke@435 630 }
duke@435 631
duke@435 632 protected:
duke@435 633 // Delay slot helpers
duke@435 634 // cti is called when emitting control-transfer instruction,
duke@435 635 // BEFORE doing the emitting.
duke@435 636 // Only effective when assertion-checking is enabled.
duke@435 637 void cti() {
duke@435 638 #ifdef CHECK_DELAY
duke@435 639 assert_not_delayed("cti should not be in delay slot");
duke@435 640 #endif
duke@435 641 }
duke@435 642
duke@435 643 // called when emitting cti with a delay slot, AFTER emitting
duke@435 644 void has_delay_slot() {
duke@435 645 #ifdef CHECK_DELAY
duke@435 646 assert_not_delayed("just checking");
duke@435 647 delay_state = at_delay_slot;
duke@435 648 #endif
duke@435 649 }
duke@435 650
kvn@3037 651 // cbcond instruction should not be generated one after an other
kvn@3037 652 bool cbcond_before() {
kvn@3037 653 if (offset() == 0) return false; // it is first instruction
kvn@3037 654 int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
kvn@3037 655 return is_cbcond(x);
kvn@3037 656 }
kvn@3037 657
kvn@3037 658 void no_cbcond_before() {
kvn@3037 659 assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
kvn@3037 660 }
kvn@3037 661
kvn@3049 662 public:
kvn@3049 663
kvn@3037 664 bool use_cbcond(Label& L) {
kvn@3037 665 if (!UseCBCond || cbcond_before()) return false;
kvn@3037 666 intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
kvn@3037 667 assert( (x & 3) == 0, "not word aligned");
twisti@3310 668 return is_simm12(x);
kvn@3037 669 }
kvn@3037 670
duke@435 671 // Tells assembler you know that next instruction is delayed
duke@435 672 Assembler* delayed() {
duke@435 673 #ifdef CHECK_DELAY
duke@435 674 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 675 delay_state = filling_delay_slot;
duke@435 676 #endif
duke@435 677 return this;
duke@435 678 }
duke@435 679
duke@435 680 void flush() {
duke@435 681 #ifdef CHECK_DELAY
duke@435 682 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 683 #endif
duke@435 684 AbstractAssembler::flush();
duke@435 685 }
duke@435 686
twisti@4412 687 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
twisti@4412 688 inline void emit_data(int x) { emit_int32(x); }
duke@435 689 inline void emit_data(int, RelocationHolder const&);
duke@435 690 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 691 // helper for above fcns
duke@435 692 inline void check_delay();
duke@435 693
duke@435 694
duke@435 695 public:
duke@435 696 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 697
duke@435 698 // pp 135 (addc was addx in v8)
duke@435 699
twisti@1162 700 inline void add(Register s1, Register s2, Register d );
twisti@4323 701 inline void add(Register s1, int simm13a, Register d );
duke@435 702
twisti@4412 703 void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 704 void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 705 void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 706 void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 707 void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 708 void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 709
kvn@3037 710
kvn@6312 711 // 4-operand AES instructions
kvn@6312 712
kvn@6312 713 void aes_eround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 714 void aes_eround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 715 void aes_dround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 716 void aes_dround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 717 void aes_eround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 718 void aes_eround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 719 void aes_dround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 720 void aes_dround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 721 void aes_kexpand1( FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | u_field(imm5a, 13, 9) | op5(aes_kexpand1_op5) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 722
kvn@6312 723
kvn@6312 724 // 3-operand AES instructions
kvn@6312 725
kvn@6312 726 void aes_kexpand0( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand0_opf) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 727 void aes_kexpand2( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand2_opf) | fs2(s2, FloatRegisterImpl::D) ); }
kvn@6312 728
duke@435 729 // pp 136
duke@435 730
kvn@3037 731 inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
kvn@3037 732 inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 733
kvn@3037 734 // compare and branch
kvn@3037 735 inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
kvn@3037 736 inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
kvn@3037 737
kvn@3049 738 protected: // use MacroAssembler::br instead
kvn@3049 739
kvn@3049 740 // pp 138
kvn@3049 741
kvn@3049 742 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 743 inline void fb( Condition c, bool a, Label& L );
kvn@3049 744
kvn@3049 745 // pp 141
kvn@3049 746
kvn@3049 747 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 748 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 749
kvn@3049 750 // pp 144
kvn@3049 751
kvn@3049 752 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 753 inline void br( Condition c, bool a, Label& L );
kvn@3049 754
kvn@3049 755 // pp 146
kvn@3049 756
kvn@3049 757 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 758 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 759
duke@435 760 // pp 149
duke@435 761
duke@435 762 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 763 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 764
kvn@3037 765 public:
kvn@3037 766
duke@435 767 // pp 150
duke@435 768
duke@435 769 // These instructions compare the contents of s2 with the contents of
duke@435 770 // memory at address in s1. If the values are equal, the contents of memory
duke@435 771 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 772 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 773
twisti@4412 774 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
twisti@4412 775 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 776
duke@435 777 // pp 152
duke@435 778
twisti@4412 779 void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
twisti@4412 780 void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 781 void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
twisti@4412 782 void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 783 void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
twisti@4412 784 void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 785 void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
twisti@4412 786 void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 787
duke@435 788 // pp 155
duke@435 789
twisti@4412 790 void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
twisti@4412 791 void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 792
duke@435 793 // pp 156
duke@435 794
twisti@4412 795 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
twisti@4412 796 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 797
duke@435 798 // pp 157
duke@435 799
morris@5283 800 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
morris@5283 801 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 802
duke@435 803 // pp 159
duke@435 804
twisti@4412 805 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
twisti@4412 806 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 807
duke@435 808 // pp 160
duke@435 809
twisti@4412 810 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 811
duke@435 812 // pp 161
duke@435 813
twisti@4412 814 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
twisti@4412 815 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
duke@435 816
duke@435 817 // pp 162
duke@435 818
morris@5283 819 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 820
morris@5283 821 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 822
morris@5283 823 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 824
duke@435 825 // pp 163
duke@435 826
twisti@4412 827 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
twisti@4412 828 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
twisti@4412 829 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 830
kvn@6312 831 // FXORs/FXORd instructions
kvn@6312 832
kvn@6312 833 void fxor( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(flog3_op3) | fs1(s1, w) | opf(0x6E - w) | fs2(s2, w)); }
kvn@6312 834
duke@435 835 // pp 164
duke@435 836
twisti@4412 837 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 838
duke@435 839 // pp 165
duke@435 840
duke@435 841 inline void flush( Register s1, Register s2 );
duke@435 842 inline void flush( Register s1, int simm13a);
duke@435 843
duke@435 844 // pp 167
duke@435 845
twisti@4412 846 void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); }
duke@435 847
duke@435 848 // pp 168
duke@435 849
twisti@4412 850 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 851 // v8 unimp == illtrap(0)
duke@435 852
duke@435 853 // pp 169
duke@435 854
twisti@4412 855 void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
twisti@4412 856 void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 857
duke@435 858 // pp 170
duke@435 859
duke@435 860 void jmpl( Register s1, Register s2, Register d );
duke@435 861 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 862
duke@435 863 // 171
duke@435 864
twisti@1162 865 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
twisti@1162 866 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
twisti@1162 867
duke@435 868
duke@435 869 inline void ldfsr( Register s1, Register s2 );
duke@435 870 inline void ldfsr( Register s1, int simm13a);
duke@435 871 inline void ldxfsr( Register s1, Register s2 );
duke@435 872 inline void ldxfsr( Register s1, int simm13a);
duke@435 873
duke@435 874 // 173
duke@435 875
twisti@4412 876 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 877 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 878
duke@435 879 // pp 175, lduw is ld on v8
duke@435 880
duke@435 881 inline void ldsb( Register s1, Register s2, Register d );
duke@435 882 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 883 inline void ldsh( Register s1, Register s2, Register d );
duke@435 884 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 885 inline void ldsw( Register s1, Register s2, Register d );
duke@435 886 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 887 inline void ldub( Register s1, Register s2, Register d );
duke@435 888 inline void ldub( Register s1, int simm13a, Register d);
duke@435 889 inline void lduh( Register s1, Register s2, Register d );
duke@435 890 inline void lduh( Register s1, int simm13a, Register d);
duke@435 891 inline void lduw( Register s1, Register s2, Register d );
duke@435 892 inline void lduw( Register s1, int simm13a, Register d);
duke@435 893 inline void ldx( Register s1, Register s2, Register d );
duke@435 894 inline void ldx( Register s1, int simm13a, Register d);
duke@435 895 inline void ldd( Register s1, Register s2, Register d );
duke@435 896 inline void ldd( Register s1, int simm13a, Register d);
duke@435 897
duke@435 898 // pp 177
duke@435 899
twisti@4412 900 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 901 void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 902 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 903 void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 904 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 905 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 906 void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 907 void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 908 void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 909 void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 910 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 911 void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 912 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 913 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 914
duke@435 915 // pp 181
duke@435 916
twisti@4412 917 void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 918 void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 919 void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 920 void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 921 void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 922 void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 923 void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 924 void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 925 void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 926 void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 927 void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 928 void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 929 void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 930 void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 931 void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 932 void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 933 void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 934 void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 935 void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 936 void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 937 void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 938 void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 939 void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 940 void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 941
duke@435 942 // pp 183
duke@435 943
twisti@4412 944 void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 945
duke@435 946 // pp 185
duke@435 947
twisti@4412 948 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 949
duke@435 950 // pp 189
duke@435 951
twisti@4412 952 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 953
duke@435 954 // pp 191
duke@435 955
twisti@4412 956 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
twisti@4412 957 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 958
duke@435 959 // pp 195
duke@435 960
twisti@4412 961 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
twisti@4412 962 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 963
duke@435 964 // pp 196
duke@435 965
twisti@4412 966 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 967 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 968 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 969 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 970 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 971 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 972
duke@435 973 // pp 197
duke@435 974
twisti@4412 975 void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 976 void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 977 void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 978 void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 979 void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 980 void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 981 void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 982 void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 983
duke@435 984 // pp 201
duke@435 985
twisti@4412 986 void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
duke@435 987
duke@435 988
duke@435 989 // pp 202
duke@435 990
twisti@4412 991 void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
twisti@4412 992 void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 993
duke@435 994 // pp 203
duke@435 995
twisti@4412 996 void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
twisti@4323 997 void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
twisti@4323 998
twisti@4412 999 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1000 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1001
duke@435 1002 // pp 208
duke@435 1003
duke@435 1004 // not implementing read privileged register
duke@435 1005
twisti@4412 1006 inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
twisti@4412 1007 inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
twisti@4412 1008 inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
twisti@4412 1009 inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
twisti@4412 1010 inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
twisti@4412 1011 inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1012
duke@435 1013 // pp 213
duke@435 1014
duke@435 1015 inline void rett( Register s1, Register s2);
duke@435 1016 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1017
duke@435 1018 // pp 214
duke@435 1019
twisti@4412 1020 void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
ysr@777 1021 void save( Register s1, int simm13a, Register d ) {
ysr@777 1022 // make sure frame is at least large enough for the register save area
ysr@777 1023 assert(-simm13a >= 16 * wordSize, "frame too small");
twisti@4412 1024 emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
ysr@777 1025 }
duke@435 1026
twisti@4412 1027 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1028 void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1029
duke@435 1030 // pp 216
duke@435 1031
twisti@4412 1032 void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
twisti@4412 1033 void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1034
duke@435 1035 // pp 217
duke@435 1036
duke@435 1037 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1038 // pp 218
duke@435 1039
twisti@4412 1040 void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1041 void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
twisti@4412 1042 void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1043 void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
twisti@4412 1044 void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1045 void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1046
twisti@4412 1047 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1048 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
twisti@4412 1049 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1050 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
twisti@4412 1051 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1052 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1053
duke@435 1054 // pp 220
duke@435 1055
twisti@4412 1056 void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1057
duke@435 1058 // pp 221
duke@435 1059
twisti@4412 1060 void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1061
duke@435 1062 // pp 222
duke@435 1063
twisti@1441 1064 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
duke@435 1065 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1066
duke@435 1067 inline void stfsr( Register s1, Register s2 );
duke@435 1068 inline void stfsr( Register s1, int simm13a);
duke@435 1069 inline void stxfsr( Register s1, Register s2 );
duke@435 1070 inline void stxfsr( Register s1, int simm13a);
duke@435 1071
duke@435 1072 // pp 224
duke@435 1073
twisti@4412 1074 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1075 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1076
duke@435 1077 // p 226
duke@435 1078
duke@435 1079 inline void stb( Register d, Register s1, Register s2 );
duke@435 1080 inline void stb( Register d, Register s1, int simm13a);
duke@435 1081 inline void sth( Register d, Register s1, Register s2 );
duke@435 1082 inline void sth( Register d, Register s1, int simm13a);
duke@435 1083 inline void stw( Register d, Register s1, Register s2 );
duke@435 1084 inline void stw( Register d, Register s1, int simm13a);
duke@435 1085 inline void stx( Register d, Register s1, Register s2 );
duke@435 1086 inline void stx( Register d, Register s1, int simm13a);
duke@435 1087 inline void std( Register d, Register s1, Register s2 );
duke@435 1088 inline void std( Register d, Register s1, int simm13a);
duke@435 1089
duke@435 1090 // pp 177
duke@435 1091
twisti@4412 1092 void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1093 void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1094 void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1095 void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1096 void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1097 void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1098 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1099 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1100 void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1101 void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1102
duke@435 1103 // pp 230
duke@435 1104
twisti@4412 1105 void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1106 void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@2350 1107
twisti@4412 1108 void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1109 void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1110 void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1111 void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1112 void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1113 void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1114
duke@435 1115 // pp 231
duke@435 1116
duke@435 1117 inline void swap( Register s1, Register s2, Register d );
duke@435 1118 inline void swap( Register s1, int simm13a, Register d);
duke@435 1119
duke@435 1120 // pp 232
duke@435 1121
twisti@4412 1122 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1123 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1124
duke@435 1125 // pp 234, note op in book is wrong, see pp 268
duke@435 1126
twisti@4412 1127 void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1128 void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1129
duke@435 1130 // pp 235
duke@435 1131
twisti@4412 1132 void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1133 void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1134
duke@435 1135 // pp 237
duke@435 1136
morris@5283 1137 void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
morris@5283 1138 void trap( Condition c, CC cc, Register s1, int trapa ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1139 // simple uncond. trap
duke@435 1140 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1141
duke@435 1142 // pp 239 omit write priv register for now
duke@435 1143
twisti@4412 1144 inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
twisti@4412 1145 inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
twisti@4412 1146 inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
duke@435 1147 rs1(s) |
duke@435 1148 op3(wrreg_op3) |
duke@435 1149 u_field(2, 29, 25) |
kvn@3092 1150 immed(true) |
duke@435 1151 simm(simm13a, 13)); }
twisti@4412 1152 inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
kvn@3092 1153 // wrasi(d, imm) stores (d xor imm) to asi
twisti@4412 1154 inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
kvn@3092 1155 u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
twisti@4412 1156 inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1157
kvn@3001 1158
kvn@3001 1159 // VIS3 instructions
kvn@3001 1160
twisti@4412 1161 void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
twisti@4412 1162 void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
twisti@4412 1163 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
kvn@3001 1164
twisti@4412 1165 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
twisti@4412 1166 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
kvn@3001 1167
duke@435 1168 // Creation
duke@435 1169 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1170 #ifdef CHECK_DELAY
duke@435 1171 delay_state = no_delay;
duke@435 1172 #endif
duke@435 1173 }
duke@435 1174 };
duke@435 1175
stefank@2314 1176 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial